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Abstract
This paper deals with a two-species attraction—repulsion chemotaxis system

ur = Au — V- uVv)+ 1V - @Vz) + fi(u, w), (x,1) € Q x (0, 00),

vy = Av+w — v, (x,1) € 2 x (0, 00),
w; = Aw —EV - (wVz) + 2V - (wVv) + falu, w), (x,1) € 2 x (0, 00),
17 = Az +u—z, (x,1) € Q x (0, 00),

under homogeneous Neumann boundary conditions in a smoothly bounded domain 2 € R”,
where © € {0, 1}, &, x; > 0 and f; (u, w)(i = 1, 2) satisfy

fl(u,w)=u<ao—a1u—a2w+a3f udx+a4/ wdx),
Q Q

fa(u, w):w(bo—blu—b2w+b3/ udx+b4/ wdx)
Q Q

witha;, b; > 0 =0,1,2),a;,b; € R(j = 3,4). Itis proved that in any space dimension
n > 1, the above system possesses a unique global and uniformly bounded classical solution
regardless of T = 0 or = 1 under some suitable assumptions. Moreover, by constructing
Lyapunov functionals, we establish the globally asymptotic stabilization of coexistence and
semi-coexistence steady states.
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1 Introduction

To describe some complex biological processes (such as cell sorting process [30]) in two
species, we consider the following two-species attraction-repulsion chemotaxis system with
competitive and nonlocal kinetic terms

up=Au—§V-@Vv)+ 1V - @Vz) + fi(u, w), (x, 1) € 2 x (0, 00),
Ty, =Av+w —v, (x,1) € 2 x (0, 00),
w; = Aw — &V - (wVz) 4+ 2V - (wVv) + fo(u, w), (x,1) € Q x (0, 00),
Tz =Az4u—z, (x,1) € 2 x (0, 00),
Zi—u:a—v:a—w:%:& (x,1) € 92 x (0, 00),
av av av av

(u, Tv, w, 17)(x, 0) = (up(x), Tvo(x), wo(x), TZ0(x)), x € Q,

(1.1)

where t € {0, 1}, &, i > 0 = 1,2), 2 C R"(n > 1) is a smoothly bounded domain and
f1, f2 satisfy

fi(u,w) = u(ao —aju — aw +a3/ udx +a4/ wdx),
Q Q

(1.2)

fo(u, w) = w(bo —biu — byw +b3/ udx +b4f wdx)
Q Q

with a;,b; > 0@ = 0,1,2),a;,b; € R(j = 3,4). Here the movements of the
two populations are described by random diffusion (i.e. Au, Aw), chemoattractant (i.e.
—&V - (uVv), =&V - (wVz)) and chemorepellent (i.e. +x1V - uVz), +)2V - (wVv)).
Moreover, in view of the classical Lotka—Volterra [26] and nonlocal dynamics, we assume
that both populations reproduce and compete (or cooperate) themselves, and mutually com-
pete (or cooperate) with the other. u(x, ¢) and w(x, t) represent the density of two populations,
and v(x,t), z(x, t) stand for the concentrations of the chemical substances. &1, & refer to
the chemoattraction sensitivity coefficients and xi, x» stand for the chemorepulsion sensi-

tivity coefficients. The biological significance of these parameters a;, b;(i =0, 1,...--,4)
is explained in [28]. The initial data (u#¢, Tvg, wo, TZo) is nonnegative and satisfies
(1o, TVo, wo, T20) € CY) x WH®(Q) x COQ) x W (). (1.3)

Chemotaxis, a directed movement of biological cells or organisms in response to the
concentration gradient of a chemical signal, is well known to play a significant role in a
wide range of biological applications, such as pattern formation [5], embryonic development
[18], wound healing [32] and blood vessel formation [7], etc. Notably, Keller and Segel
[16] introduced the pioneering works of the chemotaxis which describes the aggregation of
cellular slime molds Dictyostelium discoideum

:u, =Au—EV-@Vv), (x,1)eQx(0,00),

(1.4)
Ty =Av+u—v, (x,1) € 2 x (0, 00),

where £ € Rand t € {0, 1}. Here u(x, t) and v(x, ) represent the density of Dictyostelium
discotylum and the concentration of chemical signals, respectively. Many scholars have
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studied deeply the system (1.4) in the past decades. For instance, when & = 7 = 1, all
solutions of system (1.4) are globally bounded in one-dimensional domains [29]. If the initial
mass fQ updx of cells is small (i.e. fQ updx < 4m), then the solution of system (1.4) also
is global and bounded in two-dimensional domains [9], whereas the initial mass of cells is
large enough (i.e. fQ updx > 47 and jQ uodx € {4Km, K € N}) then the aggregation occurs
either in finite or infinite time [33]. Considering the volume-filling effect [31], Winkler [41]
proved that the aggregation of cells happens in finite time. Moreover, Tao and Winkler [35]
obtained that solutions of the above system are global and uniformly bounded. Of course,
there are a large amount of results that include the global existence, boundedness and blow-up
behavior of solutions to variants of the above system, we can refer to [6, 10-13, 17, 27, 36,
43-45].

To further understand system (1.1), let us mention some previous advances. When the
system (1.1) has no repulsive mechanisms (i.e. x; = x2 = 0) and nonlocal dynamics (i.e.
az = as = bz = by = 0), system (1.1) becomes the following two-species and two-stimuli
chemotaxis system with Lotka—Volterra competitive terms

Uy = Au — &V uVv) + pu(l —u —ajw), (x,1) € 2 x (0, 00),

Tv; = Av + Bw — av, (x,1) € Q2 x (0, 00), (15)
wy = Aw — 6V - (wV2) + pow(l —w —au), (x,1) € Q x (0, 00), '
17t = Az +6u —yz, (x,1) € Q x (0, 00),

wheret € {0, 1}and«, B, y, 8, &, i, a; > 0(i = 1, 2). For the parabolic-elliptic-parabolic-
elliptic case (i.e. t = 0), if the production efficiency of the signals v, z is the same as the
consumption (i.e.« = B = § = y = 1), Zheng and Mu [51] obtained that all solutions
of system (1.5) are globally bounded in two-dimensional domains. When a;, a; € (0, 1),
Zheng et al. [52] showed that the two species can maintain constant coexistence stable state.
Furthermore, in two-dimensional domains, when u; = w2 = 0 in (1.5), Yu et al. [46]
proved that aggregations of species occurs if the initial masses fQ uodx and fQ wodx are

large sufficiently (i.e. [ uodx - [o uodx — Zﬂ(fﬂg(})gdx + jgggdx) > 0) and that globally

bounded solutions exist if the initial masses fQ uodx and fQ wodx are small enough (i.e.
max{ [ uodx, [qwodx} < 4m)and §; = & = a = f =8 = y = 1. On the other
hand, due to existence of Lotka—Volterra competition, Tu et al. [38] derived the coexistence
stable state of two species under the weak competition (i.e. aj, a; € (0, 1)) and semi-trivial
equilibrium under strong competition (a; > 1 > a» > 0). Recently, the previous results of
[38] was improved by Wang and Mu in [39]. For the fully parabolic case (i.e. T = 1), relying
on the maximal Sobolev regularity, Zheng and Mu [51] derived that when the chemotactic
sensitivities are small enough as related to the Lotka—Volterra competitive terms in the sense
that % < 6o and % < 6p for some 6y > 0, then system (1.5) possesses a globally bounded
classical solution in any space dimension n > 1. For more related contents, we can refer to
[19,20,22,47-49, 53]. However, to the best of our knowledge the literature does not provide
any qualitative analysis on the solution behavior when attraction-repulsion chemotaxis as
well as nonlocal competitive Lokta-Volterra competitive terms involving both species are
present.

So far several special cases for system (1.1) are studied by some scholars. For example,
when t = 0, n = 2 and system (1.1) has no kinetic terms (i.e. f; = f> = 0), the nonradial
solutions blow up in finite time [21]. Considering the small initial masses and repulsive
mechanisms (i.e. x1, x2 > 0), the global boundedness of solutions is established under the
conditions that n = 2 and max{ [, uodx, [ wodx} < m orx1=yx2=§& =
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& > 0in [21]. Similarly, due to the effect of repulsive mechanisms (i.e. x1, x2 > 0), Liu
and Dai [23] proved the global boundedness of solutions to system (1.1) if min{x1, x2} >
&1 + & holds. Without nonlocal terms in (1.1) (i.e. a3 = a4 = b3 = by = 0), Zheng
and Hu [50] obtained the constant equilibrium and semi-trivial equilibrium of two species. In
addition, when f} and f> satisfy (1.2), Zheng et al. [54] studied the fully parabolic two-species
chemotaxis system with indirect signal production, and derived that the global boundedness
and stability of the constant steady state under some suitable assumptions. Recently, when f;
and f, satisfy (1.2) with ag, ay, b, b» > 0, az, as, a4, by, b3, by € R, the boundedness and
stabilization of global solutions for system (1.1) were derived by Huetal. in [14]. However, the
authors only considered the constant coexistence stable state under the locally intraspecific
competition and globally interspecific cooperation (i.e. ay, a4, by, b3 > 0,a3,b; < 0) in
[14].

As analyzed above, the boundedness of global solutions to system (1.1) still remains open
under locally competitive and nonlocal kinetic terms. For the fully competitive case (i.e.
aj,bi > 00 =1,2),aj,b; < 0(j = 3,4)), the large time behavior of global solutions to
system (1.1) is also an unsolved question. Hence, this paper gives an affirmative respond.
For simplicity, we introduce a notation that is (a)+ := max{0, a} for all @ € R. Our main
results are stated as follows.

Firstly, we consider the boundedness of solutions for (1.1) under the case T = 0.

Theorem 1.1 Lett =0,&, x; > 0 = 1,2) and Q C R" be a smoothly bounded domain.
Assume that f1, f> satisfy (1.2) witha;,b; > 0G =0, 1,2),a;,b; € R(j = 3,4), and the
initial data (ug, wo) satisfies (1.3). If the following conditions hold:

o n=1and

b b
a > (<a3>+ 4 W)mm > ((b4>+ 4 wym; (1.6)
e n>2(1.6)and
min {x; +ar. 2 + b2} > & + & (1.7
or
nap nb 18
51<m,§2<n_2~ (1.8)

Then system (1.1) admits a unique global classical solution (u, v, w, z), which is uni-
formly bounded in Q2 x (0, 00) in the sense that there exists C > 0 independent of t such
that

lull oo (@) + lvllLoe(@) + lwllze@) + lzllze@) < C for allt > 0.

