
Journal of Dynamics and Differential Equations (2024) 36:2627–2644
https://doi.org/10.1007/s10884-022-10183-w

Pro-Nilfactors of the Space of Arithmetic Progressions in
Topological Dynamical Systems

Zhengxing Lian1 · Jiahao Qiu2

Received: 12 March 2022 / Revised: 18 May 2022 / Accepted: 30 May 2022 /
Published online: 20 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
For a topological dynamical system (X , T ), l ∈ N and x ∈ X , let Nl(X) and Ll

x (X) be
the orbit closures of the diagonal point (x, . . . , x) (l times) under the actions Gl and τl
respectively, where Gl is generated by T × . . . × T (l times) and τl = T × . . . × T l . In
this paper, we show that for a minimal system (X , T ) and d, l ∈ N, the maximal d-step
pro-nilfactor of (Nl(X),Gl) is (Nl(Xd),Gl), where Xd is the d-step pronilfactor of (X , T ).
Meanwhile, when (X , T ) is a minimal nilsystem, we also calculate the pro-nilfactors of the
system (Ll

x (X), τl) for almost every x w.r.t. the Haar measure. In particular, there exists a
minimal 2-step nilsystem (Y , T ) and a countable subset � of Y such that for every y ∈ Y\�
the maximal equicontinuous factor of (L2

y(Y ), τ2) is not (L2
π1(y)

(Y1), τ2), where Y1 is the
maximal equicontinuous factor of (Y , T ) and π1 : Y → Y1 is the factor map.
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Mathematics Subject Classification 37B05 · 37A99

1 Introduction

1.1 Background

By a topological dynamical system (system for short) , we mean a pair (X , T ), where X is a
compact metric space with a metric ρ, and T : X → X is a homeomorphism.
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For a minimal system (X , T ), l ∈ N and x ∈ X , the orbit closures of (x, . . . , x) (l times)
under the actions Gl = 〈σl , τl〉 and τl are denoted by Nl(X , T , x) and Ll

x (X) respectively,
where

τl = τl(T ) = T × . . . × T l , and σl = σl(T ) = T × . . . × T (l times).

Since (X , T ) is minimal, it is easy to see that Nl(X , T , x) is independent of x , which will be
denoted by Nl(X , T ) or Nl(X). We call Nl(X) and Ll

x (X) the space of arithmetic progres-
sions of length l and the space of simple arithmetic progressions of length l for x respectively.
A basic result proved by Glasner [5] is that Nl(X) is minimal under the Gl action.

Arithmetic progressions in topological dynamical systems relate to the pointwise conver-
gence of multiple ergodic averages. We refer to [9] for more details.

In the recent years, the study of the nilsystems and inverse limits of this kind of dynamics
has drawn much interest, since it relates to many dynamical properties and has important
applications in number theory. We refer to [7] and the references therein for a systematic
treatment on the subject.

In a pioneer work, Host Kra and Maass [8] introduced the notion of regionally proximal
relation of order d for a system (X , T ), denoted by RP[d]. For d ∈ N, we say that a minimal
system (X , T ) is a d-step pro-nilsystem if RP[d] = � and this is equivalent for (X , T ) being
an inverse limit of d-step nilsystems (see [8, Theorem 2.8]). For a minimal distal system
(X , T ), it was proved that RP[d] is an equivalence relation and X/RP[d] is the maximal
d-step pro-nilfactor [8]. Later, Shao and Ye [16] showed that in fact for any minimal system,
RP[d] is an equivalence relation and RP[d] has the so-called lifting property. Moreover,
RP[∞] = ⋂∞

d=1 RP
[d] can be defined and it is also an equivalence relation for any minimal

system [3].
Let (X , T ) be a minimal system. For l ∈ N, the maximal equicontinuous factor (1-step

pro-nilfactor) of (Nl(X),Gl) plays an important role in [6, 13]. In this paper, we would like
to study the pro-nilfactors of (Nl(X),Gl) and (Lx (X), τl) respectively. In particular, for the
maximal d-step pro-nilfactor Xd of X , we want to know whether the maximal d-step pro-
nilfactor of the space of arithmetic progressions of X and the space of arithmetic progressions
of Xd coincide.

In [6], the authors showed that for any d, l ∈ N, the maximal d-step pro-nilfactors of
(Nl(X),Gl) and the one of (Nl(X∞),Gl) coincide. Therefore to study the pro-nilfactors of
(Nl(X),Gl), we can restrict to the case that X is an∞-step pro-nilsystem, which is an inverse
limit of minimal nilsystems [3]. Since the inverse limit is easy to handle, we need only to
focus on nilsystems.

1.2 The Space of Arithmetic Progressions and Pro-Nilfactors

Following the ideas in [7, Chapter 14], we can view the space of arithmetic progressions
of a minimal nilsystem as a nilmanifold. Thus it suffices to compute the pro-nilfactors of a
minimal s-step nilsystem (Z = L/�, T1, . . . , Tk). The similar question was considered in
[15] and it was shown that the maximal d-step pro-nilfactor of Z has the form L/(Ld+1�)

for d = 1, . . . , s, where Li is the i th-step commutator subgroup of L , i.e., L1 = L and
Li+1 = [L, Li ] for i ≥ 1.

From this, we can prove:

Theorem A Let s ≥ 2 be an integer and let (X = G/�, T ) be a minimal s-step nilsystem.
Assume that G is spanned by G0 and the element t of G defining the transformation T ,
where G0 is the connected component of the unit element of G. For d = 1, . . . , s, let
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Xd = G/(Gd+1�). Then for every l ∈ N, the maximal d-step pro-nilfactor of (Nl(X),Gl) is
(Nl(Xd),Gl).

Thus, combining the previous result [6, Theorem 5.6] we can show:

Theorem B Let (X , T ) be a minimal system and d ∈ N. Then for every l ∈ N, the maximal
d-step pro-nilfactor of (Nl(X),Gl) is (Nl(Xd),Gl), where Xd = X/RP[d].

1.3 The Space of Simple Arithmetic Progressions of Nilsystems and Pro-Nilfactors

Up to now, all of the conclusions are expected. In the process of studying the pro-nilfactors
of the space of simple arithmetic progressions of nilsystems, we find a surprising result:
there exists a minimal 2-step nilsystem (Y , T ) and a countable subset � of Y such that
for every y ∈ Y\� the maximal equicontinuous factor of (OT×T 2(y, y), T × T 2) is not
(OT×T 2(π(y), π(y)), T × T 2), where π : Y → Y/RP[1] is the factor map.

Indeed, for a minimal s-step nilsystem (X = G/�, T )we can calculate the pro-nilfactors
of the space of simple arithmetic progressions for mX -a.e. x ∈ X , where mX is the uniquely
ergodic measure of (X , T ). (See [7, Chapter 12, Section 2], for exmaple, that any minimal
nilsystem is uniquely ergodic.)

