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Abstract

This paper is devoted to studying the threshold dynamics for infection age-structured epi-
demic models with non-degenerate diffusion and degenerate diffusion. For general infection
age-structured epidemic models with non-degenerate diffusion, we establish the basic repro-
duction number Ry by using non-densely defined operators and prove that Ry equals the
spectral radius of —.% .27 1. For a class of infection age-structured epidemic models with
non-degenerate diffusion or degenerate diffusion, we give a general method to prove that Ry
plays the role of the threshold for the extinction or persistence of the disease. Finally, we
apply our methods to the infection age-structured SIR, SEIR epidemic models and obtain
the threshold results on their global dynamics. Our results on Ry for the general infection
age-structured epidemic models extend the cases of ODE and reaction—diffusion epidemic
models. In addition, our method in this paper improves some previous results and is applicable
to the Neumann, Dirichlet, and Robin boundary conditions.

Keywords Basic reproduction number - Infection age-structured - Degenerate diffusion -
Uniform persistence - Compact attractors
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1 Introduction

The epidemic model is one of the most classical models which has been researched for many
years. It was firstly proposed by Kermack and McKendrick in 1927 and is an infection-age-
dependent outbreak model [25]. Due to the age-structured effects, the infection age-structured
epidemic models are more complicated than models in the form of ordinary differential
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equations. The basic reproduction number Ry for ODE models can be seen as a threshold for
extinction or uniform persistence of the disease, also as a criterion for the global asymptotic
stability of the disease-free steady state or endemic steady state [10, 54, 56, 58, 64]. Therefore,
the basic reproduction number is of great concern in age-structured models. In the case of
infection age-structured epidemic models without diffusion term, Magal et al. studied the
SIR model in 2010 and proved that R\ plays the role of the threshold by using integrated
semigroup theory [36]. In addition, many authors have extensively studied age-structured
epidemic models [4, 9, 12—-15, 26, 42, 60, 61]. Naturally, a question arises whether the basic
reproduction number Rp can be used as a threshold to decide the extinction and uniform
persistence of the disease in the infection age-structured models with spatial diffusion.

For ODE and reaction—diffusion epidemic models, Ry can be defined as the spectral
radius of —FV ™!, where F is the input rate of newly infected individuals and V is the
internal evolution of individuals in the infectious compartments. However, the definition of
the basic reproduction number in infection age-structured epidemic models is always defined
by the spectral radius of the next generation operator instead of — F V ~!. Therefore, we guess
that the basic reproduction number R for infection age-structured models can be defined
as the form of r(—FV~1). In Sect.3, inspired by the ideas of Thieme [54], we give an
affirmative answer to this conjecture and prove that Ry for general infection age-structured
epidemic models with non-degenerate diffusion also can be defined as the spectral radius
of —F /™!, where %, o/ are non-densely defined operators. This result extends the basic
reproduction number for ODE and reaction—diffusion epidemic models (such as Theorem
2 in [56], Theorems 3.1, 3.3 and 3.4 in [58] and Corollary 2.1 in [64]). In Sect.3, we also
prove that the spectral bound of .7 4 .7 has the same sign as Ry — 1. Moreover, if <7, .% are
defined in suitable spaces, the exponential growth bound of 7,1 #, also has the same sign as
Ro—1, where Tz, 4.7, is a Cop-semigroup generated by .o/ +.%. These results also extend the
basic reproduction numbers for many kinds of ODE epidemic models and reaction—diffusion
epidemic models (Theorem 3.8 in [44], Theorem 3.1 in [58] and Theorem 2.1 in [64]). In
addition, in Sect. 3, we compare our results on Ry for the infection age-structured epidemic
model with Wang and Zhaos’ work on reaction—diffusion epidemic models [58].

There have been many pieces of research on the infection age-structured epidemic model
with non-degenerate diffusion. However, to the best of our knowledge, almost all research
only focused on low-dimensional models, spatially homogeneous environments, and the Neu-
mann boundary conditions. Chekroun and Kuniya studied the infection age-structured SIR
model with spatial diffusion under the Neumann and Dirichlet boundary conditions [5-7]. In
their work, they only proved the attractiveness of the disease-free steady state when Ry < 1
and the initial value belongs to a subset of phase space instead of the whole phase space.
Yet, this only partially showed that Ry plays a role of the threshold to decide the extinction
or uniform persistence of the disease, as happened in some other literature [57, 62]. Espe-
cially, if the boundary condition is not Neumann boundary condition or epidemic models
with spatial heterogeneity, it becomes extremely difficult to prove the global attractiveness
of the disease-free steady state. The major obstruction to use the traditional strategy of con-
structing Lyapunov functional, is the fact that the expression of the disease-free steady state
is not constant. In Sect. 4, we study a class of infection age-structured epidemic model with
non-degenerate diffusion and spatial heterogeneity in the high-dimensional case, and give a
general method to overcome this obstacle. We prove the global attractiveness of the disease-
free steady state if Ry < 1 without restrictions on the initial value condition. A comparison
between our and Chekroun’s results on the infection age-structured SIR epidemic model
[5-7] is presented in Remarks 6.5 and 6.7. Our method can prove the global attractiveness
of the disease-free steady state with no limitation on the initial value condition.
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There are also many works on the high-dimensional age structure epidemic models without
spatial diffusion. In 2013, Magal et al. considered nosocomial infection and established a two-
group infection age-structured epidemic model [39]. Kuniya et al. studied the multi-group SIR
and SEIR epidemic model with age structure, and applied them to the chlamydia epidemic
in Japan [27, 28, 59]. All of these show that it is of great practical significance to study the
high-dimensional infection age-structured epidemic model. Nevertheless, due to the effects
caused by diffusion terms, almost all the work about the infection age-structured epidemic
models with spatial diffusion only focuses on the low-dimensional models. Additionally,
many methods for the low-dimensional models with spatial diffusion are no longer suitable
for the high-dimensional models. For example, in the case of the SIR model under the
Dirichlet boundary condition, Chekroun and Kuniya used the Feynman—Kac formula and
the Krasnoselskii’s fixed point theorem to prove the existence of an endemic steady state
[5]. Their method needs to calculate the Fréchet derivative of the operator defined by the
boundary condition. Due to the complexity of operators, this is almost impossible in high-
dimensional cases. In Sect. 4, we consider a class of infection age-structured epidemic model
with non-degenerate diffusion in a high-dimensional situation. To make up for the absence
of Fréchet derivative of some operators, we follow the idea of compact operators theory [18,
38, 49, 65] instead and give another method to prove the uniform persistence of disease and
the existence of an endemic steady state.

We would like to mention that the method in Sect.4 is different from the methods used
in infection age-structured models with spatial diffusion in the past. In Sect.4, based on
the approach developed in [11, 39, 45], we give a general method to the class of infection
age-structured epidemic model with non-degenerate diffusion and spatial heterogeneity. We
overcome some problems left in the past literature (such as the global attractiveness of the
disease-free steady state, and the existence of the endemic steady state). This method com-
pletely solves the threshold problem for the infection age-structured epidemic model with
spatial diffusion. Due to the limitations of these methods, we need to add a condition that there
exists a maximum infection age, and this condition is reasonable in age-structured models.
To our knowledge, most of the previous studies on spatially diffusive epidemic models in
spatially bounded domains assumed the homogeneous Neumann (zero-flux) boundary con-
dition. The advantage of this approach based on operator semigroup theory is that it allows
us to treat Neumann, Dirichlet, and Robin boundary conditions when the assumptions hold.

Epidemic models with degenerate diffusion have also been studied by many authors [23,
32, 55, 58, 63]. As far as we are concerned, the infection age-structured model with degen-
erate diffusion has not been studied in the literature. One of the technical challenges is that
the solution semigroup of the degenerate reaction—diffusion equations is not compact. This
factor directly prevents us from dealing with this degenerate diffusion model using the above
methods. By using a generalized Krein-Rutman Theorem, we prove that the basic repro-
duction number is still the principal eigenvalue of the next generation operator, under some
assumptions. In Sect. 5, we consider a class of infection age-structured epidemic model with
degenerate diffusion and spatial heterogeneity. We prove that the basic reproduction number
Ry also plays a role of the threshold to decide extinction or weakly uniform persistence of
the disease.

This paper is organized as follows. Our approach is sketched here for readers’ convenience.
In Sect.2, we introduce the general infection age-structured epidemic model with spatial
diffusion and use the method of characteristic line to transform the age-structured model
into Volterra integral equations. In Sect. 3, we prove the existence of the solution and define
the basic reproduction number Ry for the infection age-structured epidemic model with non-
degenerate diffusion by using non-densely defined operators. We prove that Ry can be defined
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as the spectral radius of the operator —%.«7 ! and the spectral bound of & + . has the
same sign as Ry — 1. Moreover, the exponential growth bound of T +#, (solution map)
also has the same sign as Ry — 1 in some suitable spaces. In addition, we compare our results
with Wang and Zhaos’ work on reaction—diffusion epidemic models. In Sect.4, we study a
class of infection age-structured epidemic model with non-degenerate diffusion and spatial
heterogeneity. We prove that Ry is the threshold for extinction and persistence of the disease.
If Ry < 1, we prove that the disease-free steady state is globally attractive for the whole phase
space by using the comparison principle for the age-structured equation and renewal theorem.
If Ry > 1, we prove the uniform persistence of disease and the existence of an endemic steady
state by using the theory of compact attractors. In Sect.5, we consider the epidemic model
under degenerate diffusion and spatial heterogeneity. We follow the definition of the basic
reproduction number Ry in Sect.3. We prove that Rp < 1 means the extinction of disease,
and Ry > 1 means weakly uniform persistence of the disease. In Sect. 6, we apply our results
to the infection age-structured SIR and SEIR epidemic models and obtain threshold results
on its global dynamics. Finally, a brief discussion section completes the paper.

2 Preliminaries

In this paper, we consider the dynamical threshold for the general infection age-structured
epidemic models with spatial diffusion and degenerate diffusion. Here, we assume that the
number of infected compartments is » and the number of remaining compartments which
includes susceptible, removal, and other compartments is m (for simplicity, we mark them
as ). We construct the general infection age-structured epidemic model, for 1 <i <n,1 <
j<m,t>ty,a>0andx € £2,

%Sj(t,x) =bj(x)AS;(t, x)+M;(x, S1(t,x), ..., Sm(t,x), [1(t, -, x), ..., In(t, -, X)),
(aa—, + %) Lt a,x) = di ()AL (1, a, x) — Vila, x, 1 (t, @, %), .., In(1, @, x)),

oo (2.1)
Li(1,0,x) = Fi(x, S1(t,x), ..., Sm(t, %), fo" Bi1(a, )1 (t,a,x)da, ...,
Jo % Binta, ) In(t, a, x)da),
under the Neumann boundary condition
9S; al;
— =0,— =0,x € 992, (2.2)
av av
with initial value condition
Sj(to. ) = Sjo() € C(R), Ii(to, ) = lio(-.) € L' Ry, C(2)), (2.3)

where d; (x) denotes the diffusion coefficient for the group i of infected compartments and
bj(x) denotes the diffusion coefficient for the group j of remaining groups. Fix n € N.
Let £2 C R” be a bounded, open, and connected set (domain) with smooth boundary 952. In
system (2.1), functions F; are the newly infected individuals in the i th infected compartment,
Vi is the rate of transfer of individuals between infected compartments, and M is a sum of
the rate of the birth, out and transfer of remaining compartments.

Following the general setting of ODE and infection age-structured epidemic models, we
make the following assumption.

Assumption 2.1 For system (2.1), assume that
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(i) foreachiand j, B;;(-,) € LY (R4, C(22)) N LY (R, C(£2)). Moreover, there exists
at least one interval (ay, a*) such that B(a, x) := (B;j(a, x))1<i, j<n is an irreducible
and positive matrix for all a € (a4, a*) and x € £2;

(i) Vi(a,x, I1(t,a, x), ..., I,(t, a, x)) is non-negative and continuous foralla € (0, 4+-00),
x € £2, and continuously differential with respect to I, V1 < k < n;

(iii) foreach j =1,2,--- ,mandeachi = 1,2, ---,n, diffusion coefficients b;(-), d; (-)
are continuous functions on C(£2) and d;(x) > 0,b;(x) > 0, Vx € £2;

(V) FiCx, Si(t,x), -, Su(t,x), fo7° Bira, )1 (t,a, x)da, -, 7 Bin(a, x)
I,(t,a, x)da) is a non-negative and continuous function for all x € 2, and contin-

n
uously differential with respectto f0+°° Bix(a, x)Ix(t, a, x)da.
k=1
For simplicity, we rewrite the system (2.1) into a more compact form. Let S(z, x) and
I(t, a, x) be defined as follows

S, %) = (S1(t, %), 2(6,), -+, Su(t, )7, (04)
I(tv a, x) = (11 (ts a?-x)v [Z(ts a?-x)v Y Il‘l(ts a, -x))T' '
In addition, we define A and L as follows

AX)S := (b1(X)AS, -+, by () AS) T, LT := (di(x) AL, -+, dy(x)AL)T.

In order to study the dynamical threshold for system (2.1), we need to consider the lin-
earization equations of the infected compartments at the disease-free steady state. So we

assume that system has a disease-free steady state (So(x), Io(a,x)) = (So(x),O) =
(S?(x), Sg(x), cee, S,(,)l (x),0,0,---,0)7 (a clearer assumption on the disease-free steady
———

n
state is in Assumption 2.1). Therefore we consider the following system (the linearization
equations of the infected compartments at the disease-free steady state), for t > 75, a > 0
and x € £2,

(2 4+ 2)I¢t.a.x)=Lx)I(t,a,x)—Va,x)I(t a,x),

{I(t, 0,x) = F'(x) fOJrOO B(a,x)I(t,a,x)da, 2.5)

where B(a, x) := (B;j(a, x))1<i, j<n and Fo(x), Vo(x) are defined by

IF; (. SY (), .89 ()., Jo ™ Bin@ 1)@ x)da, ., Jo Bin(@ 12 (@.x)da)

n
Y foF Bija,x)Ida
j=1

VOa. x) = (BV[(a,x,I?(a,x),u-,I,?(a,x))) !
1<,i,j<n

FOx) :=

)

1<,,j<n

al;
where 1%(a, x) = (I%(a, x), .-+, I2(a,x)) = (0,0, --- , 0).
———
n
Here, we assume that systems (2.1) and (2.5) admit unique mild solutions (we will prove
it in Sect. 3). The operators L(-) — Vo(a, -) are associated wi& an evolutionary system
WO = (WO, 5);0<s <t <+4oo}of positive operators on C(£2, R"),

1
L()—V%a, )= Jim Z(WO(“ +h,a)p — ), ¢ € DL —Va, ),

where D(L() - V9a, ) is the set of points for which the limit exists, and the norm of
space C(£2, R") is the usual supremum norm.
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The solution of system (2.5) can be abstractly rewritten as

I(t,a,x)= WO(a,001(t —a,0,x), t—1ty>a,
T A Wo%a,att0—Iga+tg—t,x), t — 1ty < a, 2.6)
I(1,0,x) = OJFOO Fo(x)B((l,)C)I(l‘,a,x)da7 t>tg,x €82.

