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Abstract
The classical and the new Euler-Jacobi formulae for simple and double points provide an
algebraic relation between the singular points of a polynomial vector field and their topolog-
ical indices. Using these formulae we obtain the geometrical configuration of the singular
points together with their topological indices for several classes of polynomial differential
systems in R

n when these differential systems, having the maximum number of singular
points, either all their singular points are simple, or at most one singular point is double (i.e.
it has multiplicity two).

Keywords Euler-Jacobi formula · Singular points · Topological index · Polynomial
differential systems

Mathematics Subject Classification Primary 34A05 · Secondary 34C05 · 37C10

1 Introduction and Statement of theMain Results

Consider the polynomial differential system in Rn

ẋi = Pi (x1, . . . , xn), i = 1, . . . , n n ≥ 2 (1)

where Pi (x1, . . . , xn) are real polynomials such that deg(Pi ) = 1 for i ≥ 3, and either
deg(P1) = 1 and deg(P2) = m with m ∈ N, or deg(P1) = 2 and deg(P2) = m with
m = 2, 3, 4, 5. Moreover we assume that the n− 2 hyperplanes Pi = 0 for i ≥ 3 intersect in
a two dimensional plane� contained inRn . We assume that system (1) has eitherm singular
points, or m − 1 singular points one of these singular points is double if deg(P1) = 1, and
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if deg(P1) = 2 then it has either 2m singular points, or 2m − 1 singular points and one
of these singular points is double. In the case in which there are deg(P1)m finite singular
points we use the classical Euler-Jacobi formula (a proof of the classical Euler-Jacobi formula
can be found in [1]), and the case in which there are deg(P1)m − 1 finite singular points,
the classical Euler-Jacobi formula is not valid anymore but Gasull and Torregrosa in [6]
provided a generalization of the classical Euler-Jacobi formula in the case that the system
has one double point and we will use such a formula. Using these formulae we obtain all the
possible distributions of the singular points of system (1) when it has either deg(P1)m, or
deg(P1)m − 1 singular points with m ∈ N when either deg(P1) = 1, or m = 2, 3, 4, 5 and
deg(P1) = 2.

Since all the singular points of the differential system (1) are contained in the plane � we
can restrict the study of the configurations of the singular points of the differential system
(1) to study the configuration of the singular points of system (1) restricted to the plane �.
Note that the plane � is not necessarily invariant by the flow of system (1). On the plane �

we can reduce system (1) to the planar polynomial differential system

ẋ = P(x, y), ẏ = Q(x, y), (2)

where P(x, y) and Q(x, y) are real polynomials such that either deg(P) = 1 and deg(Q) =
m with m ∈ N, or deg(P) = 2 and deg(Q) = m with m = 2, 3, 4, 5.

It follows from geometry that given two analytic curves g = 0 and f = 0 and a point p
such that f (p) = g(p) = 0, p is simple if and only if the determinant of the Jacobian matrix
of f and g at p, i.e.

J ( f , g)(p) := J (p) =
(

∂ f

∂x

∂g

∂ y
− ∂ f

∂ y

∂g

∂x

) ∣∣∣
(x,y)=p

is different from zero, and that it is double if and only if J (p) = 0 and I ( f , g)(p) := I (p) �=
0 where

I ( f , g)(p) := I (p) =
(

∂ f

∂ y

)2 (
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∂2g

∂x∂x2
− ∂g
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∂x2
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) ∣∣∣
(x,y)=p

.

For a proof see Lemma 2.2 of [6]. Moreover it is well-known that for planar polynomial
differential systems (2), a simple singular point p has index 1 (if J (p) > 0), or −1 (if
J (p) < 0) (see for instance [12]), and that a double singular point of our system has index
zero.

It was proved in [5] and [7] that in the case of polynomial differential systems (2) the
absolute value of the sum of the topological indices of all singular points is either 0 or 2 if m
is even, and it is 0 if m is odd.

Consider a differential system formed by two real polynomials of degrees 2 andm respec-
tively in the variables x and y. If the set of singular points of that system (that we denote by
A) contains exactly 2m elements, then the Jacobian determinant evaluated at each zero does
not vanish (see again [12]) and for any polynomial R of degree less than or equal to m − 1
we have ∑

a∈A

R(a)

J (a)
= 0. (3)
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Using this classical Euler-Jacobi formula in [8] the authors characterized the number
and distribution of the singular points of the polynomial differential systems (2) with m =
2, 3, 4, 5 when these systems have 2m finite singular points.

Now we consider the case in which one of the singular points is double. We will use the
new Euler-Jacobi formula for double points proved in [6] which can be stated as follows. We
need the following notation. We write the polynomial differential system (2) with deg P = 2
and deg Q = m as

P(x, y) = P10x + P01y + P20x
2 + P11xy + P02y

2,

Q(x, y) = Q10x + Q01y + Q20x
2 + Q11xy + Q02y

2 + . . . ,

and given a polynomial R we also write it as

R(x, y) = R00 + R10x + R01y + R20x
2 + R11xy + R02y

2 + . . .

The next result is proved in Theorem 3.2 of [6] for two real polynomials of degrees n and
m. We state it here for the case in which n = 2 when the system has 2m − 1 finite singular
points.

Theorem 1 Consider a differential system of two real polynomials of degrees 2 and m ≥ 2
respectively with m ≥ 2 in the variables x and y. If the set of all singular points of the system
(that we denote by A) contains exactly 2m−1 elements (2m−2 being simple and one double
that without loss of generality we can assume it is at the origin), then for any polynomial R
of degree less than or equal to m − 1 we have

∑
a∈AS

R(a)

J (a)
+ S(0) = 0, (4)

where AS denotes the set of simple singular points of the system and S(0) is equal to

S(0) = 4P10R00N

I (0)2
+ 2P10(P10R01 − P01R10)

I (0)
,

where

N = P3
10(Q10 − P10Q03) − P2

10P01(Q10 − P10Q12)

+ P10P
2
01(Q10 − P10Q21) − P3

01(Q10 − P10Q30)

+ P3
10(Q11P02 − P11Q02) − 2P2

10P01(Q20P02 − P20Q02)

+ P10P
2
01(Q20P11 − P20Q11),

where Q3,0 = Q2,1 = Q1,2 = Q0,3 = 0 in case m = 2.

Before we state the main results of this paper we need to introduce some notations.
Let X = (P, Q) be the vector field associated to the differential system (2). We denote

by AX = A the set of points p ∈ R
2 such that X(p) = 0. Given a finite subset B of R2, we

denote by B̂, ∂ B̂ and #B its convex hull, the boundary of the convex hull, and its cardinal,
respectively.

Set A0 = A and Ai+1 = Ai ∩ ∂ Âi for i ≥ 0. Note that there exists a positive integer q
such that Aq �= ∅ and Aq+1 = ∅.

