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Abstract

This paper is concerned with the spatial propagation of bistable nonlocal dispersal equations
in exterior domains. We first obtain the existence and uniqueness of an entire solution which
behaves like a planar traveling wave front for large negative time. Then, when the entire
solution comes to the interior domain, the profile of the front will be disturbed. However, the
disturbance is local in space for finite time, which means the disturbance disappears as its
location is far away from the interior domain. Furthermore, we prove that the solution can
gradually recover its planar wave profile uniformly in space and continue to propagate in
the same direction for large positive time provided that the interior domain is compact and
convex. Our work generalizes the local (Laplace) diffusion results obtained by Berestycki et
al. (2009) to the nonlocal dispersal setting by using new known Liouville results and Lipschitz
continuity of entire solutions due to Li et al. (2010).
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1 Introduction
This paper is concerned with the following bistable nonlocal dispersal equation
ur(x,t) = / Jx = Yuly, 1) —ulx,Hldy + fux, 1)), x € Q, (1.1
Q

where Q@ = RV\K and K is a compact subset of RY and the dispersal kernel function J is
nonnegative. Throughout the paper, we make the following assumptions.
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(J) The kernel function J € C!'(R") is radially symmetric and compactly supported such
that

J(x) = 0forx e RV, J(0) >0and/ J(y)dy = 1.
RN

F) fe CcL1([0, 1]) and there exists 6 € (0, 1) such that
FO) = f1)=fO)=0, f(s) <0in(0,0), f(s)>0in(0,1),
1
/ f()ds >0, f/(0) <0, f/(1) <0, f'® >0,
0

and
f(s) < inf/ Jx —y)dy <1 (1.2)
xeQ Jq

fors € [0, 1].
It follows from the assumption (F) that there exists L y > 0 such that
[fu+v)— fw)— f)| < LruvforO<u,v =<1
On the other hand, we know that ;Ielg /Q J(x—y)dy > 1/2when K is convex. In this case, we

can see that (1.2) is automatically satisfied if f’(s) < 1/2forall s € [0, 1]. Moreover, under
the assumption (1.2), some nonlocal Liouville type results were established by Brasseur et
al. [7]. Besides, note that K is compact, without loss of generality, we may assume that

Kc{xeRN:x; <0}or K c {RY \ supp(J/)} N{x e RN : x; < 0}.

It is well-known that the classical diffusion problem in exterior domain is established
by the seminal works of Berestycki et al. [4] and Bouhours [6]. In order to study how a
planar wave front propagates around an obstacle, they considered the following semi-linear
parabolic problem

(1.3)

M1=Au+f(u),xeg27
v-Vu=0, x €092,

where v denotes the outward unit normal to the smooth exterior domain £2. More precisely,
they proved how a planar traveling front can eventually recover its profile after disturbed
by an obstacle K, leaving the obstacle behind. Bouhours [6] further obtained the robustness
for the Liouville type results in [4]. Later on, Guo et al. [21] showed that the global mean
speed of the entire solution constructed in [4] is the speed of traveling waves in homogeneous
environment. More recently, Guo and Monobe [22] extended the results in [4] to V-shaped
front. Hoffman et al. [27] considered a similar problem for two dimensional lattice differential
equations with directionally convex obstacles.

The nonlocal dispersal equation has got numerous scholars interested, in view of its
extensive use to describe the long range effects of spatial structure in biology, physics and
chemistry [1, 2, 11, 16-19]. Moreover, the problems of nonlocal dispersal equations in
exterior domains have attracted much attention recently. In particular, Cortdzar et al. [12—-14]
considered the asymptotic behaviors of the solutions to linear equations. Brasseur et al. [7,
8] have established some Liouville results for such nonlocal obstacle problems and found
that the stationary solutions of (1.1) converging to 1 as |x| — 4-o0 is indeed 1 for compact
convex obstacle K.

When the obstacle K is empty, there have been many works devoted to the traveling wave
solutions and entire solutions for (1.1) and its local dispersal counterpart in recent decades.
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In particular, the authors of [2, 17, 34, 40] have obtained the monotone traveling wave and
its asymptotic behaviors for (1.1) with bistable type nonlinearities f, and Chen [17] showed
the uniqueness and stability of the traveling wave. For other types of nonlinear terms in (1.1),
one can refer to [11, 18, 19, 29, 36, 37, 39] and references therein. For the results on local
dispersal equations, readers can consult [15, 20, 23, 24, 28, 35, 38, 42, 43] and references
therein.

If @ =RV in (1.1), let u(x, 1) = ¢ (x; + ct) and z = x1, we have

/Rh(z =) —d@1dy —c¢'(2) + f($(2) =0, z € R,

¢(—00) =0, ¢p(+00) =1,
0<¢() <1, zeR,

(1.4)

where ¢ > 0 and Ji(x1) = fRN_l J(x1,y2, 3, -+, yn)dy. Then it follows from [2, 34]
that there exists a unique real number ¢ > 0 such that (1.4) admits a solution ¢. In fact,
the solution ¢ is the unique monotone planar traveling wave solution of (1.1). Besides, ¢ (z)
satisfies

{gw“s¢wsﬂw%zso, 05

aje M <1 —¢() < pre™, 2> 0,

where ap, o1, Bo and B; are some positive constants, A and p are the positive roots of

dthww”w—uﬁmxmth@www—HJmL
R R

and

AZ < / < 8 )LZ’ <0’
{me_¢@_w z< 06

yie M <¢'(z) <d1e™*, 2> 0

for some constants yy, y1, §o and §; > 0. However, if the domain is not the whole space
(such as (1.1), (1.3)), there is no classical traveling wave front. Therefore, it is naturally to
consider the generalization of traveling fronts. In fact, such extensions have been introduced
in [3, 5, 30]. In particular, the transition wave front, as a fully general notion of traveling
front, has been widely established in many works [10, 25, 26, 31-33, 44, 45]. It is interesting
to point out that the entire solution constructed in [4, 27] is indeed a generalized transition
front.

In the present paper, we are interested to consider the nonlocal dispersal problem (1.1) in
exterior domains. The main ingredient of this paper is to obtain a unique entire solution of (1.1)
which behaves as planar wave fronts for large negative and positive time. More precisely, we
first prove the existence and uniqueness of the entire solution like a planar wave front for large
negative time by sub- and super-solutions method. Moreover, we find that the entire solution
also approaches planar wave fronts as x is far away from K. Finally, we shall investigate
the procedure how the front goes through K and eventually recovers its shape. Due to the
lack of compactness of nonlocal operators, which is necessary to establish the uniqueness
and asymptotic behaviors as |x| — o0 of the entire solution, the methods and techniques
adopted here are different from that in [4, 27], and additional difficulties appear when the
entire solution is constructed. So motivated by the recent work of Li et al. [29], we establish
the Lipschitz continuity in space variable x of entire solutions to the nonlocal problem (1.1)
in exterior domains. Then we can discuss the uniqueness and asymptotic behaviors of entire
solutions of (1.1). In addition, the appearance of convolution term and interior domain leads
to the fact that planar wave fronts are not the solutions of (1.1), which causes much trouble
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in verifying the sub- and super-solutions when we construct the entire solution. Particularly,
nonlocal dispersal equations admit no explicit fundamental solutions as Laplacian dispersal
equations. Therefore, the sub- and super-solutions in [4, 27] are not suitable here to study the
asymptotic behaviors of such an entire solution for large positive time. Consequently, we have
to construct new sub- and super-solutions inspired by [4, 27] to investigate the asymptotic
behaviors of the entire solution to (1.1). At last, our results show that the geometric shape of
the interior domain affects the propagation of planar wave fronts.
Now we are ready to state the main result of this paper.

Theorem 1.1 Assume that (F) and (J) hold. Let (¢, c) be the unique solution of (1.4), and
K be a compact subset of RN. Then there exists an entire solution u(x,t) to (1.1) with
0<u(x,t) <landu;(x,t) > 0forall (x,t) € Q x R, and satisfying that

u(x,t) —¢(xy +ct) = 0ast — —oo uniformly inx € Q, 1.7
and as |x| — 400 uniformly int € R. Moreover, if K is convex, then we have
u(x,t) —p(x; +ct) — 0ast — +o0o uniformly in x € Q.

In particular; the condition (1.7) determines a unique entire solution of (1.1).

Remark 1.2 1t follows from Brasseur and Coville [9, Thorem 10] that the entire solution
constructed in Theorem 1.1 is a generalized transition almost-planar front with global mean
speed c.

Remark 1.3 The techniques and ideas developed in this paper can be modified to treat a much
more general case for deformations of K (see [7, Definition 1.2]). Let K C RY bea compact
convex set with non-empty interior and let {K¢}o<e<1 be a family of C 0@ (¢ e (0,1])
deformations of K. Assume that

, . .
max s) < inf inf J(x —- .
s€[0,1] S O0<e<1 xeRN\K, I7¢ )”LI(RN\KO

Then there exists €y € (0, 1] such that the conclusions in Theorem 1.1 also hold true with K
replaced by K, for € € (0, €p].

