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Abstract
We discuss the denseness of the strong stable and unstable manifolds of partially hyperbolic
diffeomorphisms. To this end, we introduce the concept of m-minimality, wich means that
m-almost every point in M has its strong stable and unstable manifolds dense in M . We
show that this property has both topological and ergodic consequences. Also, we prove the
abundance ofm-minimal partially hyperbolic diffeomorphisms in the volume preserving and
symplectic scenario.

Keywords Partially hyperbolic diffeomorphisms · m-minimality · Minimality · Stable and
unstable foliation · Symplectic · Ergodic theory

1 Introduction

Its well known that, as in the Anosov case, the stable and unstable bundles of a partially
hyperbolic diffeomorphism integrate to foliations of the ambient manifold. These foliations
are called strong stable foliation and strong unstable foliation and are denoted byF s andFu ,
respectively. The structure of such foliations translates to some topological and ergodic prop-
erties of the dynamic, as well as the level of recurrence in the dynamics imposes conditions
on these foliations.

1 Recall that a diffeomorphism f : M → M is topologically transitive if there is a point whose forward orbit
by f is dense on M . Also, f is topologically mixing if given open sets U and V of M , there exists a positive
integer n such that f j (U ) intersects V for any j ≥ n.
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For instance, when one of these foliation is minimal, which means that all its leaves are
dense in the manifold, it implies that the system is topologically mixing. On the other hand,
if an Anosov diffeomorphism is transitive1 both of its invariant foliation are minimal.

For partially hyperbolic diffeomorphisms, [7] shows that there is an open and dense subset
of robustly transitive2 partially hyperbolic diffeomorphisms in dimension 3 that either F s

or Fu is minimal. This result was extended to higher dimensions in [15], when the central
bundle is one dimensional (See also [19], where a similar result is obtained for attractors).

However, for partially hyperbolic diffeomorphisms with higher center dimension little
is known about the minimality of the strong invariant foliations. For a C1-generic transitive
partially hyperbolic diffemorphism f : M → M , there is a residual subset ofM for which the
strong stable and unstable leaves are dense in M , see [22]. Moreover, allied with some source
of hyperbolicity, the minimality of the invariant foliation can produce robust transitivity, as
Pujals and Sambarino showed in [21].

One could also try to understand the relations between the recurrence of the strong foli-
ations and the recurrence of the dynamics itself. On one hand, we can apply Hayashi’s
Connecting Lemma [13] to show that, C1-generically, if a partially hyperbolic diffeomor-
phisms is transitive then each of the strong invariant foliations has a dense leaf. On the other
hand, it was shown by Hammerlindl-Potrie [16], that, on three-dimensional nilmanifolds, the
strong foliations of any partially hyperbolic diffeomorphism has a dense leaf. However, Yi
Shi [27] constructed some such examples with exactly one attractor and one repeller thus not
transitive.

In this work, we propose aweaker form ofminimality requiring the denseness of the leaves
only in a full Lebesgue set of points. We obtain some topological and ergodic consequences,
and shows that this condition is abundant in the volume preserving and symplect scenario.

It is worth mentioning that another geometric property related to the invariant foliations
is the accessibility property,3 which has been used as a key feature to prove ergodicity (in
fact, only essencial acessibility is enough). So it is a natural question if this new notion of
minimality has any relation with accessibility. We remark that the strong invariant manifolds
of a linear Anosov in dimension 3 is minimal (actually the center manifold is also minimal).
However, a linear Anosov is not essentially accessible, since the strong stable and unstable
directions are jointly integrable, see [23] for more details on other automorphisms of the
torus. So we pose the following question.

Question. Does acessibility implies m-minimality?
In the following, we will give the precise definitions and statements of our results.
Let (M, g) be a compact, connected, boundaryless, Riemannian manifold. The Lebesgue
measure on M is denoted by m. Any submanifold will be endowed with a metric, which is
the restriction of g.

Given a diffeomorphism f on M , we say that a Df -invariant splitting T M = E ⊕ F is
dominated if there exists a positive integer n such that, for every x ∈ M ,

‖Df nx (u)‖ ≤ 1

2
‖Df nx (v)‖, for every unitary vectors u ∈ E and v ∈ F .

2 Recall that a diffemorphism is robustly transitive if every diffeomorphism sufficiently close to it, in the
C1-topology is transitive.
3 A partially hyperbolic diffeomorphism is accessible if any two points can be joined by a concatenation of
curves belonging to unstable or stable manifolds. Actually, this property splits the manifold in accessibility
classes. We say that a system is essentially accessible if any union of accessibility classes has zero or full
measure.
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A diffeomorphism f on M is called partially hyperbolic if there exists a continuous Df -
invariant dominated splitting T M = Es ⊕ Ec ⊕ Eu , with non trivial extremal sub-bundles
Es and Eu , and there exists n ∈ N such that Es and Eu are uniformly contracted by Df n

and Df −n , respectively.
If the center bundle Ec is trivial, then f is called Anosov. For convenience, given a

partially hyperbolic diffeomorphism f , we consider its partially hyperbolic splitting T M =
Es ⊕ Ec ⊕ Eu , such that the extremal bundles contains all the Df -invariant sub-bundles of
T M which are contracted or expanded for some iterate of Df . In particular, for us, a partially
hyperbolic diffeomorphism with non-trivial center bundle is not Anosov.

As we mentioned before, the strong bundles Es and Eu integrate to the strong stable and
strong unstable foliations F s and Fu , which are tangent to Es and Eu , respectively.