Remark 1.1 Whent = 0and x; = x2 = as = a4 = b3 = by = 0, the results of Theorem 1.1
cover those of [38, 50]. When n > 2 and ap, by > 0, Theorem 1.1 not only includes the

conditions min {Xl +ai, x2 —i—bz} > &1 +&; of [14], but also expands the conditions & < ,ffzz
and & < ;’—f‘z Moreover, compared with the results in [21], we can remove the small initial

condition max {[uoll .1 (g llwoll 11 (e} in this paper.

- 4
(x1+x2+&1+6&)Con

Next, we study the global stability of bounded solution for (1.1) when T = 0. When weak
interspecific competition occurs, i.e.,

ay — a4l ap  a — a3l
< < —

4 (1.9)
by —b4|2| by by — b3|R2
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holds with a;, b; > 0(i =0, 1,2),a;,b; < 0(j = 3,4), then the unique positive constant
steady state (¢4, Vs, Wy, Zx) can be recorded as
iy = ap (by — b4|2]) — bo (a2 — as|2|)
(b2 — D4|2|) (a1 — a3]Q2]) — (a2 — a4|L2]) (b1 — b3|R2])
. ao (b1 — b3|K2]) — bo (a1 — a3|L2|)
T (a2 — adlQ)) (b1 — b3|Q) — (ba — b4|Q)) (a1 — a3|Q])’
w, = ap (by — b3|2|) — bo (a1 — a3|<2|) ,
(a2 — a4|2|) (b1 — b3|R2]) — (b2 — b4|R2]) (a1 — a3|R2])
- ao (by — b4|2]) — bo (a2 — a4|2|) .
(b2 — b4|2]) (a1 — a3|R2|) — (a2 — aa|S2]) (b1 — b3€2])
Theorem 1.2 Let the conditions in Theorem 1.1 and (1.9) witha;, b; > 0@ =0,1,2),a;,b;

< 0(j = 3,4) hold. Assume that system (1.1) admits a unique global classical solution
(u, v, w, z) with the property

)

(1.10)

”u”C2+1”1+%(§><[t,t+l]) + ”U”c”“*%(ﬁx[z,zﬂ]) (11
+ llwll + lzll <K
c c

y g
2+§’]+17(Q><[t.,t+1]) 2+0‘1+17(Q><[t,t+1])

forallt > 1, where K > 0and ¥ € (0, 1). Suppose that there exist 61, 6, € (0, 1) such that

2 2
a1 > A +b3|Q| i uxxi + w*éz (1.12)
2 8(1 —6y)
and
as + b3 (ar + b1)?
by > max{ — |2] )
2 20162[2a) — (as + b3)|9] (1.13)
o + b3 il + 14*512 + w*X22
2 8(1 -6 |’
Then for some fixed time t; > 0, there exist C > 0 and A1 > 0 such that
lu — usllioo@) + v — villLoe(@) + lw — willzoo@) + 1z = zell o) < Ce™™!
(1.14)

forallt > t1, where (Uy, Vs, Wy, Zx) is given in (1.10).
Now, we consider the strong competition case, i.e.,
— as|Q —a3|Q

ay — a4lQ a1 — a3|<| LW (1.15)

by —b4|2] by —b3|R2] T bo

witha;, b; > 0 =0,1,2),a;,b; < 0(j = 3,4), then the unique semi-trivial equilibrium
(Uy, 0,0, z,) 18

_ ag _ ap
Ta—all T a—wlel
Theorem 1.3 Let the conditions in Theorem 1.1 and (1.15) with a;,b; > 0G0 =
0,1,2),aj,b; < 0(j = 3,4) hold. Assume that system (1.1) admits a unique global clas-
sical solution (u, v, w, ) with the property (1.11). Suppose that there exist 63,64 € (0, 1)
such that

Uk

(1.16)

as + b3 M*Xlz
— Q
5 | |+8

AL 1.17
(I —63) (7

ay >
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and
b b1)?
b2>max{—a4+ 3|Q|+ (@2 + b1) ,
2 20162[2a) — (as + b3)|9] (L18)
+b TR .
. a4 3 Q|+ 51 '
2 8(1 — 64)

Then the unique global solution (u, v, w, z) has the following properties:

az a4|Q| a1—a3|Q|
O If 5pgar < 5byc
Ao > 0 such that

< bo’ then for some fixed time t, > 0 there exist C > 0 and

llu — uall ooy + IvliLec@) + lwllze@) + 12 — zellLo@) < Ce ™2 (1.19)

forallt > ty, where (U, z4) is given by (1.16).

(i) If 5= Zﬂg} < Zi:gi:g: = Z—g, then for some fixed time t3 > 0O there exist C > 0 and

A3 > 0 satisfying

e — el ooy + vllzooe) + llwll L) + 12 — zell Loy < C(t —13)3
(1.20)

forallt > t3, where (U, z4) is given by (1.16).
On the other hand, we are concerned with the fully parabolic case, i.e. T = 1.

Theorem1.4 Lett = 1,&, x; > 0 = 1,2) and Q C R" be a smoothly bounded domain.
Assume that f1, f> satisfy (1.2) with a;, b; > 0 = 0,1,2),a;,b; € R(j = 3,4) and the
initial data (ug, vo, wo, zo) satisfies (1.3). Moreover, suppose that

e n = 1,2, the condition (1.6);
e n = 3, the condition

2 2
a > max{((a3)++ M)m L +2by, 7;’ + 2by +28(b—2 +b1)},
1
2 2
by > max { ((174)+ + M)m 7X2 + 2a, i +2ay + 28([’— +a2)}
ap
(1.21)
e n >4, the condition
+ (b
aj > max {((613)+ + M)lﬂly &+ x1+CsOa +§2)},
(@s + (b3) (1.22)
a
by > max {((b4)+ + %)IQI, S+ x2+CsOr+ 51)}

are satisfied, where Cg is given in Lemma 2.7. Then system (1.1) admits a unique global
classical solution (u, v, w, z), which is uniformly bounded in Q2 x (0, 00) in the sense
that there exists C > 0 independent of t such that

lull oo (@) + lvllLe) + lwllre@) + IzllLe@) < C for allt > 0.

Remark 1.2 When t = 1 and a;,b; > 0( =0,1,2),a;,b; € R(j = 3,4), Theorem 1.4
includes the result of [14] under the effect of locally interspecific competition. If n = 2 and
X1 = x2 = a3 = as = b3 = by = 0, compared with the results in [22], Theorem 1.4
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only requires the conditions ap, b, > 0, which improves the conditions a; > & + & Cs and
by > & + &1 Cgs in [22]. Moreover, the small initial condition in [23] can also be removed in
this paper.

Finally, we study the global stability of bounded solutions for (1.1) when t = 1.

Theorem 1.5 Letthe conditions in Theorem 1.4 and (1.9) witha;, b; > 0 =0,1,2),a;,b; <
0(j = 3,4) hold. Assume that system (1.1) admits a unique global classical solution
(u, v, w, z) with the property (1.11). Suppose that the conditions (1.12) and (1.13) are sat-
isfied, then there exist C > 0 and k1 > 0 such that

lu — usllLoo@) + lv — villzoo@) + lw — willLo@) + 11z — zell L@y < Ce™V

(1.23)

forallt > t4, where ty > 0 is some fixed time and (U, Vi, Wi, Zx) is given in (1.10).

Theorem 1.6 Let the conditions in Theorem 1.4 and (1.15) with a;,b; > 00 =
0,1,2),aj,b; < 0(j = 3,4) hold. Assume that system (1.1) admits a unique global clas-
sical solution (u, v, w, z) with the property (1.11). Suppose that the conditions (1.17) and
(1.18) are satisfied. Then the unique global solution (u, v, w, z) has the following properties:

: ax—as|Q| a1 —a3|Q| ag : :
G If bobhal < hohal < by then for some fixed time ts > 0 there exist C > 0 and

k2 > 0 satisfying
lu — usllLo@) + vllLe@) + lwllzeo@) + 1z = zallLeo@) < Ce ™ (1.24)

forallt > ts, where (uy, z4) is given by (1.16).

(i) If Z;:Zﬂg} < Z}:Zzlgl = Z’—g, then for some fixed time te > 0O there exist C > 0 and

k3 > 0 such that

lu —uillLo@) + iz + lwllze@) + Iz — zellzo@) < C@ —16) ™
(1.25)

forallt > tg, where (U, 24) is given by (1.16).

Remark 1.3 In this paper, we only consider the large time behavior of the global solutions to
system (1.1) under thez;:,‘::}g} < Z—g < Z::Z;}gl and Z?Zﬂg} < Z::Z;Igl < Z—g respectively.
For the strong competition case, it is not difficult to obtain the large time behavior by the same
method used in the proof of Theorem 1.2 (or Theorem 1.6). However, for the fully strong
competition case 7! :Z;Igl <R < :Zj:gl , there is still an open problem about stabilization
of global bounded solutions.

This paper is organized as follows. In Sect. 2, we give the local existence of solution to
system (1.1) and some preliminary lemmas. In Sect. 3, we study the global existence and
boundedness of solutions to system (1.1) with ¢ = 0, and prove Theorem 1.1. In Sect. 4,
we study the asymptotic behavior of global solutions to system (1.1) with T = 0, and prove
Theorem 1.2 and Theorem 1.3. In Sect. 5, we discuss the global existence and boundedness
of solutions to system (1.1) with 7 = 1, and prove Theorem 1.4. In Sect. 6, we consider the
asymptotic behavior of global solutions to system (1.1) when t = 1, and prove Theorem 1.5
and Theorem 1.6. In addition, we let u(-, ) := u(x, t) and omit signs dx during integrating
for brevity thoughout this paper.
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2 Preliminaries

In this section, we shall give several preliminary lemmas. Firstly, we state the local existence
of solutions for (1.1).