In this paper, under assumptions that K is a compact convex set and the nonlocal dispersal
kernel is compactly supported and radially symmetric, we establish the existence of an entire
solution for the nonlocal dispersal equation (1.1) in the exterior domain €2, which behaves
like a planar traveling front for large negative and positive time. It is naturally to ask if
the kernel function is not compactly supported, whether the entire solution we construct in
this paper exists. In addition, we conjecture that when the obstacle K just being a compact
subset of RY is not convex, the entire solution of (1.1) can not recover its shape uniformly in
space, but it converges to the nonconstant stationary solution in any bounded subset of RV
containing K. We shall study these in a future work.

This paper is organized as follows. In Sect. 2, we consider the Cauchy problem and
establish the comparison principle for (1.1). Then the entire solution is constructed in Sect. 3.
In Sect. 4, we study the behaviors of the entire solution far away from K in space for finite
time. Section 5 is devoted to discussing the asymptotic behavior of the entire solution as time
goes to positive infinity.
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2 Preliminaries
2.1 The Nonlocal Cauchy Problem

We first consider the nonlocal Cauchy problem

ug(x, 1) = / Jx = uly, 1) —ulx, )ldy + f(ux, 1)), x €2, t >0, o
Q .
u(x,0) =ug(x), x € Q,

where  is a subset of RV . We call u(x, t) a solution of (2.1), if it satisfies

t !
u(x, ) = uop(x) + / / J(x = »uly,s) —ulx, s)ldyds + / flu(x,s)ds  (2.2)
0 JQ 0
for x € Q and ¢ > 0. Then we have the following theorem.

Theorem 2.1 Suppose that (J) holds and f € CY'(R). Then, for any ug € L' (), there
exists a unique solution u € C([0, ty], LY(Q)) to (2.2) for some ty > 0.

Proof For every w € C([0, o], LY(€)), we define the norm
= it ,
lelll omax o, D)

and the operator

t t
Tw(x,t) = up(x) +/ f J(x —y)w(y,s) —wix,s)]ldyds +f fw(x, s))ds.
0 JQ 0
It is easily seen that
T wlll < lluoll 1@y + 2+ Lltolllwlll,
here

L= sup PGP
zel=lllliL el

which means 7 maps C ([0, 0], LY()) into C ([0, o], L1 (£2)). On the other hand, note that
t
Tu(x,t) —Tv(x,t) =/ / J(x —u(y,s) —v(y,s) +v(x,s) —u(x,s)ldyds
0 JQ

t
+/ [f(u(x,s)) — f(v(x,s))]ds.
0
It follows that
7w —Toll| <2t0lllu — vl + toL|llu — v||| < 2+ L)tol|lu — vll].

In fact, let #y be sufficiently small such that (2 + L)f9p < 1. Then one can obtain that 7 is a
strict contraction mapping in C ([0, 7y], L! (2)).

To extend the solution to [0, +00), we can take u(x, fo) € L' () as the initial datum and
further obtain a solution in [#g, 279]. Then by iterating this procedure, we get a solution in
[0, +00). O
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2.2 Comparison Principle

Theorem 2.2 Suppose that the assumptions of Theorem 1.1 hold andu(x, 0), v(x, 0), ug(x) €
L%°(Q). Furthermore, ifu(x, 1), v(x, t) € C'([0, +00), L>®(R)) are uniformly bounded and
satisfy

D (fg T =l 0 =~ utx, r)]dy) + f (1) 2 0, (1,1) € 2 x (0, +00),
u(x,0) > up(x), x € 2,
wxD (/Q I = M0 = v, t)]dy) + @0 1) S0, (6,1) € Q x (0, +00),
v(x,0) <up(x), x € Q,

respectively, then

ulx,t) >v(x,t)in Q2 x [0, +00).

Proof Define W(x,t) = u(x,t) — v(x, 1), it follows that W (x, 0) > 0 and

Wix, 1) > / Jx =W, 1) — W, H)ldy + fu(x, 1)) — f(v(x, 1))
@ (2.3)

= / Jax =W, t) =Wk, )ldy + F(x, ) W(x, 1),
Q
where
1
F(x,t) :/ f/(v(x, t)+60W(x,t))do.
0

Suppose that there exist t, > 0 and x, € 2 such that W(xy,t,) < 0. Denote 6, =
—W (x4, t), we can take € > 0 and K’ > 0 such that 6, = Kt et

T, = sup{t >0| W, t) > e forallx e Q, 0 <t < r],

then we have 0 < Ty, < 1, since the facts W(x, -) € C1(0, c0) and W (x, 0) > 0. Moreover,
it follows that

igf Wx, Ty) = —ee?K'Tx,
Without loss of generality, we may assume that 0 € Q and W (0, T},) < —%EGZK T,
Consider now the function

Wo(x,1,B) = —€ (% +ﬂZ(X)> K,

in which 8 > 0 is a parameter and Z € L™ (RN) with Z(0) = 1, "
X

Z(x) < 3. Take B, € (4. 1] as the minimal value of B for which W (x, #) = W~ (x, t) holds
for all (x, 1) € Q2 x [0, Ty]. Since

lim Z(x)=3,1<
—+00

3 , 9 .
lim W™ (x, 1, By) = —€ [ = +3B: | 2K < —ZeeK7,
o0 4 8

[x|—+
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there exist x* € Q and 0 < 79 < T such that W(x*, 1) = W~ (x*, 9, Bx). The definition
of B, now implies that

Wi(x™, t0) < W, (x*, to, B).

In addition, by the fact that W(x, ) > W™ (x, t, B,) for all (x, 1) € Q2 x [0, T,], we have
/;Zl(x* = WIW(y, to) = W™, 10)ldy > /QJ(X* =MW (v, 10, Bx) — W™ (x*, 19, ) 1dy.
It follows from (2.3) that

—%eK’ezK/’(’ =W (x", 10, Bs) = Wi (x™, 10)

> L J(X* - Y)[W_(y’ 1o, ﬂ*) - W_(X*7 1o, ﬂ*)]dy
+F(X*,t())W_(X*,[0, ﬂ*)

In particular, it follows from the assumptions of Theorem 2.2 that u(x,t) and v(x, t) are
uniformly bounded and f'(v(x, ) + 0 W (x, t)) is also bounded, which means there is some
M > 0 such that | f/(v(x, 1) +OW(x,1))| < Mand |F(x,1)] < Mforx € Qandr > 0.
Then we obtain

7 / ,
—ZeK’e“ 0> e f J(* = WIZF) = Z(1dye* 0 + F(x*, 1) W™ (x*, 10, Bs)
Q

3 /
> —¢ [2;3* + <3ﬂ* + Z) im] 2K
1 39m 2K'10
> (2 + > ) €e .
This leads to a contradiction upon choosing K’ to be sufficiently large. O

Corollary 2.3 Under the assumptions of Theorem 2.2, let u(x, t) and v(x, t) be solutions of
(1.1) with initial values u(x, 0) and v(x, 0), respectively. If u(x, 0) > v(x, 0) and u(x, 0) #
v(x,0), then u(x,t) > v(x,t) forallx € Qandt > 0.

Proof 1t is sufficient to show that u(x, ) > v(x,t) forall x € Q and ¢ € (0, tg] for some
to > 0. In fact, if u(x,t) > v(x,t) forall x € Q and t € (0, ty], we can similarly have
u(x,t) > v(x,t) forall x € Q and ¢t € [tp, 2t9]. Then by repeating this process, we can
obtain the results of this lemma. Now, denote

wx, ) =ulx,t) —v(x, 1), wx,t)=e’wlx,t)—et,
where €, p > 0 are real numbers and p is sufficiently large such that
p+ F(x,t) —2>0forall (x,7) € Q2 x [0, +00),

with F(x,t) being defined as that in the proof of Theorem 2.2. Suppose that, by con-
tradiction, there is (x4, t,) € 2 x (0, f9] such that w(x,,t,) = 0. It then follows that
inf €Q.re0.10] w(x, 1) < 0. Furthermore, one can find a sequence (x,, t,) such that t, — £,
and

lim w(x,,t,) = _inf w(x,t) <O0.
n—00 xeQ,t€(0,10]
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Observe that
Wy (x, 1) =pw(x, t)eP’ + el w (x, 1) — €

>pw(x, t)el’ 4 P! (/ J(x — W[w(y, 1) —w(x, )]dy + F(x, Hw(x, t)) —€
Q

:/Q Jx —y[w(y, t) —wx, )ldy + (p+ F(x, ) [w(x, t) —et] — €.
Then we have that

II)(X", ln) - II)(X", 0)

Iy
> / [/ (o — VB, 5)dy — B, $) + (p + Fx, s, ) — es]] ds — et
0 Q

Iy
2/ /J(xn—y)@(y,S)dyds+to[p—1+ sup  F(x,s)
0 Q

xeQ,t€(0,10]

_ € [%O (SqueSZ,te(O,to] Fx,s) + p) + 1]] inf w(x,1).

mfxeﬁ,te(o,;o] w(x, 1) xeQ,1€(0,19]

Letting n — o0, it follows that

_inf w(x, 1)
xe,1€(0,10]

o
€12 \SUPx F(x,s)+p)+1
>t | p+ sup F(x,s) — [2 ( ?)LEQ,IE((),[O] ! p) ]
xeQ,1e.n0] mfxeﬁ,te(o,to] w(x, 1)

_inf w(x,1).
xeQ,te(0,19]

Choose 79 > 0 being sufficiently small such that

€[ (su F(x,s)+p)+1
to|lp+ sup Flx,s)— [3( .pr(O,zO] ( : )+ p) +1] -1
x€Q,1€(0.10] mfxeﬁ,ze(o,to] w(x, 1)

which implies that inf | & te0.10] w(x,t) > inf, & te(0.10] w(x, 1), since inf | & reO.10] < 0.

