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Abstract
This paper is devoted to studying the threshold dynamics for infection age-structured epi-
demic models with non-degenerate diffusion and degenerate diffusion. For general infection
age-structured epidemic models with non-degenerate diffusion, we establish the basic repro-
duction number R0 by using non-densely defined operators and prove that R0 equals the
spectral radius of −FA −1. For a class of infection age-structured epidemic models with
non-degenerate diffusion or degenerate diffusion, we give a general method to prove that R0

plays the role of the threshold for the extinction or persistence of the disease. Finally, we
apply our methods to the infection age-structured SIR, SEIR epidemic models and obtain
the threshold results on their global dynamics. Our results on R0 for the general infection
age-structured epidemic models extend the cases of ODE and reaction–diffusion epidemic
models. In addition, ourmethod in this paper improves some previous results and is applicable
to the Neumann, Dirichlet, and Robin boundary conditions.

Keywords Basic reproduction number · Infection age-structured · Degenerate diffusion ·
Uniform persistence · Compact attractors

Mathematics Subject Classification 35K20 · 92D30

1 Introduction

The epidemic model is one of the most classical models which has been researched for many
years. It was firstly proposed by Kermack and McKendrick in 1927 and is an infection-age-
dependent outbreakmodel [25]. Due to the age-structured effects, the infection age-structured
epidemic models are more complicated than models in the form of ordinary differential
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equations. The basic reproduction number R0 for ODE models can be seen as a threshold for
extinction or uniform persistence of the disease, also as a criterion for the global asymptotic
stability of the disease-free steady state or endemic steady state [10, 54, 56, 58, 64]. Therefore,
the basic reproduction number is of great concern in age-structured models. In the case of
infection age-structured epidemic models without diffusion term, Magal et al. studied the
SIR model in 2010 and proved that R0 plays the role of the threshold by using integrated
semigroup theory [36]. In addition, many authors have extensively studied age-structured
epidemic models [4, 9, 12–15, 26, 42, 60, 61]. Naturally, a question arises whether the basic
reproduction number R0 can be used as a threshold to decide the extinction and uniform
persistence of the disease in the infection age-structured models with spatial diffusion.

For ODE and reaction–diffusion epidemic models, R0 can be defined as the spectral
radius of −FV−1, where F is the input rate of newly infected individuals and V is the
internal evolution of individuals in the infectious compartments. However, the definition of
the basic reproduction number in infection age-structured epidemic models is always defined
by the spectral radius of the next generation operator instead of−FV−1. Therefore, we guess
that the basic reproduction number R0 for infection age-structured models can be defined
as the form of r(−FV−1). In Sect. 3, inspired by the ideas of Thieme [54], we give an
affirmative answer to this conjecture and prove that R0 for general infection age-structured
epidemic models with non-degenerate diffusion also can be defined as the spectral radius
of −FA −1, where F ,A are non-densely defined operators. This result extends the basic
reproduction number for ODE and reaction–diffusion epidemic models (such as Theorem
2 in [56], Theorems 3.1, 3.3 and 3.4 in [58] and Corollary 2.1 in [64]). In Sect. 3, we also
prove that the spectral bound ofA +F has the same sign as R0 − 1. Moreover, ifA ,F are
defined in suitable spaces, the exponential growth bound of TA0+F0 also has the same sign as
R0−1, where TA0+F0 is aC0-semigroup generated byA0+F0. These results also extend the
basic reproduction numbers for many kinds of ODE epidemic models and reaction–diffusion
epidemic models (Theorem 3.8 in [44], Theorem 3.1 in [58] and Theorem 2.1 in [64]). In
addition, in Sect. 3, we compare our results on R0 for the infection age-structured epidemic
model with Wang and Zhaos’ work on reaction–diffusion epidemic models [58].

There have been many pieces of research on the infection age-structured epidemic model
with non-degenerate diffusion. However, to the best of our knowledge, almost all research
only focused on low-dimensionalmodels, spatially homogeneous environments, and theNeu-
mann boundary conditions. Chekroun and Kuniya studied the infection age-structured SIR
model with spatial diffusion under the Neumann and Dirichlet boundary conditions [5–7]. In
their work, they only proved the attractiveness of the disease-free steady state when R0 < 1
and the initial value belongs to a subset of phase space instead of the whole phase space.
Yet, this only partially showed that R0 plays a role of the threshold to decide the extinction
or uniform persistence of the disease, as happened in some other literature [57, 62]. Espe-
cially, if the boundary condition is not Neumann boundary condition or epidemic models
with spatial heterogeneity, it becomes extremely difficult to prove the global attractiveness
of the disease-free steady state. The major obstruction to use the traditional strategy of con-
structing Lyapunov functional, is the fact that the expression of the disease-free steady state
is not constant. In Sect. 4, we study a class of infection age-structured epidemic model with
non-degenerate diffusion and spatial heterogeneity in the high-dimensional case, and give a
general method to overcome this obstacle. We prove the global attractiveness of the disease-
free steady state if R0 < 1 without restrictions on the initial value condition. A comparison
between our and Chekroun’s results on the infection age-structured SIR epidemic model
[5–7] is presented in Remarks 6.5 and 6.7. Our method can prove the global attractiveness
of the disease-free steady state with no limitation on the initial value condition.
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There are alsomanyworks on the high-dimensional age structure epidemicmodelswithout
spatial diffusion. In 2013,Magal et al. considered nosocomial infection and established a two-
group infection age-structured epidemicmodel [39].Kuniya et al. studied themulti-groupSIR
and SEIR epidemic model with age structure, and applied them to the chlamydia epidemic
in Japan [27, 28, 59]. All of these show that it is of great practical significance to study the
high-dimensional infection age-structured epidemic model. Nevertheless, due to the effects
caused by diffusion terms, almost all the work about the infection age-structured epidemic
models with spatial diffusion only focuses on the low-dimensional models. Additionally,
many methods for the low-dimensional models with spatial diffusion are no longer suitable
for the high-dimensional models. For example, in the case of the SIR model under the
Dirichlet boundary condition, Chekroun and Kuniya used the Feynman–Kac formula and
the Krasnoselskii’s fixed point theorem to prove the existence of an endemic steady state
[5]. Their method needs to calculate the Fréchet derivative of the operator defined by the
boundary condition. Due to the complexity of operators, this is almost impossible in high-
dimensional cases. In Sect. 4, we consider a class of infection age-structured epidemic model
with non-degenerate diffusion in a high-dimensional situation. To make up for the absence
of Fréchet derivative of some operators, we follow the idea of compact operators theory [18,
38, 49, 65] instead and give another method to prove the uniform persistence of disease and
the existence of an endemic steady state.

We would like to mention that the method in Sect. 4 is different from the methods used
in infection age-structured models with spatial diffusion in the past. In Sect. 4, based on
the approach developed in [11, 39, 45], we give a general method to the class of infection
age-structured epidemic model with non-degenerate diffusion and spatial heterogeneity. We
overcome some problems left in the past literature (such as the global attractiveness of the
disease-free steady state, and the existence of the endemic steady state). This method com-
pletely solves the threshold problem for the infection age-structured epidemic model with
spatial diffusion. Due to the limitations of thesemethods, we need to add a condition that there
exists a maximum infection age, and this condition is reasonable in age-structured models.
To our knowledge, most of the previous studies on spatially diffusive epidemic models in
spatially bounded domains assumed the homogeneous Neumann (zero-flux) boundary con-
dition. The advantage of this approach based on operator semigroup theory is that it allows
us to treat Neumann, Dirichlet, and Robin boundary conditions when the assumptions hold.

Epidemic models with degenerate diffusion have also been studied by many authors [23,
32, 55, 58, 63]. As far as we are concerned, the infection age-structured model with degen-
erate diffusion has not been studied in the literature. One of the technical challenges is that
the solution semigroup of the degenerate reaction–diffusion equations is not compact. This
factor directly prevents us from dealing with this degenerate diffusion model using the above
methods. By using a generalized Krein-Rutman Theorem, we prove that the basic repro-
duction number is still the principal eigenvalue of the next generation operator, under some
assumptions. In Sect. 5, we consider a class of infection age-structured epidemic model with
degenerate diffusion and spatial heterogeneity. We prove that the basic reproduction number
R0 also plays a role of the threshold to decide extinction or weakly uniform persistence of
the disease.

This paper is organized as follows.Our approach is sketched here for readers’ convenience.
In Sect. 2, we introduce the general infection age-structured epidemic model with spatial
diffusion and use the method of characteristic line to transform the age-structured model
into Volterra integral equations. In Sect. 3, we prove the existence of the solution and define
the basic reproduction number R0 for the infection age-structured epidemic model with non-
degenerate diffusion by using non-densely defined operators.We prove that R0 can be defined
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as the spectral radius of the operator −FA −1 and the spectral bound of A + F has the
same sign as R0 − 1. Moreover, the exponential growth bound of TA0+F0 (solution map)
also has the same sign as R0 −1 in some suitable spaces. In addition, we compare our results
with Wang and Zhaos’ work on reaction–diffusion epidemic models. In Sect. 4, we study a
class of infection age-structured epidemic model with non-degenerate diffusion and spatial
heterogeneity. We prove that R0 is the threshold for extinction and persistence of the disease.
If R0 < 1, we prove that the disease-free steady state is globally attractive for the whole phase
space by using the comparison principle for the age-structured equation and renewal theorem.
If R0 > 1, we prove the uniform persistence of disease and the existence of an endemic steady
state by using the theory of compact attractors. In Sect. 5, we consider the epidemic model
under degenerate diffusion and spatial heterogeneity. We follow the definition of the basic
reproduction number R0 in Sect. 3. We prove that R0 < 1 means the extinction of disease,
and R0 > 1 means weakly uniform persistence of the disease. In Sect. 6, we apply our results
to the infection age-structured SIR and SEIR epidemic models and obtain threshold results
on its global dynamics. Finally, a brief discussion section completes the paper.

2 Preliminaries

In this paper, we consider the dynamical threshold for the general infection age-structured
epidemic models with spatial diffusion and degenerate diffusion. Here, we assume that the
number of infected compartments is n and the number of remaining compartments which
includes susceptible, removal, and other compartments is m (for simplicity, we mark them
as S). We construct the general infection age-structured epidemic model, for 1 ≤ i ≤ n, 1 ≤
j ≤ m, t > t0, a > 0 and x ∈ Ω ,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t S j (t, x) = b j (x)ΔS j (t, x) + Mj (x, S1(t, x), . . . , Sm(t, x), I1(t, ·, x), . . . , In(t, ·, x)),(

∂
∂t + ∂

∂a

)
Ii (t, a, x) = di (x)ΔIi (t, a, x) − Vi (a, x, I1(t, a, x), . . . , In(t, a, x)),

Ii (t, 0, x) = Fi (x, S1(t, x), . . . , Sm(t, x),
∫+∞
0 βi1(a, x)I1(t, a, x)da, . . . ,

∫+∞
0 βin(a, x)In(t, a, x)da),

(2.1)

under the Neumann boundary condition

∂S j

∂ν
= 0,

∂ Ii
∂ν

= 0, x ∈ ∂Ω, (2.2)

with initial value condition

S j (t0, ·) = S j0(·) ∈ C(Ω), Ii (t0, ·, ·) = Ii0(·, ·) ∈ L1(R+,C(Ω)), (2.3)

where di (x) denotes the diffusion coefficient for the group i of infected compartments and
b j (x) denotes the diffusion coefficient for the group j of remaining groups. Fix n ∈ N+.
Let Ω ⊂ R

n be a bounded, open, and connected set (domain) with smooth boundary ∂Ω . In
system (2.1), functions Fi are the newly infected individuals in the i th infected compartment,
Vi is the rate of transfer of individuals between infected compartments, and Mj is a sum of
the rate of the birth, out and transfer of remaining compartments.

Following the general setting of ODE and infection age-structured epidemic models, we
make the following assumption.

Assumption 2.1 For system (2.1), assume that
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(i) for each i and j , βi j (·, ·) ∈ L∞+ (R+,C(Ω)) ∩ L1+(R+,C(Ω)). Moreover, there exists
at least one interval (a∗, a∗) such that B(a, x) := (βi j (a, x))1≤i, j≤n is an irreducible
and positive matrix for all a ∈ (a∗, a∗) and x ∈ Ω;

(ii) Vi (a, x, I1(t, a, x), ..., In(t, a, x)) is non-negative and continuous for all a ∈ (0,+∞),

x ∈ Ω , and continuously differential with respect to Ik,∀1 ≤ k ≤ n;
(iii) for each j = 1, 2, · · · ,m and each i = 1, 2, · · · , n, diffusion coefficients b j (·), di (·)

are continuous functions on C(Ω) and di (x) ≥ 0, b j (x) > 0,∀x ∈ Ω;
(iv) Fi (x, S1(t, x), · · · , Sm(t, x),

∫ +∞
0 βi1(a, x)I1(t, a, x)da, · · · ,

∫ +∞
0 βin(a, x)

In(t, a, x)da) is a non-negative and continuous function for all x ∈ Ω , and contin-

uously differential with respect to
n∑

k=1

∫ +∞
0 βik(a, x)Ik(t, a, x)da.

For simplicity, we rewrite the system (2.1) into a more compact form. Let S(t, x) and
I(t, a, x) be defined as follows

S(t, x) := (S1(t, x), S2(t, x), · · · , Sm(t, x))T ,

I(t, a, x) := (I1(t, a, x), I2(t, a, x), · · · , In(t, a, x))T .
(2.4)

In addition, we define Λ and L as follows

Λ(x)S := (b1(x)ΔS1, · · · , bm(x)ΔSm)T , L(x)I := (d1(x)ΔI1, · · · , dn(x)ΔIn)
T .

In order to study the dynamical threshold for system (2.1), we need to consider the lin-
earization equations of the infected compartments at the disease-free steady state. So we
assume that system has a disease-free steady state (S0(x), I0(a, x)) = (S0(x), 0) =
(S01 (x), S

0
2 (x), · · · , S0m(x), 0, 0, · · · , 0

︸ ︷︷ ︸
n

)T (a clearer assumption on the disease-free steady

state is in Assumption 2.1). Therefore we consider the following system (the linearization
equations of the infected compartments at the disease-free steady state), for t > t0, a > 0
and x ∈ Ω ,

{ (
∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − V 0(a, x)I(t, a, x),

I(t, 0, x) = F0(x)
∫ +∞
0 B(a, x)I(t, a, x)da,

(2.5)

where B(a, x) := (βi j (a, x))1≤i, j≤n and F0(x), V 0(x) are defined by

F0(x) :=
⎛

⎜
⎝

∂Fi (x,S01 (x),··· ,S0m (x),
∫ +∞
0 βi1(a)I 01 (a,x)da,··· ,∫ +∞

0 βin(a)I 0n (a,x)da)

∂
n∑

j=1

∫ +∞
0 βi j (a,x)I j da

⎞

⎟
⎠

1≤,i, j≤n

,

V 0(a, x) :=
(

∂Vi (a,x,I 01 (a,x),··· ,I 0n (a,x))
∂ I j

)

1≤,i, j≤n
,

where I0(a, x) = (I 01 (a, x), · · · , I 0n (a, x)) = (0, 0, · · · , 0
︸ ︷︷ ︸

n

).

Here, we assume that systems (2.1) and (2.5) admit unique mild solutions (we will prove
it in Sect. 3). The operators L(·) − V 0(a, ·) are associated with an evolutionary system
W0 := {W 0(t, s); 0 ≤ s ≤ t ≤ +∞} of positive operators on C(Ω,Rn),

L(·) − V 0(a, ·) = lim
h→0+

1

h
(W 0(a + h, a)φ − φ), φ ∈ D(L(·) − V 0(a, ·)),

where D(L(·) − V 0(a, ·)) is the set of points for which the limit exists, and the norm of
space C(Ω,Rn) is the usual supremum norm.
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The solution of system (2.5) can be abstractly rewritten as

I(t, a, x) =
{

W 0(a, 0)I(t − a, 0, x), t − t0 > a,

W 0(a, a + t0 − t)I0(a + t0 − t, x), t − t0 ≤ a,

I(t, 0, x) = ∫ +∞
0 F0(x)B(a, x)I(t, a, x)da, t > t0, x ∈ Ω.

(2.6)

We define the exponential growth bound of evolution family W 0(t, s) as

ω(W 0) = inf{ω̂ : ∃M ≥ 1 : ∀s ∈ R, t ≥ 0 : ‖W 0(t + s, s)‖ ≤ Meω̂t }.
To ensure that the disease-free steady state (S0(x), 0) = (S01 (x), S

0
2 (x), · · · , S0m(x),

0, 0, · · · , 0
︸ ︷︷ ︸

n

)T is stable and note that the internal evolution of individuals in infected compart-

ments is dissipative and exponential decay(such as natural mortalities and disease-induced
mortalities), we make the following assumption.

Assumption 2.2 For system (2.1), assume that

(i) −V 0(a, x) is a cooperative and irreducible matrix function for all x ∈ Ω and a ∈
[0,+∞). In addition, ω(W 0) < 0, where ω(·) represents the exponential growth bound;

(ii) the following reaction–diffusion equations under the Neumann boundary condition

dS(t, x)

dt
= Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω (2.7)

admits a globally attractive unique positive steady state S0(x), where M := (Mj )1≤ j≤m .

