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Abstract
In this paper, we are interested in the positive periodic solutions of the periodic-parabolic
problem ⎧

⎪⎨

⎪⎩

ut = �u + λu − a(x, t)u p in � × (0, T ],
Bu = 0 on ∂� × (0, T ],
u(x, 0) = u(x, T ) in �,

where � is a C2+μ bounded domain in R
N (N ≥ 1), λ > 0 is a real parameter, p > 1 is

constant, a ∈ Cμ,μ/2(�̄×[0, T ]) is positive and T -periodic in t .We establish that the positive
solution has a “blow-up" phenomenon due to large λ or small a(x, t). By analyzing the sharp
profiles,wefind that the linear partλu andnonlinear parta(x, t)u pmakequite different effects
on the limiting behavior of positive periodic solutions. The second aim is then to investigate
the sharp connections between linear and nonlinear parts on the asymptotic behavior of
positive periodic solutions. Our study exhibits that the linear part plays a determined role.
We also study the asymptotic profiles of periodic-parabolic problem with nonlocal dispersal.
We find that the asymptotic profiles are different between two kinds of diffusion problems.

Keywords Reaction-diffusion · Nonlocal dispersal · Positive solution · Periodic profile
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1 Introduction andMain Results

We consider the periodic-parabolic problem
⎧
⎪⎨

⎪⎩

ut = �u + λu − a(x, t)u p in � × (0, T ],
Bu = 0 on ∂� × (0, T ],
u(x, 0) = u(x, T ) in �,

(1.1)

B Jian-Wen Sun
jianwensun@lzu.edu.cn

1 School of Mathematics and Statistics Gansu Key Laboratory of Applied Mathematics and Complex
Systems, Lanzhou University, Lanzhou 730000, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-022-10206-6&domain=pdf
http://orcid.org/0000-0002-8384-553X


2478 Journal of Dynamics and Differential Equations (2024) 36:2477–2495

where � is a C2+μ bounded domain in R
N (N ≥ 1), λ > 0 is a real parameter, p > 1 is

constant and a ∈ Cμ,μ/2(�̄ × [0, T ]) is positive and T -periodic in t . In (1.1), the boundary
operator B is given by

Bu = α0uν + β0u,

here ν is the unit outward normal to ∂� and either α0 = 0, β0 = 1 (the Dirichlet boundary
condition) or α0 = 1, β0 ≥ 0 (the Neumann or Robin boundary conditions). Problem (1.1)
is a basic model used in the study of diversity phenomena in the applied sciences (see, e.g.
[2, 6, 7, 23, 24, 27, 28, 31]). It is also the paradigmatic model in population dynamics,
the periodic logistic model [13, 23, 29]. In this context, � is the region inhabited by the
population with species u and we are interested to the positive periodic solutions. Under
the above assumptions, the periodic problem (1.1) as well as the corresponding elliptic
problems were well studied, see [15–18, 24, 29, 30] and references therein. We know from
the seminal works of Hess [23, 24] that there exists a unique positive periodic solution
θλ ∈ C2+μ,1+μ/2(� × [0, T ]) to (1.1) bifurcating from (λ, u) = (λB

1 (�), 0) which is
unbounded. Hereafter, λB

1 (�) will stand for the principal eigenvalue of
{

�u = −λu in �,

Bu = 0 on ∂�.
(1.2)

Our aim is to analyze the global structure of positive periodic solution θλ(x, t) of (1.1)
with respect parameter λ. The asymptotic profile in the exterior of� is given by the following
result.

Theorem 1.1 Assume that θλ ∈ C2+μ,1+μ/2(� × [0, T ]) is the unique positive solution of
(1.1) for λ > λB

1 (�). Let K ⊂ � be a compact subset of �, then

lim
λ→∞ λ

1
1−p θλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in K × [0, T ]. (1.3)

As a direct conclusion of Theorem 1.1, we have

lim
λ→∞ θλ(x, t) = ∞ uniformly in K × [0, T ].

Thus we know that the positive solution of (1.1) has a “blow-up” phenomenon due to the
“large” linear part λu of reaction function. Note that the result in elliptic problem was proved
by Fraile et al. [20], see also [9, 12]. In fact, we know that large linear part shall make a basic
change on the asymptotic behavior.

On the other hand, if a(x, t) ≡ 0, then the nonlinear problem (1.1) reduces to the linear
eigenvalue Eq. (1.2). In this case, the only positive solution of (1.2) is the principal eigenfunc-
tion and it is interesting to study the sharp changes of positive periodic solutions when a(x, t)
vanishes. To this end, we consider the following perturbation periodic-parabolic problem

⎧
⎪⎨

⎪⎩

ut = �u + λu − aε(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

(1.4)

where aε ∈ Cμ,μ/2(�̄ × [0, T ]) is T -periodic for ε > 0, a(x, t) is as in (1.1) and

lim
ε→0+

aε(x, t)

εα
= a(x, t) uniformly in �̄ × [0, T ], (1.5)
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here α > 0 denotes the quenching speed of nonlinear term in reaction function. It follows
from the pioneering work of Hess [24] that there exists a unique positive periodic solution
θε(x, t) to (1.4) if and only if λ > λB

1 (�), provided ε > 0 is small. Moreover, the positive
solution θε(x, t) is continuous with respect to ε. We shall analyze the asymptotic behavior
of θε(x, t) as follows.