Thus we have finished the proof. O

3 Existence and Uniqueness of the Entire Solution

This section is devoted to establishing the existence and uniqueness of an entire solution
to (1.1) which behaves as a planar traveling front until it approaches the interior domain
K. Since the profile ¢ in (1.4) is monotone increasing and unique in the translation sense,
without loss of generality, we further assume that ¢(0) < 6 and ¢”(§) > 0 for & < 0. The
main result of this section is stated as follows.

Theorem 3.1 Assume that (F) and (J) hold and let (¢, c) be the unique solution of (1.4). If
K C {x e RN : x; < 0}NRN\supp(J), then there exists an entire solution U (x, t) of (1.1)
satisfying

0<Ux,t) <1, Ulx,t)>0forall (x,t) e Q xR
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and
U(x,t) — ¢(x1 +ct) ast — —oo uniformly in x € Q. 3.1

Moreover; condition (3.1) determines a unique entire solution of (1.1).

In this section, the radial symmetry of J(-) can be released to J (x) = J(—x). Moreover,
the convexity and compactness of the obstacle are not required, while the boundedness of K
is necessary. We prove Theorem 3.1 by constructing sub- and super-solutions.

3.1 Construction of the Entire Solution

To establish the entire solution, we shall construct some suitable sub- and super-solutions.
Inspired by [4], we define the sub-solution

_ dx1+cr —&@) —p(=x1+ct —§@)), x1 =0,

W= (x,t) =
0, x; <0,

and the super-solution

G +ct + &)+ p(—x1 +ct +£(1)), x1 =0,

Wtix, 1) =
20 (ct +£(1)), x1 <0,

here £(¢) is the solution of the following equation
E(t) = MMt < T, &(—00) =0,

where M, Ao and T are positive constants to be specified later. A direct calculation yields
that

1 1
E(t) = %11’1 71 — c_lMe)LOCf.

For the function £(¢) to be defined, one must have 1 — c~MeMct = 0. In addition, we
suppose that

ct+ &) <0for —co <t <T.

Thus set T := ﬁ In Jﬁ 77 - Moreover, it follows from (1.5) that there exist two positive

numbers Ky and kg such that
|¢)(x1) — C¢e“‘} < K¢e(k¢+x)x' for all x; < 0.
Then the following proposition holds.

Proposition 3.2 Assume that Lo < min{A, ky} and K C {x € RN @ x1 < 0)NRNM\supp(J).
Then there exists a sufficiently large number M > 0 such that W™~ (x,t) and W (x, t) are
sub- and super-solutions of (1.1) in the time range —oo < t < Ty for some Ty € (—o0, T].

The proof of this lemma will be given in Appendix for the coherence of this paper.
Now we are in a position to construct the entire solution. Let u,, (x, t) be the unique solution
of (1.1) for t > —n with initial data

Uy, (x,—n) =W=-(x, —n).
Since W™ (x, t) is a sub-solution, it is not difficult to show that the sequence {u, (x, 1)}, is

nondecreasing in . Choose some constant 7* > O such thatc > £(r) fort < —max{T*, T}}.
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In the following discussing, without loss of generality, we assume that n* > T*. Then, we

have Sz, 1)
% = fQ T = Wit (v, 1) = (e, DIdy + f (up (x, 1) (3.2)

forn > n*,t > —n and x € Q. Since W

= 0forx; <0and

W (x, 1) = (= £ (1 + et —£(1) — ¢/ (—x1 + ¢t = (1)) = 0

for0 < x; <|ct —&(t)| and t < —T*, it follows that

ouy,(x, —

W = /Q J(x = W (y, —n) — up(x, —m)ldy + f(un(x, —n))
LW, —n)
- ot
>0

for all x; < |cn + £(—n)|. Furthermore, by Corollary 2.3, u, (x, t) satisfies

Ouy(x,t)

” > O0forall x| <|cn+&(—n)|, 0 < u,(x,t) < 1forallt > —n, x € Q,

and

W™ (x,1) < up(x,1) < WH(x,t)forall —n <r<T*andx € Q.

00
n=n*

with f € C11([0, 1]), we have that the sequence {78"”3(?[) ]
n=n

it follows that {u, (x, 1)};° . is well-defined for each n and equicontinuous in ¢. Similarly,
[ Dty (x,1) ]°°

In particular, since the sequence {u, (x, t)} being uniformly bounded in #n satisfies (3.2)

o
. is uniformly bounded. Then

T . is equicontinuous in ¢. Therefore, by Arzela-Ascolit theorem, for each fixed

- 00

x € €, there exists a subsequence, still denoted by {u,, (x,1), W} . such that

duy(x,t)
(un(x, 1), T) — (u(x, 1), u;(x,t)) asn — 400, 3.3)

where the convergence is locally uniform in # € R. Moreover, via diagonalization, take a
o0

subsequence of [u,, (x,1), W] , which converges to some function U (x, t). Since
n=n*

that u, (x, t) is the solution to (3.3) with initial value u,(x, —n) = W~ (x, —n) and that
U (x, t) is the limit of u, (x, t) as n — oo, we have that U (x, ) is well defined for ¢ € R.
Then it follows from Lebesgue’s dominated convergence theorem that

Ui(x, 1) = /Q Jx =Wy, 1) =Ux,0)dy + f(U(x, 1),

and
U(x,1) >0, 0 < U(x,1) < L.

Besides, it follows from the definition of W~ (x, t) and W (x, t) that

sup |U(x,t) —¢p(x1 +ct)] > 0ast — —oo.
xeQ
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Note that U (x, t) is not a constant, by applying Corollary 2.3 to U,(x, t) and U (x, t), one
have that

Ui(x,t) >0and 0 < U(x, 1) < 1.
In addition, inspired by [29], we can show that U (x, ¢) satisfies the following proposition.
Proposition 3.3 Ler U (x, t) be the entire solution in Theorem 3.1. Then U (x, t) satisfies
U@ +n,6) —Ux, )| < M'yforall (x,1) € @ xR, (3.4)
and

Ux+n,t) oU(x,t)

Py 5 <M"nforall (x,t) e 2 xR (3.5)

with M’ > 0 and M" > 0 being two real numbers.

Proof Since [py J(x)dx =1, J(x) > 0 and J(x) is compactly supported, we have J' €
LY(RN). Furthermore, we get

1
/ [J(x+n)—J(x)|dx :/ f IVJ(x+6n)n|dddx < Li|n| for some constant L > 0.
Q QJo

Let

m = inf <inf/ J(x—y)dy—f/(u)> >0
Q

uel0,1] \xeQ

and v(¢) be a solution of the equation

V/'(t) = L|n| — mv(t) forany t > —n,
v(—n) = M|n|

for some M > 2 sup |¢'(£)]. In addition, denote V (x, 1) = u,(x + n,t) — u,(x, t), where
£eR

uy(x,t) is the solution of (1.1) with initial value u, (x, —n) = W~ (x, —n). Then

Vie.1) < /Q[J(x 0= 3) = TG = D Nun(ys 1) = tn (& + 1, D1y

—int [ 6=y VG0 F DV,
where V is between u,, (x, ) and u,, (x + n, t). Consequently, V (x, t) satisfies

Vi(x,t) < L{In| —mV(t) fort > —n and V(x, —n) < M|n|.
Moreover, |V (x,1)| < v(t) < M*|n|foranyx € Q, t > —nand M* = M + % Indeed,

Lin

L
0 <v(t) =e ™Myl + — (1 - e*m(’+">) < (M + —1) Inl < M*|n|
m m

@ Springer



1110 Journal of Dynamics and Differential Equations (2023) 35:1099-1131

for any x € RN andr > —n.In particular, in view of f/(s) < 1 for s € [0, 1], there holds

Qup(x +n,1)  duy(x, 1)
ot ot

=

/ [J(x+n—y) = T = Wua(y, Ddy| + |[tnx + 0, 1) — up(x, D]
Q
+ | Dlunx + 1, 0) = un(x, )]
< / [Jx+n—y)—J&x—yl|dy+ (1 + max T )|un (x4 1, 1) = un(x, 1)
Q s
<[Li+2M*1in|.
At last, since u, (x,t) — U (x, t) locally uniformly int € R as n — 400, we have
[Ux+n,0) —Ux, D < UK +n) —up(x +n, 0]+ |lup(x + 1) — up(x, 1)
+ lun(x, 1) — U(x, 1)]
< (M*+2)n|.