Lemma2.1 Lett € {0,1}, &, xi > 0 =1,2)and Q C R"(n > 1) be a smoothly bounded
domain. Assume that f1, f> satisfy (1.2), and the initial data (ug, Tvo, wo, Tz0) satisfies (1.3).
Then there exist Tmax € (0, 00] and uniquely determined nonnegative functions

w,w € COQ % [0, Tna)) N C*1(Q X (0, Tinax).
v,z € CO x [0, Timax)) N CH (K2 x (0, Tinax)) N L7 (10, Tnax); W4 (S2))
such that (u, v, w, z) solves system (1.1) classically in Q2 x (0, Tmax), where g > n. Moreover,

if Tinax < 00, then

lim sup (uu(-, Dl + ¢, Dllwracey
I/Tmax

Hlw(, Do) + Iz, t)||W1,¢,(Q)> = oo. 2.0

Proof This proof is similar to [42, Theorem 1.1] or [34, Lemma 2.1]. For more details, please
refer to [14, Lemma 2.1]. The proof of Lemma 2.1 is complete. O
Secondly, we shall give a uniform L!'-bound of (u, v, w, z) for (1.1).

Lemma 2.2 Let (u, v, w,z) be a solution to system (1.1) and the nonnegative initial data
(uo, Tvo, wo, t70) satisfies (1.3) with © € {0, 1}. Suppose that the condition (1.6) holds.
Then

e, Ol 1@y + IwC Dl

M} = Mo @2

< max {HMOHLI(Q) + llwoll L1 (@) 21€2] min{ly. o)

and
oG, Dlipiq) + 12C DL < max{”UO”Ll(Q) + llzoll L1 () Mo} =mo (2.3)
forallt € (0, Tyax), where

1
Iy =a —1Q(a3)+ — 5|Q|<((14)+ + (b3)+>,
2.4

1
lr = by — [Q2|(ba) 4 — §|Q|<(a4)+ + (b3)+>-

Proof Integrating the first equation in (1.1), we deduce from Young’s and Holder’s inequal-
ities that

i/u:/u(ao—alu—a2w+a3/u+a4/w)
dt Jq Q Q Q
_ / / 2 ( (a4>+></ )2 <a4>+(/ )2
<ay | u-—a u + | (@)+ + u| + w
Q Q 2 Q 2

Q
< aof v <“1 - <(a3)+ + (a4)+)|9|>/ u’ + (@) 1 | w?
Q 2 Q 2 Q

2.5)
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forall € (0, Tmax), Where we have used that a; > 0. By the similar method to w—equation
and b; > 0, we get

d b b
- ngbO/Qw—<b2—((b4)++ ( 32)+>|s2|>/9w2+%|52|/9u2.

(2.6)

Then, combining (2.5) and (2.6), we have

i/(ww)sao/u—(m—((a3)++M)|sz|)/u2
dt Jo Q 2 Q
+b0/ w_<b2_<(b4)++w>|g|>/ w2,
Q 2 Q

Then the following proof of this lemma is similar to [14, Lemma 2.2]. Here we omit the
details. The proof of Lemma 2.2 is complete. O

Q@.7)

Lemma 2.3 (See [37, Chapterlll, Lemma 5.1]) Let ®(¢) > O satisfy

{ (1) + kiyd’(t) <ka, t>0, 08)

@ (0) = Po,
for ®y > 0 with some constants ki, ky > 0 and 0 > 0. Then

ky

() < max [@0, (k>9] forall t > 0.
1

Lemma 2.4 (See [8]) Let 2 C R"(n > 1) be a bounded domain with smooth boundary.
Assume that p,k > 0,m € [0,k) and q,r € [1, o0] hold. Then for any W € wka) n
L" (), there exists Can = C(k, q,r, 2) > 0 such that

ID"WlLr@) < Con D W00 1111 () + Con ¥ llLr o, (2.9)

where o satisfies

1 m 1 k +1 ! N ;—;—;e m1
—— —=al—-—-- —N1—-« o= "—- —,
p n qg n r 1_k_1 k

and DX is expressed as Fréchet derivative of order k.

Lemma 2.5 (See [24, Lemma 4.2]) Let 2 C R"(n > 1) be a bounded domain with smooth
boundary and ® € C*() satisfy % = 0. Then

VD )
T CalV®|?, (2.10)
v

where Cq is a positive constant depending only on the curvatures of 9<2.

Lemma 2.6 (See [15]) Let 2 € R"(n > 1) be a bounded domain with smooth boundary.
Then for any € > 0, there exists C; > 0 such that

2
/ o2 58/ |V<b|2+C€</ |<1>|) forall ® € Wh2(Q). (2.11)
Q2 Q Q
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Lemma 2.7 (See [40, Lemma 2.3]) Let Q2 € R"(n > 1) be a smoothly bounded domain and
0 <ty < Tmax < 00. Assume that ug € Wz’p(Q)(p > n) with dyug = 0 on dQ2. Then for
each g € LP((O, Tmax); L? (Q)), the problem

Uy =Au—u+g, (x,1) € 2 x (0, Thax),
ou
v
u(-,0) = ugp, x € Q,

=0, (x,1) € 32 x (0, Tma). 2.12)

possesses a unique solution u € wlr ((0, Tmax); LP(Q)) NLP ((0, Tmax); Wz’p(Q)). More-
over, if u(-, ty) € W2r(Q) satisfies 3”5%‘;“’) = 0 on 0R2, then there exists Cs = C(p) > 0
such that

t

t
/ eps”Au(.,s)Hi,,(Q)ds < CS/ epS”g(',S)“ip(Q)dS
fo

to

+ CseP™ <||“(’ [0)“12;7(9) + [ Au(, tO)”ip(Q))

forallt € (ty, Tmax)-

3 Boundedness for 7 =0

The aim of this section is to show the global boundedness of solution for (1.1) with t = 0
and prove Theorem 1.1.

Lemma 3.1 Let t = 0 and Q C R be a smoothly bounded domain. Suppose that ay, by > 0
and (1.6) hold. Then there exists C; > 0 such that

lull2@) + lwliz2@) < Ci (3.1

forallt € (0, Tiax)-

Proof By a straightforward computation and Lemma 2.2, we deduce from a; > 0 and
Young’s inequality that

d
— u2+/ u?
dt Q Q
=—2/ IVMI2—$1/uz(v—w)+)<1/u2(z—u)
Q Q Q
+/ uz((2a0+1)—2a1u—2a2w+2a3/ u+2a4/ w) (3.2)
Q Q Q
—2/ |Vu|2+$1/ uzw—i-xl/ uzz+2(a0+1+2a5M0>/u2—2a1/ u’
Q Q Q Q Q
—2/ |Vu|2+(sl+m)fu3+sl/w3+X1/z3+c2
Q Q Q Q
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3
for all 1 € (0, Tinay), where as := max {(a3)y, (as)1 } and C; = B0 0] Simi-
1

larly, we get

d
—/w2+/w2§—2/IVw|2+<§2+Xz>/w3+~§z/u3+X2/v3+C3
dt Jq Q Q Q Q Q

(3.3)

3
with C3 = WML where we have used that b; > 0.

Combining (3.2) with (3.3), we get

dt \ Jo Q Q Q
5—2/ |Vu|2+(sl+sz+xl)f u3+><1/z3 (3.4)
Q Q Q

—2/ |Vw|2+<€1+§2+x2>/w3+x2/v3+C2+C3
Q Q Q

forall t € (0, Tiax).
Then the following proof of this lemma is similar to [14, Lemma 3.1]. Here we omit the
details. The proof of Lemma 3.1 is complete. O

Lemma3.2 Let t = 0 and Q C R"(n > 2) be a smoothly bounded domain. Suppose that
ay, by > 0, (1.6) and (1.7) or (1.8) hold. Then for some p > py, there exists C4 > O such
that

lullLr@) + lwllLr@) < Cq (3.5)

forallt € (0, Tinax), where

] {n & +&—-x §4+&—x }
po = max { —, , .
2 H+Eh—n—a S +&E—x2—b

Proof Multiplying the first equation in (1.1) by pu?~'(p > po > 1) and integrating by parts
over £2, it follows from Young’s inequality and Lemma 2.2 that

d
el p p
ar Qu +/Qu
4(p — 1 P
=220 [t —a-n [ - wsae- [ we-w
p Q Q Q
+p/up<a0—a1u—a2w+a3/u+a4/w)+/up (3.6)
Q Q Q Q
4(p — P
<MD |w7|2+<a<p—1>—a2p)fupw+xl<p—1)fu1’z
p Q Q Q

+ <(ao +2asMo)p + 1)/ u? — (alp + x1(p — 1))/ uP™!
Q Q
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for all t € (0, Tiax), where as := max {(a3)+, (a4)+}. Using Lemma 2.2, Lemma 2.4 and
Young’s inequality, there exists a positive constant Cs such that

((ao +2asMo)p + 1) / uf = <(ao +2asMo)p + 1> % ||iz(9)
Q

22 222 L
< C5(||VM2 I I 7% 4 ||i%(m)
LP(

o (3.7
:CsMé’(l_“‘)(/ |Vu%|2> +CsM{
Q
4(p—1
<Hr-D )/ Va2 + Co
p Q
(e \TT L e ¥ -4
ithCe = (1 —a))Cs " [ ———— CsM, 0, wh =—==-¢€(0,1
wi 6= (1—a)Cs (4(1)—1)) +CsMy > 0, where a; 1_%4_%6( )
because of p > 1. Inserting (3.7) into (3.6), one has
d
G+ [ =(aw-v-ap) [ wrwrne-n
Q Q Q (3.8)
X / ufz — <a1p+X1(P - 1))/ uP* 4 C
Q Q
for all t € (0, Tinax)-
Similarly, there is a positive constant C7 such that
d
— w”+/ wl <\ &p—-1—bip /wpu+Xz(p—l)
dr Jo Q Q (3.9)

x/wpv—<b2p+xz(p—1)>/wp+1+C7
Q Q

for all t € (0, Tinax).
By (3.8) and (3.9), we have

i(/up_i_/wl’)_i_(/uﬂ_i_/wP)
dr \ Jo Q Q Q
< (%‘1(17—1)—0217)/ u"w+x1(p—1)/ u’z
Q Q

- (alp +xi(p— 1))[ ubt! (3.10)
Q

+<$z(p—1)—b1p>/ wpu+xz(p—1)/ wPv
Q Q
- (bzp-l-Xz(p— 1))/ wPt! 4 Cy

Q

forall t € (0, Tax)-
Case1: &) + & < min {X] +ay, x2 + bz}.
It follows from (1.7) that

S+&—x S +&—x }

p>max{ ,
i +&—x1—ar &§1+& —x2—b2
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which implies that the constants K| := ajp + x1(p — 1) — (& + &)(p — 1) and K, =
bop+ x2(p—1) — (51 + 52) (p — 1) are positive. Then we make use of the method in [14,
Lemma 3.2] to obtain (3.5). Here we omit the details.