Theorem 1.2 Let θε ∈ C2+μ,1+μ/2(� × [0, T ]) be the unique positive periodic solution of
(1.4) for λ > λB

1 (�) and K ⊂ � be a compact subset of �. Then

lim
ε→0+ θε(x, t) = ∞ uniformly in K × [0, T ],

and
lim

ε→0+ ε
α

p−1 θε(x, t) = v(x, t) uniformly in �̄ × [0, T ], (1.6)

where v(x, t) stands for the unique positive periodic solution of (1.1).

The above basic results in Theorems 1.1 and 1.2 provide us that the positive periodic
solution of (1.1) admits a “blow-up” phenomenon when the linear term λu is large or the
nonlinear term a(x, t)u p is small. According to (1.3) and (1.6), we know that the asymptotic
profiles are different in two cases. We then need to analyze the sharp effects between linear
and nonlinear parts on the positive periodic solutions of (1.1). More precisely, we want to
know which one plays a more important role. To do this, we consider the periodic-parabolic
problem ⎧

⎪⎨

⎪⎩

ut = �u + λ
εβ u − aε(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

(1.7)

where β > 0, aε ∈ Cμ,μ/2(�̄ × [0, T ]) is T -periodic in t for ε > 0 and aε satisfies (1.5).
We are ready to state the main result on the sharp profiles of positive solutions to (1.7).

Theorem 1.3 Let θε ∈ C2+μ,1+μ/2(� × [0, T ]) be the unique positive periodic solution of
(1.7) for λ > λB

1 (�) and K ⊂ � be a compact subset of �. Then

lim
ε→0+ θε(x, t) = ∞ uniformly in K × [0, T ],

and

lim
ε→0+ ε

α+β
p−1 θε(x, t) =

[
λ

a(x, t)

] 1
p−1

uniformly in K × [0, T ]. (1.8)

The above theorem gives the sharp effects of linear and nonlinear parts of reaction function
on the positive periodic solutions of (1.1). It is clear that both the linear and nonlinear parts
make a change on the sharp blow-up profiles. However, we can see that the nonlinear part only
change the blow-up speed. Furthermore, it follows from (1.3), (1.6) and (1.8) that the linear
part plays a determined role on the sharp limiting profiles. Note that the periodic-parabolic
problem with small diffusion rate has been studied by Daners and López-Gómez [14]. It
follows from [14, Theorem 1.3] that the unique positive periodic solution converges to the
positive solution of the corresponding kinetic equation without diffusion. Note also that the
asymptotic profiles of positive periodic solutions are quite different between small diffusion
rate and large growth rate.

On the other hand, we know that the classical reaction-diffusion equation is usually used
tomodel diffusion with local or short effects [19]. Since the diffusionmay take place between
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non-adjoint places, the research in nonlocal dispersal equation has attracted much attention
in recently years [4, 8, 10, 11, 35, 38, 40, 43]. Let J : R

N → R be a nonnegative and
symmetric function. It is known that the nonlocal dispersal equation

ut (x, t) =
∫

RN
J (x − y)[u(y, t) − u(x, t)] dy in R

n × (0,∞), (1.9)

and variations of it, arise in the study of different dispersal process in material science,
ecology, neurology and genetics (see, for instance, [21, 26, 33]). As stated in [19, 25], if
u(y, t) is thought of as the density at location y at time t , and J (x − y) is thought of as the
probability distribution of jumping from y to x , then

∫

RN J (x − y)u(y, t) dy denotes the rate
atwhich individuals are arriving to location x fromall other places and

∫

RN J (y−x)u(x, t) dy
is the rate at which they are leaving location x to all other places. Thus the right hand side
of (1.9) is the change of density u(x, t). There has been attracted considerable interest in the
study of nonlocal dispersal equations recently, for example, the papers [5, 22, 37, 39, 41] and
references therein.

In the second part of this paper, we consider the asymptotic profiles for positive periodic
solutions of nonlocal dispersal problems. To do this, we study the nonlocal dispersal periodic-
parabolic equation

{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − a(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),
(1.10)

where � is a bounded domain of RN (N ≥ 1), λ > 0 is a real parameter, p > 1 is constant
and a ∈ C(�̄ × [0, T ]) is positive and T -periodic in t . In the rest of this paper, we make the
following assumption.

(H ) J ∈ C(RN ) is a nonnegative, symmetric function such that
∫

RN J (y) dy = 1 and J (0) >

0.

We know that there exists a unique positive solution ωλ ∈ C(�̄ × [0, T ]) to (1.10)
bifurcating from (λ, u) = (λp(�), u) which is unbounded, see Rawal and Shen [34], Sun et
al. [36, 42]. Hereafter, λp(�) will stand for the principal eigenvalue of nonlocal problem

∫

�

J (x − y)u(y) dy − u(x) = −λu in �̄,

whose existence and properties are obtained in [5, 22, 25]. Since the nonlocal dispersal
equation shares many properties with the reaction-diffusion equation, we will investigate the
sharp behavior of positive solutions of (1.10) when the linear part is large or nonlinear part is
small. However, there is a deficiency of regularity theory and compact property for nonlocal
dispersal operators, the study of sharp behavior of (1.10) is quite different to (1.1), [10, 36].
We shall obtain the asymptotic behavior for nonlocal dispersal problem (1.10) by the means
of nonlocal estimates and comparison arguments.

