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Abstract
In this paper, we consider a kind of second-order delay differential system. By taking some
transforms, the property of delay is reflected in the boundary condition. The wonder is that
the corrseponding first-order system is exactly the so-called P-boundary value problem of
Hamiltonian system which has been studied deeply by many mathematicians, including the
authors of this paper. Firstly, we define the relative Morse index μQ(A, B) for the delay
system and give the relationship with the P-index iP (γR) of Hamiltonian system. Secondly,
by this index, topology degree and saddle point reduction, the existence of periodic solutions
is established for this kind of delay differential system.

Keywords Delay differential systems · Second-order · Periodic solution · Variational
methods

1 Introduction andMain Results

Delay models usually appear in some biological modeling. They have been used to describe
several aspects of infectious disease dynamics: primary infection [8], drug therapy [34] and
immune response [9], to name a few. Delays have also appeared in the study of chemostat
models [48], circadian rhythms [39], epidemiology [10], the respiratory system [42], tumor
growth [43] and neural networks [4]. Delay effects even appeared in the population dynamics
of many species [40, 41].
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In 1974, Kaplan and Yorke [21] considered the periodic solutions of the following kinds
of delay differential equations

ẋ(t) = f (x(t − 1)),

and

ẋ(t) = f (x(t − 1)) + f (x(t − 2)),

with odd function f . They turned their problems into the problems of periodic solution of
autonomous Hamiltonian system, it was proved that there existed an energy surface of the
Hamiltonian function containing at least one periodic solution. Since then many papers (see
[15, 16, 22, 23, 25] and the references therein) used Kaplan and Yorke’s original idea to
search for periodic solutions of more general differential delay equations of the following
form

ẋ(t) = f (x(t − 1)) + f (x(t − 2)) + · · · + f (x(t − m + 1)).

The existence of periodic solutions of above delay differential equation has been investigated
by Nussbaum in [35] using different techniques. Recently, many results on delay differential
systems were obtained, readers may refer to the references [7, 18–20, 24, 33, 36, 46, 47] and
the references therein. Specially, delay differential equation also has been used to study the
COVID-19, the time-delay process is introduced to describe the latent period and treatment
cycle, see [45], where the delay differential system derived from the COVID-19 model is a
first order equation coupling with some second order delay differential-integral equations.
The authors of this paper also have some results on the existence of periodic solutions of
above delay differential equation, see [27, 28, 30, 44].

In 1994, Bainov and Domoshnitsky [3] considered the stability of the following second-
order delay differential systems

z′′(t) +
n∑

i=1

pi (t)z
′(t − θi (t)) +

m∑

j=1

z(t − τ j (t)) = f (t),

and Agarwal et al. [1] further improved their result. For other results on second-order delay
differential equations, readers may refer to [11, 14, 26], and the references therein.

In this paper, we will consider the following delay differential system
{

ẍ(t) = −[∇v(x(t − τ)) + · · · + ∇v(x(t − (m − 1)τ ))],
x(t + mτ) = x(t),

∀t ∈ R, (DDS)

with x ∈ C2(R,Rn), v ∈ C1(Rn,R). By taking some transformations, we will transfer the
delay differential system (DDS) into the following second order Hamiltonian system

⎧
⎨

⎩

Az̈(t) = V ′(z(t)),
z(1) = Qz(0),
ż(1) = Qż(0),

∀t ∈ [0, 1], (HS)

where z : R → R
N , A, Q ∈ L(RN ) with L(RN ) the set of real square matrixes on R

N .
More generally, in the system (HS) we assume A, Q satisfy the following conditions which
including (DDS) as a special case (see Section 3.2 below for details)

A−1 ∈ L(RN ), AT = A, QT = Q−1, AQ = QA, (1.1)
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and there exists k ∈ N
+ such that

Qk = IN , (1.2)

with IN the identity map on RN . The function V satisfies the following condition
(V0) V ∈ C1(RN ,R) and

V (Qz) = V (z),∀z ∈ R
N . (1.3)

The system (HS) is different from the classical second order Hamiltonian system since the
matrix A is neither positive or negative definite and the corresponding variational problem
is strongly indefinite.

If V ∈ C2(RN ,R), for any solution ẑ(t) of (HS), linearized system at ẑ(t) is
⎧
⎨

⎩

Az̈(t) = B(t)z(t),
z(1) = Qz(0),
ż(1) = Qż(0),

∀t ∈ [0, 1], (LHS)

with B(t) = V ′′(ẑ(t)), and we have B(1)Q = QB(0). So, we define the space as

LQ(S1,L(RN )) := {B ∈ C([0, 1],L(RN ))|B(t + 1)Q = QB(t), BT (t) = B(t)}.
In the next section, we will define the index pair (μQ(A, B), υQ(A, B)). With this index, we
have the following results.

Theorem 1.1 Assume V satisfies (V0) and the following condition.
(V1) V ′ : RN → R

N is Lipschitz continuous

‖V ′(z + y) − V ′(z)‖RN ≤ lV ‖y‖RN , ∀z, y ∈ R
N , (1.4)

with its Lipschitz constant lV > 0.
(V±

2 ) There exists M1, M2, K > 0, B(t) ∈ LQ(S1,L(RN )) with B(t) ≡ B, such that

V ′(z) = Bz + G(z), ∀z ∈ R
N ,

with

|G(z)| ≤ M1, ∀z ∈ R
N ,

and

± (G(z), z)RN ≥ M2|z|RN , ∀|z|RN > K . (1.5)

Then (HS) has at least one solution.