. na nb
Case2: & < 5,6 < =5,

It follows from the condition (1.8) with n > 2 that the definitions

I (n & ) I (n & )
1= ~ L < )12 = ~ 7 1 N~
2 (1 —a)y 2 (& —b)+

are well-defined. Then we fix p € I} N I, which implies & (p — 1) —axp < 0 and
&(p —1) —b1p < 0.By (3.10) and Young’s inequality, we have

Lo s o) e (Lo [ )

§X1(p—1)/ u”z—x1(p—1)/ uP™! —a1p/ ul™!
Q Q Q

+ x2(p — 1)/ w”v—Xz(p—l)/ wh ! —bzpf w4+ Cy
Q Q Q

Sm(p—l)f u"+l+X1(p—l)/ Z”“—m(p—l)/ u”“—alp/ uPt!

+ (- 1)/ w4 (p — 1)/ oPt!
Q Q

- x2(p — 1)/ whth bzP/ wPT 4 Cy
Q Q

=xl(p—1>fz1’+l—a1p/ e

Q Q

+ - 1)/ pP! —bzp/ w4 Gy
Q Q

With aids of the Agmon-Douglis-Nirenberg L? estimates (see [1, 2]) and (3.20) of [14],
then for some p > %, there exist some positive constants Cy and Cjo such that

5’
xi(p— 1)/ 7P Salp/ uP* 4 Cy (3.12)
Q Q
and

x2(p — 1)/ Pt < bzp/ w4 ¢y (3.13)
Q Q

for all 1 € (0, Trax)-
Combining (3.11)—(3.13) yields

i(/up+/w”>+</u”+/wp>icu (G.14)
dt Q Q Q Q

with C1; = Cg 4+ C9 + Cjg. Then according to Lemma 2.3, one obtains

/uﬁ+/wﬂgmax{/u(’)’—i—/wg,Cn}
Q Q Q Q

for all + € (0, Tnax) and some p > % which implies (3.5). The proof of Lemma 3.2 is
complete. O
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Lemma3.3 Let v = 0 and Q € R"(n > 1) be a smoothly bounded domain. Assume that
ay, by > 0, (1.6) and (1.7) or (1.8) hold. Then for all nonnegative initial data (ugy, wo)
satisfying (1.3), there exists C12 > 0 such that

llull Lo (@) + lwliLe@) < Ci2 (3.15)
forallt € (0, Tax)-

Proof Whenn = 1, relying on Lemma 3.1 and the method in [51, Lemma 3.6], we can obtain
that (3.15) holds. When n > 2, it follows from Lemma 3.2 and the Moser-Alikakos iteration
in [3] (or [35, Lemma A.1]) that (3.15) holds. The proof of Lemma 3.3 is complete. ]

Proof of Theorem 1.1 By Lemma 3.3, we obtain the boundedness of [u|| =) + |w]l L~ @)
forall t € (0, Tmax). By the well-known elliptic maximum principle and global boundedness
of (u#, w), we derive that (v, z) is bounded in Wl’q(Q)(q > n). Hence it follows from
Lemma 2.1 that Tiax = 00. The proof of Theorem 1.1 is complete. m]

4 Asymptotic Behaviorfor7=0

In this section, we prove Theorems 1.2 and 1.3 by constructing some suitable energy func-
tionals. To do this, we need the following key lemmas.

Lemma 4.1 (See [4, Lemma 3.1]) Let f(¢) : (1,00) — R be a nonnegative and uniformly
continuous function that satisfies floo f(@®)dt < oo. Then f(t) - Oast — oo.

4.1 Proof of Theorem 1.2

Lemma 4.2 Suppose that the conditions of Theorem 1.2 hold. Then there exists 61 > 0 such
that

%ﬂms—&/<w—mﬁ+w—wﬂ+w—wﬁ+@—af) 4.1)
Q

forallt > 0, where

u w
Fi(t) :=f (u—u*—u*ln—>+/ (w—w*—w*ln—>
Q Uy Q Wi

and (U, Vs, Wy, Z4) 1s given by (1.10). Moreover, we have

/ fw_mﬁ+/ /@—wf+f fm—wy+/ f&—&f<w
0 Q 0 Q 0 Q 0 Q

Proof Letting

A](t):/ (u—u*—u*lni) and B](t):/ (w—w*—w*lni) 4.2)
Q Usx Q Wi

then 1 (¢) can be rewritten as
Fi@) = A(0) + Bi1(#) (4.3)
forall t > 0.
Firstly, by (5.4) of [14], we get the nonnegativity of F(¢) for all t > 0.
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Now, we will prove (4.1). By a simple calculation with (1.1) that
d d u
—A1(t) = — — Uy — Uy In —
T 1(2) dt/ﬂ(u Ui — Uy nu*)
= / (1 — 7) (Au —&V-wVv)+ V- (qu))
Q
+/(u—u*)(ao—a1u—azw+a3/u+a4/w) (4.4)
Q
Vu
= —Uy ” +§1u*/ — Vv—xlu*/ — - Vz
/(u—u*)( o—alu—azw+a3/ u+a4/ )
It follows from Holder’s and Young’s inequalities that
/(u —u*)<ao —aju —a2w+a3/ u+a4/ w)
Q Q Q
= f (u— u*)(al(u* —u) + ar(wyx —w) —a3 / (s —u) — a4/(w* - w))
Q Q Q
=—a / (u — ) —a2/ (= ) (w — wy)
Q Q
2
+a3</(u—u*)> +a4/(u —u*)-/(w—w*)
Q Q Q
aq 2 a4 2
< —(a1 + f|9|> / (u — uy) —azf (= u)(w —wy) — —1€] / (w —wy)
2 Q Q 2 Q
due to a3, as < 0 and a9 = (a1 — a3|2|)us + (az — a4|2|)w,. Therefore, we have
d Vu|? Vu Vu
— A1) < —uy +é&us | — -Vo—xius [ —-Vz
dt Q| U Q u Q u
- (al n “—‘Hm) [a-ur-aw-ww-w) @
2 Q Q
a
- Siel [ w-wr,
2 Q
Making use of the similar method for 5y (¢), we obtain
d Vuwl|? Vw Vw
fBl(t)S—w*/ +€zw*f f~Vz—xzw*/ —Vy
dt Q Q w Q w
(4.6)

w
- (bz+b—3|s2|>/<w—w*)2—b1/(u—u*)(w—w*)
2 Q Q
2

because of bg = (b; — b3|R2|)uy + (by — bg|2))wy and b3, by < 0.
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Collecting (4.3), (4.5) and (4.6) yields

2 Vu Vu
+&ux [ — -Vv—xus | — -Vz
Q u

Q u
2 Vw Vw
+&ws | — - Vz—xows | — Vv
Q w Q w

d A0 < / Vu
— —u
dt ! - * Q

/‘ Vw
— w,
Q2 4.7
a4 + bs
- <a1+ u ﬂm)/(u_u*)z_(a2+b1)/(u_u*)(w_w*)
2 Q Q
as +b
- (b2+ u 3|sz|)/<w—w*>2.
2 Q
By Young’s inequality, we derive
Vu 1 Vu |? X1
—Xi —-szf/ —| + /|V|
Q u 2 Q| u
v 2
%‘1 l,VUS, l +i/|vv|2
and
Vw 1 vu [* X22 2
—Xzf f~Vv§f/ — +—/ |Vv|
Q w 2 Ja 2 Ja
as well as
52 -Vz < /‘ |v %,
Then,
+b
—ﬂ(r) < - ( “ 3|9|>/(u—u*)2 (a2+b1)/(u—u*)(w w,)
(bz-l- |Q|)/(w—w*) + = ($1M*+X2w*)/ Vo> (4.8)
1 2
+ - (xlu*+%‘2w*) IVZI
In view of 0 = Av — v + w and vy = w,, wWe obtain
[ver == [@-v2+ [(@=vow-w. (49)
Q Q Q
Similarly, we have
/ |Vz|? :—/(z—z*)z—i—/(z—z*)(u—u*). (4.10)
Q Q Q

@ Springer



Journal of Dynamics and Differential Equations (2024) 36:2555-2592 2571

Together with (4.8)—(4.10), we get

di}—l(t) < —(al + 4 b |Q|> / = u,)* — (a2 +b1)/ (U — uy) (W — wy)
t 2 Q Q

b 1
- (bw“‘”zr 3|s2|)/(w—w*>2— §<s%u*+x§w*>/<v—v*>2
Q Q

+ %(&%u* + x3wy) / (v — v (W — wy) — %(xfu* + EFwy) / (z — 24)?
Q Q

1.2 2 _ _
+ 2()(1“* +é,.:2 W) (z — z5) (U — uy).
Q

4.11)
Since the conditions (1.12) and (1.13) hold, then the constants
as+b as+b
Kii=a) + 2 5 31| and Ky = by + 2 5 <Xtel
are positive, and there exist 01, 6 € (0, 1) such that
4616:K1K > (as + by)?, (4.12)
2 2
Ky > AT weEy @.13)
8(1 —6y)
and
2 2
Ky > LT Wy @.14)

8(1 —62)
By (4.12)—(4.14) and u,., w, > 0, one can find some §; > 0 to satisfy

5 < mi {491921c1/c2—(a2+b1>2 8(1 — ONK 1 (ax? + wikd) — (uax? + witd)?
1 — 9
0162(K1 + K2) 8(1 — 1) (2K 1 + usx? + wi&3)

)

8(1 — 0)Ko (usk? + wix?) — (k2 + wixd)? . ,C} 19
8(1 — 62) (2K + &l + wix3) AR ¥
Therefore, we get
if(r)<—5/((u—u)2+<v—v>2+(w—w)2+( - )2>
dt 1 = 1 o * * * <z Tx
(4.16)

+/ (yl +»n +y3),
Q
where

yi = =601 (K1 = 81)(u — ue)? — (az + b)) — us) (w — wy) — 62(Ka — 81)(w — wy)?,

M*Xlz + w*gzz

y2=—(1— 6K — 81 — us) + >

2 2
Us X7+ wi&
_ <% —51)(1—2*)2,

(U —us)(z — z24)

M*S% + w*X22

y3=—(1 —6)(Ka — 81)(w — wy)* + >

u $2+w X2
_ <%—81>(v—v*)2.