We define the exponential growth bound of evolution family W0(z, 5) as

oW =inf{@:IM > 1:Vs e Rt >0: [WOt +s5,5)] < Me®}.

To ensure that the disease-free steady state ($%(x),0) = (S?(x), Sg(x), e, S,% (x),
0,0, ---,0)7 is stable and note that the internal evolution of individuals in infected compart-
———

n
ments is dissipative and exponential decay(such as natural mortalities and disease-induced
mortalities), we make the following assumption.

Assumption 2.2 For system (2.1), assume that

i) —V%a,x)is a cooperative and irreducible matrix function for all x € £2 and a €
[0, 400). In addition, w( WO) < 0, where w(-) represents the exponential growth bound;
(i1) the following reaction—diffusion equations under the Neumann boundary condition

dS(t, x)
dt

=AX)St, x)+M(x, S(t,x),0), xe2 2.7

admits a globally attractive unique positive steady state S°(x), where M := (M <j<m-

In order to reformulate system (2.5) into Volterra integral equations, we define
zo(t, to; I, x) as follows

400
zo(t, to; 1o, x) :=1(¢,0,x) = Fo(x)/ B(a,x)I(t,a,x)da, t=>ty,x¢€S2.
0
(2.8)
By (2.8), we have, fort > 1y, x € £2,

20(t, 10 Lo, x) = FO(x) [7°° B(a, x)I(t,a, x)da
= FO(x) [y B(a,x)I(t,a,x)da + F°(x) [**° B(a,x)I(t,a, x)da
= FO(x) [y, #°(a. x)z0(t — a. to; Io. x)da + FO(x)H(t, to; I, x),
(2.9)

where ®° and H? are defined by
®°(a, x) = B(a,x)W’(a,0),
+00
HO(t, 105 I, x) = / B(a, x)W (a,a+1to—t)Io(a+1to —t, x)da.
t
Remark 2.3 System (2.9) can be abstractly seen as Volterra integral equations. Because the
methods in this paper are based on the theory of operator semigroup, our results are valid for

the Neumann, Dirichlet, and Robin boundary conditions. In this paper, we mainly consider
the infection age-structured epidemic model under the Neumann boundary condition.
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3 Basic Reproduction Number for General Infection Age-Structured
Epidemic Model with Non-degenerate Diffusion

In this section, we consider the infection age-structured epidemic model with non-degenerate
diffusion. In Sect. 3.1, we prove the existence of integral solutions of systems (2.1) and (2.5).
In Sect. 3.2, we give the definition of the basic reproduction number Rg and prove that Ry — 1
has the same sign as the spectral bound of o/ 4 .#, where </, % are non-densely defined
operators. Moreover, if &7, .% are defined in suitable spaces, @ (T.,+.#,) also has the same
sign as Ro — 1. Without loss of generality, we always set 7o = 0.

Assumption 3.1 There exists a positive constant dy such that d;(x) > dp for each i =
1,2,---,nand x € £2.

Theorem 3.2 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then the evolution family
WO(t, s),t > s is compact.

Proof By the definition of WO, s), we know that WO(z, s) is the solution map of the fol-
lowing reaction—diffusion equations under the Neumann boundary condition

du(t,
fh Y L. x) — VOt vul.x). 1> 0.x € Q.
Note that L is the Laplace operator with Neumann boundary condition, it follows that
WO, s),t > sis compact. ]

3.1 Non-densely Defined Operators and the Well-Posedness

In this subsection, we use the method of the non-densely defined operator to prove the
existence of the solutions of systems (2.1) and (2.5).

SetY := C(£2, R"), equipped with the usual supremum norm. Recall that L is the Laplace
operator with the Neumann boundary condition. Then

D(L):={¢p € C*(2,RHNC'(2,R") : L € C(2,R"), % =0forx € 982}.

By Chapter 7 of [48], we know that L generates an analytic semigroup of bounded linear
operators 7(t) on Y.
Let X := L'((0, +00), Y) and the norm of space X be given by

+0o0
lolx :=/0 lp(a. liyda, ¢ e X.

Let us introduce a new extended space X and its closed subspace Xy by
X=YxX, Xo=0x2X,
where 0 := (0, 0, ..., 0)T. For any (¢, ¢) € X, the norm is defined by
——

n

(@, @lix = lIPlly + llellx, (¢, ¢) X

Then we consider the family of bounded linear operators {R) },~0 on X, defined by

R; (ﬁ) - (i’h) & ¥a) = KT @) +/a€_f”‘”T<a — $)g(s)ds.
0
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Observe that {R; },~0 is a pseudo-resolvent on X. That is to say that
Ry, — Ry =(u—MRyRy, VYA, u>0.
Moreover, we have
Rx=0,xeX=xeXp
and

lim ARx =x, Vx e Xp.
A——400

Similar to Sect. 1.9 of [43], we deduce that there exists a unique closed linear operator A
which satisfies

A: DA cX—->X, DA =X,

and

Ry=OI—A)"" Vva>o.
Denote by X(J)r := 0 x X4 the positive cone of Xy. In addition, we define an operator
F:X{ — Xby

> M0 fo+oo 21 Bij(a, )ej(a, Yda
i=1 iz

o YOS Y Bijla, ), )da o
-1 JHE
¢ = 2 o deya) ¢
J:

-z vpi(a, )gj(a, )
j:

where FO = (fl-o-)lgi,jgm VO = (v?j)ls,-,jf,,. According to the above definition, we can
transform (2.5) into the following semi-linear Cauchy problem in a non-densely defined
domain

WO — Au(r) + Fu(r),
u(0) = (g) ey 3D

Similar to [4], we consider the Cauchy problem (3.1) with the following equivalent form
(3.2)

W) — (A~ LDu@) + L+ eFum,

0

where ¢ is small enough that I + ¢ map the Xg to the positive cone X of X.
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Let A, :== A — %I and F, = é([ + &F). Since the operators are defined on the non-
densely defined domain, the classical semigroup theory is not suitable. We use the method
of Lipschitz perturbations of the non-densely defined operators [33, 52].

Lemma 3.3 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then A, satisfies the Hille-Yosida
condition.

Proof We consider the resolvent of A,. Then we have

_ 0Y_ (9
o1 Ag)<¢>_(¢>ex. (3.3)

By A, := A — él and R, = (A — A)~L, we have

Y(a) = e o ’H'%‘“T(a)(b + foa eI “'%‘”T(a — $)@(s)ds
= e_(Hé)"T(a)qS + f(;l e_(Hé)(”_s)T(a —s)p(s)ds.

Now, we give the estimate of (A — A~
= [1¥llx

a1
or-27 (3],

1 1
< fof e O IT@¢llda + Jo % fy e I7(@ = $)g(s)]| dsda
<M [ e a gl + M [T [T T HHEOET g (s)]| dsda

()l

where Ag is the principal eigenvalue of the following eigenvalue problem:

L(x)u(x) + Au(x) =0.

< T
= atltio

The above eigenvalue problem admits a unique principal eigenvalue Ao [3, 20], with the
solution semigroup 7 (¢) satisfying || 7 (1)|| < Me™' where M > 1. Thus, A, satisfies the
Hille-Yosida estimate. O

Definition 3.4 A continuous function « : [0, +00) — X s called an integral solution to (3.2)
if
t

u(t) = u(ty) + As/

fo

t
u(s)ds+/ Feu(s)ds. 3.4
1o

Remark 3.5 (3.4) implies that [ u(s)ds € D(A).
Define the part Ao of A, on Xg = D(A,):
Ago = As on D(Ag0) = {9 € D(A;); Acg € Xo}. (3.5
The following Lemmas 3.6 and 3.7 can be found in [33, 52].
Lemma 3.6 The part Ay of Ae on X generates a Co-semigroup {T a,,(t)};>0 on space Xo.

Lemma 3.7 The unique continuous solution to (3.2) can be given by (3.6),
t
u(t) =Ta,, —to)u(tp) + lim / Tp,ot —s)A(A — A Fou(s)ds. (3.6)
A—00 1

and it takes value in X.
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In fact, Lemma 3.7 follows from the Cp-semigroup theory, integrated semigroup theory,
and variation of constants formula. If € is chosen small enough, F; can be seen as a local
Lipschitz continuous, positive, and bounded perturbation. If we follow the ideas of the Banach
fixed point theorem in [21], we can also prove the existence of the local positive solution.
Above all, the solution of the system (3.1) has been proved.

Theorem 3.8 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then system (2.5) with initial
value Iy € X4 has a non-negative solution defined on C ([0, 1), X), T > 0.

Remark 3.9 In fact, if we set Y = Lz(Q, R™) or other suitable spaces, then Theorem 3.8
still holds. The reason is that the Laplace operator also generates an analytic and compact
semigroup on space L?(£2, R"). Moreover, we would like to mention that Magal and Ruan’s
work [34] tells us that we can define X := L?((0, 400), Y) with p > 1 and system (2.5)
with initial value Iy € X} has a non-negative solution defined in C ([0, 7), X), 7 > 0.

Next, we prove the existence of the solution of the system (2.1). System (2.1) can be
abstractly seen as the following form.

g(sm) _( AS(1) + V(S(1), u(t)) ) 3.7)
de \u@®) ) \Au@)+V(a, St),u®))’ '

where S(t, ) = (S1(t, ), -+, Sm(t, )T and

MyG, S, ) St ) ug (@, o)y s un(t, - )
V@), u@)() = : ,
M - St )y Sty ) un (6, +), -+ un (2, +,0)

Via, S@), u())(-)
~Vi(a, - uit,a,-), - un(t,a,-))

Vila,  ur (@, unt, a, )
Fi(oSi(t. ), Sm(t.), Jo7™ Brita, Jur(t.a, yda, -, [oF° Bio(a, Jun (e, a, da)

Fu( S1( ), St ), fo7 ™ Bur(a, uy(t.a, yda, - [§7° Bun(a, Jun(t, a, )da)

Cauchy problem (3.7) can be seen abstractly as

d . —
EP([) =AP(t) — (FP)@),

(SN = (A0 — _( V(S®,u@)
where P = (u) JA= (0 A>’(]:P)(t) - (V(a,S(t),u(t)))

Because A is the Laplace operator with the Neumann boundary condition, the eigenvalues
of A are smaller or equal to 0. It is well known that A satisfies the Hille-Yosida condition.
Combining with Lemma 3.3, we can deduce that A satisfies the Hille-Yosida condition.
Similar to Lemmas 3.6, 3.7, and Theorem 3.8, we have the following theorem about the
existence of the solution of the system (2.1).

Theorem 3.10 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. ILV and V are Lipschitz
continuous, then system (2.1) with initial value (So, Iy) € C+(£2,R™) x X4 has a mild
solution defined on C([0, 7), C (22, R™)) x C([0, 1), X), 7 > 0.
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Remark3.11 If we define Y := L%*(22,R") and X := LP((0,+00),)), then Theo-
rem 3.10 still holds if we replace phase space C([0, T), C(£2,R™)) x C([0, T), X) with
C ([0, 1), L2(£2, R™)) x C([0, 7), X). It is worth mentioning that the results of this section
are valid in the spaces ) := L?(22,R") and X := LP((0, +00), )), p>1

3.2 Basic Reproduction Number

For simplicity, we always set fo = 0 and spaces ¥ := C(£2, R") and X := L'((0, 400),Y)
without additional assumptions.

From Sect.2, we know that there exists an evolution family Wo(t, s),t > s onY for
system (2.5) as follows

[ W%, 0I(t—a,0,x), t—a>0,
Ie.a.x) = { Woa.a —t)lo(a—1.x), t —a <0. 38
Based on the boundary condition of (2.5), we have
+00
I1(t,0,x) = Fo(x)/ B(a,x)I(t,a,x)da, t>0,x € 2. 3.9)
0

According to the classical theory of the basic reproduction number for the age-structured
epidemic models [10, 22], we give the next generation operator ¥ that maps Y into itself as
follows,

(@) () 1 = FO) [ @ @)g(x)da

— 3.10
= F(x) [i7° B(a, x)W'(a, 0)p(x)da for x € 2. (3.10)

Similar to the argument in [10], we define the basic reproduction number Ry by
Ro :=r¥), (3.11)

where r(-) is the spectral radius.

Lemma 3.12 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then ¥ is a compact operator
and r (W) is the principal eigenvalue of ¥ with a strongly positive eigenvector V.. Moreover,
there is no other eigenvalue of ¥ with a positive eigenvector.

Proof From Theorem 3.2, we know that evolution family {W (¢, s)},>, is compact. Operator
¥ is a compact operator since it is a composition of a bounded operator and a compact
operator (Theorem 4.18 in [46]). Then the rest part of Lemma 3.12 is a direct result of the
Krein-Rutman Theorem. O

In Sect. 6 of [54], Thieme used non-densely defined operators to give the threshold oper-
ator of a one-dimensional age-structured population model. Inspired by this idea of Thieme,
we extend it to the n-dimensional cooperative age-structured epidemic models which are lin-
earized around the disease-free steady state (n-dimensional cooperative non-densely defined
Cauchy problem, abstractly). Then we can give another opinion to character the basic repro-
duction number Ry of the infection age-structured epidemic model. Define the non-densely
defined operators <7 and .# on Xy as follows (the precise definition of .2/ is given by its
resolvent later)
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—¢1(0)
—en(0)

" n

ﬂ(o) = | —Zo +d1(')% -2 v?j(a, 9 |,
@ j=l1
il 3%0n S0
—35%n +dn(") 0wl Zl vnj(a, DY)
j=

L0 5o 2. Bijla. )e;(t.a. )da
1= J=

F <0) = 2:1 fr?l() f0+00 Zl Bij(a, )o;(t,a, )da
1= j=

(7
0
0
Therefore, system (2.5) is equivalent to
du(t
‘[‘li ) — atut) + Fu(), (3.12)
In order to make the definition of .o/ precise, we determine its resolvent
=) @ 0)=(0,9), ($ ¢ eX (3.13)

That is to say,

{ Loy (a) = Ly (a) — AP (a) — VO@) ¥ (a) + ¢(a),
V() =¢.

