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Abstract
This paper is concerned with the spatial propagation of bistable nonlocal dispersal equations
in exterior domains. We first obtain the existence and uniqueness of an entire solution which
behaves like a planar traveling wave front for large negative time. Then, when the entire
solution comes to the interior domain, the profile of the front will be disturbed. However, the
disturbance is local in space for finite time, which means the disturbance disappears as its
location is far away from the interior domain. Furthermore, we prove that the solution can
gradually recover its planar wave profile uniformly in space and continue to propagate in
the same direction for large positive time provided that the interior domain is compact and
convex. Our work generalizes the local (Laplace) diffusion results obtained by Berestycki et
al. (2009) to the nonlocal dispersal setting by using newknownLiouville results and Lipschitz
continuity of entire solutions due to Li et al. (2010).
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1 Introduction

This paper is concerned with the following bistable nonlocal dispersal equation

ut (x, t) =
∫

�

J (x − y)[u(y, t) − u(x, t)]dy + f (u(x, t)), x ∈ �, (1.1)

where � = R
N\K and K is a compact subset of RN and the dispersal kernel function J is

nonnegative. Throughout the paper, we make the following assumptions.
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(J) The kernel function J ∈ C1(RN ) is radially symmetric and compactly supported such
that

J (x) ≥ 0 for x ∈ R
N , J (0) > 0 and

∫
RN

J (y)dy = 1.

(F) f ∈ C1,1([0, 1]) and there exists θ ∈ (0, 1) such that

f (0) = f (1) = f (θ) = 0, f (s) < 0 in (0, θ), f (s) > 0 in (θ, 1),∫ 1

0
f (s)ds > 0, f ′(0) < 0, f ′(1) < 0, f ′(θ) > 0,

and

f ′(s) < inf
x∈�

∫
�

J (x − y)dy < 1 (1.2)

for s ∈ [0, 1].
It follows from the assumption (F) that there exists L f > 0 such that

| f (u + v) − f (u) − f (v)| ≤ L f uv for 0 ≤ u, v ≤ 1.

On the other hand, we know that inf
x∈�

∫
�
J (x−y)dy ≥ 1/2when K is convex. In this case, we

can see that (1.2) is automatically satisfied if f ′(s) ≤ 1/2 for all s ∈ [0, 1]. Moreover, under
the assumption (1.2), some nonlocal Liouville type results were established by Brasseur et
al. [7]. Besides, note that K is compact, without loss of generality, we may assume that

K ⊂ {x ∈ R
N : x1 ≤ 0} or K ⊂ {RN \ supp(J )} ∩ {x ∈ R

N : x1 ≤ 0}.
It is well-known that the classical diffusion problem in exterior domain is established

by the seminal works of Berestycki et al. [4] and Bouhours [6]. In order to study how a
planar wave front propagates around an obstacle, they considered the following semi-linear
parabolic problem {

ut = �u + f (u), x ∈ �,

ν · ∇u = 0, x ∈ ∂�,
(1.3)

where ν denotes the outward unit normal to the smooth exterior domain �. More precisely,
they proved how a planar traveling front can eventually recover its profile after disturbed
by an obstacle K , leaving the obstacle behind. Bouhours [6] further obtained the robustness
for the Liouville type results in [4]. Later on, Guo et al. [21] showed that the global mean
speed of the entire solution constructed in [4] is the speed of traveling waves in homogeneous
environment. More recently, Guo and Monobe [22] extended the results in [4] to V-shaped
front. Hoffman et al. [27] considered a similar problem for two dimensional lattice differential
equations with directionally convex obstacles.

The nonlocal dispersal equation has got numerous scholars interested, in view of its
extensive use to describe the long range effects of spatial structure in biology, physics and
chemistry [1, 2, 11, 16–19]. Moreover, the problems of nonlocal dispersal equations in
exterior domains have attracted much attention recently. In particular, Cortázar et al. [12–14]
considered the asymptotic behaviors of the solutions to linear equations. Brasseur et al. [7,
8] have established some Liouville results for such nonlocal obstacle problems and found
that the stationary solutions of (1.1) converging to 1 as |x | → +∞ is indeed 1 for compact
convex obstacle K .

When the obstacle K is empty, there have been many works devoted to the traveling wave
solutions and entire solutions for (1.1) and its local dispersal counterpart in recent decades.

123



Journal of Dynamics and Differential Equations (2023) 35:1099–1131 1101

In particular, the authors of [2, 17, 34, 40] have obtained the monotone traveling wave and
its asymptotic behaviors for (1.1) with bistable type nonlinearities f , and Chen [17] showed
the uniqueness and stability of the traveling wave. For other types of nonlinear terms in (1.1),
one can refer to [11, 18, 19, 29, 36, 37, 39] and references therein. For the results on local
dispersal equations, readers can consult [15, 20, 23, 24, 28, 35, 38, 42, 43] and references
therein.

If � = R
N in (1.1), let u(x, t) = φ(x1 + ct) and z = x1, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
R

J1(z − y)[φ(y) − φ(z)]dy − cφ′(z) + f (φ(z)) = 0, z ∈ R,

φ(−∞) = 0, φ(+∞) = 1,

0 < φ(z) < 1, z ∈ R,

(1.4)

where c > 0 and J1(x1) = ∫
RN−1 J (x1, y2, y3, · · · , yN )dy. Then it follows from [2, 34]

that there exists a unique real number c > 0 such that (1.4) admits a solution φ. In fact,
the solution φ is the unique monotone planar traveling wave solution of (1.1). Besides, φ(z)
satisfies {

α0e
λz ≤ φ(z) ≤ β0e

λz, z ≤ 0,

α1e
−μz ≤ 1 − φ(z) ≤ β1e

−μz, z > 0,
(1.5)

where α0, α1, β0 and β1 are some positive constants, λ and μ are the positive roots of

cλ =
∫
R

J1(y)e
−λydy − 1 + f ′(0), cμ =

∫
R

J1(y)e
−μydy − 1 + f ′(1),

and {
γ0e

λz ≤ φ′(z) ≤ δ0e
λz, z ≤ 0,

γ1e
−μz ≤ φ′(z) ≤ δ1e

−μz, z > 0
(1.6)

for some constants γ0, γ1, δ0 and δ1 > 0. However, if the domain is not the whole space
(such as (1.1), (1.3)), there is no classical traveling wave front. Therefore, it is naturally to
consider the generalization of traveling fronts. In fact, such extensions have been introduced
in [3, 5, 30]. In particular, the transition wave front, as a fully general notion of traveling
front, has been widely established in many works [10, 25, 26, 31–33, 44, 45]. It is interesting
to point out that the entire solution constructed in [4, 27] is indeed a generalized transition
front.

In the present paper, we are interested to consider the nonlocal dispersal problem (1.1) in
exterior domains.Themain ingredient of this paper is to obtain a unique entire solutionof (1.1)
which behaves as planar wave fronts for large negative and positive time. More precisely, we
first prove the existence and uniqueness of the entire solution like a planar wave front for large
negative time by sub- and super-solutions method. Moreover, we find that the entire solution
also approaches planar wave fronts as x is far away from K . Finally, we shall investigate
the procedure how the front goes through K and eventually recovers its shape. Due to the
lack of compactness of nonlocal operators, which is necessary to establish the uniqueness
and asymptotic behaviors as |x | → +∞ of the entire solution, the methods and techniques
adopted here are different from that in [4, 27], and additional difficulties appear when the
entire solution is constructed. So motivated by the recent work of Li et al. [29], we establish
the Lipschitz continuity in space variable x of entire solutions to the nonlocal problem (1.1)
in exterior domains. Then we can discuss the uniqueness and asymptotic behaviors of entire
solutions of (1.1). In addition, the appearance of convolution term and interior domain leads
to the fact that planar wave fronts are not the solutions of (1.1), which causes much trouble
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in verifying the sub- and super-solutions when we construct the entire solution. Particularly,
nonlocal dispersal equations admit no explicit fundamental solutions as Laplacian dispersal
equations. Therefore, the sub- and super-solutions in [4, 27] are not suitable here to study the
asymptotic behaviors of such an entire solution for large positive time. Consequently, we have
to construct new sub- and super-solutions inspired by [4, 27] to investigate the asymptotic
behaviors of the entire solution to (1.1). At last, our results show that the geometric shape of
the interior domain affects the propagation of planar wave fronts.

Now we are ready to state the main result of this paper.

Theorem 1.1 Assume that (F) and (J) hold. Let (φ, c) be the unique solution of (1.4), and
K be a compact subset of RN . Then there exists an entire solution u(x, t) to (1.1) with
0 < u(x, t) < 1 and ut (x, t) > 0 for all (x, t) ∈ � × R, and satisfying that

u(x, t) − φ(x1 + ct) → 0 as t → −∞ uniformly in x ∈ �, (1.7)

and as |x | → +∞ uniformly in t ∈ R. Moreover, if K is convex, then we have

u(x, t) − φ(x1 + ct) → 0 as t → +∞ uniformly in x ∈ �.

In particular, the condition (1.7) determines a unique entire solution of (1.1).

Remark 1.2 It follows from Brasseur and Coville [9, Thorem 10] that the entire solution
constructed in Theorem 1.1 is a generalized transition almost-planar front with global mean
speed c.

Remark 1.3 The techniques and ideas developed in this paper can be modified to treat a much
more general case for deformations of K (see [7, Definition 1.2]). Let K ⊂ R

N be a compact
convex set with non-empty interior and let {Kε}0<ε≤1 be a family of C0,α (α ∈ (0, 1])
deformations of K . Assume that

max
s∈[0,1] f

′(s) < inf
0<ε≤1

inf
x∈RN \Kε

‖J (x − ·)‖L1(RN \Kε )
.

Then there exists ε0 ∈ (0, 1] such that the conclusions in Theorem 1.1 also hold true with K
replaced by Kε for ε ∈ (0, ε0].

In this paper, under assumptions that K is a compact convex set and the nonlocal dispersal
kernel is compactly supported and radially symmetric, we establish the existence of an entire
solution for the nonlocal dispersal equation (1.1) in the exterior domain �, which behaves
like a planar traveling front for large negative and positive time. It is naturally to ask if
the kernel function is not compactly supported, whether the entire solution we construct in
this paper exists. In addition, we conjecture that when the obstacle K just being a compact
subset ofRN is not convex, the entire solution of (1.1) can not recover its shape uniformly in
space, but it converges to the nonconstant stationary solution in any bounded subset of RN

containing K . We shall study these in a future work.
This paper is organized as follows. In Sect. 2, we consider the Cauchy problem and

establish the comparison principle for (1.1). Then the entire solution is constructed in Sect. 3.
In Sect. 4, we study the behaviors of the entire solution far away from K in space for finite
time. Section 5 is devoted to discussing the asymptotic behavior of the entire solution as time
goes to positive infinity.
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2 Preliminaries

2.1 The Nonlocal Cauchy Problem

We first consider the nonlocal Cauchy problem
⎧⎨
⎩
ut (x, t) =

∫
�

J (x − y)[u(y, t) − u(x, t)]dy + f (u(x, t)), x ∈ �, t ≥ 0,

u(x, 0) = u0(x), x ∈ �,

(2.1)

where � is a subset of RN . We call u(x, t) a solution of (2.1), if it satisfies

u(x, t) = u0(x) +
∫ t

0

∫
�

J (x − y)[u(y, s) − u(x, s)]dyds +
∫ t

0
f (u(x, s))ds (2.2)

for x ∈ � and t ≥ 0. Then we have the following theorem.