We say that A has the configuration (K1; K2; . . . ; Kq) if Ki = #Ai for i = 1, . . . , q . We
say that A has the configuration (K1; K2; . . . ; Kr ; ∗) if we do not specify for the values of
Ki for i between r +1 and q . We also say that the singular points of X belonging to Ai ∩∂ Âi

are on the i -th level.
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Wewant to bemore precise and study also the indices of the singular points of X = (P, Q)

with P and Q as in (2). Then we substitute each Ki by the sign of the indices of the points
of Ai , i.e. instead of Ki in the configuration we write the string (si1, s

i
2, . . . , s

i
Ki

) where

s ji ∈ {+,−, 0}. When Âi is a polygon, the starting si1 will be the point with multiplicity two
(denoted by p0) if such point is in the i-th level and the signs si2, . . . , s

i
Ki

are the signs of the list
of positive or negative indices that follow the point with multiplicity two in counterclockwise
or clockwise sense according with the largest list of points with the same index between the
two lists closest to the point with multiplicity two. In case that both closest lists have the same
length, we choose the one with the second largest closest list, and so one. In fact when there
are � equal consecutive signs, for instance if they are +, then instead of + · · · + �-times we
shall write �+. In the case that the i-th level does not contain the point with multiplicity two,
then si1 is the length of the largest list of positive or negative indices of the singular point in
the i-th level. The numbers si2, . . . , s

i
K1

are chosen following the previous criteria changing

the point with multiplicity two by si1.
When Âi is a segment, which does not contain the point with multiplicity two, we identify

all the list of signs of this segment cyclically, i.e. after one endpoint it follows the other
endpoint. The signs of the strings are ordered starting at one of the endpoints. Then we start
for the endpoint having the larger list of signs independently if this list is formed by plus or
minus signs. In case that the length of the list of signs of both endpoints are equal, then we
choose to start with the endpoint whose second list is larger, and so on.

If Âi is a segment containing the point with multiplicity two again we identify all the list
of signs of this segment cyclically, i.e. after one endpoint it follows the other endpoint. Then
the starting sign in the list is the sign 0 of the point of multiplicity two, and after it we choose
the largest list closest to p0. In case that the two lists of signs separated by p0 have the same
length, then we choose to start with the list near p0 whose second list is larger, and so on.

With these notations we can state the main results of the paper. The first main result is
when deg(P) = 1.

Theorem 2 For the polynomial differential (2) with deg(P) = 1 and m ∈ N having 2m
singular points, the following statements hold.

(a) If it has m singular points then only the following configurations are possible:

(a.1) (m) = (2+,−,+,−, . . . ,+,−) or (m) = (2−,+,−,+, . . . ,+) if m is odd;
(a.2) (m) = (+,−,+,−, . . . ,+,−) or (m) = (−,+,−,+, . . . ,−,+) if m is even.

(b) If it has m − 1 singular points with one of them double then only the following configu-
rations are possible:

(b.1) (m − 1) = (0,+,−,+,−, . . . ,+,−,+) or (m) = (0,−,+,−,+, . . . ,+,−) if m
is odd;

(b.2) (m − 1) = (0,+,−,+,−, . . . ,+,−) or (m) = (0,−,+,−,+, . . . ,−,+) if m is
even.

Moreover there are examples of all these configurations.

The proof of Theorem 2 is given in Sect. 3.
From now on we consider the cases in which deg(P) = 2. The first main result under

these conditions, which is the second main result of this paper, is when system (2) has 2m
finite singular points.
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Theorem 3 For the polynomial differential system (2) with deg(P) = 2, m = 2, 3, 4, 5 and
with 2m singular points, the following statements hold.

(a) If m = 2 then only the following two configurations are possible

(i) (4) = (+,−,+,−),
(ii) (3; 1) = (3+;−), (3−;+),

and there exist examples of such configurations.
(b) If m = 3 then only the following two configurations are possible

(i) (6) = (+,−,+,−,+,−),
(ii) (4; 2) = (2+, 2−;+,−),
(iii) (3; 3) = (2+,−; 2−,+), (2−,+; 2+,−),

and there exist examples of such configurations.
(c) If m = 4 then only the following configurations are possible

(i) (8) = (+,−,+,−,+,−,+,−),
(ii) (5; 3) = (4+,−;−,+,−), (4−,+;+,−,+), (2+,−,+,−;−,+,−),

(2−,+,−,+;+,−,+),
(iii) (4; 4) = (+,−,+,−;+,−,+,−),
(iv) (4; 3; 1) = (4+; 3−;+), (4−; 3+;−),
(v) (3; 5) = (3+; 2−,+,−,+), (3−; 2+,−,+,−),

and there exist examples of such configurations.
(d) If m = 5 then only the following configurations are possible

(i) (10) = (+,−,+,−,+,−,+,−,+,−),
(ii) (6; 4) = (2+, 2−,+,−;+,−,+,−), (2+, 2+,−,+;+,−,+,−),
(iii) (4; 6) = (2+, 2−;+,−,+,−,+,−),
(iv) (4; 4; 2) = (2+, 2−; 2+, 2−;+,−),
(v) (4; 3; 3) = (2+, 2−; 2−,+; 2+,−), (2+, 2−; 2+,−; 2−,+),
(vi) (3; 7) = (2−,+; 2+,−,+,−,+,−), (2+,−; 2−,+,−,+,−,+),

and there exist examples of such configurations.

The case m = 2 of Theorem 3 is the well-known Berlinskii’s Theorem proved in [2]
and reproved in [4] using the Euler-Jacobi formula. The case m = 3 was proved in [4]. The
cases m = 4, 5 were proved in [8]. So we do not need to prove Theorem 3. However the
configurations on that papers were counted in a slightly different way.

The second main result in the paper takes into account the case in which system (2) has
deg(P) = 2 and 2m − 1 finite singular points and m = 5.

Theorem 4 For the polynomial differential (2) with deg(P) = 2, m = 2, 3, 4, 5 and with
2m − 1 singular points with one double singular point, the following statements hold.

(a) If m = 2 then only the configurations (3) = (0,+,−), and (0, 2+) are possible, and
there exist examples of such configurations.