The next theorem is the limiting behavior of positive solutions of (1.10) when λ → ∞.

Theorem 1.4 Assume that ωλ ∈ C(�̄ × [0, T ]) is the unique positive solution of (1.10) for
λ > λp(�). Then

lim
λ→∞ θλ(x, t) = ∞ uniformly in �̄ × [0,∞),

and

lim
λ→∞ λ

1
1−p θλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in �̄ × [0,∞). (1.11)
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As a complementary conclusion of Theorem 1.1 and Theorem 1.4, we know that the large
linear growth term λu causes quite different asymptotic behaviors in two kinds of periodic
problems, where the solution blows up in the whole domain � for large λ in the case of
nonlocal problem.

Now let us consider the positive periodic solution of nonlocal problem
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − aε(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),
(1.12)

where aε ∈ C(�̄ × [0, T ]) is T -periodic in t for ε > 0 and aε satisfies (1.5). In this case, we
know that there exists a unique positive periodic solution ωε ∈ C0,1(�̄ × [0, T ]) to (1.12) if
and only if λ > λp(�), provided ε > 0 is small. Moreover, the positive solution ωε(x, t) is
continuous with respect to ε [38]. We shall analyze the behavior of ωε(x, t) as ε → 0.

Theorem 1.5 Let ωε ∈ C(�̄ × [0, T ]) be the unique positive periodic solution of (1.12) for
λ > λp(�). Then

lim
ε→0+ ωε(x, t) = ∞ uniformly in �̄ × [0,∞),

and
lim

ε→0+ ε
α

p−1 ωε(x, t) = v(x, t) uniformly in �̄ × [0,∞),

where v(x, t) stands for the unique positive periodic solution of (1.10).

At last, we consider the nonlocal periodic problem
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λ

εβ u − aε(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),
(1.13)

where β > 0, aε ∈ C(�̄ × [0, T ]) is T -periodic in t for ε > 0 and it satisfies (1.5). By
studying the limiting behavior of the positive solutions to (1.13) as ε → 0, we shall find the
sharp connections between linear and nonlinear parts of reaction functions on the asymptotic
behavior of positive periodic solutions of (1.10).

Theorem 1.6 Let ωε ∈ C(�̄ × [0, T ]) be the unique positive periodic solution of (1.13) for
λ > λp(�). Then

lim
ε→0+ ωε(x, t) = ∞ uniformly in �̄ × [0,∞),

and

lim
ε→0+ ε

α+β
p−1 ωε(x, t) =

[
λ

a(x, t)

] 1
p−1

uniformly in �̄ × [0,∞).

Remark 1.7 In Theorem 1.6, we obtain the sharp changes of positive periodic solutions to
the nonlocal periodic-parabolic Eq. (1.13). From Theorems 1.3 and 1.6 we have that the
reaction functions also play quite different roles between nonlocal and reaction-diffusion
(local) problems. We can consider more general equations, the investigation is similar to the
arguments of (1.7) and (1.13). Meanwhile, our results show that sharp changes between two
kinds of equations are also different. Note that the periodic solution of nonlocal dispersal
equations has a blow-up phenomenon in the whole �̄.

The rest of this paper is organized as follows. In Sect. 2, we investigate the sharp connec-
tions of linear and nonlinear parts of reaction functions to the reaction-diffusion equations.
Sect. 3 is devoted to the sharp profiles of nonlocal periodic-parabolic problems.
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2 The Periodic Reaction-Diffusion Problem

In this section, we shall consider the sharp profiles of positive periodic solutions to the
classical reaction-diffusion equations (1.1), (1.4) and (1.7).

2.1 The Periodic Singular Perturbation Problem

In this subsection, we consider the positive periodic solution of
⎧
⎪⎨

⎪⎩

ut = �u + λu − a(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

(2.1)

when the parameter λ is large. Let θλ(x, t) be the unique positive periodic solution of (2.1)
for λ > λB

1 (�), we shall analyze the behavior of θλ(x, t) as λ → ∞. Our main methods are
based on the maximum principle of periodic-parabolic operators as well as the upper-lower
solutions arguments, see e.g. [1, 3, 27] and references therein. The behavior of θλ(x, t) in the
interior of � is given by the following result, here we adopt the method developed by Fraile
et al. [20] in the study of elliptic problem.

Theorem 2.1 Assume that θλ(x, t) is the unique positive solution of (2.1) for λ > λB
1 (�).

Let K ⊂ � be a compact subset of �, then

lim
λ→∞ θλ(x, t) = ∞ uniformly in K × [0,∞), (2.2)

and

lim
λ→∞ λ

1
1−p θλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in K × [0,∞). (2.3)

Proof First note that for every λ > λB
1 (�), there exists a unique positive solution uλ(x) to

the semilinear elliptic problem
{

�u + λu − a∗(x)u p = 0 in �,

Bu = 0 on ∂�,

here
a∗(x) = max

t∈[0,T ] a(x, t).