Now take M’ = M*+2, we can show that (3.4) and (3.5) hold by taking M" = L +2+2M*.
O

3.2 Uniqueness of the Entire Solution

Now, we show the uniqueness of the entire solution constructed in Theorem 3.1. First, the
following lemma is valid.

Lemma 3.4 Assume that the settings of Theorem 1.1 hold. Then for any ¢ € (0, %], there
exist constants Ty, = Ty () > 1 and K, = K,(¢) > 0 such that

Ui(x,t) > Ky forany t < —T, and x € Qy(1),
where
Q) ={xeQ: p=<Ux, 1) <1—-9}.

Proof It is easy to choose T, and M,, such that Qu, (1) C {x € Q: |x; +ct| < M,} C
{x € RY : x; > 1}. Now suppose there exist sequences #; € (—00, —Ty] and Xk =
(x{‘, xlz‘, ...xﬁ‘v) € Q4 (t) such that

U,(tk,xk) — 0ask — +oo.

There are only two cases that can happen: fx — —00 or f;y — t, for some #, € (—00, —T]
as k — +o0. For the former case, denote

Up(x, ) = U(x + x5t +1).

By Lemma 3.3, {Ui(x, 1)}72, is equicontinuous in x € € and ¢ € R. It follows that there
exists a subsequence still denoted by {Uy (x, 1)}72 ; such that

Uy — U, as k — +o0 locally uniformly in (x,7) € @ x R

0Ux(0,0)
at

by Arzela-Ascolit theorem. Furthermore, U, satisfies = 0. Applying strong maxi-

mum principle theorem to %, We further have
0Ux(x, 1)

5 =0forallr <0and x € Q.
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However, this is impossible because

Ui(x,t) = ¢(x1 + ct +a) for some a € [—M,, M,;].

For the second case, x’l‘ remains bounded by the definition of €, (¢). Therefore, we assume

that x’f — x] as k — 400 and let
Ue(x, 1) == Ux 4+ x5, 1).

Then, each Uy (x, ) is defined for all (x,?) € (=00, —T,] x {x € RN | x; > -1} by the
definition of ,(¢). Similarly, there exists a subsequence, again denoted by {Ux};2,, such
that

Uy — U™ as k — +oo locally uniformly in (x, 7) €  x R with x; > —1,

for some function U* satisfying (1.1) on {x € RY | x; > =1} x (—o0, —T,]. Note that
U;(x,t) > 0, we have

* *

0,t,) =0,
81( ) at

(x,1) > 0for (x,1) € {x e RN | x; > —1} x (=00, —T,].
Then we obtain % (x,1) =0fort < t, by strong maximum principle, but this is impossible
since

U*(x,t) — ¢(x1 4+ x} +ct) — 0ast — —oo uniformly in {x € RY | x; = —1}.
This ends the proof. O

Now we are ready to show the uniqueness of the entire solution. Suppose that there exists
another entire solution V (x, t) of (1.1) satisfying (3.1). Extend the function f as

f)=f'O)sfors <0, f(s)=f' (1) —1) fors>1
and choose 1 > 0 being sufficiently small such that
f'(s) < —wfors € [-2n,2n]U[1 —2n, 1+ 2n] and w > 0.
Then for any € € (0, 1), we can find 7o € R such that
IV, ) =U(C, lre@) < €for —oo <t < 1. (3.6)
For each 1) € (—o0, T, — o€], define
Ut,0):=U(x,to+t+0e(l—e ™)) +ee
and
U (x,t):=U (x, to+t—o€ (1 - e_"”)) —ee
where the constant o > 0 is specified later. Then by (3.6),
U™ (x,0) < V(x,t0) < UT(x,0) forall x € Q. 3.7)

Next we show that U~ (x,t)and U+ (x, t) are sub- and super-solutionsint € [0, T, —to—o€],
respectively. Let

Lw(x,t) = w(x, t)—/ Jx—)w(y, H—wx, Hldy+ f(w(x, ) for all (x, ) € QxR.
Q
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A straightforward calculation implies that

LU (x,1) =0€we™ ™' U; — ewe™ + f(U) — f (U +ee™)
=ee ™ (cwU; —w — f' (U + Gee_“’t)) ,

where 0 < 6 < 1. For any x ¢ (x, to+1t+oe (1 — e_“”)), we can see
U +6ee ™ €[0,2n]U[1 —n, 1+ 7]
Consequently, f’ (U + Qee_‘”’) < —w, which implies that
LU (x, 1) > e (—w + w) = 0.

Forx € Q, (x, 10+t + o€ (1 — e ")), by Lemma 3.4, there holds
LU (x,1) > ee™ <<m)K,7 — w — max f’(s)) .
0<s<l1

As a consequence, LU (x, 1) = 0 provided that o is a sufficiently large number.
Similarly, we can show LU ™ (x, t) < 0in Q x [0, Tj, — fo — o€]. In view of this and (3.7),
we see that

U (x,1) < V(x,t+19) <UT(x,1) forall (x,7) € 2 x [0, T, — tg — oel.
Letting ¢ + #o be replaced by ¢, the inequality above can be rewritten as
U (x, t—o¢ (1 - e"”(t”‘)))) — e @710
<V(x,t)<U (x, t+oe (1 — e_“)(t_"’))) + e @10
forall (x,1) € Q x [to, T, —o€] and ty € (—00, Ty, — 0€]. As fo — —00, we obtain that
Ux,t —o€) < V(x,t) SU(x,t+oe€)forall (x,1) € Q x (—00, Ty — o€l

By the comparison principle, the inequality holds for # € R and x € €. Letting e — 0, since
o is independent of the choice of €, we have V(x, 1) = U (x, 1).

4 Behaviors Far Away from the Interior Domain

In this section, we are going to figure out what the entire solution, constructed in Theorem
3.1, is like far away from the interior domain.

Theorem 4.1 Assume that (F) and (J) hold. Let (¢, c) be the unique solution of (1.4) and
u(x, t) be a solution of

ur(x, 1) = / Jx = Pluy, 1) —u@x, 0ldy + fux, 1), (x,1)€QxR,
Q

O<u(x,t)<1, (x,1)eQxR

4.1)

such that

sup lu(x,t) —¢(x1 +ct)] > 0ast — —oo.
xeQ
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Then, for any sequence (x,)neN € RV such that |x),| = +00 asn — +00, there holds
u(xy, x' +x,,1) = ¢(x1 +ct) asn — 400,
locally uniformly with respect to (x,t) = (x1, x’,1) € R¥N x R.

Proof In order to prove this theorem we need to extend the function f as that in Sect. 3, and
let A > 0 be sufficiently large such that

$(§) < 3 for§ < —A, $(§) =1 for = 4.
Denote § = [n}‘iI}” ¢'(¢) > 0 and take T, > 0 such that for any € € (0, %), we have that

lu(x,t) —¢(xy +ct)| <eforallt < —Ty and x € Q.

Now we are in a position to show this theorem. Under the assumptions of Theorem 4.1, let
(x))nen € RN~ pea sequence such that |x,| — 400 as n — +oc0. And denote u, (x, 1) =
u(xy,x" 4+ xj,t) foreacht € Rand x = (x1,x") € @ —(0,x),). Since 0 < u < 1, K is

e.¢]
compact and {un (x,1), Wl | is equicontinuous in x € 2 and ¢ € R by Proposition

. o0
3.3, then there exists a subsequence, still denoted by {un (x,1), %} v such that
n—=

ouy, (x, 1)
uy(x, t) = u(x, 1), Y w,(x, 1) asn — +o0,

locally uniformly in (x, t) € RN x R. In addition, for all (x, 1) € RV x R, we further have
that 0 < u(x, ) <1 and

w1 = fR I = G, D — e Dldy + F @, 0), 4.2)

since J is compactly supported, K is compact and |x,,| — 400 as n — oo. In addition,
recall that

uy,(x,t) —¢d(xy +ct) > 0ast - —o0,

uniformly in x € Q, the function u(x, t) satisfies

u(x,t) — ¢(x; + ct) > 0 ast — —oo locally uniformly in RN

Now define two functions u(x, t) and u(x, r) as follows

u(x, 1) = ¢E-(x. 1) — €™ Ux, 1) = p(E(x, 1) + e, 1 =1, x € RY,
where

to< —T, Ex(x,1) = x1 +ct £ 2¢| f/|6 " ! [1 - e*w(’*m)] .
Then the following lemma holds, whose proof is left to Appendix as a regular argument. O

Lemma 4.2 The functions u(x, t) andu(x, t) are sub- and super-solutions to (4.2) fort > t,
respectively.