In order to reformulate system (2.5) into Volterra integral equations, we define
z0(t, t0; I0, x) as follows

z0(t, t0; I0, x) := I(t, 0, x) = F0(x)
∫ +∞

0
B(a, x)I(t, a, x)da, t ≥ t0, x ∈ Ω.

(2.8)

By (2.8), we have, for t ≥ t0, x ∈ Ω ,

z0(t, t0; I0, x) = F0(x)
∫ +∞
0 B(a, x)I(t, a, x)da

= F0(x)
∫ t
0 B(a, x)I(t, a, x)da + F0(x)

∫ +∞
t B(a, x)I(t, a, x)da

= F0(x)
∫ t
0 Φ0(a, x)z0(t − a, t0; I0, x)da + F0(x)H0(t, t0; I0, x),

(2.9)

where Φ0 and H0 are defined by

Φ0(a, x) = B(a, x)W 0(a, 0),

H0(t, t0; I0, x) =
∫ +∞

t
B(a, x)W 0(a, a + t0 − t)I0(a + t0 − t, x)da.

Remark 2.3 System (2.9) can be abstractly seen as Volterra integral equations. Because the
methods in this paper are based on the theory of operator semigroup, our results are valid for
the Neumann, Dirichlet, and Robin boundary conditions. In this paper, we mainly consider
the infection age-structured epidemic model under the Neumann boundary condition.
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3 Basic Reproduction Number for General Infection Age-Structured
Epidemic Model with Non-degenerate Diffusion

In this section, we consider the infection age-structured epidemic model with non-degenerate
diffusion. In Sect. 3.1, we prove the existence of integral solutions of systems (2.1) and (2.5).
In Sect. 3.2, we give the definition of the basic reproduction number R0 and prove that R0−1
has the same sign as the spectral bound of A + F , where A ,F are non-densely defined
operators. Moreover, if A ,F are defined in suitable spaces, ω(TA0+F0) also has the same
sign as R0 − 1. Without loss of generality, we always set t0 = 0.

Assumption 3.1 There exists a positive constant d0 such that di (x) ≥ d0 for each i =
1, 2, · · · , n and x ∈ Ω .

Theorem 3.2 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then the evolution family
W 0(t, s), t ≥ s is compact.

Proof By the definition of W 0(t, s), we know that W 0(t, s) is the solution map of the fol-
lowing reaction–diffusion equations under the Neumann boundary condition

du(t, x)

dt
= L(x)u(t, x) − V 0(t, x)u(t, x), t ≥ 0, x ∈ Ω.

Note that L is the Laplace operator with Neumann boundary condition, it follows that
W 0(t, s), t ≥ s is compact. 
�

3.1 Non-densely Defined Operators and theWell-Posedness

In this subsection, we use the method of the non-densely defined operator to prove the
existence of the solutions of systems (2.1) and (2.5).

Set Y := C(Ω,Rn), equippedwith the usual supremumnorm. Recall that L is the Laplace
operator with the Neumann boundary condition. Then

D(L) := {φ ∈ C2(Ω,Rn) ∩ C1(Ω,Rn) : Lφ ∈ C(Ω,Rn),
∂φ

∂ν
= 0 for x ∈ ∂Ω}.

By Chapter 7 of [48], we know that L generates an analytic semigroup of bounded linear
operators T (t) on Y .

Let X := L1((0,+∞), Y ) and the norm of space X be given by

‖ϕ‖X :=
∫ +∞

0
‖ϕ(a, ·)‖Y da, ϕ ∈ X .

Let us introduce a new extended space X and its closed subspace X0 by

X := Y × X , X0 = 0 × X ,

where 0 := (0, 0, ..., 0
︸ ︷︷ ︸

n

)T . For any (φ,ϕ) ∈ X, the norm is defined by

‖(φ,ϕ)‖X := ‖φ‖Y + ‖ϕ‖X , (φ,ϕ) ∈ X.

Then we consider the family of bounded linear operators {Rλ}λ>0 on X, defined by

Rλ

(
φ

ϕ

)

=
(
0
ψ

)

⇔ ψ(a) = e− ∫ a0 λdsT (a)φ +
∫ a

0
e− ∫ as λdl T (a − s)ϕ(s)ds.
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Observe that {Rλ}λ>0 is a pseudo-resolvent on X. That is to say that

Rλ − Rμ = (μ − λ)RλRμ, ∀λ,μ > 0.

Moreover, we have

Rλx = 0, x ∈ X ⇒ x ∈ X0

and

lim
λ→+∞ λRλx = x, ∀x ∈ X0.

Similar to Sect. 1.9 of [43], we deduce that there exists a unique closed linear operator A
which satisfies

A : D(A) ⊂ X → X, D(A) = X0,

and

Rλ = (λI − A)−1, ∀λ > 0.

Denote by X
+
0 := 0 × X+ the positive cone of X0. In addition, we define an operator

F : X+
0 → X by

F
(
0
ϕ

)

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1
f 01i (·)

∫ +∞
0

n∑

j=1
βi j (a, ·)ϕ j (a, ·)da
...

n∑

i=1
f 0ni (·)

∫ +∞
0

n∑

j=1
βi j (a, ·)ϕ j (a, ·)da

−
n∑

j=1
v01 j (a, ·)ϕ j (a, ·)

...

−
n∑

j=1
v0nj (a, ·)ϕ j (a, ·)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(
0
ϕ

)

∈ X
+
0 ,

where F0 = ( f 0i j )1≤i, j≤n, V 0 = (v0i j )1≤i, j≤n . According to the above definition, we can
transform (2.5) into the following semi-linear Cauchy problem in a non-densely defined
domain

du(t)
dt = Au(t) + Fu(t),

u(0) =
(
0
ϕ

)

∈ X
+
0 .

(3.1)

Similar to [4], we consider the Cauchy problem (3.1) with the following equivalent form
(3.2)

du(t)
dt = (A − 1

ε
I )u(t) + 1

ε
(I + εF)u(t),

u(0) =
(
0
ϕ

)

∈ X
+
0 ,

(3.2)

where ε is small enough that I + εF map the X+
0 to the positive cone X+ of X.
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Let Aε := A − 1
ε
I and Fε := 1

ε
(I + εF). Since the operators are defined on the non-

densely defined domain, the classical semigroup theory is not suitable. We use the method
of Lipschitz perturbations of the non-densely defined operators [33, 52].

Lemma 3.3 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. ThenAε satisfies the Hille-Yosida
condition.

Proof We consider the resolvent of Aε . Then we have

(λI − Aε)

(
0
ψ

)

=
(

φ

ϕ

)

∈ X. (3.3)

By Aε := A − 1
ε
I and Rλ = (λI − A)−1, we have

ψ(a) = e− ∫ a0 λ+ 1
ε
dsT (a)φ + ∫ a

0 e− ∫ as λ+ 1
ε
dl T (a − s)ϕ(s)ds

= e−(λ+ 1
ε
)aT (a)φ + ∫ a

0 e−(λ+ 1
ε
)(a−s)T (a − s)ϕ(s)ds.

Now, we give the estimate of (λI − Aε)
−1:

∥
∥
∥
∥(λI − Aε)

−1
(

φ

ϕ

)∥
∥
∥
∥
X

= ‖ψ‖X
≤ ∫ +∞

0 e−(λ+ 1
ε
)a‖T (a)φ‖da + ∫ +∞

0

∫ a
0 e−(λ+ 1

ε
)(a−s) ‖T (a − s)ϕ(s)‖ dsda

≤ M
∫ +∞
0 e−(λ+ 1

ε
)ae−λ0ada ‖φ‖ + M

∫ +∞
0

∫ +∞
0 e−(λ+ 1

ε
+λ0)(a−s) ‖ϕ(s)‖ dsda

≤ M
λ+ 1

ε
+λ0

∥
∥
∥
∥

(
φ

ϕ

)∥
∥
∥
∥ ,

where λ0 is the principal eigenvalue of the following eigenvalue problem:

L(x)u(x) + λu(x) = 0.

The above eigenvalue problem admits a unique principal eigenvalue λ0 [3, 20], with the
solution semigroup T (t) satisfying ‖T (t)‖ ≤ Me−λ0t , where M ≥ 1. Thus, Aε satisfies the
Hille-Yosida estimate. 
�
Definition 3.4 A continuous function u : [0,+∞) → X is called an integral solution to (3.2)
if

u(t) = u(t0) + Aε

∫ t

t0
u(s)ds +

∫ t

t0
Fεu(s)ds. (3.4)

Remark 3.5 (3.4) implies that
∫ t
t0
u(s)ds ∈ D(Aε).

Define the part Aε0 of Aε on X0 = D(Aε):

Aε0 = Aε on D(Aε0) = {ϕ ∈ D(Aε);Aεϕ ∈ X0}. (3.5)

The following Lemmas 3.6 and 3.7 can be found in [33, 52].

Lemma 3.6 The partAε0 ofAε on X0 generates a C0-semigroup {TAε0(t)}t≥0 on space X0.

Lemma 3.7 The unique continuous solution to (3.2) can be given by (3.6),

u(t) = TAε0(t − t0)u(t0) + lim
λ→∞

∫ t

t0
TAε0(t − s)λ(λ − Aε)

−1Fεu(s)ds. (3.6)

and it takes value in X0.
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In fact, Lemma 3.7 follows from the C0-semigroup theory, integrated semigroup theory,
and variation of constants formula. If ε is chosen small enough, Fε can be seen as a local
Lipschitz continuous, positive, and bounded perturbation. Ifwe follow the ideas of theBanach
fixed point theorem in [21], we can also prove the existence of the local positive solution.
Above all, the solution of the system (3.1) has been proved.

Theorem 3.8 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then system (2.5) with initial
value I0 ∈ X+ has a non-negative solution defined on C([0, τ ), X), τ > 0.

Remark 3.9 In fact, if we set Y = L2(Ω,Rn) or other suitable spaces, then Theorem 3.8
still holds. The reason is that the Laplace operator also generates an analytic and compact
semigroup on space L2(Ω,Rn). Moreover, we would like to mention that Magal and Ruan’s
work [34] tells us that we can define X := L p((0,+∞),Y) with p ≥ 1 and system (2.5)
with initial value I0 ∈ X+ has a non-negative solution defined in C([0, τ ),X ), τ > 0.

Next, we prove the existence of the solution of the system (2.1). System (2.1) can be
abstractly seen as the following form.

d

dt

(
S(t)
u(t)

)

=
(

ΛS(t) + V (S(t), u(t))
Au(t) + V̂ (a, S(t), u(t))

)

, (3.7)

where S(t, ·) = (S1(t, ·), · · · , Sm(t, ·))T and

V(S(t), u(t))(·) =
⎛

⎝

M1(·, S1(t, ·), · · · , Sm (t, ·), u1(t, ·, ·), · · · , un(t, ·, ·))
.
.
.

Mm (·, S1(t, ·), · · · , Sm (t, ·), u1(t, ·, ·), · · · , un(t, ·, ·))

⎞

⎠,

V̂ (a, S(t), u(t))(·)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−V1(a, ·, u1(t, a, ·), · · · , un(t, a, ·))
.
.
.

−Vn(a, ·, u1(t, a, ·), · · · , un(t, a, ·))
F1(·, S1(t, ·), · · · , Sm(t, ·), ∫+∞

0 β11(a, ·)u1(t, a, ·)da, · · · ,
∫+∞
0 β1n(a, ·)un(t, a, ·)da)

.

.

.

Fn(·, S1(t, ·), · · · , Sm(t, ·), ∫+∞
0 βn1(a, ·)u1(t, a, ·)da, · · · ,

∫+∞
0 βnn(a, ·)un(t, a, ·)da)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Cauchy problem (3.7) can be seen abstractly as

d

dt
P(t) = AP(t) − (FP)(t),

where P =
(
S
u

)

,A =
(

Λ 0
0 A

)

, (FP)(t) =
(

V (S(t), u(t))
V̂ (a, S(t), u(t))

)

.

BecauseΛ is the Laplace operator with the Neumann boundary condition, the eigenvalues
of Λ are smaller or equal to 0. It is well known that Λ satisfies the Hille-Yosida condition.
Combining with Lemma 3.3, we can deduce that A satisfies the Hille-Yosida condition.
Similar to Lemmas 3.6, 3.7, and Theorem 3.8, we have the following theorem about the
existence of the solution of the system (2.1).

Theorem 3.10 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. If V and V̂ are Lipschitz
continuous, then system (2.1) with initial value (S0, I0) ∈ C+(Ω,Rm) × X+ has a mild
solution defined on C([0, τ ),C(Ω,Rm)) × C([0, τ ), X), τ > 0.
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Remark 3.11 If we define Y := L2(Ω,Rn) and X := L p((0,+∞),Y), then Theo-
rem 3.10 still holds if we replace phase space C([0, τ ),C(Ω,Rm)) × C([0, τ ), X) with
C([0, τ ), L2(Ω,Rm)) × C([0, τ ),X ). It is worth mentioning that the results of this section
are valid in the spaces Y := L2(Ω,Rn) and X := L p((0,+∞),Y), p ≥ 1.

3.2 Basic Reproduction Number

For simplicity, we always set t0 = 0 and spaces Y := C(Ω,Rn) and X := L1((0,+∞), Y )

without additional assumptions.
From Sect. 2, we know that there exists an evolution family W 0(t, s), t ≥ s on Y for

system (2.5) as follows

I(t, a, x) =
{

W 0(a, 0)I(t − a, 0, x), t − a > 0,
W 0(a, a − t)I0(a − t, x), t − a ≤ 0.

(3.8)

Based on the boundary condition of (2.5), we have

I(t, 0, x) = F0(x)
∫ +∞

0
B(a, x)I(t, a, x)da, t ≥ 0, x ∈ Ω. (3.9)

According to the classical theory of the basic reproduction number for the age-structured
epidemic models [10, 22], we give the next generation operator Ψ that maps Y into itself as
follows,

Ψ (ϕ)(x) : = F0(x)
∫ +∞
0 Φ0(a)ϕ(x)da

= F0(x)
∫ +∞
0 B(a, x)W 0(a, 0)ϕ(x)da for x ∈ Ω.

(3.10)

Similar to the argument in [10], we define the basic reproduction number R0 by

R0 := r(Ψ ), (3.11)

where r(·) is the spectral radius.
Lemma 3.12 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then Ψ is a compact operator
and r(Ψ ) is the principal eigenvalue ofΨ with a strongly positive eigenvectorψ∗. Moreover,
there is no other eigenvalue of Ψ with a positive eigenvector.

Proof From Theorem 3.2, we know that evolution family {W (t, s)}t≥s is compact. Operator
Ψ is a compact operator since it is a composition of a bounded operator and a compact
operator (Theorem 4.18 in [46]). Then the rest part of Lemma 3.12 is a direct result of the
Krein-Rutman Theorem. 
�

In Sect. 6 of [54], Thieme used non-densely defined operators to give the threshold oper-
ator of a one-dimensional age-structured population model. Inspired by this idea of Thieme,
we extend it to the n-dimensional cooperative age-structured epidemic models which are lin-
earized around the disease-free steady state (n-dimensional cooperative non-densely defined
Cauchy problem, abstractly). Then we can give another opinion to character the basic repro-
duction number R0 of the infection age-structured epidemic model. Define the non-densely
defined operators A and F on X0 as follows (the precise definition of A is given by its
resolvent later)
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A

(
0
ϕ

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ϕ1(0)
...

−ϕn(0)

− ∂
∂aϕ1 + d1(·) ∂2ϕ1

∂x2
−

n∑

j=1
v01 j (a, ·)ϕ j

...

− ∂
∂aϕn + dn(·) ∂2ϕn

∂x2
−

n∑

j=1
v0nj (a, ·)ϕ j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

F

(
0
ϕ

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1
f 01i (·)

∫ +∞
0

n∑

j=1
βi j (a, ·)ϕ j (t, a, ·)da
...

n∑

i=1
f 0ni (·)

∫ +∞
0

n∑

j=1
βi j (a, ·)ϕ j (t, a, ·)da
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, system (2.5) is equivalent to

du(t)

dt
= A u(t) + Fu(t). (3.12)

In order to make the definition of A precise, we determine its resolvent

(λ − A )−1(φ,ϕ) = (0,ψ), (φ,ϕ) ∈ X. (3.13)

That is to say,
{ d

daψ(a) = Lψ(a) − λψ(a) − V 0(a)ψ(a) + ϕ(a),

ψ(0) = φ.

By variation of constants formula, we have

ψ(a) = e−λaW 0(a, 0)φ +
∫ a

0
e−λ(a−s)W 0(a, s)ϕ(s)ds. (3.14)

Define Rλ(φ,ϕ)T = (0,ψ)T with ψ given by (3.14). It is easy to see that Rλ(φ,ϕ)T =
(0,ψ)T defines a pseudo-resolvent with zero null-space and this means that there exists an
operator A such that Rλ = (λI − A )−1. Note that W 0 is a positive evolutionary system on
space X , we can deduce that A is a resolvent-positive operator.

Remark 3.13 It is worth mentioning that the method to define non-densely defined operator
A is the same to A which is defined in Sect. 3.1. More precisely, A and A are both defined
by their resolvents.

Notice that

−FA −1(φ,ϕ) = (F0
∫ +∞

0
B(a)W (a, 0)φda + Qϕ, 0), (φ,ϕ) ∈ X
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with an appropriate operator Q. It follows from Gelfand’s formula that −FA −1 has the
same spectral radius on Y × {0} and X. Therefore, R0 defined by (3.11) equals the spectral
radius of −FA −1.