Before stating our result, we need define two subgroups ofGZ+ (see also Sect. 2.4). Define

HP(G) = {(gg(
n
1)

1 . . . g
(ns)
s )n∈Z+ : g ∈ G, gi ∈ Gi , i = 1, . . . , s}

which is called the Hall-Petresco group, and

HPe(G) = {φ ∈ HP(G) : φ(0) = 1G},

where 1G is the unit element of G.
The groups HP(G) and HPe(G) play an important role in the study of arithmetic pro-

gressions in nilsystems. We have:

Theorem C Let s ≥ 2 be an integer and let (X = G/�, T ) be a minimal s-step nilsystem.
Assume that G is spanned by G0 and the element t of G defining the transformation T , where
G0 is the connected component of the unit element of G. For mX -a.e. x and d = 1, . . . , s,
the maximal d-step pro-nilfactor of (Ll

x (X), τl) is conjugate to the system

(HP(l)
e (G)/

(
HP(l)

e (G)d+1 · (HP(l)
e (G) ∩ �l)

)
, τl,x )

for some nilrotation τl,x , where H P(l)
e (G) = {(φ(n))1≤n≤l : φ ∈ HPe(G)} and H P(l)

e (G)k

is the kth-step commutator subgroup of H P(l)
e (G) for k = 1, . . . , s. Moreover, if G0 is simply

connected, then H P(l)
e (G)k is generated by

{(gn j
)1≤n≤l : g ∈ G j , j = k, . . . , s}.

The paper is organized as follows. In Sect. 2, the basic notions used in the paper are
introduced. In Sect. 3, we give a proof of Theorem A and by using Theorem A, we prove
Theorem B. In the final section, we show the conclusions in Sect. 1.3.
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2 Preliminaries

In this section we gather definitions and preliminary results that will be necessary later on.
Let Z+ (N, Z, respectively) be the set of all non-negative integers (positive integers, integers,
respectively).

2.1 Topological Dynamical Systems

A transformation of a compact metric space X is a homeomorphism of X to itself. A
topological dynamical system (system for short) is a pair (X , T ), where X is a compact
metric space and T is a transformation of X . For x ∈ X ,OT (x) = {T nx : n ∈ Z} denotes
the orbit of x . A system (X , T ) is called minimal if every point has a dense orbit in X .

A homomorphism of systems (X , T ) and (Y , T ) is a continuous onto map π : X → Y
which intertwines the actions; one says that (Y , T ) is a factor of (X , T ) and that (X , T ) is
an extension of (Y , T ). One also refers to π as a factor map or an extension and one uses the
notation π : (X , T ) → (Y , T ). The systems are said to be conjugate if π is a bijection. An
extension π is determined by the corresponding closed invariant equivalence relation

Rπ = {(x, x ′) ∈ X × X : π(x) = π(x ′)}.

2.2 Regional Proximality of Higher Order

For �n = (n1, . . . , nd) ∈ Z
d and ε = (ε1, . . . , εd) ∈ {0, 1}d , we define

�n · ε =
d∑

i=1

niεi .

Definition 2.1 Let (X , T ) be a system and d ∈ N. The regionally proximal relation of order
d is the relation RP[d] (or RP[d](X) in case of ambiguity) defined by: (x, y) ∈ RP[d] if and
only if for any δ > 0, there exist x ′, y′ ∈ X and �n ∈ N

d such that: ρ(x, x ′) < δ, ρ(y, y′) < δ

and

ρ(T �n·εx ′, T �n·ε y′) < δ, ∀ ε ∈ {0, 1}d\{�0}.
A minimal system is called a d-step pro-nilsystem if its regionally proximal relation of

order d is trivial.

Theorem 2.2 [16, Theorem 3.3] For any minimal system and d ∈ N, the regionally proximal
relation of order d is an equivalence relation.

The regionally proximal relation of order d allows to construct the maximal d-step pro-
nilfactor of a minimal system. That is, any factor of d-step pro-nilsystem factorizes through
this system.

Theorem 2.3 [16, Theorem 3.8] Let π : (X , T ) → (Y , T ) be a factor map of minimal
systems and d ∈ N. Then,

(1) (π × π)RP[d](X) = RP[d](Y ).
(2) (Y , T ) is a d-step pro-nilsystem if and only if RP[d](X) ⊂ Rπ .
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In particular, the quotient of X under RP[d](X) is the maximal d-step pro-nilfactor of X.

Remark 2.4 When d = 1,RP[1] is nothing but the classical regionally proximal relation. For
a minimal system (X , T ), we call it equicontinuous instead of a 1-step pro-nilsystem if its
regionally proximal relation is trivial and call X/RP[1] the maximal equicontinuous factor
instead of the maximal 1-step pro-nilfactor.

It follows from Theorem 2.3 that for any minimal system,

RP[∞] =
⋂

d≥1

RP[d]

is a closed invariant equivalence relation.
Now we formulate the definition of ∞-step pro-nilsystems.

Definition 2.5 A minimal system is an ∞-step pro-nilsystem, if the equivalence relation
RP[∞] is trivial, i.e., coincides with the diagonal.

2.3 Nilpotent Groups, Nilmanifolds and Nilsystems

Let G be a group and denote its unit element by 1G . For g, h ∈ G, we write [g, h] =
ghg−1h−1 for the commutator of g and h, we write [A, B] for the subgroup spanned by
{[a, b] : a ∈ A, b ∈ B}. The commutator subgroups G j , j ≥ 1, are defined inductively by
setting G1 = G and G j+1 = [G j ,G]. Let k ≥ 1 be an integer. We say that G is k-step
nilpotent if Gk+1 is the trivial subgroup.

Let G be a k-step nilpotent Lie group and � a discrete cocompact subgroup of G. The
compact manifold X = G/� is called a k-step nilmanifold. The group G acts on X by left
translations and we write this action as (g, x) �→ gx . Let t ∈ G and T be the transformation
x �→ t x of X . Then (X , T ) is called a k-step nilsystem.

We alsomake use of inverse limits of nilsystems and sowe recall the definition of an inverse
limit of systems (restricting ourselves to the case of sequential inverse limits). If (Xi , Ti )i∈N
are systems with diam(Xi ) ≤ 1 and φi : Xi+1 → Xi are factor maps, the inverse limit of
the systems is defined to be the compact subset of

∏
i∈N Xi given by {(xi )i∈N : φi (xi+1) =

xi , i ∈ N}, which is denoted by lim←−{Xi }i∈N. It is a compact metric space endowed with the

distance ρ(x, y) = ∑
i∈N 1/2iρi (xi , yi ). We note that the maps {Ti } induce a transformation

T on the inverse limit.
The following structure theorems characterize inverse limits of nilsystems.

Theorem 2.6 (Host-Kra-Maass). [8, Theorem 1.2] Let d ≥ 2 be an integer. A minimal system
is a d-step pro-nilsystem if and only if it is an inverse limit of minimal d-step nilsystems.

Theorem 2.7 [3, Theorem 3.6] A minimal system is an ∞-step pro-nilsystem if and only if it
is an inverse limit of minimal nilsystems.