(b) If m = 3 then only the following two configurations are possible

(i) (5) = (0,+,−,+,−),
(ii) (4; 1) = (0, 2+,−;−), (0, 2−,+;+), (2+, 2−; 0),
(iii) (3; 2) = (0,+,−;+,−), (2+,−; 0,−), (2−,+; 0,+),

and there exist examples of such configurations.
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(c) If m = 4 then only the following configurations are possible

(i) (7) = (0,+,−,+,−,+,−),
(ii) (5; 2) = (0, 2+,−,+;+,−), (0, 2−,+,−;+,−), (0, 3+,−;

+,−), (0, 3−,+;+,−), (4+,−; 0,−), (4−,+; 0,+), (0,−,+,−,+;+,−), (0,
+,−,+,−;+,−), (0,+, 2−,+;+,−), (0,−, 2+,−;+,−), (2−,+,−,+; 0,+),
(2+,−,+,−; 0,−),

(iii) (4; 3)=(0, 3+; 2−,+), (0, 3−; 2+,−), (4+; 0, 2−), (4−; 0, 2+), (0,+,−,+; 2−,

+), (0,−,+,−; 2+,−), (+,−,+,−; 0,+,−),
(iv) (3; 4) = (0, 2+;+,−,+,−), (0, 2−;+,−,+,−), (3+; 0,−,+,−), (3−; 0,

+,−,+), (3+; 0, 2−,+), (3−; 0, 2+,−), (0,+,−;+,−,+,−),

and there exist examples of such configurations.
(d) If m = 5 then only the following configurations are possible

(i) (9) = (0,+,−,+,−,+,−,+,−),
(ii) (6; 3) = (0, 2−,+,−; 2+,−), (0, 2+,−,+; 2−,+), (0,+, 2−,+,−; 2+,−),

(0,−, 2+,−,+; 2−,+), (2+, 2−,+,−; 0,+,−),
(iii) (5; 4) = (0, 2+, 2−;+,−,+,−), (0,+, 2−,+;+,−,+,−), (0,−, 2+,−;+,−,

+,−), (0,+,−,+,−;+,−,+,−),
(iv) (4; 5) = (0, 2+,−;−,+,−,+,−), (0, 2−,+;+,−,+,−,+) (2+, 2−; 0,+,−,

+,−),
(v) (4; 4; 1) = (2+, 2−; 2+, 2−; 0), (2+, 2−; 0, 2−,+;+), (2+, 2−; 0, 2+,−;−),

(0, 2+,−; 3−,+;+), (0, 2−,+; 3+,−;−).
(vi) (4; 3; 2) = (2+, 2−; 2−,+; 0,+), (2+, 2−; 2+,−; 0,−), (2+, 2−; 0,+,−;

+,−), (0, 2−,+; 2+,−;+,−), (0, 2+,−; 2−,+;+,−),
(vii) (3; 6) = (0,+,−;+,−,+,−,+,−), (2−, +; 0,+,−,+,−,+), (2+,−; 0,

−,+,−,+,−),

and there exist examples of such configurations.

The cases m = 2 and m = 3 were proved in [6]. The case m = 4 was proved in [11]. In
these two papers with the configurations counted in a slightly different way. In the present
paper we will prove the case m = 5, see also [9, 10].

Note that the configuration of the singular points of the differential system (2) studied in
Theorems 2–4 are the configurations of the singular points of the differential system (1), but
the information on the indices of these singular points are only for the restriction of system
(1) to the plane �, i.e. for system (2).

2 Preliminarities

In the proof of Theorem 4 we will use the following auxiliary result proved in [3].

Lemma 5 Let (P, Q) be a polynomial vector field with max(deg P, deg Q) = n. If (P, Q)

has n + 1 singular points on the straight line L(x, y) = 0, then this line is full of singular
points.

First observe that if a configuration exists for a polynomial vector field X = (P, Q), then
it is possible to construct the same configuration but interchanging the index+1 by the index
−1. For doing that it is enough to take the vector field Y = (−P, Q) instead of the vector
field X = (P, Q). So we can restrict ourselves to the cases in which

∑
a∈A iX (a) ≥ 0.
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Assume that the vector field (P, Q) has degrees 2 and 5 (respectively), 8 simple singular
points and 1 double singular point p0. We can consider p0 at the origin and denote by
p1, . . . , p8 the simple singular points. Clearly p0 has index 0 and the other singular points
have index ±1. During the proof of statement (d) of Theorem 4 we will denote by p j the
singular point for which there is no information about its index, by p+

j the singular points

having positive index, and by p−
j the singular points having negative index. Also we will

denote by Li, j the straight line L pi ,p j (x, y) = 0 through the points pi and p j , and we will
denote by Li a straight line through a singular point pi such that for any singular point q
with q �= pi we have Li (q) �= 0 and Li (pi ) = 0.

It was proved in [7], see also [5], that in the case of polynomial vector fields of degree
(1,m) with m odd it holds that |∑a∈A iX (a)| = 1, and

∑
a∈A iX (a) = 0 if m is even.

Moreover in the case of polynomial vector fields of degree (2,m) with m odd it holds that∑
a∈A iX (a) = 0 and if m is even then |∑a∈A iX (a)| ∈ {0, 2}.

3 Proof of Theorem 2

By statement (a) of Theorem 4 we have that if m is even then there are m/2 singular points
with index +1 and m/2 singular points with index −1. If m is odd, by the explanation in the
previous section, we can assume that there are (m+1)/2 points with index+1 and (m−1)/2
singular points with index −1.

Since P has degree 1, P(x, y) = 0 is a straight line and the m finite singular points of
system (2) are on this straight line. Therefore when there are m finite singular points, the
unique possible configuration is (m) because any convex hull of m points on a straight line
has all points in the boundary of the convex hull. For the same reason when there are m − 1
finite singular points the unique possible configuration is m − 1.

We first study the configuration (m). Assume that the subscripts of the points in A are in
such a way that p1, . . . , pm are ordered in ∂ Â consecutively. Take

C1 = L1 · · · Lm−2, Cm−1 = L3L4 · · · Lm

and for i = 2, . . . ,m − 2,

Ci = L1 · · · Lm−i−1Lm−i+2 · · · Lm,

where all the straight lines which appear in the Ci ’s for i = 1, . . . ,m − 1 are parallel.
Then the Euler Jacobi formula (4) applied with R = Ci yields

Ci (pm−i )

J (pm−i )
+ Ci (pm−i+1)

J (pm−i+1)
= 0.

Since all the points p1, . . . , pm are in a straight line, the polynomialCi (x, y) has the same
sign on the twopoints pm−i and pm−i+1. So J (pm−i )J (pm−i+1) < 0 for all i = 1, . . . ,m−1.
Hence the indices of pm−i and pm−i+1 are different for i = 1, . . . ,m − 1 providing the
configurations (a.1) and (a.2) of statement (a) of Theorem 2.

The configurations of statement (a) can be realized intersecting a straight line P(x, y) = 0
with m parallel straight lines Q(x, y) = 0. This completes the proof of statement (a) of
Theorem 2.