(W — wy) (v — vy)
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For each the discriminant of y; (i = 1, 2, 3), we dedure from (4.15) that
A = (ay + b)) (w — wy)* — 4016,(K1 — 81)(Ka — 81)(w — wy)* <0,
(X} 4 wiED?

Ap 4 (Z - Z*)z
wexi + wiés )
-4 =0 (Ky —61) — 5 81 )(z—2z4)" <0,
2 212
Az = (”*51 + w*Xz) (v — v*)z

4
14*512 + w*X22

—4(1—92)(/C2—51)< 5

—&)w—wﬁsa
(4.17)
which concludes
yi <0,i=1,2,3. (4.18)

By (4.16) and (4.18), we directly obtain (4.1). Finally, integrating (4.1) over (0, 00), we

get
/ /w—mﬂ+/ /w—wf+/ fm—wM+f /@—@f<w
0 Q 0 Q 0 Q 0 Q

The proof of Lemma 4.2 is complete. O

Lemma 4.3 Suppose that the conditions of Theorem 1.2 hold. Then the solution (u, v, w, z)
to (1.1) satisfies
lu — usllLoo@) + v — villLoo(@) + lw — willLoo(@) + 12 — zxllLe@) — 0
(4.19)

ast — 00.

Proof A combination of Lemmas 4.1 and 4.2 implies this lemma. The proof of Lemma 4.3
is complete. o

Lemma 4.4 Suppose that the conditions of Theorem 1.2 hold. Then there exist C1 > 0 and
A1 > 0 such that the solution (u, v, w, z) to (1.1) satisfies

llu — il oo (@) + 1o — vllzoo(@) + lw — willzo@) + 12 — zellLoo@) < Cre™1*
(4.20)

forallt > t1, where t; > 0 is some fixed time.

Proof This idea of proof is similar to [4, Lemma 3.7].
Set g1(s) =5 —uyIns and g2(s) = s — w, Ins for s > 0. By L’Hopital’s rule, we have

gi(s) —gi(us) 1

lim ¥—"—->——~ = 4.21
YLT* (s — u*)z Uy ( 4
and
— 1
lim 82(s) — g2(wy) _ . 4.22)
s—we (5 — Wy)? 2w,
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By Lemma 4.3, one can see that there exist some 7; > 0 and C», C3 > 0 such that

sz (i —uy)? < / <u — Uy — Uy In i) < Gy / (U — 1,)? (4.23)

Q Q Uy Q

CZ/ (w — w*)2 < / <w — Wy — Wy In ﬂ) < Cj / (w — w*)2 (4.24)
Q Q Wi Q

forall t > 1.
By means of the definitions of F(¢), it follows from the second inequalities in (4.23) and
(4.24) that there exists C4 > 0 such that

and

CaFi(1) < f <(u—u*)z—i-(v—v*)2+(w—w*)2+(z—z*)2> (4.25)
Q

for all ¢ > t;. With the aid of Lemma 4.2, we get

iﬁ(r) < —81/ ((u—u )+ (v — v,)?
dt - Q * *

+(w—w)?+ (z— Z*)2> < —C481F1 (1), (4.26)

which implies
Fi(1) < Fi(mye” @) (4.27)

for all t > ¢;. Then combining (4.27) with the first inequalities in (4.23) and (4.24), there
exists C5 > 0 such that

/ ((u — ) 4 (w — w*)z) < CsFi(r) < CsFy(ty)eC4o10=1) (4.28)
Q

forall t > 1.
By applying the Gagliardo-Nirenberg inequality and (1.15), there exist some positive
constants Cg, C7 and Cg such that

lu — usllLoo@) + llw — will o)

n 2 n 2
n+2 n+2 n+2 n+2
2 2
n+2 n+2

2 2 w2

gy 1))
n+2

< Cy(CsF1 (1)) e

forall r > 1.
By the application of the elliptic maximum principle and (4.29), we get

lv — villLoe() + 12 — z4ll Lo (@)

< lw — wyll o) + e — uxllLo@) (4.30)

_ G4y G—y)
n+2

< C3(CsF (tl))ﬁe
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where we have used that T = 0 and v, = wy, 2« = ux. The proof of Lemma 4.4 is complete.
O

Proof of Theorem 1.2 Lemma 4.4 directly shows the results of Theorem 1.2. O

4.2 Proof of Theorem 1.3
Now, we introduce the following functionals

Fr(t) ::/ (u—u,,—u*lnl>+/ w,
Q Uy Q

where (i, z4) 1s given by (1.16).

Lemma 4.5 Let (u, v, w, z) be a global bounded classical solution to (1.1). Suppose that the
conditions of Theorem 1.3 hold. Then there exists §, > 0 such that

d
—F(t) = —52/ <(u —u)* + P w4 (2 - z*)2>
dt Q
+(bo—b1u*+b3u*|9|)/ w (4.31)
Q
forallt > 0. Moreover, we have

[ fomers [ oo Lo [ e
0 Q 0 Q 0 Q 0 Q

Proof This proof is similar to Lemma 4.2. For reader’s convenience, we give the sketch of
the proof. Firstly, 7>(¢) can be rewritten as

Fo(t) = Ax(1) + Ba(1), (4.32)
where Ay(1) = [, (u — U, — uyIn i) and By(1) := [qw. Similarly, we obtain the
Us

nonnegativity of 7> (¢) by (5.4) of [14].
Next, we will prove (4.31). It follows from Young’s and Holder’s inequalities that

d Vul|? Vu Vu
— A0 =—u, | |—| +&u | — -Vo—uu. | —-Vz
dt Q| U Q u Q U
+/(u—u*)(a0—a1u—a2w+a3/ u+a4/ w)
Q Q Q
2 2
Uy Uy
< i/ |Vv|2+i/ V2P
2 Jg 2 Jq
+/(u—u*)<a1u,—a3u*|9| —alu—a2w+a3/ u+a4/ w)
Q Q Q
2 2
Uy Uy a
si/ |Vv|2+i/ vzl = (a1 + 21 /(u—m)2
2 Ja 2 Ja 2 Q

—HQ/(M—M*)W—%lglf wz,
Q 2 Q

where we have used that ag = aju, — azu.|2| and a3, a4 < 0.

(4.33)
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Based on the third equation of (1.1), we deduce from b3, by < 0, Holder’s and Young’s
inequalities that

d
fBz(t):/ w(bo—blu—b2w+b3/u+b4/ w)
dt Q Q Q

=/ w(bo—bl(u—u,,)—blu*—b2w+b3/(u—u*)+b3u*|§2|+b4/ w)

Q Q Q
b
S(bo—blu*+b3u*|Q|)/ w—<bz+f3|9|>/ wz—blf(u—u*)w
Q 2 Q Q

_bs — )2
> |§2|/Q(u Uy)”.
(4.34)

Combining (4.33) with (4.34) obtains

d uE} 2, Ui 2 a4 b3 2
—F@) <=L v 2L vz - =1Ql+ =9 -
ar 2(1) < > /QI vl + > /QIZI al+2||+2||/;2(u Us)

b
—(az—i-bl)/(u—u*)w— <b2+a—4|sz|+—3|§z|>/ w?
Q 2 2 Q

+ (bo —blu*+b3u*|sz|>/ w,
Q

Then making once again use of (4.9) and (4.10), we get
d WE [, kR f ot / )
— ) < ——= — — Zs
dt]:2( ) < > /;zv + > /g vw > Q(Z Z4)
Uy x? as b3 2
—I—i/(z—z*)(u—u*)— a; + Q2+ || /(u—u*)
2 Q 2 2 Q

b
—(az-l-bl)/(u—u*)w— b+ “io+ By fw2
Q 2 2 Q

+ (bo — b1us + b3u,,|Q|)/ w.
Q

(4.35)

It follows from (1.17) and (1.18) that K3 := a; + %4|52| + b73|S2|, Kq:=by+ “74|Q| + l’2—3|S2|
are positive, and there exist 83, 64 € (0, 1) such that

4030,K3K4 > (az + by)? (4.36)
and
2
Use X1
Ky > —2L 437
77801 = 63) @37
as well as
M*Sf
Ky > —21 438
4 > 81— 61) (4.33)
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According to (4.36)—(4.38) and u,, w, > 0, one can find some &, > 0 to satisfy
. {46394/c3/c4 — (@ +b1)?* 8(1 = 0)Ksuuxi —uzx!
d2 < min , N
0304 (K3 + K4) 8(1 —03)(2K3 + uw i)

B(1 — 04)Kqu. & — ulé} K}
801 — 002K + kD)

Therefore, we get

(4.39)

d
Efz(t) =< —52/ ((u —u)* + P w4 (2 - z*)2> + (bo — b1 +b3u*|9|)/ w
Q Q
+/ (h1 + ha + h3),
Q
(4.40)

where

hy = —63(K3 — 82)(u — uy)* — (@2 + b1)(u — u)w — 04Ky — 82)w?,

2 2
hy = —(1 — 63)(KC3 — 82)(u — 1) + %m )z — z4) — (”2?‘1 - 52> (2 — 2%,

2 2
hy = —(1 — 02)(Ksa — S)w* + %vw - (ufl - 82) V2.