It follows from the argument of upper-lower solutions that

θλ(x, t) ≥ uλ(x)

for (x, t) ∈ � × [0,∞). On the other hand, we known that

lim
λ→∞ uλ(x) = ∞ uniformly in K ,

(see e.g. [12, 20]). This also implies (2.2).
Now we prove the second claim (2.3). The change of variable

vλ(x, t) = λ
1

1−p θλ(x, t)
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transforms (2.1) into the singular perturbation problem
⎧
⎪⎨

⎪⎩

(vλ)t = �vλ + λ[vλ − a(x, t)v p
λ ] in � × (0,∞),

Bvλ = 0 on ∂� × (0,∞),

vλ(x, t) = vλ(x, t + T ) in � × [0,∞).

(2.4)

Then we only need to show that

lim
λ→∞ vλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in K × [0,∞). (2.5)

We first take smooth function aδ(x, t) for δ > 0 such that

aδ(x, t) = aδ(x, t + T ), aδ(x, t) ≥ a(x, t) gt; 0
for (x, t) ∈ �̄ × [0,∞) and

lim
δ→0+ aδ(x, t) = a(x, t) uniformly in �̄ × [0, T ].

Given ε0 > 0 small such that
aδ(x, t) > ε0

for (x, t) ∈ �̄ × [0,∞), we define

v̂(x, t) = [aδ(x, t) − ε0]
1

1−p .

Subsequently, we have

v̂t − �v̂ − λ[v̂ − a(x, t)v̂ p]
= v̂t − �v̂ − λ[aδ(x, t) − ε0]

p
1−p [aδ(x, t) − ε0 − a(x, t)]

≥ v̂t − �v̂ + ελ[aδ(x, t) − ε0]
p

1−p

≥ 0,

provided λ is sufficiently large. In this case, we know that v̂(x, t) is an upper-solution to (2.4)
and the comparison argument gives that

v(x, t) ≤ v̂(x, t) =
[

1

aδ(x, t) − ε0

] 1
p−1

for (x, t) ∈ �̄ × [0,∞). Hence

lim sup
λ→∞

v(x, t) ≤
[

1

aδ(x, t)

] 1
p−1

.

Letting δ → 0+, one has

lim sup
λ→∞

v(x, t) ≤
[

1

a(x, t)

] 1
p−1

(2.6)

for (x, t) ∈ �̄ × [0,∞)

On the other hand, given x∗ ∈ K and R > 0 such that

BR(x∗) = {x ∈ � : |x − x∗| < R} ⊂ �.
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Let λR
1 be the unique positive eigenvalue of

{
�u = −λu in BR(x∗),
u = 0 on ∂BR(x∗),

associated with a positive eigenfunction φ(x) such that ‖φ‖L∞(BR(x∗)) = 1. Similarly, we
take smooth function aδ(x, t) for δ > 0 such that

aδ(x, t) = aδ(x, t + T ), aδ(x, t) ≥ a(x, t) > 0

for (x, t) ∈ �̄ × [0,∞) and

lim
δ→0+ aδ(x, t) = a(x, t) uniformly in �̄ × [0, T ].

Given ε > 0 small such that
aδ(x, t) > ε

for (x, t) ∈ �̄ × [0,∞). We define

v̄(x, t) = α[aδ(x, t) + ε] 1
1−p φ(x),

where α > 1 satisfying
a(x, t) + ε

a(x, t)
> α p−1

for (x, t) ∈ �̄ × [0,∞). Accordingly, we have

v̄t − �v̄ − λ[v̄ − a(x, t)v̄ p]
≤ v̄t − �v̄ − λ[aδ(x, t) + ε] p

1−p φ(x)[α(a(x, t) + ε) − a(x, t)α p]
≤ 0,

provided λ is sufficiently large. Thus by the comparison principle, we get

v(x, t) ≥ v̄(x, t) = α

[
1

aδ(x, t) + ε

] 1
p−1

φ(x)

for (x, t) ∈ B̄R(x∗) × [0,∞). Since ‖φ‖L∞(BR(x∗)) = 1 and φ(x) is radially symmetric, we
can find R1 ∈ (0, R) such that

φ(x) ≥ 1

α

for x ∈ BR1(x∗). Hence

lim inf
λ→∞ v(x, t) ≥

[
1

aδ(x, t)

] 1
p−1

for (x, t) ∈ B̄R1(x∗) × [0,∞). Letting δ → 0+, one has

lim inf
λ→∞ v(x, t) ≥

[
1

a(x, t)

] 1
p−1

for (x, t) ∈ B̄R1(x∗)×[0,∞). Note that � is bounded, by a standard compactness argument
we have

lim inf
λ→∞ v(x, t) ≥

[
1

a(x, t)

] 1
p−1
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for (x, t) ∈ K × [0,∞). Using (2.6) we know that (2.5) holds. The theorem is thus proved.
��

2.2 The Effect of Nonlinear Functions

In this subsection, we study the perturbation periodic-parabolic problem
⎧
⎪⎨

⎪⎩

ut = �u + λu − aε(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

(2.7)

here aε ∈ Cμ,μ/2(�̄ × [0, T ]) is T -periodic in t for ε > 0,

lim
ε→0+

aε(x, t)

εα
= a(x, t) uniformly in �̄ × [0, T ],

and a ∈ Cμ,μ/2(�̄ × [0, T ]) is positive and T -periodic in t . It follows from the classical
results [17, 24] that there exists a unique positive periodic solution θε(x, t) to (2.7) if and
only if λ > λB

1 (�), provided ε > 0 is small. Moreover, the positive solution θε is continuous
with respect to ε. We shall analyze the behavior of θε(x, t) as ε → 0. In this case, we find
the effect of nonlinear part in reaction function on the positive periodic solutions.