Remark 3.14 From above, the basic reproduction number R0 for the infection age-structured
epidemicmodels defined by classical theory (i.e., defined by (3.11)), equals the spectral radius
of−FA −1. Thismeans that we can directly use r(−FA −1) to define the basic reproduction
number. It extends the basic reproduction number for ODE and reaction-diffusion epidemic
models (e.g. Theorem 2 in [56], Theorems 3.1, 3.3 and 3.4 in [58] and Corollary 2.1 in [64]).

Theorem 3.15 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Then s(F + A ) has the same
sign as R0 − 1, where s(·) represents the spectral bound.
Proof Let g(t) ∈ X ,∀t ≥ 0, define

[P(t)g](s) =
{
W 0(s, s − t)g(s − t), s > t,

0, s < t .
(3.15)

Recall thatW 0(t, s) is an evolution family on X . By [8, Proposition 3.11], we know that P is
the evolution semigroup associated with evolution familyW 0 on L1(R+, X). Next, we define
an evolution family Ŵ 0 onX0 and an evolution semigroup P̂ on L1(R+,X0) respectively by

Ŵ 0(t, s)

(
0
φ

)

:=
(

0
W 0(t, s)φ

)

and

[

P̂(t)

(
0
g

)]

(s) :=
(

0
W 0(s, s − t)g(s − t)

)

Recall that the exponential growth bound of semigroup P(t) is

ω(P) = inf{ω̂ ∈ R; ∃M ≥ 1 : t ≥ 0 : ‖P(t)‖ ≤ Meω̂t }.
From (3.13) and (3.14), the restriction of (λ − A )−1 to X0 is given as follows

(λ − A )−1(0,ϕ) = (0,ψ).

Then we have

ψ(a) =
∫ a

0
e−λ(a−s)W 0(a, s)ϕ(s)ds

=
∫ a

0
e−λ(a−s)[P(a − s)ϕ](a)ds

t=a−s=
∫ +∞

0
e−λt [P(t)ϕ](a)dt .

From above, we can see that the restriction of (λ − A )−1 to X0 is given by the Laplace
transform of semigroup P̂. It follows from the theory of semigroup that the generator of
evolution semigroup P̂ is A0 (the part of A in space X0). Thus, by [8, Theorem 3.22], we
have σ (̂P(t))\{0} = exp(tσ(A0)) for t > 0. Moreover, by [8, Theorem 3.23], we obtain
s(A0) = ω(̂P) = ω(Ŵ 0). Based on the definition of evolution families W 0(t, s), Ŵ 0 and
evolution semigroups P(t), P̂(t), we can find that ω(W 0) = ω(Ŵ 0) and ω(P) = ω(̂P). This
implies that ω(P) = ω(̂P) = ω(Ŵ 0) = ω(W 0) < 0. Thus, we have s(A0) < 0. Note that
A0 and A has the same resolvent set, s(A ) = s(A0) < 0. According to Theorem 3.5 in
[54], s(F + A ) has the same sign as r(−FA −1) − 1. Therefore, s(F + A ) has the same
sign as R0 − 1. 
�

Similar to Lemma 3.6, A0 + F0 generates a strongly continuous semigroup TA0+F0 on
X0.
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Theorem 3.16 Let Assumptions 2.1, 2.2, and 3.1 be satisfied. Let ψ : R+ → C(R+, X) and
(0,ψ(t)) = TA0+F0(0,φ0) for all t ≥ 0. Then φ(t, a, x) = ψ(t)(a, x) solves (3.8) and
(3.9).

Proof Define b(t, ·) = ∫ +∞
0 F0(·)B(a, ·)ψ(t, a, ·)da. It is obvious that b is a continuous

function. Let b̂(λ) = ∫ +∞
0 e−λt b(t)dt be the Laplace transform of b(t). Then we have

(b̂(λ), 0)T = F (0, ψ̂(λ)),

where ψ̂(λ) is the Laplace transform of ψ(t). By Theorem 3.12 in [54], we obtain
(0, ψ̂(λ))T = (λ − A − F )−1(0,φ0)

T . Thus, we have

(0,φ0)
T = (λ − A − F )(0, ψ̂(λ))T = (λ − A )(0, ψ̂(λ))T − (b̂(λ), 0)T .

Then we have

(λ − A )(0, ψ̂(λ))T = (b̂(λ),φ0)
T and (0, ψ̂(λ))T = (λ − A )−1(b̂(λ),φ0)

T .

Define φ = I(·, ·, ·) by (3.8) and ϕ(t) = φ(t, ·). It is clear that ϕ is continuous. From (3.13)
and (3.14), we have

(0, ϕ̂(λ))T = (λ − A )−1(b̂(λ),φ0)
T = (0, ψ̂(λ))T .

According to Theorem 1.7.3 of [2], ϕ = ψ a.e.. Then φ(t, a, x) = ψ(t)(a, x) solves (3.8)
and (3.9). 
�
Remark 3.17 From Theorem 3.16, we can find that C0-semigroup TA0+F0(t) can be seen
as the solution map for the infection age-structured epidemic model (2.5). Furthermore, we
deduce that s(A + F ) has the same sign as R0 − 1. This means the following relationship
is true.

(i) R0 < 1 if and only if s(A + F ) < 1.
(ii) R0 = 1 if and only if s(A + F ) = 1.
(iii) R0 > 1 if and only if s(A + F ) > 1.

If we define Y := L1(Ω,Rn) and X := L1((0,+∞), Y )(or Y := L2(Ω,Rn), X :=
L2((0,+∞), Y )), it follows from Theorem 3.14 of [54] (spectral mapping theorem) that
s(A0 + F0) = ω(TA0+F0). Then R0 − 1 has the same sign as ω(TA0+F0) in some suit-
able spaces. These results extend the basic reproduction numbers for many kinds of ODE
epidemic models and reaction–diffusion epidemic models (Theorem 3.8 in [44], Theorem
3.1 in [58] and Theorem 2.1 in [64]). Moreover, if the model (2.1) is under the Dirichlet or
Robin boundary conditions, the results in Sect. 3 are still valid.

3.3 Comparison to Reaction–Diffusion Epidemic Models

In this subsection, we compare our results on the basic reproduction number for the infection
age-structured epidemic model with Wang and Zhao’s work on reaction–diffusion epidemic
models. In [58], Wang and Zhao studied the following reaction–diffusion epidemic model

∂ui
∂t

= ∇ · (di (x)∇ui ) + fi (x, u), 1 ≤ i ≤ n + m, t > 0, x ∈ Ω,

∂ui
∂ν

= 0 ∀1 ≤ i ≤ n + m with di > 0, t > 0, x ∈ ∂Ω,

(3.16)
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and the linearization equations of the infected compartments at the disease-free steady state
u0

∂uI

∂t
= ∇ · (dI (x)∇uI ) + F(x)uI − V (x)uI , t > 0, x ∈ Ω,

∂ui
∂ν

= 0 ∀m + 1 ≤ i ≤ m + n with di > 0, t > 0, x ∈ ∂Ω,

(3.17)

where uI := (um+1, ..., um+n)
T .

The next generation operator is defined by

L(φ)(x) :=
∫ +∞

0
F(x)P(t)φdt = F(x)

∫ +∞

0
P(t)φdt, φ ∈ C(Ω), (3.18)

where P(t) is the solution semigroup of the following reaction–diffusion equations

∂uI

∂t
= ∇ · (dI (x)∇uI ) − V (x)uI , t > 0, x ∈ Ω

∂ui
∂ν

= 0 ∀m + 1 ≤ i ≤ m + n with di > 0, t > 0 x ∈ ∂Ω

(3.19)

The basic reproduction number R0 for system (3.16) is defined by R0 = r(L). Furthermore,
Wang and Zhao obtain the following theorem.

Theorem 3.18 [58] If −V (x) is cooperative ∀x ∈ Ω and s(∇ · (dI (x)) − V (x)) < 0, then
L = −FB−1 and R0 − 1 has the same sign as s(B + F), where B is the generator of
semigroup P.

It is easy to find that Theorem 3.18 is consistent with Theorems 3.15, 3.16, and Remarks
3.14, 3.17. Note that the condition s(∇ · (dI (x)) − V (x)) < 0 in Theorem 3.18 means
ω(T ) < 0. It is consistent with Assumption 2.2 (i) in our paper and this assumption is
indispensable in almost epidemic models.

Actually, the definition of R0 of the reaction–diffusion epidemic model relies on the
generator B of the operator semigroup P(t), t ≥ 0. From equation (3.19), we know that
operator B is densely defined. However, in the infection age-structured epidemic models, we
can not define these densely defined generators, due to the effects by age structure. To make
up for the absence of densely defined generators, following the ideas of non-densely defined
operators, we overcome this problem. This means that the densely defined generator is not
necessary for the definition of the basic reproduction number and we can use non-densely
operators to replace it.

4 Infection Age-Structured Epidemic Models with Non-degenerate
Diffusion and Spatial Heterogeneity

In this section, based on the approach developed in [11, 39, 45], we give a general method for
the following class of infection age-structured epidemicmodel with non-degenerate diffusion
and spatial heterogeneity. For t > 0, a > 0 and x ∈ Ω ,

⎧
⎨

⎩

∂
∂t S(t, x) = Λ(x)S(t, x) + M(x, S(t, x),

∫ +∞
0 B(a, x)I(t, a, x)da),

(
∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − V (a, x)I(t, a, x),

I(t, 0, x) = F(x, S(t, x))
∫ +∞
0 B(a, x)I(t, a, x)da,

(4.1)
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under the Neumann boundary condition

∂S j

∂ν
= 0,

∂ Ii
∂ν

= 0, x ∈ ∂Ω,

with initial value condition

S j (0, ·) = S j0(·) ∈ C(Ω), Ii (0, ·, ·) = Ii0(·, ·) ∈ L1(R+,C(Ω)).

The operators L(·) − V (a, ·) are associated with an evolutionary system W :=
{W (t, s); 0 ≤ s ≤ t ≤ +∞} of positive operators on C(Ω,Rn),

L(·) − V (a, ·) = lim
h→0+

1

h
(W (a + h, a)φ − φ), φ ∈ D(L(·) − V (a, ·)).

Assumption 4.1 For system (4.1), assume that

(i) −V (a, x) := {−vi j (a, x)} is a bounded, cooperative, continuous and irreducible matrix
function for all a ∈ (0,+∞) and x ∈ Ω .

(ii) The following reaction–diffusion equations under the Neumann boundary condition

dS(t, x)

dt
= Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω,

admits a globally attractive unique positive steady state S0(x). In addition,M(x, S,
∫ +∞
0

B(a, x)I(a, x)da) is monotonically increasing with respect to S and monotonically
decreasing with respect to I .

(iii) F(x, S(t, x)) is a non-negative and continuous function, monotonically increasing with
respect to S. In addition, F0(x) is bounded for x ∈ Ω and defined by

F0(x) := F(x, S0(x)).

(iv) ω(W ) < 0, where ω(·) represents the exponential growth bound.
(v) For each i and j , βi j (·, ·) ∈ L∞+ (R+,C(Ω)) ∩ L1+(R+,C(Ω)) and there exists a max-

imum age of infection denoted by a+ such that if a > a+ and x ∈ Ω , βi j (a, x) = 0.
Moreover, there exists at least one interval (a∗, a∗) such that B(a, x) is an irreducible
matrix function for a ∈ (a∗, a∗).

By using the method of characteristic lines stated in Sect. 2, we obtain the following
expression of I-equations of the system (4.1),

I(t, a, x) =
{

W (a, 0)I(t − a, 0, x), t − a > 0,
W (a, a − t)I0(a − t, x), t − a ≤ 0.

Therefore, we have, for t ≥ 0, x ∈ Ω ,

z(t, 0; S0, I0, x) : = I(t, 0, x) = F(x, S(t, x))
∫ +∞
0 B(a, x)I(t, a, x)da

= F(x, S(t, x))
∫ t
0 Φ(a, x)z(t − a, 0; S0, I0, x)da

+F(x, S(t, x))H(t, 0; I0, x),
where

Φ(a, x) = B(a, x)W (a, 0) and H(t, 0; I0, x) = ∫ +∞
t B(a, x)W (a, a − t)I0(a − t, x)da.
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4.1 The Perturbed System

In this subsection, we study a perturbed system. Let

̂F
0
(x) := F0(x) + ε1, x ∈ Ω, ε ∈ R.

We consider a perturbed system of (4.1) as follows, for t > 0, a > 0, x ∈ Ω ,
⎧
⎨

⎩

(
∂
∂t + ∂

∂a

)
Iε(t, a, x) = L(x)Iε(t, a, x) − V (a, x)Iε(t, a, x),

Iε(t, 0, x) = (F0(x) + ε1)
∫ +∞
0 B(a, x)Iε(t, a, x)da,

Iε(0, ·, ·) = I0(·, ·) ∈ L1(R+,C(Ω,Rn)).

(4.2)

Remark 4.2 If we set ε = 0, system (4.2) coincides with the I-equations of (4.1) around the
disease-free steady state.

By using the same method as before, we can obtain the following expression of Iε of the
system (4.2),

Iε(t, a, x) =
{

W (a, 0)Iε(t − a, 0, x), t − a > 0,
W (a, a − t)I0(a − t, x), t − a ≤ 0.

(4.3)

Thus, we have, for t ≥ 0, x ∈ Ω ,

zε(t, 0; I0, x) : = Iε(t, 0, x) = (F0(x) + ε1)
∫ +∞
0 B(a, x)Iε(t, a, x)da

= (F0(x) + ε1)
∫ t
0 Φ(a, x)zε(t − a, 0; I0, x)da + (F0(x)

+ε1)H(t, 0; I0, x),
(4.4)

where

Φ(a, x) = B(a, x)W (a, 0), H(t, 0; I0, x) =
∫ +∞

t
B(a, x)W (a, a − t)I0(a − t, x)da.

For λ ∈ R and ε ∈ R, we define a linear operator on space Y by

Ψ ε
λ (ϕ)(x) : = (F0(x) + ε1)

∫ +∞
0 e−λaΦ(a, x)ϕ(x)da

= (F0(x) + ε1)
∫ +∞
0 e−λaB(a, x)W (a, 0)ϕ(x)da.

(4.5)

Remark 4.3 If we set ε = 0 and λ = 0, Ψ 0
0 = Ψ . It is easy to see that Ψ is the next

generation operator of system (4.1). Following the ideas in Sect. 3, the basic reproduction
number is defined by R0 = r(Ψ ).

Similar to Lemma 3.12, we can deduce that operator Ψ ε
λ is also compact. Let Φε(a, x) :=

(F0(x) + ε1)Φ(a, x),∀a ≥ 0, x ∈ Ω . From Assumption 4.1 (v), we have Φε(a, x) =
0,∀a > a+. Next, we consider the following Volterra integral equations

u(t) =
∫ t

0
Φε(s)u(t − s)ds + u(t), t ≥ 0, (4.6)

where continuous functions u, u map [0,+∞) to Y . Here we hide the spatial variable x by
Φε(a, x) = Φε(a)(x). A familyΦε = {Φε(s); s ≥ 0} of positive continuous linear operators
Φε(s) is an operator-value integral kernel on Y . The convolution of a kernelΦε and a function
u ∈ C([0,+∞), Y ) is defined by

Φε ∗ u(t) =
∫ t

0
Φε(s)u(t − s)ds, t ≥ 0. (4.7)
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Lemma 4.4 Let Assumptions 3.1 and 4.1 be satisfied. Let w ∈ Y+ \ {0}. If u, u ∈
C([0,+∞), Y+), u(t) �= 0 for some t ∈ [0, δ], and u = Φε ∗ u + u, then there exists
t0 such that

u(t) ≥ ζw, ∀t ∈ [t0, t0 + δ] (4.8)

with some ζ > 0 depending on u and w.

Proof According to the definition of Φε , we have∫ t

0
Φε(s, x)u(t − s, x)ds = (F0(x) + ε1)

∫ t

0
B(a, x)W (a, 0)u(t − a, x)da, ∀t ≥ 0, x ∈ Ω.

By using Assumption 4.1 (v), we know that if a ∈ (a∗, a∗), then B(a, x) is positive and
irreducible for all x ∈ Ω . Without loss of generality, we assume that there exists t1 > 0 and
i ∈ 1, 2, · · · , n such that ui (t1) > 0. According to cooperation property of B(a, x), we can
deduce that u(t) > 0,∀t ∈ [t1 +a∗,+∞). Inequality (4.8) is only considered in a finite time
interval. This is clearly true. 
�
Remark 4.5 If u and w satisfy (4.8), kernel Φε with (4.6) is called a w-positive kernel.

Lemma 4.6 Let Assumptions 3.1 and 4.1 be satisfied. Let w ∈ int(Y+) \ {0}. Then there
exists a constant c0 such that for all t ≥ 0, v ∈ Y ,

‖Φε(t)v‖w ≤ c0‖v‖,
where ‖v‖w := inf{‖c‖ : c ∈ R,−cw ≤ v ≤ cw}.
Proof Let

ξ1 := sup
x∈Ω

β(x)
n∑

i=1

n∑

j=1

( f 0i j (x) + ε),

where β(x) := max
i, j=1,2...,n

sup
a∈(0,+∞)

βi j (a, x). Let v �= 0 is given, we have the following

inequality

1

c0

∥
∥
∥
∥Φε(s)

v

‖v‖
∥
∥
∥
∥ ≤ 1

c0

∥
∥
∥
∥(F

0 + ε1)βW (s, 0)
v

‖v‖
∥
∥
∥
∥ , ∀s ≥ 0.