By the comparison theorem and let € — 0, we have u(x, t) = ¢ (x| + ct). Since the limit is
uniquely determined, the sequence {u, (x, t)}7> | converges to ¢ (x| + ct) locally uniformly
in (x,7) € RN x Rasn — +oo. Then the proof of Theorem 4.1 is completed. O
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Theorem 4.3 Suppose that all the assumptions in Theorem 4.1 hold. Then the solution u(x, t)
of (4.1) in Theorem 4.1 satisfies

lu(x,t) — ¢(x1 + ct)| — 0as |x| - +oo locally uniformly int € R.

Proof Extend f as that in Sect. 3. Then define fs(u) = f(u — 98), (cs, ¢s) satisfies

cs () (x) = A‘M J(x = W)ps(y) — ps(x)1dy + fs(¢s(x)),
and

¢ps(—00) =48, Ps(+00) =1+,

where cs > 0 and § > 0 is sufficiently small. Now we are going to show the theorem in three
steps.
Step 1. For x1 > 1, since

sup lu(x,t) —¢(x1 +ct)| > 0ast - —oo,
xeQ

there exists a sufficiently large number 7} > 0 such that
€
lu(x,t) —¢p(x; +ct)| < 5 forallx € Qandr < —T;".
In particular, for any x € 2, let Ny > 1 such that
€
Gx1 —cT) > 1— 3 u(x, —Ty) > 1 — € forall x; > Nj.

Since ¢’ > 0, u,(x,t) > 0, we have
lu(x, 1) — ¢ (x; +ct)| < € forall x; > Nyandr > —T)".

Step 2. For x; <« —1,let§ = %e. Similarly as the first step, choose 7> > 0 and N> > 1
such that

u(x,t) <éforall x; < —Njandt < —T5, particularly, u(x, —T3) <.
Obviously, there exists xo € R such that ¢s(xp) = 1. Then
u(x, —1) < ¢s(x1 + xo + N>) for all x € Q.
Since that ¢s(x, t) is increasing, we have
¢s(x1 4+ cs(t + T2) + x0 + N2) > ¢ps(—N2 + xo + Np) = 1 forall x; > —N, and t > —T>.

Then, by applying the comparison principle (see [41]) for t > —T5 and x; < —N>, one have
that

u(x,t) < ¢s(x1 +x0+ Nao+cs(t +Tr)) forall x; < —Nrandt > —T>.
In particular, since ¢s(—00) = § = %e, for any T > 0, there exists a N3 > 1 such that
O0<u(x,t) <20 <e¢, 0<p(x;+ct) <eforallx; < —Nzandt >t > —T>,
which again shows

lu(x,t) —¢d(x; +ct)| <eforallx; < —Nzandr <.
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Step 3. For |x’| > 1, it follows from the Theorem 4.1 that one can choose N4 > 0 being
sufficiently large such that

lu(x,t) — ¢ (x1 + ct)| < € holds true for ¢ in any bounded interval,

whenever |x’| > N4 and x| € [—N3, N1]. This finishes the proof. ]

5 The Behavior for the Large Time

In this section we intend to investigate the behavior of the solution constructed in Theorem
3.1 for large positive time. For this goal, we establish the following result.

Theorem 5.1 Suppose that (F) and (J) hold. Let (¢, ¢) be the unique solution of (1.4), typ € R
and u(x, t) be a solution of

u:(x,r>=/QJ<x—y>[u<y, 1) — ux, D1dy + f@(x. ). (1) € @ x [1o, +00),

0<u(x,t) <1, (x,1) € Q X [ty, +00).
(5.1)

And assume that, for any € > 0, there is a number t. > to and a compact set K. C Q such
that

lu(x, te) — d(x1 +cte)| < € forall x € Q\Ke,

and
u(x,t)>1—eforallt >t andx € 02 = IK,.

Then

sup |u(x,t) — ¢p(x1 +ct)] > 0ast — +oo.

xeQ
The most important ingredient of the proof is to construct suitable sub- and super-solutions.
This process is such cumbersome that will be divided several parts. Enlightened by Hoffman

[27], we first construct a function z(¢) in the following lemma, which plays an important role
in the construction of sub- and super-solutions.

Lemma5.2 For any 0 < n, < In2, there are two constants T = Z(n;) > 0 and Ko =
Ko(n;) > 0 such that for any t > 0, there exists a C'-smooth function (t) : [0, +00) — R
that satisfies the following properties.

(i) Forallt > 0, the inequalities 7' (t) > —n,Z(t) and 0 < Z(t) < Z(0) = 1 hold.

(i) In addition, 7(t) > Ko(1 +1t — tl)fgfor allt > t| and f0+°o z(t)dt < 1.

Proof First we define
2 v

1 N2 vn 12
P_(x)=_§n§(x+nzl) +1, P+(x)=Tz(x_nzl) +§_%,0<v<nz.

Let Ip(n;) = 1/n;. Then, by a direct calculation, it is easy to show that for any fixed
0<n;, <In2and 0 < v < n,, P_(x) satisfies that

2 2
P_(~lp)=1, P.(=lp)=0, P_(0)= 3 PL(0) = —37
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with
—nP_(x) <P (x) <0, —lp <x =<0,

and P, (x) satisfies that
2 I 2 I
PrO) =3 PLO)=—Zv. PLp)=0.

Py(p) = % with
—n;Pr(x) < PL(x) <0, 0<x <Ip.
In addition, denote
e_rlzt’ 0<t<§n7—1_1’
- - 2 <
(1) = 3
z1(0) /3 3 s B 3
et (3) R0 TE o= Int o

Now if 0 < 1 < 3n;1, then let Z(¢) = z1(¢), otherwise we define the function zZ(¢) on five

different intervals. In particular, define v = ;;,'(21_7733”77:[])), which implies 0 < v < 7. Then,
let
z1(1), 0<t=<n-3n",
sy = |3 =30 ) Pe(e = =3n2Y)). 0 =3nt<o<n =2
P_(t—1), n—-n;l<t<mn,
Fa@—n), 1> 1.

It remains to specify z(¢) in [t1 — 277;1 S =y 1]. This can be done by choosing an arbitrary
C!-smooth function, under the constraints

Zn—2n7") =z (n=3n;") P (7). 2(n —n2') =1 Z (n —2n7")
=7 ([1 —r;z_l) =0
and
70 =0, n—2 ' <t <n—nl.

Then we finish the proof since the properties (i) and (ii) are valid by a direct calculation. O

Remark 5.3 1t is not difficult to see that z(1) > % from 0 < 1, < In 2 and the first statement
in Lemma 5.2.

Now, we are in the position to construct the sub- and super-solutions.

5.1 Sub-solution

In this part, we construct a sub-solution to (5.1). Now define

A, ) =ux,t —14+t), u (x,t) =dp(x1+ct —=1+1t)—0(", 1) —Z@1)) — z(2),
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I 2
where 6(x’,t) = Br%e v with @, y > 1 being two real numbers, z(f) = €;Z(¢) with
€] = 2¢and Z(t) = K; fot z(t)dt with K; > 0 being a large number. z(¢) is defined in
Lemma 5.2. It follows from the definition of ™~ (x, t) that

7‘)(/‘2
14

u (x,1)<¢ (xl + cte — Be - Z(l)) <u(x,1)=u(x,t) forall x € K.

Thanks to ¢(—00) =0, ¢ > 0,0 < u(x,t) < 1 and miI? u(x,t) > 0, the last inequality
xekK

holds provided that 8 is sufficiently large. If x € RV\K,, then by z(1) > %el = € (from
Remark 5.3), we have that

u=(x,1) <p(xy +cte) —z(1) < p(x1 +cte) — € <u(x, te) =u(x, 1).

As a consequence, there holds u~ (x, 1) < i(x, 1) for any x € Q.

Lemma 5.4 The inequality Lu™ (x,t) < 0 holds for all x € Q and t > 1, where
Lu=(x,t) =u; (x,1) — / Jax—=yu (y,t) —u (x,)ldy — fu" (x,1)).
Q

W2
Proof Sinceu™ (x,1) = ¢p(&(x, 1)) —z(t), where E(x, 1) = x;+c(t —1 +t5)—ﬂt’°‘el'7?" -
Z(t), we have
ug (x, 1) = ¢ E@x, ) (e — 6", 1) = Z') — 7' (1),
and

fQJ(x = (y. 1) —u(x,0)ldy = /Q J(x =P EQR. 1) —pE(x, )ldy.

Denote D¢ = fRN Jx—W[pE(y, 1)) —p(&(x, t))]dy. Then, applying mean value theorem,
we get that

D¢ :/RN JWMIPE M, 1) — y1) — ¢(E(x, 1))ldy +/RN J(y)[fﬁ(m —yit+ec@—1+1)

-2

—pt e —Z(I))—¢($(x,t)—y1)]dy
>cd/(E(x, 1) — f(@ECx, 1) — CO¢'(E(x, 1))pr ™

2x" —Gy'| _w-iy?
/J(y)ly’lie v dy,
RN ty

where 0 < 6 < 1. In particular,

D > o/ (E(x.1) — f(@EX, 1) — C'1™ 29/ E(x. 1)).

