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Abstract
For a countable discrete amenable group G, it turns out that for any subsets H of G and E of
Z with positive densities, there exists k ∈ N which depends only on the densities of H and
E such that Gk ⊂ (H · H−1)E−E .
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1 Introduction

Since Furstenberg began using dynamical systems to study number theory, manywell-known
results in number theory were proved by ergodic theory such as Szemeredi’s theorem, Hind-
man’s theorem and so on (see for example [4] to learn about relevant contents). In classical
number theory, one of the main themes of combinatorics is sum-product estimates. It goes
back to Erdös and Szemerédi [1] who conjectured that for any finite subset A of Z (or R),
for every ε > 0 one has

|A + A| + |A · A| � |A|2−ε

where A + A = {a + b : a, b ∈ A} and A · A = {ab : a, b ∈ A}.
In [2], Fish raised a question:

Question 1.1 For a given infinite set E ⊂ Z, howmuch structure does the set (E−E)·(E−E)

possess?

Meanwhile, he used ergodic theory to study this question when E has positive density in Z

and showed that given two subsets E1, E2 of Z with positive densities, there exists k ∈ N

which depends only on the densities of E1 and E2 such that kZ ⊂ (E1 − E1) · (E2 − E2) ,

where Ei − Ei = {e − e′ : e, e′ ∈ Ei }, i = 1, 2.
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As the research progressed, we began to wonder if there were similar results in larger
groups. Thus, in this paper, we take advantage of the measure-preserving systems under
amenable group actions to extend the above result of Fish to countable amenable groups as
follows.

Theorem 1.2 Let G be a countable amenable group. For any subsets H of G and E of Z
with positive densities, there exists k ∈ N which depends only on the densities of H and E
such that

Gk ⊂ (H · H−1)E−E

where Gk = {gk : g ∈ G}, H · H−1 = {h(h′)−1 : h, h′ ∈ H} and (H · H−1)E−E = {hk :
h ∈ H · H−1, k ∈ E − E}.
Remark 1.3 In the proof of Theorem 1.2, we can obtain the exact value of k ∈ N, which is
in the form k = (s + 1)!(t (s+1)! + 1)!, where s, t ∈ N depend only on the densities of E and
H , respectively.

If we take G = Z or ZN , where N ∈ N, then we obtain the results in [2]. However, we know
that finite groups, solvable groups and finitely generated groups of subexponential growth
are all amenable groups. In contrast to the special amenable group Z, a general amenable
group may have very complicated structure, which makes it harder to study. So we have
more results by taking G as other groups rather than Z. For instance a special case G = Z

d ,
Theorem 1.2 implies that for every subset H of Zd with positive density and every m ∈ N

there exists k ≥ 1 such that

kZd ⊂ (mZ) · (E − E).

Moreover, if we let G be the Heisenberg group, that is, the two-step nilpotent countable
matrix group

G =
⎧
⎨

⎩

⎛

⎝
1 m3 m1

0 1 m2

0 0 1

⎞

⎠ : m1,m2,m3 ∈ Z

⎫
⎬

⎭
,

then we may obtain some results about matrixes.
This paper is organized as follows. In Sect. 2, we recall some basic notions that we use in

this paper. In Sect. 3, we prove the key lemma using ergodic theory, which is used to prove
Theorem 1.2. In Sect. 4, we construct a system to prove Theorem 1.2.

2 Preliminaries

In this section, we recall some notations and concepts which are used later. The reader may
see [6, Chapter 4] for more details.

2.1 Følner Sequences

A countable discrete group G is called amenable if there exists a sequence of non-empty
finite subsets F = {Fn}∞n=1 of G such that

lim
n→∞

|gFn�Fn |
|Fn | = 0
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holds for every g ∈ G and such F is called a Følner sequence of G.
Let G be a countable infinite discrete amenable group and F = {Fn}∞n=1 be a Følner

sequence of G. If H is a subset of G we write

d̄F(H) = lim sup
n→∞

|H ∩ Fn |
|Fn |

and

dF(H) = lim
n→∞

|H ∩ Fn |
|Fn |

if this limit exists. Then we define

d∗(H) = sup
F

dF(H)

where the supremum is taken for all Følner sequences F of G such that dF(H) exists. We
remark that supremum is attained. We say H has positive density if d∗(H) > 0.