We say that a partially hyperbolic diffeomorphism f is s-minimal (resp. u-minimal) if its
strong stable (resp. strong unstable) foliation F s (resp. Fu) is minimal.

Now, we introduce the weaker notion of minimality that plays the central role in this paper.
We will denote by X s( f ) the set of points x ∈ M such that F s(x) is dense. Analogously,

we define X u( f ) for the foliation Fu .

Definition 1.1 Let f be a partially hyperbolic diffeomorphism. We say that f isms-minimal
if m(X s( f )) = 1. We say that f is mu-minimal if m(X u( f )) = 1. Finally, f is m-minimal
if it is both ms and mu-minimal.

In Sect. 2 we will prove many basic properties satisfied byms andmu-minimal diffeomor-
phisms. In particular, we prove that m-minimality is a Gδ property in the volume preserving
scenario.

In Sect. 3, we prove two main consequences of m-minimallity given in the following
Theorem, that gives information about the complexity of the dynamics at the topologic and
ergodic level. Recall that a diffeomorphism is weakly ergodic if the orbit of m-almost every
point x is dense on M .

Theorem 1.2 Let f be a C1-partially hyperbolic diffeomorphism preserving the Lebesgue
measure m. If f is ms-minimal or mu-minimal then f is topologically mixing. Moreover, if
f is also C1+α then f is weakly ergodic.

Nevertheless, there are even ergodic maps that are not ms or mu-minimal. Consider, for
instance, the volume preserving map f on T 3 obtained by a linear Anosov diffeomorphism
on the torus T2 times an irrational rotation of the circle, for which the Lebesgue measure on
T 3 is known to be ergodic. Since the irrational rotation is not topologically mixing, neither is
the map f itself. Now, the first part of Theorem 1.2 assures that f is not ms or mu-minimal
as well.

In Sect. 3, we also introduce the SH property of Pujals and Sambarino, [21], and we use
it to obtain a kind of robustness of the m-minimality, see Proposition 3.9.

Our next task is to show the abundance ofms and/ormu-minimal diffeomorphisms in two
natural scenarios: volume preserving diffeomorphisms and symplectic diffeomorphisms.

We start with the volume preserving scenario. We denote by Diff1m(M) the set formed by
diffeomorphisms f on M that preserve the volume form m, i.e., f ∗m = m.

We say that a diffemorphism f exhibit a homoclinic tangency if there exists a non empty
and non transversal intersection between the stable and unstable manifold of a hyperbolic
periodic point of f . Hence, denoting by HT the subset of C1 diffeomorphisms exhibiting a
homoclincic tangency, we know there exists an open and dense subset in Diff1m(M)\cl(HT )

formed by partially hyperbolic diffeomorphisms. This was proved by Crovisier, Sambarino
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and Yang in [11]. See also [3]. Moreover, such diffemorphisms were such that the center
bundle admits a sub splitting in one dimensional sub bundles.

Our next result says that in the volume preserving scenario, far from homoclinic tangency,
the presence of m-minimality is abundant. The hypothesis of being far from tangencies is a
technical requirement that allow us to make use of important features. We do not know if
this hypothesis can actually be dropped.

Theorem 1.3 There exists an open and dense subset G ⊂ Diff1m(M) \ cl(HT ), such that any
C2-diffeomorphism f ∈ G is a partially hyperbolic diffeomorphism which is m-minimal.

Now, since m-minimality is a Gδ property, Proposition 2.5, from the previous theorem
we also have the following corollary.

Corollary 1.4 There exists a residual subset R ⊂ Diff1m(M)\cl(HT ), such that any f ∈ R
is a partially hyperbolic diffeomorphism which is m-minimal.

We consider now the symplectic scenario.
Let (M, ω) be a symplectic manifold, been ω the two symplectic form on M . In this case,

m will denote the volume form in M induced by ω. The set of symplectic diffemorphisms
will be denoted by Diff1ω(M). Recall that f is a symplectic diffeomorphism if f ∗ω = ω.

In this setting, the symplectic structure allow us to prove that generically any partially
hyperbolic diffeomorphism is m-minimal. It is worth to point out that in the symplectic
setting all non Anosov diffeomorphisms are approximated by diffeomorphisms exhibiting
homoclinic tangency, see Newhouse [18].

Theorem 1.5 Let (M2d , ω) be a symplectic manifold, and consider m = ωd a volume form in
M. There exists a residual subsetR ⊂ Diff1ω(M), such that if f ∈ R is a partially hyperbolic
diffeomorphism then f is m-minimal.

The paper is organized in the following way: In Sect. 2, we give basic properties of m-
minimality, and in Sect. 3, we prove some dynamical consequences ofm-minimality. Finally,
in Sect. 4 we prove the abundance of m-minimal partially hyperbolic diffeomorphisms, i.e.,
we prove Theorems 1.3 and 1.5.

2 Basic Properties ofm-Minimality

In this section we list some basic properties related to the m-minimality.
We first remark that if ν << m and f is ms-minimal then f is νs-minimal.
We now examinate the invariance by iterations.

Proposition 2.1 Let n > 0, f is ms-minimal if, and only if, f n is ms-minimal. Let n < 0
then f is ms-minimal if, and only if, f n is mu-minimal.

Proof Weonlyneed to check thatF s(x, f ) = F s(x, f n) ifn > 0 andF s(x, f ) = Fu(x, f n)
if n < 0. 
�

Now, we study the behaviour of the property under products.