Theorem 1.2 Assume V satisfying conditions (V0), (V1) and the following condition
(V3) There exists B ∈ C(RN ,Ls(R

N )) such that

V ′(z) = B(z)z + G(z), ∀z ∈ R
N ,

with

G(z) = o(z), |z| → ∞.

(V4) There exist B1, B2 ∈ LQ(S1,L(RN )) satisfying

μQ(A, B1) = μQ(A, B2), υQ(A, B2) = 0,
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and

B1(t) ≤ B(z) ≤ B2(t), ∀(t, z) ∈ S1 × R
N .

Then (HS) has at least one solution.

Since Qk = IN , the solutions obtained in Theorem 1.1-1.2 in fact are k-periodic with
Q-symmetric. As application of the above two theorems, we will treat the delay differential
system (DDS) and obtain two results which are stated in Theorems 3.2–3.3.

2 Variational Setting

Let S1 := R/(kZ) and E the closed subspace of W 1,2(S1,RN ) defined by

E = {z ∈ W 1,2(S1,RN )|z(t + 1) = Qz(t)}, (2.1)

with the norm

‖z‖2E := ‖ż‖2L2 + ‖z‖2L2

and the corresponding inner product (·, ·)E. Define the functional ϕ on E by

ϕ(z) := 1

2

∫ 1

0
(Aż(t), ż(t))dt +

∫ 1

0
V (z(t))dt, z ∈ E.

The critical points of ϕ are the solutions of (HS).
Define the Hilbert space

L := {z ∈ L2(S1,RN )|z(t + 1) = Qz(t)}.
Define the unbounded self-adjoint operator Â : L → L by

Âz := Az̈(t), z ∈ D(A) (2.2)

with D( Â) ⊂ L the domain of Â and we have E = D(| Â|1/2). Without confusion, we
still denote it by A for simplicity. We have A is unbounded from below and above, so the
functional ϕ is strongly indefinite in this sense. Now, we will use the method of saddle point
reduction to overcome this difficulty and get the definition of relative Morse index. On the
other hand, the system (HS) can be translated to the first order Hamiltonian systems which
has the P-index defined in [12, 13, 29, 31, 32], we will give the relation between these two
indices.

2.1 Relative Morse Index

For any B ∈ LQ(S1,L(RN )), consider the linearized system (LHS). We know that B defines
a self-adjoint operator on L by

z(t) → B(t)z(t), ∀z ∈ L. (2.3)

Without confusion, we still denote it by B, that is to say LQ(S1,L(RN )) ⊂ Ls(L) the set of
bounded self-adjoint operators on L. So (LHS) can also be rewritten as the following linear
operator equation

Az = Bz, z ∈ D(A) ⊂ L, (LOE)
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with A = Â defined in (2.2) and B ∈ LQ(S1,L(RN )) ⊂ Ls(L).
Now, we will give the definition of the relative Morse index and display the relationship

with spectral flow. Generally, for any bounded self-adjoint Fredholm operator F on E, there
is a unique F-invariant orthogonal splitting

E = E+(F) ⊕ E−(F) ⊕ E0(F), (2.4)

where E0(F) is the null space of F , F is positive definite on E+(F) and negative definite
on E−(F). We denote by PF the orthogonal projection from E to E−(F). For any compact
self-adjoint operator T on E, PF − PF−T is compact (see Lemma 2.7 of [49]). Then by
Fredholm operator theory, PF |E−(F−T ) : E−(F − T ) → E−(F) is a Fredholm operator.
Here and in the sequel, we denote by ind(·) the Fredholm index of a Fredholm operator.

Definition 2.1 For any bounded self-adjoint Fredholm operator F and a compact self-adjoint
operator T on E, the relative Fredholm index pair (μF (T ), υF (T )) is defined by

μF (T ) = ind(PF|E−(F−T)) (2.5)

and

υF (T ) = dimE0(F − T ). (2.6)

On the other hand, let {Fθ |θ ∈ [0, 1]} be a continuous path of self-adjoint Fredholm operators
on the Hilbert space E. The following proposition displays the relationship between spectral
flow and the relative Fredholm index defined above. It is well known that the concept of
spectral flow S f (Fθ ) was first introduced by Atiyah, Patodi and Singer in [2], and then
extensively studied in [5, 17, 37, 38, 49].

Proposition 2.2 (See [6, Proposition 3].) Suppose that, for each θ ∈ [0, 1], Fθ − F0 is a
compact operator on E, then

ind(PF0 |E−(F1)) = −S f (Fθ ).