By variation of constants formula, we have
a
Y(a) =e*W'a, 0)¢p + / e MW a, 5)p(s)ds. (3.14)
0

Define Ry (¢, @) = (0, ¥)T with ¥ given by (3.14). It is easy to see that Ry (¢, @)T =
(0, ¥)7 defines a pseudo-resolvent with zero null-space and this means that there exists an
operator .« such that R = (AI — </)~!. Note that W? is a positive evolutionary system on
space X, we can deduce that < is a resolvent-positive operator.

Remark 3.13 It is worth mentioning that the method to define non-densely defined operator
</ is the same to A which is defined in Sect. 3.1. More precisely, .7 and A are both defined
by their resolvents.

Notice that

+00
T (b 9) = (FO /0 B(@)W(a,0)pda + 09.0), (.)€ X
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with an appropriate operator Q. It follows from Gelfand’s formula that —% .7 ~! has the
same spectral radius on ¥ x {0} and X. Therefore, Ry defined by (3.11) equals the spectral
radius of — .71

Remark 3.14 From above, the basic reproduction number Ry for the infection age-structured
epidemic models defined by classical theory (i.e., defined by (3.11)), equals the spectral radius
of —.% o7 ~!. This means that we can directly use r (—.% .27 ~!) to define the basic reproduction
number. It extends the basic reproduction number for ODE and reaction-diffusion epidemic
models (e.g. Theorem 2 in [56], Theorems 3.1, 3.3 and 3.4 in [58] and Corollary 2.1 in [64]).

Theorem 3.15 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then s(F + <) has the same
sign as Ry — 1, where s(-) represents the spectral bound.

Proof Let g(t) € X,Vt > 0, define

(3.15)

0 —_ —
[P(1)g](s) = { Wis,s —t)g(s — 1), s > 1,

0, s <t.

Recall that WO(z, s) is an evolution family on X. By [8, Proposition 3.11], we know that IP is
the evolution semigroup associated with evolution family W0 on L' (R, X). Next, we define
an evolution family W9 on X and an evolution semigroup PonL! (R4, Xp) respectively by

— 0 0 A 0
WO([,S) <¢) = <W0([,S)¢> and |:]P)(t) <g)] (S) = <W0(S,S _ f)g(S _ f))

Recall that the exponential growth bound of semigroup P(¢) is
o) =inf{®@ e R;AM > 1:1 > 0: |P@)|| < Me™}.
From (3.13) and (3.14), the restriction of (A — 7)™ to Xq is given as follows
(= )70, 9) = (0. ).

Then we have

Y(a) = /a e Ma—s) Wo(a, s)o(s)ds
0
a “+o00
- / M B(a — s)gl(a)ds L f e HB()pl@)dr.
0 0

From above, we can see that the restriction of (A — «#)~! to X is given by the Laplace
transform of semigrogp P. It follows from the theory of semigroup that the generator of
evolutlon semigroup P is <% (the part of <7 in space Xg). Thus, by [8, Theorem 3.22], we
have a(IP’(t))\{O} = exp(to (#)) for t > 0. Moreover, by [8, Theorem 3.23], we obtain
s(ey) = a)(IF’) = w(W9). Based on the definition of evolution families wor, 5), WO and
evolution semigroups IP’(t) [P’(t) we can find that w(WO) = a)(WO) and o (P) = a)(]P’) This
implies that o (P) = w(]P’) = a)(WO) = w(W?% < 0. Thus, we have s(%) < 0. Note that
o/ and <7 has the same resolvent set, s(</) = s(<%) < 0. According to Theorem 3.5 in
[54], s(# + /) has the same sign as r(—%Fa~") — 1. Therefore, s(F + /) has the same
signas Ry — 1. O

Similar to Lemma 3.6, .o + % generates a strongly continuous semigroup 7,7, on
Xo.
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Theorem 3.16 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Let ¥ : Ry — C (R4, X) and
0,9 () = Topy+2,(0, ) for all t > 0. Then ¢(t,a,x) = ¥(t)(a, x) solves (3.8) and
(3.9).

Proof Define b(t,-) = 0+°° FO()B(a, )Y (t,a, -)da. It is obvious that & is a continuous
function. Let 5(A) = f0+°° e *b(1)dt be the Laplace transform of b(t). Then we have

Bo), 0" =70, 90)),

where 1@()\) is the Laplace transform of ¥ (z). By Theorem 3.12 in [54], we obtain
0,y =0 —o —Z)71(0, ¢y)" . Thus, we have

0,607 == —F)0, ¥ )N = (L — )0, ¥ )T — BG), 0T
Then we have
=)0, 0T = (b, ¢o)" and (0, (W) = A — )" B, ¢)T .

Define¢ = I(-, -, -) by (3.8) and @ (#) = ¢(¢, -). It is clear that ¢ is continuous. From (3.13)
and (3.14), we have

0,60))" = o — ) 7HBO), ¢ = 0, 90T

According to Theorem 1.7.3 of [2], ¢ = ¢ a.e.. Then ¢(¢, a, x) = ¥ (¢)(a, x) solves (3.8)
and (3.9). O

Remark 3.17 From Theorem 3.16, we can find that Co-semigroup T.z,+.%,(¢) can be seen
as the solution map for the infection age-structured epidemic model (2.5). Furthermore, we
deduce that s(<7 + .%) has the same sign as Ry — 1. This means the following relationship
is true.

(i) Rop < lifandonlyifs(&/ 4+ .7) < 1.
(i) Ro = lifand only if s(&/ + %) = 1.
(iii) Rp > 1ifand only if s(&/ + %) > 1.

If we define ¥ := L'(£2,R") and X := L'((0,400),Y)(or Y := L%2(2,R"), X :=
L2((0, 400), Y)), it follows from Theorem 3.14 of [54] (spectral mapping theorem) that
s(ey + F0) = o (Tey+7,)- Then Ry — 1 has the same sign as @ (74,+.%,) in some suit-
able spaces. These results extend the basic reproduction numbers for many kinds of ODE
epidemic models and reaction—diffusion epidemic models (Theorem 3.8 in [44], Theorem
3.1 in [58] and Theorem 2.1 in [64]). Moreover, if the model (2.1) is under the Dirichlet or
Robin boundary conditions, the results in Sect. 3 are still valid.

3.3 Comparison to Reaction-Diffusion Epidemic Models

In this subsection, we compare our results on the basic reproduction number for the infection
age-structured epidemic model with Wang and Zhao’s work on reaction—diffusion epidemic
models. In [58], Wang and Zhao studied the following reaction—diffusion epidemic model

8 .
Vi) Vu) F fiu), l<i<n4m, t>0x¢,
ot
o (3.16)
8—’:0 Vi<i<n+mwithd; >0, t>0,x €92,
v
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and the linearization equations of the infected compartments at the disease-free steady state

uO
8u1
— =V -d;x)Vuy)+ Fx)uy — V(x)u;, t>0,x € 2,
88; (3.17)
al =0 VYm+1<i<m+nwithd; >0,t>0,x € 352,
v
where uj := (U1, -\ um+n)T.

The next generation operator is defined by

+00 +00
L(p)(x) := f F(x)P(t)¢dt = F(x)/ P(¢dt, ¢ € C(RQ), (3.18)
0 0

where P (¢) is the solution semigroup of the following reaction—diffusion equations

9
Y )V — Vo, >0, xef

at
o (3.19)
a’:o Vm+1<i<m+4nwithd;, >0, t>0 x a2

v

The basic reproduction number Ry for system (3.16) is defined by Ry = r(L). Furthermore,
Wang and Zhao obtain the following theorem.

Theorem 3.18 [58] If —V (x) is cooperative Vx € 2 and s(V - (dj(x)) — V(x)) < O, then
L = —FB~ ! and Ry — 1 has the same sign as s(B + F), where B is the generator of
semigroup P.

It is easy to find that Theorem 3.18 is consistent with Theorems 3.15, 3.16, and Remarks
3.14, 3.17. Note that the condition s(V - (d;(x)) — V(x)) < 0 in Theorem 3.18 means
o(T) < 0. It is consistent with Assumption 2.2 (i) in our paper and this assumption is
indispensable in almost epidemic models.

Actually, the definition of Ry of the reaction—diffusion epidemic model relies on the
generator B of the operator semigroup P(¢),¢ > 0. From equation (3.19), we know that
operator B is densely defined. However, in the infection age-structured epidemic models, we
can not define these densely defined generators, due to the effects by age structure. To make
up for the absence of densely defined generators, following the ideas of non-densely defined
operators, we overcome this problem. This means that the densely defined generator is not
necessary for the definition of the basic reproduction number and we can use non-densely
operators to replace it.

4 Infection Age-Structured Epidemic Models with Non-degenerate
Diffusion and Spatial Heterogeneity

In this section, based on the approach developed in [11, 39, 45], we give a general method for
the following class of infection age-structured epidemic model with non-degenerate diffusion
and spatial heterogeneity. For > 0,a > O and x € £2,

%S(r, xX)=AX)SE, x) + M(x, Sz, x), f0+oo B(a,x)I(t,a,x)da),
(2 + L) It a,x) = Le)I(t,a,x) — V(a, ) (t,a,x), (4.1)
I(t,0,x) = F(x, S(t, x)) f0+°° B(a,x)I(t,a, x)da,
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under the Neumann boundary condition

0S;

ol;
=0,— =0, xe0ds2,
av av

with initial value condition
Si(0,) = Sjo() € C(2), L;(0, -, ) = Iio(-, ) € L' Ry, C(2)).
The operators L(-) — V(a,-) are associated with an evolutionary system W :=

{W(t,s);0 <s <t < 4o0} of positive operators on C(§2, R"),

1
L()-V(a, )= hg%gr 5 Wiath.a)p—¢).¢ € DIL() = V(a. ).

Assumption 4.1 For system (4.1), assume that

(1) —V(a, x) :={—vjj(a, x)} is abounded, cooperative, continuous and irreducible matrix
function for all @ € (0, 4+00) and x € £2.
(ii) The following reaction—diffusion equations under the Neumann boundary condition

ds(t, x)
dt

=AX)SE,x)+M(x,S(t,x),0), x €S2,

admits a globally attractive unique positive steady state S°(x). In addition, M (x, S, f0+°°
B(a, x)I(a, x)da) is monotonically increasing with respect to S and monotonically
decreasing with respect to 1.

(iii) F(x, S(z, x)) is a non-negative and continuous function, monotonically increasing with
respect to S. In addition, F 0(x) is bounded for x € £2 and defined by

FO(x) := F(x, S°(x)).

(iv) w(W) < 0, where w(-) represents the exponential growth bound.

(v) Foreachi and j, §;;(-,) € LY (R4, C(2)) N LL (R4, C(£2)) and there exists a max-
imum age of infection denoted by a such thatif a > a4 and x € £, B;j(a,x) = 0.
Moreover, there exists at least one interval (ay, a*) such that B(a, x) is an irreducible
matrix function for a € (ay, a*).

By using the method of characteristic lines stated in Sect.2, we obtain the following
expression of I-equations of the system (4.1),

. W(a,0O)I(t —a,0,x), t—a >0,
I(”“’x)_{W(a,a—t)lo(a—t,x), t—a<0.

Therefore, we have, fort > 0, x € £2,

2(¢,0; So, Lo, x) : =1(,0,x) = F(x, S(t,x)) f0+oo B(a,x)I(t,a,x)da
= F(x, S(t,x)) [y ®(a, x)z(t —a, 0; So., Lo, x)da
+F(x,S(t,x)H(,0; Ip, x),

where

®(a,x) = B(a,x)W(a,0) and H(t,0; Iy, x) = ft+°° B(a,x)W(a,a —t)Iy(a —t, x)da.
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4.1 The Perturbed System

In this subsection, we study a perturbed system. Let

=0
F (x) := FO(x) +el, xeR,eeR.
We consider a perturbed system of (4.1) as follows, fort > 0,a > 0, x € £2,

(2 4+ L) I.(t,a,x) = L) (t,a,x) — V(a, ) I(t,a,x),
I.(t,0,x) = (FO(x) + &1) [;7° B(a, x)1.(t, a, x)da, (4.2)
1.0, ) = Io(-,-) € L'(R4, C(2,R").

Remark 4.2 1If we set ¢ = 0, system (4.2) coincides with the I-equations of (4.1) around the
disease-free steady state.

By using the same method as before, we can obtain the following expression of I of the
system (4.2),

W(a,O) I (t —a,0,x), t—a >0,

Ie(t,a,x) = {W(a,a — ) ola—1,x), t—a <0.

4.3)

Thus, we have, fort > 0, x € 2,

2e(t, 03 10, %) s = Lo(1,0,x) = (FOx) + 1) [, B(a, )1 (t,a, x)da
= (F%(x) + ¢1) f(; ®(a, x)ze(t —a,0; Ig, x)da + (FO(x)  (44)
+eD)H(1,0; I, x),

where
+00
D(a,x)=B(a,x)W(a,0), H(t,0; Io, x) = / B(a,x)W(a,a —t)Io(a —t,x)da.
t

For A € R and ¢ € R, we define a linear operator on space Y by

i (p)(x) : = (Fo(x) +¢l) f0+°° e MP(a, x)p(x)da 45)

= (FO() + ) [, e B(a, x)W (a, 0)p(x)da. '
Remark 4.3 1f we set ¢ = 0 and A = O, lI/(? = Y. It is easy to see that ¥ is the next
generation operator of system (4.1). Following the ideas in Sect.3, the basic reproduction
number is defined by Ry = r(¥).