Theorem 2.2 Let θε ∈ C2+μ,1+μ/2(� × [0, T ]) be the unique positive periodic solution of
(2.7) for λ > λB

1 (�) and K ⊂ � be a compact subset of �. Then

lim
ε→0+ θε(x, t) = ∞ uniformly in K × [0,∞). (2.8)

Proof Consider the semilinear equation
{

�u + λu − bε(x)u p = 0 in �,

Bu = 0 on ∂�,
(2.9)

where
bε(x) = max

t∈[0,T ] a
ε(x, t).

It follows that there exists a unique positive solution uε(x) to (2.9) for λ > λB
1 (�) and ε > 0

is small. Since

lim
ε→0+

bε(x)

εα
= max

t∈[0,T ] a(x, t) uniformly in �̄,

we know from [37] that
lim

ε→0+ uε(x) = ∞ uniformly in K . (2.10)

But uε(x) is the unique positive solution of (2.9), it follows from the comparison argument
that

θε(x, t) ≥ uε(x)

for (x, t) ∈ �̄ × [0, T ]. Hence (2.8) follows from (2.10). ��
Set

ωε(x, t) = ε
α

p−1 θε(x, t),

let us investigate the sharp blow-up profiles of positive solutions.
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Theorem 2.3 Let θε ∈ C2+μ,1+μ/2(� × [0, T ]) be the unique positive periodic solution of
(2.7) for λ > λB

1 (�). Then

lim
ε→0+ ωε(x, t) = v(x, t) uniformly in �̄ × [0,∞),

where v(x, t) is the unique positive periodic solution of
⎧
⎪⎨

⎪⎩

ut = �u + λu − a(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞).

(2.11)

Proof We first take δ > 0 such that

a(x, t) > δ > 0

for (x, t) ∈ �̄ × [0, T ]. Then we choose ε > 0 small, denoted by ε < ε0 such that

a(x, t) + 1 ≥ aε(x, t)

εα
≥ a(x, t) − δ > 0 (2.12)

for (x, t) ∈ �̄ × [0, T ]. Let û(x, t) be the unique positive solution of
⎧
⎨

⎩

ut = �u + λu − [a(x, t) + 1]u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞)

and ū(x, t) be the unique positive solution of
⎧
⎪⎨

⎪⎩

ut = �u + λu − [a(x, t) + 1]u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

for λ > λB
1 (�), respectively. Since ωε(x, t) satisfies

⎧
⎪⎨

⎪⎩

ωε
t = �ωε + λωε − aε(x,t)

εα [ωε]p in � × (0,∞),

Bωε = 0 on ∂� × (0,∞),

ωε(x, t) = ωε(x, t + T ) in � × [0,∞),

(2.13)

by the comparison principle we have

0 < ū(x, t) ≤ ωε(x, t) ≤ û(x, t) (2.14)

for (x, t) ∈ �̄ × [0, T ]. Thus we know from (2.12) and (2.14) that the right-hand side of
(2.13) is bounded in L∞(�), which is independent to ε. By the parabolic L p estimates, for
any τ ∈ (0, T ), there exists C = Cτ > 0 such that

‖ωε‖
C1+μ,

1+μ
2 (�̄×[τ,T ])

≤ C .

Thus we can use a diagonal argument, subject to a subsequence, to show that there has v(x, t)
such that

lim
ε→0+ ωε(x, t) = v(x, t) in C1, 12 (�̄ × [τ, T ]),
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and v(x, t) is a weak solution to (2.11). By standard parabolic regularity we know that v(x, t)
satisfies (2.11) in the classical sense. Since there admits a unique solution to (2.11), we get

lim
ε→0+ ωε(x, t) = v(x, t) uniformly in �̄ × [0,∞)

holds for the entire sequences. This also completes the proof. ��

2.3 Linear vs Nonlinear

In this subsection, we study the positive periodic solution of
⎧
⎪⎨

⎪⎩

ut = �u + λ
εβ u − aε(x, t)u p in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),

(2.15)

where β > 0, aε ∈ Cμ,μ/2(�̄×[0, T ]) is T -periodic in t for ε > 0, a ∈ Cμ,μ/2(�̄×[0, T ])
is positive and T -periodic in t and there exists α > 0 such that

lim
ε→0+

aε(x, t)

εα
= a(x, t) uniformly in �̄ × [0, T ].

The main aim of this subsection is to investigate the sharp effect of linear and nonlinear parts
in reaction functions on the asymptotic behavior of positive periodic solutions.