Therefore, we have
Lu™(x, 1) =u; (x,1) — /Q Jo = (v, 1) —u(x, Dldy — fu"(x,1))
<F@EE D) = f@E0) = 20) + (177 = Z/(0) = 6,6, 1)) ¢/ x. 1)

+/K J(x = NIPEW, 1) — P Ex, 0))ldy — ' (1).
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Similarly as previous, one can get

/ Jx —=»eEQ. 1) —pEE, )] > K39/ (£(x, 1)) for some CK > 0.
K
It follows that

Lu~(x,1) <f(@Ex, 1)) — f(PEx, 1) —z(1)
+ [+ N - 70 - 0, D] ¢ e ) - 20,
Now we go further to show Lu~ (x, ) < 0 in two cases.
Case 1. We assume that |E(x, )| > 1 such that ¢ (£(x, 1)) € [0, n] U[1 — n, 1], where
n is sufficiently small to ensure that f/(s) < —o < 0 forany s € [0,n] U [l — 7, 1] and

o > 2n, with n, defined as that in Lemma 5.2. Then, since the function z(#) constructed in
Lemma 5.2 satisfies

2(0) = —n.z(t), 2(6) = Ko(1+1—1)"% for 1y > 0,
there holds

Lu™(x,1) <(=0 4+ n)z(t) — ¢'(E(x, 1))
K |x/|2 -1 / l KN, —a—1L
22(t) + ” —a |t 0K, t)—(C+C")t 2

< —n.Kot3 + (aﬂ +ck 4 C’) O3 (E(x, 1))

1 _3
S_ EUZK()[ 2,

Indeed, since > 1and |£(x, 7)|is sufficiently large such that (a+CX +C" ¢’ (§) < %le Ko,
the last inequality above holds obviously.

Case 2. Let ¢(£(x, 1)) € [, 1 — n] in this case. Since ¢'(§) > 0 for all £ € R, we may
choose 7y > 0 being sufficiently small such that ¢’(§) > 79 > 0. Denote max] f'(s) =

[n,1-n
8% > 0. Then

- 0 |x/|2 —1 l K N\ —a—1L
Lu~ (x,1) <§z(t) + n,z(t) — Kzz(t)—i-( ry —oc)t G(x,t)—(C +C)t =3

@' (E(x, 1)
<(—Keo+ 8% +n.)z(0) + (aﬂ yck 4 c/) O (B (x, 1))

1
< |:—Kzro +68%+ . + (aﬁ +ck 4+ C/) ?0||¢/||oo:| 2(1).

Let K, be sufficiently large such that — K. 79+8°+n.+(ap + CK + C’) K% 19/ lloc < —3-.
One hence have that Lu=(x, 1) < —%nzz(t). The proof is finished. ]

5.2 Super-solution

This part is devoted to verifying the super-solution defined as

ut(x, 1) = ¢ (x, 1)+ z(t),
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where
v/

Y ) =x1+ct—1+1)+0' 0 0+ Z1), 0' (1) =g e 7

with * > 1 and B > 0 being a large number. It follows from the definition of u™(x, t)
that

7‘)(/2

ut(x,1) = ¢ <x1 + cte +ﬁ+eT| + Z(1)> > u(x, 1) =u(x, te)

for x € K.. Since ¢p(—o0) =0, ¢’ > 0,0 < u(x,7) < 1 and mz}{xu(x,t) < 1, the last
xekKe

inequality holds provided that 8% is sufficiently large. If x € RN\ K, thenby z(1) > %61 =€
(from Remark 5.3), we have

ut (1) = dxr +cte) +2(1) = (v + cte) +€ = ulx, te) = ilx, 1).

As a consequence, there holds ut(x,1) > i(x, 1) for any x € Q.

Lemma5.5 The inequality Lu™t (x,t) > 0 holds for all x € Q and t > 1, where
Lut(x, 1) =u(x, 1) — / Jx =ty 1) —ut(x,0)ldy — fut(x, ).
Q

Proof It follows from a direct calculation that

uf G, =(c+0' +2'®) ¢’ () +7 1),

and
fQJ(x — Wy, ) —ut(x,0)ldy
- /R T = WI6W (v, D) — (W (x, )1dy
_ /K T = WP, 1) — (U (x, )ldy.
Note that

' (Y (x. 1) = /RN TP (x, 1) = y1) — ¢ (x, )Idy + f(P(W(x, 1)),
we have
(e, 1) = 6] + Z' )¢’ (W (x, 1))
+ /R TP (x. 1) — y1) — (W . )dy + f(@W (x. 1)) +2 (1)

Then it follows that
Lut(x, 1) =] + Z' (1)’ (Y (x, 1) + /RN I (x, 1) —y1) — p(W(x,1))]dy
+ fl@(W(x, 1) +2'(1) — /RN Jx =noW(y, D) —dW(x,1))]dy

+/I{J(x—y)[¢>(1ﬂ(yvt))—¢>(¢(x,t))]dy—f(u+(x,t)),
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and we obtain

Lu(x, 1) =0 + Z' (1) (Y (x, 1) + fRN I W (x, 1) —y1) — ¢ (x — y,1))ldy

4 fk T = DD (1) — Oy (x. )y
F @ 0 +2(0) — Fut 1),

Now we focus on all the integral items above denoted by
Fim [ IOM@0 =) = 60 = y.)ldy
R

+ /K T = DISW G, 1) — S (x, D)1dy.
By the same progress as the calculation of u~ (x, 1), we have
I= M1 3¢/ (x, 1)),
Therefore,
Lut 0 = (0] + 20 = M) ¢ (e 1) + 2 0)
@O D) — fut(x,0)).

Next we are going to show Lut(x,t) > 0in two cases.
Case 1. Let |Y(x, )| > 1 such that ¢ (Y (x,1)) € [0,n] U [l — n, 1], where n > O is
sufficiently small to ensure that f'(s) < —o < 0 forany s € [0, n] U[1 — 7, 1]. Since

(Kz + f;j) 20) = 0] + 2/ (1) = Mt > Koz(t) — (@t BT MO
and |y (x, t)| > 1, we obtain that
(0 + 20— M) )| = S0z,
which implies

1
Lut(x,1) > —Enzz(t) —n.z2(t) +oz(t) >0,

since n, < 3o anda™t > L.

Case 2. Since ¢(¥(x,1)) € [n,1 — n] we have ¢'(Y(x,1)) > 79 > 0. Denote
n[1(i)r11] f'(s) = =8 < 0. Then, we obtain
s€l0,

Lut(x, 1) > [Kzz(t) —(@tpt + M’)t—“*—%] 0 — 8'2(t) — 1,2(t)

+g+ /
> (Kz - aﬂ#) Tz (1) — 8'z(t) — n.z(0).

Recall the fact o™ > 1, it follows that th_“+_2 < z(t). Moreover, one can take K, > 0
being sufficiently large such that (K . — %ﬂ) 790 — 8 — n; > 0. Then we have that

Lu"(x, t) > 0. The proof is finished. O
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The proof of Theorem 5.1 From the Lemmas 5.4 and 5.5, for t > ¢, we have that
inf [u(x, 1) — ¢ (x1 + )]
xe

=influ(x,t+1—1) — p(x1 + ct)]

xeQ

> inf[px)+ct =0 1+ 1—1) = Z(t + 1 — 1) — 2(t + 1 — 1) — ¢ (x1 + c1)]
xeQ

2 _[ﬂ(t + 1 — te)ia + Z(t + 1 — tG)]”d)/”LOO(]R) — Z([ + 1 — te)

> Bt +1—1) ¢ L@ — 20t + 1 —te) — €1Zl|¢ [ L>®)»

and

su[_)[u(x, t) —¢(x1 + ct)]

xeQ
= suplii(x, t + 1 — £) — p(x1 + c1)]
xeQ
< suplg vy et +01 (11— 1) + Z( + 1= 1) 2+ 1= 1) — $Cx1 + 1))
xeQ

<BTE+1—1) "+ Z(t + 1=t oy + 2t + 1 — 1)
<B U+ 1—1) ¢ lLomw +2(t + 1 — 1) + €219 | Lo (m).-

For any sufficiently small ny > 0, take 0 < €] < quan’isumo Then by the construction of z(),
we see that

liminf inf [u(x, 1) — ¢ (x1 + ct)] > —ns,
Q

—00 xe
and

lim sup sup[u(x, 1) — ¢ (x1 + c1)] < 1.

—00 xeQ
Since 7y is arbitrary, we have tlim sup |u(x,t) — ¢ (x1 + ct)| = 0. Thus, we finish the proof
—00 &

xe
of Theorem 5.1. O

5.3 Proofs of Theorem 1.1

It follows from [7, Theorems 2.4 and 2.6] that under the conditions (F) and (J), the unique
solution of the stationary problem of (1.1)

[ 7 PO~y + ) =0, x € BY\ K or Ko,

0<v(x) <1, xeRV\ K(orK,), (5.2)

sup v(x) =1
RN\K

isv(x) = 1in RN\ K (or RN\ K,).