Similar to Lemma 3.12, we can deduce that operator llff is also compact. Let @, (a, x) :
(Fo(x) + el)®@(a, x),Ya > 0,x € £2. From Assumption 4.1 (v), we have @.(a, x)
0, Va > a4 . Next, we consider the following Volterra integral equations

t
u(t) = / D (s)u(t —s)ds +u(t), t=>0, (4.6)
0
where continuous functions u, # map [0, +00) to Y. Here we hide the spatial variable x by
D (a,x) = D:(a)(x). Afamily @, = {®.(s); s > 0} of positive continuous linear operators
@, (s) is an operator-value integral kernel on Y. The convolution of a kernel @, and a function

u € C([0, 400), Y) is defined by

t
D xu(t) = / D (s)u(t —s)ds, t=>0. 4.7)
0
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Lemma 4.4 Let Assumptions 3.1 and 4.1 be satisfied. Let w € Y \ {0}. If u,u €
C([0, +00), Y4), u(t) # 0 for some t € [0,6], and u = D, * u + u, then there exists
to such that

u(t) > tw, Vi€ lt,o+4] (4.8)
with some ¢ > 0 depending on u and w.
Proof According to the definition of @, we have

t t
/ Do (s, x)u(t —s,x)ds = (Fo(x) —l—el)/ B(a,x)W(a,0u(t —a,x)da, Vt=>0,x € 2.
0 0

By using Assumption 4.1 (v), we know that if a € (a4, a*), then B(a, x) is positive and
irreducible for all x € £2. Without loss of generality, we assume that there exists #; > 0 and

iel,2,---,nsuchthatu;(t;) > 0. According to cooperation property of B(a, x), we can
deduce thatu(z) > 0, V¢t € [t] + a4, +00). Inequality (4.8) is only considered in a finite time
interval. This is clearly true. O

Remark 4.5 1If u and w satisfy (4.8), kernel @, with (4.6) is called a w-positive kernel.

Lemma 4.6 Let Assumptions 3.1 and 4.1 be satisfied. Let w € int(Yy) \ {0}. Then there
exists a constant cqy such that forallt > 0,v € Y,

[P ()]l < collv],

where ||v||y = inf{|[c] : c € R, —cw < v < cw}.

Proof Let
n n
1= sup B Y Y (fx) +e),
xesf2 i=1 j=1
where B(x) := max sup PBij(a,x). Let v # 0 is given, we have the following
LJ=1.2.51 g (0, +00)
inequality
B(s)— FeDBW s, 0) Vs >0
€0 o]

By Assumption 4.1, we know that (W) < 0 and | W (z, s)|| < Me®W)t=5) t > s There-
fore, we have the following inequality

H +81)ﬂM—H —1, Vs > 0.
o || [ vl
Let co > 0 be large enough such that
ME&; . —
0<—— < min w;x), VxeS§2,
o i=1,2,--,n
where w = (wy, -+ -, w,,)T. Therefore, we have
M 1 M
—w§—i <D£(s)v§j1§w, Vs > 0.
o co vl o
It means that
—cow < Cbs(s)v cow, Vs >0.
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Therefore, we have

1
co = Hﬂ‘j’e(s)v , VseR,.
v

w

m}

As a consequence of Lemmas 4.4, 4.6 and Theorems 5.1, 5.2 of [51] or [50], we have the
following theorem.

Theorem 4.7 Let Assumptions 3.1 and 4.1 be satisfied. Then for each ¢ € R, there exists a
unique pair As € R and ¢, € C(£2, R") such that the following statements hold

(D) @Il =1,
(ii) lI/)i’;('(,'o‘g) =@, and r(lI/fg) =1,
(iii) ifr(llffl) < r(lI/fS) =1< r(llffz), then A < Ae < A2,
(iv) lim A = Ao and lim @, = @,
e—0 e—0

(v) ifu, € CRy, C(2,R") withus(t) = 0 forallt > ay and u, € C(R,, C(2,R"))
satisfies

t
e (t) = / e ()uslt — s)ds + Te(t), Vi =0,
0

then there exists oz > 0 such that

lug(t) —> :Q,, t— too.

Moreover, ifue # 0, then g > 0. If oz > 0, then
Jim do(e*'us (1), as®,) =0,
where metric dy is defined as do(u, v) = inf{|c| : c € R, e “u < v < ¢“u}.

Remark 4.8 Theorem 4.7 (i) and (v) imply that there exists a constant C := C (o, A, Ue, @)
such that [|u, (1)|| < Ce <.

Remark 4.9 Theorems 5.1 and 5.2 of [S1] are called the renewal theorems for Volterra integral
equations.

4.2 Extinction and Uniform Persistence of the Disease

In this subsection, we prove that the basic reproduction number R plays arole of the threshold
for the extinction and uniform persistence of the disease for the system (4.1). Based on the
existence of the solution of system (4.1), we define the solution semiflow U/(z), t > 0 of the
system (4.1) by

U)(So(), Io(-, ) = (S, ), I(t,-,-), Vt=0. 4.9)
Let sets M, Mo, My, M and 3 M be defined as follows
M = C+(§, Rm) X X+,

Mo :={@ € X; :thereexistsi € {1,2,---,n} such that f(;” llgillda > 0},
My :=C+(£2,R™) x Mgy, 0Mo:= X1\ Mo, 0Mo := M\ My = C(£2,R™) x aMy.
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Define a function p : X — R as follows

po@ x) =y /0+||10i(a,')||da, VIo(a,x) € X. 4.10)

i=1,2,- .1
Combining with the definition of My and d My, we have
Mo = {(So(x), Io(a, x)) € C1(2,R™) x X : p(Io(a, x)) > 0},
dMo :={(So(x), Io(a,x)) € C1(2,R™) x Xy : p(Ip(a, x)) = 0}.

Remark 4.10 The set M can be seen as the state space of the susceptible and infectious
compartments. My is the state space of the infectious compartments and the disease exists in
the system. M is the state space of the susceptible and infectious compartments with disease
exists. My is the state space of the infectious compartments with no disease. My is the
state space of the susceptible and infectious compartments with no disease in the system.

From Assumption 4.1 and Remark 4.10, we directly have the following lemma.
Lemma 4.11 Let Assumptions 3.1 and 4.1 be satisfied. If (So, 19) € d My, then
(8@, ), I(,-,-) € Mo, Vi = 0.

Lemma4.12 Let Assumptions 3.1 and 4.1 be satisfied. Let initial value (So,1g) €
C.(22,R™) x X4 be given and (S(t, -), I(t, -, -)) be the solution of system (4.1) with initial
value (So, I1o). Then for any ¢ > 0, there exists a time Ty > 0 such that

S(t,x) < 8%x) +el, Vi>Ti,xe, (4.11)
where 1:= (1,1, ..., DT.
— —
n
Proof By the equations of S in system (4.1), we have

dS(t, x)
dt

From Assumption 4.1, we know that S0 (t,x) = S0 (x) is the global attractive unique steady
state of the following equation

<AX)S(t,x)+M(x,S(t,x),0), xecf2.

ds(,
# = A)S(t,x) + M(x, $°(t, x),0), x €.
By using the comparison principle for reaction—diffusion equations, we have lim sup S(z, x) <
t—+00
50(x). o

In the rest of this subsection, we show that Ry plays a role in the threshold for extinction
or persistence of the disease, even the threshold for global attractiveness of the disease-free
steady state or the existence of the endemic steady state. In order to use the comparison
principle for age-structured epidemic models, chain transitivity, and the theory of compact
attractors, we make the following assumption.

Assumption 4.13 For system (4.1), assume that

(i) forany So € C4(£2,R™) and Iy € X, there exists T > 0 and a constant { > 0 (¢ is
independent of initial value) such that

(D) (So(), ToC NI = ¢, Ve =T,
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(i1) For any positive element I, € X, the solution S(z, x) of the following system
a +oo
5800 = AWS@x) + MEx,S¢. 0. [ Bl vl nda), xe e,
0

satisfies that there exists a constant &€ > O such that , hT S(t,x) > So(x) —el >
— 400
0,Vx € £2.

Theorem 4.14 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. Then semiflow U(t) admits a
global attractor Ay C Y4+ x X4.

Proof According to Assumption 4.13, we obtain that semiflow 2/(¢) is point dissipative
and eventually bounded. Due to the compactness of evolution family W (z, s), /() is also
compact. It is well known that compact operators are K —condensing operators. By Lemma
2.3.5 of [18], it is asymptotically smooth. According to theorem 2.4.6 of [18] or Theorems
3.1, 3.4 of [19], U(¢) admits a compact attractor Ag of bounded sets. ]

Theorem 4.15 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If Ry < 1, then the disease-free
steady state (8°,0) is globally attractive.

Proof By Theorem 4.7 (ii), we obtain that if ¢ > 0 is fixed and small, then there exists A,
such that r(llffg) = 1. By Remark 4.3, we know that Ry = r(lPOO) < 1. By Theorem 4.7

(ii), there exists a constant Ao such that r(lll)?o) = 1. Thus, r(lI/OO) < r(!lf)?o). According to
Theorem 4.7 (iii), we deduce that Ay > 0. It follows from Theorem 4.7 (iv) that lin%) Le = Ap.
£—>

Therefore, if ¢ is small enough, we have that A, > 0.

~0
Define F (x) := FO(x)+¢l. By Assumption 4.1 (iii), we know that there exists a constant
8 > 0 such that

o) < F(x, S°x) 4 81), x € .

By Lemma 4.12, we obtain that there exists 77 > 0 such that S(7, x) < SO(x) 4481,V > Tj.
Therefore, we have the following system, for # > 77,a > O and x € £2,

48(1,x) < AX)S(t, x) + M(x, 5(t, x),0),
(% + %) I(t,a,x)=Lx)I(t,a,x)— V(a,x)I(t,a,x), 4.12)
I(t,a,x) < (FO(x) + 1) [ B(a, 1) (t, a, x)da.

By using the comparison principle in [37] for (4.12), we have
0<I(t,a,x)<I.(t,a,x), Vt>Ti,a>0,x¢€8, (4.13)

where I is the solution of (4.2).
Next, we show

lim |[1.(t, - -)llx =0. (4.14)
t——+0o0

From (4.4) and Remark 4.8, we deduce that there exists a constant C,, such that
lze(t, 0; To, )| < Cue™', Vi > Ty, x € 2

Note that (W) < 0 and |[W (¢, s)|| < Me®W)=9) then we have, for r > T>,a > 0 and
x € $2,

et a, 0)llx < fy IW(a,0)Ic(t —a,0,x)llyda+ [[* [|W(a,a —Io(a—t,x)|yda
< fo Me®WaC =4 =0 qq + [T | Io(a — 1, x)|da.
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Therefore, (4.14) holds. By (4.13) and (4.14), we have

0< lim 1@, - )lx = lim |1, -, )]x =0. (4.15)
t—+400 t—>+400

Finally, we show that the disease-free steady state (8°,0) is globally attractive.
By (4.15), it remains to prove

lim [S@, x)— S%x)| =0, xe€ . (4.16)
t—+00

Due to lim;_, 1o I (¢, a, x) = 0 uniformly for a € [0, +00) and x € £2, the equation for § is
asymptotic to the following reaction—diffusion equation with Neumann boundary condition
ds(t, x)
dt

By the theory for asymptotically autonomous semiflows (Corollary 4.3 of [53]) and Assump-
tion 4.1 (ii), we have

=AX)SE,x)+ M(x,S(,x),0), xef2.

lim S, x) = S°(x)
t—>+00
uniformly for x € £2. O

Remark 4.16 In our proof of Theorem 4.15, we can find that the global attractiveness of the
disease-free steady state needs Assumption 4.1 (ii). However, the extinction of the disease
only needs (4.11), instead of Assumption 4.1 (ii). Therefore, we can weaken Assumption 4.1
(ii) to (4.11) when we prove the extinction of the disease.

Proposition 4.17 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If Io € My, then there exists
T, > 0 such that

2e(t,0;I9,) > 0and I.(t,-,-) € Mg, Vt>Ti. 4.17)
Moreover, if Ay < 0, then

lim |[1.(t, -, )|lx = +oo, VIye My. (4.18)
t—>+00
Proof From above, we know that
+00
H(,0; Iy, x) = / B(a,x)W(a,a —t)Io(a —t,x)da, Vt>0,x € $2.
t

It is clear that H(z,0; I, x) = 0,VYt > ay,x € §2. Because Iy(-, ) € My and B(a, x) is
positive for a € (ay, a™) and x € §2, H(ay, to; 19, x) > 0 for all x € £2. Therefore, there
exists 77 > 0 such that

lze(OI >0, Vt=>T.

Thus, (4.17) is a direct result. Because z.(#) is strongly positive on space Y, we can directly
assume that z. (¢) is strongly positive at r = 0, i.e., 2 (0) € inz(Yy). In order to show (4.18),
we begin with the following claim.

Claim: For any z.(0) € int(Y,.), there exists two constants ¢ and n such that

W(t,$)z:(0) > ce"™Vz,(0), t>s.
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Next, we prove the above claim. Recall that evolution family W (z, s) is the solution
operator of the following reaction—diffusion equation under the Neumann boundary condition

cj{—l:(t,x) = Lx)u(t,x) —V(, x)u(t,x), xe€s2. (4.19)

Letv;j(x) = %)nf vij(a,x)forl <i,j <n,where V(a, x) = (vij(a, x))1<i,j<n- Then
a€[0,+00) T
we consider the following equation under the Neumann boundary condition

%(r,x} = L(x)v(t, x) — V(x)v(t, x), x €, (4.20)

where V (x) := (v; (X)) 1<i,j<n- Note that (4.20) is a parabolic equation, (4.20) has a strongly
positive solution semigroup 7 (¢). It is well-known that the following eigenvalue problem
admits a principal eigenvalue n < 0 and its corresponding strongly positive eigenvector
V5 (X)),

L(x)vs(x) — V() s(x) = 0o (x).