Thus, from Definition 2.1,

μF (T ) = −S f (Fθ , 0 ≤ θ ≤ 1),

where Fθ = F − θT . Moreover, if σ(T ) ⊂ [0,∞) and 0 /∈ σP (T ) the set of point spectrum
of T , from the definition of spectral flow, we have

μF (T ) = −S f (Fθ , 0 ≤ θ ≤ 1)

=
∑

θ∈[0,1)
υF (θT )

=
∑

θ∈[0,1)
dimE0(F − θT ). (2.7)

Up to now, we have defined the relative Fredholm index pair (μF (T ), υF (T )) in general
abstract setting and displayed the relationship with the spectral flow. Now, we can define our
relative Morse index pair (μQ(A, B), υQ(A, B)) for our problem. The operator A defined
a bounded self-adjoint Fredholm operator Ã on E by

( Ãz, w)E := (Az, w)L, ∀z, w ∈ E. (2.8)

On the other hand, since the embedding map i : E ↪→ L is compact, the dual operator
i∗ : L → E is compact and for any B ∈ Ls(L) , i∗B is a compact self-adjoint operator on
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E. By Definition 2.1, we have the relative Fredholm index pair (μ Ã(i∗B), υ Ã(i∗B)), so we
have the following definition.

Definition 2.3 Let the operator A defined in (2.2), for any B ∈ LQ(S1,L(RN )), the index
pair (μQ(A, B), υQ(A, B)) is defined by

{
μQ(A, B) = μ Ã(i∗B),

υQ(A, B) = υ Ã(i∗B).
(2.9)

2.2 Relationship with P-Index

In this part, we will transfer (HS) into a first-order Hamiltonian system with P-boundary
condition which is called P-boundary problem, and we will get that the index pair
(μQ(A, B), υQ(A, B)) coincides with the P-index pair (iP (γ ), νP (γ )) defined in [12, 13,
29, 31, 32].

Firstly, let us recall the P-boundary problem. Recall that the symplectic group is defined
as

Sp(2N ) ≡ Sp(2N ,R) = {M ∈ L(R2N )|MT JM = J },

where J =
(
0 −IN
IN 0

)
, IN is the identitymatrix onRN , andL(R2N ) is the space of 2N×2N

real matrices. The P-boundary problem is the following Hamiltonian system
{
ẋ(t) = J H ′(t, x),
x(1) = Px(0),

(2.10)

where P ∈ Sp(2N ) and H ∈ C1(R × R
2N ,R) satisfying

H(t + 1, Px) = H(t, x), ∀(t, x) ∈ R × R
2N .

Clearly, if H ∈ C1(R×R
2N ,R), we have PT H ′′(t+1, Px)P = H ′′(t, x). Let x : [0, 1] →

R
2N be a solution of (2.10), linearzing the Hamiltonian system ẋ(t) = J H ′(t, x(t)) at x we

get a Hamiltonian system

ẏ(t) = J R(t)y(t), y(t) ∈ R
2N , (2.11)

with R(t) = H ′′(t, x(t)) satisfying

R(t + 1) = (P−1)T R(t)P−1. (2.12)

The fundamental solution of (2.11) is a symplectic path γR ∈ C1([0,+∞), Sp(2N )) with
γR(0) = I . For any such symplectic path γ , there is a so called Maslov P-index pair
(iP (γ ), νP (γ )) ∈ Z×{0, 1, · · · , 2N }. TheMaslov P-index theory for a symplectic path was
first studied in [12, 29] independently for any symplectic matrix P with different treatment.
The Maslov P-index theory was generalized in [31] to the Maslov (P, ω)-index theory for
any P ∈ Sp(2N ) and all ω ∈ U = {z ∈ C||z| = 1}. When the symplectic matrix P is
orthogonal, the (P, ω)-index theory and its iteration theory were studied in [13] and it has
been generalized in [32] . When ω = 1, the Maslov (P, ω)-index theory coincides with the
Maslov P-index theory.

Secondly, let us consider system (HS). Denote

y := Aż, x :=
(
z
y

)
, and J =

(
0 −IN
IN 0

)
, (2.13)
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then system (HS) can be transformed to the following first-order Hamiltonian system
{

ẋ = J H ′(x),
x(1) = Px(0),

(2.14)

with

H(x) := V (z) − 1

2
(A−1y, y), P :=

(
Q 0
0 Q

)
.

From (1.1), we have H(Px) = H(x) and PT J P = J , so P ∈ SP(2N ). That is to say
by (2.13), we can transform system (HS) into the so called P-boundary problem (2.10).
Similarly, by (2.13), for any B ∈ LQ(S1,L(RN )), we can transform system (LHS) into the
linear system

ẋ(t) = J R(t)x(t)

with R :=
(
B(t) 0
0 −A−1

)
and satisfying R(t + 1) = (P−1)T R(t)P−1. Denote the corre-

sponding fundamental solution by γR , so we have the P-pair (iP (γR), νP (γR)).
Lastly, from the property of the P-index pair, Proposition 2.2 and Definition 2.3, we have

υQ(A, B) = νP (γR), μQ(A, B) = iP (γR) + k0, ∀B ∈ LQ(S1,L(RN )),

where the constant k0 ∈ Z.