Now we are in position to show the main theorem. It is obvious that if the solution
U (x,t) of (1.1) constructed in Theorem 3.1 satisfies the conditions in Theorem 5.1 together
with Theorem 4.3, then the conclusions in Theorem 1.1 hold. Indeed, since U;(x,1) > 0
and U (x, t) is Lipschitz continuous in x € RV\K, we know that as time tends to positive
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infinity, U (x, t) locally uniformly converges to some continuous function V (x), without loss
of generality, which can be deemed as a uniformly continuous function by [7, Lemma 3.2]
because of the assumption (F). Furthermore, we claim that V (x) satisfies (5.2). Therefore,
we have V(x) = 1 forall x € ]RN\K. In fact, it is sufficient to show SUPRN\ g Vix)=1.In
view of u(x, t) — ¢(x; + ct) — 0ast — —oo in Theorem 3.1, for any small ¢’ > 0, there
exist - < 0 and X; > 0 being sufficiently large such that

/

d(x 4 i) > 1— % forall x; > X;,

and
6/
lu(x,t) — ¢ (x1 +ct)| < 5 forall x € RV\K and 1 < ..
Thus

u(x,t) > 1—¢€ forallx; > Xy andt > 1.,

which implies that V (x) > 1 — €’ due to u,(x, t) > 0. Since that €’ is actually arbitrary, one
has that

sup V(x)=1.
RM\K

Therefore, V(x) = 1 forall x € R¥\K.Hence, u(x,t) — last — +ooforallx € I&ZV\K.
It follows that for any € > 0, there are some 7, > 0 being sufficiently large and K. C €2 with
K C K¢ such that

u(x,t) >1—e¢, forallr > 1., x € 0K,.
In addition, it follows from Theorem 4.3 that
lu(x, te) — ¢p(x1 + cte)| < e, forall x € RN \ K.
Thus, from Theorem 5.1, we have

lim sup |u(x,t) — ¢ (x1 +ct)| = 0.
[—o00 =
xeQ

Moreover, since u(x,t) — ¢ (x1 + ct) — 0 ast — oo uniformly in x € 2 and Theorem
4.3, we have that u(x, 1) — ¢(x; + ct) — 0O as [x| = 400 uniformly in ¢ € R. The proof of
Theorem 1.1 is finished. Similarly, we know the results of Remark 1.2 hold.
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6 Appendix
6.1 Proof of Proposition 3.2

In this subsection we intend to show the results of Proposition 3.2. For convenience we define
the operator £ as follows

Lo, 1) = o (x, 1) — /Q J(x = Vo, 1) — o6 Dldy — fox, D).

We further show that W™ (x, ) is a sub-solution. A straightforward computation shows that

LW (x,1)
—/ J(x —y)W™ (v, t)dy, x1 <0,
Q

) e —E@DI (x1 +ct —E0) — ¢ (—x1 et —E@)] - /Q Jx =W (y.1)

- W x,Dldy — f(@(x1 +ct —§@) —p(—x1+ct —§@1)), x1=0.

For x; < 0, since J(x) > 0 and W~ > 0, we have
LW = —/ Jx —y)W (y,t)dy <0.
Q
For x; > 0, in view of that
/QJ(X —NIW (y, 1) = W (x,1)ldy
= AN J(.X - y)[W_(ys Z) - W_(X, [)]dy - /;( J(X - y)[W_(ya [) - W_(.X, t)]dy
- / TG = IW= (3, 1) — W (x, ldy
RN N{y; >0}
+/ JGe = NIW™ (v 1) = W™ (x, D1dy
RNﬁ{yl <0}
- /K Jx =W (y, 1) = W (x,1)]ldy
> /RN J(x = DGO + et — ED) — d(—y1 + ¢t — E@D) — (B(x1 +cf — £1))

—¢(—x1 +ct —&1))]dy — /K Jx =W (y.1) =W (x,0)]dy,

we have
LW <—EDI[P (241) — ¢ (z—(1))]
+ f(@(z4+(1) — f(P(z-()) — f(P(z4+(1)) — ¢(z—(1)))

+ /K Jx =W (y, 1) =W (x,0)ldy,

where 7, (1) = x{+ct —&(t), z_(t) = —x| +ct —£(r). Recall that K C {x € R | x; <0},
it follows that

W= (y,t) =0forally € K,
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which implies that
LW (x, 1) < —EDIP (z4(1) — ¢ (z—(1))]
+ f(@ (1)) — F(@—(1) — [P+ (1) — P (z—(1))).

Now we go further to show LW~ < 0 in two subcases.
Case A: 0 < x; < —ct +&(2).
In this case the following lemma holds.

Lemma 6.1 Suppose that (F) holds. Let (¢, ¢) be the unique solution of (1.4) and ¢"(§) > 0
for & < 0. Then there exists k3 > 0 such that

¢'(E) — ¢ (&) = kslp(E1) — ¢(62)] (6.1)
foré& < & <.
Proof 1t follows from (1.6) that there exists some ¢ > 0 such that

¢'E) _ et
@' 1) ~
Then one can choose M’ > % and (£1, &) € R2 with &, — M’ < & < & < 0 such that
¢/($2) < ce_)‘M/ < 1
@' (1) ~ -2
If& — M' < & < & < 0, then we have
¢'(E1) — ¢ (&) =¢"(0")E — &) &) — (&) = ¢’ O (E — &)

for some (0!, 62) € [&, &11% with |9! — 62| < M’. This and the facts ¢” (&) > O for & <0
and ¢’ (y) > 0 for all ¥y € R imply that (6.1) holds true for &, — M’ < & < & < 0.
When & + M’ < & < 0, it follows that

¢'(&) < %qb’(sl).
This and the inequalities in (1.5) and (1.6) yield
¢'(E) — ¢/ (&) > %ff’/@l) > ks (&) = k3o (1) — ¢ ()],
Thus we finish the proof. O
Now we are ready to show LW~ (x, 1) < 0. By Lemma 6.1, we have
LW, 1) < =)@ @4(1) = ¢/ @ (0)) + Lyp - (1)@ @+(1) = d(z- (1)
= [~ MR CHEOD) 4 L) ] 1924 (1)) — B ()]
= [L ot D) MR CHEO (924 (1)) — - 0)]
S MO [ el 250yt | (24 (1) — dle- (1))

=(LyBo— Mk3)[p(z4(1)) — ¢(z—(1))]
<0.

. . . LyBo
The last inequality holds provided that M > 5
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Case B: x1 > —ct + £(1).
A direct calculation gives that

LW (x, 1) < — MM D¢/ (2, (1) — ¢/ @ (D] + L pp (2= () (z4(1)) — $(z—(1))]
<L (z—(1)) — MMC=EOT205O 4/ (2 (1)) — ¢/ (z—(1))]

<R R0l —E D)+ 2008 () [ L 1 foeh 0 e=60) 23060

M (yleu—m)cl—mct—sa)) _ Soew—s(t))) }

<oA1 —ED)+ 2408 () [ Lifo—M (Vl pO—mx1—p(ct=£(1) _ 506A(ct—5<z>>>] ,

If A > u, then

LW (x, 1) <e—M1HH0(er—E1)+2406 () [ LiBo—M ()’1 o et =E®) _ aoeucz—s(z)))]

<0

forct — &(t) < —1 and M > 1 is sufficiently large.
When A < u, which means | f/(1) — f/(0)| > 0, there holds

F (@@ (1)) = f(Pz- (1)) = f(P(z4(1)) — ¢ (z-(1))))
= @@ O)NP-1) — 0@ (2 (1)) — [/ (@ (- (NP (- (1)) + 0($*(z—(1))))
< —kap(z- (1))

forxi +ct —&(t) > Ly > 0 with L, being large enough, where 0 < kg4 < %If/(l) — £/(0)].
The inequality above follows from that f'(¢(z(¢))) — f'(1) and f/(¢(z—(1))) — f'(0)
as Ly — +o00. Then

LW (x, 1) <MD (2 (1)) — kap(z— (1))

< MPOCHEWD) g A (—xi-tei—£(1) M—x1+et—§(0)

— kqoge
<M xiHer—5 1) (Mexo(ct+§<z)) _ k4a0)

507

provided that ct 4+ £(r) < —1.
In addition, for 0 < x1 + ¢t — &(t) < L3, there holds

LW (x,1) <o~ Mr1tho(ct=E(1)+2106 (1) |:Lfﬂoe(A*A())(ctfé(t))fb\oé(t)

M (yle(xfﬂ)xlfﬂ(ﬂfs(t)) _ 5oex<ctfs<z>>) ]

<o~ MR (et —E(D)+2008 (1) [ Lifo—M <y1 =Ly y=h(ct—£(D) _ 5Oex<czfs<t») ]

Since ct —&(t) <« —1land M > 1, we have LW~ (x, 1) < 0.
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Next, we show the W (x, t) is a super-solution. A straightforward computation shows
that

2c+E0)¢ (x1 +ct) — fQp(ct +£(1)))

- fQ T = )IWF(y. ) = WHx, nldy, x1 <0,

LWHx, 1) = (c+ED) (x1 +ct +E@) + ¢/ (—x1 +ct +£E1))]

- /Q T = WIWH(y. 1) = WHx, ldy — f($(x1 + ct +&(1))

+ ¢ (—x1 + ct +£(1))), x1 > 0.