Now we prove statement (b). Assume that the subscripts of the points in A are in such a
way that p0, p1, . . . , pm are ordered in ∂ Â consecutively. Take

C1 = L2
0L1 · · · Lm−3, Cm−2 = L2

0L3L4 · · · Lm−1
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and for i = 2, . . . ,m − 3,

Ci = L2
0L1 · · · Lm−i−1Lm−i+2 · · · Lm−1,

where all the straight lines which appear in the Ci ’s for i = 1, . . . ,m − 2 are parallel.
Then the Euler Jacobi formula (4) applied with R = Ci yields

Ci (pm−i )

J (pm−i )
+ Ci (pm−i+1)

J (pm−i+1)
= 0.

Since all the points p0, p1, . . . , pm are in a straight line, the polynomial Ci (x, y) has
the same sign on the two points pm−i and pm−i+1. So J (pm−i )J (pm−i+1) < 0 for all
i = 1, . . . ,m − 2. Hence the indices of pm−i and pm−i+1 are different for i = 1, . . . ,m − 2
providing the configurations (b.1) and (b.2) of statement (b) of Theorem 2.

The configurations of statement (b) can be realized intersecting a straight line P(x, y) = 0
with m straight lines, Q(x, y) = 0, being m − 1 parallel straight lines and the other straight
line intersecting P and one of the otherm−1 straight lines in the same point. This completes
the proof of statement (b) of Theorem 2.

4 Proof of Statement (d) of Theorem 4

In principle we could have the configurations (9), (8; 1), (7; 2), (6; 3), (5; 4), (5; 3; 1),
(4; 5), (4; 4; 1), (4; 3; 2), (3; 6), (3; 5; 1), (3; 4; 2), (3; 3; 3) and (2; ∗). Note that since the
polynomial P has degree two, P(x, y) = 0 is a conic and the nine singular points of system
(2) are on this conic. Clearly configurations of the form (2+; ∗) cannot occur because the
seven singular points would be on a straight line, and by Lemma 5 this straight line will be
full of singular points, a contradiction. Moreover the configurations (8; 1) and (7; 2) are only
possible if the conic P = 0 is formed by two straight lines intersecting at a real point but
then either seven or six singular points would be on the same straight line, and by Lemma 5
this straight line will be full of singular points, a contradiction. The configuration (6; 3) is
only possible with two straight lines intersecting at a real point. The configuration (5; 4) is
only possible with two straight lines intersecting at a real point. The configuration (5; ∗; ∗)

is not possible because any convex hull of 5 points on a conic with five points at least in
the first level can only be supported by a conic formed by two straight lines intersecting
to a real point and this configuration do not support having points in the 2nd-level. The
configurations (4; 5), (4; 4; 1) and (4; 3; 2) are only possible with either a hyperbola or two
straight lines intersecting at a real point, and the configuration (3; 6) is only possible with a
hyperbola. The configurations (3; 5; 1), (3; 4; 2), (3; 3; 3) are not possible since no real conic
(ellipse, parabola, hyperbola, two parallel straight lines, two straight lines intersecting in a
real point, one double straight line, two parallel straight lines, or one point) do not support
such configurations and the configurations.

In short the unique possible configurations are: (9) (realized with either an ellipse, or
two straight lines intersecting at a point), (6; 3) and (5; 4) (both realized with two straight
lines intersecting at a real point), (4; 5) (realized with either a hyperbola or two straight lines
intersecting at a real point) and (4; 4; 1), (4; 3; 2), (3; 6) (all realized with a hyperbola). We
study them separately.
Configuration (9). We first show that two consecutive points pk1 , pk2 none of them
being p0 must have opposite index, otherwise applying formula (4) with R(x, y) =
L p0,pk3

L p0,pk4
L pk5 ,pk6

L pk7 pk8
with pki for i ∈ {3, . . . , 8} being all different and different

123



Journal of Dynamics and Differential Equations (2024) 36:2093–2110 2101

from pk1 , pk2 we get

R(pk1)

J (pk1)
+ R(pk2)

J (pk2)
= 0,

which is a contradiction because R(pk1)R(pk2) > 0 and J (pk1) = J (pk2).
In short, the only possible configurations are (0,+,−,+,−,+,−,+,−) (and of course

(0,−,+,−,+,−,+,−,+)). System (2) with

P(x, y) = xy,

Q(x, y) = −96 + 224x + 219.2y − 190x2 − 180y2 + 75x3 + 224xy2 + 68y3

−14x4 − 224x3y + 224x2y2 + 224xy3 − 12y4 + x5 + 224x4y

+224x3y2 + 224x2y3 + 0.8y5,

has the singular points

(4, 0), (0, 5), (0, 4), (0, 3), (0, 2), (0, 1), (1, 0), (2, 0), (3, 0),

in the configuration (0,+,−,+,−,+,−,+,−) (we recall that the other configuration can
be obtained reversing the sing in P).
Configuration (6; 3). We note that the configuration (6; 3) only can be realized with a conic
formed by two straight lines (R1 and R2) intersecting at a point q . Without loss of generality
we can assume that five singular points are in R1 and five or four singular points are in R2

depending if the intersection point q is a singular point or not. Note that all points of R1 are
in the 1-st level.

If q is not a singular point then p0 is in R2, otherwise applying formula (4) with R(x, y) =
R1L p0,q1L p0,q2L p0,q3 where q1, q2 and q3 are three singular points on R2. Then we reach
a contradiction. Moreover if q is a singular point then q = p0. Indeed, if p0 is in R1 and
p0 �= q the previous argument also provides in this case a contradiction. Also if p0 �= q is
in R2 we can repeat the same argument. So q = p0.

We separate the proof in two cases.
Csse 1: q is not a singular point. Therefore p0 ∈ R2.

Let pk1 and pk2 be two consecutive singular points in R1 not separated by q . Applying
formula (4) to R(x, y) = R2L p0,pk3

L p0,pk4
L p0,pk5

where pk j for j = 3, 4, 5 are singular
points in R1 and different from pk1 , pk2 , we get that pk1 and pk2 have different index.

Let pk1 and pk2 be two singular points in R1 such that the segment having themas endpoints
contains the point q and not other singular points. Applying formula (4) to R(x, y) =
R2L p0,pk3

L p0,pk4
L p0,pk5

where pk j for j = 3, 4, 5 are singular points in R1 and different
from pk1 , pk2 , we get that pk1 and pk2 have the same index.

Let p�1 and p�2 be two consecutive singular points in R2 different from p0. Applying
formula (4) to R(x, y) = R1L p0,pk1

L p0,pk2
L p�3 ,pk5

where pk j for j = 1, 2, 3 are singular
points in R1 and p�3 is a singular point in R2 and different from p�1 and p�2 , we get that p�1

and p�2 have different index.
Let p�1 and p�2 be two singular points in R2 such that the segment having them as

endpoints contains only a singular point, which is p0. Applying formula (4) to R(x, y) =
R1L p0,pk1

L p0,pk2
L p�3 ,pk5

where pk j for j = 1, 2, 3 are singular points in R1 and p�3 is a
singular point in R2 and different from p�1 and p�2 , we get that p�1 and p�2 have different
index.
Csse 2: q is a singular point. Then q = p0.