2.4 Hall-Petresco Groups

Let G be an s-step nilpotent group. A geometric progression in GZ+ is defined by the
following form

(gg
(n1)
1 . . . g

(ns)
s )n∈Z+ ,
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where g ∈ G and gi ∈ Gi for i = 1, . . . , s. The collection of all such progressions is the
Hall-Petresco group HP(G) for G (see [7, Chapter 15, Section 1] that HP(G) is a group).
We also define the following group

HPe(G) = {φ ∈ HP(G) : φ(0) = 1G}.
An observation is that every element φ ∈ HPe(G) has the form

φ(n) = g
(n1)
1 . . . g

(ns)
s , n ∈ Z+,

where gi ∈ Gi for i = 1, . . . , s.

3 Arithmetic Progressions In Topological Dynamical Systems

In this section, we will study the space of arithmetic progressions of a minimal nilsystem. As
an application, we give a proof of Theorem A. Among other things, we can show Theorem
B.

3.1 Nilsystems

We start by recalling some basic results in nilsystems. For more details and proofs, see [1, 7,
14]. If G is a nilpotent Lie group, let G0 denote the connected component of its unit element
1G . In the sequel, s ≥ 2 is an integer and (X = G/�, T1, . . . , Tk) is a minimal s-step
nilsystem with k commuting transformations. That is, there exist t1, . . . , tk ∈ G defining the
transformations T1, . . . , Tk : Ti : g� → ti g� such that Ti Tj = Tj Ti for 1 ≤ i < j ≤ k.

If (X , T1, . . . , Tk) is minimal, let G ′ be the subgroup of G spanned by G0 and t1, . . . , tk
and let �′ = � ∩ G ′, then we have that G = G ′�. Thus the system (X , T1, . . . , Tk) is
conjugate to (X ′, T ′

1, . . . , T
′
k), where X ′ = G ′/�′ and T ′

i is the translation by ti on X ′ for
i = 1, . . . , k. Therefore, without loss of generality, we can restrict to the case that G is
spanned by G0 and t1, . . . , tk . We can also assume that G0 is simply connected (see for
example [1] or [12] for the case that G = G0 and [11] for the general case). This in turns
implies that the commutator subgroups Gi , i = 2, . . . , s are connected and included in G0.
Moreover, G0 is divisible, i.e., for any g ∈ G0 and d ∈ N, there is some h ∈ G0 with hd = g
(see for example [7, Chapter 10, Corollary 9]).

The following theorem characterizes the pro-nilfactors of minimal nilsystems.

Theorem 3.1 [15, Theorem 1.2] Let s ≥ 2 be an integer and let (X = G/�, T1, . . . , Tk) be
a minimal s-step nilsystem. Assume that G is spanned by G0 and the elements t1, . . . , tk of G
defining the commuting transformations T1, . . . , Tk. For d = 1, . . . , s, if Xd is the maximal
factor of order d of X, then Xd has the form G/(Gd+1�), endowed with the translations by
the projections of t1, . . . , tk on G/Gd+1.

3.2 The Space of Arithmetic Progressions of Nilsystems

Let (X = G/�, T ) be a minimal s-step nilsystem. For d = 1, . . . , s, let HP(G)d be the
collection of the element with the following form

(
gg

(n1)
1 . . . g

(ns)
s

)
n∈Z+ ,
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where g, g1, . . . , gd ∈ Gd , gi ∈ Gi , i = d + 1, . . . , s and
(n
i

) = 0 if n < i .
It is clear that HP(G)1 is the Hall-Petresco group HP(G) for G and

HP(G)d = GZ+
d ∩ HP(G), (1)

which implies that every HP(G)d is a group. In [7, Chapter 15, Corollary 1,2], it was shown
that HP(G) is a nilpotent Lie group and its discrete cocompact subgroup is HP(G)∩�Z+ =
�̃. Write

HP(X) = HP(G)/�̃.

Define t∗, t� ∈ GZ+ as

t∗ = 1G × t × t2 × . . . , and t� = t × t × t × . . . .

and let τ, σ be the translations by t∗ and t� respectively. Let G be the group generated by σ

and τ . The nilmanifold HP(X) is invariant under the G action as the elements t∗ and t� both
belong to HP(G). Moreover, in [7, Chapter 15, Theorem 5], it was shown that the nilsystem
(HP(X),G ) is minimal. That is, for any x ∈ X , one has

OG (x) = HP(X). (2)

We first study the pro-nilfactors of the nilsystem (HP(X),G ). To do this, we need some
intermediate lemmas.

Lemma 3.2 Let H be a normal subgroup of G. For g, h ∈ G, if gh ∈ H, then gnhn ∈ H for
all n ∈ Z+.

Proof For n ∈ Z+, write wn = gnhn . In particular, w0 = 1G , w1 = gh.
For positive integer n, as

wn = gnhn = gwn−1h = gh(h−1wn−1h),

and H is normal in G, we deduce inductively that wn ∈ H . ��
Proposition 3.3 HP(G)d is the d th-step commutator subgroup of H P(G) for d = 1, . . . , s.

Proof For d = 1, . . . , s, denote by H̃ P(G)d the d th-step commutator subgroup of HP(G).
In particular, H̃ P(G)1 = HP(G). By (1), the inclusion H̃ P(G)d ⊂ HP(G)d is trivial.

To prove the converse, we proceed by induction on the degree s of nilpotency. When
s = 1, G2 is trivial and there is nothing to prove. Assume that s ≥ 2, that the result holds
for any (s − 1)-step nilmanifold, and that G is s-step nilpotent. Write H = G/Gs and let
p : G → H denote the associated quotient map. Then H is an (s − 1)-step nilpotent Lie
group. We need the following claims.

Claim 1: H̃ P(G)d · HP(G)s = HP(G)d for d = 1, . . . , s.

Proof of Claim 1 H̃ P(G)d and HP(G)s are obviously subgroups of HP(G)d , and therefore
so is H̃ P(G)d · HP(G)s .

We next show the converse. Let φ = (φ(n))n∈Z+ ∈ HP(G)d = GZ+
d ∩ HP(G), then

p◦φ = (p◦φ(n))n∈Z+ lies in HZ+
d ∩HP(H) = HP(H)d . Thus by the induction hypothesis,

p ◦ φ also belongs to H̃ P(H)d . It follows that there exist ψ ∈ H̃ P(G)d and θ ∈ GZ+
s such

that φ = ψθ . Since HP(G) is a group, θ ∈ HP(G). By (1), we get that θ ∈ HP(G)s .
This shows Claim 1. ��
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Claim 2: For any g ∈ Gd and m ∈ {1, . . . , d}, the sequence whose terms are g(
n−1
m ) belongs

to HP(G)d .

Proof of Claim 2 We show this claim by induction on m.
When m = 1. For g ∈ Gd , by the definition of the group HP(G)d , the sequence whose

terms are g(
n
1) and the constant sequence g−1 both belong to HP(G)d , and thus the sequence

with terms of form g(
n−1
1 ) = g(

n
1) · g−1 belongs to HP(G)d .