Proposition 2.2 f is ms-minimal if, and only if, f × f is (m × m)s-minimal.

123



Journal of Dynamics and Differential Equations (2023) 35:1083–1097 1087

Proof We begin noticing that if (a, b) ∈ F s((x, y), f × f ), then

d(( f n(x), f n(y)), ( f n(a), f n(b))) → 0 as n → ∞.

So, this implies that a ∈ F s(x) and b ∈ F s(y).
Now, we show thatX s( f × f ) ⊂ X s( f )×X s( f ). Indeed, let (x, y) ∈ X s( f × f ). Since

F s((x, y), f × f ) ∩ (U × V ) �= ∅, for any open setsU and V , we have that x ∈ X s( f ) and
y ∈ X s( f ).

Reciprocally, let (x, y) ∈ X s( f ) ×X s( f ). Any open set of M × M contains an open set
like U × V . Hence, there exists a ∈ U ∩ F s(x, f ) and b ∈ V ∩ F s(y, f ).

For any ε > 0, there exists N such that n ≥ N implies d( f n(x), f n(a)) < ε and
d( f n(y), f n(b)) < ε. So

d(( f × f )n((x, y)), ( f × f )n((a, b))) < ε if n ≥ N .

Hence, (a, b) ∈ F s((x, y), f × f ).
Thus X s( f × f ) = X s( f ) × X s( f ), and the result follows. 
�
Next result shows that it is possible to preserve m-minimality under some conjugacies.

Proposition 2.3 Let f and g be two partially hyperbolic diffeomorphisms. Let h be a m-
regular homeomorphism (i.e. preserves sets of null m-measure), such that h(F s(x)) =
F s(h(x)). Then f is ms-minimal if, and only if, g is ms-minimal.

Proof Just notice that h(X s( f )) = X s(g). 
�
Remark 2.4 Regarding the hypothesis of the previous statement, we would like to point out
that there are partially hyperbolic system which are conjugated but the conjugacy does not
send strong leaves over strong leaves, see for instance [26]. Even so, it is a question if
both foliations can be ms-minimal. Another related question is the following: if f and g
are two partially hyperbolic diffeomorphisms central conjugated (see [14]) such that f is
ms-minimal, is it true that g is also ms-minimal?

Now, we will show that m-minimality is a Gδ property, for any borelian probability m.
We denote by PH1

m(M) the set of partially hyperbolic diffeomorphisms which preserve m,
i.e. f ∗m = m, endowed with the C1 topology.

For any partially hyperbolic diffeomorphism f , we denote by X s
δ ( f ) (resp. X u

δ ( f )) the
subset of points x in M such that F s(x) (resp. Fu(x)) is δ-dense in M . Recall that a subset
A ⊂ M is δ-dense if A intersects any open ball with diameter larger than δ. Also, we denote
by F s(u)

K (x) a compact disc with radius K and centre x inside the leaf F s(u)(x). The sets

F s(u)
K (x) varies continuously with respect to the diffeomorphism f and with respect to x . In

particular, we can conclude that X s
δ ( f ) (resp. X u

δ ( f )) is an open subset of M .

Proposition 2.5 The set of m-minimal diffeomorphisms is a countable intersection of open
sets of PH1

m(M).

Proof For any ε, δ > 0 we define:

Bs
m(ε, δ) = { f ∈ PH1

m(M)/ m(X s
δ ( f )) > 1 − ε} and (1)

Bu
m(ε, δ) = { f ∈ PH1

m(M)/ m(X u
δ ( f )) > 1 − ε}. (2)

Observe that if a partially hyperbolic diffemorphism f isms-minimal (resp.mu-minimal),
then f belongs to Bs(ε, δ) (resp. Bu(ε, δ)) for every positive ε and δ. In particular, the rest
of the proof is a directly consequence of the next lemma, which implies that m-minimality
is a Gδ property. 
�
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Lemma 2.6 The subsets Bs(ε, δ) and Bu(ε, δ) are open subsets of PH1
m(M).

Proof of Lemma 2.6 Since f belongs to Bs(ε, δ) if, and only if, f −1 belongs to Bu(ε, δ), it is
enough to prove that Bs(ε, δ) is an open subset of PH1

m(M).
Let f ∈ Bs(ε, δ) be a partially hyperbolic diffeomorphism with decomposition T M =

Es ⊕ Ec ⊕ Eu .
By continuity of the partially hyperbolic splitting, any diffeomorphism g close enough

to f is also partially hyperbolic. We suppose first that every diffeomorphism g close to f
has a partially hyperbolic splitting with stable and unstable bundle dimensions equal to the
dimensions of the respectively sub-bundles in the partially hyperbolic splitting of f .

Now, given x ∈ X s
δ ( f ), there exists Kx > 0 such that F s

Kx
( f , x) is δ-dense in M , since

M is a compact manifold. Thus since the strong stable manifolds varies continuously with
respect to the diffeomorphism in compact parts, there exists a neighborhood Vx of f and a
neighborhood Ux of x , such that:

F s
Kx

(g, y) is δ-dense in M for every y ∈ Ux and g ∈ Vx .

In particular, note that Ux ⊂ X s
δ (g) for every g ∈ Vx .

These open sets Ux give a natural open cover of X s
δ ( f ), and since m(X s

δ ( f )) > 1 − ε,
we can use Vitalli’s Theorem, to obtain x1, . . . , xk ∈ X s

δ ( f ) such that

m

(
n⋃

i=1

Uxi

)
> 1 − ε.