Moreover, T (1)v, = e™v,,Vt > 0. For any z.(0) € int(Y,), there exists two positive
numbers k1, ky such that kyv,(x) < z.(0, x) < kpv,(x). Then we have

k
T(02:0) = kiT(Ovs = k"o, = 2 e"'2:(0). Vi = 0.
2
According to the comparison principle for systems (4.19) and (4.20), we have
k
W(a, 0)z:(0) > T(a)z:(0) > kfle”“ze(o), Ya > 0.
2

This means that Claim is true.
Finally, we prove (4.18). By Theorem 4.7 (v), there exists a constant . such that

tiillloodo(e)‘gtze(l, 0; Io,x),2:9,) =0, Vxe .
Let § be given. Then there exists 75 > 0 such that
0 < do(e*'z:(1,0; 9, X), @:9,(x)) <8, Vt>Ts,x €.
This means
e 0t 7, (1,0; 9, x) < a0, (x) < etz (1,0;9,x), Vi =T, x €.
Fort > T5,a > 0 and x € §2, we have

I, a, )] = f3IIW(a, 0)ze(t —a, 0; To, x)|da > [o~ " lcez.(t —a,0; Lo, x)llda
= fo 7 eemete D0, [ || da = eH! [T et N0 | da.

Due to A, < 0, we can find
lim |[I,(t,-,)|lx =400, VIge M.
t——+400
O
Lemma 4.18 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If (So, Io) € My, then
(8@, ), I(t,-, ) € Mp,Vt > 0.
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Proof By using the similar method in Proposition 4.17, we deduce that || H (as., 0; I, x)| >
0,Vx € £2. Because B(a, x) is positive for a € (a4, a*) and x € £2, z(¢,0; So, I9,x) > 0
for t > a, and x € £2. Suppose, by contradiction, that there exists 77 > 0 such that
(S(Ty, ), I(Ty, -, -)) € dMy. By Lemma 4.11, we have (S(z,-), I(t, -, ) € dMy, Vt > Tj.
This leads to a contradiction. ]

Definition 4.19 The set dMy is said to be p-ejective for 14 (t), if there exists & > 0 such that
for every x € Mo with 0 < p(x) < ¢, there is T > 0 such that p(U(T)x) > e.

Theorem 4.20 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If Ry > 1, then semiflow U(t)
is uniformly persistent, that is, there exists 6 > 0 such that

lim p(I(t,-, ) =38, ¥(So,Io) € Mo. (4.21)
1—>+o00
Moreover, system (4.1) has an endemic steady state.

Proof First, we prove the following two claims.
Claim 1if 0 < f0+°° B(a,x)I(t,a,x)da < ©1 forallt > 0 and x € £2, then
lim |[[I(z,-,)[x = +oo.
t—+00

According to Assumption 4.1 (iv), we have
a
3,50 %) 2 AN)S(t, x) + M(x, §(2, ), 1), 120

According to Assumption 4.13 (ii), there exists a large enough 77 > 0 such that for some
6 >0,

S(t,x) > 8%x) — 81, Vi>T,xe8.
Let$§ := glez?z((FO(x) — F(x, $°(x) — é1)). By using the comparison principle in [37], we
have
I(t,-,)>1_45(t,-,-), Yt=>=Ti. (4.22)
According to Theorem 4.7 (iii), we have
r(LY) =1 < Ry = r(LJ).

This means that Ayg < 0. By Theorem 4.7 (iv), we have A_s < 0 and r(L;_BE) = 1. By
Proposition 4.17, we have . liT lI—5(t, -, -)||lx = +0o. Moreover, we have
—>+00

lim [[1(t,-,-)|lx = +oo. (4.23)
t——+00

Claim 2 9 M is said to be p-ejective for semiflow 1/(z).

Assume, by contradiction, that d M is not p-ejective for semiflow ¢(¢). Because semiflow
U(t) is point dissipative, there exists 7, > 0 and ¢ > 0 such that ||L(#)(So(:), Io(-, )| <
¢, ¥t > T,. Then we have

By Assumption 4.13 (ii) and Lemma 4.12, we deduce that there exist 73 > 7 and a
constant C, > 0 such that

|F(x, St x)|| <Cz Vt>T3,x¢€82.
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From previous contents, we have, for ¢ > T3,
+00
lz(t, T3; Sy, Iy, )l = | F (-, S(z, ~))f0 B(a,)I(t,a, )da| < aCa||B(a, )N, -, ).

Since M) is not p-gjective for semiflow L/(¢), we see that there exists a initial value
(S0, I9) € My such that solution (S(¢, -), I(z, -, -)) satisfies p(I(t, -, ) < &,Vt > 0. Lete
be given and satisfy

aC2||B(a, x)|e = V.

Thus, we have
+00
0< / B(a,x)I(t,a,x)da <v1, Yt=>T3,x € £2. (4.25)
0

By Claim 1, we have ) ]iT lI(t,-,)|lx = +oo. This contradicts to (4.24). Therefore,
— +00

Claim 2 is true.

By Claim 2, we know that 3 M| is said to be p-ejective for semiflow 24(¢). By the proof
of Theorem 4.14, we can see that semiflow U/(¢) is point dissipative and asymptotically
smooth. According to Proposition 3.2 of [38], we can deduce that{/(¢) is uniformly persistent.
Therefore, global attractor Ag belongs to My, instead of M. Due to the compactness of
semiflow U(¢), U(t) is k-condensing. According to Theorem 4.5 of [38], semiflow /() has
a fixed point in global attractor Ag € My. Thus, the fixed point is an endemic steady state of
the system (4.1). ]

Remark 4.21 Since our approach is based on operator semigroup theory, it allows us to treat
model (4.1) with Neumann, Dirichlet, or Robin boundary conditions. The key to our method
is the compactness of the solution map W (z, s). In addition, the solution map W (¢, s) of the
reaction—diffusion equation with Neumann, Dirichlet, or Robin boundary conditions are all
compact. Therefore, if Assumptions 4.1 and 4.13 still hold when the model (4.1) is under
Dirichlet or Robin boundary conditions, then the results in Sect.4 are still valid.

5 Infection Age-Structured Epidemic Model with Degenerate Diffusion
and Spatial Heterogeneity

In this section, we consider the following class of infection age-structured epidemic model
with degenerate diffusion and spatial heterogeneity. Thus, we give Assumption 5.1 (i). Due
to the complexity of the degenerate diffusion, we also consider the following infection age-
structured epidemic model which has the same form as (4.1). Fort > 0,a > 0 and x € 2,

D8(t,x) = A@)S(t, x) + M(x, $(t, %), f*° B(a,)I(t,a,x)da),
(5% + %) I(t,a,x)=Lx)I(t,a,x)—V(a,x)I(t,a,x), (5.1
I1(t,0,x) = F(x,S(t,x)) f0+<x> B(a,x)I(t,a,x)da,
under the Neumann boundary condition
0S; a1
— =0,— =0, xedf,
av av
with initial value condition

5;(0,-) = Sjo() € C(2), ;0, -, ) = Lo(-, ) € L' (R4, C(2)),
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where L is defined by

L(x)u := (di(x)Auy, -, di(x) Aug, 0, -, 0) T u = (uy,uz, -+, uy).

Assumption 5.1 For system (5.1), assume that

(i) Forinfected groups, diffusion coefficients d; satisfy that there exists a positive constant
dp such that dj(x) > dy foreachi = 1,2,...,k,x € £ and d;(x) = 0 fori =
k+1,---,n;

(i) —=V(a,x) := (—v;j(a,x))i<i j<n is a bounded, cooperative, continuous and irre-
ducible matrix function for all a € (0, 400) and x € £2.

(iii) The following reaction—diffusion equations under the Neumann boundary condition

ds(t, x)
dt

=AX)S({t, x)+M(x, S, x),0), xes2,

admits a globally attractive unique positive steady state S°(x). In addition, Lipschitz
continuous function M (x, S, f0+°° B(a, x)I(a, x)da) is monotonically increasing with
respect to S and monotonically decreasing with respect to 1.

(iv) F(x, S(t, x)) is anon-negative, continuous function and monotonically increasing with
respect to S. In addition, FO(x) is defined by

FO(x) := F(x, $°(x)).

(v) (W) < 0, where w(-) represents the exponential growth bound.

(vi) For each i and j, Bi;(-,-) € LY (R4, c(2) n LL(R.F, C(£2)) and there exists a
maximum age of infection denoted by a suchthatifa > ay andx € £2, B;;(a, x) = 0.
Moreover, there exists at least one interval (a4, a*) such that B(a, x) is an irreducible
matrix function for a € (ay, a*).

(vii) For every positive element I, € X, the solution S(z, x) of the following system

+00
%S(r,x) — A)S(. ) + M(x, S(r,x),/ B(a,0)I.(a, x)da), x €2
0

satisfies that there exists a constant C > 0 such that . lirJP S, x) > So(x) —C1>
— 400
0,Vx € £2.

Remark 5.2 During the spread of the disease, some infected compartments may not be able
to spread in space, such as isolation. Since the equations of infected compartments can be
viewed as a cooperative system abstractly, after transformation, the infected compartments
with diffusion coefficient O can be marked ask + 1, --- , n.

The operators L(-) — V(a,-) are associated with an evolutionary system W :=
{W(t,s);0 <s <t < +oo} of positive operators on C(§2, R"),

1
L() -V )= hEIng E(W(a +h,a)p — ), ¢ <€ DL —V(a,-).

Let 7 (¢) be the solution semigroup of the following equation under the Neumann boundary
condition
dI(t,x)
dt

=Lx)I(t,x), t>0,x € 2.

@ Springer



Journal of Dynamics and Differential Equations

In the case where some diffusion coefficients in the system (5.1) are zero, the semigroup
7 (1) of the above equation loses compactness. It means that W(z, s) also loses compactness.
Therefore, Theorem 4.7 is not hold under Assumption 5.1. It causes the loss of the compact-
ness of integral kernel @, defined in (4.7). Thus, we can’t use the renewal theorem for Volterra
integral equations. Therefore, we can’t follow the methods which stated in subsection 4.3
to prove the extinction and uniform persistence of the disease. It also causes a problem that
whether Ry is the principal eigenvalue of the next generation operator or not.

In the following, we give the linearization equations of the infected compartments at the
disease-free steady state, forr > 0,a > 0 and x € £2,

{ (2 +2)1(t,a,x) =Lx)I(t,a,x) — V(a, x)I(t,a,x),

da

1(t,0,x) = Fo(x) f0+°o B(a,x)I(t,a, x)da. (5:2)

By grouping the infected compartments by the diffusion coefficients (0 or positive), we can
divide infected compartments I into two groups of

Ii(t,a,x):=(I1(t,a,x), I(t,a,x), ... I(t,a, x), I(t, a, x)
= (L1 (t,a, %), -+ (e, a, )T
Based on I and I,, we define L by
Lix) I = (d(x)AL, dy(x) AL, -+, di(x) AT
In addition, we split V (@, x) and FB(a, x) := F(x) x B(a, x) into

_(Vi(a,x) Viza,x) op _ (((F°B)11 (F°B)i,
Via,x) = (V21<a,x) sz(a,x)> BB = ((FOB)ZI (F°B>zz>’

where V1 and (FB);; are k x k matrix functions, V2, and (FOB), are (n — k) x (n — k)
matrix functions.

By using the above notations, we can rewrite system (5.2) into the following form, for
t>0,a>0andx € 2,

(% + &) 1 an =L@ ax - Vi@l - Vi a ),

(& + &) I2.a.x) = =Va1@ D1 .a.0) = Vio(a, ) D, a, ), (5.3)
I(1,0,x) = f0+°° (FOB)11(a, \)I1(t,a, x) + (FOB)12(a, x)I5(t, a, x)da,
I5(1,0,x) = [;F° (FOB)y1(a, 0)I(t.a,x) + (FOB)yy(a, x)I(t, a, x)da.

However, not all of the results in Sects. 3 and 4 do not hold. We still can follow the ideas in
Sects. 3 and 4 to prove the existence of the solution of systems (5.1) and (5.3).

5.1 The Well-Posedness

In this subsection, we follow the ideas in Sect. 3 to prove the existence of the solutions of the
systems (5.1) and (5.3).

Firstly, we consider the system (5.3). Let Y} := C(£2, R¥) with the usual supremum norm.
Let X; := L'((0, 400), Y}) and norm of space X1 be given by

+00
llellx, 12/0 leta, )lvda, ¢ e Xi.

Let us introduce a new extended space X and its closed subspace X by

Xp =71 x X1, X0 = {0y} x Xi.
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Then we consider the family of bounded linear operators {RR }1~0 on Xy, defined by

o <$> - (Ov; ) & ¥(a) = e T ()¢ + /ae_f“'" MIT, (@ — 5)g(s)ds.
0

where 71 (a), a > 0 is the solution semigroup of the following reaction—diffusion equations

under the Neumann boundary condition

d
Eu(t,x) =Lju(t,x), up(x) €Y.

It is clear that 77 (a) maps Y into itself and is compact. Observe that {R;},~0 is a pseudo-
resolvent on X;. Moreover, we have

Rx=0,xeX|=>xeXjo and lim ARux =x, Vx e Xjg.

r—+400

By Sect. 1.9 of [43], we can deduce that there exists a unique closed linear operator B that
satisfies

Bi:DB) CX = X1,DBY) =Xi0, R = I — B~ Vi >0.

Next, we define Y5 := C(£2, R" %), Xp := L'((0, +00), ¥2), X, := Y5 x X and Xpo :=
{Oy,} x X». In addition, we introduce an operator 53, as follows

S —da f

We define B and G on X; x X, by

Oy, o (FOB)11uy + (FOB)1ouxda
B (Bl) gl “ | .= —Viuy — Vigus
T\B ) T O [ T (FOBY2ius + (FOB)surda
Z5) —Vaiuyr — Voous

where (Oy,, #1) € Xj and (Oy,, u2) € X,. Then we canrewrite system (5.3) into the following
abstract Cauchy problem
du(t)
dt

= Bu(t) + Gu(r). (5.4)
In order to obtain the existence of the positive solution, we consider the following equivalent
system

du(t)
dt

= Beu(t) + Geu(t), (5.5)

where B, .= B — %I and G, := %(1 + £G).