Assume that m ∈ {2, . . . , d}, that the sequence whose terms are h(n−1
m−1) belongs to

HP(G)d for any h ∈ Gd . Let g ∈ Gd , notice that g(
n−1
m ) = g(

n
m) · (g−1)(

n−1
m−1), and by the

definition of the group HP(G)d , the sequence whose terms are g(
n
m) belongs to HP(G)d and

by the induction hypothesis the sequence whose terms are (g−1)(
n−1
m−1) belongs to HP(G)d ,

and thus the sequence with terms of the form g(
n−1
m ) belongs to HP(G)d .

This shows Claim 2. ��
Since Gs is abelian, for m = 0, 1, . . . , s, the set

Hm = {a ∈ Gs : (a(nm))n∈Z+ ∈ H̃ P(G)s}
is a subgroup of Gs .

Claim 3: Hm = Gs for m = 0, 1, . . . , s.

Proof of Claim 3 When m < s, it suffices to show that for any b ∈ Gs−1 and c ∈ G , the
sequence whose terms are [b, c](nm) belongs to H̃ P(G)s . Let β = (b(

n
m))n∈Z+ and γ be the

constant sequence c, then β ∈ HP(G)s−1 and γ ∈ HP(G). By Claim 1 for d = s−1, there
exist ψ ∈ H̃ P(G)s−1 and θ ∈ HP(G)s such that β = ψθ , and thus [ψ, γ ] ∈ H̃ P(G)s . As
θ ∈ GZ+

s , we get that

[β, γ ](n) = [β(n), γ (n)] = [ψ(n)θ(n), γ (n)] = [ψ(n), γ (n)] = [ψ, γ ](n)

for any n ∈ Z+, which implies [β, γ ] = [ψ, γ ] ∈ H̃ P(G)s and the sequence with terms
of the form [b(nm), c] belongs to H̃ P(G)s . As G is s-step nilpotent, the commutator map
(x, y) �→ [x, y] taking Gs−1 × G to Gs is a homomorphism in each coordinate. Thus
[b(nm), c] = [b, c](nm), and the statement follows.

Assume now thatm = s. Since s ≥ 2, the group Gs is connected and so is divisible. Thus
it suffices to show that for a ∈ Gs , we have as ∈ Hs , and thus for all b ∈ Gs−1 and c ∈ G, the
sequence whose terms are [b, c]s(ns) belongs to H̃ P(G)s . By Claim 2, the sequence whose

terms are b(
n−1
s−1) belongs to HP(G)s−1, and the sequence whose terms are cn belongs to

HP(G). By a similar argument for the case m < s, we can get that the sequence with terms

of the form [b(n−1
s−1), cn] belongs to H̃ P(G)s . Notice that [b, c]s(ns) = [b(n−1

s−1), cn], thus the
statement follows.

This shows Claim 3. ��

From Claim 3, as H̃ P(G)s is a group, (a0a
(n1)
1 . . . a

(ns)
s )n∈Z+ ∈ H̃ P(G)s if a0, . . . , as ∈

Hs = Gs . Thus we get that H̃ P(G)s = HP(G)s . Combining Claim 1, we deduce that
HP(G)d is the d th-step commutator subgroup of HP(G) for d = 1, . . . , s. ��
Lemma 3.4 (Gd�)Z+ ∩ HP(G) = HP(G)d · �̃ for d = 1, . . . , s.
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Proof Recall that �̃ = HP(G) ∩ �Z+ . Notice that HP(G)d and �̃ are obviously subgroups
of (Gd�)Z+ ∩ HP(G), and therefore so is HP(G)d · �̃.

We next prove the converse. Let φ = (φ(n))n∈Z+ ∈ (Gd�)Z+ ∩ HP(G), then by the
definition of the group HP(G) there exist g ∈ G and gm ∈ Gm,m = 1, . . . , s such that for
n ∈ Z+

φ(n) = gg
(n1)
1 . . . g

(ns)
s .

As φ ∈ (Gd�)Z+ , we deduce that g, g1, . . . , gs ∈ Gd� inductively. It suffices to show that

the sequence whose terms are g
(nm)
m and the constant sequence g all belong to HP(G)d · �̃.

First, as g ∈ Gd�, there exist h ∈ Gd and γ ∈ � such that g = hγ . By the definition of the
group HP(G)d , we get that the constant sequence h belongs to HP(G)d and the constant
sequence γ belongs to �̃, as was to be shown.

If m ≥ d , since gm ∈ Gm , we get that the sequence whose terms are g
(nm)
m belongs to

HP(G)d , and thus belongs to HP(G)d · �̃.
If 1 ≤ m ≤ d − 1, as gm ∈ Gd�, there exist hm ∈ Gd and γm ∈ � such that gm = hmγm .

Recall that gm ∈ Gm , we get γm = h−1
m gm ∈ Gm and thus the sequence whose terms are

γ
(nm)
m belongs to HP(G).

We next claim that the sequence whose terms are g
(nm)
m (γ −1

m )(
n
m) belongs to HP(G)d .

To prove the claim, notice that the sequence whose terms are g
(nm)
m (γ −1

m )(
n
m) belongs to

HP(G), it suffices to show that g
(nm)
m (γ −1

m )(
n
m) ∈ Gd for all n ∈ Z+. As gmγ −1

m = hm ∈ Gd ,

by Lemma 3.2 we have gkmγ −k
m ∈ Gd for all k ∈ Z+. In particularly, g

(nm)
m (γ −1

m )(
n
m) ∈ Gd for

all n ∈ Z+, and thus the claim follows. From this claim we deduce that the sequence whose

terms are g
(nm)
m belongs to HP(G)d · �̃.

This completes the proof. ��
Lemma 3.5 The group H P(G) is spanned by (HP(G))0 and the elements t∗, t�.

Proof We first show that the group HP(G)2 is included in (HP(G))0. Indeed, for every
n ∈ Z+ the projection πn : HP(G)2 → G2, (ϕ(n))n∈Z+ �→ ϕ(n) is surjective and open,
and G2 is included in G0 and hence connected, we get that the group HP(G)2 is connected
and thus it is included in (HP(G))0.

It is easy to see that any constant sequence is spanned by (HP(G))0 and the element t�.
For g ∈ G, let φg = (φg(n))n∈Z+ ∈ GZ+ such that φg(n) = gn , then φg ∈ HP(G).

We claim that there exist ψ ∈ (HP(G))0 and k ∈ Z such that φg = ψ · (t∗)k . As G is
spanned by G0 and t , there exist h ∈ G0 and k ∈ Z such that g = htk . Since G0 is normal
in G, by Lemma 3.2 we get that ψ = φg · (t∗)−k ∈ (G0)Z+ . As HP(G) is a group and
t∗ ∈ HP(G), ψ ∈ HP(G). There exists some ϕ ∈ HP(G)2 such that ψ = φhϕ. As
φh ∈ HP(G0) ⊂ (HP(G))0, we deduce that ψ ∈ (HP(G))0 as was to be shown.