2.3 Saddle Point Reduction

Consider system (HS) with V satisfying conditions (V0) and (V1). We will consider the
method of saddle point reduction without assuming the nonlinear term V ∈ C2(RN ,R),
then we will give some abstract critical point theorems. Let EA(z) the spectrum measure of
A, since A has compact resolvent, we can choose l > lV , such that

− l, l /∈ σ(A) and (−l, l) ∩ σ(A) �= ∅. (2.15)

Consider the following projection maps on L

P0
A :=

∫ l

−l
dEA(z), P⊥

A = I − P0
A, (2.16)

with I the identity map on L. Then we have the following decomposition

L = L⊥
A ⊕ L0

A, (2.17)

where L∗
A := P∗

AL(∗ = ⊥, 0) and L0
A is finite dimensional subspace of L. Denote A∗ the

restriction of A on L∗(∗ = ⊥, 0), thus we have (A⊥)−1 are bounded self-adjoint linear
operators on L⊥ respectively and satisfying

‖(A⊥)−1‖ ≤ 1

l
. (2.18)

Define the functional � on L by

�(z) =
∫ 1

0
V (z(t))dt, z ∈ L. (2.19)
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Then from conditions (V0) and (V1), we have � ∈ C1(L,R) and

‖�′(z + y) − �′(z)‖L ≤ lV ‖y‖L,∀z, y ∈ L. (2.20)

System (HS) can be rewritten as the following abstract self-adjoint operator equation on L

Az = �′(z), z ∈ D(A) ⊂ L, (OE)

which is equivalent to the following operator equations

z⊥ = (A⊥)−1P⊥
A �′(z⊥ + z0), (2.21)

and

A0z0 = P0
A�′(z⊥ + z0), (2.22)

where z∗ = P∗
Az(∗ = ⊥, 0), for simplicity, we rewrite x := z0. From (2.18) and(2.20),

we have (A⊥)−1P⊥
A �′ is contraction map on L+ ⊕ L− for any x ∈ L0. So there is a map

z⊥(x) : L0 → L⊥ satisfying

z⊥(x) = (A⊥)−1P⊥�′(z⊥(x) + x), ∀x ∈ L0, (2.23)

and we have the following properties.

Proposition 2.4 (1) The map z⊥(x) : L0 → L⊥ is continuous, in fact we have

‖z⊥(x + h) − z⊥(x)‖L ≤ lV
l − lV

‖h‖L, ∀x, h ∈ L0. (2.24)

(2) ‖z⊥(x)‖L ≤ lV
l − lV

‖x‖L + 1

l − lV
‖�′(0)‖L.

Proof (1) For any x, h ∈ L0, we have

‖z⊥(x + h) − z⊥(x)‖L
= ‖(A⊥)−1P⊥

A �′(z⊥(x + h) + x + h) − (A⊥)−1P⊥
A �′(z⊥(x) + x)‖L

≤ 1

l
‖�′(z⊥(x + h) + x + h) − �′(z⊥(x) + x)‖L

≤ lV
l

‖z⊥(x + h) − z⊥(x) + h‖L

≤ lV
l

‖z⊥(x + h) − z⊥(x)‖L + lV
l

‖h‖L.

So we have ‖z⊥(x + h) − z⊥(x)‖L ≤ lV
l−lV

‖h‖L and the map z⊥(x) : L0 → L⊥ is
continuous.

(2) Similarly,

‖z⊥(x)‖L = ‖(A⊥)−1P⊥
A �′(z⊥(x) + x)‖L

≤ 1

l
‖�′(z⊥(x) + x)‖L

≤ 1

l
‖�′(z⊥(x) + x) − �′(0)‖L + 1

l
‖�′(0)‖L

≤ lV
l

(‖z⊥(x)‖L + ‖x‖L) + 1

l
‖�′(0)‖L.

So we have ‖z⊥(x)‖L ≤ lV
l−lV

‖x‖L + 1
l−lV

‖�′(0)‖L.
��
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Remark 2.5 It’s easy to see E = D(|A| 12 ), with the equivalent norm

‖z‖2E := ‖|A| 12 (z⊥)‖2L + ‖x‖2L, z ∈ E.

From (2.23), we have z⊥(x) ∈ D(A) ⊂ E, and

(1) The map z⊥(x) : L0 → E is continuous, and

‖(z⊥)(x + h) − (z⊥)(x)‖E ≤ lV · l 12
l − lV

‖h‖L, ∀x, h ∈ L0. (2.25)

(2) ‖(z⊥)(x)‖E ≤ l
1
2

l − lV
(lV · ‖x‖L + ‖�′(0)‖L).

Proof The proof is similar to Proposition 2.4, we only prove (1).

‖z⊥(x + h) − z⊥(x)‖E = ‖(|A| 12 )[z⊥(x + h) − z⊥(x)]‖L
= ‖(A⊥)−

1
2 [P⊥

A �′(z⊥(x + h) + x + h) − P⊥
A �′(z⊥(x) + x)]‖L

≤ 1

l
1
2

‖�′(z⊥(x + h) + x + h) − �′(z⊥(x) + x)‖L

≤ lV

l
1
2

‖z⊥(x + h) − z⊥(x) + h‖L

≤ lV

l
1
2

‖z⊥(x + h) − z⊥(x)‖L + lV

l
1
2

‖h‖L

≤ lV
l

‖z⊥(x + h) − z⊥(x)‖E + lV

l
1
2

‖h‖L,

where the last inequality depends on the fact that ‖z⊥‖E ≥ l
1
2 ‖z⊥‖L, so we have (2.25).

Now, define the map z : L0 → L by

z(x) = x + z⊥(x).