By Assumption 4.1, we know that ω(W ) < 0 and ‖W (t, s)‖ ≤ Meω(W )(t−s), t ≥ s. There-
fore, we have the following inequality

1

c0

∥
∥
∥
∥Φε(s)

v

‖v‖
∥
∥
∥
∥ ≤ 1

c0

∥
∥
∥
∥(F

0 + ε1)βM
v

‖v‖
∥
∥
∥
∥ ≤ Mξ1

c0
, ∀s ≥ 0.

Let c0 > 0 be large enough such that

0 <
Mξ1

c0
< min

i=1,2,··· ,n wi (x), ∀x ∈ Ω,

where w = (w1, · · · , wn)
T . Therefore, we have

−w ≤ −Mξ1

c0
1 ≤ 1

c0 ‖v‖Φε(s)v ≤ Mξ1

c0
1 ≤ w, ∀s ≥ 0.

It means that

−c0w ≤ 1

‖v‖Φε(s)v ≤ c0w, ∀s ≥ 0.
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Therefore, we have

c0 ≥
∥
∥
∥
∥

1

‖v‖Φε(s)v

∥
∥
∥
∥

w

, ∀s ∈ R+.


�
As a consequence of Lemmas 4.4, 4.6 and Theorems 5.1, 5.2 of [51] or [50], we have the

following theorem.

Theorem 4.7 Let Assumptions 3.1 and 4.1 be satisfied. Then for each ε ∈ R, there exists a
unique pair λε ∈ R and ϕ̂ε ∈ C(Ω,Rn) such that the following statements hold

(i) ‖ϕ̂ε‖ = 1,
(ii) Ψ ε

λε
(ϕ̂ε) = ϕ̂ε and r(Ψ

ε
λε

) = 1,
(iii) if r(Ψ ε

λ1
) < r(Ψ ε

λε
) = 1 < r(Ψ ε

λ2
), then λ1 < λε < λ2,

(iv) lim
ε→0

λε = λ0 and lim
ε→0

ϕ̂ε = ϕ̂0,

(v) if uε ∈ C(R+,C(Ω,Rn)) with uε(t) = 0 for all t ≥ a+ and uε ∈ C(R+,C(Ω,Rn))

satisfies

uε(t) =
∫ t

0
Φε(s)uε(t − s)ds + uε(t), ∀t ≥ 0,

then there exists αε ≥ 0 such that

eλε tuε(t) → αεϕ̂ε, t → +∞.

Moreover, if uε �= 0, then αε > 0. If αε > 0, then

lim
t→+∞ d0(e

λε tuε(t), αεϕ̂ε) = 0,

where metric d0 is defined as d0(u, v) := inf{|c| : c ∈ R, e−cu ≤ v ≤ ecu}.
Remark 4.8 Theorem 4.7 (i) and (v) imply that there exists a constantC := C(αε, λε, uε, ϕ̂ε)

such that ‖uε(t)‖ ≤ Ce−λε t .

Remark 4.9 Theorems 5.1 and 5.2 of [51] are called the renewal theorems forVolterra integral
equations.

4.2 Extinction and Uniform Persistence of the Disease

In this subsection,we prove that the basic reproduction number R0 plays a role of the threshold
for the extinction and uniform persistence of the disease for the system (4.1). Based on the
existence of the solution of system (4.1), we define the solution semiflow U(t), t ≥ 0 of the
system (4.1) by

U(t)(S0(·), I0(·, ·)) = (S(t, ·), I(t, ·, ·)), ∀t ≥ 0. (4.9)

Let sets M , M0, M0, ∂M0 and ∂M0 be defined as follows

M := C+(Ω,Rm) × X+,

M0 := {ϕ ∈ X+ : there exists i ∈ {1, 2, · · · , n} such that
∫ a+
0 ‖ϕi‖da > 0},

M0 := C+(Ω,Rm) × M0, ∂M0 := X+ \ M0, ∂M0 := M \ M0 = C+(Ω,Rm) × ∂M0.
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Define a function ρ : X → R+ as follows

ρ(I0(a, x)) :=
∑

i=1,2,··· ,n

∫ a+

0
‖I0i (a, ·)‖da, ∀I0(a, x) ∈ X . (4.10)

Combining with the definition of M0 and ∂M0, we have

M0 := {(S0(x), I0(a, x)) ∈ C+(Ω,Rm) × X+ : ρ(I0(a, x)) > 0},
∂M0 := {(S0(x), I0(a, x)) ∈ C+(Ω,Rm) × X+ : ρ(I0(a, x)) = 0}.

Remark 4.10 The set M can be seen as the state space of the susceptible and infectious
compartments. M0 is the state space of the infectious compartments and the disease exists in
the system. M0 is the state space of the susceptible and infectious compartments with disease
exists. ∂M0 is the state space of the infectious compartments with no disease. ∂M0 is the
state space of the susceptible and infectious compartments with no disease in the system.

From Assumption 4.1 and Remark 4.10, we directly have the following lemma.

Lemma 4.11 Let Assumptions 3.1 and 4.1 be satisfied. If (S0, I0) ∈ ∂M0, then

(S(t, ·), I(t, ·, ·)) ∈ ∂M0,∀t ≥ 0.

Lemma 4.12 Let Assumptions 3.1 and 4.1 be satisfied. Let initial value (S0, I0) ∈
C+(Ω,Rm)× X+ be given and (S(t, ·), I(t, ·, ·)) be the solution of system (4.1) with initial
value (S0, I0). Then for any ε > 0, there exists a time T1 ≥ 0 such that

S(t, x) ≤ S0(x) + ε1, ∀t ≥ T1, x ∈ Ω, (4.11)

where 1 := (1, 1, ..., 1
︸ ︷︷ ︸

n

)T .

Proof By the equations of S in system (4.1), we have

dS(t, x)

dt
≤ Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω.

From Assumption 4.1, we know that S0(t, x) = S0(x) is the global attractive unique steady
state of the following equation

dS0(t, x)
dt

= Λ(x)S0(t, x) + M(x, S0(t, x), 0), x ∈ Ω.

Byusing the comparisonprinciple for reaction–diffusion equations,wehave lim sup
t→+∞

S(t, x) ≤
S0(x). 
�

In the rest of this subsection, we show that R0 plays a role in the threshold for extinction
or persistence of the disease, even the threshold for global attractiveness of the disease-free
steady state or the existence of the endemic steady state. In order to use the comparison
principle for age-structured epidemic models, chain transitivity, and the theory of compact
attractors, we make the following assumption.

Assumption 4.13 For system (4.1), assume that

(i) for any S0 ∈ C+(Ω,Rm) and I0 ∈ X+, there exists T1 > 0 and a constant ζ > 0 (ζ is
independent of initial value) such that

‖U(t)(S0(·), I0(·, ·))‖ ≤ ζ, ∀t ≥ T1.
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(ii) For any positive element I∗ ∈ X+, the solution S(t, x) of the following system

∂

∂t
S(t, x) = Λ(x)S(t, x) + M(x, S(t, x),

∫ +∞

0
B(a, x)I∗(a, x)da), x ∈ Ω,

satisfies that there exists a constant ε > 0 such that lim
t→+∞ S(t, x) ≥ S0(x) − ε1 �

0,∀x ∈ Ω .

Theorem 4.14 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. Then semiflow U(t) admits a
global attractor A0 ⊂ Y+ × X+.

Proof According to Assumption 4.13, we obtain that semiflow U(t) is point dissipative
and eventually bounded. Due to the compactness of evolution family W (t, s), U(t) is also
compact. It is well known that compact operators are κ−condensing operators. By Lemma
2.3.5 of [18], it is asymptotically smooth. According to theorem 2.4.6 of [18] or Theorems
3.1, 3.4 of [19], U(t) admits a compact attractor A0 of bounded sets. 
�
Theorem 4.15 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If R0 < 1, then the disease-free
steady state (S0, 0) is globally attractive.

Proof By Theorem 4.7 (ii), we obtain that if ε > 0 is fixed and small, then there exists λε

such that r(Ψ ε
λε

) = 1. By Remark 4.3, we know that R0 = r(Ψ 0
0 ) < 1. By Theorem 4.7

(ii), there exists a constant λ0 such that r(Ψ 0
λ0

) = 1. Thus, r(Ψ 0
0 ) < r(Ψ 0

λ0
). According to

Theorem 4.7 (iii), we deduce that λ0 > 0. It follows from Theorem 4.7 (iv) that lim
ε→0

λε = λ0.

Therefore, if ε is small enough, we have that λε > 0.

Define ̂F
0
(x) := F0(x)+ε1. ByAssumption 4.1 (iii), we know that there exists a constant

δ > 0 such that

̂F
0
(x) ≤ F(x, S0(x) + δ1), x ∈ Ω.

By Lemma 4.12, we obtain that there exists T1 > 0 such that S(t, x) ≤ S0(x)+ δ1,∀t ≥ T1.
Therefore, we have the following system, for t ≥ T1, a ≥ 0 and x ∈ Ω ,

⎧
⎨

⎩

d
dt S(t, x) ≤ Λ(x)S(t, x) + M(x, S(t, x), 0),
(

∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − V (a, x)I(t, a, x),

I(t, a, x) ≤ (F0(x) + ε1)
∫ +∞
0 B(a, x)I(t, a, x)da.

(4.12)

By using the comparison principle in [37] for (4.12), we have

0 ≤ I(t, a, x) ≤ Iε(t, a, x), ∀t > T1, a ≥ 0, x ∈ Ω, (4.13)

where Iε is the solution of (4.2).
Next, we show

lim
t→+∞ ‖Iε(t, ·, ·)‖X = 0. (4.14)

From (4.4) and Remark 4.8, we deduce that there exists a constant C∗ such that

‖zε(t, 0; I0, x)‖ ≤ C∗e−λε t , ∀t ≥ T2, x ∈ Ω.

Note that ω(W ) < 0 and ‖W (t, s)‖ ≤ Meω(W )(t−s), then we have, for t ≥ T2, a ≥ 0 and
x ∈ Ω ,

‖Iε(t, a, x)‖X ≤ ∫ t
0 ‖W (a, 0)Iε(t − a, 0, x)‖Y da + ∫ +∞

t ‖W (a, a − t)I0(a − t, x)‖Y da
≤ ∫ t

0 Meω(W )aC∗e−λε(t−a)da + ∫ +∞
t ‖I0(a − t, x)‖da.
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Therefore, (4.14) holds. By (4.13) and (4.14), we have

0 ≤ lim
t→+∞ ‖I(t, ·, ·)‖X ≤ lim

t→+∞ ‖Iε(t, ·, ·)‖X = 0. (4.15)

Finally, we show that the disease-free steady state (S0, 0) is globally attractive.
By (4.15), it remains to prove

lim
t→+∞ ‖S(t, x) − S0(x)‖ = 0, x ∈ Ω. (4.16)

Due to limt→+∞ I(t, a, x) = 0 uniformly for a ∈ [0,+∞) and x ∈ Ω , the equation for S is
asymptotic to the following reaction–diffusion equation with Neumann boundary condition

dS(t, x)

dt
= Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω.

By the theory for asymptotically autonomous semiflows (Corollary 4.3 of [53]) and Assump-
tion 4.1 (ii), we have

lim
t→+∞ S(t, x) = S0(x)

uniformly for x ∈ Ω . 
�
Remark 4.16 In our proof of Theorem 4.15, we can find that the global attractiveness of the
disease-free steady state needs Assumption 4.1 (ii). However, the extinction of the disease
only needs (4.11), instead of Assumption 4.1 (ii). Therefore, we can weaken Assumption 4.1
(ii) to (4.11) when we prove the extinction of the disease.

Proposition 4.17 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If I0 ∈ M0, then there exists
T1 ≥ 0 such that

zε(t, 0; I0, ·) ≥ 0 and Iε(t, ·, ·) ∈ M0, ∀t ≥ T1. (4.17)

Moreover, if λε < 0, then

lim
t→+∞ ‖Iε(t, ·, ·)‖X = +∞, ∀I0 ∈ M0. (4.18)

Proof From above, we know that

H(t, 0; I0, x) =
∫ +∞

t
B(a, x)W (a, a − t)I0(a − t, x)da, ∀t ≥ 0, x ∈ Ω.

It is clear that H(t, 0; I0, x) = 0,∀t ≥ a+, x ∈ Ω . Because I0(·, ·) ∈ M0 and B(a, x) is
positive for a ∈ (a∗, a∗) and x ∈ Ω , H(a∗, t0; I0, x) > 0 for all x ∈ Ω . Therefore, there
exists T1 > 0 such that

‖zε(t)‖ > 0, ∀t ≥ T1.

Thus, (4.17) is a direct result. Because zε(t) is strongly positive on space Y , we can directly
assume that zε(t) is strongly positive at t = 0, i.e., zε(0) ∈ int(Y+). In order to show (4.18),
we begin with the following claim.

Claim: For any zε(0) ∈ int(Y+), there exists two constants c and η such that

W (t, s)zε(0) ≥ ceη(t−s)zε(0), t ≥ s.

123



Journal of Dynamics and Differential Equations

Next, we prove the above claim. Recall that evolution family W (t, s) is the solution
operator of the following reaction–diffusion equation under theNeumannboundary condition

du

dt
(t, x) = L(x)u(t, x) − V (t, x)u(t, x), x ∈ Ω. (4.19)

Let vi j (x) = inf
a∈[0,+∞)

vi j (a, x) for 1 ≤ i, j ≤ n, where V (a, x) = (vi j (a, x))1≤i, j≤n . Then

we consider the following equation under the Neumann boundary condition

dv

dt
(t, x) = L(x)v(t, x) − V (x)v(t, x), x ∈ Ω, (4.20)

where V (x) := (vi j (x))1≤i, j≤n . Note that (4.20) is a parabolic equation, (4.20) has a strongly
positive solution semigroup T (t). It is well-known that the following eigenvalue problem
admits a principal eigenvalue η < 0 and its corresponding strongly positive eigenvector
v∗(x),

L(x)v∗(x) − V (x)v∗(x) = ηv∗(x).

Moreover, T (t)v∗ = eηtv∗,∀t ≥ 0. For any zε(0) ∈ int(Y+), there exists two positive
numbers k1, k2 such that k1v∗(x) ≤ zε(0, x) ≤ k2v∗(x). Then we have

T (t)zε(0) ≥ k1T (t)v∗ = k1e
ηtv∗ ≥ k1

k2
eηt zε(0), ∀t ≥ 0.

According to the comparison principle for systems (4.19) and (4.20), we have

W (a, 0)zε(0) ≥ T (a)zε(0) ≥ k1
k2

eηa zε(0), ∀a ≥ 0.

This means that Claim is true.
Finally, we prove (4.18). By Theorem 4.7 (v), there exists a constant αε such that

lim
t→+∞ d0(e

λε t zε(t, 0; I0, x), αεϕ̂ε) = 0, ∀x ∈ Ω.

Let δ be given. Then there exists T2 ≥ 0 such that

0 ≤ d0(e
λε t zε(t, 0;ϕ, x), αεϕ̂ε(x)) < δ, ∀t ≥ T2, x ∈ Ω.

This means

e−δeλε t zε(t, 0;ϕ, x) ≤ αεϕ̂ε(x) ≤ eδeλε t zε(t, 0;ϕ, x), ∀t ≥ T2, x ∈ Ω.

For t ≥ T2, a ≥ 0 and x ∈ Ω , we have

‖Iε(t, a, x)‖ ≥ ∫ t
0 ‖W (a, 0)zε(t − a, 0; I0, x)‖da ≥ ∫ t−T2

0 ‖ceηa zε(t − a, 0; I0, x)‖da
≥ ∫ t−T2

0

∥
∥ceηae−δe−λε(t−a)αε

∥
∥ϕ̂ε

∥
∥
∥
∥da ≥ e−λε t

∫ t−T2
0

∥
∥e−δe(λε+η)aαε

∥
∥da.

Due to λε < 0, we can find

lim
t→+∞ ‖Iε(t, ·, ·)‖X = +∞, ∀I0 ∈ M0.


�
Lemma 4.18 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If (S0, I0) ∈ M0, then
(S(t, ·), I(t, ·, ·)) ∈ M0,∀t ≥ 0.
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Proof By using the similar method in Proposition 4.17, we deduce that ‖H(a∗, 0; I0, x)‖ >

0,∀x ∈ Ω . Because B(a, x) is positive for a ∈ (a∗, a∗) and x ∈ Ω , z(t, 0; S0, I0, x) > 0
for t ≥ a∗ and x ∈ Ω . Suppose, by contradiction, that there exists T1 ≥ 0 such that
(S(T1, ·), I(T1, ·, ·)) ∈ ∂M0. By Lemma 4.11, we have (S(t, ·), I(t, ·, ·)) ∈ ∂M0,∀t ≥ T1.
This leads to a contradiction. 
�
Definition 4.19 The set ∂M0 is said to be ρ-ejective for U(t), if there exists ε > 0 such that
for every x ∈ M0 with 0 < ρ(x) < ε, there is T ≥ 0 such that ρ(U(T )x) ≥ ε.

Theorem 4.20 Let Assumptions 3.1, 4.1 and 4.13 be satisfied. If R0 > 1, then semiflow U(t)
is uniformly persistent, that is, there exists δ > 0 such that

lim
t→+∞ ρ(I(t, ·, ·)) ≥ δ, ∀(S0, I0) ∈ M0. (4.21)

Moreover, system (4.1) has an endemic steady state.