Recall that the group HP(G) is spanned by the constant sequence, the sequence whose
terms are gn , where g ∈ G and HP(G)2, thus the lemma follows. ��

Now we calculate the pro-nilfactors of the nilsystem in (2) that

Theorem 3.6 Let (X = G/�, T ) be a minimal s-step nilsystem. Assume that G is spanned
by G0 and the element t of G defining the transformation T . For d = 1, . . . , s, let Xd =
G/(Gd+1�), then the maximal d-step pro-nilfactor of (HP(X),G ) is (HP(Xd),G ).
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Proof Let Xd = G/(Gd+1�) and p : X → Xd be the quotient map, and let t ′ = p(t). Then
the transformation induced by T on Xd is the translation by t ′, which also denoted by T .
There exists a natural quotient map p∗ : XZ+ → XZ+

d by (x(n))n∈Z+ �→ (p(x(n)))n∈Z+ .
Moreover p∗ induces a factor map: p∗ : (HP(X),G ) → (HP(Xd),G ).

To show the statement, it is sufficient to show 1

RP[d](HP(X)) = Rp∗ .

As (HP(Xd),G ) is a minimal d-step nilsystem, by Theorem 2.3 we have

RP[d](HP(X)) ⊂ Rp∗ .

We next show the inverse inclusion. Let x, y ∈ HP(X) with p∗(x) = p∗(y). Recall that
HP(X) is the nilmanifold HP(G)/�̃, where �̃ = HP(G) ∩ �Z+ , then there exists some
φ ∈ HP(G) with y = φx, which implies φ ∈ (Gd+1�)Z+ . By Lemma 3.4 we have

φ ∈ (Gd+1�)Z+ ∩ HP(G) = HP(G)d+1 · �̃.

On the other hand, by Lemma 3.5 and Theorem 3.1, the maximal d-step pro-nilfactor of
HP(X) is

HP(G)/(HP(G)d+1 · �̃),

which meaning (x, φx) ∈ RP[d](HP(X)), and so (x, y) ∈ RP[d](HP(X)).
We conclude that the maximal d-step pro-nilfactor of (HP(X),G ) is (HP(Xd),G ). ��

3.3 Proof of Theorem A

Now we are able to give a proof of one of our main results.

Proof of Theorem A Let Xd = G/(Gd+1�) and p : X → Xd be the quotient map, and let
t ′ = p(t). Then the transformation induced by T on Xd is the translation by t ′, which also
denoted by T .

When l = 1, the result is trivial, as the system (N1(X),G1) is conjugate to the system
(X , T ). For l ∈ N, notice that the projection pl : XZ+ → Xl : (x(n))n∈Z+ �→ (x(n))0≤n≤l

induces a factor map

pl : (HP(X),G ) → (Nl+1(X),Gl+1).

By Theorem 3.6, the maximal d-step pro-nilfactor of HP(X) is HP(Xd), thus by Theo-
rem2.3 themaximald-step pro-nilfactor of Nl+1(X) is pl(HP(Xd))which equals Nl+1(Xd).

This completes the proof. ��

3.4 Proof of Theorem B

In this subsection, we will show Theorem B. Proving it, we need some intermediate lemmas.
We start from the following simple observation.

Lemma 3.7 Let (X , T ) be an inverse limit of a sequence of minimal systems {(Xi , T )}i∈N.
Then for every l ∈ N, (Nl(X),Gl) is an inverse limit of the sequence {(Nl(Xi ),Gl)}i∈N.
1 One can see the definition for RP[d] and Rp∗ in Sects. 2.1 and 2.2.
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Lemma 3.8 [15, Lemma 5.4] Let (X , T ) be an inverse limit of a sequence of minimal systems
{(Xi , T )}i∈N. For i, d ∈ N, let Zi,d be the maximal d-step pro-nilfactor of Xi . Then the
maximal d-step pro-nilfactor of X is an inverse limit of the sequence {(Zi,d , T )}i∈N.
Lemma 3.9 [15, Lemma 5.6] Let (X , T ) be a minimal system and d ∈ N. Let R ⊂ X × X
be an equivalence relation of X with R ⊂ RP[d], then the maximal d-step pro-nilfactors of
Y = X/R and X coincide.

Lemma 3.10 [3, Theorem 3.8] Let (X , T ) be a minimal system. IfRP[d] = RP[d+1] for some
d ∈ N, then RP[n] = RP[d] for all n > d.

Theorem 3.11 [6, Theorem 5.7] Let (X , T ) be a minimal system and d ∈ N. Then for l ∈ N,
the maximal d-step pro-nilfactors of Nl(X) and Nl(X∞) coincide, where X∞ = X/RP[∞].

Now we are able to show Theorem B.

Proof of Theorem B Let Xd = X/RP[d] for d ∈ N ∪ {∞}. It follows from Theorem 3.11 that
the maximal d-step pro-nilfactors of Nl(X) and Nl(X∞) coincide.

It suffices to show that the maximal d-step pro-nilfactor of Nl(X∞) is Nl(Xd).
If RP[d] = RP[d+1], then RP[d] = RP[∞] by Lemma 3.10. On this moment, X∞ is equal

to Xd and Nl(X∞) is a d-step pro-nilsystem.
If RP[d] �= RP[d+1]. By Theorem 2.7, there exists a sequence of minimal nilsystems

{(Yi , T )}i∈N such that X∞ = lim←−{Yi }i∈N. Without loss of generality, we may assume that

the nilpotency class of Yi is not less than d for every i ∈ N. Let Xd and Yi,d be the maximal
d-step pro-nilfactors of X and Yi respectively. By Lemma 3.9, Xd is also the maximal d-step
pro-nilfactor of X∞ and thus Xd is an inverse limit of the sequence {Yi,d}i∈N by Lemma 3.8.
As Yi is a minimal nilsystem, the maximal d-step pro-nilfactor of Nl(Yi ) is Nl(Yi,d) by
Theorem A. Note that Nl(X∞) is an inverse limit of the sequence {Nl(Yi )}i∈N by Lemma
3.7, we deduce that the maximal d-step pro-nilfactor of Nl(X∞) is an inverse limit of the
sequence {Nl(Yi,d)}i∈N by Lemma 3.8, which is equal to Nl(Xd).

We conclude that the maximal d-step pro-nilfactor of (Nl(X),Gl) is (Nl(Xd),Gl). ��

4 Simple Arithmetic Progressions In Nilsystems

In the last part of this paper, we first give the example which is mentioned in the introduction.
That is,

Example 4.1 There exists a minimal 2-step nilsystem (Y , T ) and a countable subset � of Y
such that for every y ∈ Y\� the maximal equicontinuous factor of (OT×T 2(y, y), T × T 2)

is not (OT×T 2(π(y), π(y)), T × T 2), where π : Y → Y/RP[1] is the factor map.

Let G = Z × T × T, with the multiplication given by

(k, x, y) ∗ (k′, x ′, y′) = (k + k′, x + x ′, y + y′ + 2kx ′).