Theorem 2.1 Suppose that (J) holds and f ∈ C1,1(R). Then, for any u0 ∈ L1(�), there
exists a unique solution u ∈ C([0, t0], L1(�)) to (2.2) for some t0 > 0.

Proof For every ω ∈ C([0, t0], L1(�)), we define the norm

|||ω||| = max
0≤t≤t0

‖ω(·, t)‖L1(�),

and the operator

T w(x, t) = u0(x) +
∫ t

0

∫
�

J (x − y)[w(y, s) − w(x, s)]dyds +
∫ t

0
f (w(x, s))ds.

It is easily seen that

|||T w||| ≤ ‖u0‖L1(�) + [2 + L]t0|||w|||,
here

L = sup
τ∈[−|||ω|||,|||ω|||]

| f ′(τ )|,

which means T maps C([0, t0], L1(�)) into C([0, t0], L1(�)). On the other hand, note that

T u(x, t) − T v(x, t) =
∫ t

0

∫
�

J (x − y)[u(y, s) − v(y, s) + v(x, s) − u(x, s)]dyds

+
∫ t

0
[ f (u(x, s)) − f (v(x, s))]ds.

It follows that

|||T u − T v||| ≤ 2t0|||u − v||| + t0L|||u − v||| ≤ (2 + L)t0|||u − v|||.
In fact, let t0 be sufficiently small such that (2 + L)t0 < 1. Then one can obtain that T is a
strict contraction mapping in C([0, t0], L1(�)).

To extend the solution to [0,+∞), we can take u(x, t0) ∈ L1(�) as the initial datum and
further obtain a solution in [t0, 2t0]. Then by iterating this procedure, we get a solution in
[0,+∞). �
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2.2 Comparison Principle

Theorem 2.2 Suppose that the assumptions of Theorem1.1holdandu(x, 0), v(x, 0), u0(x) ∈
L∞(�). Furthermore, if u(x, t), v(x, t) ∈ C1([0,+∞), L∞(�)) are uniformly bounded and
satisfy
⎧⎪⎨
⎪⎩

∂u(x, t)

∂t
−

(∫
�

J (x − y)[u(y, t) − u(x, t)]dy
)

+ f (u(x, t)) ≥ 0, (x, t) ∈ � × (0,+∞),

u(x, 0) ≥ u0(x), x ∈ �,⎧⎪⎨
⎪⎩

∂v(x, t)

∂t
−

(∫
�

J (x − y)[v(y, t) − v(x, t)]dy
)

+ f (v(x, t)) ≤ 0, (x, t) ∈ � × (0,+∞),

v(x, 0) ≤ u0(x), x ∈ �,

respectively, then

u(x, t) ≥ v(x, t) in � × [0,+∞).

Proof Define W (x, t) = u(x, t) − v(x, t), it follows that W (x, 0) ≥ 0 and

Wt (x, t) ≥
∫

�

J (x − y)[W (y, t) − W (x, t)]dy + f (u(x, t)) − f (v(x, t))

=
∫

�

J (x − y)[W (y, t) − W (x, t)]dy + F(x, t)W (x, t),
(2.3)

where

F(x, t) =
∫ 1

0
f ′(v(x, t) + θW (x, t))dθ.

Suppose that there exist t∗ > 0 and x∗ ∈ � such that W (x∗, t∗) < 0. Denote θ∗ =
−W (x∗, t∗), we can take ε > 0 and K ′ > 0 such that θ∗ = εe2K

′t∗ . Let

T∗ := sup
{
τ ≥ 0 | W (x, t) > −εe2K

′t for all x ∈ �, 0 ≤ t ≤ τ
}

,

then we have 0 < T∗ ≤ t∗ since the facts W (x, ·) ∈ C1(0,∞) and W (x, 0) ≥ 0. Moreover,
it follows that

inf
�

W (x, T∗) = −εe2K
′T∗ .

Without loss of generality, we may assume that 0 ∈ � and W (0, T∗) < − 7
8εe

2K ′T∗ .
Consider now the function

W−(x, t, β) = −ε

(
3

4
+ βZ(x)

)
e2K

′t ,

in which β > 0 is a parameter and Z ∈ L∞ (
R

N
)
with Z(0) = 1, lim|x |→+∞ Z(x) = 3, 1 ≤

Z(x) ≤ 3. Take β∗ ∈ ( 1
8 ,

1
4

]
as the minimal value of β for which W (x, t) ≥ W−(x, t) holds

for all (x, t) ∈ � × [0, T∗]. Since

lim|x |→+∞ W−(x, t, β∗) = −ε

(
3

4
+ 3β∗

)
e2K

′t < −9

8
εe2K

′t ,
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there exist x∗ ∈ � and 0 < t0 < T∗ such that W (x∗, t0) = W−(x∗, t0, β∗). The definition
of β∗ now implies that

Wt (x
∗, t0) ≤ W−

t (x∗, t0, β∗).

In addition, by the fact that W (x, t) ≥ W−(x, t, β∗) for all (x, t) ∈ � × [0, T∗], we have∫
�

J (x∗ − y)[W (y, t0) − W (x∗, t0)]dy ≥
∫

�

J (x∗ − y)[W−(y, t0, β∗) − W−(x∗, t0, β∗)]dy.

It follows from (2.3) that

−7

4
εK ′e2K ′t0 ≥W−

t (x∗, t0, β∗) ≥ Wt (x
∗, t0)

≥
∫

�

J (x∗ − y)[W−(y, t0, β∗) − W−(x∗, t0, β∗)]dy
+ F(x∗, t0)W−(x∗, t0, β∗).

In particular, it follows from the assumptions of Theorem 2.2 that u(x, t) and v(x, t) are
uniformly bounded and f ′(v(x, t) + θW (x, t)) is also bounded, which means there is some
M > 0 such that | f ′(v(x, t) + θW (x, t))| < M and |F(x, t)| < M for x ∈ � and t > 0.
Then we obtain

−7

4
εK ′e2K ′t0 ≥ β∗ε

∫
�

J (x∗ − y)[Z(x∗) − Z(y)]dye2K ′t0 + F(x∗, t0)W−(x∗, t0, β∗)

≥ −ε

[
2β∗ +

(
3β∗ + 3

4

)
M

]
e2K

′t0

≥ −
(
1

2
+ 3M

2

)
εe2K

′t0 .

This leads to a contradiction upon choosing K ′ to be sufficiently large. �

Corollary 2.3 Under the assumptions of Theorem 2.2, let u(x, t) and v(x, t) be solutions of
(1.1) with initial values u(x, 0) and v(x, 0), respectively. If u(x, 0) ≥ v(x, 0) and u(x, 0) �≡
v(x, 0), then u(x, t) > v(x, t) for all x ∈ � and t > 0.

Proof It is sufficient to show that u(x, t) > v(x, t) for all x ∈ � and t ∈ (0, t0] for some
t0 > 0. In fact, if u(x, t) > v(x, t) for all x ∈ � and t ∈ (0, t0], we can similarly have
u(x, t) > v(x, t) for all x ∈ � and t ∈ [t0, 2t0]. Then by repeating this process, we can
obtain the results of this lemma. Now, denote

w(x, t) = u(x, t) − v(x, t), w̃(x, t) = eptw(x, t) − εt,

where ε, p > 0 are real numbers and p is sufficiently large such that

p + F(x, t) − 2 ≥ 0 for all (x, t) ∈ � × [0,+∞),

with F(x, t) being defined as that in the proof of Theorem 2.2. Suppose that, by con-
tradiction, there is (x∗, t∗) ∈ � × (0, t0] such that w(x∗, t∗) = 0. It then follows that
inf x∈�,t∈(0,t0] w̃(x, t) < 0. Furthermore, one can find a sequence (xn, tn) such that tn → t̃∗
and

lim
n→∞ w̃(xn, tn) = inf

x∈�,t∈(0,t0]
w̃(x, t) < 0.
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Observe that

w̃t (x, t) =pw(x, t)ept + eptwt (x, t) − ε

≥pw(x, t)ept + ept
(∫

�

J (x − y)[w(y, t) − w(x, t)]dy + F(x, t)w(x, t)

)
− ε

=
∫

�

J (x − y)[w̃(y, t) − w̃(x, t)]dy + (p + F(x, t))[w̃(x, t) − εt] − ε.

Then we have that

w̃(xn, tn) − w̃(xn, 0)

≥
∫ tn

0

[∫
�

J (xn − y)w̃(y, s)dy − w̃(xn, s) + (p + F(x, s))[w̃(xn, s) − εs]
]
ds − εtn

≥
∫ tn

0

∫
�

J (xn − y)w̃(y, s)dyds + t0

[
p − 1 + sup

x∈�,t∈(0,t0]
F(x, s)

− ε
[ t0
2

(
supx∈�,t∈(0,t0] F(x, s) + p

) + 1
]

infx∈�,t∈(0,t0] w̃(x, t)

]
inf

x∈�,t∈(0,t0]
w̃(x, t).

Letting n → ∞, it follows that

inf
x∈�,t∈(0,t0]

w̃(x, t)

≥ t0

[
p + sup

x∈�,t∈(0,t0]
F(x, s) − ε

[ t0
2

(
supx∈�,t∈(0,t0] F(x, s) + p

) + 1
]

infx∈�,t∈(0,t0] w̃(x, t)

]

inf
x∈�,t∈(0,t0]

w̃(x, t).

Choose t0 > 0 being sufficiently small such that

t0

[
p + sup

x∈�,t∈(0,t0]
F(x, s) − ε

[ t0
2

(
sup�×(0,t0] F(x, s) + p

) + 1
]

infx∈�,t∈(0,t0] w̃(x, t)

]
< 1,

which implies that infx∈�,t∈(0,t0] w̃(x, t) > inf x∈�,t∈(0,t0] w̃(x, t), since infx∈�,t∈(0,t0] < 0.
Thus we have finished the proof. �


3 Existence and Uniqueness of the Entire Solution

This section is devoted to establishing the existence and uniqueness of an entire solution
to (1.1) which behaves as a planar traveling front until it approaches the interior domain
K . Since the profile φ in (1.4) is monotone increasing and unique in the translation sense,
without loss of generality, we further assume that φ(0) ≤ θ and φ′′(ξ) ≥ 0 for ξ ≤ 0. The
main result of this section is stated as follows.