Letting

ωε(x, t) = ε
α+β
p−1 θε(x, t),

we can establish the profile of ωε(x, t) as follows.

Theorem 2.4 Let θε ∈ C2+μ,1+μ/2(� × [0, T ]) be the unique positive periodic solution of
(2.15) for λ > λB

1 (�) and K ⊂ � be a compact subset of �. Then

lim
ε→0+ θε(x, t) = ∞ uniformly in K × [0,∞), (2.16)

and

lim
ε→0+ ωε(x, t) =

[
λ

a(x, t)

] 1
p−1

uniformly in K × [0,∞). (2.17)

Proof Since (2.16) is followed by (2.17), we only need to show (2.17). A direct computation
gives that ωε(x, t) satisfies

⎧
⎪⎨

⎪⎩

ωε
t = �ωε + λ

εβ ωε − aε(x,t)
εα+β [ωε]p in � × (0,∞),

Bωε = 0 on ∂� × (0,∞),

ωε(x, t) = ωε(x, t + T ) in � × [0,∞).

(2.18)

Take l > 0 small, we can find ε0 such that

a(x, t) + l ≥ aε(x, t)

εα
≥ a(x, t) − l > 0 (2.19)

for (x, t) ∈ �̄ × [0, T ], provided 0 < ε ≤ ε0. Let ûε
l (x, t) be the unique positive solution of

⎧
⎪⎨

⎪⎩

ut = �u + 1
εβ

[
λu − (a(x, t) − l)u p

]
in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),
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and ūε
l (x, t) be the unique positive solution of

⎧
⎨

⎩

ut = �u + 1
εβ

[
λu − (a(x, t) + l)u p

]
in � × (0,∞),

Bu = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞)

for λ > λB
1 (�), respectively. Thanks to (2.19), by the comparison argument we have

0 < ūε
l (x, t) ≤ ωε(x, t) ≤ ûε

l (x, t) (2.20)

for (x, t) ∈ �̄ × [0, T ].
On the other hand, by a similar argument as in the proof of Theorem 2.1, we know that

lim
ε→0+ ūε

l (x, t) =
[

λ

a(x, t) + l

] 1
p−1

uniformly in K × [0,∞),

and

lim
ε→0+ ûε

l (x, t) =
[

λ

a(x, t) − l

] 1
p−1

uniformly in K × [0,∞).

Thus (2.17) is obtained by (2.20), since l > 0 is arbitrary. ��
The main results Theorems 1.1-1.3 follow from Theorems 2.1, 2.2, 2.3 and 2.4.

3 The Periodic Nonlocal Problem

In this section, we study the effects of linear and nonlinear parts of reaction functions on the
positive periodic solutions of nonlocal dispersal equations. Further, we will find the sharp
connections between linear and nonlinear on the asymptotic behavior of positive periodic
solutions.

3.1 The Nonlocal Singular Perturbation Problem

In this subsection, we study the positive periodic solution of
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − a(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞).
(3.1)

Let θλ(x, t) be the unique positive periodic solution of (3.1) for λ > λp(�), we first analyze
the behavior of θλ(x, t) as λ → ∞.

Theorem 3.1 Assume that θλ(x, t) is the unique positive solution of (3.1) for λ > λp(�).
Then

lim
λ→∞ θλ(x, t) = ∞ uniformly in �̄ × [0,∞), (3.2)

and

lim
λ→∞ λ

1
1−p θλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in �̄ × [0,∞). (3.3)

Proof

(i) The proof of (3.2) is similar as in Theorem 2.4 of [42], we omit it here.
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(ii) We can see that by changing the variable

vλ(x, t) = λ
1

1−p θλ(x, t),

Eq. (3.1) transforms into the singular perturbation problem
{

(vλ)t = ∫

�
J (x − y)vλ(y, t) dy − vλ(x, t) + λ[vλ − a(x, t)v p

λ ] in �̄ × (0,∞),

vλ(x, t) = vλ(x, t + T ) in �̄ × [0,∞).

(3.4)

Thus we only need to show that

lim
λ→∞ vλ(x, t) =

[
1

a(x, t)

] 1
p−1

uniformly in �̄ × [0,∞). (3.5)

Take smooth function aδ(x, t) for δ > 0 satisfying

aδ(x, t) = aδ(x, t + T ), a(x, t) ≥ aδ(x, t)

for (x, t) ∈ �̄ × [0,∞), and

lim
δ→0+ aδ(x, t) = a(x, t) uniformly in �̄ × [0, T ].

Given ε0 > 0 small such that
aδ(x, t) > ε0

for (x, t) ∈ �̄ × [0,∞), we define

v̂(x, t) = [aδ(x, t) − ε0]
1

1−p .