Proof First, we prove the following two claims.
Claim 1if 0 <

∫ +∞
0 B(a, x)I(t, a, x)da ≤ ϑ1 for all t ≥ 0 and x ∈ Ω , then

lim
t→+∞ ‖I(t, ·, ·)‖X = +∞.

According to Assumption 4.1 (iv), we have

∂

∂t
S(t, x) ≥ Λ(x)S(t, x) + M(x, S(t, x), ϑ1), t ≥ 0.

According to Assumption 4.13 (ii), there exists a large enough T1 > 0 such that for some
δ̂ > 0,

S(t, x) ≥ S0(x) − δ̂1, ∀t ≥ T1, x ∈ Ω.

Let δ := max
x∈Ω

(F0(x) − F(x, S0(x) − δ̂1)). By using the comparison principle in [37], we

have

I(t, ·, ·) ≥ I−δ(t, ·, ·), ∀t ≥ T1. (4.22)

According to Theorem 4.7 (iii), we have

r(L0
λ0

) = 1 < R0 = r(L0
0).

This means that λ0 < 0. By Theorem 4.7 (iv), we have λ−δ < 0 and r(L−δ
λ−δ

) = 1. By
Proposition 4.17, we have lim

t→+∞ ‖I−δ(t, ·, ·)‖X = +∞. Moreover, we have

lim
t→+∞ ‖I(t, ·, ·)‖X = +∞. (4.23)

Claim 2 ∂M0 is said to be ρ-ejective for semiflow U(t).
Assume, by contradiction, that ∂M0 is not ρ-ejective for semiflowU(t). Because semiflow

U(t) is point dissipative, there exists T2 > 0 and ζ > 0 such that ‖U(t)(S0(·), I0(·, ·))‖ ≤
ζ,∀t ≥ T2. Then we have

ρ(I(t, ·, ·)) ≤ ζ, ∀t ≥ T2. (4.24)

By Assumption 4.13 (ii) and Lemma 4.12, we deduce that there exist T3 > T2 and a
constant C2 > 0 such that

‖F(x, S(t, x))‖ ≤ C2, ∀t ≥ T3, x ∈ Ω.
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From previous contents, we have, for t ≥ T3,

‖z(t, T3; ST3 , IT3 , ·)‖ = ‖F(·, S(t, ·))
∫ +∞

0
B(a, ·)I(t, a, ·)da‖ ≤ a+C2 ‖B(a, ·)‖ ‖I(t, ·, ·)‖ .

Since ∂M0 is not ρ-ejective for semiflow U(t), we see that there exists a initial value
(S0, I0) ∈ M0 such that solution (S(t, ·), I(t, ·, ·)) satisfies ρ(I(t, ·, ·)) < ε,∀t ≥ 0. Let ε
be given and satisfy

a+C2‖B(a, x)‖ε ≤ ϑ.

Thus, we have

0 <

∫ +∞

0
B(a, x)I(t, a, x)da ≤ ϑ1, ∀t ≥ T3, x ∈ Ω. (4.25)

By Claim 1, we have lim
t→+∞ ‖I(t, ·, ·)‖X = +∞. This contradicts to (4.24). Therefore,

Claim 2 is true.
By Claim 2, we know that ∂M0 is said to be ρ-ejective for semiflow U(t). By the proof

of Theorem 4.14, we can see that semiflow U(t) is point dissipative and asymptotically
smooth. According to Proposition 3.2 of [38], we can deduce thatU(t) is uniformly persistent.
Therefore, global attractor A0 belongs to M0, instead of M . Due to the compactness of
semiflow U(t), U(t) is κ-condensing. According to Theorem 4.5 of [38], semiflow U(t) has
a fixed point in global attractor A0 ∈ M0. Thus, the fixed point is an endemic steady state of
the system (4.1). 
�
Remark 4.21 Since our approach is based on operator semigroup theory, it allows us to treat
model (4.1) with Neumann, Dirichlet, or Robin boundary conditions. The key to our method
is the compactness of the solution map W (t, s). In addition, the solution map W (t, s) of the
reaction–diffusion equation with Neumann, Dirichlet, or Robin boundary conditions are all
compact. Therefore, if Assumptions 4.1 and 4.13 still hold when the model (4.1) is under
Dirichlet or Robin boundary conditions, then the results in Sect. 4 are still valid.

5 Infection Age-Structured Epidemic Model with Degenerate Diffusion
and Spatial Heterogeneity

In this section, we consider the following class of infection age-structured epidemic model
with degenerate diffusion and spatial heterogeneity. Thus, we give Assumption 5.1 (i). Due
to the complexity of the degenerate diffusion, we also consider the following infection age-
structured epidemic model which has the same form as (4.1). For t > 0, a > 0 and x ∈ Ω ,

⎧
⎨

⎩

∂
∂t S(t, x) = Λ(x)S(t, x) + M(x, S(t, x),

∫ +∞
0 B(a, x)I(t, a, x)da),

(
∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − V (a, x)I(t, a, x),

I(t, 0, x) = F(x, S(t, x))
∫ +∞
0 B(a, x)I(t, a, x)da,

(5.1)

under the Neumann boundary condition

∂S j

∂ν
= 0,

∂ Ii
∂ν

= 0, x ∈ ∂Ω,

with initial value condition

S j (0, ·) = S j0(·) ∈ C(Ω), Ii (0, ·, ·) = Ii0(·, ·) ∈ L1(R+,C(Ω)),
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where L is defined by

L(x)u := (d1(x)Δu1, · · · , dk(x)Δuk, 0, · · · , 0)T , u = (u1, u2, · · · , un).

Assumption 5.1 For system (5.1), assume that

(i) For infected groups, diffusion coefficients di satisfy that there exists a positive constant
d0 such that di (x) ≥ d0 for each i = 1, 2, ..., k, x ∈ Ω and di (x) = 0 for i =
k + 1, · · · , n;

(ii) −V (a, x) := (−vi j (a, x))1≤i, j≤n is a bounded, cooperative, continuous and irre-
ducible matrix function for all a ∈ (0,+∞) and x ∈ Ω .

(iii) The following reaction–diffusion equations under the Neumann boundary condition

dS(t, x)

dt
= Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω,

admits a globally attractive unique positive steady state S0(x). In addition, Lipschitz
continuous functionM(x, S,

∫ +∞
0 B(a, x)I(a, x)da) ismonotonically increasingwith

respect to S and monotonically decreasing with respect to I .
(iv) F(x, S(t, x)) is a non-negative, continuous function andmonotonically increasingwith

respect to S. In addition, F0(x) is defined by

F0(x) := F(x, S0(x)).

(v) ω(W) < 0, where ω(·) represents the exponential growth bound.
(vi) For each i and j , βi j (·, ·) ∈ L∞+ (R+,C(Ω)) ∩ L1+(R+,C(Ω)) and there exists a

maximum age of infection denoted by a+ such that if a > a+ and x ∈ Ω , βi j (a, x) = 0.
Moreover, there exists at least one interval (a∗, a∗) such that B(a, x) is an irreducible
matrix function for a ∈ (a∗, a∗).

(vii) For every positive element I∗ ∈ X+, the solution S(t, x) of the following system

∂

∂t
S(t, x) = Λ(x)S(t, x) + M(x, S(t, x),

∫ +∞

0
B(a, x)I∗(a, x)da), x ∈ Ω

satisfies that there exists a constant C > 0 such that lim
t→+∞ S(t, x) ≥ S0(x) − C1 �

0,∀x ∈ Ω .

Remark 5.2 During the spread of the disease, some infected compartments may not be able
to spread in space, such as isolation. Since the equations of infected compartments can be
viewed as a cooperative system abstractly, after transformation, the infected compartments
with diffusion coefficient 0 can be marked as k + 1, · · · , n.

The operators L(·) − V (a, ·) are associated with an evolutionary system W :=
{W(t, s); 0 ≤ s ≤ t ≤ +∞} of positive operators on C(Ω,Rn),

L(·) − V (a, ·) = lim
h→0+

1

h
(W(a + h, a)φ − φ), φ ∈ D(L(·) − V (a, ·)).

Let T (t) be the solution semigroup of the following equation under the Neumann boundary
condition

d I(t, x)
dt

= L(x)I(t, x), t ≥ 0, x ∈ Ω.
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In the case where some diffusion coefficients in the system (5.1) are zero, the semigroup
T (t) of the above equation loses compactness. It means thatW(t, s) also loses compactness.
Therefore, Theorem 4.7 is not hold under Assumption 5.1. It causes the loss of the compact-
ness of integral kernelΦε defined in (4.7). Thus, we can’t use the renewal theorem forVolterra
integral equations. Therefore, we can’t follow the methods which stated in subsection 4.3
to prove the extinction and uniform persistence of the disease. It also causes a problem that
whether R0 is the principal eigenvalue of the next generation operator or not.

In the following, we give the linearization equations of the infected compartments at the
disease-free steady state, for t > 0, a > 0 and x ∈ Ω ,

{ (
∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − V (a, x)I(t, a, x),

I(t, 0, x) = F0(x)
∫ +∞
0 B(a, x)I(t, a, x)da.

(5.2)

By grouping the infected compartments by the diffusion coefficients (0 or positive), we can
divide infected compartments I into two groups of

I1(t, a, x) := (I1(t, a, x), I2(t, a, x), ..., Ik(t, a, x))T , I2(t, a, x)

:= (Ik+1(t, a, x), · · · , In(t, a, x))T .

Based on I1 and I2, we define L1 by

L1(x)I1 = (d1(x)ΔI1, d2(x)ΔI2, · · · , dk(x)ΔIk)
T .

In addition, we split V (a, x) and F0B(a, x) := F0(x) × B(a, x) into

V (a, x) =
(
V 11(a, x) V 12(a, x)
V 21(a, x) V 22(a, x)

)

, F0B =
(

(F0B)11 (F0B)12
(F0B)21 (F0B)22

)

,

where V 11 and (F0B)11 are k × k matrix functions, V 22 and (F0B)22 are (n − k)× (n − k)
matrix functions.

By using the above notations, we can rewrite system (5.2) into the following form, for
t > 0, a > 0 and x ∈ Ω ,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂
∂t + ∂

∂a

)
I1(t, a, x) = L1(x)I1(t, a, x) − V11(a, x)I1(t, a, x) − V12(a, x)I2(t, a, x),

(
∂
∂t + ∂

∂a

)
I2(t, a, x) = −V21(a, x)I1(t, a, x) − V22(a, x)I2(t, a, x),

I1(t, 0, x) = ∫+∞
0 (F0B)11(a, x)I1(t, a, x) + (F0B)12(a, x)I2(t, a, x)da,

I2(t, 0, x) = ∫+∞
0 (F0B)21(a, x)I1(t, a, x) + (F0B)22(a, x)I2(t, a, x)da.

(5.3)

However, not all of the results in Sects. 3 and 4 do not hold. We still can follow the ideas in
Sects. 3 and 4 to prove the existence of the solution of systems (5.1) and (5.3).

5.1 TheWell-Posedness

In this subsection, we follow the ideas in Sect. 3 to prove the existence of the solutions of the
systems (5.1) and (5.3).

Firstly, we consider the system (5.3). Let Y1 := C(Ω,Rk)with the usual supremum norm.
Let X1 := L1((0,+∞), Y1) and norm of space X1 be given by

‖ϕ‖X1 :=
∫ +∞

0
‖ϕ(a, ·)‖Y1da, ϕ ∈ X1.

Let us introduce a new extended space X1 and its closed subspace X10 by

X1 := Y1 × X1,X10 = {0Y1} × X1.
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Then we consider the family of bounded linear operators {Rλ}λ>0 on X1, defined by

Rλ

(
φ

ϕ

)

=
(
0Y1
ψ

)

⇔ ψ(a) = e− ∫ a0 λdsT1(a)φ +
∫ a

0
e− ∫ as λdlT1(a − s)ϕ(s)ds.

where T1(a), a ≥ 0 is the solution semigroup of the following reaction–diffusion equations
under the Neumann boundary condition

d

dt
u(t, x) = L1u(t, x), u0(x) ∈ Y1.

It is clear that T1(a) maps Y1 into itself and is compact. Observe that {Rλ}λ>0 is a pseudo-
resolvent on X1. Moreover, we have

Rλx = 0, x ∈ X1 ⇒ x ∈ X10 and lim
λ→+∞ λRλx = x, ∀x ∈ X10.

By Sect. 1.9 of [43], we can deduce that there exists a unique closed linear operator B1 that
satisfies

B1 : D(B1) ⊂ X1 → X1, D(B1) = X10,Rλ = (λI − B1)
−1, ∀λ > 0.

Next, we define Y2 := C(Ω,Rn−k), X2 := L1((0,+∞), Y2),X2 := Y2 × X2 and X20 :=
{0Y2} × X2. In addition, we introduce an operator B2 as follows

B2

(
0Y2
f

)

:=
(− f (0, ·)

− d f
da

)

,

(
0Y2
f

)

∈ {0Y2} × W 1,1((0,+∞), Y2).

We define B and G on X1 × X2 by

B :=
(
B1

B2

)

, G

⎛

⎜
⎜
⎝

0Y1
u1
0Y2
u2

⎞

⎟
⎟
⎠ :=

⎛

⎜
⎜
⎝

∫ +∞
0 (F0B)11u1 + (F0B)12u2da

−V 11u1 − V 12u2∫ +∞
0 (F0B)21u1 + (F0B)22u2da

−V 21u1 − V 22u2

⎞

⎟
⎟
⎠ ,

where (0Y1 , u1) ∈ X1 and (0Y2 , u2) ∈ X2. Thenwe can rewrite system (5.3) into the following
abstract Cauchy problem

du(t)

dt
= Bu(t) + Gu(t). (5.4)

In order to obtain the existence of the positive solution, we consider the following equivalent
system

du(t)

dt
= Bεu(t) + Gεu(t), (5.5)

where Bε := B − 1
ε
I and Gε := 1

ε
(I + εG).

Remark 5.3 If we define B and G as the following form

B

⎛

⎜
⎜
⎝

0Y1
0Y2
u1
u2

⎞

⎟
⎟
⎠ :=

⎛

⎜
⎜
⎝

B11u1
−u2(0, ·)
B12u1
− du2

da

⎞

⎟
⎟
⎠ ,G

⎛

⎜
⎜
⎝

0Y1
0Y2
u1
u2

⎞

⎟
⎟
⎠ :=

⎛

⎜
⎜
⎝

∫ +∞
0 (F0B)11u1 + (F0B)12u2da∫ +∞
0 (F0B)21u1 + (F0B)22u2da

−V 11u1 − V 12u2
−V 21u1 − V 22u2

⎞

⎟
⎟
⎠ .
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where B1 := (B11,B12)
T . Therefore, system (5.4) can be abstractly seen as the following

Cauchy problem on space X,

du(t)

dt
= Bu(t) + Gu(t). (5.6)

Therefore, it has the same form as the system (3.1) (infection age-structured epidemic model
with non-degenerate diffusion). Of course, we can obtain the equivalent system

du(t)

dt
= Bεu(t) + Gεu(t), (5.7)

where Bε := B − 1
ε
I and Gε := 1

ε
(I + εG).

Lemma 5.4 Let Assumption 5.1 be satisfied. Then Bε satisfies the Hille-Yosida condition.

Proof Similar to the proof of Lemma 3.3, we can deduce that B1ε := B1 − 1
ε
I satisfies the

Hille-Yosida condition, i.e.,
∥
∥
∥
∥(λI − B1ε)

−1
(

φ1

ϕ1

)∥
∥
∥
∥
X1

≤ M1

λ + λ0 + 1
ε

∥
∥
∥
∥

(
φ1

ϕ1

)∥
∥
∥
∥
X1

,

where M1 ≥ 1 is a positive constant and λ0 ≤ 0. It means that we only need to prove
B2ε := B2 − 1

ε
I also satisfies the Hille-Yosida condition. By following the ideas in Lemma

3.3, it is easy to find that B2ε := B2 − 1
ε
I also satisfies the Hille-Yosida condition, i.e.,

∥
∥
∥
∥(λI − B2ε)

−1
(

φ2

ϕ2

)∥
∥
∥
∥
X2

≤ M2

λ + 1
ε

∥
∥
∥
∥

(
φ2

ϕ2

)∥
∥
∥
∥
X2

,

where M2 ≥ 1 is a positive constant. Thus, we have
∥
∥
∥(λI − Bε)

−1 (φ1, ϕ1, φ2, ϕ2)
T
∥
∥
∥
X1×X2

≤ M1

λ + λ0 + 1
ε

∥
∥
∥
∥

(
φ1

ϕ1

)∥
∥
∥
∥
X1

+ M2

λ + 1
ε

∥
∥
∥
∥

(
φ2

ϕ2

)∥
∥
∥
∥
X2

≤ max{M1, M2}
λ + λ0 + 1

ε

(∥
∥
∥
∥

(
φ1

ϕ1

)∥
∥
∥
∥
X1

+
∥
∥
∥
∥

(
φ2

ϕ2

)∥
∥
∥
∥
X2

)

= max{M1, M2}
λ + λ0 + 1

ε

∥
∥
∥(φ1, ϕ1, φ2, ϕ2)

T
∥
∥
∥
X1×X2


�
Similar to Lemmas 3.6, 3.7, and Theorem 3.8, we have the following results.