Theorem 3.1 Assume that (F) and (J) hold and let (φ, c) be the unique solution of (1.4). If
K ⊂ {x ∈ R

N : x1 ≤ 0}∩R
N\supp(J ), then there exists an entire solution U (x, t) of (1.1)

satisfying

0 < U (x, t) < 1, Ut (x, t) > 0 for all (x, t) ∈ � × R
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and
U (x, t) → φ(x1 + ct) as t → −∞ uniformly in x ∈ �. (3.1)

Moreover, condition (3.1) determines a unique entire solution of (1.1).

In this section, the radial symmetry of J (·) can be released to J (x) = J (−x). Moreover,
the convexity and compactness of the obstacle are not required, while the boundedness of K
is necessary. We prove Theorem 3.1 by constructing sub- and super-solutions.

3.1 Construction of the Entire Solution

To establish the entire solution, we shall construct some suitable sub- and super-solutions.
Inspired by [4], we define the sub-solution

W−(x, t) =
{

φ(x1 + ct − ξ(t)) − φ(−x1 + ct − ξ(t)), x1 ≥ 0,

0, x1 < 0,

and the super-solution

W+(x, t) =
{

φ(x1 + ct + ξ(t)) + φ(−x1 + ct + ξ(t)), x1 ≥ 0,

2φ(ct + ξ(t)), x1 < 0,

here ξ(t) is the solution of the following equation

ξ̇ (t) = Meλ0(ct+ξ), t < −T , ξ(−∞) = 0,

where M, λ0 and T are positive constants to be specified later. A direct calculation yields
that

ξ(t) = 1

λ0
ln

1

1 − c−1Meλ0ct
.

For the function ξ(t) to be defined, one must have 1 − c−1Meλ0ct > 0. In addition, we
suppose that

ct + ξ(t) ≤ 0 for − ∞ < t ≤ T .

Thus set T := 1
λ0c

ln c
c+M . Moreover, it follows from (1.5) that there exist two positive

numbers Kφ and kφ such that
∣∣φ(x1) − Cφe

λx1
∣∣ ≤ Kφe

(kφ+λ)x1 for all x1 ≤ 0.

Then the following proposition holds.

Proposition 3.2 Assume that λ0 < min{λ, kφ} and K ⊂ {x ∈ R
N : x1 ≤ 0}∩R

N\supp(J ).
Then there exists a sufficiently large number M > 0 such that W−(x, t) and W+(x, t) are
sub- and super-solutions of (1.1) in the time range −∞ < t ≤ T1 for some T1 ∈ (−∞, T ].
The proof of this lemma will be given in Appendix for the coherence of this paper.

Nowwe are in a position to construct the entire solution. Let un(x, t) be the unique solution
of (1.1) for t ≥ −n with initial data

un(x,−n) = W−(x,−n).

SinceW−(x, t) is a sub-solution, it is not difficult to show that the sequence {un(x, t)}∞n=1 is
nondecreasing in n. Choose some constant T ∗ > 0 such that c > ξ̇(t) for t ≤ −max{T ∗, T1}.
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In the following discussing, without loss of generality, we assume that n∗ ≥ T ∗. Then, we
have

∂un(x, t)

∂t
=

∫
�

J (x − y)[un(y, t) − un(x, t)]dy + f (un(x, t)) (3.2)

for n ≥ n∗, t ≥ −n and x ∈ �. Since ∂W−(x,t)
∂t = 0 for x1 ≤ 0 and

W−
t (x, t) = (c − ξ̇ (t))(φ′(x1 + ct − ξ(t)) − φ′(−x1 + ct − ξ(t))) ≥ 0

for 0 < x1 ≤ |ct − ξ(t)| and t < −T ∗, it follows that

∂un(x,−n)

∂t
=

∫
�

J (x − y)[un(y,−n) − un(x,−n)]dy + f (un(x,−n))

≥ ∂W−(x,−n)

∂t
≥ 0

for all x1 ≤ |cn + ξ(−n)|. Furthermore, by Corollary 2.3, un(x, t) satisfies

∂un(x, t)

∂t
> 0 for all x1 ≤ |cn + ξ(−n)|, 0 < un(x, t) < 1 for all t > −n, x ∈ �,

and

W−(x, t) < un(x, t) < W+(x, t) for all − n < t ≤ T ∗ and x ∈ �.

In particular, since the sequence {un(x, t)}∞n=n∗ being uniformly bounded in n satisfies (3.2)

with f ∈ C1,1([0, 1]), we have that the sequence
{

∂un(x,t)
∂t

}∞
n=n∗ is uniformly bounded. Then

it follows that {un(x, t)}∞n=n∗ is well-defined for each n and equicontinuous in t . Similarly,{
∂un(x,t)

∂t

}∞
n=n∗ is equicontinuous in t . Therefore, by Arzela-Ascolit theorem, for each fixed

x ∈ �, there exists a subsequence, still denoted by
{
un(x, t),

∂un(x,t)
∂t

}∞
n=n∗ such that

(
un(x, t),

∂un(x, t)

∂t

)
→ (u(x, t), ut (x, t)) as n → +∞, (3.3)

where the convergence is locally uniform in t ∈ R. Moreover, via diagonalization, take a

subsequence of
{
un(x, t),

∂un(x,t)
∂t

}∞
n=n∗ , which converges to some function U (x, t). Since

that un(x, t) is the solution to (3.3) with initial value un(x,−n) = W−(x,−n) and that
U (x, t) is the limit of un(x, t) as n → ∞, we have that U (x, t) is well defined for t ∈ R.
Then it follows from Lebesgue’s dominated convergence theorem that

Ut (x, t) =
∫

�

J (x − y)(U (y, t) −U (x, t))dy + f (U (x, t)),

and
Ut (x, t) ≥ 0, 0 ≤ U (x, t) ≤ 1.

Besides, it follows from the definition of W−(x, t) and W+(x, t) that

sup
x∈�

|U (x, t) − φ(x1 + ct)| → 0 as t → −∞.
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Note that U (x, t) is not a constant, by applying Corollary 2.3 to Ut (x, t) and U (x, t), one
have that

Ut (x, t) > 0 and 0 < U (x, t) < 1.

In addition, inspired by [29], we can show that U (x, t) satisfies the following proposition.

Proposition 3.3 Let U (x, t) be the entire solution in Theorem 3.1. Then U (x, t) satisfies

|U (x + η, t) −U (x, t)| ≤ M ′η for all (x, t) ∈ �̄ × R, (3.4)

and ∣∣∣∣∂U (x + η, t)

∂t
− ∂U (x, t)

∂t

∣∣∣∣ ≤ M ′′η for all (x, t) ∈ �̄ × R (3.5)

with M ′ > 0 and M ′′ > 0 being two real numbers.

Proof Since
∫
RN J (x)dx = 1, J (x) ≥ 0 and J (x) is compactly supported, we have J ′ ∈

L1(RN ). Furthermore, we get

∫
�

|J (x +η)− J (x)|dx =
∫

�

∫ 1

0
|∇ J (x + θη)η|dθdx ≤ L1|η| for some constant L1 > 0.

Let

m = inf
u∈[0,1]

(
inf
x∈�

∫
�

J (x − y)dy − f ′(u)

)
> 0

and v(t) be a solution of the equation

{
v′(t) = L1|η| − mv(t) for any t > −n,

v(−n) = M |η|

for some M ≥ 2 sup
ξ∈R

|φ′(ξ)|. In addition, denote V (x, t) = un(x + η, t) − un(x, t), where

un(x, t) is the solution of (1.1) with initial value un(x,−n) = W−(x,−n). Then

Vt (x, t) ≤
∫

�

[J (x + η − y) − J (x − y)][un(y, t) − un(x + η, t)]dy

− inf
x∈�

∫
�

J (x − y)dyV (x, t) + f ′(V )V (x, t),

where V is between un(x, t) and un(x + η, t). Consequently, V (x, t) satisfies

Vt (x, t) ≤ L1|η| − mV (t) for t > −n and V (x,−n) ≤ M |η|.

Moreover, |V (x, t)| ≤ v(t) ≤ M∗|η| for any x ∈ �, t ≥ −n and M∗ = M + L1
m . Indeed,

0 < v(t) = e−m(t+n)M |η| + L1η

m

(
1 − e−m(t+n)

)
<

(
M + L1

m

)
|η| < M∗|η|
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for any x ∈ R
N and t ≥ −n. In particular, in view of f ′(s) < 1 for s ∈ [0, 1], there holds∣∣∣∣∂un(x + η, t)

∂t
− ∂un(x, t)

∂t

∣∣∣∣
≤

∣∣∣∣
∫

�

[J (x + η − y) − J (x − y)]un(y, t)dy
∣∣∣∣ + ∣∣[un(x + η, t) − un(x, t)]

∣∣
+ ∣∣ f ′(V )[un(x + η, t) − un(x, t)]

∣∣
≤

∫
�

∣∣J (x + η − y) − J (x − y)
∣∣dy + (1 + max

s∈[0,1] f
′(s))

∣∣un(x + η, t) − un(x, t)
∣∣

≤ [L1 + 2M∗]|η|.
At last, since un(x, t) → U (x, t) locally uniformly in t ∈ R as n → +∞, we have

|U (x + η, t) −U (x, t)| ≤ |U (x + η) − un(x + η, t)| + |un(x + η) − un(x, t)|
+ |un(x, t) −U (x, t)|

≤ (M∗ + 2)|η|.
Now takeM ′ = M∗+2, we can show that (3.4) and (3.5) hold by takingM ′′ = L1+2+2M∗.

�


3.2 Uniqueness of the Entire Solution

Now, we show the uniqueness of the entire solution constructed in Theorem 3.1. First, the
following lemma is valid.

Lemma 3.4 Assume that the settings of Theorem 1.1 hold. Then for any ϕ ∈ (0, 1
2 ], there

exist constants Tϕ = Tϕ(ϕ) > 1 and Kϕ = Kϕ(ϕ) > 0 such that

Ut (x, t) ≥ Kϕ for any t ≤ −Tϕ and x ∈ �ϕ(t),

where

�ϕ(t) = {x ∈ � : ϕ ≤ U (x, t) ≤ 1 − ϕ} .

Proof It is easy to choose Tϕ and Mϕ such that �ϕ(t) ⊂ {
x ∈ � : |x1 + ct | ≤ Mϕ

} ⊂
{x ∈ R

N : x1 ≥ 1}. Now suppose there exist sequences tk ∈ (−∞,−Tϕ] and xk :=
(xk1 , x

k
2 , ...x

k
N ) ∈ �ϕ(t) such that

Ut (tk, x
k) → 0 as k → +∞.

There are only two cases that can happen: tk → −∞ or tk → t∗ for some t∗ ∈ (−∞,−Tϕ]
as k → +∞. For the former case, denote

Uk(x, t) = U (x + xk, t + tk).