Define the functional a : L0 → R by

a(x) = 1

2
(Az(x), z(x))L − �(z(x)), x ∈ L0. (2.26)

With standard discussion, the critical points of a correspond to the solutions of (OE), and we
have

Lemma 2.6 Assume V satisfies (V0), (V1), then we have a ∈ C1(L0,R),

a′(x) = Az(x) − �′(z(x)), ∀x ∈ L0. (2.27)

Further more, if V ∈ C2(RN ,R), we have a ∈ C2(L0,R) and

a′′(x) = A|L0 − P0�′′(z(x))z′(x), (2.28)

Proof For any x, h ∈ L0, write

η(x, h) := z⊥(x + h) − z⊥(x) + h

for simplicity, that is to say

z(x + h) = z(x) + η(x, h), ∀x, h ∈ L0,
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and from (2.24), we have

‖η(x, h)‖L ≤ C‖h‖L, ∀x, h ∈ L0, (2.29)

where C = l

l − lV
. Let h → 0 in L0, and for any x ∈ L0, we have

a(x + h) − a(x)

= 1

2
[(Az(x + h), z(x + h))L − (Az(x), z(x))L] − [�(z(x + h)) − �(z(x))]

= (Az(x), η(x, h))L + 1

2
(Aη(x, h), η(x, h))L

− (�′(z(x)), η(x, h))L + o(‖η(x, h)‖L).

From (2.29) we have

a(x + h) − a(x) = (Az(x) − �′(z(x)), η(x, h))L + o(‖h‖L), ∀x ∈ L0, and ‖h‖L → 0.

Since z±(x) is the solution of (2.23) and from the definition of η(x, h), we have

(Az(x) − �′(z(x)), η(x, h))L = (Az(x) − �′(z(x)), h)L, ∀x, h ∈ L0,

so we have

a(x + h) − a(x) = (Az(x) − �′(z(x)), h)L + o(‖h‖L), ∀x ∈ L0, and ‖h‖L → 0,

and we have proved (2.27). If � ∈ C2(L,R), from (2.23) and by implicit function theorem,
we have z± ∈ C1(L0,L±). From (2.23) and (2.27), we have

a′(x) = Ax − P0�′(z(x))

and

a′′(x) = A|L0 − P0�′′(z(x))z′(x),

that is to say a ∈ C2(L0,R). ��

3 The Proofs of Main Results with Applications

3.1 The Proofs of Main Results

Proof of Theorem 1.1 Now, we consider the case of (V−
2 ). Since A has compact resolvent, 0

is at most an isolate point spectrum of A − B with finite dimensional eigenspace, that is to
say there exists ε0 > 0 small enough, such that (−ε0, 0)∩σ(A−B) = ∅. For any ε ∈ (0, ε0)
and λ ∈ [0, 1], consider the following two-parameters equation

(ε · I + A − B)z = λG(z), (HSε,λ)

with I the identity map on L. If ε = 0 and λ = 1, it is (HS). We divide the following proof
into four steps.
Step 1 There exists a constant C independent of ε and λ, such that if zε,λ is a solution of
(HSε,λ),

ε‖zε,λ‖L ≤ C, ∀(ε, λ) ∈ (0,
ε0

2
) × [0, 1].
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Since (−ε0, 0) ∩ σ(A − B) = ∅, we have (ε − ε0, ε) ∩ σ(ε · I + A − B) = ∅. Consider
the orthogonal splitting

L = L−
ε·I+A−B ⊕ L+

ε·I+A−B ,

where ε · I + A − B is negative definite on L−
ε·I+A−B , and positive define on L+

ε·I+A−B .
Thus, if z ∈ L, we have the splitting

z = z− + z+,

with z− ∈ L−
ε·I+A−B and z+ ∈ L+

ε·I+A−B . If zε,λ is a solution of (HSε,λ) with its splitting
zε,λ = z−ε,λ + z+ε,λ defined above, then we have

((ε · I + A − B)zε,λ, z
+
ε,λ − z−ε,λ)L = λ(G(zε,λ), z

+
ε,λ − z−ε,λ)L.

Since (ε − ε0, ε) ∩ σ(ε · I + A − B) = ∅, we have
((ε · I + A − B)zε,λ, z

+
ε,λ − z−ε,λ)L ≥ min{ε0 − ε, ε}‖zε,λ‖2L.

Since r is bounded, for (ε, λ) ∈ (0, ε0
2 ) × [0, 1], we have

C‖zε,λ‖L ≥ λ(G(zε,λ), z
+
ε,λ − z−ε,λ)L ≥ ε‖zε,λ‖2L.

Therefor, we have

ε‖zε,λ‖L ≤ C, ∀(ε, λ) ∈ (0,
ε0

2
) × [0, 1].

Step 2 For any (ε, λ) ∈ (0, ε0
2 ) × [0, 1], (HSε,λ) has at least one solution. Here, we use the

topology degree theory. Since 0 /∈ σ(ε · I + A − B), (HSε,λ) can be rewritten as

z = λ(ε · I + A − B)−1G(z).

Denote by f (ε, λ, z) := λ(ε · I + A − B)−1G(z) for simplicity. From the compactness of
(ε · I + A− B)−1 and condition (V−

2 ), Leray Schauder degree theory can be used to the map

z → z − f (ε, λ, z), z ∈ L.