Hence, considering V = ∩1≤i≤nVxi , we have thatm(X s
δ (g)) > 1− ε for every g ∈ V , which

implies V ⊂ Bs(ε, δ).
Now, if there is g close to f with different strong sub bundles dimension from f , then

we note that g has a partially hyperbolic splitting Ẽss ⊕ Ẽcs ⊕ Ẽc ⊕ Ẽcu ⊕ Ẽuu of T M to
g, such that the stable (unstable) bundle of g is Ẽss(uu) ⊕ Ẽcs(cu), with Ẽss(uu)(g) being a
sub bundle close to Es(u)( f ). Hence, by [17], there are invariant sub manifolds integrating
Ẽss(uu)(g) contained in the strong stable (resp. unstable) leaf of g which are close to the
strong manifolds of f , and thus the above arguments can also be used in this situation to
conclude the proof. 
�

3 Dynamical Consequences ofm-Minimality

In this section, we give three consequences of m-minimality.

3.1 Topological Mixing

In this subsection we prove the following:

Proposition 3.1 Let f be a partially hyperbolic diffeomorphism preserving a volume form
m. If f is ms or mu-minimal, then f is topologically mixing.

Proof :Since f is ms-minimal if, and only if, f −1 is mu-minimal, without loss of generality
we can suppose f is mu-minimal to prove the proposition.

Let U and V be two arbitrary open sets of M . We choose ε > 0 and an open ball B ⊂ U
of diameter 2ε, such that the compact disc F s

ε (x) with radius ε and centre x inside the strong
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stable leaf of x , is contained in U for every x ∈ B. Now, let δ > 0 be such that there is an
open ball of diameter δ > 0 inside V . In particular, any δ-dense subset of M should intersect
V . We also denote b = m(B).

Now, using that f is mu-minimal, i.e. m(X u( f )) = 1, and the continuity of the strong
unstable manifold, we can repeat the arguments in the proof of Lemma 2.6 to find an open
set W ⊂ M and K > 0 such that Fuu

K (x) is δ-dense for every x ∈ W and m(W ) ≥ 1 − b.
Now, by the partial hyperbolicity of f there exists N0 > 0 such that for any n ≥ N0 and

any x ∈ M if D ⊃ Fuu
ε (x) then f n(D) contains Fuu

K ( f n(x)). Using this information, we
will prove that f n(U ) ∩ V �= ∅, for any n ≥ N0, which implies f is topologically mixing,
since U and V were taken arbitrary.

Given n ≥ N0, since f preserves the Lebesgue measure m, m( f −n(W )) = m(W ) which
is bigger than 1 − b. Hence, since b = m(B), there exists x ∈ f −n(W ) ∩ B. By choice of
B we can consider a disk D ⊂ Fuu(x) ∩ U with centre x and radius ε > 0. Thus, f n(D)

contains Fuu
K (x), since n ≥ N0. Therefore, provided that f n(x) ∈ W , f n(D) is δ-dense in

M which implies f n(D) ∩ V �= ∅. 
�

3.2 Weak Ergodicity

In this sub-section we prove the following theorem:

Theorem 3.2 Let f be a C1+α-partially hyperbolic diffeomorphism preserving the Lebesgue
measure m. If f is ms-minimal or mu-minimal then f is weakly ergodic.

We give two proofs. The first one is direct and uses ideas from Pesin [20]. The second one
is more indirect, using a result due to Zhang [29]. However, it produces other results that can
be useful.

Proof We fix an open set U , by Poincaré’s Recurrence Theorem, we have a subset R ⊂ U
with m(U − R) = 0 formed by recurrent points. Hence, if z ∈ R and w ∈ F s(z) there exists
nk → ∞ such that f nk (w) ∈ U . 
�

For any x ∈ X s , we know that there exists y ∈ F s(x)∩U . Moreover, there exists an open
set V ⊂ U containing y such that

⋃
z∈V F s(z) is a neighborhood of x .

But, by absolute continuity, we have that Wx = ⋃
z∈R∩V F s(z) has full measure in⋃

z∈U F s(z) and the orbit of every point in W meets U .
Hence, using Lebesgue density points, we have thatW = ⋃

x∈X s Wx is a full measure set.
Moreover, the orbit of every point in W meets U . Using a countable basis of neighborhoods
we obtain the weak ergodicity. 
�
Remark 3.3 It is important to remark that the arguments used in the Proof 1 can also be used
together with accessibility property to obtain weakly ergodicity, forC1+α volume preserving
partially hyperbolic diffeomorphisms. See [5] for such proof.

Second proof:The second proof is based in the following result due toZhang.We recall that
an acip is an invariant probability which is absolutely continuous with respect to Lebesgue.

Theorem 3.4 (Zhang [29]) Let f ∈ Diffr (M) for some r > 1 and � be a strongly partially
hyperbolic set supporting some acipμ. Then� is bi-saturated, that is, for each point p ∈ �,
the global stable manifolds and the global unstable manifolds over p lies on �.

We remark that Zhang used this result to prove that essential accessibility implies weak
ergodicity, when the diffeomorphism supports some acip.
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Lemma 3.5 Let f be a C1+α , ms-minimal partially hyperbolic diffeomorphism. If � ⊂ M
is a compact f -invariant set with m(�) > 0, then � = M.