By Lemma 3.3, {Uk(x, t)}∞k=1 is equicontinuous in x ∈ � and t ∈ R. It follows that there
exists a subsequence still denoted by {Uk(x, t)}∞k=1 such that

Uk → U∗ as k → +∞ locally uniformly in (x, t) ∈ � × R

by Arzela-Ascolit theorem. Furthermore, U∗ satisfies ∂U∗(0,0)
∂t = 0. Applying strong maxi-

mum principle theorem to ∂U∗(x,t)
∂t , We further have

∂U∗(x, t)
∂t

≡ 0 for all t ≤ 0 and x ∈ �.
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However, this is impossible because

U∗(x, t) = φ(x1 + ct + a) for some a ∈ [−Mη, Mη].
For the second case, xk1 remains bounded by the definition of�ϕ(t). Therefore, we assume

that xk1 → x∗
1 as k → +∞ and let

Uk(x, t) := U (x + xk, t).

Then, each Uk(x, t) is defined for all (x, t) ∈ (−∞,−Tϕ] × {x ∈ R
N | x1 ≥ −1} by the

definition of �ϕ(t). Similarly, there exists a subsequence, again denoted by {Uk}∞k=1, such
that

Uk → U∗ as k → +∞ locally uniformly in (x, t) ∈ � × R with x1 ≥ −1,

for some function U∗ satisfying (1.1) on {x ∈ R
N | x1 ≥ −1} × (−∞,−Tϕ]. Note that

Ut (x, t) > 0, we have

∂U∗

∂t
(0, t∗) = 0,

∂U∗

∂t
(x, t) ≥ 0 for (x, t) ∈ {x ∈ R

N | x1 ≥ −1} × (−∞,−Tϕ].

Then we obtain ∂U∗
∂t (x, t) ≡ 0 for t ≤ t∗ by strong maximum principle, but this is impossible

since

U∗(x, t) − φ(x1 + x∗
1 + ct) → 0 as t → −∞ uniformly in {x ∈ R

N | x1 ≥ −1}.
This ends the proof. �

Now we are ready to show the uniqueness of the entire solution. Suppose that there exists
another entire solution V (x, t) of (1.1) satisfying (3.1). Extend the function f as

f (s) = f ′(0)s for s ≤ 0, f (s) = f ′(1)(s − 1) for s ≥ 1

and choose η > 0 being sufficiently small such that

f ′(s) ≤ −ω for s ∈ [−2η, 2η] ∪ [1 − 2η, 1 + 2η] and ω > 0.

Then for any ε ∈ (0, η), we can find t0 ∈ R such that

‖V (·, t) −U (·, t)‖L∞(�) < ε for − ∞ < t ≤ t0. (3.6)

For each t0 ∈ (−∞, Tϕ − σε], define
Ũ+(x, t) := U

(
x, t0 + t + σε

(
1 − e−ωt )) + εe−ωt

and

Ũ−(x, t) := U
(
x, t0 + t − σε

(
1 − e−ωt )) − εe−ωt ,

where the constant σ > 0 is specified later. Then by (3.6),

Ũ−(x, 0) ≤ V (x, t0) ≤ Ũ+(x, 0) for all x ∈ �. (3.7)

Nextwe show that Ũ−(x, t) and Ũ+(x, t) are sub- and super-solutions in t ∈ [0, Tϕ−t0−σε],
respectively. Let

Lw(x, t) := wt (x, t)−
∫

�

J (x−y)[w(y, t)−w(x, t)]dy+ f (w(x, t)) for all (x, t) ∈ �̄×R.
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A straightforward calculation implies that

LŨ+(x, t) =σεωe−ωtUt − εωe−ωt + f (U ) − f
(
U + εe−ωt )

=εe−ωt (σωUt − ω − f ′ (U + θεe−ωt)) ,

where 0 < θ < 1. For any x /∈ �η

(
x, t0 + t + σε

(
1 − e−ωt

))
, we can see

U + θεe−ωt ∈ [0, 2η] ∪ [1 − η, 1 + η].
Consequently, f ′ (U + θεe−ωt

) ≤ −ω, which implies that

LŨ+(x, t) ≥ εe−ωt (−ω + ω) = 0.

For x ∈ �η

(
x, t0 + t + σε

(
1 − e−ωt

))
, by Lemma 3.4, there holds

LŨ+(x, t) ≥ εe−ωt
(

σωKη − ω − max
0≤s≤1

f ′(s)
)

.

As a consequence, LŨ+(x, t) ≥ 0 provided that σ is a sufficiently large number.
Similarly, we can show LŨ−(x, t) ≤ 0 in�×[0, Tϕ − t0 −σε]. In view of this and (3.7),

we see that

Ũ−(x, t) ≤ V (x, t + t0) ≤ Ũ+(x, t) for all (x, t) ∈ � × [0, Tϕ − t0 − σε].
Letting t + t0 be replaced by t , the inequality above can be rewritten as

U
(
x, t − σε

(
1 − e−ω(t−t0)

))
− εe−ω(t−t0)

≤ V (x, t) ≤ U
(
x, t + σε

(
1 − e−ω(t−t0)

))
+ εe−ω(t−t0)

for all (x, t) ∈ � × [t0, Tϕ − σε] and t0 ∈ (−∞, Tϕ − σε]. As t0 → −∞, we obtain that

U (x, t − σε) ≤ V (x, t) ≤ U (x, t + σε) for all (x, t) ∈ � × (−∞, Tϕ − σε].
By the comparison principle, the inequality holds for t ∈ R and x ∈ �. Letting ε → 0, since
σ is independent of the choice of ε, we have V (x, t) ≡ U (x, t).

4 Behaviors Far Away from the Interior Domain

In this section, we are going to figure out what the entire solution, constructed in Theorem
3.1, is like far away from the interior domain.

Theorem 4.1 Assume that (F) and (J) hold. Let (φ, c) be the unique solution of (1.4) and
u(x, t) be a solution of

⎧⎨
⎩
ut (x, t) =

∫
�

J (x − y)[u(y, t) − u(x, t)]dy + f (u(x, t)), (x, t) ∈ � × R,

0 ≤ u(x, t) ≤ 1, (x, t) ∈ � × R

(4.1)

such that

sup
x∈�̄

|u(x, t) − φ(x1 + ct)| → 0 as t → −∞.
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Then, for any sequence (x ′
n)n∈N ∈ R

N−1 such that |x ′
n | → +∞ as n → +∞, there holds

u(x1, x
′ + x ′

n, t) → φ(x1 + ct) as n → +∞,

locally uniformly with respect to (x, t) = (x1, x ′, t) ∈ R
N × R.

Proof In order to prove this theorem we need to extend the function f as that in Sect. 3, and
let A > 0 be sufficiently large such that

φ(ξ) ≤ η

2
for ξ ≤ −A, φ(ξ) ≥ 1 − η

2
for ξ ≥ A.

Denote δ = min[−A,A] φ
′(ξ) > 0 and take Tφ > 0 such that for any ε ∈ (0, η

2 ), we have that

|u(x, t) − φ(x1 + ct)| ≤ ε for all t ≤ −Tφ and x ∈ �.

Nowwe are in a position to show this theorem. Under the assumptions of Theorem 4.1, let
(x ′

n)n∈N ∈ R
N−1 be a sequence such that |x ′

n | → +∞ as n → +∞. And denote un(x, t) =
u(x1, x ′ + x ′

n, t) for each t ∈ R and x = (x1, x ′) ∈ � − (0, x ′
n). Since 0 ≤ u ≤ 1, K is

compact and
{
un(x, t),

∂un(x,t)
∂t

}∞
n=1

is equicontinuous in x ∈ � and t ∈ R by Proposition

3.3, then there exists a subsequence, still denoted by
{
un(x, t),

∂un(x,t)
∂t

}∞
n=1

, such that

un(x, t) → u(x, t),
∂un(x, t)

∂t
→ ut (x, t) as n → +∞,

locally uniformly in (x, t) ∈ R
N × R. In addition, for all (x, t) ∈ R

N × R, we further have
that 0 ≤ u(x, t) ≤ 1 and

ut (x, t) =
∫
RN

J (x − y)[u(y, t) − u(x, t)]dy + f (u(x, t)), (4.2)

since J is compactly supported, K is compact and |x ′
n | → +∞ as n → ∞. In addition,

recall that

un(x, t) − φ(x1 + ct) → 0 as t → −∞,

uniformly in x ∈ �, the function u(x, t) satisfies

u(x, t) − φ(x1 + ct) → 0 as t → −∞ locally uniformly in R
N .

Now define two functions u(x, t) and u(x, t) as follows

u(x, t) = φ(ξ−(x, t)) − εe−ω(t−t0), u(x, t) = φ(ξ+(x, t)) + εe−ω(t−t0), t ≥ t0, x ∈ R
N ,

where

t0 ≤ −T , ξ±(x, t) = x1 + ct ± 2ε‖ f ′‖δ−1ω−1
[
1 − e−ω(t−t0)

]
.

Then the following lemma holds, whose proof is left to Appendix as a regular argument. �

Lemma 4.2 The functions u(x, t) and u(x, t) are sub- and super-solutions to (4.2) for t ≥ t0,
respectively.

By the comparison theorem and let ε → 0, we have u(x, t) ≡ φ(x1 + ct). Since the limit is
uniquely determined, the sequence {un(x, t)}∞n=1 converges to φ(x1 + ct) locally uniformly
in (x, t) ∈ R

N × R as n → +∞. Then the proof of Theorem 4.1 is completed. �
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Theorem 4.3 Suppose that all the assumptions in Theorem 4.1 hold. Then the solution u(x, t)
of (4.1) in Theorem 4.1 satisfies

|u(x, t) − φ(x1 + ct)| → 0 as |x | → +∞ locally uniformly in t ∈ R.

Proof Extend f as that in Sect. 3. Then define fδ(u) = f (u − δ), (cδ, φδ) satisfies

cδ(φδ)
′(x) =

∫
RN

J (x − y)[φδ(y) − φδ(x)]dy + fδ(φδ(x)),

and

φδ(−∞) = δ, φδ(+∞) = 1 + δ,

where cδ > 0 and δ > 0 is sufficiently small. Now we are going to show the theorem in three
steps.

Step 1. For x1 � 1, since

sup
x∈�̄

|u(x, t) − φ(x1 + ct)| → 0 as t → −∞,

there exists a sufficiently large number T ∗
1 ≥ 0 such that

|u(x, t) − φ(x1 + ct)| ≤ ε

2
for all x ∈ � and t ≤ −T ∗

1 .

In particular, for any x ∈ �, let N1 � 1 such that

φ(x1 − cT ∗
1 ) ≥ 1 − ε

2
, u(x,−T ∗

1 ) ≥ 1 − ε for all x1 ≥ N1.

Since φ′ > 0, ut (x, t) > 0, we have

|u(x, t) − φ(x1 + ct)| < ε for all x1 ≥ N1 and t ≥ −T ∗
1 .

Step 2. For x1 � −1, let δ = 1
2ε. Similarly as the first step, choose T2 > 0 and N2 � 1

such that

u(x, t) ≤ δ for all x1 ≤ −N2 and t ≤ −T2, particularly, u(x,−T2) ≤ δ.

Obviously, there exists x0 ∈ R such that φδ(x0) = 1. Then

u(x,−T2) ≤ φδ(x1 + x0 + N2) for all x ∈ �.