Then G is a Lie group. Its commutator subgroup G2 is {0} × {0} × T and G is 2-step
nilpotent. The subgroup � = Z × {0} × {0} is discrete and cocompact. Let Y denote the
nilmanifoldG/� and let Z = G/(G2�). Let α be irrational, t = (1, α, α) and T : Y → Y be
the translation by t . Then (Y , T ) is a 2-step nilsystem.We can also view the nilsystem (Y , T )

as T : T
2 → T

2, (x, y) �→ (x + α, y + 2x + α), and (Z , TZ ) as TZ : T → T, x �→ x + α.
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Since α is irrational, the rotation (Z , TZ ) is minimal and (Y , T ) is minimal too. By
Theorem 3.1, (Z , TZ ) is the maximal equicontinuous factor of (Y , T ). Let π be the factor
map, i.e., π : T

2 → T, (x, y) �→ x . For (x, y) ∈ T
2, π(x, y) = x and

OTZ×T 2
Z
(x, x) = (x, x) + {(nα, 2nα) : n ∈ Z} = {(x + z, x + 2z) : z ∈ T}.

Thus the system (OTZ×T 2
Z
(x, x), TZ × T 2

Z ) is conjugate to the system (Z , TZ ).

Claim: For (a, b) ∈ T
2, the maximal equicontinuous factor of (OT×T 2(a, b, a, b), T × T 2)

is conjugate to the system (OR2a (0, 0), R2a), where Rc : T
2 → T

2, (x, y) �→ (x +α, y + c)
for c ∈ T. In particular, if α, a are rationally independent, the system (OR2a (0, 0), R2a) is
not conjugate to the system (Z , TZ ).

To show the claim, we start from the following simple observation.

Lemma 4.2 Let (X , T ) and (Y , S) be minimal systems. If there exists a continuous onto map
h : X → Y and x ∈ X such that h(T nx) = Sn(h(x)) for all n ∈ Z, then h induces a factor
map between systems (X , T ) and (Y , S).

Now we are in position to show the claim.

Proof of Claim For β ∈ T, let Sβ : T
2 → T

2 be defined by

Sβ(x, y) = (x + α, y + 2x + α + β).

When β = 0, S0 = T . The system (T2, Sβ) is minimal (see for example [4, Lemma 1.25]).
Let Uβ : T

3 → T
3 be defined by

Uβ(x, y, z) = (x + α, y + 2x + α + β, z + 2β).

Step 1: A special case.
Let h : T

4 → T
3 be defined by

h(x, y, z, w) = (x, y, 4y − w).

Note that

(Sβ × S2β)n(0, 0, 0, 0) = (nα, n2α + nβ, 2nα, 4n2α + 2nβ)

and

h
(
(Sβ × S2β)n(0, 0, 0, 0)

) = (nα, n2α + nβ, 2nβ)

= Un
β (0, 0, 0)

= Un
β

(
h(0, 0, 0, 0)

)
,

thus by Lemma 4.2, h induces a factor map:

h : (OSβ×S2β
(0, 0, 0, 0), Sβ × S2β) → (OUβ (0, 0, 0),Uβ).

For any (x1, x2, x3, x4) ∈ OSβ×S2β
(0, 0, 0, 0), we have x3 = 2x1. It follows that h is a

bijection and thus h is a conjugation.
Write L = OUβ (0, 0, 0). Notice that for (x, y1, z), (x, y2, z) ∈ L with y1 �= y2,(

(x, y1, z), (x, y2, z)
) ∈ RP[1](L,Uβ), we deduce that the maximal equicontinuous fac-

tors of systems (L,Uβ) and (ORβ (0, 0), Rβ) coincide. As the system (ORβ (0, 0), Rβ) is
equicontinuous, it is also the maximal equicontinuous factor of (L,Uβ).
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Finally, the maximal equicontinuous factor of (OSβ×S2β
(0, 0, 0, 0), Sβ × S2β) is conjugate

to the system (ORβ (0, 0), Rβ).

Step 2: The general case.
Fix (a, b) ∈ T

2. Let g : T
4 → T

4 be defined by

g(x, y, z, w) = (x − a, y − b, z − a, w − b).

Note that

(T × T 2)n(a, b, a, b) = (a, b, a, b) + (nα, n2α + 2na, 2nα, 4n2α + 4na)

and

g
(
(T × T 2)n(a, b, a, b)

) = (nα, n2α + 2na, 2nα, 4n2α + 4na)

= (S2a × S22a)
n(0, 0, 0, 0)

= (S2a × S22a)
n(g(a, b, a, b)),

thus by Lemma 4.2, g induces a conjugation:

g : (OT×T 2(a, b, a, b), T × T 2) → (OS2a×S22a
(0, 0, 0, 0), S2a × S22a).

Therefore, by Step 1 the maximal equicontinuous factor of (OT×T 2(a, b, a, b), T × T 2)

is conjugate to the system (OR2a (0, 0), R2a).
This completes the proof. ��

4.1 Proof of Theorem C

Before proving Theorem C, we need some lemmas.

Lemma 4.3 [10, Section 3.4] For k1, . . . , kl ∈ N, let g1, . . . , gl be elements of G with
g j ∈ Gk j , and let p1, . . . , pl : Z

r → Z be polynomials with deg p j ≤ k j for j = 1, . . . , l.
Fix a linear ordering on the set Z

r+. Then for every (l1, . . . , lr ) ∈ Z
r+, there exists zl1,...,lr ∈

Gl1+...+lr such that
l∏

j=1

g
p j (n1,...,nr )
j =

∏

I

z
(n1l1 )

...(nrlr )
l1,...,lr

(3)

for all (n1, . . . , nr ) ∈ Z
r+, where I = {0 ≤ l1 ≤ n1} × . . . × {0 ≤ lr ≤ nr } and the factors

in the product on the right-hand side of (3) are multiplied in accordance with the ordering
induced on I from Z

r+ .

Lemma 4.4 [7, Chapter 1, Lemma 4] Let G be an s-step nilpotent group. If 2i + j > s, then
for every y ∈ G j the map from Gi to Gi+ j given by x �→ [y, x] is a group homomorphism.
In particular, for any x1, . . . , xi ∈ G, y ∈ Gs−i and n1, . . . , ni , ni+1 ∈ Z,

[ . . . [[xn11 , xn22 ], . . . , xnii ], yni+1 ] = [. . . [[x1, x2], . . . , xi ], y]n1n2···ni ni+1 .

Definition 4.5 Let G be an s-step nilpotent group. For d = 1, . . . , s, define Ad ⊂ GZ+ as
the group generated by

{(gnk )n∈Z+ : g ∈ Gk, k = d, . . . , s}.
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Proposition 4.6 Let G be an s-step nilpotent group and assume that Gd is divisible for every
d = 2, . . . , s. Then the d th-step commutator subgroup of A1 is Ad for d = 2, . . . , s.

Proof For d = 2, . . . , s, let Ãd be the d th-step commutator subgroup of A1. To show the
statement, we need the following claims. Let d ≥ 2.
Claim 1: For any l1, . . . , ld ∈ N and z ∈ Gl1+...+ld , there exist wd , . . . , wl1+...+ld ∈
Gl1+...+ld such that for all n ∈ N,

z(
n
l1
)...( n

ld
) =

l1+...+ld∏

j=d

wn j

j .

In particular, (z(
n
l1
)...( n

ld
)
)n∈Z+ ∈ Ad .