Let pk1 and pk2 be two consecutive singular points in R1 different from p0. Applying
formula (4) to R(x, y) = R2

2L p�1 ,pk3
L p�2 ,pk4

where pk j for j = 3, 4 are singular points in
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R1 and different from pk1 , pk2 and p�1 , p�2 singular points in R2, we get that pk1 and pk2
have different index.

Let pk1 and pk2 be two singular points in R1 such that the segment having them as
endpoints contains only a singular point, which is p0. Applying formula (4) to R(x, y) =
R2
2L p�1 ,pk3

L p�2 ,pk4
where pk j for j = 3, 4 are singular points in R1 and different from pk1 ,

pk2 and p�1 , p�2 singular points in R2, we get that pk1 and pk2 have different index.
Let p�1 and p�2 be two consecutive singular points in R2 different from p0. Applying

formula (4) to R(x, y) = R2
1L p�3 ,pk1

L p�4 ,pk2
where pk j for j = 1, 2 are singular points in

R1 and p�3 , p�4 singular points in R2 and different from p�1 and p�2 , we get that p�1 and
p�2 have different index.

The possible configurations are (0, 2−,+,−,+; 2+,−), (0,+, 2−,+,−; 2+,−),
(2+, 2−,+,−; 0,+,−) (andof course, (0, 2+,−,+,−; 2−,+), (0,−, 2+,−,+; 2−,+)).

System (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + x2 + xy + 1

36
y2 − 3

8
x3 + 7

3
x2y − 5

8
xy2 + 17

72
y3 + x4 + x3y + x2y2

+xy3 + 5

8
y4 + x5 − 5

12
x4y + x3y2 + x2y3 + xy4 + 1

2
y5,

has the singular points

(0, 0), (−1,−1), (−2/3,−1), (−1/2,−1), (−1/4,−1), (1,−1) in the 1st level, and

(0,−2/3), (0,−1/3), (0,−1/4) in the 2nd level,

in the configuration (0, 2−,+,−,+; 2+,−) (configuration (0, 2+,−,+.−; 2−,+) can be
obtained reversing the sing in P).

System (2) with

P(x, y) = −x(y + 1),

Q(x, y) = x + x2 + xy − 1

36
y2 − 11

8
x3 + 7

6
x2y + 3

8
xy2 − 17

72
y3 + x4 + x3y + x2y2

+xy3 − 5

8
y4 + x5 + 11

12
x4y + x3y2 + x2y3 + xy4 − 1

2
y5,

has the singular points

(0, 0), (1,−1), (−1,−1), (−1/2,−1), (−1/4,−1), (2/3,−1) in the 1st level, and

(0,−2/3), (0,−1/3), (0,−1/4) in the 2nd level,

in the configuration (0,+, 2−,+,−; 2+,−) (configuration (0,−, 2+,−,+; 2−,+) can be
obtained reversing the sing in P).

System (2) with

P(x, y) = x(1 + y),

Q(x, y) = x − y/9 + x2 − 19

18
y2 − 16

9
x3 − 65

18
x2y − 14

9
xy2 − 11

3
y3 + x3y + xy3

−11

2
y4 + x5 + 1

2
x4y + x2y3 − 3y5,

has the singular points

(1,−1), (0, 0), (−2,−1), (1/3,−1), (1/2,−1), (2/3,−1) in the 1st level, and
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(0,−2/3), (0,−1/2), (0,−1/3) in the 2nd level,

in the configuration (2+, 2−,+,−; 0,+,−).
Configuration (5; 4). We note that the configuration (5; 4) only can be realized with a conic
formed by two straight lines (R1 and R2) intersecting at a point q . Without loss of generality
we can assume that four singular points are in R1 (all in the 1st-level) and five singular points
are in R2.

Note that the intersection point q is not a singular point otherwise one of the straight lines
would have six singular points, and by Lemma 5 this straight line will be full of singular
points, a contradiction.

We note that p0 is in R1. Otherwise if p0 is in R2 then applying (4) with R(x, y) =
R2L p0,q1L p0,q2L p0,q3 where q1, q2 and q3 are three singular points on R1 we reach to a
contradiction. So p0 must be in R1, and so in the 1st-level.

Let pk1 and pk2 be two consecutive singular points in R1 different from p0 and not
separated by q . Applying formula (4) to R(x, y) = R2L p0,p�1

L p0,p�2
L p�3 ,pk3

where pk3 is
a singular point in R1 different from pk1 and pk2 , and p� j for j = 1, 2, 3 are singular points
in R2, we get that pk1 and pk2 have different index.

Let pk1 and pk2 be two consecutive singular points in R1 such that the segment having them
as endpoints does not contain q and contains only a singular point, which is p0. Applying
formula (4) to R(x, y) = R2L p0,p�1

L p0,p�2
L p�3 ,pk3

where pk3 is a singular point in R1

different from pk1 and pk2 , and p� j for j = 1, 2, 3 are singular points in R2, we get that pk1
and pk2 have different index.

Let pk1 and pk2 be two consecutive singular points in R1 different from p0 and separated
by q . Applying formula (4) to R(x, y) = R2L p0,p�1

L p0,p�2
L p�3 ,pk3

where pk3 is a singular
point in R1 different from pk1 and pk2 , and p� j for j = 1, 2, 3 are singular points in R2, we
get that pk1 and pk2 have the same index.

Let pk1 and pk2 be two consecutive singular points in R1 such that the segment having
them as endpoints contains only q and one singular point which is p0. Applying formula (4)
to R(x, y) = R2L p0,p�1

L p0,p�2
L p�3 ,pk3

where pk3 is a singular point in R1 different from
pk1 and pk2 , and p� j for j = 1, 2, 3 are singular points in R2, we get that pk1 and pk2 have
the same index.