Since that φδ(x, t) is increasing, we have

φδ(x1 + cδ(t + T2) + x0 + N2) ≥ φδ(−N2 + x0 + N2) = 1 for all x1 ≥ −N2 and t ≥ −T2.

Then, by applying the comparison principle (see [41]) for t ≥ −T2 and x1 ≤ −N2, one have
that

u(x, t) ≤ φδ(x1 + x0 + N2 + cδ(t + T2)) for all x1 ≤ −N2 and t ≥ −T2.

In particular, since φδ(−∞) = δ = 1
2ε, for any τ ≥ 0, there exists a N3 � 1 such that

0 ≤ u(x, t) ≤ 2δ < ε, 0 < φ(x1 + ct) ≤ ε for all x1 ≤ −N3 and τ ≥ t ≥ −T2,

which again shows

|u(x, t) − φ(x1 + ct)| ≤ ε for all x1 ≤ −N3 and t ≤ τ.
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Step 3. For |x ′| � 1, it follows from the Theorem 4.1 that one can choose N4 > 0 being
sufficiently large such that

|u(x, t) − φ(x1 + ct)| ≤ ε holds true for t in any bounded interval,

whenever |x ′| > N4 and x1 ∈ [−N3, N1]. This finishes the proof. �


5 The Behavior for the Large Time

In this section we intend to investigate the behavior of the solution constructed in Theorem
3.1 for large positive time. For this goal, we establish the following result.

Theorem 5.1 Suppose that (F) and (J) hold. Let (φ, c) be the unique solution of (1.4), t0 ∈ R

and u(x, t) be a solution of
⎧⎨
⎩
ut (x, t) =

∫
�

J (x − y)[u(y, t) − u(x, t)]dy + f (u(x, t)), (x, t) ∈ � × [t0,+∞),

0 ≤ u(x, t) ≤ 1, (x, t) ∈ � × [t0,+∞).

(5.1)

And assume that, for any ε > 0, there is a number tε ≥ t0 and a compact set Kε ⊂ � such
that

|u(x, tε) − φ(x1 + ctε)| ≤ ε for all x ∈ �\Kε,

and

u(x, t) ≥ 1 − ε for all t ≥ tε and x ∈ ∂� = ∂Kε .

Then

sup
x∈�

|u(x, t) − φ(x1 + ct)| → 0 as t → +∞.

The most important ingredient of the proof is to construct suitable sub- and super-solutions.
This process is such cumbersome that will be divided several parts. Enlightened by Hoffman
[27], we first construct a function z(t) in the following lemma, which plays an important role
in the construction of sub- and super-solutions.

Lemma 5.2 For any 0 < ηz < ln 2, there are two constants I = I(ηz) > 0 and K0 =
K0(ηz) > 0 such that for any t1 ≥ 0, there exists a C1-smooth function z̃(t) : [0,+∞) → R

that satisfies the following properties.

(i) For all t ≥ 0, the inequalities z̃′(t) ≥ −ηz z̃(t) and 0 < z̃(t) ≤ z̃(0) = 1 hold.

(ii) In addition, z̃(t) ≥ K0(1 + t − t1)−
3
2 for all t ≥ t1 and

∫ +∞
0 z̃(t)dt < I.

Proof First we define

P−(x) = −1

3
η2z

(
x + η−1

z

)2 + 1, P+(x) = νηz

3

(
x − η−1

z

)2 + 2

3
− ν

3ηz
, 0 < ν < ηz .

Let lP (ηz) = 1/ηz . Then, by a direct calculation, it is easy to show that for any fixed
0 < ηz < ln 2 and 0 < ν ≤ ηz , P−(x) satisfies that

P−(−lP ) = 1, P ′−(−lP ) = 0, P−(0) = 2

3
, P ′−(0) = −2

3
ηz,
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with

−ηz P−(x) ≤ P ′−(x) ≤ 0, − lP ≤ x ≤ 0,

and P+(x) satisfies that

P+(0) = 2

3
, P ′+(0) = −2

3
ν, P ′+(lP ) = 0,

P+(lP ) ≥ 1
3 with

−ηz P+(x) ≤ P ′+(x) ≤ 0, 0 ≤ x ≤ lP .

In addition, denote

z1(t) =

⎧⎪⎪⎨
⎪⎪⎩

e−ηz t , 0 ≤ t ≤ 3

2
η−1
z − 1,

η
− 3

2
z

(
3

2

) 3
2

eηz− 3
2 (1 + t)−

3
2 , t ≥ 3

2
η−1
z − 1.

Now if 0 < t1 < 3η−1
z , then let z̃(t) = z1(t), otherwise we define the function z̃(t) on five

different intervals. In particular, define ν = −z′1(t1−3η−1
z )

z1(t1−3η−1
z )

, which implies 0 < ν ≤ ηz . Then,

let

z̃(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1(t), 0 ≤ t ≤ t1 − 3η−1
z ,

z1
(
t1 − 3η−1

z

)
P+

(
t − (

t1 − 3η−1
z

))
, t1 − 3η−1

z ≤ t ≤ t1 − 2η−1
z ,

P−(t − t1), t1 − η−1
z ≤ t ≤ t1,

2
3 z1(t − t1), t ≥ t1.

It remains to specify z̃(t) in
[
t1 − 2η−1

z , t1 − η−1
z

]
. This can be done by choosing an arbitrary

C1-smooth function, under the constraints

z̃
(
t1 − 2η−1

z

) = z1
(
t1 − 3η−1

z

)
P+

(
η−1
z

)
, z

(
t1 − η−1

z

) = 1, z̃′
(
t1 − 2η−1

z

)
= z′

(
t1 − η−1

z

) = 0

and

z̃′(t) ≥ 0, t1 − 2η−1
z ≤ t ≤ t1 − η−1

z .

Then we finish the proof since the properties (i) and (ii) are valid by a direct calculation. �


Remark 5.3 It is not difficult to see that z(1) ≥ 1
2 from 0 < ηz < ln 2 and the first statement

in Lemma 5.2.

Now, we are in the position to construct the sub- and super-solutions.

5.1 Sub-solution

In this part, we construct a sub-solution to (5.1). Now define

ũ(x, t) = u(x, t − 1 + tε), u−(x, t) = φ(x1 + c(t − 1 + tε) − θ(x ′, t) − Z(t)) − z(t),
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where θ(x ′, t) = βt−αe
−|x ′ |2

γ t with α, γ > 1 being two real numbers, z(t) = ε1 z̃(t) with
ε1 = 2ε and Z(t) = Kz

∫ t
0 z(τ )dτ with Kz > 0 being a large number. z(t) is defined in

Lemma 5.2. It follows from the definition of u−(x, t) that

u−(x, 1) ≤ φ

(
x1 + ctε − βe

−|x ′ |2
γ − Z(1)

)
≤ ũ(x, 1) = u(x, tε) for all x ∈ Kε .

Thanks to φ(−∞) = 0, φ′ > 0, 0 < u(x, t) < 1 and min
x∈Kε

u(x, t) > 0, the last inequality

holds provided that β is sufficiently large. If x ∈ R
N\Kε , then by z(1) ≥ 1

2ε1 = ε (from
Remark 5.3), we have that

u−(x, 1) ≤ φ(x1 + ctε) − z(1) ≤ φ(x1 + ctε) − ε ≤ u(x, tε) = ũ(x, 1).

As a consequence, there holds u−(x, 1) ≤ ũ(x, 1) for any x ∈ �.

Lemma 5.4 The inequality Lu−(x, t) ≤ 0 holds for all x ∈ � and t ≥ 1, where

Lu−(x, t) = u−
t (x, t) −

∫
�

J (x − y)[u−(y, t) − u−(x, t)]dy − f (u−(x, t)).

Proof Since u−(x, t) = φ(ξ(x, t))−z(t), where ξ(x, t) = x1+c(t−1+ tε)−βt−αe
−|x ′ |2
tγ −

Z(t), we have

u−
t (x, t) = φ′(ξ(x, t))(c − θt (x

′, t) − Z ′) − z′(t),

and ∫
�

J (x − y)[u−(y, t) − u−(x, t)]dy =
∫

�

J (x − y)[φ(ξ(y, t)) − φ(ξ(x, t))]dy.

DenoteDφ = ∫
RN J (x−y)[φ(ξ(y, t))−φ(ξ(x, t))]dy. Then, applyingmean value theorem,

we get that

Dφ =
∫
RN

J (y)[φ(ξ(x, t) − y1) − φ(ξ(x, t))]dy +
∫
RN

J (y)

[
φ

(
x1 − y1 + c(t − 1 + tε)

− βt−αe
−|x ′−y′ |2

tγ − Z(t)

)
− φ(ξ(x, t) − y1)

]
dy

≥cφ′(ξ(x, t)) − f (φ(ξ(x, t))) − C0φ′(ξ(x, t))βt−α

∫
RN

J (y)|y′|2|x
′ − θ̃ y′|
tγ

e− |x ′−θ̃ y′ |2
tγ dy,

where 0 < θ̃ < 1. In particular,

Dφ ≥ cφ′(ξ(x, t)) − f (φ(ξ(x, t))) − C ′t−α− 1
2 φ′(ξ(x, t)).

Therefore, we have

Lu−(x, t) =u−
t (x, t) −

∫
�

J (x − y)[u−(y, t) − u−(x, t)]dy − f (u−(x, t))

≤ f (φ(ξ(x, t))) − f (φ(ξ(x, t)) − z(t)) +
(
C ′t−α− 1

2 − Z ′(t) − θt (x
′, t)

)
φ′(ξ(x, t))

+
∫
K
J (x − y)[φ(ξ(y, t)) − φ(ξ(x, t))]dy − z′(t).
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Similarly as previous, one can get∫
K
J (x − y)[φ(ξ(y, t) − φ(ξ(x, t))] ≥ −CK t−α− 1

2 φ′(ξ(x, t)) for some CK > 0.

It follows that

Lu−(x, t) ≤ f (φ(ξ(x, t))) − f (φ(ξ(x, t)) − z(t))

+
[
(C ′ + CK )t−α− 1

2 − Z ′(t) − θt (x
′, t)

]
φ′(ξ(x, t)) − z′(t).

Now we go further to show Lu−(x, t) ≤ 0 in two cases.
Case 1. We assume that |ξ(x, t)| � 1 such that φ(ξ(x, t)) ∈ [0, η] ∪ [1 − η, 1], where

η is sufficiently small to ensure that f ′(s) ≤ −σ < 0 for any s ∈ [0, η] ∪ [1 − η, 1] and
σ > 2ηz with ηz defined as that in Lemma 5.2. Then, since the function z(t) constructed in
Lemma 5.2 satisfies

z′(t) ≥ −ηz z(t), z(t) ≥ K0(1 + t − t1)
− 3

2 for t1 ≥ 0,

there holds

Lu−(x, t) ≤(−σ + ηz)z(t) − φ′(ξ(x, t))[
Kzz(t) +

( |x ′|2
γ t

− α

)
t−1θ(x ′, t) − (C ′ + CK )t−α− 1

2

]

≤ − ηz K0t
− 3

2 +
(
αβ + CK + C ′) t−α− 1

2 φ′(ξ(x, t))

≤ − 1

2
ηz K0t

− 3
2 .