Proof of Claim 1 Fix l1, . . . , ld ∈ N and let l = l1 + . . . + ld , z ∈ Gl . Notice l ≥ d ≥ 2, then
by the assumption Gl is divisible, and thus there exists some w ∈ Gl such that wl1!···ld ! = z.
Write l1! · · · ld !

(n
l1

)
. . .

(n
ld

) = nl + al−1nl−1 + . . . + adnd , where al−1, . . . , ad ∈ Z. Then

z(
n
l1
)...( n

ld
) = w

l1!···ld !( n
l1
)...( n

ld
) = wnl+al−1nl−1+...+adnd = wnl

l wnl−1

l−1 · · · wnd
d ,

where wi = wai ∈ Gl for i = d, . . . , l − 1 and wl = w, as was to be shown.

We next show that (z(
n
l1
)...( n

ld
)
)n∈Z+ ∈ Ad . By the definition of the group Ad , (wn j

j )n∈Z+ ∈
Ad for every j = d, . . . , l and thus the statement follows. ��
Claim 2: Let φ1, φ2, . . . , φd ∈ A1, then for any (n1, n2, . . . , nd) ∈ N

d one has

[ . . . [φ1(n1), φ2(n2)], . . . , φd(nd)] =
∏

I

z
(n1l1 )

...(
nd
ld
)

l1,...,ld
,

where zl1,...,ld ∈ Gl1+...+ld and I = {(l1, . . . , ld) ∈ N
d : l1 + . . . + ld ≤ s}.

In particular, [. . . [φ1, φ2], . . . , φd ] ∈ Ad .

Proof of Claim 2 Let φ1, φ2, . . . , φd ∈ A1. It follows from Lemma 4.3 that

�(n1, n2, . . . , nd) = [. . . [φ1(n1), φ2(n2)], . . . , φd(nd)] =
∏

I

z
(n1l1 )

...(
nd
ld
)

l1,...,ld
,

where zl1,...,ld ∈ Gl1+...+ld and I = {(l1, . . . , ld) ∈ Z
d+ : l1 + . . . + ld ≤ s}.

We first show that zl1,...,ld = 1G if li = 0 for some i ∈ {1, . . . , d}. Without loss of
generality, assume that l1 = 0. Notice that φ1(0) = 1G and thus

1G = [. . . [φ1(0), φ2(n2)], . . . φd(nd)]
for all n2, . . . , nd ∈ Z+.

On the other hand, we have

1G = �(0, . . . , 0, 0) = z0,...,0
= �(0, . . . , 0, 1) = z0,...,0z0,...,0,1
= �(0, . . . , 0, 2) = z0,...,0z20,...,0,1z0,...,0,2
. . . . . .

which implies that z0,l2,...,ld = 1G for every (0, l2, . . . , ld) ∈ I , as was to be shown.
Thus by Claim 1, we get that � ∈ Ad . ��
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It follows from Claim 2 that Ãd ⊂ Ad for d = 2, . . . , s.
Claim 3: For k ≥ d and g ∈ Gk , one has (gn

d
)n∈Z+ ∈ Ãd .

Proof of Claim 3 We first show this claim for k = s and 2 ≤ d ≤ s. Let g ∈ Gs and let
g1, . . . , gd−1 ∈ G, gd ∈ Gs+1−d such that g = [. . . [g1, g2], . . . , gd ]. As (gni )n∈Z+ ∈ A1

for i = 1, . . . , d and gn
d = [. . . [gn1 , gn2 ], . . . , gnd ] for any n ∈ Z+, by Lemma 4.4 we have

(gn
d
)n∈Z+ ∈ Ãd .

We will prove this claim by the decreasing induction for d . When d = s, it follows by the
argument above for the case k = s and 2 ≤ d ≤ s.

Let d < s and assume that this statement is true for all j = d + 1, . . . , s, i.e.,
(*) for any j ≥ d + 1, (zn

j
)n∈Z+ ∈ Ã j for k ≥ j and z ∈ Gk .

Now for d , we will show that (gn
d
)n∈Z+ ∈ Ãd for k ≥ d and g ∈ Gk inductively on k. It

follows by the argument above for the case k = s and 2 ≤ d ≤ s that (gn
d
)n∈Z+ ∈ Ãd for

g ∈ Gs . Let d ≤ k < s and assume that
(**) (gn

d
)n∈Z+ ∈ Ãd for any j ≥ k + 1 and g ∈ G j .

Let h ∈ Gk and let h1, . . . , hd−1 ∈ G, hd ∈ Gk+1−d such that h = [. . . [h1, h2], . . . , hd ].
Let ϕi = (hni )n∈Z+ for i = 1, . . . , d , then ϕi ∈ A1 and [. . . [ϕ1, ϕ2], . . . , ϕd ] ∈ Ãd .

By Claim 2, for any (n1, n2, . . . , nd) ∈ N
d ,

[ . . . [ϕ1(n1), ϕ2(n2)], . . . , ϕd(nd)] =
∏

I

z
(n1l1 )

...(
nd
ld
)

l1,...,ld
,

where zl1,...,ld ∈ Gl1+...+ld and I = {(l1, . . . , ld) ∈ N
d : l1 + . . . + ld ≤ s}.

By taking n1 = . . . = nd = n, we have

[ . . . [ϕ1(n), ϕ2(n)], . . . , ϕd(n)] =
∏

I

zl1,...,ld
( n
l1
)...( n

ld
)
.

In particular, z1,...,1 = h.
Fix (l1, . . . , ld) ∈ N

d with d + 1 ≤ l ≤ s, where l = l1 + . . . + ld . By Claim 1, there
exist wd , . . . , wl ∈ Gl ⊂ Gd+1 such that for all n ∈ N

z
( n
l1
)...( n

ld
)

l1,...,ld
=

l∏

j=d

wn j

j .

Therefore by the induction hypothesis (*),

(wnl
l )n∈Z+ ∈ Ãl , (wnl−1

l−1 )n∈Z+ ∈ Ãl−1, . . . , (wnd+1

d+1 )n∈Z+ ∈ Ãd+1,

and by (**), (wnd
d )n∈Z+ ∈ Ãd . Notice that Ãd is a group and Ãl ⊂ . . . ⊂ Ãd , thus

(zl1,...,ld
( n
l1
)...( n

ld
)
)n∈Z+ = (wnl

l )n∈Z+ · · · (wnd
d )n∈Z+ ∈ Ãd .

From this we get that
( ∏

I\{(1,...,1)}
zl1,...,ld

( n
l1
)...( n

ld
)
)

n∈Z+
∈ Ãd ,

and thus (hn
d
)n∈Z+ ∈ Ãd , as was to be shown.

This completes the proof. ��
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Recall that Ad is generated by

{(gnk )n∈Z+ : g ∈ Gk, k = d, . . . , s},
thus by Claim 3, Ad ⊂ Ãd .

We conclude that Ad is the d th-step commutator subgroup of A1 for d = 2, . . . , s. ��
Theorem 4.7 [7, Chapter 15, Theorem 7] Let (X = G/�, T ) be a minimal s-step nilsystem.
For x ∈ X, set

H Px (X) = {φ ∈ HP(X) : φ(0) = x}.
Then for mX -almost every x ∈ X, the nilsystem (HPx (X), τ ) is minimal.