Let p�1 and p�2 be two consecutive singular points in R2. Applying formula (4) to
R(x, y) = R1L p0,p�3

L p0,p�4
L p0,p�5

where p� j for j = 3, 4, 5 are singular points in R2

and different from p�1 , p�2 , we get that p�1 and p�2 have different index.
The possible configurations are (0, 2+, 2−;+,−,+,−), (0,+, 2−,+;+,−,+,−),

(0,+,−,+,−;+,−,+,−) (and of course (0,−, 2+,−;+,−,+,−)),
The differential system (2) with

P(x, y) = x(1 + y),

Q(x, y) = x − 1

12
y + x2 + xy − 7

8
y2 − 5

4
x3 + 9

4
x2y + 1

4
xy2 − 79

24
y3 + x4 + x3y

+x2y2 + xy3 − 21

4
y4 + x5 + x3y2 + x2y3 + xy4 − 3y5,

has the singular points

(1,−1), (0, 0), (−1,−1), (−1/2,−1), (1/2,−1) in the1st level, and

(0,−2/3), (0,−1/2), (0,−1/3), (0,−1/4) in the 2nd level,

in the configuration (0, 2+, 2−;+,−,+,−).
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The differential system (2) with

P(x, y) = x(1 + y),

Q(x, y) = x − 1

24
y + x2 − 7

16
y2 − 5

4
x3 + 21

8
x2y − 3

4
xy2 − 79

48
y3 + x3y + x2y2

+xy3 − 21

8
y4 + x5 − 1

2
x4y + x3y2 + xy4 − 3

2
y5,

has the singular points

(1,−1), (0, 0), (−1,−1), (−1/2,−1), (1/2,−1) in the 1st level, and

(0,−2/3), (0,−1/2), (0,−1/3), (0,−1/4) in the 2nd level,

in the configuration (0,+, 2−,+;+,−,+,−) (note that (0,−, 2+,−;+,−,+,−) can be
obtained reversing the sing in P).

The differential system (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + 1

18
y + x2 + xy + 7

12
y2 − 5

3
x3 + x2y + 2

3
xy2 + 79

36
y3 + x4 + x3y

+x2y2 + xy3 + 7

2
y4 + x5 + 5

6
x4y + x3y2 + x2y3 + xy4 + 2y5,

has the singular points

(1,−1), (0, 0), (−1,−1), (1/3,−1), (1/2,−1) in the 1st level, and

(0,−2/3), (0,−1/2), (0,−1/3), (0,−1/4) in the 2nd level,

in the configuration (0,+,−,+,−;+,−,+,−).
Configuration (4; 5).We note that the configuration (4; 5) can only be realized in a hyperbola
or the conic formed by two straight lines intersecting to a real point. We do not consider the
case that the conic is formed by two straight lines intersecting in a real point because the proof
in this case is completely similar to the proofwhen the conic is a hyperbola. In this last case one
branch of the hyperbola, B1 has the two singular points p8, p9 ordered in counterclockwise
sense which are both of them in the 1st level and the other branch of the hyperbola B2 has
the seven singular points p1, p2, p3, p4, p5, p6, p7 ordered in counterclockwise sense. Note
that p1, p7 are in the 1st level and p2, p3, p4, p5, p6 are in the 2nd level. Note that one of
the pi ’s must be p0 but we will make it explicit during the proof.

Assume that p0 ∈ B2.We show that two singular points p�1 , p�2 in B2 none of them being
p0 either are consecutive, or are consecutive and such that the arc of the hyperbola having
them as endpoints contains only a singular point, which is p0, must have different index.
Otherwise, applying formula (4) to R(x, y) = L p8,p9L p0,p�3

L p0,p�4
L p�5 ,p�6

being p�i for
i = 3, . . . , 6 singular points in B2 different from p�1 , p�2 we reach a contradiction.

Assume that p0 ∈ B1. Without loss of generality p0 = p8. Then two consecutive sin-
gular points p�1 , p�2 of the branch B2 have different index. Indeed, applying formula (4) to
R(x, y) = L p0,p9L p0,p�3

L p�4 ,p�5
L p�6 ,p�7

being p�i for i = 3, . . . , 7 singular points in B2

different from p�1 and p�2 it follows that p�1 and p�2 have different index.
This characterized completely the indices of the singular points of the branch B2.
Assume first that p0 is in the 1st level. Then by the arguments above the unique pos-

sible configurations in the 2nd-level must be (+,−,+,−,+) or (−,+,−,+,−). If p0
is in the branch B1 then, again by the arguments above, the unique possible configuration
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is (0, 2−,+;+,−,+,−,+) in the first case, and (0, 2+,−;−,+,−,+,−) in the sec-
ond case. If p0 is in the branch B2 then without loss of generality we can assume that
it is p7 and applying formula (4) to R(x, y) = L p0,p8L p0,p2L p3,p4L p5,p6 we get that
p1 and p9 must have the same index and so the unique possible configurations are again
(0, 2−,+;+,−,+,−,+) and (0, 2+,−;−,+,−,+,−).

If p0 is in the 2nd-level it must be in B2. Then the unique possible configurations in the 2nd
level is (0,+,−,+,−). Applying formula (4) to R(x, y) = L p7,p8L p0,p�1

L p0,p�2
L p�3 ,p�4

with p�i for i = 1, . . . , 4 the singular points in B2 different from p0 and p1, we
get that p1 and p9 have the same index. In short the unique possible configuration is
(2+, 2−; 0,+,−,+,−).

The differential system (2) with

P(x, y) = x(1 + y),

Q(x, y) = − 32

117
y2 + 5

18
x3 + 25

18
x2y + 13

18
xy2 − 118

117
y3 − y4 − x5 − 3

2
x4y − 2

13
y5,

has the singular points

(1,−1), (0, 0), (−1,−1), (0,−16/3) in the 1st level, and

(0,−1/2), (0,−2/3), (1/3,−1), (1/2,−1), (2/3,−1) in the2nd level,

in the configuration (0, 2+,−;−,+,−,+,−) (the configuration (0, 2−,+;+,−,+,−,+)

can be obtained reversing the sing in P).
The differential system (2) with

P(x, y) = y(y − x), Q(x, y) = x(x2 − 1)(x2 − 4),

has the singular points

(−2,−2), (−2, 0), (2, 2), (2, 0) in the 1st level, and

(1, 0), (1, 1), (−1,−1), (−1, 0), (0, 0) in the 2nd level,

in the configuration (2+, 2−; 0,+,−,+,−).
Configuration (4; 4; 1). We note that the configuration (4; 4; 1) can only be realized in a
hyperbola or the conic formed by two straight lines intersecting to a real point. We do not
consider the case that the conic is formed by two straight lines intersecting in a real point
because the proof in this case is completely similar to the proof when the conic is a hyperbola.
In this last case one branch of the hyperbola, B1 has the four singular points p6, p7, p8, p9
ordered in counterclockwise sense being p6, p9 in the 1st-level and p7, p8 in the 2nd level,
and in the other branch B2 of the hyperbola there are the five singular points p1, p2, p3, p4, p5
ordered in counterclockwise sense. Note that p1, p5 are in the 1st level, p2, p4 are in the
2nd-level and p3 is in the 3rd-level. Note that one of the pi ’s must be p0 but we will make it
explicit during the proof.