Proof Let � be a compact invariant set with positive Lebesgue measure. By Theorem 3.4, �
is bi-saturated. Since f is ms-minimal, we have that m(� ∩X s) = m(�) > 0. In particular,
� ∩ X s is non-empty. For any x ∈ � ∩ X s , we have that F s(x) ⊂ � and cl(F s(x)) = M .
Since � is closed, we get that � = M . 
�

As a consequence we obtain a criterion to obtain minimality.

Proposition 3.6 Let f be a C1+α , ms-minimal partially hyperbolic diffeomorphism. If X s

admits some compact invariant subset � with positive measure, then f is s-minimal.

Proof By Lemma 3.5, we have that � = M , and since � ⊂ X s , we conclude that X s = M ,
which means that f is s-minimal. 
�

Finally, we deal with weak ergodicity.

Theorem 3.7 Every C1+α partially hyperbolic diffeomorphism f that is ms-minimal is
weakly ergodic.

Proof Let {Un}n∈N be a base of the topology of M . For a fixed k ∈ N, consider the set
Ak = {x ∈ M | O(x) ∩ Uk = ∅}. The sets Ak’s are closed and f -invariant. Clearly,
m(Ak) < 1, since Ak ∩ Uk = ∅. By Lemma 3.5, we conclude that m(Ak) = 0 for every
k ∈ N. Hence the set

⋂
k∈N Ac

k has full measure. By construction, the orbit of every point in
this set passes trough every Un , so it is a dense orbit. 
�

Corollary 3.6 and Theorem 3.7 have analogous versions for the mu-minimal case.

3.3 The SH Property

Pujals and Sambarino introduced in [21] a property for partially hyperbolic diffeomorphisms
which they call by SH. Roughly, this property says that there are points in any unstable large
disks where the dynamics f behaves as a hyperbolic one. Moreover, they proved that SH is
a robust property. An amazing consequence of such property is that implies robustness of
minimality of the strong foliation.

We could ask if SH would also imply the robustness of m-minimality. We do not have
an answer for that, yet. However, we can prove that if a ms-minimal partially hyperbolic
diffeomorphism has SH property, then the set X s(g) still has measure close to one for any
C1-diffemorphism g near f . In particular X s is robustly a large set. This kind of result goes
in the same spirit of the result of Tahzibi in [25]. Also, it is important to point out that there
are examples of minimal foliations having foliations arbitrary close having no dense leaf in
the ambient manifold. For instance, the foliation given by the irrational rotation in the torus.

Definition 3.8 (Property SH) Let f be a partial hyperbolic diffeomorphism. We say that f
exhibits the property SH (or has the property SH) if there exist λ > 1 and C > 0 such that,
for any x ∈ M , there exists yu(x) ∈ Fuu

1 (x)) (the ball of radius 1 in Fuu(x) centered at x)
satisfying

m{Df n|Ec( f l (yu(x)))} > Cλn for any n > 0, l > 0.

In this definition, m(.) is the co-norm of the linear map.
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Proposition 3.9 Let f be a volume preserving partially hyperbolic diffeomorphism ms-
minimal having the SH property. Then given ε > 0, there exists a neighborhood V of f
such that m(X s(g)) > 1 − ε for every g ∈ V .

Proof Since f is ms-minimal, we can choose a small neighborhood V of f inside B(ε, δ),
for δ > 0 arbitrary small. See (1) in the proof of Proposition 2.5 to recall the definition of
B(ε, δ). Moreover, we can suppose that every diffeomorphisms in U has SH property, by
robustness of such property. Hence, if g ∈ U and δ > 0 is small enough, given any open set
U , we can use property SH as in [21] to prove that F s(g, g−k(x)) intersects U for any large
positive integer k, and every x ∈ X s

δ (g).
Now, we have, by Poincaré Recurrence Theorem, that almost every point in X s

δ (g) is
recurrent. Also, since X s

δ (g) is an open set of M , for almost every point x ∈ X s
δ (g) there

is arbitrary large positive integer nkx such that f nkx (x) ∈ X s
δ (g). Thus, using the first part

of the proof we have F s(x) must intersects U . Since this open set was taken arbitrary, we
have just proved that almost every point x in X s

δ (g) also belongs to X s(g). Which implies
m(X s(g)) > 1 − ε, since g ∈ B(ε, δ). 
�

4 The Abundance ofm-Minimallity

4.1 A Criterion to Obtain Density of the Strong Leaves

In this section we obtain information about the strong stable and unstable leaves of points
in the manifold containing hyperbolic periodic points in their ω-limit or α-limit sets. Recall
that the ω-limit (resp. α-limit) set of x , ω(x) (resp. α(x)), is the set of points y in M such
that there exists a sequence of forward (resp. backward ) iterates of x converging to y.

What follows is our criterion to show δ-density of strong leaves of a partially hyper-
bolic diffeomorphisms. In the next results, we address only the case of strong stable leaves.
However, there are similar results for the strong unstable leaves, which can be obtained by
considering f −1.

Proposition 4.1 Let f be a C1 partially hyperbolic diffeomorphism with splitting T M =
Es ⊕ Ec ⊕ Eu, having a periodic point p with period τ(p). Given δ > 0, if:

a) F s( f j (p)) is δ-dense in M, for any 0 ≤ j < τ(p);
b) For any small enough neighborhood V of p, there exist a submanifold D ⊂ V containing

p which integrates Ec ⊕ Eu, i.e. TDM = Ec ⊕ Eu, such that f −τ(p)(D) ⊂ D;

Then, for any x ∈ M such that p ∈ ω(x) we have F s(x) is also δ-dense in M.