Now we are able to show Theorem C.

Proof of Theorem C By Theorem 4.7, there is a full-measure subset � of X such that
(HPx (X), τ ) is minimal for every x ∈ �. Recall that HP(G) is a nilpotent Lie group,
it follows that HPe(G) is also a nilpotent Lie group. Write

L(X) = HPe(G)/
(
HPe(G) ∩ �Z+)

.

For x ∈ X , let g ∈ G be a lift of x and let tx = g−1tg. Define t∗x , g� ∈ GZ+ as

t∗x = 1G × tx × t2x × . . . , and g� = g × g × g × . . . .

and let τx , σg be the translations by t∗x and g� respectively. Note that σg is a transformation
of XZ+ and τx is a transformation of L(X) as t∗x ∈ HPe(G).

Claim 1: For any x ∈ X , σg induces a conjugation: σg : (L(X), τx ) → (HPx (X), τ ).

Proof of Claim 1 Recall that tx = g−1tg, then g · tnx = tn · g for all n ∈ Z, which implies
that σgτxφ = τσgφ for any φ ∈ XZ+ , and thus σg induces a factor map: σg : (L(X), τx ) →
(HPx (X), τ ). Note that g�HPe(G) = {φ ∈ HP(G) : φ(0) = g}, and thus g� is a
homeomorphism of L(X) and HPx (X). This shows that σg : (L(X), τx ) → (HPx (X), τ )

is a conjugation. ��

Claim 2: HPe(G) is generated by
(
HPe(G)

)0 and τx .

Proof of Claim 2 Note tx t−1 = g−1tgt−1 ∈ G0 and thus G is spanned by G0 and tx .
Wefirst show that the group HPe(G)2 is included in (HPe(G))0. Indeed, for every n ∈ Z+

the projection πn : HPe(G)2 → G2, (ϕ(n))n∈Z+ �→ ϕ(n) is surjective and open, and G2 is
included in G0 and hence connected, we get that the group HPe(G)2 is connected and thus
it is included in (HPe(G))0.

For g ∈ G, let φg = (φg(n))n∈Z+ ∈ GZ+ such that φg(n) = gn , then φg ∈ HPe(G).
We claim that there exist ψ ∈ (HP(G)e)

0 and k ∈ Z such that φg = ψ · (t∗x )k . As G
is spanned by G0 and tx , there exist h ∈ G0 and k ∈ Z such that g = htkx . Since G0 is
normal in G, by Lemma 3.2 we get ψ = φg · (t∗x )−k ∈ (G0)Z+ . As HPe(G) is a group and
t∗x ∈ HPe(G), ψ ∈ HPe(G). There exists some ϕ ∈ HPe(G)2 such that ψ = φhϕ. As
φh ∈ HPe(G0) ⊂ (HPe(G))0, we deduce that ψ ∈ (HPe(G))0 as was to be shown.

Recall the group HPe(G) is spanned by φg for g ∈ G and HPe(G)2, thus the claim
follows. ��
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By Claim 1, (HPx (X), τ ) is conjugate to the system (L(X), τx ). It follows form Theo-
rem 3.1 and Claim 2 that the maximal d-step pro-nilfactor of (L(X), τx ) is

(HPe(G)/
(
HPe(G)d+1 · (HPe(G) ∩ �Z+)

)
, τx ).

We next compute the commutator subgroups of HPe(G). To do this, we assume that G0

is simply connected.
Claim 3: The d th-step commutator subgroup of HPe(G) is generated by

{(gnk )n∈Z+ : g ∈ Gk, k = d, . . . , s},
for d = 1, . . . , s.

Proof of Claim 3 As G0 is simply connected, Gi is divisible for every i = 2, . . . , s. Thus by
Proposition 4.6, it suffices to show HPe(G) = A1. Recall that A1 is generated by

{(gnk )n∈Z+ : g ∈ Gk, k = 1, . . . , s}.
For d ≥ 2 and g ∈ Gd , there is some h ∈ Gd such that hd! = g. Write d!(nd

) =
nd + ad−1nd−1 + . . . + a1n, where ad−1, . . . , a1 ∈ Z. Then

g(
n
d)hd!(nd) = hn

d+ad−1nd−1+...+a1n = hn
d

d hn
d−1

d−1 · · · hn1,
where hi = hai ∈ Gd , i = 1, . . . , d − 1 and hd = h. By the definition of A1, we have
(hn

i

i )n∈Z+ ∈ A1 for every i = 1, . . . , d . This shows that HPe(G) ⊂ A1.
On the other hand, for d ∈ N there exist b0, b1, . . . , bd ∈ Z such that nd = bd

(n
d

) + . . . +
b1

(n
1

) + b0. Let n = 0, we get b0 = 0. Then for z ∈ Gd ,

zn
d = zbd(

n
d)+...+b1(

n
1) = z

(nd)
d · · · z(

n
1)

1 ,

where zi = zbi ∈ Gd for i = 1, . . . , d . By the definition of HPe(G), we have (z
(ni)
i )n∈Z+ ∈

HPe(G) for every i = 1, . . . , d . This shows that A1 ⊂ HPe(G).
From this, we deduce that A1 = HPe(G). ��
For l ∈ N, let pl be the projection pl : XZ+ → Xl : (x(n))n∈Z+ �→ (x(n))1≤n≤l . For any

n ∈ Z, we have pl(τ nx�) = τ nl x
l , where x� ∈ XZ+ is the constant sequence x for x ∈ X .

Fix x ∈ �. Notice that x� ∈ HPx (X) and the system (HPx (X), τ ) is minimal, it follows
from Lemma 4.2 that pl induces a factor map pl : (HPx (X), τ ) → (Ll

x (X), τl). Moreover,
there is a commutative diagram:

(L(X), τx )

pl

σg
(HPx (X), τ )

pl

(Ll
eX (X), τl,x )

σl,g
(Ll

x (X), τl)

where τl,x , σl,g are translations by tx × t2x × . . . × t lx and g × . . . × g (l times) respectively.

Let HP(l)
e (G) = pl(HPe(G)) = {(φ(n))1≤n≤l : φ ∈ HPe(G)}, where pl is the projec-

tion pl : GZ+ → Gl : (φ(n))n∈Z+ �→ (φ(n))1≤n≤l , then HP(l)
e (G) is a nilpotent Lie group

and its discrete subgroup is HP(l)
e (G) ∩ �l = �̃(l). Moreover, for d = 1, . . . , s the d th-step

commutator subgroup HP(l)
e (G)d of HP(l)

e (G) is pl(HPe(G)d) which is generated by

{(gnk )1≤n≤l : g ∈ Gk, k = d, . . . , s}.
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Clearly, we can view Ll
eX (X) as the nilmanifold HP(l)

e (G)/�̃(l), and thus the maximal
d-step pro-nilfactor of (Ll

x (X), τl) is conjugate to the system
(
HP(l)

e (G)/
(
HP(l)

e (G)d+1 · �̃(l)), τl,x

)
.

This completes the proof. ��
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