Subsequently, we have

v̂t −
∫

�

J (x − y)v̂(y, t) dy + v̂(x, t) − λ[v̂ − a(x, t)v̂ p]

= v̂t −
∫

�

J (x − y)v̂(y, t) dy + v̂(x, t) − λ[aδ(x, t) − ε0]
p

1−p [aδ(x, t) − ε − a(x, t)]

≥ v̂t −
∫

�

J (x − y)v̂(y, t) dy + v̂(x, t) + ε0λ[aδ(x, t) − ε0]
p

1−p

≥ 0,

provided λ is sufficiently large. In this case, we know that v̂(x, t) is an upper-solution to (2.4)
and the comparison argument gives that

v(x, t) ≤ v̂(x, t) =
[

1

aδ(x, t) − ε

] 1
p−1

for (x, t) ∈ �̄ × [0,∞). Hence

lim sup
λ→∞

v(x, t) ≤
[

1

aδ(x, t)

] 1
p−1

.

Letting δ → 0+, one has

lim sup
λ→∞

v(x, t) ≤
[

1

a(x, t)

] 1
p−1

(3.6)

123



2490 Journal of Dynamics and Differential Equations (2024) 36:2477–2495

for (x, t) ∈ �̄ × [0,∞).
On the other hand, given x∗ ∈ � and R > 0 such that

BR(x∗) = {x ∈ � : |x − x∗| ≤ R} ⊂ �̄.

Let λR
1 be the unique positive eigenvalue of

∫

�

J (x − y)u(y) dy − u(x) = −λu in BR(x∗),

associated with a positive eigenfunction φ(x) such that ‖φ‖L∞(BR(x∗)) = 1.
We then take smooth function aδ(x, t) for δ > 0 such that

aδ(x, t) = aδ(x, t + T ), aδ(x, t) ≥ a(x, t) > 0,

for (x, t) ∈ �̄ × [0,∞), and

lim
δ→0+ aδ(x, t) = a(x, t) uniformly in �̄ × [0, T ].

Given ε > 0 small such that
aδ(x, t) > ε

for (x, t) ∈ �̄ × [0,∞), we define

v̄(x, t) = α[aδ(x, t) + ε] 1
1−p φ(x),

where α > 1 satisfying
a(x, t) + ε

a(x, t)
> α p−1

for (x, t) ∈ �̄ × [0,∞). Accordingly, we have

v̄t −
∫

�

J (x − y)v̄(y, t) dy + v̄(x, t) − λ[v̄ − a(x, t)v̄ p]

≤ v̄t−
∫

�

J (x−y)v̄(y, t) dy+v̄(x, t)−λ[aδ(x, t)+ε] p
1−p φ(x)[α(a(x, t)+ε)−a(x, t)α p]

≤ 0,

provided λ is sufficiently large. Thus by the comparison principle, we get

v(x, t) ≥ v̄(x, t) = α

[
1

aδ(x, t) + ε

] 1
p−1

φ(x)

for (x, t) ∈ BR(x∗) × [0,∞). Since φ ∈ C(BR(x∗)) and φ(x) > 0 for x ∈ BR(x∗), we can
find R1 ∈ (0, R) such that

φ(x) ≥ 1

α

for x ∈ BR1(x∗). Hence

lim inf
λ→∞ v(x, t) ≥

[
1

aδ(x, t)

] 1
p−1

for (x, t) ∈ BR1(x∗) × [0,∞). Letting δ → 0+, one has

lim inf
λ→∞ v(x, t) ≥

[
1

a(x, t)

] 1
p−1
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for (x, t) ∈ B̄R1(x∗) × [0,∞). Since � is bounded, by standard step arguments we have

lim inf
λ→∞ v(x, t) ≥

[
1

a(x, t)

] 1
p−1

for (x, t) ∈ �̄ × [0,∞). It follows from (3.6) that (3.3) holds. ��

3.2 The Effect of Nonlinear Functions

In this subsection, we study the perturbation periodic problem
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − aε(x, t)u p in � × (0,∞),

u(x, t) = u(x, t + T ) in � × [0,∞),
(3.7)

where aε ∈ C(�̄ × [0, T ]) is T -periodic in t for ε > 0 and

lim
ε→0+

aε(x, t)

εα
= a(x, t) uniformly in �̄ × [0, T ],

with a ∈ C(�̄ × [0, T ]) is positive and T -periodic in t . Then we know from [34, 42] that
there exists a unique positive periodic solution θε(x, t) to (3.7) if and only if λ > λp(�),
provided ε > 0 is small. Moreover, the positive solution θε is continuous with respect to ε.

Theorem 3.2 Let θε ∈ C(�̄ × [0, T ]) be the unique positive periodic solution of (3.7) for
λ > λp(�), then

lim
ε→0+ θε(x, t) = ∞ uniformly in �̄ × [0,∞). (3.8)

Proof Consider the semilinear equation
∫

�

J (x − y)u(y) dy − u(x) + λu − bε(x)u p = 0 in �, (3.9)

where
bε(x) = max

t∈[0,T ] a
ε(x, t).

We know that there exists a unique positive solution uε(x) to (3.9) for λ > λp(�). Since

lim
ε→0+

bε(x)

εα
= max

t∈[0,T ] a(x, t) uniformly in �̄,

we know from [37] that
lim

ε→0+ uε(x) = ∞ uniformly in �̄.