For each the discriminant of 4; (i = 1, 2, 3) and by (4.39), we have
Ay = (az + b)*w? — 40304(K1 — 82)(Ky — 8)w? <0,

2.4 2
u Uy
Dy =" (g = )2 =41 = ) (K1 —8) [ XL — 5y ) (- z0? <0,
4 2 4.41)
244 2
A= "800 41—y, — 8 (“;1 - 52> v <0,
which concludes
h; <0,i=1,2,3. (4.42)
By (4.40) and (4.42), we directly obtain (4.31). Moreover, we get
o0 o o0 o0
[ fomere [ Lo Lo [ e
0 Q 0 Q 0 Q 0 Q
by integrating (4.31) over (0, 0o). The proof of Lemma 4.5 is complete. O

Lemma 4.6 Suppose that the conditions of Theorem 1.3 hold. Then the solution (u, v, w, z)
to (1.1) satisfies

lu — usliLe@) + lIvllLe@) + lwllLe@) + 1z — ZallLo@) — 0 (4.43)
ast — oo.
Proof A combination of Lemma 4.1 and Lemma 4.5 implies this lemma. The proof of

Lemma 4.6 is complete. O
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Lemma 4.7 Let the conditions of Theorem 1.3 hold.

; ar—ag|Q2| a1—a3|Q| ag ; ;
@) Ifb2—b4|s2| < b=byal < by’ then there exist Cg > 0 and Lo > 0 such that the solution

(u, v, w, z) to (1.1) satisfies

lu — uall Loy + vl + lwllzo@) + 12 — zullLe@) < Coe ™2 (4.44)

forallt > tr, where ty > 0 is some fixed time.

(i) If}“éigﬂgl < ]‘:i:z:}g} = Z—g, then there exist C1g > 0 and A3 > 0 such that the solution

(u, v, w, z) to (1.1) satisfies

)~
(4.45)

lu — uillLoo(@) + iz + lwllLe@) + 1z — zallLe@) < Cro(t — 13

forallt > t3, where t3 > 0 is some fixed time.

: ap—ay |2 a1 —a3|Q| ag : P
Proof (i) When bhaal < bi=hyQl < b’ by using Lemma 4.6 and a similar argument as

in the proof of [25, Lemma 4.3], there exist some f, > 0 and C11, C12 > 0 such that

Cu/ ((u—u*)2+v2+w2+(z—z*)2+w) < A1)
Q

< cm/Q ((u —u)? v+ wi @ —z)? 4 w> (4.46)
for all t > 1. Then we infer from Lemma 4.4 that there exists C13 > 0 such that
%fz(t) < —Ci38172(), (4.47)
which implies
Fa(t) < Faltp)e” ) (4.48)

for all + > t,. Finally, by the same argument as in the proof of Lemma 4.4, we obtain
(4.44).

(ii) When ,‘g:gﬂg} < ;;}:gg}g} = . it follows from the definition of 7>(1), (4.23) and
Holder’s inequality that there exist #3 > 0 and C14 > 0 such that

Fo(t) 5/ (Cs(u —uw)+ P+ w+(z— z*)2>
Q

scsf fowr) (Lowr) (L) ([2)
Q Q Q Q
+|Q|%(/ wz>§4—(/(z—z*)2>§</(z—z*)2>i
Q Q Q
§C14</(u—u*)2+/ v2+/w2+/(z—z*)2)
Q Q Q Q

for all ¢+ > 3, where we have used the boundedness of solution (u, v, w, z). Thus we
duduce from Lemma 4.5 that there exists Cjs > 0 such that

(4.49)

d
P20 = —C1581F3(1), (4.50)
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which implies

C
Fot) < —° (4.51)
t—13
for all ¢+ > 3 with some Cig > 0.
With the aids of (4.23) and (4.51), we find C{7 > 0 such that
Ci16C
[ ((u —u)? + w2) < CnFn < 2 (4.52)
Q 1 —13
forall r > 3.
By the similar method as (4.29) and (4.30), we obtain (4.45). ]
Proof of Theorem 1.3 Lemma 4.7 directly gives the statement of Theorem 1.3. O

5 Boundedness for 7 = 1

The aim of this section is to show the global boundedness of solution to (1.1) with 7 = 1
and prove Theorem 1.4. Firstly, we give the extensibility and regularity of solution to system
(1.1), which will be used to confirm the global existence and boundedness of solutions.

Lemma5.1 Let v = 1 and Q@ C R"(n > 1) be a smoothly bounded domain. Assume that
az, by > 0 and (1.6) hold. Suppose that there exists py > 1 such that py > 5 and

sup <||u||Lpo(Q) + ||w||Lpo(Q)) < 00. 5.1
te(0, Tinax)
Then Tnax = 00 and
sup <||M||L°°(sz) + vl + llwll L) + ||Z||L°°(Q)> < oo. (5.2)
>0

Moreover, there exist v € (0, 1) and C1 > 0 independent of t such that

hull, 10l s g4

b3 _
P2 T (Qxn,e41])

+||w||cﬁ+2,%+1

(Qx[t,14+1])

+ ||Z||Cﬁ+2’%+l Cl (53)

_ _ <
(Qx[t.141]) @x[tt+1]) —

forallt > 1.

Proof For the last term f (4, w) in the u—equation of (1.1), we deduce

u(ao—alu—a2w+a3/ udx+a4/ wdx)
Q Q

< (ap + 2asMo)u — aju’® (5.4)
- (ap + 2asMp)?
- da

with a5 := max {(a3)+, (a4)+}, where we have used a» > 0 and Lemma 2.2. We use the
same method for w—equation. Then the following proof of this lemma is similar to [4, Lemma
2.6]. The proof of Lemma 5.1 is complete. O
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Lemma5.2 Let v = 1 and Q C R"(n > 1) be a smoothly bounded domain. Assume that
ay, by > 0 and (1.6) hold. Then there exists Cy > 0 such that

t+19 t+10
/ / u*(-, s)ds +/ / w2 (-, )ds < Cy (5.5)
t Q t Q

forallt € (0, Tyax — T0), where 7o := min{1, Tmex},
Proof This proof is similar to [14, Lemma 4.2]. Here we omit the details for brevity. O

Lemma5.3 Lett = 1 and Q € R"(n > 1) be a smoothly bounded domain. Assume that
ar, by > 0 and (1.6) hold. Then there exists C3 > 0 such that

/ Vo> < C3 (5.6)
Q
and
/ IVz|> < C3 (5.7)
Q
forallt € (0, Tinax), as well as
t+710
/ / |AV(-, 5)[*ds < C3 (5.8)
t Q
and
1410
/ / |Az(-, 5)*ds < C3 (5.9)
I3 Q

forallt € (0, Tmax — T0), where o := min{1, Tmex},
Proof This proof is similar to [14, Lemma 4.3]. The proof of Lemma 5.3 is complete. O

When n = 2, we shall establish L2—bound of « and w, which is essential to obtain
L*°—bound of u and w.

Lemma5.4 Lett =1and Q CR2 bea smoothly bounded domain. Assume that a», by > 0
and (1.6) hold. Then there exists C4 > 0 such that

lull 2@ < Ca (5.10)
and

lwlli2@) = Ca (5.11)
forallt € (0, Tiax)-

Proof Multiplying the first equation in (1.1) by 2u and integrating by parts over €2, we deduce
from Lemma 2.2 and Young’s inequality that

d
- u2:—2/|Vu|2—51/u2-Av+x1/u2-Az
dt Jo Q Q Q

+2/u2<a0—a1u—a2w+a3fu+a4/w)
Q Q Q
5—2/ |Vu|2—$1/u2-Av—|—x1/u2-Az

Q Q Q

+2(ao + 2a5Mo)/ u* — 2a; / u’
Q Q

(5.12)
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for all 7 € (0, Tiax), where we have used that a; > 0 and as := max {(a3)+, (a4)+}.
Similarly, we get

d
— w2§—2/|Vw|2—§2/w2-Az+X2/w2-Av
dt Jq Q Q Q

(5.13)
+ 2(bo + 2bsMy) / w2 — 2b, / w?
Q Q

by b1 > 0 for all t € (0, Tnax), where b5 := max {(b3)+, (b4)+}. Then combining (5.12)
with (5.13) and using Young’s inequality, we have

d
—/(u2+w2)5—2/ |Vu|2—.§1/u2-Av+x1/u2-Az
dr Jo Q Q Q
—2/|Vw|2—§2/w2~Az+X2/w2-Av
Q Q Q

+2/ u2<(a0 + as M) —alu)
Q

(5.14)
+ 2/ w2((bo + bsMp) — b2w>

Q
<-2 |Vu|2—.§1/u2-Av+x1/u2-Az
Q Q Q

—2/|Vw|2—52/w2~Az+X2/w2-Av+C5
Q Q Q

forall r € (0, Tiax), where Cs > 0.
Then the following proof of this lemma is similar to [14, Lemma 4.4]. Here we omit the
details. The proof of Lemma 5.4 is complete. O

When n = 3, in order to obtain the L°°—bound of u and w, we still need to establish
L?—bound of u and w.

Lemma5.5 Lett = 1and Q CR3 bea smoothly bounded domain. Assume that a, by > 0
and (1.21) holds. Then there exists Cq > 0 such that

lullz2@) + w2y < Co (5.15)

forallt € (0, Tipax)-

Proof We shall prove this lemma from the following steps:
Step 1. Based one (5.12), we apply Young’s inequality and Lemma 2.2 to obtain

d

— u2:—2/ |Vu|2+2:§1/uVu-Vv—2X1/uVu-Vz
dt Jg Q Q Q

+2/u2<a0—a1u—a2w+a3/u+a4/w)
Q Q Q

< —/ |Vu|2+2§12/ u2|vU|2+2X%/ u*|vz|?
Q Q Q

+2(ao + 2a5M0)/ u? — 2a; / u’
Q Q

(5.16)
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for all # € (0, Tiax), Where as := max {(a3)+. (a4)+} and we have used the condition that
az > 0. By the similar way on w—equation, we obtain

d
— w2+/ |Vw|2
dr Jg Q

< 2522/ w?|Vz|? + 2x§/ w?|Vu|? + 2(bo + 2b5M0)/ w? — 2b2/ w?
Q Q Q Q
(5.17)

for all t € (0, Tiax), Where b5 := max {(b3)+, (b4)+} and we have used the condition that
b1 > 0.