Assume p0 ∈ B2. We show that two singular points p�1 , p�2 in B2 none of them being p0
that are either consecutive, or are consecutive and such that the arc of the hyperbola having
them as endpoints contains only a singular point, which is p0, must have different index.
Otherwise, applying formula (4) to R(x, y) = L p6,p9L p7,p8L p0,p�3

L p0,p�4
being p�3 , p�4

singular points in B2 different from p�1 , p�2 , we reach a contradiction. Moreover, we show
that two consecutive singular points pk1 , pk2 in B1 have different index. Indeed, applying
formula (4) to R(x, y) = L p0,pk3

L p0,pk4
L p�1 ,p�2

L p�3 ,p�4
being pk3 , pk4 singular points in

B1 different from pk1 , pk2 and p�i for i = 1, . . . , 4 singular points in B2 different from p0,
we get that pk1 and pk2 have different index.
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Assume p0 ∈ B1. We show that two consecutive singular points p�1 , p�2 ∈ B2

have different index. Indeed, applying the Euler-Jacobi formula (4) to R(x, y) =
L p0,p�3

L p0,pk1
L pk2 ,pk3

L p�4 ,p�5
being pki for i = 1, . . . , 4 the singular points in B1 dif-

ferent from p0, and p�i for i = 3, 4, 5 singular points in B2 different from p�1 , p�2 we reach
a contradiction. Finally, we show that two singular points pk1 , pk2 in B1 none of them being
p0 that are either consecutive, or are consecutive and such that the arc of the hyperbola hav-
ing them as endpoints contains only a singular point, which is p0, must have different index.
Otherwise, applying formula (4) to R(x, y) = L p0,pk3

L p0,p�1
L p�2 ,p�3

L p�4 ,p�5
being pk3 a

singular point in B1 different from pk1 , pk2 , p0 and p�i for i = 1, . . . , 5 the five singular
points in B2, we reach a contradiction.

If p0 is in the 3rd-level then p0 = p3 and we show that p5 and p6 have the same index.
Indeed, applying formula (4) to R(x, y) = L p7,p8L p1,p9L p0,p4L p0,p2 we get that p5 and p6
have the same index. So the unique possible configurations are (2+, 2−; 2+, 2−; 0).

If p0 is in the 2nd-level then without loss of generality we can assume that it is p4
(otherwise we can make the same argument if it is p2). Applying formula (4) to R(x, y) =
L p7,p8L p1,p9L p0,p3L p0,p2 we get that p5 and p6 have the same index. So the unique possible
configurations are (2+, 2−; 0, 2−,+;+) and of course (2+, 2−; 0, 2+,−;−).

If p0 is in the 1st-level then without loss of generality we can assume that it is p5 (oth-
erwise we can make the same argument if it is p1). Applying formula (4) to R(x, y) =
L p0,p2L p0,p6L p3,p4L p7,p8 we get that p1 and p9 have the same index. So the unique possi-
ble configurations are (0, 2+,−; 3−,+;+) and of course (0, 2−,+; 3+,−;−).

The differential system (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + 1

8
y + x2 + xy + 15

16
y2 − 17

16
x3 + 25

8
x2y + 1

16
xy2 + 39

16
y3 + x4

+x3y + x2y2 + xy3 + 5

2
y4 + x5 − x4y + x3y2 + x2y3 + xy4 + 3

4
y5,

has the singular points

(1,−1), (0, 0), (−2,−1), (0,−2) in the 1st level,

(1/4,−1), (0,−1/3), (−1,−1), (−1/4,−1) in the 2nd level, and

(0,−1/2) in the 3rd level,

in the configuration (2+, 2−; 2+, 2−; 0).
The differential system (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + 1

2
y + x2 + xy + 35

12
y2 − 11

8
x3 + 7

6
x2y + 3

8
xy2 + 38

9
y3 + x4 + x3y

+x2y2 + 7

3
y4 + x5 + 11

12
x4y + x3y2 + xy3 + x2y3 + xy4 + 4

9
y5,

has the singular points

(0, 0), (−1,−1), (0,−2), (1,−1) in the 1st level,

(0,−3/2), (−1/2,−1), (0,−1/4), (2/3,−1) in the 2nd level, and

(−1/4,−1) in the 3rd level,

in the configuration (2+, 2−; 0, 2−,+;+) (the configuration (2+, 2−; 0, 2+,−;−) can be
obtained reversing the sing in P).
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The differential system (2) with

P(x, y) = −x(y + 1),

Q(x, y) = x − 1

4
y + x2 + xy − 3

2
y2 − 17

16
x3 + 25

8
x2y + 1

16
xy2 − 45

16
y3 + x4 + x3y

+x2y2 + xy3 − 29

16
y4 + x5 − x4y + x3y2 + x2y3 + xy4 − 3

8
y5,

has the singular points

(1,−1), (0, 0), (−2,−1), (0,−2) in the 1st level,

(1/4,−1), (0,−1/3), (−1,−1), (−1/4,−1) in the 2nd level, and

(0,−1/2) in the 3rd level,

in the configuration (0, 2+,−; 3−,+;+) (the configuration (0, 2−,+; 3+,−;−) can be
obtained reversing the sing in P).
Configuration (4; 3; 2). We note that the configuration (4; 3; 2) can only be realized in a
hyperbola or in a conic formed by two straight lines intersecting into a real point. We do
not consider the case that the conic is formed by two straight lines intersecting in a real
point because the proof in this case is completely similar to the proof when the conic is a
hyperbola. In this last case one branch of the hyperbola, B1 has the three singular points
p7, p8, p9 ordered in counterclockwise sense being p7, p9 in the 1st-level and p8 in the
2nd level, and in the other branch B2 of the hyperbola there are the six singular points
p1, p2, p3, p4, p5, p6 ordered in counterclockwise sense. Note that p1, p6 are in the 1st
level, p2, p5 are in the 2nd-level and p3, p4 are in the 3rd-level. Note that one of the pi ’s
must be p0 but we will make it explicit during the proof.

Assume p0 ∈ B2. We show that two singular points p�1 , p�2 in B2 none of them being p0
that are either consecutive, or are consecutive and such that in the arc of the hyperbola having
them as endpoints contains only a singular point, which is p0, must have different index. Oth-
erwise, applying formula (4) to R(x, y) = L p0,p6L p7,p9L p0,p�3

L p�4 ,p�5
being p�3 , p�4 , p�5

singular points in B2 different from p�1 , p�2 , we reach a contradiction. Moreover, we show
that two consecutive singular points pk1 , pk2 in B1 have different index. Indeed, applying
formula (4) to R(x, y) = L p0,pk3

L p0,p�1
L p�2 ,p�3

L p�4 ,p�5
being pk3 a singular point in B1

different from pk1 , pk2 and p�i for i = 1, . . . , 5 singular points in B2 different from p0, we
get that pk1 and pk2 have different index.