Lemma 5.5 The partBε0 ofBε inX10×X20 generates a C0-semigroup {TBε0(t)}t≥0 on space
X10 × X20.

Lemma 5.6 The unique continuous solution to (5.5) can be given by (5.8), and it take values
in X10 × X20.

u(t) = TBε0(t)u(0) + lim
λ→∞

∫ t

0
TBε0(t − s)λ(λ − Bε)

−1Gεu(s)ds. (5.8)

Remark 5.7 If we consider system (5.7), the part Bε0 of Bε in X0 generates a C0-semigroup
{TBε0

(t)}t≥0 on spaceX0. Then the unique continuous solution to (5.7) can be given by (5.9),
and it takes values in X0,

u(t) = TBε0
(t)u(0) + lim

λ→∞

∫ t

0
TBε0

(t − s)λ(λ − Bε)
−1Gεu(s)ds. (5.9)
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Theorem 5.8 Let Assumption 5.1 be satisfied. Then the non-negative solution of system (5.2)
defined in C([0, τ ), X), τ > 0 exists and is unique.

Similar to Theorem 3.10, we can obtain the existence of the solution of the system (5.1).

Theorem 5.9 Let Assumption 5.1 be satisfied. Then the mild solution of system (5.1) defined
in C([0, τ ),C(Ω,Rm)) × C([0, τ ), X) exists and is unique.

Remark 5.10 Similar to Remarks 3.9 and 3.11, we also can define Y := L2(Ω,Rn) and
X := L p((0,+∞), Y ), or other suitable spaces. Then Theorem 5.9 still holds.

5.2 The Principal Eigenvalue of the Next Generation Operator with Degenerate
Diffusion

Following the ideas of the basic reproduction number R0 stated in Sect. 3, we define the next
generation operator Ψ that maps C(Ω,Rn) into itself as follows

Ψ (ϕ)(x) : = F0(x)
∫ +∞
0 B(a, x)W(a, 0)ϕ(x)da

= ∫ +∞
0 (F0B)(a, x)W(a, 0)ϕ(x)da.

(5.10)

Similar to the previous section, we define the basic reproduction number R0 by

R0 = r(Ψ ).

In the case of the infection age-structured epidemic models with non-degenerate diffusion,
Ψ is compact. From Lemma 3.7, we know that r(Ψ ) is the principal eigenvalue of Ψ with a
strongly positive eigenvector ψ∗. Moreover, there is no other eigenvalue of Ψ with positive
eigenvector. However, in the case of the models with degenerate diffusion, Ψ is not compact.
It causes the conclusions of Lemma 3.7 cannot be obtained directly by Krein–Rutman the-
orem. In the following, we prove that r(Ψ ) is still the principal eigenvalue of Ψ by using a
generalized Krien–Rutman theorem, under the following assumptions.

Assumption 5.11 For system (5.1), assume that

(i) (F0B)12(a, x) = 0 for all a ∈ (0,∞), x ∈ Ω ,
(ii) V 21(a, x) = 0 for all a ∈ (0,∞), x ∈ Ω .

Remark 5.12 Assumption 5.11 does not lead to contradictions in themodel. There is a special
case that (F0B)12(a, x) ≡ 0 and (F0B)22(a, x) ≡ 0. In this case, Ψ is compact. Then the
principal eigenvalue of Ψ is r(Ψ ) by Krein-Rutman theorem. In the following, we mainly
consider the case that Ψ is not compact and under Assumption 5.11.

In order to use the generalized Krien–Rutman theorem [29, 41], we give some definitions
and theorems. From Sect. 7.5 of [47], the definition of the essential spectrum of a positive
bounded operator Ψ is given as follows

σe(Ψ ) := {λ ∈ σ(Ψ ) : λI − Ψ is not a Fredholm operator with ind(λI − Ψ ) = 0},
where ind(Ψ ) is the Fredholm index defined by ind(Ψ ) = dimN (Ψ ) − codimR(Ψ ), in
which N (Ψ ) and R(Ψ ) denote the null space and range, respectively, of Ψ . Ψ is said to be
a Fredholm operator if R(Ψ ) is closed and both of dimN (Ψ ) and codimR(Ψ ) are finite.

Theorem 5.13 [29, 41] Let X be a Banach space having a total cone X+ ⊂ X and Ψ is a
boundedpositive operator. If r(Ψ ) > re(Ψ ), then there exists x ∈ X+ such thatΨ x = r(Ψ )x,
where re(Ψ ) denotes the essential spectral radius of Ψ .
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Next, we want to study the properties of the non-compact operator Ψ . Thus, we need
a more explicit expression of Ψ . We reconsider the solution map W(t, s), t ≥ s. Note that
W(t, s) is the solutionmap of the following reaction–diffusion equations under the Neumann
boundary condition

du(t, x)

dt
= L(x)u(t, x) − V (t, x)u(t, x), x ∈ Ω. (5.11)

Under Assumption 5.11, (5.11) is equivalent to

d

da

(
u1(a, x)
u2(a, x)

)

=
(
L1(x)u1(a, x)

0

)

−
(
V 11(a, x) V 12(a, x)

0 V 22(a, x)

)(
u1(a, x)
u2(a, x)

)

,(5.12)

where u(a, x) := (u1(a, x), u2(a, x))T . Therefore, we have, for a ≥ 0, x ∈ Ω ,

W(a, 0)

(
u1(0, x)
u2(0, x)

)

:=
(
W1(a, 0)u1(0, x) − ∫ a

0 W1(a, s)V 12(s)u2(s, x)ds
W2(a, 0)u2(0, x)

)

,

(5.13)

where W1 is the solution map of du1(t,x)
dt = L1(x)u1(t, x) − V 11(t, x)u1(t, x), x ∈ Ω and

W2 is the solution map of du2(t,x)
dt = −V 22(t)u2(t, x), x ∈ Ω . By above, we can write Ψ

into a more explicit form by

Ψ

(
ϕ10(x)
ϕ20(x)

)

=
(

Ψ1(ϕ1,ϕ2)(x)
Ψ2(ϕ1,ϕ2)(x)

)

, x ∈ Ω (5.14)

where
Ψ1(ϕ1,ϕ2)(x) = ∫ +∞

0 (F0B)11(a, x)(W1(a, 0)ϕ1(0, x) − ∫ a
0 W1(a, s)V 12(s, x)ϕ2(s, x)ds)da,

Ψ2(ϕ1,ϕ2)(x) = ∫ +∞
0 (F0B)21(a, x)(W1(a, 0)ϕ1(0, x) − ∫ a

0 W1(a, s)V 12(s, x)ϕ2(s, x)ds)da
+ ∫ +∞

0 (F0B)22(a, x)W2(a, 0)ϕ2(0, x)da,

(5.15)

where ϕ(a, x) := (ϕ1(a, x),ϕ2(a, x)) is the solution of the following equations with initial
value ϕ(0, x) = (ϕ1(0, x),ϕ2(0, x)) = (ϕ10(x),ϕ20(x)),

dϕ(t, x)

dt
= L(x)ϕ(t, x) − V (t, x)ϕ(t, x), x ∈ Ω. (5.16)

In addition, we define an operator Ψ̂2 on space Y2 by

Ψ̂2(ϕ2)(x) :=
∫ ∞

0
(F0B)22(a, x)W2(a, 0)ϕ2(x)da, ϕ2 ∈ Y2. (5.17)

Lemma 5.14 Let Assumptions 5.1 and 5.11 be satisfied. Then σe(Ψ ) = σe(Ψ̂2)
⋃{0}.

Proof Note that T1(t) is compact, then Ψ1 is also compact. Moreover, Ψ2(ϕ1,ϕ2)(x) −
Ψ̂2(ϕ2)(x) is also compact. We define Ψ̂ by

Ψ̂ (ϕ1,ϕ2)(x) = (0Y1 , Ψ̂2(ϕ2)(x))
T .

Due to Theorem 7.27 of [47] and the fact that Ψ − Ψ̂ is compact, σe(Ψ ) = σe(Ψ̂ ). Inspired
by the ideas in [29], we divide our proof into the following two steps.

Step 1: σ(Ψ̂ ) = σ(Ψ̂2)
⋃{0}. It is easy to see that 0 ∈ σ(Ψ̂ ) and σ(Ψ̂2) ⊂ σ(Ψ̂ ). Now

we prove that μ ∈ σ(Ψ̂ ) implies that μ ∈ σ(Ψ̂2)
⋃{0}. In fact, we only need to prove the

following three claims for any μ �= 0:
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Claim 1: If N (μI − Ψ̂ ) �= {0}, then N (μI − Ψ̂2) �= {0}.
Claim 2: If R(μI − Ψ̂ ) is not closed, then R(μI − Ψ̂2) is not either.
Claim 3: If R(μI − Ψ̂ ) �= Y , then R(μI − Ψ̂2) �= Y2.
Firstly, we show Claim 1. IfN (μI − Ψ̂ ) �= {0}, then there exists some ϕ = (ϕ1,ϕ2)

T ∈
Y\{0} such that

(μI − Ψ̂ )ϕ = (μIϕ1, (μI − Ψ̂2)ϕ2)
T .

Moreover, we have ϕ1 = 0Y1 and (μI − Ψ̂2)ϕ2 = 0Y2 . Furthermore, we can deduce that
N (μI − Ψ̂2) �= {0Y2}, otherwise ϕ2 = 0Y2 and hence ϕ = 0.

In the follows, we proveClaims 2 and 3. If R(μI − Ψ̂ ) �= Y , for a given φ = (φ1,φ2)
T /∈

R(μI − Ψ̂ ), we first show that φ2 /∈ R(μI − Ψ̂2). It is clear that we have

(μI − Ψ̂ )ψ = (μI − Ψ̂ )(ψ1,ψ2)
T = (μψ1, (μI − Ψ̂2)ψ2)

T ,∀(ψ1,ψ2)
T ∈ Y .

Therefore, either there exists no ϕ1 ∈ Y1 such that μϕ1 = φ1, or there exists no ϕ2 ∈ Y2
such that (μI − Ψ̂2)ϕ2 = φ2. It follows that ϕ1 = 1

μ
φ1. Therefore, there is no ϕ2 ∈ Y2 such

that (μI − Ψ̂ )ϕ2 = φ2, i.e., φ2 /∈ R(μI − Ψ̂2).

ForClaim2, if R(μI−Ψ̂ ) is not closed,we chooseφ0 = (φ0
1,φ

0
2) ∈ R(μI − Ψ̂ )butφ0 =

(φ0
1,φ

0
2) /∈ R(μI − Ψ̂ ). By using the above arguments, we can deduce φ0

2 /∈ R(μI − Ψ̂2). It

suffices to prove φ0
2 ∈ R(μI − Ψ̂2). Taking a sequence φ0,n = (φ

0,n
1 ,φ

0,n
2 )T ∈ R(μI − Ψ̂ )

which converges to φ0 on Y as n → +∞, we can choose ϕ0,n = (ϕ
0,n
1 ,ϕ

0,n
2 )T such that

(μI − Ψ̂ )ϕ0,n = φ0,n . Then we obtain that (μI − Ψ̂2)ϕ
0,n
2 = φ

0,n
2 . Furthermore, φ

0,n
2

converges to φ0
2 on Y2 as n → +∞. This means that φ0

2 ∈ R(μI − Ψ̂2).

For Claim 3, if R(μI − Ψ̂ ) �= Y , we set φ0 = (φ0
1,φ

0
2) ∈ Y but φ0 = (φ0

1,φ
0
2) /∈

R(μI − Ψ̂ ). Since φ0
2 /∈ R(μI − Ψ̂2), it suffices to prove φ0

2 /∈ R(μI − Ψ̂2). Suppose,
by contradiction, that there is a sequence φ

0,n
2 ∈ R(μI − Ψ̂2) which converges to φ0

2 on

space Y2 as n → +∞. Then we can choose ϕ
0,n
2 such that (μI − Ψ̂2)ϕ

0,n
2 = φ

0,n
2 . Let

ϕ
0,n
1 = 1

μ
φ0
1,ϕ

0,n = (ϕ
0,n
1 ,ϕ

0,n
2 ) and φ0,n = (μI − Ψ̂ )ϕ0,n = (φ0

1,φ
0,n
2 )T . It is easy to

find that φ0,n converges to φ0 as n → +∞. Therefore, φ0 ∈ R(μI − Ψ̂ ). This causes a
contradiction. So we finish Step 1.

Step 2: σe(Ψ̂ ) = σe(Ψ̂2)
⋃{0}. It is easy to see 0 ∈ σe(Ψ̂ ). According to the definition of

the essential spectrum, we only need to prove the following three claims for any μ �= 0.
Claim 4: dimN (μI − Ψ̂ ) = dimN (μI − Ψ̂2).
Claim 5: R(μI − Ψ̂ ) is not closed ⇔ R(μI − Ψ̂2) is not closed.
Claim 6: If R(μI − Ψ̂ ) is closed, codimR(μI − Ψ̂ ) = codimR(μI − Ψ̂2).

We begin to proveClaim 4. We assume that there are some ϕ0 = (ϕ0
1,ϕ

0
2) ∈ Y \ {0} such

that

(μI − Ψ̂ )ϕ0 = (μI − Ψ̂ )(ϕ0
1,ϕ

0
2)

T = 0.

Thus, ϕ0
1 = 0Y1 and (μI − Ψ̂ )ϕ0

2 = 0Y2 with ϕ0
2 �= 0. Moreover, we have dimN (μI − Ψ̂ ) ≤

dimN (μI − Ψ̂2). If there exists ϕ0
2 ∈ Y2 \ {0Y2} such that (μI − Ψ̂2)ϕ

0
2 = 0Y2 , then

(μI − Ψ̂ )(0Y1 ,ϕ
0
2)

T = 0Y . Thus, dimN (μI − Ψ̂ ) ≥ dimN (μI − Ψ̂2).

Next, we prove Claim 5. If R(μI − Ψ̂2) is not closed, we can choose φ0
2 ∈ R(μI − Ψ̂2)

but φ0
2 /∈ R(μI − Ψ̂2). By arguments similar to those in Claim 2, we can deduce that

(0Y1 ,φ
0
2)

T ∈ R(μI − Ψ̂ ) but (0Y1 ,φ
0
2)

T /∈ R(μI − Ψ̂ ). It follows that R(μI − Ψ̂ ) is not
closed. In addition, the converse has been shown in Claim 2.
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Finally, we prove Claim 6. Since φ0
2 ∈ Y2/R(μI − Ψ̂2) implies (0Y1 ,φ

0
2)

T ∈ Y/R(μI −
Ψ̂ ), we can deduce that codimR(μI − Ψ̂ ) ≥ codimR(μI − Ψ̂2). To prove the opposite
inequality, we choose φ0 = (φ0

1,φ
0
2)

T ∈ Y/R(μI − Ψ̂ ) with φ0 �= 0Y . By the fact
(Y1, 0Y2)

T ⊂ R(μI−Ψ̂ ), it follows thatφ0
1 can be chosen as 0Y1 . Thenφ0

2 ∈ Y2/R(μI−Ψ̂2),
and hence codimR(μI − Ψ̂ ) ≤ codimR(μI − Ψ̂2). Therefore, we finish Step 2. 
�

Note that Ψ̂2 is a positive multiplication operator in X2, we can determine the spectral
radius r(Ψ̂2) of Ψ̂2 by r(Ψ̂2) = ∥

∥
∫∞
0 (F0B)22(a, x)W2(a, 0)da

∥
∥
C(Ω,Rn−k )

. By Proposition
2.7 of [30], we obtain the following proposition.

Proposition 5.15 Let Assumptions 5.1 and 5.11 be satisfied. Then σe(Ψ̂2) = σ(Ψ̂2) =
⋃

x∈Ω

σ(Ψ̂2(x)).

Assumption 5.16 For operators Ψ and Ψ̂ , assume that r(Ψ ) > r(Ψ̂ ).

Theorem 5.17 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. Then r(Ψ ) is the principal
eigenvalue of Ψ with a positive eigenvector ψ∗.

Proof By Lemma 5.14, we know that re(Ψ ) = re(Ψ̂2) and r(Ψ̂ ) = r(Ψ̂2). According
to Proposition 5.15, we have r(Ψ̂2) = re(Ψ̂2). Therefore, we obtain re(Ψ ) = r(Ψ̂2). By
Assumption 5.16, we see that r(Ψ ) > r(Ψ̂ ) = r(Ψ̂2) = re(Ψ ). So Theorem 5.17 is a direct
result of Theorem 5.13. 
�

5.3 Extinction and Uniform Persistence of the Disease

For arbitrarily large positive number ξ , we consider the system (5.1) with initial value belongs
to the following set

Bξ :=
{
(S0(·), I0(·, ·)) ∈ C+(Ω,Rm) × L1+(R+,C(Ω,Rn)) : S0(·) ≤ S0(·), I0(a, ·) ≤ ξW(a, 0)ψ∗(·)

}
,

(5.18)

where ψ∗ is the eigenvector of operator Ψ corresponding to r(Ψ ) and S0 is the disease-free
steady state.

By using a similar approach fromSect. 2,we obtain the following expression of I-equations
of the system (5.1),

I(t, a, x) =
{

W(a, 0)I(t − a, 0, x), t − a > 0,
W(a, a − t)I0(a − t, x), t − a ≤ 0.