Step 2. Notice that

d

= / (b1u + axw)(|Vv|2 + |Vz)?)

dt Jq

=/ (blu,+a2w,) <|VU|2+|VZ|2> +f (blu-i-azw) <<|Vv|2>,+(|Vz|2),)
Q Q

(5.18)

for all t € (0, Tmax)- Relying on the first and third equations in (1.1), it follows from

Lemma 2.2 that
/ <b1u, +a2wt> (|Vv|2 + |VZ|2)
Q

< —/ V(biu + ayw) - V(Vo? + [V2)
Q
+f@1b1u—xzazw)Vv-V<|Vv|2+|vZ|2>
§2 (5.19)
- f (B2aow — x1b1u)Vz - V(IVu]* +|Vz]?)
Q
+ by / u(aog + 2as My — alu)(|Vv|2 + |VZ|2)
Q
+a2/ w(bo + 2bsMo — byw)(IVol? + [Vz?)
Q
for all # € (0, Tnax). Applying Young’s inequality once again, we obtain

- / V(biu + arw) - V(IVv|* + |Vz]?)
Q

1 1
< —/ |W|z+,/ |Vw|2+<a§+b%>/ |V|Vv|2|2+<a%+b%>/ VIV
2 Ja 2 Ja Q Q
(5.20)

and

f b1 — xoaw)Vu - V(IVoP + [V2)
Q

2 2 2 2
as +b a5 +b
ss%/u2|Vv|2+x§f w?|Vo? + 2L 1/|V|Vv|2|2+—2 1/|V|Vz|2|2
Q Q 2 Q 2 Q

(5.21)
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as well as

/ (E2a0w — x1b1u)Vz - V(IVo|* + V2
Q

2 2

as +b a2+b2
sszz/w2|Vz|2+x%fu2|Vz|2+—22 1/|V|Vv|2|2+—22 ‘/|V|VZ|2|2
Q Q Q Q

(5.22)

forall 7 € (0, Tiax)-
It follows from the second and fourth equation in (1.1) that

/ <b1u + a2w> <(|Vv|2>t + <|vZ|2>t>
Q

= / (bru +a2u})<A|VU|2 —2|D*v> = 2|Vv|]> +2Vu - Vw>
Q

+ / (biu + azw)<A|Vz|2 —2|D?%z> = 2|Vz|* +2Vz- Vu)
Q

(V> + |Vz]?)
av

—2/(b1u+a2w)(|D2v|2+IDZZIZ) —2/<b1u+a2w)(|w|2+|VZ|2)
Q Q

=—/ V(biu +a2w)~V(|Vv|2+|Vz|2)+/ (bru + arw)
Q IQ

+ 2/ (biu +a2w)<Vv -Vw+ Vz- Vu)
Q

(5.23)

for all ¢+ € (0, Tmax), where we have used that 2Vv - VAv = A|Vy|2 — 2 |D2v|2 and

2Vz-VAz = A|Vz2 =2 |D2z|2. Likewise, applying Young’s inequality for the last term
in (5.23), there is

2/(b1u+a2w)(Vv-Vw+Vz-Vu)
Q
< [vup s+ [ vur
Q Q
+2b%/ u2|w|2+2b%/ | Vz|?
Q Q

+2a§/ w2|vU|2+2a§/ u?|Vz|?
Q Q

(5.24)

forall z € (0, Thax)-
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Thus, in view of (5.18)—(5.24), we derive
d
E/(blwazw)uw%|Vz|2>+2/(b1u+azw)(|w|2+|Vz|2)
Q Q
52/ |Vu|2+2/ |Vw|2+(gf+2b%—a1bl)/ u?|Vul?
Q Q Q
+<xf+2b%—a1bl)f W22
Q
+ (X3 +2a3 — azby) / w?| Vol + (& + 243 — azby) / w?|Vz)? (5.25)
Q Q
+3<a§+b%)/ |V|Vv|2|2+3(a§+b%>f IV|Vz]??
Q Q

+b1(a0+2a5M0)[ u(|Vv|2+|Vz|2)+a2(b0+2b5M0)/ w( Vo> + |Vz]?)
Q Q

A(IVv[* +|Vz*)

4 / (bu + ayw)
a0 Jv

forallz € (0, Tiax)-
Step 3. It follows from the second equation in (1.1) and 2Vv- VAv = A|Vv|> =2 | D%y |2

that
d 3|Vv|?
7/ \Vol* = _2/ |V|Vv|2|2+2/ oV —4/ Vol D22
dr Jo Q a0 v Q

—4/ |Vv|4—4/ wAv|Vv|2—4/ wVv - V|Vo|?
Q Q Q

for all t € (0, Tinax). By Young’s inequality and the pointwise inequality |Av|?> < n|D?v|?

(5.26)

withn = 3,
4
—4/ wAV|Vv|? < 5/ |Av|2|Vv|2+3/ w2 Vou|?
@ @ «Q (5.27)
54[ |Vv|2|D2v|2—|—3/ w?|Vol?
Q Q
and
—4[ wVv - V|Vl|? 5/ |V|Vv|2|2+4/ w?| V2. (5.28)
Q Q Q

Thus, combining (5.26)—(5.28) implies

d 9| Vl|?
d—/ IVvI“s—/ |V|Vv|2|2+2/ vt
tJa Q 19 v (529)

+7/ w2|Vv|2—4/ Vol
Q Q
forall ¢ € (0, Trax)-

Similarly,
d 9|Vz|?
—/ IVzl“f—/ |V|Vz|2|2+2/ |Vz|2¥
dt Q Q a0 ov

+7/ u2|VZ|2—4/ |vz)*
Q Q

(5.30)
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forall r € (0, Tiax).
Step 4. As a consequence of (5.16), (5.17), (5.25), (5.29) and (5.30), we get

d
Ef (3<u2+w2>+<b1u+azw><|w|2+|VZ|2>+4<a%+b%><|Vv|4+|Vz|4>)
Q
+2/(b1u+a2w)(|Vv|2+ IVz|?) + 16(a§+b%)/ <|Vv|4+ |Vz|4)
Q Q
+/ <|Vu|2+|Vw|2> +(a§+b%)/ (|V|Vv|2|2+|V|VZ|2|2)
Q Q
s<7s%+2b%—alb1>/ u2|Vv|2+(7x%+2b%+28<a§+b%>—a1b1>/ W2IVaP?
Q Q
+ (Tx3 + 2435 — agbz)/ w?|Vo)? + (7522 +2a3 +28(a3 + b7) — azbz) f w?|Vz[?
Q Q
+6(a0+a5M0)/ u2—6a1/ u3+6(b0+b5M0)/ w2—6b2/ w?
Q Q Q Q
—|—b1(a0—|—2a5M0)/ u(|Vv|2+|VZ|2> +a2(bo+2b5M0)/ w<|Vv|2+|VZ|2)
Q Q

(|Vv|? + |Vz)? 3|Vv|? 9|Vz|?
+ [ i+ ayy 2V IVED "+8(a§+b%>/ wop 2V g p Ve
IQ dv a0 dv av

(5.31)

forall z € (0, Tiax)-

It follows from (1.21) that these constants 7&2 +2b? — ajby, Tx? +2b? +28(a3 +b?) —
aiby, Tx3 + 2a3 — axby, 163 + 2a3 + 28(a3 + b3) — axb, are negative. Then, from (5.31)
we obtain

d
Ef (3<u2+w2>+<b1u+azw><|w|2+|VZ|2>+4<a%+b%><|Vv|4+|VZ|4>>

Q

+2/(b1u+a2w)(|w|2+|w|2)+16(a§+b%)/ <|Vv|4+|VZ|4)

Q Q
+/ (IVM|2+|Vw|2> +(a§+b%)f (|V|Vv|2|2+|V|VZ|2|2)
Q Q
< 6(a0+2a5M0)f u? —6a1/ u3+6(b0+2b5M0)/ w? —6b2/ w’
Q Q Q Q
—|—b1(a0+2a5M0)/ u<|VU|2+|Vz|2> +a2(bo+2b5M0)/ w<|Vv|2—|—|VZ|2>
Q Q

(| Vv|? + |Vz|? 9| Vu|? 9|Vz|?
+ [ et LD gy [ (190p 2 4wt
N v 90 v v

(5.32)

forall t € (0, Trax)-
Step 5. Let

(1) :=3/<u2+w2)+/<b1u+azw><|w|2+|VZ|2)+4(a%+b%)/ <|Vv|“+|Vz|4),
Q Q Q

U(t) ::/ |Vu|2+/ |Vw|2+(a§+b%)/ <|V|Vv|2|2+|V|Vz|2|2>
Q Q Q
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and

1 1
INGE= 6<a0+2a5M0+7>/ u2—6a1/ u3+6<b0+2b5M0+7)‘/‘ w2—6b2/ w’
2) Ja Q 2/ Ja Q

+b1(ao+2asMo)/ u(IVv|2+|VZ|2>+az(b0+2b5Mo)/ w(|VU|2+|Vz|2>

(V|2 + |V 9| Vul|? 9|Vz|?
/(bm—i—a )%_Fg(z_’_b)/ <|V |2| | +|VZ|2 lajl)

for all # € (0, Thax). Hence, we deduce from (5.32) that
(1) + @ (1) + V(1) < T'(1) (5.33)

forall z € (0, Tiax)-
It follows from Young’s inequality, Lemmas 2.4 and 4.3 that

bl(ao—i—asMo)/ u<|VU|2+|VZ|2)+a2(bo+b5M0)/ w<|vU|2+|vZ|2>
Q Q
b%(a0+a5M0)2/ u2+a§(b0+b5M0)2f w2+/ |Vv|4+/ |Vz|*
Q Q Q Q

(5.34)
< b (ap + a5M0)2/ u? + a3 (bo + b5M0)2/ w?
Q Q

2 2
as +b
L@t 5 ‘)/ <|V|Vv|2|2+|vwz|2|2)+c7
Q

with some constants C7 > 0. Applying Young’s inequality, Lemma 2.2, Lemma 2.5 and
Lemma 2.6 as well as Lemma 4.3, we obtain

(| Vv|? + |Vz 9| Vu|? 9| Vz|?
/(blu+a2w)M+8(z+b2)/ <|V| Vvl +IVz|2!)
a0 81) 81)

< Cs/ (b1u + ayw)(|Vv]* +|Vz|*) + 8Cs(a3 + b )/ (IVUI +Vzl )

§C8/ (b%u2+a§w2)+cg<8(a§+b%)+1)/ (|VU|4+|VZ|4)
a2 a2
2 2
a5 +b
5/ |Vu|2+/ |Vw|2+gf <|V|Vv|2|2+|vwz|2|2)
Q Q 2 Q
2 2 2 2
ol [ ol [ -l o) ol )
Q Q Q Q
2 2
a5 +b
5/ |Vu|2+/ |Vw|2+g/ <|V|VU|2|2+|V|VZ|2|2)+C10
Q Q 2 Q

for all # € (0, Tmax), Where Cg, C9 and Cj¢ are positive constants.