2.2 Generic Points

In the following article, let G be a countable discrete group with the unit 1G . By a G-system
(X ,G)wemean a compactmetric space X endowedwith ametricρ, togetherwithG acting on
X by homeomorphism, that is, there exists a continuousmap� : G×X → X , �(g, x) = gx
satisfying � (1G , x) = x, �(g1, �(g2, x)) = �(g1g2, x) for all g1, g2 ∈ G and x ∈ X .

Given a G-system (X ,G), denote by BX the collection of all Borel subsets of X and M(X)

the set of all Borel probability measures on X . For μ ∈ M(X), the support of μ is defined to
be the set

supp(μ) = {x ∈ X : μ(U ) > 0 for every open neighborhood U of x}.
It is clear that supp(μ) is a closed subset of X and μ(supp(μ)) = 1. μ ∈ M(X) is called
G-invariant if μ(A) = μ(g−1A) for any g ∈ G and A ∈ BX . Denote by M(X ,G) be the
set of all G-invariant measures in M(X). It is well known that if, in addition, G is amenable
then M(X ,G) �= ∅ and M(X ,G) is a convex compact metric subspace of M(X) under
weak*-topology.

Given a countable discrete amenable group, let F = {Fn}∞n=1 be a Følner sequence of G
and μ ∈ M(X ,G). We say that x0 ∈ X is a generic point for μ along F if

1

|Fn |
∑

g∈Fn
δgx0 → μ weakly* as n → ∞,

where δx is the Dirac mass at x . This is equivalent to

lim
n→∞

1

|Fn |
∑

g∈Fn
f (gx0) →

∫

f dμ

for each real-valued continuous function f on X . In this case,μ is G-invariant and supported
on the closed orbit orb(x0,G) of x0 under G, where orb(x0,G) = {gx0 : g ∈ G}. By the
definition of the generic points, one has the following result.
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Lemma 2.1 Let (X ,G) be a G-system, F = {Fn}∞n=1 be a Følner sequence of G and μ ∈
M(X ,G), where G is a countable discrete amenable group. If x0 ∈ X is a generic point for
μ along F, then

dF ({g ∈ G : gx0 ∈ U }) = μ(U )

if U is clopen, that is, open and closed.

3 The Key Lemma

In this section, following ideas in [2], we prove our key lemma,which combinedwith Fursten-
berg correspondence principle [3] will allow us to prove Theorem 1.2.

Lemma 3.1 Let (X ,G) be a G-system with μ ∈ M(X ,G). Given A ∈ BX with μ(A) > 0,
for any L ∈ N and g ∈ G there exists 1 ≤ m ≤ � 1

μ(A)L
� such that

{glm}Ll=1 ⊂ R(A),

where �a� := min{r ∈ Z : r > a} and R(A) = {g ∈ G : μ(A ∩ g−1A) > 0}.
Proof Given g ∈ G and L ∈ N, we consider the product system Z = ∏L

l=1 X with the
transformation S = ∏L

l=1 g
l , the productσ -algebraBZ and the productmeasure ν = ∏L

l=1 μ.
Then we obtain a Z-system (Z , S) and the measurable subset Ã = ∏L

l=1 A of Z with
ν( Ã) = μ(A)L > 0. By Poincaré’s recurrence theorem (see for example [8, Page 26]) there
exists 1 ≤ m ≤ � 1

μ(A)L
� such that ν( Ã ∩ S−m Ã) > 0, that is, for any l ∈ {1, 2, . . . , L}, we

have

μ(A ∩ g−lm A) > 0,

which implies that glm ∈ R(A) for each l ∈ {1, 2, . . . , L}. ��
With the help of Lemma 3.1, we obtain the following amenable analogue of Theorem 1.1

in [2].

Theorem 3.2 Let (X ,G) be a G-system and (Y , T ) be a Z-system, where G is a countable
discrete amenable group. Fix μ ∈ M(X ,G) and ν ∈ M(Y , T ). For any A ∈ BX with
μ(A) > 0 and B ∈ BY with ν(B) > 0, there exists k ∈ N depending only on μ(A) and ν(B)

such that

Gk ⊂ R(A)R(B),

where R(A)R(B) = {gn : g ∈ R(A), n ∈ R(B)}.
Proof Let M = � 1

ν(B)
�. Then by Poincaré’s recurrence theorem (see for example [8, Page

26]), for every c ∈ Z\{0} there exist 1 ≤ i < j ≤ M such that

ν
((
T c)−i

B ∩ (
T c)− j

B
)

> 0.