Indeed, sinceα > 1 and |ξ(x, t)| is sufficiently large such that (αβ+CK+C ′)φ′(ξ) ≤ 1
2ηz K0,

the last inequality above holds obviously.
Case 2. Let φ(ξ(x, t)) ∈ [η, 1 − η] in this case. Since φ′(ξ) > 0 for all ξ ∈ R, we may

choose τ0 > 0 being sufficiently small such that φ′(ξ) ≥ τ0 > 0. Denote max[η,1−η] f
′(s) =

δ0 > 0. Then

Lu−(x, t) ≤δ0z(t) + ηz z(t) −
[
Kzz(t) +

( |x ′|2
tγ

− α

)
t−1θ(x ′, t) −

(
CK + C ′) t−α− 1

2

]

φ′(ξ(x, t))

≤ (−Kzτ0 + δ0 + ηz
)
z(t) +

(
αβ + CK + C ′) t−α− 1

2 φ′(ξ(x, t))

≤
[
−Kzτ0 + δ0 + ηz +

(
αβ + CK + C ′) 1

K0
‖φ′‖∞

]
z(t).

Let Kz be sufficiently large such that−Kzτ0+δ0+ηz+
(
αβ + CK + C ′) 1

K0
‖φ′‖∞ ≤ − 1

2ηz .

One hence have that Lu−(x, t) ≤ − 1
2ηz z(t). The proof is finished. �


5.2 Super-solution

This part is devoted to verifying the super-solution defined as

u+(x, t) = φ(ψ(x, t)) + z(t),
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where

ψ(x, t) = x1 + c(t − 1 + tε) + θ1(x ′, t) + Z(t), θ1(x ′, t) = β+t−α+
e− |x ′ |2

tγ

with α+ > 1 and β+ > 0 being a large number. It follows from the definition of u+(x, t)
that

u+(x, 1) ≥ φ

(
x1 + ctε + β+e

−|x ′ |2
γ + Z(1)

)
≥ ũ(x, 1) = u(x, tε)

for x ∈ Kε . Since φ(−∞) = 0, φ′ > 0, 0 < u(x, t) < 1 and max
x∈Kε

u(x, t) < 1, the last

inequality holds provided thatβ+ is sufficiently large. If x ∈ R
N\Kε , then by z(1) ≥ 1

2ε1 = ε

(from Remark 5.3), we have

u+(x, 1) ≥ φ(x1 + ctε) + z(1) ≥ φ(x1 + ctε) + ε ≥ u(x, tε) = ũ(x, 1).

As a consequence, there holds u+(x, 1) ≥ ũ(x, 1) for any x ∈ �.

Lemma 5.5 The inequality Lu+(x, t) ≥ 0 holds for all x ∈ � and t ≥ 1, where

Lu+(x, t) = u+
t (x, t) −

∫
�

J (x − y)[u+(y, t) − u+(x, t)]dy − f (u+(x, t)).

Proof It follows from a direct calculation that

u+
t (x, t) = (

c + θ1t + Z ′(t)
)
φ′(ψ) + z′(t),

and ∫
�

J (x − y)[u+(y, t) − u+(x, t)]dy

=
∫
RN

J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy

−
∫
K
J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy.

Note that

cφ′(ψ(x, t)) =
∫
RN

J (y)[φ(ψ(x, t) − y1) − φ(ψ(x, t))]dy + f (φ(ψ(x, t))),

we have

u+
t (x, t) = (θ ′

t + Z ′(t))φ′(ψ(x, t))

+
∫
RN

J (y)[φ(ψ(x, t) − y1) − φ(ψ(x, t))]dy + f (φ(ψ(x, t))) + z′(t).

Then it follows that

Lu+(x, t) =(θ ′
t + Z ′(t))φ′(ψ(x, t)) +

∫
RN

J (y)[φ(ψ(x, t) − y1) − φ(ψ(x, t))]dy

+ f (φ(ψ(x, t))) + z′(t) −
∫
RN

J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy

+
∫
K
J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy − f (u+(x, t)),
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and we obtain

Lu+(x, t) =(θ ′
t + Z ′(t))φ′(ψ(x, t)) +

∫
RN

J (y)[φ(ψ(x, t) − y1) − φ(ψ(x − y, t))]dy

+
∫
K
J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy

+ f (φ(ψ(x, t))) + z′(t) − f (u+(x, t)).

Now we focus on all the integral items above denoted by

I :=
∫
RN

J (y)[φ(ψ(x, t) − y1) − φ(ψ(x − y, t))]dy

+
∫
K
J (x − y)[φ(ψ(y, t)) − φ(ψ(x, t))]dy.

By the same progress as the calculation of u−(x, t), we have

I ≥ −M ′t−α+− 1
2 φ′(ψ(x, t)).

Therefore,

Lu+(x, t) ≥
(
θ1t + Z ′(t) − M ′t−α+− 1

2

)
φ′(ψ(x, t)) + z′(t)

+ f (φ(ψ(x, t))) − f (u+(x, t)).

Next we are going to show Lu+(x, t) ≥ 0 in two cases.
Case 1. Let |ψ(x, t)| � 1 such that φ(ψ(x, t)) ∈ [0, η] ∪ [1 − η, 1], where η > 0 is

sufficiently small to ensure that f ′(s) ≤ −σ < 0 for any s ∈ [0, η] ∪ [1 − η, 1]. Since
(
Kz + β+

γ

)
z(t) ≥ θ1t + Z ′(t) − M ′t−α+− 1

2 ≥ Kzz(t) − (α+β+ + M ′)t−α+− 1
2

and |ψ(x, t)| � 1, we obtain that
∣∣∣
(
θ1t + Z ′(t) − M ′t−α+− 1

2

)
φ′(ψ(x, t))

∣∣∣ ≤ 1

2
ηz z(t),

which implies

Lu+(x, t) ≥ −1

2
ηz z(t) − ηz z(t) + σ z(t) ≥ 0,

since ηz < 1
2σ and α+ > 1.

Case 2. Since φ(ψ(x, t)) ∈ [η, 1 − η] we have φ′(ψ(x, t)) ≥ τ0 > 0. Denote
min

s∈[0,1] f
′(s) = −δ′ < 0. Then, we obtain

Lu+(x, t) ≥
[
Kzz(t) − (α+β+ + M ′)t−α+− 1

2

]
τ0 − δ′z(t) − ηz z(t)

≥
(
Kz − α+β+ + M ′

K0

)
τ0z(t) − δ′z(t) − ηz z(t).

Recall the fact α+ > 1, it follows that K0t−α+− 1
2 < z(t). Moreover, one can take Kz > 0

being sufficiently large such that
(
Kz − α+β++M ′

K0

)
τ0 − δ′ − ηz ≥ 0. Then we have that

Lu+(x, t) ≥ 0. The proof is finished. �
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The proof of Theorem 5.1 From the Lemmas 5.4 and 5.5, for t ≥ tε , we have that

inf
x∈�̄

[u(x, t) − φ(x1 + ct)]
= inf

x∈�̄
[ũ(x, t + 1 − tε) − φ(x1 + ct)]

≥ inf
x∈�̄

[φ(x1 + ct − θ(x ′, t + 1 − tε) − Z(t + 1 − tε)) − z(t + 1 − tε) − φ(x1 + ct)]
≥ −[β(t + 1 − tε)

−α + Z(t + 1 − tε)]‖φ′‖L∞(R) − z(t + 1 − tε)

≥ −β(t + 1 − tε)
−α‖φ′‖L∞(R) − z(t + 1 − tε) − ε1I‖φ′‖L∞(R),

and

sup
x∈�̄

[u(x, t) − φ(x1 + ct)]

= sup
x∈�̄

[ũ(x, t + 1 − tε) − φ(x1 + ct)]

≤ sup
x∈�̄

[φ(x1 + ct + θ1(x ′, t + 1 − tε) + Z(t + 1 − tε)) + z(t + 1 − tε) − φ(x1 + ct)]

≤ [β+(t + 1 − tε)
−α + Z(t + 1 − tε)]‖φ′‖L∞(R) + z(t + 1 − tε)

≤ β+(t + 1 − tε)
−α‖φ′‖L∞(R) + z(t + 1 − tε) + ε1I‖φ′‖L∞(R).

For any sufficiently small ηs > 0, take 0 < ε1 <
ηs

I‖φ′‖L∞ . Then by the construction of z(t),
we see that

lim inf
t→∞ inf

x∈�̄
[u(x, t) − φ(x1 + ct)] ≥ −ηs,

and

lim sup
t→∞

sup
x∈�̄

[u(x, t) − φ(x1 + ct)] ≤ ηs .

Since ηs is arbitrary, we have lim
t→∞ sup

x∈�̄

|u(x, t) − φ(x1 + ct)| = 0. Thus, we finish the proof

of Theorem 5.1. �


5.3 Proofs of Theorem 1.1

It follows from [7, Theorems 2.4 and 2.6] that under the conditions (F) and (J), the unique
solution of the stationary problem of (1.1)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
RN \K

J (x − y)[v(y) − v(x)]dy + f (v(x)) = 0, x ∈ R
N \ K ( or Kε),

0 ≤ v(x) ≤ 1, x ∈ R
N \ K ( or Kε),

sup
RN \K

v(x) = 1

(5.2)

is v(x) ≡ 1 in RN\K ( or RN\Kε).

Now we are in position to show the main theorem. It is obvious that if the solution
U (x, t) of (1.1) constructed in Theorem 3.1 satisfies the conditions in Theorem 5.1 together
with Theorem 4.3, then the conclusions in Theorem 1.1 hold. Indeed, since Ut (x, t) > 0
and U (x, t) is Lipschitz continuous in x ∈ R

N\K , we know that as time tends to positive
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infinity,U (x, t) locally uniformly converges to some continuous function V (x), without loss
of generality, which can be deemed as a uniformly continuous function by [7, Lemma 3.2]
because of the assumption (F). Furthermore, we claim that V (x) satisfies (5.2). Therefore,
we have V (x) ≡ 1 for all x ∈ R

N\K . In fact, it is sufficient to show supRN \K V (x) = 1. In
view of u(x, t) − φ(x1 + ct) → 0 as t → −∞ in Theorem 3.1, for any small ε′ > 0, there
exist tε′ < 0 and X1 > 0 being sufficiently large such that

φ(x + ctε′) ≥ 1 − ε′

2
for all x1 ≥ X1,

and

|u(x, t) − φ(x1 + ct)| ≤ ε′

2
for all x ∈ R

N\K and t ≤ tε′ .

Thus

u(x, t) ≥ 1 − ε′ for all x1 ≥ X1 and t ≥ t ′ε,

which implies that V (x) ≥ 1− ε′ due to ut (x, t) > 0. Since that ε′ is actually arbitrary, one
has that

sup
RN \K

V (x) = 1.