Remark 5.3 1f we define B and G as the following form

Oy, Biiu Oy, o % (FOB)1yu1 + (FB)1puzda
Bl | | 72O | G| O | ._ | o FOB)ur + (FB)nurda

up |- Bioui ’ up |- —Viur — Viuy

u2 _% uz —Voruy — Vooun
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where By := (By1, Bi2)T. Therefore, system (5.4) can be abstractly seen as the following
Cauchy problem on space X,
du(t) — _
F 7ol Bu(t) + Gu(t). (5.6)

Therefore, it has the same form as the system (3.1) (infection age-structured epidemic model
with non-degenerate diffusion). Of course, we can obtain the equivalent system

du(t)
dt
where B, := B — él and G, = é(l +£G).

= Beu(t) + Geu(t), (5.7)

Lemma 5.4 Let Assumption 5.1 be satisfied. Then B, satisfies the Hille-Yosida condition.

Proof Similar to the proof of Lemma 3.3, we can deduce that By, := B; — %I satisfies the
Hille-Yosida condition, i.e.,
(%)
?1 ) |Ix

_ -l 9
‘(M Bie) <<p1>

where M1 > 1 is a positive constant and Ao < 0. It means that we only need to prove
Boe := By — %I also satisfies the Hille-Yosida condition. By following the ideas in Lemma

3.3, it is easy to find that By, := By — é] also satisfies the Hille-Yosida condition, i.e.,

_ —1( ¢ (05
jor=27(2) (%),

where M, > 1 is a positive constant. Thus, we have

M,
=1
Xy )\.+)\vo+g

< M
XZ A.+E

-l T M ¢1 M $>
H(Al Be)™ (b1, @1, ¢2, 92) HX]XXz < Ppyen (901) . k+l <¢2> .
<t (EOL, ()
N A—I—)»o-i-* 2/ lx,
_ max{M, M}
= ﬁ H(¢1 01, P2, ¥2) HXIXXZ

Similar to Lemmas 3.6, 3.7, and Theorem 3.8, we have the following results.

Lemma 5.5 The part Beo of B, in X1 x Xy generates a Co-semigroup {T3,,(t)}:>0 on space
X0 x Xp.

Lemma 5.6 The unique continuous solution to (5.5) can be given by (5.8), and it take values
in Xl() X Xzo.

t
u(t) = Tp,,()u(0) + Alirn / T, (t — s)A(A — Be) ' Geu(s)ds. (5.8)
— 00 0
Remark 5.7 1f we consider system (5.7), the part B of B in X generates a Cy-semigroup
{TgSO (t)}s=0 on space X. Then the unique continuous solution to (5.7) can be given by (5.9),

and it takes values in X,

'
u(t) = Tg,, (Hu(0) + Agrgo/() Tg,,(t — )A(A — EE)_lagu(s)ds. (5.9)
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Theorem 5.8 Let Assumption 5.1 be satisfied. Then the non-negative solution of system (5.2)
defined in C ([0, 1), X), © > 0 exists and is unique.

Similar to Theorem 3.10, we can obtain the existence of the solution of the system (5.1).

Theorem 5.9 Let Assumption 5.1 be satisfied. Then the mild solution of system (5.1) defined
in C([0, T), C(£2,R™)) x C([0, 1), X) exists and is unique.

Remark 5.10 Similar to Remarks 3.9 and 3.11, we also can define ) := LZ(Q, R") and
X = LP((0, 400), Y), or other suitable spaces. Then Theorem 5.9 still holds.

5.2 The Principal Eigenvalue of the Next Generation Operator with Degenerate
Diffusion

Following the ideas of the basic reproduction number Ry stated in Sect. 3, we define the next
generation operator ¥ that maps C(£2, R") into itself as follows

W (@)(x) 1 = FO(x) [i7° B(a, x)W(a, 0)p(x)da

= [/ (F'B)(a, x)W(a, 0)p(x)da. (5.10)

Similar to the previous section, we define the basic reproduction number Rg by
Ro = r(¥).

In the case of the infection age-structured epidemic models with non-degenerate diffusion,
¥ is compact. From Lemma 3.7, we know that r (¥) is the principal eigenvalue of ¥ with a
strongly positive eigenvector ¥.. Moreover, there is no other eigenvalue of ¥ with positive
eigenvector. However, in the case of the models with degenerate diffusion, ¥ is not compact.
It causes the conclusions of Lemma 3.7 cannot be obtained directly by Krein—-Rutman the-
orem. In the following, we prove that r(¥) is still the principal eigenvalue of ¥ by using a
generalized Krien—Rutman theorem, under the following assumptions.

Assumption 5.11 For system (5.1), assume that

(i) (F°B)2(a,x) =0foralla € (0, 00), X € 2,
(i) Va1(a,x) =0foralla € (0,00),x € £2.

Remark 5.12 Assumption 5.11 does not lead to contradictions in the model. There is a special
case that (FOB)2(a, x) = 0 and (F°B)2(a, x) = 0. In this case, ¥ is compact. Then the
principal eigenvalue of ¥ is r(¥) by Krein-Rutman theorem. In the following, we mainly
consider the case that ¥ is not compact and under Assumption 5.11.

In order to use the generalized Krien—Rutman theorem [29, 41], we give some definitions
and theorems. From Sect. 7.5 of [47], the definition of the essential spectrum of a positive
bounded operator ¥ is given as follows

0.(¥) :={A € a(¥) : Al — ¥ is not a Fredholm operator with ind(Al — ¥) = 0},

where ind(¥) is the Fredholm index defined by ind(¥) = dim N'(¥) — codimR(¥), in
which N (¥) and R(¥) denote the null space and range, respectively, of ¥. ¥ is said to be
a Fredholm operator if R(¥) is closed and both of dim A/ (¥) and codimR (¥) are finite.

Theorem 5.13 [29, 41] Let X be a Banach space having a total cone X+ C X and W is a
bounded positive operator. If r (W) > r.(¥), thenthere existsx € X1 suchthat¥x = r(¥)x,
where r,(¥) denotes the essential spectral radius of ¥.
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Next, we want to study the properties of the non-compact operator ¥. Thus, we need
a more explicit expression of ¥. We reconsider the solution map W(z, s), t > s. Note that
W(z, s) is the solution map of the following reaction—diffusion equations under the Neumann
boundary condition

du(t, x)
dt
Under Assumption 5.11, (5.11) is equivalent to

d (ul(a,x)> _ (Limui(a,x)\ _ (Vii(a,x) Viala,x)\ ((u1(a,x) (5.12)
da \usx(a,x) ) 0 0 Vala,x) ) \uza,x) )
where u(a, x) := (u(a, x), u2(a, x))T. Therefore, we have, fora > 0, x € £2,

u1(0,x)\ . (Wi(a,0u;(0,x) — foa Wila, s)Vi2(s)us (s, x)ds
u(0,x) ) Wa(a, 0)us(0, x) ’

=Lxu(t,x) -V, x)u(t,x), xef2. (5.11)

Wi(a, 0) (
(5.13)

where W is the solution map of W =Li®ui(t,x) — Vi1, x)u(t,x),x € 2 and
W, is the solution map of % =

into a more explicit form by

010)\ _ [ Y1(@1, 92)(x)
v (‘pZO(x)) - <l1/2(¢1, ‘PQ)(X)) , X € 2 (514)

—Va(tus(t, x), x € 2. By above, we can write ¥

where
Wi (@1, 02)(x) = [ (FOB)11(a, x)(Wi(a, 09, (0, x) — [5 Wi(a,s)Vi2(s, )@y (s, x)ds)da,
W (1. 9)(x) = [o"°(FOB)1(a. x)(W (a. 0@, (0. x) — [i Wi(a, 5)V12(s. X)@, (s, x)ds)da
+ Jo" (FOB)n(a, x)Wa(a, 0, (0, x)da,

(5.15)
where ¢(a, x) := (¢(a, x), ¢,(a, x)) is the solution of the following equations with initial
value ¢ (0, x) = (¢1(0, x), 95(0, x)) = (@19(x), P20 (x)),

de(t, x)

T Lx)e, x) = V(t, x)p(t,x), x€S2. (5.16)

In addition, we define an operator @2 on space Y> by
o0
Do) i= [ (P Bl 0@ 00y(da, g€V (517)
0

Lemma 5.14 Let Assumptions 5.1 and 5.11 be satisfied. Then o.(¥) = 6.(¥2) |J{0}.

Proof Note that 77(¢) is compact, then ¥; is also compact. Moreover, Y2 (@, ¢,)(x) —
¥, (@,)(x) is also compact. We define ¥ by

W (@, 92)(x) = (Oy,, Pa(9) ()T

Due to Theorem 7.27 of [47] and the fact that ¥ — 7 is compact, 0, (¥) = ag(@). Inspired
by the ideas in [29] we divide our proof into the following two 0 steps.

Step 1: o(lI/) = o(lllg) (J{0}. It is easy to see that 0 € o(lI/) and o(llfz) C o(lll) Now
we prove that u € a(lI/) implies that u € 0(11/2) (J{0}. In fact, we only need to prove the
following three claims for any p # O:
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Claim 1: If N'(ul — @) # {0}, then N'(ul — ¥) # {O}.

Claim 2: If R(ul — lIA/) is not closed, then R(ul — @2) is not either.

Claim 3: If R(ul — W) # Y, then R(ul — &) # Y».

Firstly, we show Claim 1. If N'(ul — %) # {0}, then there exists some ¢ = (@1, 07 €
Y\ {0} such that

(1l — W) = (ulgy, (uI — P)py)T .

Moreover we have ¢ = Oy, and (ul — Wg)(pz = Oy,. Furthermore, we can deduce that
Nl — lI/2) # {Oy,}, otherwise ¢, = Oy, and hence Q= 0.

In the follows, we prove Claims 2 and 3. If R(ul — v) #£ Y, foragivend = (¢, ¢,)7 ¢
R(ul — lI/) we first show that ¢, ¢ R(ul — 1112) It is clear that we have

(Wl =) = (ul = PPy, ¥2)" = iy, (ul = I)P)" VW ¥ €Y.

Therefore, either there exists no ¢, € Y7 such that ug; = ¢, or there exists no ¢, € Y»
such that (ul —¥2)@, = ¢,. It follows that ¢ = %¢1~ Therefore, there is no ¢, € Y2 such
that (ul — V)@, = @y, ie., ¢y ¢ R(ul — V7).

For Claim 2, 1fR(uI l1/)1s not closed, we choose ¢° = (¢0 ¢0) S R(,uI — lI’)but(bo
(¢Y, ¢2) ¢ R(ul — lP) By using the above arguments, we can deduce (bz ¢ R(ul — ng) It
suffices to prove ¢2 € R(ul — l11/2). Taking a sequence ¢0 "= (¢1 , ¢2 T e R(ul — lI/)
which converges to ¢ on Y as n — +o0, we can choose %" = ((o?’”, (pg’")T such that
(ul — W)®" = ¢*". Then we obtain that (ul — ¥)@3" = ¢5”". Furthermore, ¢5”"
converges to ¢(2) on Y, as n — 4o00. This means that (bg € R(ul — @2).

For Claim 3, if R(ul — @) # Y, we set ¢° = (¢9,¢9) € ¥ but ¢° = (¢, ¢9) ¢
R(ul — @). Since ¢g ¢ R(ul — @2), it suffices to prove ¢(2) ¢ R(ul — @2). Suppose,
by contradiction, that there is a sequence ¢(2)’” € R(nl — 79) whiclr\converges to ¢g on
space Y, as n — +oo. Then we can choose (pg’" such that (ul — 11/2)(0[2)’" = ¢[2)’"

91" = 160, 0" = (91", 93" and °" = (ul — P)p"" = (¢, $3") . It is easy to
find that ¢*" converges to ¢° as n — +oo. Therefore, ¢° € R(ul — @). This causes a
contradiction. So we finish Step 1.

Step 2: 0, (¥) = 0. (¥) |J{0}. Tt is easy to see 0 € o, (¥). According to the definition of
the essential spectrum, we only need to prove the following three claims for any p # 0.
Claim 4: dlmN(/U — @) =dimN (] — ).

Claim 5: R(ul — lI/) is not closed < R(ul — lPZ) is not closed.
Claim 6: If R(ul — lI/) is closed, codimR (! — lI/) = codimR(ul — ¥y).

We begin to prove Claim 4. We assume that there are some ¢° = ((p(l), (pg) € Y\ {0} such
that

(Il — 9" = (ul — ¥)(9), 9T =

Thus, (pl = Oy, and (ul — lI/)q)z = OY2 with (p2 # 0. Moreover, we have drmj\/'(,ul l1/) <
dlm/\/(,ul — lllz) If there exists (02 e 1\ {Oyz} such that (ul — lllz)(pz = Oy,, then
(nl — lI/)(Oyl,(p2) = Oy. Thus, dim N (x] — @) > dim N (u] — ).

Next, we prove Clalm S5.If R(ul — 11/2) is not closed, we can choose ¢2 € R(ul — l1/2)
but ¢2 ¢ R(ul — l1/2) By arguments similar to those in Claim 2, we can deduce that
Oy, , ¢2)T € R(ul — lI/) but (Oy,, ¢2 ¢ R(ul — lII). It follows that R(ul — lI/) is not
closed. In addition, the converse has been shown in Claim 2.
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Finally, we prove Claim 6. Since ¢2 € YQ/R([LI - lI/2) 1mp11es Oy, , ¢2)T eY/R(ul —
lI/) we can deduce that codimR (MI - lI/) > codimR (MI — 11/2) To prove the opposite
inequality, we choose ¢O = (¢1 ¢2)T e Y/R(nl — lI/) with ¢O 7& Oy. By the fact
(Y1, Oyz)T C R(ul — lI/) 1tfollows thatq}1 canbe chosen as Oy, . Then ¢2 € Yo/R(nl— '1/2)
and hence codimR (I — lP) < codimR(ul — 1112) Therefore, we finish Step 2. m]

Note that @2 is a positive multiplication operator in X», we can determine the spectral
radius r () of ¥ by r(¥2) = | [7* (F*B)22(a, )Wa(a, 0)da| ¢ pas, - By Proposition
2.7 of [30], we obtain the following proposition.

Proposition 5.15 Let Assumptions 5.1 and 5.11 be satisfied. Then ag(@z) = U(@z) =
U o @ (x)).

xeR

Assumption 5.16 For operators ¥ and l:U\, assume that r(¥) > r(@).

Theorem 5.17 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. Then r (W) is the principal
eigenvalue of ¥ with a positive eigenvector ¥ .