Remark 4.2 Recalling that the index of a hyperbolic periodic point is its stable bundle
dimension, we remark that every hyperbolic periodic point p of a partially hyperbolic diffeo-
morphism f having index equal to the dimension of the strong stable bundle of f , satisfies
condition (b) of the previous proposition.

Before we prove Proposition 4.1, we use it and the previous remark to obtain a criterion
to see density of strong stable leaves.

Proposition 4.3 Let f be a C1 partially hyperbolic diffeomorphism with splitting T M =
Es ⊕ Ec ⊕ Eu, having a hyperbolic periodic point p with index s, where s = dim Es, such
that F s(p) is dense in M. Thus, if x ∈ M is such that p ∈ ω(x) then F s(x) is dense in M.
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Proof Since f is a diffeomorphism implies that f j (p) is dense in M for any integer j . In
particular, item (a) of Proposition 4.1 is satisfied for any δ > 0. Therefore, since item (b) of
such proposition is also true by Remark 4.2, we have that F s(x) is dense in M . 
�

Let we prove now Proposition 4.1.

Proof of Proposition 4.1 Let p be the periodic point of f satisfying items (a) and (b) in the
hypothesis.. And let x ∈ M different of p, such that p ∈ ω(x). Hence, there exist positive
integers nk converging to infinity when k goes to infinity, such that f nk (x) converges to
p. Recalling that τ(p) is the period of p, it is not difficulty to see that there exists some
0 ≤ j < τ(p) such that nk + j is a multiple of τ(p) for infinitely many positive integers k.
Hence, replacing the sequence (nk)k∈N for a subsequence we can assume nk + j = mkτ(p)
for any k ∈ N.

Let U ⊂ M be an arbitrary open set, containing a disk with diameter larger than δ.
Using item (a) of the properties satisfied for p, there exists K > 0 such that the compact

part F s
K ( f j (p)) of the strong stable leaf of f j (p) intersects U , for every 0 ≤ j < τ(p).

Moreover, since the strong stable leaves varies continuously in compact parts there exists a
neighborhood V of p such that F s

K (y) ∩U �= ∅ for every y ∈ f j (V ), 0 ≤ j < τ(p).
Taking V smaller, if necessary, let D ⊂ V the sub manifold given by item (b) in the

hypothesis. Moreover, as a consequence of the partial hyperbolicity of f , we can take another
small neighborhood Ṽ ⊂ V of p, such that F s

loc(y) intersects transversally f j (D) for
any y ∈ f j (Ṽ ), 0 ≤ j < τ(p). In particular, by choice of x , there exists k0 such that
F s( f nk0 (x)) intersects transversally D in a point zk0 . Now, by choice of D, we have that
f −mk0 τ(p)(zk0) ∈ f j (D) ⊂ f j (V ). Which implies that F s( f −mk0 τ(p)(zk0)) intersects U .
Thus, if we observe that by choice of j we have that x ∈ F s( f −mk0 τ(p)(zk0)), then we
conclude F s(x) intersects U . And since U was taken arbitrary we have just finished the
proof of proposition. 
�

4.2 The Existence of Dense Strong Leaves

The next result is a consequence of a standard application of the Hayashi’s connecting lemma
applied to transitive dynamics.

Proposition 4.4 Let f ∈ Diff1m(M) (resp. f ∈ Diff1ω(M)) be partially hyperbolic, and p
be a hyperbolic periodic point (resp. either hyperbolic or m-elliptic periodic point). Given
a small enough neighborhood U of f in Diff1m(M) (resp. in Diff1ω(M)), there exists a dense
subset D ⊂ U formed by partially hyperbolic diffeomorphisms such that F s(p(g), g) is
dense in M for every g ∈ D. Where p(g) denotes the analytic continuation of p for g.

Proof We can reduce U , if necessary, such that it is defined an analytic continuation to the
hyperbolic periodic point p. If p is a m-elliptic periodic point, then there alson exists an
analytic continuation for such point in the symplectic setting. Also, in this last case, it is
important to remark that 2m is a number smaller than center dimension of f .

From now on in this proof, we assume p is hyperbolic and f is volume preserving. For
the other cases, the proof is analogous. Reducing U again, if necessary, we can also suppose
that every diffemorphism in U is partially hyperbolic.

Let U1, . . . ,Un, . . . be an enumerable basis of opens sets of M . We define Bs
m ⊂ U the

subset of diffeomorphisms g such that g is partially hyperbolic and F s(p(g), g) intersects
Um . By continuity of the strong stable foliation Bs

m is an open set inside U .
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LetR ⊂ Diff1m(M) the residual subset given by [6] formed by transitive diffeomorphisms
(in the symplectic setting this is prove in [1]). In particular, R is dense in U . Let g ∈
R ∩ U . Since g is transitive, we can use the connecting lemma (see [28]) to perturb g
and find a partially hyperbolic diffeomorphism g̃ arbitrary close to g such that F s(p(g̃), g̃)
intersectsUm . Thus, we have that Bs

m is open and dense in U . Since,Um was taken arbitrary,
D = ∩Bs

m is a dense subset in U formed by diffeomorphisms satisfying the thesis of the
proposition. 
�

4.3 m-Minimality in the Conservative Setting

In this section we prove Theorem 1.3. Before that, although we know that weakly ergodicity
does not implies m-minimality, the following result says that weakly ergodicity implies
m-minimality in some setting.