Therefore, V (x) ≡ 1 for all x ∈ R
N\K . Hence, u(x, t) → 1 as t → +∞ for all x ∈ R

N\K .
It follows that for any ε > 0, there are some tε > 0 being sufficiently large and Kε ⊂ � with
K ⊂ Kε such that

u(x, t) ≥ 1 − ε, for all t ≥ tε, x ∈ ∂Kε .

In addition, it follows from Theorem 4.3 that

|u(x, tε) − φ(x1 + ctε)| < ε, for all x ∈ RN \ Kε .

Thus, from Theorem 5.1, we have

lim
t→∞ sup

x∈�

|u(x, t) − φ(x1 + ct)| = 0.

Moreover, since u(x, t) − φ(x1 + ct) → 0 as t → ±∞ uniformly in x ∈ � and Theorem
4.3, we have that u(x, t) − φ(x1 + ct) → 0 as |x | → +∞ uniformly in t ∈ R. The proof of
Theorem 1.1 is finished. Similarly, we know the results of Remark 1.2 hold.
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6 Appendix

6.1 Proof of Proposition 3.2

In this subsection we intend to show the results of Proposition 3.2. For convenience we define
the operator L as follows

Lω(x, t) = ωt (x, t) −
∫

�

J (x − y)[ω(y, t) − ω(x, t)]dy − f (ω(x, t)).

We further show that W−(x, t) is a sub-solution. A straightforward computation shows that

LW−(x, t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
∫

�

J (x − y)W−(y, t)dy, x1 < 0,

(c − ξ̇ (t))[φ′(x1 + ct − ξ(t)) − φ′(−x1 + ct − ξ(t))] −
∫

�

J (x − y)[W−(y, t)

− W−(x, t)]dy − f (φ(x1 + ct − ξ(t)) − φ(−x1 + ct − ξ(t))), x1 ≥ 0.

For x1 < 0, since J (x) ≥ 0 and W− ≥ 0, we have

LW− = −
∫

�

J (x − y)W−(y, t)dy ≤ 0.

For x1 ≥ 0, in view of that∫
�

J (x − y)[W−(y, t) − W−(x, t)]dy

=
∫
RN

J (x − y)[W−(y, t) − W−(x, t)]dy −
∫
K
J (x − y)[W−(y, t) − W−(x, t)]dy

=
∫
RN∩{y1>0}

J (x − y)[W−(y, t) − W−(x, t)]dy

+
∫
RN∩{y1<0}

J (x − y)[W−(y, t) − W−(x, t)]dy

−
∫
K
J (x − y)[W−(y, t) − W−(x, t)]dy

≥
∫
RN

J (x − y)[(φ(y1 + ct − ξ(t)) − φ(−y1 + ct − ξ(t))) − (φ(x1 + ct − ξ(t))

− φ(−x1 + ct − ξ(t)))]dy −
∫
K
J (x − y)[W−(y, t) − W−(x, t)]dy,

we have

LW− ≤ − ξ̇ (t)[φ′(z+(t)) − φ′(z−(t))]
+ f (φ(z+(t))) − f (φ(z−(t))) − f (φ(z+(t)) − φ(z−(t)))

+
∫
K
J (x − y)[W−(y, t) − W−(x, t)]dy,

where z+(t) = x1+ct−ξ(t), z−(t) = −x1+ct−ξ(t). Recall that K ⊂ {x ∈ R
N | x1 ≤ 0},

it follows that

W−(y, t) = 0 for all y ∈ K ,
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which implies that

LW−(x, t) ≤ − ξ̇ (t)[φ′(z+(t)) − φ′(z−(t))]
+ f (φ(z+(t))) − f (φ(z−(t))) − f (φ(z+(t)) − φ(z−(t))).

Now we go further to show LW− ≤ 0 in two subcases.
Case A: 0 < x1 < −ct + ξ(t).
In this case the following lemma holds.

Lemma 6.1 Suppose that (F) holds. Let (φ, c) be the unique solution of (1.4) and φ′′(ξ) ≥ 0
for ξ ≤ 0. Then there exists k3 > 0 such that

φ′(ξ1) − φ′(ξ2) ≥ k3[φ(ξ1) − φ(ξ2)] (6.1)

for ξ2 < ξ1 < 0.

Proof It follows from (1.6) that there exists some c > 0 such that

φ′(ξ2)
φ′(ξ1)

≤ ceλ(ξ2−ξ1).

Then one can choose M ′ > ln 2c
λ

and (ξ1, ξ2) ∈ R
2 with ξ1 − M ′ < ξ2 < ξ1 < 0 such that

φ′(ξ2)
φ′(ξ1)

≤ ce−λM ′ ≤ 1

2
.

If ξ1 − M ′ < ξ2 < ξ1 < 0, then we have

φ′(ξ1) − φ′(ξ2) = φ′′(θ1)(ξ1 − ξ2), φ(ξ1) − φ(ξ2) = φ′(θ2)(ξ1 − ξ2)

for some (θ1, θ2) ∈ [ξ2, ξ1]2 with |θ1 − θ2| < M ′. This and the facts φ′′(ξ) ≥ 0 for ξ ≤ 0
and φ′(ψ) > 0 for all ψ ∈ R imply that (6.1) holds true for ξ1 − M ′ < ξ2 < ξ1 < 0.

When ξ2 + M ′ < ξ1 < 0, it follows that

φ′(ξ2) ≤ 1

2
φ′(ξ1).

This and the inequalities in (1.5) and (1.6) yield

φ′(ξ1) − φ′(ξ2) ≥ 1

2
φ′(ξ1) ≥ k3φ(ξ1) ≥ k3[φ(ξ1) − φ(ξ2)].

Thus we finish the proof. �

Now we are ready to show LW−(x, t) ≤ 0. By Lemma 6.1, we have

LW−(x, t) ≤ − ξ̇ (t)(φ′(z+(t)) − φ′(z−(t))) + L f φ(z−(t))(φ(z+(t)) − φ(z−(t)))

≤
[
−Mk3e

λ0(ct+ξ(t)) + L f φ(z−(t))
]
[φ(z+(t)) − φ(z−(t))]

≤
[
L f β0e

λ(−x1+ct−ξ(t)) − Mk3e
λ0(ct+ξ(t))

]
[φ(z+(t)) − φ(z−(t))]

≤eλ0(ct+ξ(t))
[
L f β0e

(λ−λ0)(ct+ξ(t))−2λξ(t) − Mk3
]
[φ(z+(t)) − φ(z−(t))]

≤(L f β0 − Mk3)[φ(z+(t)) − φ(z−(t))]
≤0.

The last inequality holds provided that M ≥ L f β0
k3

.
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Case B: x1 ≥ −ct + ξ(t).
A direct calculation gives that

LW−(x, t) ≤ − Meλ0(ct+ξ(t))[φ′(z+(t)) − φ′(z−(t))] + L f φ(z−(t))[φ(z+(t)) − φ(z−(t))]
≤L f φ(z−(t)) − Meλ0(ct−ξ(t))+2λ0ξ(t)[φ′(z+(t)) − φ′(z−(t))]
≤e−λx1+λ0(ct−ξ(t))+2λ0ξ(t)

[
L f β0e

(λ−λ0)(ct−ξ(t))−2λ0ξ(t)

− M
(
γ1e

(λ−μ)x1−μ(ct−ξ(t)) − δ0e
λ(ct−ξ(t))

) ]

≤e−λx1+λ0(ct−ξ(t))+2λ0ξ(t)
[
L f β0 − M

(
γ1e

(λ−μ)x1−μ(ct−ξ(t)) − δ0e
λ(ct−ξ(t))

)]
.

If λ ≥ μ, then

LW−(x, t) ≤e−λx1+λ0(ct−ξ(t))+2λ0ξ(t)
[
L f β0 − M

(
γ1e

−μ(ct−ξ(t)) − δ0e
λ(ct−ξ(t))

)]

≤0

for ct − ξ(t) � −1 and M > 1 is sufficiently large.
When λ < μ, which means | f ′(1) − f ′(0)| > 0, there holds

f (φ(z+(t)))) − f (φ(z−(t))) − f (φ(z+(t))) − φ(z−(t))))

= f ′(φ(z+(t)))φ(z−(t))) − o(φ2(z−(t)))) − f ′(φ(z−(t))))φ(z−(t))) + o(φ2(z−(t))))

≤ −k4φ(z−(t))

for x1 + ct − ξ(t) > L2 > 0 with L2 being large enough, where 0 < k4 < 1
2 | f ′(1)− f ′(0)|.

The inequality above follows from that f ′(φ(z+(t))) → f ′(1) and f ′(φ(z−(t))) → f ′(0)
as L2 → +∞. Then

LW−(x, t) ≤Meλ0(ct+ξ(t))φ′(z−(t)) − k4φ(z−(t))

≤Meλ0(ct+ξ(t))δ0e
λ(−x1+ct−ξ(t)) − k4α0e

λ(−x1+ct−ξ(t))

≤eλ(−x1+ct−ξ(t))
(
Meλ0(ct+ξ(t)) − k4α0

)

≤0,

provided that ct + ξ(t) � −1.
In addition, for 0 < x1 + ct − ξ(t) < L2, there holds

LW−(x, t) ≤e−λx1+λ0(ct−ξ(t))+2λ0ξ(t)
[
L f β0e

(λ−λ0)(ct−ξ(t))−2λ0ξ(t)

− M
(
γ1e

(λ−μ)x1−μ(ct−ξ(t)) − δ0e
λ(ct−ξ(t))

) ]

≤e−λx1+λ0(ct−ξ(t))+2λ0ξ(t)
[
L f β0 − M

(
γ1e

(λ−μ)L2e−λ(ct−ξ(t)) − δ0e
λ(ct−ξ(t))

) ]
.

Since ct − ξ(t) � −1 and M � 1, we have LW−(x, t) ≤ 0.
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Next, we show the W+(x, t) is a super-solution. A straightforward computation shows
that

LW+(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(c + ξ̇ (t))φ′(x1 + ct) − f (2φ(ct + ξ(t)))

−
∫

�

J (x − y)[W+(y, t) − W+(x, t)]dy, x1 < 0,

(c + ξ̇ (t))[φ′(x1 + ct + ξ(t)) + φ′(−x1 + ct + ξ(t))]
−

∫
�

J (x − y)[W+(y, t) − W+(x, t)]dy − f (φ(x1 + ct + ξ(t))

+ φ(−x1 + ct + ξ(t))), x1 > 0.