Therefore, we have, for t ≥ 0, x ∈ Ω ,

z(t, 0; S0, I0, x) : = I(t, 0, x) = F(x, S(t, x))
∫ +∞
0 B(a, x)I(t, a, x)da

= F(x, S(t, x))
∫ t
0 Φ(a, x)z(t − a, 0; S0, I0, x)da

+F(x, S(t, x))H(t, 0; I0, x),
where

Φ(a, x) = B(a, x)W(a, 0), H(t, 0; I0, x) =
∫ +∞

t
B(a, x)W(a, a − t)I0(a − t, x)da.

Lemma 5.18 LetAssumptions5.1,5.11, and5.16be satisfied. If R0 < 1and (S0(·), I0(·, ·)) ∈
Bξ , then 0 ≤ S(t, x) ≤ S0(x) and 0 ≤ z(t, 0; S0, I0, x) ≤ ξψ∗ for all t ≥ 0 and x ∈ Ω .
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Proof From the first equation of system (5.1), we have
⎧
⎨

⎩

dS(t,x)
dt ≤ Λ(x)S(t, x) + M(x, S(t, x), 0), x ∈ Ω,

S(0, x) ≤ S0(x), x ∈ Ω,

∂νS(t, x) = 0, x ∈ ∂Ω.

(5.19)

By using the comparison principle for reaction–diffusion equations, we can deduce that
0 ≤ S(t, x) ≤ S0(x).

By the definition of Bξ and expression of z, we have, for t ≥ 0, x ∈ Ω ,

z(0, 0; S0, I0, x) = F(x, S0(x))
∫ +∞
0 B(a, x)I0(a, x)da

≤ F0(x)
∫ +∞
0 B(a, x)ξW(a, 0)ψ∗(x)da

≤ ξΨ ψ∗(x) = ξ R0ψ∗(x) < ξψ∗(x).

Assume, by contradiction, that there exists T1 ≥ 0 and x1 ∈ Ω such that z(t, 0; S0, I0, x1) <

ξψ∗(x1) for t ∈ [0, T1] and z(T1 + ε, 0; S0, I0, x1) > ξψ∗(x1) for some small ε. Therefore,
we have

z(T1 + ε, 0; S0, I0, x1) ≤ F0(x1)
∫ T1+ε

0 B(a, x1)W(a, 0)z(T1 + ε − a, 0; S0, I0, x1)da
+ F0(x1)

∫ +∞
T1+ε

B(a, x1)W(a, a − T1 − ε)I0(a − T1 − ε, x1)da

≤ F0(x1)(
∫ T1+ε

0 B(a, x1)W(a, 0)
ξψ∗(x1)da + ∫ +∞

T1+ε
B(a, x1)ξW(a, 0)ψ∗(x1)da)

= F0(x1)
∫ +∞
0 B(a)W(a, 0)ξψ∗(x1)da

= ξΨ ψ∗(x1) = R0ξψ∗(x1) < ξψ∗(x1).

This leads to a contradiction. 
�
Theorem 5.19 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. If R0 < 1 and (S0(·), I0(·, ·))
∈ Bξ , then the disease-free steady state (S0(x), 0) is global attractive.

Proof By Lemma 5.18, we have z(t, 0; S0, I0, ·) < ξψ∗(·). Therefore, we have, for t ≥ 0,

lim
t→+∞ z(t, 0; S0, I0, ·) = lim

t→+∞(F(·, S(t, ·)) ∫ t
0 B(a, ·)W(a, 0)z(t − a, 0; S0, I0, ·)da

+ F(·, S(t, ·)) ∫ +∞
t B(a, ·)W(a, a − t)I0(a − t, ·)da)

≤ F0(·) ∫ +∞
0 B(a, ·)W(a, 0) lim

t→+∞ z(t − a, 0; S0, I0, ·)da
≤ F0(·) ∫ +∞

0 B(a, ·)W(a, 0)ξψ(·)da
= R0ξψ(·).

After many iterations, we have lim
t→+∞ z(t, 0; S0, I0, ·) ≤ Rn

0ξψ(·). This means

lim
t→+∞ z(t, 0; S0, I0, ·) = 0. Therefore, we have lim

t→+∞ ‖I(t, ·, ·)‖X = 0. Moreover, by

Assumption 5.1, we can deduce the global attractiveness of the disease-free steady state. 
�
Define U(t), t ≥ 0 as the solution semiflow of the system (5.1) by

U(t)(S0(·), I0(·, ·)) = (S(t, ·), I(t, ·, ·)), t ≥ 0. (5.20)

Theorem 5.20 Let Assumptions 5.1, 5.11, and 5.16 be satisfied. If R0 > 1, then there exists
a positive number ε such that

lim
t→+∞ sup ‖z(t, 0; S0, I0, ·)‖ > ε, ∀(S0, I0) ∈ M0, (5.21)

where set M0 is defined in Sect. 4.
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Proof Assume, by contradiction, that (5.21) is not hold. Then there exists T1 ≥ 0 such that
z(t, 0; S0, I0, x) ≤ ε1 for all t > T1 and x ∈ Ω . Therefore, we have I(t, a, x) ≤ ε1 for
t > T1 and x ∈ Ω . By Assumption 5.1 (iii) and (vii), we know that there exist constants
δ > 0 and T2(T2 > T1) such that

S(t, ·) ≥ S0(·) − δ1, t ≥ T2.

For t ≥ T2 and x ∈ Ω , we have

z(t, T2; ST2 , IT2 , x) ≥ (F0(x) − δ̂1)
∫ t

T2
B(a, x)W(a, 0)z(t − a, T2; ST2 , IT2 , x)da,

where δ̂ := ‖F0(x) − F(x, S0(x) − δ1)‖. In order to use the Laplace transform of z, we
define L(λ)(x) := ∫ +∞

0 e−λt z(t, 0; S0, I0, x)dt . Therefore, we have, for t ≥ 0 and x ∈ Ω ,
∫ +∞
0 e−λt z(t, 0; S0, I0, x)dt ≥ ∫ +∞

0 e−λt (F0(x) − δ̂1)
∫ t
0 B(a, x)W(a, 0)z(t − a, 0; S0, I0, x)dadt

≥ ∫ +∞
0 (F0(x) − δ̂1)B(a, x)e− ∫ a0 λds

W(a, 0)L(λ)(x)da.

(5.22)

Next, we define a operator Ψ
δ̂,λ

on C(Ω,Rn) as follows

Ψ
δ̂,λ

(ϕ)(x) :=
∫ +∞

0
(F0(x) − δ̂1)B(a)W(a, 0)e− ∫ a0 λdsϕ(x)da, ϕ ∈ C(Ω,Rn).

If we set δ̂ → 0, λ → 0 and use the perturbation theory of linear operator [24], we then

obtain that r(Ψ
δ̂,λ

) is the eigenvalue of Ψ
δ̂,λ

with a positive eigenvector ψ δ̂,λ∗ which satisfies

lim
δ̂→0,λ→0

r(Ψ
δ̂,λ

) = r(Ψ ). Let ψ δ̂,λ∗ (·) := (ψ
δ̂,λ
∗,1 (·), ..., ψδ̂,λ∗,n (·))T . Therefore, we have

diag(ψδ̂,λ
∗,1 (·), ..., ψδ̂,λ∗,n (·))L(λ)(·) = diag(ψδ̂,λ

∗,1 (·), ..., ψδ̂,λ∗,n (·)) ∫ +∞
0 e−λt z(t, 0; S0, I0, ·)dt

≥ diag(ψδ̂,λ
∗,1 (·), ..., ψδ̂,λ∗,n (·)) ∫ +∞

0 (F0(·) − δ̂1)B(a, ·)e− ∫ a0 λds
W(a, 0)L(λ)(·)da

= ∫ +∞
0 (F0(·) − δ̂1)B(a, ·)e− ∫ a0 λds

W(a, 0)ψ δ̂,λ∗ (·) × diag(L(λ))(·)da
= r(Ψ

δ̂,λ
)diag(ψδ̂,λ

∗,1 (·), ..., ψδ̂,λ∗,n (·))L(λ)(·).
wherediag(L(λ))(·) := diag(

∫ +∞
0 e−λt z1(t, 0; S0, I0, ·)dt, ...,

∫ +∞
0 e−λt zn(t, 0; S0, I0, ·)dt).

Due to r(Ψ
δ̂,λ

) > 1 and diag(ψε,λ∗ (·))L(λ)(·) > 0, this causes a contradiction. 
�
Remark 5.21 SemiflowU(t)with (5.21)means theweakly uniform persistence of the disease.
Since our approach based on operator theory, it allows us to treat model (5.1) with Neumann,
Dirichlet or Robin boundary conditions. Therefore, if Assumption 5.1 still holds when the
model (5.1) is under Dirichlet or Robin boundary conditions, then the results are still valid.
In Remark 6.15, we also consider the SEIR model under the Dirichlet boundary condition.

6 Application to Infection Age-Structured SIR and SEIR Epidemic
Models

In this section, we apply the methods stated above to the SIR and SEIR epidemic models. In
the SIR model, we compare our results with Chekroun and Kuniya’s work [5–7]. The SEIR
epidemic model can be seen as an application to high-dimensional and degenerate diffusion
situations.
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6.1 Infection Age-Structured SIR Epidemic Model

In this subsection, we consider the SIR epidemic model under the Neumann boundary con-
dition. The model is constructed as follows, for t > 0, a > 0, x ∈ Ω

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂S(t,x)
∂t = bΔS(t, x) + γ − S(t, x)

∫ +∞
0 β(a)I (t, a, x)da − μS(t, x),

∂ I (t,a,x)
∂t + ∂ I (t,a,x)

∂a = dΔI (t, a, x) − [μ + η(a)]I (t, a, x),
I (t, 0, x) = S(t, x)

∫ +∞
0 β(a)I (t, a, x)da

∂R(t,x)
∂t = cΔR(t, x) + ∫ +∞

0 η(a)I (t, a, x)da − μR(t, x),

(6.1)

with initial value condition

S(0, x) = S0(x), I (0, a, x) = I0(a, x), R(0, x) = R0(x),

under the Neumann boundary condition

∂S

∂ν
= 0,

∂ I

∂ν
= 0,

∂R

∂ν
= 0, x ∈ ∂Ω.

Following the setting of general infection age-structured epidemic models, we make the
following assumption.

Assumption 6.1 For system (6.1), assume that

(i) γ > 0, μ > 0 and diffusion coefficients b, c, d > 0,
(ii) β(·) ∈ L∞+ (R+)∩ L1+(R+) and there exists a maximum age of infection denoted by a+

such that if a > a+, β(a) = 0. Moreover, there exist positive numbers a∗, a∗ such that
β(a) > 0,∀a ∈ (a∗, a∗).

(iii) η(·) ∈ L∞+ (R+).

It is obvious thatAssumption 6.1 is consistentwithAssumptions 4.1 (i, iii, iv, v). Therefore,
we only need to prove Assumption 4.1 (ii). The disease-free steady state (S0(x), 0) satisfies
the following equations

{
0 = bΔS0(x) + γ − μS0(x), x ∈ Ω,

∂νS0(x) = 0, x ∈ ∂Ω.
(6.2)

It follows from Lemma 2.1 in [31] that we have the following lemma.

Lemma 6.2 Let Assumption 6.1 be satisfied. Then system (6.1) admits a unique globally
attractive disease-free steady state (S0(x), 0) and S0(x) > 0 for all x ∈ Ω .

Following the ideas in Sects. 3 and 4, we define the next generation operator L on space
C(Ω) by

Lϕ(x) = S0(x)
∫ +∞

0
β(a)e

∫ a
0 μ(s)dsT (a)ϕ(x)da, ϕ ∈ C(Ω),

where T (t) is the C0-semigroup generated by dΔ with Neumann boundary condition. Thus
we can define the basic reproduction number R0 by

R0 = r(L).

Next, we show that Assumption 4.13 (i) and (ii) are held. Firstly we prove Assumption
4.13 (ii). For any I (t, a, x) ≥ ζ with a positive constant ζ , we consider

∂S(t, x)

∂t
= bΔS(t, x) + γ − (a+βζ − μ)S(t, x), x ∈ Ω, (6.3)
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where β := inf
a∈(0,a+)

β(a). Similar to Lemma 6.2, we know the system (6.3) under the

Neumann boundary condition admits a globally attractive steady state S0,ζ . By comparison
principle for the first equation of (6.2), we know that S0,ζ (x) < S0(x). Then we have the
solution S(t, x) of the system (6.3) satisfies that there exists a large enough time T1 such that

S(t, x) ≥ S0,ζ (x) ≥ S0(x) − ξ, t ≥ T1x,∈ Ω,

where ξ := sup
x∈Ω

(S0(x)−S0,ζ (x)). Therefore, Assumption 4.13 (ii) holds. In the next lemma,

we show Assumption 4.13 (i).
Let

Ĩ (t, x) :=
∫ +∞

0
I (t, a, x)da and Ĩ0(x) :=

∫ +∞

0
I0(a, x)da, t ≥ 0, x ∈ Ω.

Lemma 6.3 Let Assumption 6.1 be satisfied. Let (S0, I0) ∈ C(Ω) × L1(R+,C(Ω)),
(S(t, ·), I (t, ·, ·)) be the solution of system (6.1) with the initial value (S0, I0). Then there
exists a positive constant M (independent of initial value) such that the following inequality
holds

lim
t→+∞(‖S(t, ·)‖ + ∥

∥ Ĩ (t, ·)∥∥) ≤ M . (6.4)

Proof Note that
∫ +∞

0

d I (t, a, x)

da
da = I (t,+∞, x) − I (t, 0, x), x ∈ Ω.

It is easy to find that lim
a→+∞ I (t, a, x) = 0 for t ≥ 0 and x ∈ Ω . By the boundary condition

of (6.1), we have
∫ +∞

0

d I (t, a, x)

da
da = −I (t, 0, x) = −S(t, x)

∫ +∞

0
β(a)I (t, a, x)da, t ≥ 0, x ∈ Ω.

Therefore, by integrating both sides of the second equation of system (6.1) on age a, we
have, for t ≥ 0, x ∈ Ω ,
⎧
⎪⎨

⎪⎩

dS(t,x)
dt = bΔS(t, x) + γ − μS(t, x) − S(t, x)

∫ +∞
0 β(a)I (t, a, x)da,

d Ĩ (t,x)
dt = S(t, x)

∫ +∞
0 β(a)I (t, a, x)da + dΔ Ĩ (t, x) − μ Ĩ (t, x) − ∫ +∞

0 η(a)I (t, a, x)da,

S0(·) ∈ C(Ω), Ĩ0(·) ∈ C(Ω).

(6.5)

From Theorem 6.4, we can deduce that lim
t→+∞ S(t, x) ≤ S0(x), x ∈ Ω.

Next, we prove this lemma by proving the following 4 claims, step by step.
Claim 1. There exists a positive constant M1, independent of initial value conditions, such

that

lim sup
t→+∞

(‖S(t, ·)‖L1(Ω) + ‖ Ĩ (t, ·)‖L1(Ω)) ≤ M1.

To prove this claim, we integrate both sides of the first two equations of (6.5) and add up to
obtain

∂

∂t

∫

Ω

(S + Ĩ )dx ≤
∫

Ω

γ dx −
∫

Ω

μ(S + Ĩ )dx ≤ ‖Ω‖γ −
∫

Ω

μ(S + Ĩ )dx .

It is clear that Claim 1 holds with M1 = ‖Ω‖γ
μ

.
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Claim 2: For any k ≥ 0, there exists a positive constant M2k , independent of initial
conditions, such that

lim sup
t→+∞

(‖S(t, ·)‖2k
L2k (Ω)

+ ‖ Ĩ (t, ·)‖2k
L2k (Ω)

) ≤ M2k . (6.6)

In the following, this claim will be proved by induction. The case k = 0 has been proved
in Claim 1. Then we assume the Claim 2 holds for k − 1. By Multiplying both sides of the
second equation of (6.5) by Ĩ 2

k−1 and integrating over Ω [1], we obtain, for a large enough
t ,

1

2k
∂

∂t

∫

Ω

Ĩ 2
k
dx ≤ −2k − 1

22k−2 d
∫

Ω

|∇ Ĩ 2
k−1 |2dx +

∫

Ω

‖S0‖β Ĩ 2k dx −
∫

Ω

(μ + η) Ĩ 2
k
dx,

where β := sup
a∈(0,+∞)

β(a) and η := inf
a∈(0,+∞)

η(a). We now recall the interpolation inequal-

ity: for any ε > 0, there exists a constant Cε > 0 such that

‖ξ‖2L2(Ω)
≤ ε‖∇ξ‖2L2(Ω)

+ Cε‖ξ‖2L1(Ω)
, for any ξ ∈ W 1,2(Ω).

Applying the above interpolation inequality with ε = d(2k−1)
22k−1‖S0‖β , we can obtain

1

2k
∂

∂t

∫

Ω

Ĩ 2
k
dx ≤ −

∫

Ω

‖S0‖β Ĩ 2k dx −
∫

Ω

(μ + η) Ĩ 2
k
dx + Cε(

∫

Ω

Ĩ 2
k−1

da)2. (6.7)

By assumption, we know that (6.6) holds for k − 1. It follows that

lim sup
t→+∞

∫

Ω

Ĩ 2
k−1

dx ≤ M2k−1

2k−1 .