Proof By Lemma 5.14, we know that re(lI/) = re(llfz) and r(lI/) = r(@z) Accordmg
to Proposition 5.15, we have r(lI/Z) = re(lllg) Therefore we obtain r,(¥) = r(lllz) By
Assumption 5.16, we see that r (¥) > r(lI/) = r(slfz) =r.(¥). So Theorem 5.17 is a direct
result of Theorem 5.13. O

5.3 Extinction and Uniform Persistence of the Disease

For arbitrarily large positive number &, we consider the system (5.1) with initial value belongs
to the following set

B = {(So(-), Io(-, ) € C1(2,R") x LL(Ry, C(2,RM) : So() < §°0), Io(a, ) < EW(a, 0)!0*(-)} ,
(5.18)
where ¥, is the eigenvector of operator ¥ corresponding to r(¥) and S is the disease-free
steady state.

By using a similar approach from Sect. 2, we obtain the following expression of I-equations
of the system (5.1),

W(a,0)I(t —a,0,x), t—a >0,

I¢,a.x) = {W(a,a—t)lo(a—t,x), t—a<0.

Therefore, we have, forr > 0, x € £2,

2(t,0; So, Lo, x) 1 = 1(1,0,x) = F(x, S(t,x)) [;7° B(a, 0)I(t, a, x)da
= F(x, 8(,x)) [y @(a, x)z(t — a,0; So, Io, x)da
+F(x,S(t,x))H(t,0; Iy, x),

where

+00
d(a,x) = B(a, x)W(a,0), H(,0;1p x)= / B(a, x)W(a,a —t)Ig(a —t, x)da.
12

Lemma 5.18 LetAssumptions5.1,5.11, and5.16 be satisfied. If Ry < 1 and (So(-), Io(, 1) €
Bg, then 0 < S(t,x) < So(x) and 0 < z(t,0; So, Lo, x) <&V, forallt > 0 and x € 2.
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Proof From the first equation of system (5.1), we have

B < A()S(1,x) + M(x, S(t,%),0), x € £2,
80, x) < So(x), x e, (5.19)
0,8(t,x) =0, x € 052.

By using the comparison principle for reaction—diffusion equations, we can deduce that
0 < S(t,x) < S°(x).
By the definition of Bg and expression of z, we have, forr > 0, x € £2,

z(0,0; So, 1o, x) = F(x, So(x)) f0+oo B(a, x)Io(a, x)da
< FOw) [ B(a, x)§W(a, 0)¥, (x)da
SEVYL(X) =ERY L (x) < EPu(x).

Assume, by contradiction, that there exists 71 > 0 and x| € £2 such thatz(z, 0; So, Lo, x1) <
EY,(xy)fort € [0, T1] and z(T1 +¢, 0; So, Lo, x1) > E¥ . (x1) for some small ¢. Therefore,
we have

2(Ty +&,0; So, I, x1) < FO(xy) fOTH_E B(a, x))W(a, 0)z(T1 + & — a, 0; So, Lo, x1)da
+ FO(x1) [ 5 Bla, x)W(a,a — Ty — &)Io(a — Ty — £, x1)da
< FOen)(fy ' Ba, x1)W(a, 0)
£y, (x)da + [15 B(a, x1)EW(a, 009, (x1)da)
= F(x1) [ B(@)W(a, 0)&¥,(x1)da
= -‘E‘I’W*(Xl) = ROSW*(XI) < Sw*(-xl)

This leads to a contradiction. O

Theorem 5.19 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. If Ry < 1 and (So(+), Io(-, *))
€ Bg, then the disease-free steady state (8°(x), 0) is global attractive.

Proof By Lemma 5.18, we have z(z, 0; So, 19, -) < &¥,(-). Therefore, we have, for ¢ > 0,

lim z(r,0; So, Io,) = lim (F(-, S(t.,")) [y B(a,YW(a,0)z(t —a,0; So, Io, )da
t—+400 t——+400

+ F(-, 84, [T Bla, YW(a,a — t)Io(a — 1, -)da)
< F°C) [ B(a. )W, 0) lim z(t - a.0: So. Io. -)da

<F°0) f0+oo B(a, YW(a, 0)é¢ (-)da
= Roé¥ ().

After many iterations, we have liI_;l_’l z(t,0; 8o, Ip,-) < Rgfw(-). This means
—4+00

lim z(z,0; So, 1o, -) = 0. Therefore, we have lim |I(z,-,-)||lx = 0. Moreover, by
t—>+00 t——+00

Assumption 5.1, we can deduce the global attractiveness of the disease-free steady state. O
Define U4(t), t > 0 as the solution semiflow of the system (5.1) by
U@)(So(), Io(-, ) = (8@, ), I, ), t=0. (5.20)

Theorem 5.20 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. If Ry > 1, then there exists
a positive number € such that

lim sup [|z(z, 0; So, Lo, )l > &, V(So, Lo) € Mo, (5.21)
t—+400

where set My is defined in Sect. 4.
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Proof Assume, by contradiction, that (5.21) is not hold. Then there exists 77 > 0 such that
z(t,0; So, Ip,x) < el forallt > T; and x € 2. Therefore, we have I(¢,a,x) < &1 for
t > Ty and x € £2. By Assumption 5.1 (iii) and (vii), we know that there exist constants
8 > 0and T»(T> > T}) such that

Sit,) > 8) =81, t>Ts.

Fort > T, and x € §2, we have

t
2(t, To; S1y, Iy, x) = (FO(x) = 81) | B(a,x\)W(a,0)z(t — a, Ts; S15, I1y, x)da,
T

where § = | FO(x) — F(x, S°(x) — 81)]|. In order to use the Laplace transform of z, we
define L(L)(x) := 0+°° e‘“z(r, 0; So, 19, x)dt. Therefore, we have, forr > 0 and x € £2,
Jor e 2(t,0; So, To, x)dt = [ e (FO(x) — 1) [y B(a, x)W(a, 0)z(t — a, 0; So, Lo, x)dadt
> [ (FO(x) — §1)B(a, x)e™ o “W(a, 0)L(2) (x)da.
(5.22)

Next, we define a operator ¥; , on C(£2,R") as follows
+OO ~ a —
¥, (@)(x) = /0 (FO(x) — §1)B(@)W(a, 0)e~ b *Sp(x)da, ¢ € C(2,R").

If we set 8§ — 0,1 — 0 and use the perturbation theory of linear operator [24], we then
obtain that r (¥ , ) is the eigenvalue of ¥; , with a positive eigenvector wf;)‘ which satisfies

Clim () = r(W). Let 3% () := (wf’f(-), wf;ﬁ(-))T.Therefore, we have
§—0,,—0 ’ ’
diag Wi 0), o WEEOILOIO) = diagWiLO), o 2RO [T 20, 0: S0, T, a1
> diag@l () e Yn () [ (FO() = $1)B(a, Ye o "W (a, 0)L () ()da
= /o (F°() = 1) B(a, )e™ J 5% (a, 092 () x diag(L(2))()da
= (W3 )diag(Py 1 (), e Ym (DL

wherediag(L(1)(-) := diag([y"> e z1(1,0; So, Lo, )dt, .., 57 e Mz, (1, 0; So, I, )dr).
Due to r(lI/ng) > 1 and diag(lﬁi')‘(-))L(k)(-) > (), this causes a contradiction. O

Remark 5.21 Semiflow U () with (5.21) means the weakly uniform persistence of the disease.
Since our approach based on operator theory, it allows us to treat model (5.1) with Neumann,
Dirichlet or Robin boundary conditions. Therefore, if Assumption 5.1 still holds when the
model (5.1) is under Dirichlet or Robin boundary conditions, then the results are still valid.
In Remark 6.15, we also consider the SEIR model under the Dirichlet boundary condition.

6 Application to Infection Age-Structured SIR and SEIR Epidemic
Models

In this section, we apply the methods stated above to the SIR and SEIR epidemic models. In
the SIR model, we compare our results with Chekroun and Kuniya’s work [5-7]. The SEIR
epidemic model can be seen as an application to high-dimensional and degenerate diffusion
situations.
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6.1 Infection Age-Structured SIR Epidemic Model

In this subsection, we consider the SIR epidemic model under the Neumann boundary con-
dition. The model is constructed as follows, for ¢t > 0,a > 0,x € 2

LY — pAS(t, x) +y — S(t,x) [T B@I(t, a, x)da — pS(t, x),
Ulhay) 4 UG =dAl( a0 = i+ @l a, 2),

I(t 0 x) = S(t x)f (a)[(t,a,x)da

IR — cAR(t, x) + [ n(@)(t, a, x)da — pR(t, x),

(6.1)

with initial value condition
S(0,x) = So(x), 10, a, x) = Ip(a, x), R(0, x) = Ro(x),
under the Neumann boundary condition

1 R
§=0’87=0’87=0, x € 052.
ov ov v

Following the setting of general infection age-structured epidemic models, we make the
following assumption.

Assumption 6.1 For system (6.1), assume that

(i) y > 0, u > 0 and diffusion coefficients b, ¢, d > 0,

(i) B() e LYRH)N Ll 1 (R4) and there exists a maximum age of infection denoted by a;
such thatifa > a4, ﬁ(a) = 0. Moreover, there exist positive numbers a,, a* such that
B(a) > 0,Va € (ay, a*).

(iii) n() € LPRy).

Itis obvious that Assumption 6.1 is consistent with Assumptions 4.1 (i, iii, iv, v). Therefore,
we only need to prove Assumption 4.1 (ii). The disease-free steady state (S%(x), 0) satisfies
the following equations

{0 =bAS'(x)+y — uSO(x), x € 2,

3,89(x) =0, x €092. ©2)
It follows from Lemma 2.1 in [31] that we have the following lemma.

Lemma 6.2 Ler Assumption 6.1 be satisfied. Then system (6.1) admits a unique globally
attractive disease-free steady state (S9%x), 0) and S°(x) > Oforall x € £2.

Following the ideas in Sects.3 and 4, we define the next generation operator L on space

C(R2) by

+0o0 » o
Lo(x) = S%(x) / B(@)elo *OBT ()\o(x)da, ¢ € C($2),
0

where 7 () is the Co-semigroup generated by d A with Neumann boundary condition. Thus
we can define the basic reproduction number Rg by

Ro =r(L).
Next, we show that Assumption 4.13 (i) and (ii) are held. Firstly we prove Assumption
4.13 (ii). For any (¢, a, x) > ¢ with a positive constant ¢, we consider

aS(t, x)
at

=bAS(t,x)+y — (a+B¢ —w)St, x), x €82, (6.3)
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where 8 = z(r)lf )ﬁ(a). Similar to Lemma 6.2, we know the system (6.3) under the
- ac(0,ay

Neumann boundary condition admits a globally attractive steady state $°-¢. By comparison
principle for the first equation of (6.2), we know that $%¢(x) < S$%x). Then we have the
solution S(#, x) of the system (6.3) satisfies that there exists a large enough time 77 such that

St,x) > S"(x) > S%x) —&, t>Tix, € 2,
where & := sup (S9(x) = $9¢ (x)). Therefore, Assumption 4.13 (ii) holds. In the next lemma,

xesf2
we show Assumption 4.13 (i).
Let

+00

I(t,x) := / I(t,a, x)da and Ip(x) := / Ip(a, x)da, t>0,x € £2.
0 0

Lemma 6.3 Let Assumption 6.1 be satisfied. Let (So, Ip) € C(2) x LI(R+, C(R2)),
(S(,-), I(t,-,-)) be the solution of system (6.1) with the initial value (So, lp). Then there
exists a positive constant M (independent of initial value) such that the following inequality
holds

lim (IS, ) + [T, )]) < M. (6.4)
t—400
Proof Note that
T dIt, a,
/ @0 4 — 11, 400, 6) — 1,0,5), x € 2.
0 da
It is easy to find that liIJIrl I(t,a,x) =0fort > 0and x € £2. By the boundary condition
a—+00
of (6.1), we have
T dI(t, a, x) +oo
——da=-1(,0,x) =-S(,x) B@)I(t,a,x)da, t=>0,x¢€£2.
0 da 0
Therefore, by integrating both sides of the second equation of system (6.1) on age a, we
have, fort > 0,x € £2,
BES = bAS(1,2) +y = uS(t,x) = $.2) [ B@) (1. a.x)da,

dher sg,ngoﬂ’" B@)I(t,a,x)da +dAT(t, x) — pI(t,x) — [ @1, a, x)da,
So(-) € C(£2), I(-) € C(£2).

(6.5)

From Theorem 6.4, we can deduce that 11141_1 S, x) < S%x), x € 2.
—+00

Next, we prove this lemma by proving the following 4 claims, step by step.
Claim 1. There exists a positive constant M, independent of initial value conditions, such
that
limsup([[S(t. )l 1) + 11 ) 1) < M.
t—+400
To prove this claim, we integrate both sides of the first two equations of (6.5) and add up to
obtain

9 ~ ~ -~
—/(S+1)dx5/ )/dx—/ /L(S+I)dx§||9||)/—/ w(S+ Idx.
ot o 0 0 2

I$21y

It is clear that Claim 1 holds with M| = m
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Claim 2: For any k > 0, there exists a positive constant My, independent of initial
conditions, such that

lim sup([|S(z, )IIL2 ) = M. (6.6)

1—+00

+ 1T, )12,

k2 K@)

In the following, this claim will be proved by induction. The case k = 0 has been proved
in Claim 1. Then we assume the Claim 2 holds for k — 1. By Multiplying both sides of the
second equation of (6.5) by 721 and integrating over £2 [1], we obtain, for a large enough

k
72 21 / 72k 2 / 0372 / 72k

d — d \Z4 dx + S 17 dx — +n)I° dx,

2k 3 / Y=ot | [“dx 5 ISTIBI™ dx Q(M I~ dx

where :== sup B(a) and n: inf  n(a). We now recall the interpolation inequal-
ae(0,+00) ’E(O’+°°)
ity: for any ¢ > 0, there exists a constant C, > 0 such that

18172 < €IVENT2 g, + CellElI71 gy, forany & € W2 ().