Theorem 4.5 Let f ∈ Diff1m(M) be weakly ergodic and partially hyperbolic with decom-
position T M = Es ⊕ Ec ⊕ Eu. If there exists a hyperbolic periodic point p of f with
ind p = dim Es (resp. ind p = dim Es ⊕ Ec), and such thatF s(p) (resp.Fu(p) ) is dense
in M, then f is ms-minimal (resp. mu-minimal).

Proof This theorem is in fact a directly consequence of our criterion in the Sect. 4.1. In fact,
since f is weakly ergodic, then for almost every point x in M the forward orbit of x is dense
in M , in particular the hyperbolic periodic point p ∈ ω(x), which implies by Proposition 4.3
that F s(x) is dense in M , for almost every point x .

Respectively, if ind p = dim Es ⊕ Ec we can use Proposition 4.3, as before, but now
for f −1 to conclude that Fu(x) is dense for almost every point x . 
�

In the sequence we will use Theorem 4.5 to prove Theorem 1.3.
Another important tool we use in the proof of Theorem 4.5 is the well known blender sets,

introduced by Bonatti and Diaz, [6]. What follows is a definition of a blender given in [8].

Definition 4.6 Let f : M → M be a diffeomorphism and p a hyperbolic periodic point of
index i . We say that f has a blender associated to p if there is a C1-neighborhood U of f
and a C1 open set D of embeddings of an (d − i − 1)-dimensional disk D into M , such
for every g ∈ U , every disk D ∈ D intersects the closure of Ws(p(g)), where p(g) is the
continuation of the periodic point p for g. Moreover, we say that a blender is acctivated by
a hyperbolic periodic point p̃ of index i + 1 if the unstable manifold of p̃ contains a disk of
the superposition region.

According to the above definition we have the following result:

Lemma 4.7 (Lemma 6.12 in [8]) Let f : M → M be a diffeomorphism having a blender
associated to a hyperbolic periodic point p of index i . Suppose that the blender is activated
by a hyperbolic periodic point p̃ of index i + 1. Then, for every diffeomorphism g in a small
enough C1-neighborhood of f , the closure of Ws(p(g)) contains Ws( p̃(g)).

The next result gives an abundance of Blenders in the conservative setting, (See also [9]).

Theorem 4.8 (Theorem 1.1 in [24]) Let f ∈ Diffrm(M) such that f has two hyperbolic
periodic points p of index i and p̃ of index i + 1. Then there are Cr diffeomorphisms
arbitrary C1-close to f which preserve m and admit a blender associated to the analytic
continuation of p.
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What follows is a by-product of a conservative version of results in [11] and [2]:

Theorem 4.9 There is a residual subsetR ⊂ Diff1m(M)\cl(HT ) such that for every f ∈ R,
f is partially hyperbolic having non trivial extremal sub bundles with decomposition T M =
Es ⊕ Ec ⊕ Eu, and moreover there exists hyperbolic periodic points p0, . . . , pk of f , where
k = dim Es ⊕ Ec, such that ind pi = dim Es + i , for any i = 0, . . . , k.

Finally we can prove Theorem 1.3.

Proof of Theorem 1.3: LetR be the residual subset given by Theorem 4.9. Hence, we consider
f ∈ R and p0, . . . , pk the hyperbolic periodic points given by Theorem 4.9. Recall k =
dim Es ⊕ Ec, if T M = Es ⊕ Ec ⊕ Eu is the partially hyperbolic decomposition given by f .
Since the index of a hyperbolic periodic point does not change for its analytic continuation,
and since blender sets are robust, we can use Theorem 4.8 to find an open set U ⊂ Diff1m(M)

arbitrary close to f such that for every g ∈ U there exists a blender set �i (g) associated to
each pi (g), for any i = 0, . . . , k.

Now, using that generic volume preserving diffeomorphisms are transitive (see [6]) and
the connecting lemma, we can find g1 ∈ U such that the blender set �1(g1) is activated by
p2(g1). This implies, by Lemma 4.7, that there exists an open setU1 ⊂ U such that the closure
of Ws(p1(g)) contains Ws(p2(g)) for every g ∈ U1. Using the above arguments again, we
can find an open set U2 ⊂ U1 such that Ws(p2(g)) contains Ws(p3(g)) for every g ∈ U1.
And thus, repeating this process finitely many times we can obtain an open set V ⊂ U such
that

cl(Ws(pi (g))) ⊃ Ws(pi+1(g)), for every i = 0, . . . , k − 1, and g ∈ V. (3)

Reducing the open set V , if necessary, we can use [12] and Remark 3.3 to assume that
every C2-diffeomorphism g in V is weakly ergodic.

Hence, let g ∈ V be a C2-diffemorphism. Hence, g is topologically transitive, which
implies the existence of a dense backward orbit of g, say {g−n(x)}n∈N. Since g is partially
hyperbolic, the local strong unstable manifolds has uniform length, and thus there exists
n0 ∈ N such that Fu( f −n0(x)) intersects transversallyWs

loc(pk(g)). Thus, the accumulation
points of { f −n(x)}n∈N is also accumulated by points inWs(pk(g)), which implies the stable
manifold of pk(g) is dense in M . Then, using (3) we conclude thatWs(p0(g)) = F s(p0(g))
is also dense in M .

We have just proved that g satisfies the hypothesis of Theorem 1.3, which implies g is
ms-minimal.

Therefore, since V is arbitrary close to f , and f is arbitrary in R, by standard topology
arguments we can find an open set As ⊂ Diff1m(M)\cl(HT ) such that any g ∈ As is
ms-minimal, and R is contained in the closure of As .