But uε(x) is the unique positive solution of (3.9), it follows from comparison argument that

θε(x, t) ≥ uε(x)

for (x, t) ∈ �̄ × [0, T ] and we know that (3.9) holds. ��
Letting

ωε(x) = ε
α

p−1 θε(x, t),

we then can obtain the sharp blow-up profiles of positive solutions.
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Theorem 3.3 Let θε ∈ C(� × [0, T ]) be the unique positive periodic solution of (3.7) for
λ > λp(�), then

lim
ε→0+ ωε(x, t) = v(x, t) uniformly in �̄ × [0,∞),

where v(x, t) is the unique positive periodic solution of the periodic problem
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − a(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞).
(3.10)

Proof We first take δ > 0 such that

a(x, t) > δ > 0

for (x, t) ∈ �̄ × [0, T ]. Then we choose ε > 0 small, denoted by ε < ε0 such that

a(x, t) + δ ≥ aε(x, t)

εα
≥ a(x, t) − δ > 0

for (x, t) ∈ �̄ × [0, T ]. Let ûδ(x, t) be the unique positive solution of
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − [a(x, t) − δ]u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),
(3.11)

and ūδ(x, t) be the unique positive solution of
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λu − [a(x, t) + δ]u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞)
(3.12)

for λ > λp(�), respectively. Since ωε(x, t) satisfies
{

ωε
t = ∫

�
J (x − y)ωε(y, t) dy − ωε(x, t) + λωε − aε(x,t)

εα [ωε]p in � × (0,∞),

ωε(x, t) = ωε(x, t + T ) in � × [0,∞),

from comparison argument we have

0 < ūδ(x, t) ≤ ωε(x, t) ≤ ûδ(x, t) (3.13)

for (x, t) ∈ �̄ × [0, T ], provided ε < ε0.
A direct computation from (3.11) and (3.12) shows that ūδ(x, t) and ûδ(x, t) aremonotone

with respect to δ and

lim
δ→0+ ūδ(x, t) = lim

δ→0+ ûδ(x, t) = v(x, t) uniformly in �̄ × [0, T ]. (3.14)

Thus it follows from (3.13) that

lim sup
ε→0+

ωε(x, t) ≤ ûδ(x, t) uniformly in �̄ × [0, T ],

and
lim inf
ε→0+ ωε(x, t) ≥ ūδ(x, t) uniformly in �̄ × [0, T ].

Letting δ → 0+, we know from (3.14) that

lim
ε→0+ ωε(x, t) = v(x, t) uniformly in �̄ × [0,∞).

��
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3.3 Linear vs Nonlinear

In this subsection, we study the periodic-parabolic problem
{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + λ

εβ u − aε(x, t)u p in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),
(3.15)

where β > 0, aε ∈ C(�̄ × [0, T ]) is positive and T -periodic in t for ε > 0 and there exists
α > 0 such that

lim
ε→0+

aε(x, t)

εα
= a(x, t) uniformly in �̄ × [0, T ],

with a ∈ C(�̄ × [0, T ]) is positive and T -periodic in t . The main aim of this section is to
investigate the sharp connections between linear and nonlinear parts of reaction function on
the asymptotic behavior of positive periodic solutions of (3.15).

Theorem 3.4 Let θε ∈ C(� × [0, T ]) be the unique positive periodic solution of (3.15) for

λ > λp(�). Set ωε(x, t) = ε
α+β
p−1 θε(x, t), then

lim
ε→0+ θε(x, t) = ∞ uniformly in �̄ × [0,∞),

and

lim
ε→0+ ωε(x, t) =

[
λ

a(x, t)

] 1
p−1

uniformly in �̄ × [0,∞). (3.16)

Proof We only need to show the second claim. We know from (3.15) that ωε(x, t) satisfies
{

ωε
t = ∫

�
J (x − y)ωε(y, t) dy − ωε + λ

εβ ωε − aε(x,t)
εα+β [ωε]p in �̄ × (0,∞),

ωε(x, t) = ωε(x, t + T ) in �̄ × [0,∞).

Given l > 0 small, we can find ε0 such that

a(x, t) + l ≥ aε(x, t)

εα
≥ a(x, t) − l > 0 (3.17)

for (x, t) ∈ �̄ × [0, T ], provided 0 < ε ≤ ε0. Let ûε
l (x, t) be the unique positive solution of

{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + 1

εβ

[
λu − (a(x, t) − l)u p

]
in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),

and ūε
l (x, t) be the unique positive solution of

{
ut = ∫

�
J (x − y)u(y, t) dy − u(x, t) + 1

εβ

[
λu − (a(x, t) + l)u p

]
in �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞)

for λ > λp(�), respectively. Using (3.17) and a comparison argument provide us

0 < ūε
l (x, t) ≤ ωε(x, t) ≤ ûε

l (x, t) (3.18)

for (x, t) ∈ �̄ × [0, T ].
On the other hand, by a similar proof as in the proof of Theorem 3.1, we know that

lim
ε→0+ ūε

l (x, t) =
[

λ

a(x, t) + l

] 1
p−1

uniformly in �̄ × [0,∞),
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and

lim
ε→0+ ûε

l (x, t) =
[

λ

a(x, t) − l

] 1
p−1

uniformly in �̄ × [0,∞).

Thus (3.16) is obtained by (3.18), since l > 0 is arbitrary. ��

The main results Theorems 1.4-1.6 follow from Theorems 3.1, 3.2, 3.3 and 3.4.
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