
Journal of Dynamics and Differential Equations (2024) 36:515–534
https://doi.org/10.1007/s10884-022-10165-y

Instability of H1-stable Periodic Peakons for the
�-Camassa-Holm Equation

Xijun Deng1 · Aiyong Chen2

Received: 9 December 2021 / Revised: 12 April 2022 / Accepted: 13 April 2022 /
Published online: 16 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
By applying the method of characteristics, we prove that the periodic peakons of the μ-
Camassa-Holm (μCH) equation are unstable underW 1,∞-perturbations. Also, we show that
small initial W 1,∞-perturbations of the above periodic peakons can lead to the finite time
blow-up in the nonlinear evolution of the μCH equation.

Keywords μ-Camassa-Holm equation · Periodic peakon · Instability

1 Introduction

In this paper, we are concerned with the dynamical stability of peaked periodic waves to the
following integrable μCH equation

μ(ut ) − uxxt = −2μ(u)ux + 2uxuxx + uuxxx , t > 0, x ∈ S1 = R/Z, (1)

where u(t, x) is a real-valued spatially periodic function and μ(u) = ∫
S1 u(t, x)dx denotes

its mean. This equation was introduced in [1] as an integrable equation arising in the study of
the diffeomorphism group of the circle, and it describes the propagation of weakly nonlinear
orientation waves in a massive nematic liquid crystal with external magnetic field and self-
interaction.

TheμCH equation (1) is a midway equation between the following well-known Camassa-
Holm (CH) equation [2, 3]

ut − uxxt + 3uux = 2uxuxx + uuxxx , (2)
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and the Hunter-Saxton (HS) equation [4]

− utxx = 2uxuxx + uuxxx . (3)

All the three equations (1)-(3) share many common properties. For instance, they are all com-
pletely integrable in the sense that they all have a Lax pair representation, a bi-Hamiltonian
structure, and an infinite sequence of conservation laws (see [1, 6, 7]). Similar to Eqs.(2)
and (3), Eq.(1) can be also regarded as a geodesic equation with respect to a right invariant
Riemannian metric induced by the μ inner product

< f , g >μ= μ( f )μ(g) +
∫

S1
f ′(x)g′(x)dx . (4)

Moreover, they all can be written as Euler-Arnold equations on the regular dual of the Lie
algebra TeDi f f (S1) = vect(S1) of smooth vector fields on the circle (see [9–11]). Besides,
they all admit wave breaking phenomenon, i.e. the solution remains bounded but its slope
becomes unbounded in finite time, even though it admits initially smooth solutions (see [4–6,
8, 12–14, 24]).

Set A(ϕ) = μ(ϕ) − ϕxx , then the μCH equation (1) can be rewritten in the following
conservation form

ut + uux = −A−1∂x

(

2μ(u)u + 1

2
u2x

)

, (5)

where A−1 = (μ−∂2x )
−1 is the operator defined by A−1u(x) = g∗u = ∫

S1 g(x− y)u(y)dy,
and the Green’s function g(x) of the operator A−1 is given by the explicit form

g(x) = 1

2
(x2 − x) + 13

12
, x ∈ S1, (6)

and is extended periodically to the real line. In other words,

g(x − x ′) = 1

2
(x − x ′)2 − 1

2
|x − x ′| + 13

12
, x, x ′ ∈ S1,

which shows that g ∈ H1
per (S

1) ∩ W 1,∞(S1) is a piecewise C1 function with the maximum

at g(0) = g(1) = 13
12 and the minima at g( 12 ) = 23

24 .
More recently, Khesin et al. [1] studied the well-posedness and wave breaking of theμCH

equation (1). They proved that the periodic Cauchy problem is locally well posed in Hs for
s > 3

2 . Moreover, they also showed that the solutions breakdown in finite time provided
that the initial data u0 satisfies 4|μ(u0)| ≤ |u′

0|L2 . Following closely the ideas used in [19,
20], Tiǧlay [25] studied the periodic Cauchy problem for μCH equation (1) and proved the
existence and uniqueness of global conservative weak solutions. This global conservative
solution is consistent with the three conserved quantities of the μCH equation:

H0[u] =
∫

S1
udx, H1[u] =

∫

S1
(μ(u)u + u2x )dx, H2[u] =

∫

S1
(μ(u)u2 + 1

2
uu2x )dx .