Applying the above interpolation inequality with ¢ = ﬁﬁ, we can obtain
1 d —_ -
2 Pax < —/ ISOIBT dx —/ (w+ T dx +C£(/ ?7'da)®. (67
2k 3t Q Q - 2

By assumption, we know that (6.6) holds for k — 1. It follows that

lim sup/ dx < Mzk L.
2

——+00

Together with (6.7), we can deduce that (6.6) holds for k. And then Claim 2 is true.
Claim 3: For any p > 1, there exists a positive constant M, independent of initial
conditions, such that

lim sup(|S(t. 1Y o) + 1T ] o)) < M.

——+400

In view of Claim 2 and the continuous embedding L(£2) C LP(£2),q > p > 1, Claim 3
is a direct result.
Claim 4: There exists a positive M, independent of initial conditions, such that

limsup | 7(2, )| < M.

t—+00

Let T (¢) denote the analytic and compact semigroup generated by operator A := dA—p—n
in space Z := LP(£2). Let Z,,0 < a < 1, be the fractional power space with graph
norm. According to the embedding theorem, we can choose p > % and o > ﬁ such that

Zy C C(£2). It is well known that there exists M, > 0 such that [|A%T>(¢)| < % for all
t > 0. It follows from Claim 3 that there exists 7o, > 1 such that

~ 1
IS Lr2y = Mo+ 1, 11, ey < (Mp + 17, Vi =1 — 1.

By the second equation of (6.5), for all # > T, — 1, we have

t
I(1) < (It — 1)+f To(t — 5)|IS° BT (s)ds.
t—1
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For all r > t5o — 1, we have

IAYT(2, ey < NATa (DIt — Dliercoy + [ 1AYTa(t — ) ISCIBIT () | Lr(2)ds
~ — 1
= MalT@ = 1)o@ + ISCUB(Mp + )7 [ b e ds

||S°||/3Ma(Mp+1)ﬂ
_a .

= Mo (M), + 1)" +

Then Claim 4 follows from the embedding Z, C C(£2). Together with . lirJP S, x) <
— 400
59(x), Vx € £2, Lemma 6.3 holds. O

The above results are sufficient to prove the global attractiveness of the disease-free steady
state by Theorem 4.15.

Theorem 6.4 Let Assumption 6.1 be satisfied. If Ry < 1, then the disease-free steady state
(89, 0) is globally attractive.

Remark 6.5 Compare to Chekroun and Kuniya’s works on infection age-structured SIR epi-
demic model under the Neumann and Dirichlet boundary conditions [5—7], we improve the
results on the global attractiveness of the disease-free steady state. In Chekroun’s work, they
only prove the global attractiveness of the disease-free steady state with the initial value
belonging to a subset of phase space (Theorem 5.1 in [5], Theorem 4.4 in [6], Theorem
6.2 in [7]). By using our methods, we can overcome this problem. We can prove the global
attractiveness of the disease-free steady state with no limitation on the initial value condition.
However, due to the limitation of our method, we need to assume that (a) = 0, Va > a.

By Theorem 4.20, we have the following theorem.

Theorem 6.6 Let Assumption 6.1 be satisfied. If Ry > 1, semiflow U(t) is uniformly persistent
and admits a fixed point (i.e. endemic steady state).

Remark 6.7 These results are consistent with Chekroun and Kuniya’s results (Theorems 6.1
and 7.2 in [5], Proposition 5.3 and Theorem 6.1 in [7]).

6.2 Infection Age-Structured SEIR Epidemic Model

In this subsection, we consider an infection age-structured SEIR epidemic model under the
Neumann boundary condition. The model is constructed as follows, fort > 0,a > 0, x € £2,
PO — pAS(t, x) +y — S(t, %) [ (Ba(@)1(t, a, x) + P1(@E(t, a, x))da — uS(t, x),

MJrM —RE(t, a,x) —0E(t,a, x),

M + M =dAIGa,x) = [+ @I, a, x) + O E( a, %), (6.8)
E(t 0 X) = S(t x)f Ba(@)I(t,a,x)da + S(t, x) fo Bi(@)E(t,a, x)da

IRED = cAR(t, x) + [ n(@)I(t.a. x)da — pR(t. x),

with initial value condition
S(0,x) = So(x), E0,a,x) = Eo(a, x), 1(0,a,x) = Iy(a, x), R0, x) = Ro(x),
under the Neumann boundary condition
as oE al oR

=0,—=0,—=0,— =0, x€082.
av dv ov dv

Following the setting of general infection age-structured epidemic models, we make the
following assumption.
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Assumption 6.8 For system (6.8), assume that

i) y >0, > 0,60; > 0 and diffusion coefficients b, ¢, d > 0,

(ii) Foreachi = 1,2, Bi(:) € LRy N LL(RQ and there exists a maximum age of
infection denoted by a. such thatif a > a4, B;(a) = 0. Moreover, there exists positive
numbers a,, a* such that B; (a) > 0, Va € (ay, a™).

(i) n() € LPRy).

In the SEIR model, we assume that compartment E also has effects on the spread of
disease and is with zero diffusion coefficient. Therefore, this SEIR model can be seen as
an application in an epidemic model with degenerate diffusion. By Remark 5.10, we con-
sider phase space Y := L2(.Q, ]Rz) and X = Ll((O, +00), Y), instead of C($2, ]Rz) and
L1((0, +00), C(£2, R?)). In order to use the method stated before, we introduce some nota-
tions as follows

_(I(t,a,x) (@0 (O [ dAu
I(t,a,x)._(E(t’&x)),n(a)._( 0 0>,;L._<OM>,IL(x)u._( 0 ),

_ (0 0 _ (0 6 —( 0 0

Therefore, we can rewrite system (6.8) into the following form, for# > 0,a > Oand x € 2,

PO — pAS(t, x) +y — uS(t,x) = S, x) [T B(@) (1, a,x) + P1(@)E(t, a, x))da,
(Z+ L) It a,x) =Lt a.x)— (u+n@)I(t,a,x) +0I a x), (6.9)
1(1,0,x) = S(t,x) x ;7 B(a,)I(t,a,x)da

As the same with Lemma 6.2, we directly have the following lemma.

Lemma 6.9 Let Assumption 6.8 be satisfied. Then system (6.8) admits the unique disease-free
steady state (S°(x), 0) and S°(x) > 0 forall x € £2.

By using the method in Sect.5, ¥ and ¥ are defined on space L2(£2, R?) as follows

pro(x)\ _ 0 (oY _(_ 0
v <<ﬂ20(x)> = (wm,wz)(x)) ¥ (m(x)) = <wz(<pz)(x)>’ x e,

where

Va(p1, 92) (@) = o7 SY0B2(@) (Ti(@)e™ i 11 gy 0, x)
+an Ti(a —s)e s nO+rdlg, gy (s, x)ds)da
+ [,7 80 Bat@re Jo 1+ ) (0, x)da,

and

+oo a
@) (20) (x) = / SO0 Ba(@ye™ o B gy (x)da,  x € .
0

In the above, 71(¢) is the solution map of the following reaction—diffusion equation under
the Neumann boundary condition

M =dAgi(t,x), t>0,x € 2.
dt
and ¢(a, x) := (¢1(a, x), p2(a, x)) is the solution of the following equations with initial
value (¢1(0, x), 92(0, x)) = (p10(x), p20(x)),
do(a, x)

p = L(x)¢(a, x) = V(a)p(a, x),
a
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where V (a) := n(a) + 0 + p. Then we have, fora > 0 and x € 2,

¢l(a, x) - ’]’l(a)e*foa .U«Jr’I(S)dS(plO(x) + f(;l 7'1(61 _ s)e_f:a H+ﬂ(1)d191(p2(s’ )C)dS .
@2(a, x) e D g5 (x)

Following the ideas of Sect. 5, we define the basic reproduction number R( by
Ro :=r@).

It is easy to see that SEIR model is consistent with Assumptions 5.1 and 5.11. It remains to
prove Assumption 5.16. By the expression of ¥ and @, we have ¥ > 7 Thus, r(¥) > r(@)
by Theorem 4.2 of [40]. Therefore, we need to prove the strict monotonicity. Before proof,
we introduce some definitions and theorems.

Let X isaBanach space withacone X, a positive operator A € £(X) iscalled y—bounded
if there exists numbers o1, oz : X — R such that

a1 (x)y < Ax <aa(x)y, Vx e X4,

where y € X4 \ {0}. A linear operator B is called monotonically compact if B is positive,
and the relation

implies the convergence of the sequence Bx,,. In particular, if the cone X is regular, every
positive linear operator is monotonically compact.

Theorem 6.10 [16] Let X is a real Banach space with a cone X1 and positive operators
A, B € L(X) which satisfy A < B and A # B. If (A.1)-(A.4) are satisfied,

(A.1) X4 is normal, minhedral and reproducing cone;
(A.2) B is monotonically compact and u—bounded;
(A.3) A isirreducible or u—bounded;

(A4) (B — A)? #£0; thenr(A) < r(B).

Remark 6.11 Theorem 6.10 is the results from Theorem 3.5 and Lemmas 3.6, 3.7, 3.8 of
[16]. More methods for the strict monotonicity of spectral radius of positive operators can
be found in [17, 40].

Define ¥, on L%(£2) by

P90 () = [ S 0@ f5 Tila = s)e” 10161955, x)dsda
+ o S @) Ba(@e™ I 10 6y 0, x)da
= /i S B2(@) [y Tila — s)e= fy 1O H1dlg o= (03 0, x)dsda
+ Jy ™ SO Bat@e o 109 9.0, x)da,
where @20 (x) = ¢2(0, x).
Theorem 6.12 Let Assumption 6.8 be satisfied. Then r(¥) > r(@).
Proof Note that r(¥,) > r(@) means r(¥) > r(@). By Theorem 6.10, we only need to
prove the following four claims.
Claim 1: X is normal, minhedral and reproducing cone;
Claim 2: ¥, is monotonically compact and u—bounded;

Claim 3: @ is irrfducible or u—bounded;
Claim 4: (¥, — ¥)? # 0.
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We begin to prove Claim 2. By the definition of ¥, and Assumption 6.8, we have, for
x € £,

Vo200 < [i7° S°0) 2@ 20, x)da + [ $9)Ba(a) fif 01920, x)dsda
< a; BISCI( + 61a:)¢2(0, x)

where 8 = SUP,¢[0,q,182(a). Similar to above, we can also obtain, for x € £2,

o (920)(x) = [57° $00x) Ba(a)e™ o #0155 (0, x)da
> 80 [ Bla)dae =144y (0, x),

where S = inf $(x). Define iy := S° fa“* B(a)dae~ W% and hy = a, B|1SO)I(1 +
xesf2 *
f1a4). For any (p%o, (p%o € Lﬁ_(Q), there exists two positive constants C1, Cy such that

C1<p210 < <p§0 < ngazlo. Moreover, we have

Crhipyy < W93 < C2ha9).

Therefore, ¥, is (pzlo—bounded. Moreover, ¥, is defined in L”(£2), it follows that ¥, is
monotonically compact.

It is clear that Claim 1 and 4 hold. It remains to prove Claim 3. It is easy to find that U,
is irreducible and the property of u—bounded can be proved by a similar way in Claim 2.
Therefore, we have r(¥,) > r(@g) and then r(¥) > r(l:l/\). ]

Similar to the proof of Theorems 5.19 and 6.4, we obtain the following theorem.

Theorem 6.13 Let Assumption 6.8 be satisfied. If Ry < 1 and (So, Io) € Bg, then the
disease-free steady state (S°, 0) is globally attractive, where Bt is defined in (5.18).

Let U(¢) be the solution semiflow of the system (6.8), that is,
U@ (So(), To(-, ) = (S, ), I, ), t=0. (6.10)
By Theorem 5.20, we have the following theorem.

Theorem 6.14 Let Assumption 6.8 be satisfied. If Ry > 1, semiflow U(t) is weakly uniform
persistent.

Remark 6.15 1If the model (6.8) is under the Dirichlet boundary condition, we can also prove
Theorems 6.13 and 6.14 by a similar method.

7 Discussion

In this paper, we study the dynamical threshold for infection age-structured epidemic model
with spatial diffusion and degenerate diffusion. We prove that R can be defined as the spectral
radius of operator —.% .7 ~! and the spectral bound of .« + % has the same sign as Rg — 1,
where .7, o/ are non-densely operators. This result extends the basic reproduction numbers
for many kinds of ODE and reaction—diffusion epidemic models.

Due to infection age-structured effects, it becomes more difficult to consider the global
stability of steady state than epidemic models in the form of ordinary differential equations.
When considering the infection age-structured epidemic model with spatial diffusion, almost
all work in the literature only concerned the global attractiveness of the disease-free steady
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state in a subset of phase space instead of the whole phase space or constructing Lyapunov
functional. In Sect. 4, we study a class of high-dimensional infection age-structured epidemic
models with non-degenerate diffusion and spatial heterogeneity. We overcome this problem
by using the comparison principle for the age-structured equation and renewal theorem.
We give a general method to prove the global attractiveness of the disease-free steady state
without restrictions on the initial values. Of course, the fewer restrictions the better. By the
theory of compact attractors, we also give another approach to prove the uniform persistence
and the existence of the endemic steady state. It is worth mentioning that the methods used in
this paper are suitable to the Neumann, Dirichlet, and Robin boundary conditions. However,
due to the limitation caused by our method, we assume that there exists a maximum infection
age. In addition, this assumption is reasonable in age-structured models.

In Sect.5, we consider a class of high-dimensional infection age-structured epidemic
models with degenerate diffusion and spatial heterogeneity. Degenerate diffusion leads to
compactness loss of solution semigroup. Thus, we cannot follow the methods stated in Sect. 4
to prove the extinction or uniform persistence of disease. Under some assumptions, we can
still prove that Ry is the principal eigenvalue of the next generation operator by a generalized
Krein-Rutman Theorem. Moreover, by a Laplace transform, we prove that Ry also plays a
role in the threshold for the extinction and weakly uniform persistence of the disease.

In Sect. 6, we apply our method to infection age-structured SIR and SEIR epidemic models.
In the case of the SIR model, we improve some results on the global attractiveness of the
disease-free steady state and give another proof for the uniform persistence of semiflow and
the existence of the endemic steady state. In addition, we compare our results on the SIR
model with those in the literature. In the case of the SEIR model, we consider the SEIR model
with degenerate diffusion. We use the method in Sect. 5 and obtain the threshold results on
its global dynamics.
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