From the result received in Step 1, we have

deg(I − f (ε, λ, ·), B(0, Rε), 0) ≡ deg(I − f (ε, 0, ·), B(0, Rε), 0)

= deg(I , B(0, R(ε)), 0)

= 1,

where Rε > C
ε
is a constant only depends on ε, and B(0, Rε) := {z ∈ L|‖z‖L < Rε}.

Step 3 For λ = 1, ε ∈ (0, ε0/2), denote by zε one of the solutions of (HSε,1). We have
‖zε‖H ≤ C . In this step, C denotes various constants independent of ε.
From the boundedness received in Step 1, we have

‖(A − B)zε‖L = ‖εzε − r(t, x, zε)‖L ≤ C . (3.1)

Now, consider the orthogonal splitting

L = L0
A−B ⊕ L⊥

A−B ,
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where A − B is zero on L0
A−B , and L⊥

A−B is the orthonormal complement space of L0
A−B .

Let zε = z0ε + z⊥ε with z0ε ∈ L0
A−B and z⊥ε ∈ L⊥

A−B . Since 0 is an isolated point in σ(A− B),
from (3.1), we have

‖z⊥ε ‖L ≤ C (3.2)

Additionally, since G(zε), z⊥ε and εzε are bounded in L, we have

(G(zε), zε)L = (G(zε), z
⊥
ε )L + (G(zε), z

0
ε)L

= (G(zε), z
⊥
ε )L + (εzε + (A − B)zε, z

0
ε)L

= (G(zε), z
⊥
ε )L + ε(z0ε , z

0
ε)L

≥ C . (3.3)

On the other hand, from (3.14) in (H−
2 ), we have

(G(zε), zε)L =
∫

�(K )

(G(zε), zε)dt +
∫

S1/�(K )

(G(zε), zε)dt

≤ −M2

∫

�(K )

|zε|dt + C

≤ −M2‖zε‖L1(S1) + C, (3.4)

where �(K ) := {
t ∈ S1||zε(t)| > K

}
. From (3.3) and (3.4), we have

‖zε‖L1(S1) ≤ C . (3.5)

Moreover, since L0
A−B is a finite dimensional space, all norms are equivalent, from (3.2) and

(3.5), we have prove the boundedness of ‖zε‖L.
Step 4 Passing to a sequence of εn → 0, there exists z ∈ L such that

lim
εn→0

‖zεn − z‖L = 0.

Here, we will use the method of saddle point reduction. Recall the constant l > lV
satisfying condition (2.15), the projections P0

A, P
⊥
A defined in (2.16), the decomposition

L = L0
A ⊕ L⊥

A defined in (2.17), and we have

‖(A⊥)−1‖ ≤ 1

lV + δ
,

with δ = l − lV . Let ε′ := min{ε0, δ}, for ε ∈ (0, ε′
2 ), denote by Aε := ε · I + A. Then Aε

has the same invariant subspace with A, so we can also denote by A∗
ε := Aε|L∗ (∗ = 0,⊥),

and we have

‖(A⊥
ε )−1‖ ≤ 1

lV + δ/2
. (3.6)

Since zε satisfies (HSε,1), so we have

A⊥
ε z

⊥
ε = P⊥

A �′(z⊥ε + z0ε),

with � defined in (2.19), and

z⊥ε = (A⊥
ε )−1P⊥

A �′(z⊥ε + z0ε). (3.7)
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Since L0 is a finite dimensional space and ‖zε‖L ≤ C , there exists a sequence εn → 0 and
z0 ∈ L0, such that

lim
n→∞ z0εn = z0.

For simplicity, we rewrite z∗n := z∗εn (∗ = ⊥, 0), An := εn + A and A⊥
n := A⊥

εn
. So, we have

‖z⊥n − z⊥m‖L =‖(A⊥
n )−1P⊥

A �′(zn) − (A⊥
m)−1P⊥

A �′(zm)‖L
≤‖(A⊥

n )−1P⊥
A (�′(zn) − �′(zm))‖L + ‖((A⊥

n )−1 − (A⊥
m)−1)P⊥

A �′(zm)‖L
≤ lV
lV + δ/2

‖zn − zm‖L + ‖((A⊥
n )−1 − (A⊥

m)−1)P⊥
A �′(zm)‖L

≤ lV
lV + δ/2

(‖z⊥n − z⊥m‖L + ‖z0n − z0m‖L) + ‖((A⊥
n )−1 − (A⊥

m)−1)P⊥
A �′(zm)‖L.

Since (A⊥
n )−1 − (A⊥

m)−1 = (εm − εn)(A⊥
n )−1(A⊥

m)−1 and {zn} is bounded in L, we have

‖((A⊥
n )−1 − (A⊥

m)−1)P⊥
A �′(zm)‖L = o(1), n,m → ∞.

So we have

‖z⊥n − z⊥m‖L ≤ 2lV
δ

‖z0n − z0m‖L + o(1), n,m → ∞,

therefore, there exists z⊥ ∈ L⊥, such that lim
n→∞ ‖z⊥n − z⊥‖L = 0. Thus, we have

lim
n→∞ ‖zεn − z‖L = 0,

with z = z⊥ + z0. Last, let n → ∞ in (HSεn ,1), we have z is a solution of (HS). ��
In the proof of Theorem 1.2, we need the following Lemma.