When x1 ≥ 0, denote

�+ = {x ∈ R
N | y1 > 0}, �− = {x ∈ R

N | y1 ≤ 0}.
In view of that K ⊂ R

N\supp(J ) ∩ {x ∈ R
N : x1 ≤ 0}, one gets∫

�

J (x − y)[W+(y, t) − W+(x, t)]dy

=
∫

�∩�+
J (x − y)[(φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t)))

− (φ(x1 + ct + ξ(t) + φ(−x1 + ct + ξ(t))]dy
+

∫
�∩�−

J (x − y)[2φ(ct + ξ(t)) − (φ(x1 + ct + ξ(t)) + φ(−x1 + ct + ξ(t)))]dy

=
∫
RN

J (x − y)[(φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t))) − (φ(x1 + ct + ξ(t))

+ φ(−x1 + ct + ξ(t)))]dy +
∫

�∩�−
J (x − y)[2φ(ct + ξ(t)) − (φ(y1 + ct + ξ(t))

+ φ(−y1 + ct + ξ(t)))]dy
= c(φ′(x1 + ct + ξ(t)) + φ′(−x1 + ct + ξ(t))) − f (φ(x1 + ct + ξ(t)))

− f (φ(−x1 + ct + ξ(t)))

+
∫

�∩�−
J (x − y)[2φ(ct + ξ(t)) − (φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t)))].

Observe that, if x1 > |ct + ξ(t)| > L , where L is the diameter of the compact support of J ,
then the integral item of the last equality is equal to 0. Therefore, we obtain

LW+(x, t) =ξ̇ [φ′(x1 + ct + ξ(t)) + φ′(−x1 + xt + ξ(t))] + f (φ(x1 + ct + ξ(t)))

+ f (φ(−x1 + ct + ξ(t))) − f (φ(x1 + ct + ξ(t)) + φ(−x1 + ct + ξ(t)))

≥ξ̇φ′(x1 + ct + ξ(t)) − L f φ(x1 + ct + ξ(t))φ(−x1 + ct + ξ(t))

≥eλ0(ct+ξ(t))
(
Mγ1e

−μ(x1+ct+ξ(t)) − L f α0e
−λx1e(λ−λ0)(ct+ξ(t))

)
.

If μ ≤ λ, by choosing Mγ1 ≥ L f α0, it is obvious that LW+(x, t) ≥ 0 with x1 >

|ct + ξ(t)| being sufficiently large.
For μ > λ, we have f ′(1) < f ′(0). Consider the case x1 + ct + ξ(t) ≥ L0 � 1. Then

φ(x1 + ct + ξ(t)) ≈ 1 while φ(−x1 + ct + ξ(t)) ≈ 0. Furthermore,

f (φ(x1 + ct + ξ(t))) + f (φ(−x1 + ct + ξ(t)))
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− f (φ(x1 + ct + ξ(t)) + φ(−x1 + ct + ξ(t)))

≥ 1

2
( f ′(0) − f ′(1))φ(−x1 + ct + ξ(t))

≥ 0,

which implies that LW+(x, t) ≥ 0. For the other case x1 + ct + ξ(t) ≤ L0, we know

LW+(x, t) ≥eλ0(ct+ξ(t))
(
Mγ1e

−μL0 − L f α0e
−λx1e(λ−λ0)(ct+ξ(t))

)
.

Since λ0 < λ, we obtain LW+(x, t) ≥ 0 holds provided that M ≥ L f α0
γ1

eμL0 .
For the case 0 < x1 < |ct + ξ(t)|, one can see that

∫
�∩�−

J (x − y)[2φ(ct + ξ(t)) − (φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t)))]dy

=
∫

�∩{y1<ct+ξ(t)}
J (x − y)[2φ(ct + ξ(t)) − (φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t)))]dy

+
∫

�∩{ct+ξ(t)<y1<0}
J (x − y)[2φ(ct + ξ(t)) − (φ(y1 + ct + ξ(t)) + φ(−y1 + ct + ξ(t)))]dy

:= I1 + I2.

Since φ(ct + ξ(t)) ≤ θ
2 for ct + ξ(t) � −1, φ(0) ≤ θ, and φ′ > 0, we get that φ(−y1 +

ct + ξ(t)) > θ ≥ 2φ(ct + ξ(t)) for y1 < ct + ξ(t). It follows that I1 ≤ 0. We know that

I2 ≤
∫

�∩{ct+ξ(t)<y1<0}
J (x − y)Cφe

λ(ct+ξ(t)) (
2 − (

eλy1 + e−λy1
))
dy

+ Kφe
(kφ+λ)(ct+ξ(t))

∫
�∩{ct+ξ(t)<y1<0}

J (x − y)
(
2 + eλy1 + e−λy1

)
dy

≤C0e
(kφ+λ)(ct+ξ(t)).

The first inequality is follows from that there exist two numbers Kφ > 0 and kφ > 0 such
that

∣∣φ(x1) − Cφeλx1
∣∣ ≤ Kφe(kφ+λ)x1 for x1 ≤ 0 which is easy to obtain by (1.5). Then we

have

LW+ ≥Meλ0(ct+ξ(t))(φ′(x1 + ct + ξ(t)) + φ′(−x1 + ct + ξ(t))) + f (φ(x1 + ct + ξ(t)))

+ f (φ(−x1 + ct + ξ(t))) − f (φ(x1 + ct + ξ(t)) + φ(−x1 + ct + ξ(t)))

− C0e
(kφ+λ)(ct+ξ(t))

≥Meλ0(ct+ξ(t))(φ′(x1 + ct + ξ(t)) + φ′(−x1 + ct + ξ(t)))

− L f φ(x1 + ct + ξ(t))φ(−x1 + ct + ξ(t)) − C0e
(kφ+λ)(ct+ξ(t))

≥e(λ0+λ)(ct+ξ(t))
[
2Mγ0 − L f β0e

(λ−λ0)(ct+ξ(t)) − C0e
(kφ−λ0)(ct+ξ(t))

]
.

This gives that LW+ ≥ 0, provided 2Mα0 > L f β0 + C0 and λ0 < min{kφ, λ}.
For x1 < 0, we just deal with the case −L < x1 < 0 because that for x1 ≤ −L ,
∫

�

J (x − y)[W+(y, t) − W+(x, t)]dy

=
∫

�+
J (x − y)[φ(y1 + ct + ξ(t)) + φ(y1 + ct + ξ(t)) − 2φ(ct + ξ(t))]dy = 0.
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Since φ′′(x) ≥ 0 for x ≤ 0, we have that
∫

�

J (x − y)[W+(y, t) − W+(x, t)]dy

≤ cφ′(ct + ξ(t)) − f (φ(ct + ξ(t))) +
∫ x1

−∞
J1(y1)[φ(y1 − x1 + ct + ξ(t))

+ φ(x1 − y1 + ct + ξ(t)) − 2φ(ct + ξ(t))]dy1
−

∫
R

J1(y1)[φ(ct + ξ(t) − y1) − φ(ct + ξ(t))]dy1

= cφ′(ct + ξ(t)) − f (φ(ct + ξ(t))) +
∫ 0

−∞
J1(y1)[φ(y1 − x1 + ct + ξ(t))

+ φ(x1 − y1 + ct + ξ(t)) − 2φ(ct + ξ(t))]dy1
+

∫ 0

x1
J1(y1)[2φ(ct + ξ(t)) − φ(y1 − x1 + ct + ξ(t)) − φ(x1 − y1 + ct + ξ(t))]

−
∫ 0

−∞
J1(y1)[φ(ct + ξ(t) − y1) + φ(ct + ξ(t) + y1) − 2φ(ct + ξ(t))]dy1

≤ cφ′(ct + ξ(t)) − f (φ(ct + ξ(t))) + C0e
(kφ+λ)(ct+ξ(t))

+
∫ 0

−∞
J1(y1)[φ(y1 − x1 + ct + ξ(t))

+ φ(x1 − y1 + ct + ξ(t)) − φ(ct + ξ(t) − y1) − φ(ct + ξ(t) + y1)]dy1.

Observe that, if x1 < 0 then
∣∣φ(x1) − Cφeλx1

∣∣ ≤ Kφe(kφ+λ)x1 . Thus there is C0 > 0 such
that

∫ 0

−∞
J1(y1)[φ(y1 − x1 + ct + ξ(t)) + φ(x1 − y1 + ct + ξ(t))

− φ(ct + ξ(t) − y1) − φ(ct + ξ(t) + y1)]dy1
≤ Cφe

λ(ct+ξ(t))
∫ 0

−∞
J1(y1)

[(
eλ(x1−y1) + eλ(y1−x1)

)
− (

eλy1 + e−λy1
)]

dy1

+ 2Kφe
(kφ+λ)(ct+ξ(t))

∫ 0

−∞
J1(y1)

[ (
e(kφ+λ)(x1−y1) + e(kφ+λ)(y1−x1)

)

−
(
e(kφ+λ)y1 + e−(kφ+λ)y1

) ]
dy1

≤ C0e
(kφ+λ)(ct+ξ(t)).

The last inequality above holds true, since x1 < 0 and f (υ) = υ + 1
υ
is monotonically

increasing in υ ∈ (1,∞). Then it follows that for M ≥ C0
γ0
,

LW+ ≥2ξ̇ (t)φ′(ct + ξ(t)) + f (φ(ct + ξ(t))) − f (2φ(ct + ξ(t))) − C0e
(kφ+λ)(ct+ξ(t))

≥2Mγ0e
(λ0+λ)(ct+ξ(t)) − 2C0e

(kφ+λ)(ct+ξ(t))

=e(kφ+λ)(ct+ξ(t))(2Mγ0 − 2C0)

≥0.
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The second inequality follows from that f ′(s) < 0 in [φ(ct + ξ(t)), 2φ(ct + ξ(t))] for
ct + ξ(t) � −1. The proof of Proposition 3.2 has been finished.

6.2 Proof of Lemma 4.2

We know that

Mu :=ut (x, t) −
∫
RN

J (x − y)[u(y, t) − u(x, t)]dy − f (u(x, t))

=(c − 2ε‖ f ′‖δ−1e−ω(t−t0))φ′ + εωe−ω(t−t0)

−
∫
RN

J (x − y)[φ(ξ−(y, t)) − φ(ξ−(x, t))]dy
− f (φ(ξ−(x, t)) − εe−ω(t−t0))

= − 2ε‖ f ′‖δ−1e−ω(t−t0)φ′ + εωe−ω(t−t0) + f (φ(ξ−(x, t)))

− f
(
φ(ξ−(x, t)) − εe−ω(t−t0)

)
.

When ξ−(x, t) ∈ [−A, A], there holds φ′(ξ−(x, t)) ≥ δ. Therefore,

Mu ≤ εe−ω(t−t0)(−2‖ f ′‖ + ω + ‖ f ′‖) ≤ 0.

For |ξ−(x, t)| ≥ A, we have

φ(ξ−(x, t)), u(x, t) ∈ [−∞, η] ∪ [1 − η,+∞].
Then f ′(s) ≤ −ω for s ∈ [φ(ξ−(xt)) − εe−ω(t−t0), φ(ξ−(xt))]. Hence,

Mu ≤ εωe−ω(t−t0) − ωεe−ω(t−t0) = 0.

For t0 ≤ −T , one get

u(x, t0) = φ(x1 + ct) − ε ≤ u(x, t0).

Until now, we have show the function u is a sub-solution to (4.2). Similarly one can show u
is a super-solution to (4.2).
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