As ν is T -invariant, it follows that there exists 1 ≤ r = r(c) ≤ M (r = j − i) such that
rc ∈ R(B).

Let L = M !, N = � 1
μ(A)L

� and k = L · N !. Then for any g ∈ G, by Lemma 3.1, there
exists 1 ≤ mg ≤ N such that

{glmg }Ll=1 ⊂ R(A). (3.1)
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By the above choice of M and k
Lmg

∈ Z \ {0}, there exists 1 ≤ t = t
(

k
Lmg

)
≤ M such that

t · k
Lmg

∈ R(B). As L/t ∈ N, one has g
Lmg
t ∈ R(A) by (3.1). Thus

gk = (g
Lmg
t )

t · k
Lmg ∈ R(A)R(B).

Therefore, Gk ⊂ R(A)R(B), which completes the proof of Theorem 3.2. ��
Remark 3.3 According to the proof of Theorem 3.2, for any s, t ∈ N, we may choose A ∈
BX with μ(A) = 1/t and B ∈ BY with ν(B) = 1/s such that Gk ⊂ R(A)R(B), where
k = (s + 1)!(t (s+1)! + 1)!. Indeed, we let M = s + 1, L = (s + 1)! and N = t (s+1)! + 1.

4 Proof of Theorem 1.2

In this section, Let G be a countable discrete amenable group and H a subset of G with
d∗(H) > 0. Following ideas of [3] we construct a G-system to prove Theorem 1.2 by
Theorem 3.2.

4.1 Construction of The System

Given a countable discrete amenable group G with the unit 1G , we construct a product space
{0, 1}G . By definition, the product topology on {0, 1}G is generated by the cylinder sets
∏

s∈G As where each As is open and As = {0, 1} for all s ∈ G outside of a finite subset of
G. Every open set in {0, 1}G is a countable union of such cylinder sets, which consequently
generate the Borel σ -algebra. We define the action G on {0, 1}G by (sx)t = xts for all
s, t ∈ G and x ∈ {0, 1}G . Given a subset H of G, we consider the indicator function 1H as
an element of {0, 1}G that we write as xH , that is, (xH )t = 1H (t) for each t ∈ G. Then we
define

(1) X = {gxH : g ∈ G} is the closed orbit of xH under G-action.

Let A = {x ∈ X : (x)1G = 1} be the cylinder set. We have

(2) A is a clopen subset of X and H = {g ∈ G : gxH ∈ A}.
Let F be a Følner sequence of G with dF(H) > 0. Replacing F by a subsequence we can
assume that

(3) xH is a generic point along F for some μ ∈ M(X ,G).

Applying Lemma 2.1 on the clopen subset A of X , we have

(4) μ(A) = dF(H).

For any g ∈ R(A), one has μ(A∩ g−1A) > 0. By (3), there exists g0 ∈ G such that g0xH ∈
A∩g−1A, that is, gg0xH , g0xH ∈ A and hence gg0, g0 ∈ H . Thus g = (gg0)g

−1
0 ∈ H ·H−1.

This implies that

(5) R(A) ⊂ H · H−1.

4.2 Proof of Theorem 1.2

By the above construction, we are able to prove our main result.
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Proof of Theorem 1.2 Let G be a countable discrete amenable group. According to (5) in the
above construction, for any subset H of G with positive density, there exists a G-system
(X ,G), μ ∈ M(X ,G) and A ∈ BX with μ(A) = dF (H) > 0 along some Følner sequence
F of G such that

R(A) ⊂ H · H−1.

Similarly, by Furstenberg correspondence principle [3], for any subset E of Z with positive
density, there exists a Z-system (Y , T ), ν ∈ M(Y , T ) and B ∈ BY with ν(B) = dF′ (E) > 0
along some Følner sequence F′ of Z such that

R(B) ⊂ E − E .

By Theorem 3.2, there exists k ∈ N which depends only on the densities of H and E , such
that Gk ⊂ R(A)R(B). Hence

Gk ⊂ (H · H−1)E−E .

This completes the proof of Theorem 1.2. ��
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