(5.35)
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Inserting (5.34) and (5.35) into (5.33), we apply Young’s inequality to obtain
1
(1) + (1) < <6(ao +asMo+ ) + b} (ap + a5M0)2> / u? — 6a; / u?
Q Q

1
+ (6(bo+b5Mo+E)'l‘a%(bo-}-bsMo)z)/ w2—6b2/ w3+C7+C10
Q Q

<Cn
(5.36)
with some Cy; > 0. One can get
d (1) < max{P(0), Cy1} (5.37)
in view of Lemma 2.3. The proof of Lemma 5.5 is complete. O

When n > 4, we shall show L” —bound so as to obtain L°°—bound of u and w.

Lemma5.6 Let v = 1 and Q@ C R"(n > 4) be a smoothly bounded domain. Assume that
ay, by > 0 and (1.22) holds. Then for all p > n, there exists C1o > 0 such that

lullLr@ + lwllLr@ < Ci2 (5.38)
forallt € (0, Tipax)-
Proof This proof is similar to [S1, Lemma 4.1]. For reader’s convenience, we give the sketch

of the proof.

Multiplying the first equation in (1.1) by pu”~!(p > n) and integrating by parts over £,
we infer from Young’s inequality and Lemma 2.2 that

d
Bl P 1 p
7 Qu +(p+ )/Qu

:_M/|v,ﬁ|2_,§l(p_1)/uP.Av+X1(p—l)/u”-Az
p Q Q Q

+(pao+p+1)/ul’+pfuﬁ<—a1u—a2w+a3/u+a4/ w) (5.39)
Q Q Q Q

4p—1
5_7(171) )/ |Vug|2+((ao+205Mo)P+p+l>/ u?
Q Q

+slpf |Av|"+‘+xlp/ |Az|"+‘—(a1—sl—xl>p/up+‘
Q Q Q

for all # € (0, Thax), Where we have used the condition that a, > 0. Applying Lemmas 2.2,
2.4 and Young’s inequality, there exists a positive constant C3 such that

22 2 20 P
(@0 + 2asmrp -+ p+1) [0 < Ca(19us g fIE 2 ufi?, )
Q L7 (Q) L7 ()
o]
gclgM(f(““"(/ |W%|2) +CisMP (5.40)
Q

4(p—1
<M [t s
p Q
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1 o1 np n
. _ o [ PY e P __ 2712
with C]4 = (1 —a1)C13 (m) +C]3MO > 0, where o] = m Here
npo_n
it follows from p > n that o = % € (0, 1). By (5.39) and (5.40),
—2t7%

d
— u”+(p+l)/u”f(S]erl—m)p/bt”+1
dt Jo Q Q

(5.41)
+51p/ |Av|PH! +X1p/ |Az|PT 4+ Cy
Q Q

forallr € (0, Tiax).
Let g € (0, Tax) such that 7o < 1. Applying the variation of constants formula to (5.41),
there exists a positive constant C1s such that

t
fu”(t) < (sl + xi —m)P/ e‘”’“)(’—”f uP(s)ds
Q 10 Q

t t
+51p/ e—(p+1)<r—s>/ |Av(s)|p+lds+)(1p/ e—<p+1><z—s)/ |Az(s)|PH ds
1 Q 1 Q

0 0

4 e~ /

'
u? (1p) + C11 / e~ (PHDI=5) ¢
Q

fo

t t
<&p f e~ PHDE=s) / |Av(s)[PH s + xip / e~ (PHDI=s) / |Az(s)|P T ds
1 Q to Q

0

t
+ (é‘n + X1 —m)p/ e_(”“)(’_‘)[ uPt(s)ds + Cys
o Q
(5.42)

for all t € (t0, Timax)-
Similarly,

t t
/ WP < Erp / ¢~ (=) f \A2() [P ds + xap f ¢~ (PHDE=) / Av(s)|Pds
Q 1 Q 10 Q

¢ (5.43)
+ (sz + X0 — bz)p/ e~ (PHDE=9) / wPt(s)ds + Cig
) Q

Cu

for all r € (¢y, Tmax), Where Cig = fQ w? (ty) + R

Combining (5.42) with (5.43) yields

t
/up—f-/ w? < &1+ x1 —al)p/ e_(p“)(’_s)f uPt(s)ds
Q Q 10 Q

!
+00+&)p / e~ (P / |Az(s)[P*ds
oo @ (5.44)
+E+ e —b)p / e~ wHDI= f w*(s)ds
1o Q
!

+ &1+ x2)p / em(PHDE=D / |Av(s)[PFds + Ci
o Q
for all r € (ty, Tmax), Where C17 = C15 + Cie.

Then the following proof of this lemma is similar to [14, Lemma 4.5]. Here we omit the
details. The proof of Lemma 5.6 is complete. O
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Proof of Theorem 1.4 For the case n = 1, it follows from Lemmas 2.2 and 5.1 that the
solution of (1.1) is globally bounded. For the case n = 2, it follows from Lemma 5.1
and Lemma 5.4 that the solution of (1.1) is globally bounded. When n = 3, the global
boundedness of solutions for (1.1) is obtained by Lemmas 5.1 and 5.5. When n > 4, it
follows from Lemma 5.1 and Lemma 5.6 that the solution of (1.1) is globally bounded. The
proof of Theorem 1.4 is complete. O

6 Asymptotic Behavior for7 =1

In this section, we discuss the asymptotic behavior for the fully parabolic system (1.1), and
prove Theorem 1.5 and Theorem 1.6.

6.1 Proof of Theorem 1.5

Similar to the way used in Lemma 4.2, we introduce the following functionals

u w
E() = / (u — Uy —u*ln—> —I—/ (w — Wy — w*ln—>
Q U Q Wy
o)+ 2 f (c - 2)’.
2 Ja 2 Ja
where (i, Uy, Wy, 24) 1S given by (1.10) and p1, p2 > 0 shall be determined.
Lemma 6.1 Let (u, v, w, z) be a global bounded classical solution to (1.1). Suppose that the
conditions of Theorem 1.5 hold. Then there exists 1 > O such that

%ams—mf<m—wf+w—wﬂ+m—mf+&—mﬁ (6.1)
Q

forallt > 0. Moreover,

/ /w—mﬁ+/ /w—wf+/ /w—wy+f f&—aﬂ<m
0 Q 0 Q 0 Q 0 Q

Proof This proof is similar to [14, Lemma 5.5] (or [4, Lemma 3.2]). The proof of Lemma 6.1
is complete. o

Lemma 6.2 Suppose that the conditions of Theorem 1.5 hold. Then the solution (u, v, w, z)
to (1.1) satisfies
lu — usllLoo@) + v — vallLoe(@) + lw — willLoeo(@) + 12 — 2xllLoo@) = 0
(6.2)

ast — oQ.

Proof A combination of Lemmas 4.1 and 6.1 implies this lemma. The proof of Lemma 6.2
is complete. o

Lemma 6.3 Suppose that the conditions of Theorem 1.5 hold. Then there exist C1 > 0 and
k1 > 0 such that the solution (u, v, w, z) to (1.1) satisfies

lu — usllzoo@) + v — vellzoo@) + lw — willzo@) + 12 — 2ellLo@) < Cre™

6.3)
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Sforallt > t4, where t4 > 0 is some fixed time.

Proof This proof is similar to [14, Lemma 5.7] (or [4, Lemma 3.6]). Here we omit the details.
The proof of Lemma 6.3 is complete. O

Proof of Theorem 1.5 Lemma 6.3 directly shows the statement of Theorem 1.5. O

6.2 Proof of Theorem 1.6

Lemma 6.4 Let (u, v, w, z) be a global bounded classical solution to (1.1). Suppose that the
conditions of Theorem 1.6 hold. Then there exists By > 0 such that

d
Zé’z(t) < —/32/ <(u —u)? P w4 (z— z*)2> 6.4)
Q
forallt > 0, where
52(t):=/(u—u*—u*lni)—i—/w—k& 22 (z—z*)z.
Q Uy Q 2 Q 2 Q

Here p1, p2 > 0 shall be determined and (u,., zx) is given by (1.16). Moreover,

[ fomers [ Lo f oo [ [
0 Q 0 Q 0 Q 0 Q

Proof This proof is similar to [14, Lemma 5.5] (or [4, Lemma 3.2]). Here we omit the details.
The proof of Lemma 6.4 is complete. O

Lemma 6.5 Suppose that the conditions of Theorem 1.6 hold. Then the solution (u, v, w, z)
to (1.1) satisfies

lu — usllLeo@) + lvllLe@) + lwllLee@) + 1z — zallLoo@) — 0 (6.5
ast — oo.

Proof A combination of Lemmas 5.1 and 6.4 implies this lemma. The proof of Lemma 6.5
is complete. O

Lemma 6.6 Suppose that the conditions of Theorem 1.6 hold.

() If 7= Zjlgl o Z;}g} < ”—0 then there exist Cy > 0 and k» > 0 such that the solution

(u, U w, z) to (1 1) sansﬁes

lu — usll o) + vl + lwllize) + 12 — zellLe@) < Cae™ 2 (6.6)

forallt > ts, where t5 > O is some fixed time.

(i) If 7= Zjlgl o Z:}g} 90 then there exist C3 > 0 and k3 > 0 such that the solution

(u, U w, z) to (1 1) satlsﬁes

lu — uillLo@) + vllLo@) + lwllLe@) + Iz — zellLo@) < C3(t — 1)~ (6.7)
forallt > te, where tg > 0 is some fixed time.

Proof This proof is similar to Lemma 4.7 (or [4, Lemma 3.6]). Here we omit the details. The
proof of Lemma 6.6 is complete. O

Proof of Theorem 1.6 Lemma 6.6 directly gives the results of Theorem 1.6. O
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