Assume p0 ∈ B1. We show that two consecutive singular points p�1 , p�2 ∈ B2

have different index. Indeed, applying the Euler-Jacobi formula (4) to R(x, y) =
L p0,pk1

L p0,pk2
L p�3 ,p�4

L p�5 ,p�6
being pki for i = 1, 2 the singular points in B1 different

from p0, and p�i for i = 3, . . . , 6 singular points in B2 different from p�1 , p�2 we reach a
contradiction. Finally, we show that two singular points pk1 , pk2 in B1 none of them being
p0 that are either consecutive, or are consecutive and such that in the arc of the hyperbola
having them as endpoints contains only a singular point, which is p0, must have different
index. Otherwise, applying formula (4) to R(x, y) = L p0,p�1

L p0,p�2
L p�3 ,p�4

L p�5 ,p�6
being

p�i for i = 1, . . . , 6 the six singular points in B2, we reach a contradiction.
If p0 is in the 3rd-level then the possible configurations are (2+, 2−; 2−,+; 0,+) and

(2+, 2−; 2+,−; 0,−).
If p0 is in the 2nd-level then it can be either in B1 or B2. If p0 is in B2 the unique possible

configuration is (2+, 2−; 0,+,−;+,−). If p0 is in B1 then it is p8. Applying formula (4)
to R(x, y) = L p3,p0L p0,p4L p5,p2L p6,p9 we get that p1 and p7 have the same index. Again
the unique possible configuration is (2+, 2−; 0,+,−;+,−).
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If p0 is in the 1st-level then it can be either in B1 or B2. If p0 is in B2 then the unique possible
configurations are (0, 2−,+; 2+,−;+,−) and (0, 2+,−; 2−,+;+,−). If p0 is in B1 then
without loss of generality we can assume that it is p9 (if it is p7 the arguments are analogous).
Applying formula (4) to R(x, y) = L p0,p7L p0,p6L p5,p1L p2,p4 we get that p3 and p8 have
different index. Again the unique possible configurations are (0, 2−,+; 2+,−;+,−) and
(0, 2+,−; 2−,+;+,−).

The differential system (2) with

P(x, y) = y2 − (x − 1)2 + 1, Q(x, y) = y(2x + y)(x − 3)(x + 4)(x + 5),

has the singular points

(3,−√
3), (3,

√
3), (−5,

√
35), (−5,−√

35) in the 1st level,

(2, 0), (−4, 2
√
6), (−4,−2

√
6) in the 2nd level, and

(−2/3, 4/3), (0, 0) in the 3rd level,

in the configuration (2+, 2−; 2−,+; 0,+) (the configuration (2+, 2−; 2+,−; 0,−) can be
obtained reversing the sing of P).

The differential system (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + 3

8
y + 43

16
y2 − 1

4
x3 + 5

8
x2y − 7

4
xy2 + 107

16
y3 + x3y + x2y2 + 27

4
y4

+x5 − 1

2
x4y + x2y3 + xy4 + 9

4
y5,

has the singular points

(1,−1), (0, 0), (−1,−1), (0,−3/2) in the 1st level,

(−1/2,−1), (1/2,−1), (0,−1/3) in the 2nd level, and

(0,−2/3), (0,−1/2) in the 3rd level,

in the configuration (2+, 2−; 0,+,−;+,−).
The differential system (2) with

P(x, y) = x(y + 1),

Q(x, y) = x + 1

24
y + x2 + xy + 19

48
y2 − 11

8
x3 + 15

8
x2y + 3

8
xy2 + 61

48
y3 + x4

+x3y + x2y2 + xy3 + 37

24
y4 + x5 + 1

4
x4y + x3y2 + xy4 + 1

2
y5,

has the singular points

(−1,−1), (0,−2) (1,−1), (0, 0), in the 1st level,

(−1/4,−1), (1/2,−1), (0,−1/4) in the 2nd level, and

(0,−1/3), (0,−1/2) in the 3rd level,

in the configuration (0, 2−,+; 2+,−;+,−) (the configuration (0, 2+,−; 2−,+;+,−)

can be obtained reversing the sing in P).
Configuration (3; 6). We note that the configuration (3; 6) only can be realized with a conic
formed by a hyperbola. Moreover one branch B1 of the hyperbola has one point p9 (which is
in the 1st-level) and the other branch B2 of the hyperbola has eight points. We denote them
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by p1, . . . , p8 ordered in counterclockwise sense. The points p1, p8 are in the 1sst level and
the remaining points are in the 2nd-level.

If p0 ∈ B1, i.e., p0 = p9, then we show that two consecutive singular points
in p�1 , p�2 ∈ B2 have different index. Indeed, applying formula (4) to R(x, y) =
L p0,p�3

L p0,p�4
L p�5 ,p�6

L p�7 ,p�8
being p�i for i = 1, . . . , 8 singular points in B2 different

from p�1 and p�2 , we get that p�1 and p�2 have different index.
If p0 ∈ B2 we show that two singular points p�1 , p�2 ∈ B2 none of them being p0 that

are either consecutive or are consecutive and such that in the arc of hyperbola having them as
endpoints contains only a singular point, which is p0 have different index.Otherwise applying
formula (4) to R(x, y) = L p0,p9L p0,p�3

L p�4 ,p�5
L p�6 ,p�7

being p�i for i = 1, . . . , 7 singular
points in B2 different from p�1 , p�2 and p0, we get a contradiction.

If p0 is in the 1st-level then the 2nd-level must be (+,−,+,−,+,−) and in this case
the 1st-level can only by (0,+,−). Hence we have the configurations (0,+,−;+,−,+,−,

+,−).
If p0 is in the 2nd-level the 2nd-level must be (0,+,−,+,−,+) (or (0,+,−,+,−,+))

and in this case the 1st-level can only by (2−,+) (or (2+,−). Hence we have the configu-
rations (2−,+; 0,+,−,+,−,+) and (2+,−; 0,−,+,−,+,−).

The differential system (2) with

P(x, y) = y2 − (x − 1)2 + 1, Q(x, y) = x(x − 5)(x − 3)(x − 4)(x − 6),

has the singular points

(0, 0), (6,−2
√
6), (6, 2

√
6) in the 1st level, and

(5,
√
15), (4, 2

√
2), (3,

√
3), (3,−√

3), (4,−2
√
2), (5,−√

15) in the 2nd level,

in the configuration (0,+,−;+,−,+,−,+,−).
The differential system (2) with

P(x, y) = y2 − (x − 1)2 + 1, Q(x, y) = −y(2x + y)(x + 3)(x + 4)(x + 5),

has the singular points

(−5,−√
35), (−5,

√
35), (2, 0) in the 1st level, and

(−4,−2
√
6), (−4, 2

√
6), (−3,−√

15), (−3,
√
15), (−2/3, 4/3), (0, 0) in the 2nd level,

in the configuration (2−,+; 0,+,−,+,−,+) (the configuration (2+,−; 0,−,+,−,+,−)

can be obtained reversing the sing in P).
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