Lemma 3.1 Let B1, B2 ∈ LQ(S1,L(RN )).

(1) If B1 < B2, then we have

μQ(A, B2) − μQ(A, B1) =
∑

λ∈[0,1)
υQ(A, B1 + λ(B2 − B1)). (3.8)

(2) If B1 ≤ B2, μQ(A, B1) = μQ(A, B2), and υQ(A, B2) = 0, then there exists ε > 0,
such that for all B ∈ LQ(S1,L(RN )) with

B1 ≤ B ≤ B2,

we have

σ(A − B) ∩ (−ε, ε) = ∅.

Proof (1) From Proposition 2.2 and (2.7), we have (3.8).
(2) Since υQ(A, B2) = 0, there is ε > 0, such that

υQ(A, B2 + λε) = 0, ∀λ ∈ [0, 1].
From (3.8)we haveμQ(A, B2+ε· I ) = μQ(A, B2), and fromμQ(A, B1) = μQ(A, B2),
we have υQ(A, B1) = 0. So we can choose ε > 0 small enough, such that

υQ(A, B1 − ε · I ) = υQ(A, B2 + ε · I ) = 0.
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Since

B1 − ε · I ≤ B − ε I < B + ε I ≤ B2 + ε · I ,
it follows that μQ(A, B − ε I ) = μQ(A, B + ε I ). Note that by (2.7)

∑

−ε<t≤ε

υQ(A, B − t · I ) = μQ(A, B + ε) − μQ(A, B − ε) = 0.

We have 0 /∈ σ(A − B − η), ∀η ∈ (−ε, ε), thus the proof is complete. ��
Proof of Theorem 1.2. Consider the following one-parameter equation

Az = (1 − λ)B1z + λ�′(z), (HSλ)

with λ ∈ [0, 1]. Denote by

�λ(z) = 1 − λ

2
(B1z, z)L + λ�(z), ∀z ∈ L.

Since V satisfies condition (V1) and B1 ∈ LQ(S1,L(RN )), we have�′
λ : L → L is Lipschitz

continuous, and there exists l ′ > 0 independed of λ such that l ′ /∈ σ(A) and

‖�′
λ(z + h) − �′

λ(z)‖L ≤ l ′‖h‖L, ∀z, h ∈ L, λ ∈ [0, 1].
Now, replace lV by l ′ in (2.16), we have the projections P∗

A,l ′ (∗ = ⊥, 0) and the splitting

L = L⊥
A,l ′ ⊕ L0

A,l ′ ,

with L∗
A,l ′ = P∗

A,l ′L(∗ = ⊥, 0). Thus A⊥ has bounded inverse on L⊥
A,l ′ with

‖(A⊥)−1‖ <
1

l ′ + c
,

for some c > 0. Without confusion, we still use z⊥ and z0 to represent the splitting

z = z⊥ + z0,

with z∗ ∈ L∗
A,l ′ (∗ = ⊥, 0). Now, we divide the remainder of the proof into three steps. The

number C > 0 denotes various constants independent of λ.

Step 1 If z is a solution of (HSλ), thenwe have ‖z⊥(z0)‖L ≤ C‖z0‖L+C Since Az = �′
λ(z),

we have

z⊥ = (A⊥)−1P⊥
A,l ′�

′
λ(z)

‖z⊥(x)‖L = ‖(A⊥)−1P⊥
A,l ′�

′
λ(z

⊥(z0) + z0)‖L
≤ 1

l ′ + c
‖�′

λ(z
⊥(z0) + z0)‖L

≤ 1

l ′ + c
‖�′

λ(z
⊥(z0) + z0) − �′

λ(0)‖L + 1

l ′ + c
‖�′

λ(0)‖L

≤ l ′

l ′ + c
(‖z⊥(z0)‖L + ‖z0‖L) + 1

l ′ + c
‖�′

λ(0)‖L.

So we have ‖z⊥(z0)‖L ≤ l ′
c ‖z0‖L + 1

c ‖�′
λ(0)‖L. Thus, we have prove this step.

Step 2 We claim that the set of all the solutions (z, λ) of (HSλ) are a priori bounded.
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If not, there exists a sequence {(zn, λn)} with λn ∈ [0, 1] solving the problem (HSλ) with
‖zn‖L → ∞. Without lose of generality, assume λn → λ0 ∈ [0, 1]. From step 1, we have
‖z0n‖L → ∞. Denote by

yn = zn
‖zn‖L ,

and B̄n := (1 − λn)B1 + λn B(zn), from condition (V3) we have Ayn = B̄n yn + o(‖zn‖L)
‖zn‖L ,

that is

(A − B̄n)yn = o(‖zn‖L)

‖zn‖L . (3.9)

Decompose yn = y⊥
n + y0n with y∗

n = z∗n/‖zn‖L, ∗ = ⊥, 0, we have

‖y0n‖L = ‖z0n‖L
‖zn‖L

≥ ‖z0n‖L
‖z0n‖L + ‖z⊥‖L

≥ ‖z0‖L
C‖z0‖L + C

.