Now, since the partially hyperbolic diffeomorphisms in R has non trivial extremal
sub bundles, the above arguments can also be done for f −1, to find an open set Au ⊂
Diff1m(M)\cl(HT ) such that any g ∈ Au is mu-minimal, and R is also contained in the
closure of Au .

The proof of theorem is finished taking A = As ∩ Au . 
�

4.4 m-Minimality in the Symplectic Setting

In this section we will prove Theorem 1.5. Here (M, ω) is a symplectic manifold, being ω

a symplectic form on M . Also, in this subsection m will denotes the volume form on M
induced by the exterior powers of ω.
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The next result use m-elliptic periodic points to see density of strong leaves of partially
hyperbolic diffemorphisms. Recall that a periodic point p of a symplectic diffeomorphism f
with period τ(p) is called m-elliptic if Df τ(p)(p) has exactly 2m modulus one eigenvalues,
which must be non real and simple eigenvalues.

Beforewe state the result, given δ and ε positive,we denote byBs
ω(ε, δ) andBu

ω(ε, δ) the set
formed by symplectic partially hyperbolic diffeomorphisms f such that m(X s

δ ( f )) > 1− ε

and m(X u
δ ( f )) > 1 − ε, respectively.

Proposition 4.10 Let f ∈ Diff1ω(M) be partially hyperbolic having a 2m-dimensional center
bundle, and a m-elliptic periodic point p. Thus, for any neighborhood U ⊂ Diff1ω(M) of f
and any ε and δ > 0 there exists a symplectic partially hyperbolic diffeomorphism g ∈ U
which belongs to Bs(ε, δ) (resp. Bu(ε, δ)).

Proof We prove the existence of such g inside Bs(ε, δ). The other case is a consequence by
considering f −1 instead of f .

By continuity of the partially hyperbolic splitting and the robustness of m-elliptic peri-
odic points in the symplectic scenario, we can suppose all diffeomorphisms in U are partially
hyperbolic having a partially hyperbolic decomposition with same central bundle, and more-
over, every diffeomorphism in U has a m-elliptic periodic point p(g) which is the analytic
continuation of p.

After a perturbation, using Proposition 4.4, we can assume f is such that F s(p) is dense
in M . Now, let ε > 0 and δ > 0 given arbitrary. Since the strong stable foliation also
varies continuously with the diffeomorphism in compact parts, taking a small neighborhood
V of p and U smaller, if necessary, we can suppose F s(x, g) is δ-dense in M for every
diffeomorphism g ∈ U and x ∈ V .

By Zender [30], there is a C2-diffeomorphism f1 ∈ U . Moreover, as in the conservative
setting, we can use accessibility and Remark 3.3 to assume that there exists a neighbor-
hood U1 ⊂ U such that every C2-diffeomorphism g in U1 is weakly ergodic. Recall that
acessibility is also true in an open and dense subset among partially hyperbolic symplectic
diffeomorphisms.

To simplify the notation we still denote by p the analytic continuation of p for f1.
Now, using Pasting Lemma of Arbieto and Matheus [4], we can perturb f1 to find a C2-
diffeomorphism f2 ∈ U1 such that p still is a m-elliptic periodic point of f2, and moreover
f2 = Df1(p) in a small neighborhood of p, in local coordinates. Hence, replacing V by a
small neighborhood of p and looking to V in local coordinates, if we consider Es and Ec

the stable and center bundles of f2, respectively, we have that D = (Ec ⊕ Eu(p)) ∩ V is
locally f −τ(p)

2 -invariant. In fact, we have that Df −1
1 (p)|Eu contracts and Df −τ(p)

1 (p)|Ec

has norm equal to one.
Now, since f2 is C2 and belongs to U1 it is weakly ergodic. Thus, for almost every point

x in M , p belongs to ω(x), which implies by Proposition 4.1 that F s(x, f2) is δ-dense in M ,
since F s(p, f2) is. 
�

In the hypothesis of Proposition 4.10, we have the existence of a m-elliptic periodic point
for a partially hyperbolic diffeomorphismwith center dimension equal to 2m. This hypothesis
was essential in the proof of such result. However, it is not guaranteed that this point actually
exists for an arbitrary symplectic partially hyperbolic diffeomorphism. In fact, this was a
question posed by [1]. Fortunately, it was proved in [10] that this is the case for an open and
dense subset among partially hyperbolic symplectic diffeomorphisms. More precisely:
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Theorem 4.11 (Theorem A in [10]) There exists an open and dense subset A ⊂ Diff1ω(M),
such that if f ∈ A is a partially hyperbolic diffeomorphism with 2m-dimensional center
bundle, then f has a m-elliptic periodic point.

Proof of Theorem 1.5: Let we consider the open and dense subsetA inside the partially hyper-
bolic symplectic diffeomorphisms given by Theorem 4.11. Hence, given m, n ∈ N, by
Proposition 4.10 we have that Bs(1/m, 1/n) is dense in A. Since these sets are open in
Diff1ω(M) we have that Rs = (∩Bs(1/m, 1/n) ∩ A) ∪ (cl(A))c is a residual subset inside
Diff1ω(M) such that every partially hyperbolic diffeomorphism f ∈ Rs is ms-minimal.

Considering the maps f −1, we can also find a residual subset Ru ⊂ Diff1ω(M) such that
every partially hyperbolic diffeomorphism f ∈ Ru is mu-minimal.

Thus the proof is finished taking R = Rs ∩ Ru . 
�
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