Together with (6.7), we can deduce that (6.6) holds for k. And then Claim 2 is true.
Claim 3: For any p ≥ 1, there exists a positive constant Mp , independent of initial

conditions, such that

lim sup
t→+∞

(‖S(t, ·)‖p
L p(Ω) + ‖ Ĩ (t, ·)‖p

L p(Ω)) ≤ Mp.

In view of Claim 2 and the continuous embedding Lq(Ω) ⊂ L p(Ω), q ≥ p ≥ 1, Claim 3
is a direct result.

Claim 4: There exists a positive M∞, independent of initial conditions, such that

lim sup
t→+∞

‖ Ĩ (t, ·)‖ ≤ M∞.

Let T2(t) denote the analytic and compact semigroup generated by operator A := dΔ−μ−η

in space Z := L p(Ω). Let Zα, 0 ≤ α ≤ 1, be the fractional power space with graph
norm. According to the embedding theorem, we can choose p > n

2 and α ≥ n
2p such that

Zα ⊂ C(Ω). It is well known that there exists Mα > 0 such that ‖AαT2(t)‖ ≤ Mα

tα for all
t > 0. It follows from Claim 3 that there exists t∞ > 1 such that

‖S(t, ·)‖L p(Ω) ≤ M0 + 1, ‖ Ĩ (t, ·)‖L p(Ω) ≤ (Mp + 1)
1
p , ∀t ≥ t∞ − 1.

By the second equation of (6.5), for all t ≥ T∞ − 1, we have

Ĩ (t) ≤ T2(1) Ĩ (t − 1) +
∫ t

t−1
T2(t − s)‖S0‖β Ĩ (s)ds.
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For all t ≥ t∞ − 1, we have

‖Aα Ĩ (t, ·)‖L p(Ω) ≤ ‖AαT2(1) Ĩ (t − 1)‖L p(Ω) + ∫ t
t−1 ‖AαT2(t − s)‖S0‖β| Ĩ (s)‖L p(Ω)ds

≤ Mα‖ Ĩ (t − 1, ·)‖L p(Ω) + ‖S0‖β(Mp + 1)
1
p
∫ t−1
t

Mα

(t−s)α ds

≤ Mα(Mp + 1)
1
p + ‖S0‖βMα(Mp+1)

1
p

1−α
.

Then Claim 4 follows from the embedding Zα ⊂ C(Ω). Together with lim
t→+∞ S(t, x) ≤

S0(x),∀x ∈ Ω , Lemma 6.3 holds. 
�
The above results are sufficient to prove the global attractiveness of the disease-free steady
state by Theorem 4.15.

Theorem 6.4 Let Assumption 6.1 be satisfied. If R0 < 1, then the disease-free steady state
(S0, 0) is globally attractive.

Remark 6.5 Compare to Chekroun and Kuniya’s works on infection age-structured SIR epi-
demic model under the Neumann and Dirichlet boundary conditions [5–7], we improve the
results on the global attractiveness of the disease-free steady state. In Chekroun’s work, they
only prove the global attractiveness of the disease-free steady state with the initial value
belonging to a subset of phase space (Theorem 5.1 in [5], Theorem 4.4 in [6], Theorem
6.2 in [7]). By using our methods, we can overcome this problem. We can prove the global
attractiveness of the disease-free steady state with no limitation on the initial value condition.
However, due to the limitation of our method, we need to assume that β(a) = 0,∀a ≥ a+.

By Theorem 4.20, we have the following theorem.

Theorem 6.6 Let Assumption 6.1 be satisfied. If R0 > 1, semiflowU(t) is uniformly persistent
and admits a fixed point (i.e. endemic steady state).

Remark 6.7 These results are consistent with Chekroun and Kuniya’s results (Theorems 6.1
and 7.2 in [5], Proposition 5.3 and Theorem 6.1 in [7]).

6.2 Infection Age-Structured SEIR Epidemic Model

In this subsection, we consider an infection age-structured SEIR epidemic model under the
Neumann boundary condition. Themodel is constructed as follows, for t > 0, a > 0, x ∈ Ω ,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂S(t,x)
∂t = bΔS(t, x) + γ − S(t, x)

∫ +∞
0 (β2(a)I (t, a, x) + β1(a)E(t, a, x))da − μS(t, x),

∂E(t,a,x)
∂t + ∂E(t,a,x)

∂a = −μE(t, a, x) − θ1E(t, a, x),
∂ I (t,a,x)

∂t + ∂ I (t,a,x)
∂a = dΔI (t, a, x) − [μ + η(a)]I (t, a, x) + θ1E(t, a, x),

E(t, 0, x) = S(t, x)
∫ +∞
0 β2(a)I (t, a, x)da + S(t, x)

∫ +∞
0 β1(a)E(t, a, x)da

∂R(t,x)
∂t = cΔR(t, x) + ∫ +∞

0 η(a)I (t, a, x)da − μR(t, x),

(6.8)

with initial value condition

S(0, x) = S0(x), E(0, a, x) = E0(a, x), I (0, a, x) = I0(a, x), R(0, x) = R0(x),

under the Neumann boundary condition

∂S

∂ν
= 0,

∂E

∂ν
= 0,

∂ I

∂ν
= 0,

∂R

∂ν
= 0, x ∈ ∂Ω.

Following the setting of general infection age-structured epidemic models, we make the
following assumption.
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Assumption 6.8 For system (6.8), assume that

(i) γ > 0, μ > 0, θ1 > 0 and diffusion coefficients b, c, d > 0,
(ii) For each i = 1, 2, βi (·) ∈ L∞+ (R+) ∩ L1+(R+) and there exists a maximum age of

infection denoted by a+ such that if a > a+, βi (a) = 0. Moreover, there exists positive
numbers a∗, a∗ such that βi (a) > 0,∀a ∈ (a∗, a∗).

(iii) η(·) ∈ L∞+ (R+).

In the SEIR model, we assume that compartment E also has effects on the spread of
disease and is with zero diffusion coefficient. Therefore, this SEIR model can be seen as
an application in an epidemic model with degenerate diffusion. By Remark 5.10, we con-
sider phase space Y := L2(Ω,R2) and X := L1((0,+∞), Y ), instead of C(Ω,R2) and
L1((0,+∞),C(Ω,R2)). In order to use the method stated before, we introduce some nota-
tions as follows

I(t, a, x) :=
(

I (t, a, x)
E(t, a, x)

)

, η(a) :=
(

η(a) 0
0 0

)

,μ :=
(

μ 0
0 μ

)

,L(x)u :=
(
dΔu1
0

)

,

S(t, x) :=
(
0 0
0 S(t, x)

)

, θ :=
(
0 θ1
0 −θ1

)

, B(a) :=
(

0 0
β2(a) β1(a)

)

.

Therefore, we can rewrite system (6.8) into the following form, for t > 0, a > 0 and x ∈ Ω ,
⎧
⎨

⎩

∂S(t,x)
∂t = bΔS(t, x) + γ − μS(t, x) − S(t, x)

∫ +∞
0 (β2(a)I (t, a, x) + β1(a)E(t, a, x))da,

(
∂
∂t + ∂

∂a

)
I(t, a, x) = L(x)I(t, a, x) − (μ + η(a))I(t, a, x) + θ I(t, a, x),

I(t, 0, x) = S(t, x) × ∫ +∞
0 B(a, x)I(t, a, x)da

(6.9)

As the same with Lemma 6.2, we directly have the following lemma.

Lemma 6.9 Let Assumption 6.8 be satisfied. Then system (6.8) admits the unique disease-free
steady state (S0(x), 0) and S0(x) > 0 for all x ∈ Ω .

By using the method in Sect. 5, Ψ and Ψ̂ are defined on space L2(Ω,R2) as follows

Ψ

(
ϕ10(x)
ϕ20(x)

)

=
(

0
Ψ2(ϕ1, ϕ2)(x)

)

, Ψ̂

(
ϕ1(x)
ϕ2(x)

)

=
(

0
Ψ̂2(ϕ2)(x)

)

, x ∈ Ω,

where

Ψ2(ϕ1, ϕ2)(x) = ∫ +∞
0 S0(x)β2(a)(T1(a)e− ∫ a0 η(s)+μdsϕ1(0, x)

+ ∫ a
0 T1(a − s)e− ∫ as η(l)+μdlθ1ϕ2(s, x)ds)da

+ ∫ +∞
0 S0(x)β2(a)e− ∫ a0 μ+θ1dsϕ2(0, x)da,

and

Ψ̂2(ϕ20)(x) =
∫ +∞

0
S0(x)β2(a)e− ∫ a0 μ+θ1dsϕ20(x)da, x ∈ Ω.

In the above, T1(t) is the solution map of the following reaction–diffusion equation under
the Neumann boundary condition

dϕ1(t, x)

dt
= dΔϕ1(t, x), t > 0, x ∈ Ω.

and ϕ(a, x) := (ϕ1(a, x), ϕ2(a, x)) is the solution of the following equations with initial
value (ϕ1(0, x), ϕ2(0, x)) = (ϕ10(x), ϕ20(x)),

dϕ(a, x)

da
= L(x)ϕ(a, x) − V (a)ϕ(a, x),
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where V (a) := η(a) + θ + μ. Then we have, for a > 0 and x ∈ Ω ,
(

ϕ1(a, x)
ϕ2(a, x)

)

:=
(
T1(a)e− ∫ a0 μ+η(s)dsϕ10(x) + ∫ a

0 T1(a − s)e− ∫ as μ+η(l)dlθ1ϕ2(s, x)ds
e−(μ+θ1)aϕ20(x)

)

.

Following the ideas of Sect. 5, we define the basic reproduction number R0 by

R0 := r(Ψ ).

It is easy to see that SEIR model is consistent with Assumptions 5.1 and 5.11. It remains to
prove Assumption 5.16. By the expression ofΨ and Ψ̂ , we haveΨ ≥ Ψ̂ . Thus, r(Ψ ) ≥ r(Ψ̂ )

by Theorem 4.2 of [40]. Therefore, we need to prove the strict monotonicity. Before proof,
we introduce some definitions and theorems.

Let X is aBanach spacewith a cone X+, a positive operator A ∈ L(X) is called y−bounded
if there exists numbers α1, α2 : X → R+ such that

α1(x)y ≤ Ax ≤ α2(x)y, ∀x ∈ X+,

where y ∈ X+ \ {0}. A linear operator B is called monotonically compact if B is positive,
and the relation

x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · ≥ z

implies the convergence of the sequence Bxn . In particular, if the cone X+ is regular, every
positive linear operator is monotonically compact.

Theorem 6.10 [16] Let X is a real Banach space with a cone X+ and positive operators
A, B ∈ L(X) which satisfy A ≤ B and A �= B. If (A.1)-(A.4) are satisfied,

(A.1) X+ is normal, minhedral and reproducing cone;
(A.2) B is monotonically compact and u−bounded;
(A.3) A is irreducible or u−bounded;
(A.4) (B − A)2 �= 0; then r(A) < r(B).

Remark 6.11 Theorem 6.10 is the results from Theorem 3.5 and Lemmas 3.6, 3.7, 3.8 of
[16]. More methods for the strict monotonicity of spectral radius of positive operators can
be found in [17, 40].

Define Ψ 2 on L2(Ω) by

Ψ 2(ϕ20)(x) = ∫ +∞
0 S0(x)β2(a)

∫ a
0 T1(a − s)e− ∫ as η(l)+μdlθ1ϕ2(s, x)dsda

+ ∫ +∞
0 S0(x)β2(a)e− ∫ a0 μ+θ1dsϕ2(0, x)da

= ∫ +∞
0 S0(x)β2(a)

∫ a
0 T1(a − s)e− ∫ as η(l)+μdlθ1e−(μ+θ1)sϕ2(0, x)dsda

+ ∫ +∞
0 S0(x)β2(a)e− ∫ a0 μ+θ1dsϕ2(0, x)da,

where ϕ20(x) = ϕ2(0, x).

Theorem 6.12 Let Assumption 6.8 be satisfied. Then r(Ψ ) > r(Ψ̂ ).

Proof Note that r(Ψ 2) > r(Ψ̂2) means r(Ψ ) > r(Ψ̂ ). By Theorem 6.10, we only need to
prove the following four claims.
Claim 1: X+ is normal, minhedral and reproducing cone;
Claim 2: Ψ 2 is monotonically compact and u−bounded;
Claim 3: Ψ̂2 is irreducible or u−bounded;
Claim 4: (Ψ 2 − Ψ̂2)

2 �= 0.

123



Journal of Dynamics and Differential Equations

We begin to prove Claim 2. By the definition of Ψ 2 and Assumption 6.8, we have, for
x ∈ Ω ,

Ψ 2(ϕ20)(x) ≤ ∫ +∞
0 S0(x)β2(a)ϕ2(0, x)da + ∫ +∞

0 S0(x)β2(a)
∫ a
0 θ1ϕ2(0, x)dsda

≤ a+β‖S0‖(1 + θ1a+)ϕ2(0, x)

where β = supa∈[0,a+]β2(a). Similar to above, we can also obtain, for x ∈ Ω ,

Ψ 2(ϕ20)(x) ≥ ∫ +∞
0 S0(x)β2(a)e− ∫ a0 μ+θ1dsϕ2(0, x)da

≥ S0
∫ a∗
a∗ β(a)dae(−μ−θ1)a+ϕ2(0, x),

where S0 = inf
x∈Ω

S0(x). Define h1 := S0
∫ a∗
a∗ β(a)dae−(μ+θ1)a+ and h2 := a+β‖S0‖(1 +

θ1a+). For any ϕ1
20, ϕ

2
20 ∈ L2+(Ω), there exists two positive constants C1,C2 such that

C1ϕ
1
20 ≤ ϕ2

20 ≤ C2ϕ
1
20. Moreover, we have

C1h1ϕ
1
20 ≤ Ψ 2ϕ

2
20 ≤ C2h2ϕ

1
20.

Therefore, Ψ 2 is ϕ1
20−bounded. Moreover, Ψ 2 is defined in L p(Ω), it follows that Ψ 2 is

monotonically compact.
It is clear that Claim 1 and 4 hold. It remains to prove Claim 3. It is easy to find that Ψ̂2

is irreducible and the property of u−bounded can be proved by a similar way in Claim 2.
Therefore, we have r(Ψ 2) > r(Ψ̂2) and then r(Ψ ) > r(Ψ̂ ). 
�

Similar to the proof of Theorems 5.19 and 6.4, we obtain the following theorem.

Theorem 6.13 Let Assumption 6.8 be satisfied. If R0 < 1 and (S0, I0) ∈ Bξ , then the
disease-free steady state (S0, 0) is globally attractive, where Bξ is defined in (5.18).

Let U(t) be the solution semiflow of the system (6.8), that is,

U(t)(S0(·), I0(·, ·)) = (S(t, ·), I(t, ·, ·)), t ≥ 0. (6.10)

By Theorem 5.20, we have the following theorem.

Theorem 6.14 Let Assumption 6.8 be satisfied. If R0 > 1, semiflow U(t) is weakly uniform
persistent.

Remark 6.15 If the model (6.8) is under the Dirichlet boundary condition, we can also prove
Theorems 6.13 and 6.14 by a similar method.

7 Discussion

In this paper, we study the dynamical threshold for infection age-structured epidemic model
with spatial diffusion and degenerate diffusion.Weprove that R0 can be defined as the spectral
radius of operator −FA −1 and the spectral bound of A + F has the same sign as R0 − 1,
where F ,A are non-densely operators. This result extends the basic reproduction numbers
for many kinds of ODE and reaction–diffusion epidemic models.

Due to infection age-structured effects, it becomes more difficult to consider the global
stability of steady state than epidemic models in the form of ordinary differential equations.
When considering the infection age-structured epidemic model with spatial diffusion, almost
all work in the literature only concerned the global attractiveness of the disease-free steady
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state in a subset of phase space instead of the whole phase space or constructing Lyapunov
functional. In Sect. 4, we study a class of high-dimensional infection age-structured epidemic
models with non-degenerate diffusion and spatial heterogeneity. We overcome this problem
by using the comparison principle for the age-structured equation and renewal theorem.
We give a general method to prove the global attractiveness of the disease-free steady state
without restrictions on the initial values. Of course, the fewer restrictions the better. By the
theory of compact attractors, we also give another approach to prove the uniform persistence
and the existence of the endemic steady state. It is worth mentioning that the methods used in
this paper are suitable to the Neumann, Dirichlet, and Robin boundary conditions. However,
due to the limitation caused by our method, we assume that there exists a maximum infection
age. In addition, this assumption is reasonable in age-structured models.

In Sect. 5, we consider a class of high-dimensional infection age-structured epidemic
models with degenerate diffusion and spatial heterogeneity. Degenerate diffusion leads to
compactness loss of solution semigroup. Thus, we cannot follow themethods stated in Sect. 4
to prove the extinction or uniform persistence of disease. Under some assumptions, we can
still prove that R0 is the principal eigenvalue of the next generation operator by a generalized
Krein-Rutman Theorem. Moreover, by a Laplace transform, we prove that R0 also plays a
role in the threshold for the extinction and weakly uniform persistence of the disease.

In Sect. 6,we apply ourmethod to infection age-structuredSIRandSEIRepidemicmodels.
In the case of the SIR model, we improve some results on the global attractiveness of the
disease-free steady state and give another proof for the uniform persistence of semiflow and
the existence of the endemic steady state. In addition, we compare our results on the SIR
model with those in the literature. In the case of the SEIRmodel, we consider the SEIRmodel
with degenerate diffusion. We use the method in Sect. 5 and obtain the threshold results on
its global dynamics.
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