That is to say

‖y0n‖L ≥ C > 0, (3.10)

for n large enough. Since B1(t) ≤ B(z) ≤ B2(t), we have B1 ≤ B̄n ≤ B2. Duo to condition
(V4) and Lemma 3.1, we write L = L+

A−B̄n

⊕
L−
A−B̄n

with A − B̄n is positive and negative

define on L+
A−B̄n

and L−
A−B̄n

respectively. Re-decompose yn = ȳ+
n + ȳ−

n respect to L+
A−B̄n

and L−
A−B̄n

. From (V4) and (3.9), we have

‖y0n‖2L ≤ ‖yn‖2L
≤ C((A − B̄n)yn, ȳ

+
n + ȳ−

n )L

≤ C‖(A − B̄n)yn‖L · ‖yn‖L
≤ |o(‖zn‖L)|

‖zn‖L ‖yn‖L. (3.11)

Since ‖zn‖L → ∞ and ‖yn‖L = 1, we have ‖y0n‖L → 0 which contradicts to (3.10), so we
have {zn} is bounded.
Step 3 By Leray–Schauder degree, there is a solution of (HS).
Since the solutions of (HSλ) are bounded, there is a number R > 0 large eoungh, such that
all of the solutions zλ of (HSλ) are in the ball B(0, R) := {z ∈ L|‖z‖L < R}. So we have
the Larey-Schauder degree

deg(I − (A − B1)
−1(λ�′(z) − λB1z), B(0, R), 0)

is well defined and independent of λ ∈ [0, 1], so
deg(I − (A − B1)

−1(�′(z) − B1z), B(0, R), 0) = deg(I , B(0, R), 0) = 1.

That is to say (HS) has at least one solution.
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3.2 Applications

Consider the following delay differential system
{

ẍ(t) = −[∇v(x(t − τ)) + · · · + ∇v(x(t − (m − 1)τ ))],
x(t + mτ) = x(t),

∀t ∈ R, (DDS)

with x ∈ C2(R,Rn), v ∈ C1(Rn,R).
Now, we will transform the system (DDS) into the system (HS). Set τ = 1 for simplicity.

Let

z(t) = (x1(t), · · · , xm(t))T , (3.12)

with xk(t) = x(t − (k − 1)) and k = 1, 2, · · · ,m. If x(t) is a solution of (DDS), z(t) is a
solution of the following system

⎧
⎨

⎩

−A−1
nm z̈(t) = V ′(z(t)),
z(1) = Qnmz(0),
ż(1) = Qnm ż(0),

∀t ∈ R, (HS2)

where Anm =

⎛

⎜⎜⎝

0 In · · · In
In 0 · · · In
· · · · · · · · · · · ·
In In · · · 0

⎞

⎟⎟⎠

nm

, and Qnm =

⎛

⎜⎜⎜⎜⎝

0 0 · · · 0 In
In 0 · · · 0 0
0 In · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · In 0

⎞

⎟⎟⎟⎟⎠

nm

, with In the

identity map on R
n , z : R → R

nm . The function V : Rnm → R,

V (z) := v(x1) + v(x2) + · · · v(xm).

On the other hand, if z(t) is a solution of (HS2), x1(t) is a solution of (DDS).
Let A := −A−1

nm and Q := Qnm , it is easy to see that A, Q and V defined here satisfy
the conditions in (1.1), (1.2) and (1.3), so (HS2) is a specific case of (HS). Corresponding to
Theorem 1.1 and 1.2, we have the following results.

Theorem 3.2 Assume v ∈ C1(Rn,R) satisfies the following conditions.
(v1) v′ : Rn → R

n is Lipschitz continuous

‖v′(x + y) − v′(x)‖Rn ≤ lv‖y‖Rn , ∀x, y ∈ R
n, (3.13)

with its Lipschitz constant lv > 0.
(v±

2 ) There exists M1, M2, K > 0, b(t) ∈ L(S1,L(Rn)) with b(t) ≡ b, such that

v′(x) = bx + r(x), ∀x ∈ R
n,

with

|r(x)| ≤ M1, ∀x ∈ R
n,

and

± (r(x), x)Rn ≥ M2|x |RN , ∀|x |Rn > K . (3.14)

Then (DDS) has at least one solution.
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Theorem 3.3 Assume v ∈ C1(Rn,R) satisfies conditions (v1) and the following condition
(v3) There exists b ∈ C(Rn,Ls(R

n)) such that

v′(x) = b(x)x + r(x), ∀x ∈ R
n,

with

r(x) = o(x), uniformly for|x | → ∞.

(v4) There exist b1, b2 ∈ L([0, 1],L(Rn)) satisfying

b1(t) ≤ b(x) ≤ b2(t), ∀(t, x) ∈ [0, 1] × R
n,

and B1, B2 ∈ LQ(S1,L(Rnm)) satisfying

μQ(A, B1) = μQ(A, B2), υQ(A, B2) = 0,

with

Bi :=

⎛

⎜⎜⎝

bi 0 · · · 0
0 bi · · · 0
· · · · · · · · · · · ·
0 0 · · · bi

⎞

⎟⎟⎠

nm

, i = 1, 2.

Then (DDS) has at least one solution.
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