When x; > 0, denote
M=xeRY |y >0, " ={xeRY |y <0}

In view of that K ¢ R \supp(J) N {x € RY : x; < 0}, one gets
/ Jx = IWF (1) = W, 0)ldy
Q

= /mr+ Jx =@+t +80) + ¢ (=y1 +ct +£()))
— (@1 +ct + &) +P(—x1 +ct +5())]dy

+ /52m1“ J(x — WRp(ct +E@)) — (P (x1 +ct +E@)) + P(—x1 +ct +E(1)))]dy
- fRN T = DGO + et + ) + ¢(—y1 +ct +E(1)) — (P(x1 + ct +£(1))

+ ¢ (—x1 +ct +£(0))dy +/ = 2(et +8(1) — (@1 + et +£(1))

QN
+ @ (=y1 +ct +E@1))]dy
=c(@' (x1 +ct + (1) + ¢ (—x1 + et + £(1)) — f(@(x1 + ct +E(1)))
= f@(=x1 +ct +&(1)))

+ /mr— Jx = 2@t + &) — (@1 +ct + &) + d(—y1 +ct +E(1))].

Observe that, if x; > |ct + &(¢)| > L, where L is the diameter of the compact support of J,
then the integral item of the last equality is equal to 0. Therefore, we obtain
LWF(x, 1) =E[¢(x1 + ct + E@)) + ¢/ (—x1 + xt + EO)] + f(P(x1 + ¢t +£(1)))
+ f@(=xi +ct +8(10) — f(px1 +ct +£@) + ¢(—x1 +ct + 1))
>E¢ (x1 + ct +E(0) — Ly (x1 + ¢t + E@)p(—x1 + ¢t +£(1))

> M0 (C1+E(1) ( My HOrer ) _pgpptn e(l—lo)(ct+§(t))) _

If w < A, by choosing My; > L ray, it is obvious that LWT(x,t) > 0 with x; >
|ct + &(¢)| being sufficiently large.

For ;v > A, we have f'(1) < f7(0). Consider the case x; + ¢t + £(¢) > Lo > 1. Then
¢(x1 +ct +&E(t)) = 1 while ¢ (—x| + ct + £(¢)) =~ 0. Furthermore,

F @+t + &) + f(d(=x1 +cr +£(1))
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— [(@Gr+ct +£(1) + ¢(—x1 +ct +5(1)))
1
> E(f/(O) — ') (=x1 + et +£1)
>0,

which implies that LW+ (x, t) > 0. For the other case x| + ct + £(¢) < L, we know

EW+(X, 1) Zelo(c‘H-E(f)) (Myle—MLo _ Lfaoe—)hxle(l—ko)(ct+é(1))) )

Since A9 < A, we obtain LW (x, t) > 0 holds provided that M > %e““}.
For the case 0 < x| < |ct 4+ £(¢)], one can see that

/mrf J(x = 2@t +5@) — (@1 +ct +E@) + ¢ (—y1 +ct +5@))]dy

= / J(x = »2¢(ct + (1) — @1 +ct + &) + d(=y1 + ct +E(1)]dy
Qn{yr<er+5(0)

+f Jx = y)2¢(ct +&(1) — (@(y1 +ct +E@)) + d(—y1 +ct +E(1)))]dy
QN{ct+&(r)<y; <0}

=1L+ 1.
Since ¢ (ct + £(1)) < % for ct + (1) < —1, $(0) < 0, and ¢' > 0, we get that ¢ (—y; +
ct +&(t)) > 60 > 2¢(ct +&(t)) for y; < ct + &(¢). It follows that I} < 0. We know that

b 5[ J(x — y)C¢eMC’+§(’)) (2- (eky' + e_ky‘)) dy
QN{ct+&(t)<y; <0}

n K¢e(k¢+k>(ct+g<n)/ T —y) 2+ M) dy
QN{ct+£(1)<y1 <0}

SCOe(k¢+A)(ct+E(t)).

The first inequality is follows from that there exist two numbers Ky > 0 and ky > 0 such
that |¢ (x1) — Cye™™1| < Kge @™ 1 for x| < 0 which is easy to obtain by (1.5). Then we
have
LWF =MD (@ (xy + et +§0) + ¢/ (=x1 +ct +§@)) + f( @1+t +5(1)
+ f(@(=x1 +ct + &) — f(P(x1 +ct +E(1) + d(—x1 + 1 +£(1)))
— CoetkotPet+E®)
=M CHED (@ () + ot +£1) + ¢ (—x1 + et +£1))
— Ly (xi +ct + E@)P(—x1 + ct + £(1)) — CoekoTHEHEW)
> p(RoHR) (Cr+E(D) [2 Myo — L Boe 0 +0) _ Coe(k¢—)»o)(ct+é(t))] )

This gives that LW > 0, provided 2Mag > L s By + Co and A9 < min{kg, A}.
For x; < 0, we just deal with the case —L < x| < 0 because that for x; < —L,

/Q I — WIWH (1) — W e, 01dy

= /r+ J(x = Wp +ct +§@) + ¢(y1 +ct +5@1) —2¢(ct + 1)) 1dy = 0.

@ Springer



1128 Journal of Dynamics and Differential Equations (2023) 35:1099-1131

Since ¢”(x) > 0 for x < 0, we have that

/QJ(X — MW, 1) = W (x, Dldy

X1

< o/ (ct + EW) — F@let +E)) + f JODIGO = x1 +ct + 1)

+ @1 —y1 + et +8@) — 2¢(ct +§@1)]dy;

- /R RODIS(ct + E@) — 1) — dlet +E@)dn

0

— o/ (ct +EW) — F@ et +EMD)) + / RODISG1 — 31 +ct + 1)

+d(x1 — y1 +ct +E(1) —2¢(ct +E(@1))]dy

0
+/ JiyDR2p(ct +5@) —p(y1 —x1 +ct + 1) —d(x1 — y1 + ¢t +£(1))]

0
- / JIOD[p(ct +E@) — y1) + (et + E@) + y1) — 2¢(ct + £(2))]1dy

< cd/(ct +E(1)) — f(p(ct +E(1))) + CoelkotH(c+E®)

0
+/ JiyDle(y1 — x1 +ct +&(1))

—0oQ

+ o1 —y1+ct +8@) —plet + 1) — y1) — (et + &) + yD)ldyr.

Observe that, if x; < 0 then |¢>(x1) - C¢e“1 | < K¢e(k¢+)‘))‘1. Thus there is Cy > 0 such
that

0
/ JODIO — x1 +ct +ED) + Gt — w + et +E1)

—00

—@(ct + &) —y1) — (et + &) + y1)ldy:

0
< C¢ek(ct+é(t))/ O [(exm—y]) +ex<y1—m) (e —I—e_}‘y‘)]dyl

—00
0
+ 2K¢e(k¢+}\)(ct+§(t)) /

—00

Ji (yl)[ (e(k“’\)(xl*y'l) + e(k¢+/\)<y|fx1)>

— (et 4 otk ] dyi

< Coetks P er+E®)

The last inequality above holds true, since x; < 0 and f(v) = v + % is monotonically

increasing in v € (1, co). Then it follows that for M > %,

LW 2260 (et +§0) + (@ (et +51)) = fQp(ct +5(1))) — CoelletHEHED)
zzMyOe(lo+)»)(ct+§(t)) _ 2C06(’<¢+k)(ct+é(t))

—ekp M) (ct+E() Q2Myy — 2Cp)
>0.
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The second inequality follows from that f/(s) < 0 in [@(ct + £(2)), 2¢(ct + £(¢))] for
ct + &(t) <« —1. The proof of Proposition 3.2 has been finished.

6.2 Proof of Lemma 4.2

We know that
Mu =, (x, 1) — fRN Jx = Wuly, ) —ulx, H)dy — f(ulx, 1)
=(c — 2¢|| f'118 L) + ee @10
- /RN J(x = W[PE-(y.1) — P (x,0))ldy

— f(PE—(x,1)) — ee”@710))
=— 2| f]187 e TG + ewe™ T 4 f(p(E_(x,1)))

— f(#E- (. 1) — e,

When £_(x,t) € [—A, A], there holds ¢'(£_(x, t)) > 8. Therefore,
Mu < ee™ TN 20 f + o + 1111 < 0.

For |E_(x,t)| > A, we have

¢ (E—(x, 1), u(x,1) € [-oo, n] U[L —n, +o0].
Then f'(s) < —o for s € [p(5_(x1)) — e (& (x1))]. Hence,

Mu < ewe @710 — ee™@=10) = (),
Forty < —T, one get
u(x, 10) = ¢p(x1 +ct) —e < u(x, to).

Until now, we have show the function u is a sub-solution to (4.2). Similarly one can show u
is a super-solution to (4.2).
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