(7)

An important feature of the CH equation is that it admits peakon solutions. Furthermore,
its peakon solutions are all orbitally stable in the non-periodic case [15] as well as in the
periodic case [17, 18]. Analogous to the CH equation, it was shown in [8] that the μCH
equation also admits peakons of the form:

u(x, t) = cφ(x − ct), φ(x) = 1

26
(12x2 + 23), x ∈

[

−1

2
,
1

2

]

, (8)
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Fig. 1 The periodic peakon ϕ(x) of Eq. (1) for c = 1

where c ∈ R and φ is extended periodically to the real line. It should be noted here that the
above peakon solution (8) can be reformulated as

u(x, t) = cϕ(x − ct), ϕ(x) = 6

13
x(x − 1) + 1, x ∈ S1, (9)

where we identify S1 with the interval [0, 1] and view functions on S1 as periodic functions
on the real line of period one (see Fig. 1). We can easily find that it admits the following
relationship between the Green’s function g(x) and ϕ(x):

ϕ(x) = 12

13
g(x). (10)

In other words, the corresponding traveling peaked periodic wave equation of the μCH
equation (1) can be rewritten as

− 13

12
g′ + gg′ + g′ ∗ (2μ(g)g + 1

2
g′2) = 0, x ∈ S1, (11)

where the nonlocal equation is piecewise C1 on both sides from the peak at x = 0 or x = 1.
Notice that this traveling peaked periodic wave equation (11) has nothing to do with the wave
speed c, then we can take c = 1 for simplicity in the rest of the paper.

By virtue of the inequalities related to the three conservation laws (7), it was proved in [21]
that the periodic peakon u(x, t) = φ(x − t) is dynamically stable under small perturbations
in the energy space H1(S1). Liu, Qu and Zhang [22] proved that the periodic peakons of
the modified μCH equation are orbitally stable. Qu, Zhang, Liu and Liu [23] further proved
that the periodic peakons of the generalizedμCH equation are orbitally stable. We reproduce
here the corresponding result from [21].
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Theorem 1 [21] For every ε > 0 there is a δ > 0 such that if u ∈ C([0, T ), H1(S1)) is a
solution to the μCH equation (1) with

‖u(·, 0) − φ‖H1(S1) < δ,

then

‖u(·, t) − φ(· − ξ(t) − 1

2
)‖H1(S1) < ε, t ∈ [0, T ),

where ξ(t) is any point where the function u(·, t) attains its maximum.
The purpose of this work is to study the problem of stability of the periodic peakon

in the time evolution of the μCH equation. More precisely, we will prove that the peaked
periodic waves are all unstable in despite of the linear evolution or nonlinear evolution for
its perturbations. It should be noted here that Theorem 1 only implies that H1-norm of the
solution is sufficiently close to H1-normof a translated peaked periodicwave,which certainly
does not exclude the growth of W 1,∞-norm of the perturbation. As a matter of fact, we shall
prove that the W 1,∞-norm of the perturbation can blow up in a finite time.

Most recently, the question of stability of peakons beyond the H1 orbital stability [15–
18, 21] had been studied for some different important models. For instance, Natali and
Pelinovsky [26] proved that peaked solitary waves of the CH equation are strong unstable
with respect to piecewise C1 perturbations. Madiyeva and Pelinovsky [27] further proved
that the peaked periodic waves for the CH equation are strongly unstable with respect to
W 1,∞ perturbations. Similarly to [26] and [27], Chen and Pelinovsky [28] proved that the
peakon solutions for the Novikov equation were also unstable under W 1,∞ perturbations.
Moreover, they also established the local well-posedness result of the initial-value problem
in H1(R)∩W 1,∞(R). It should be noted here that the study performed in [26–28] is inspired
by the work on smooth and peaked periodic waves in the reduced Ostrovsky equation [30,
31], in which smooth periodic waves were linearly and nonlinearly stable, whereas peaked
periodic waves were proved to be linearly unstable. Due to the lack of global well-posedness
in the space H1, the question of nonlinear instability of peaked periodic waves for the reduced
Ostrovsky equation remains open.

Our main result of this paper is reformulated as the following theorem.

Theorem 2 For every δ > 0 there exists a t1 > 0 and u0 ∈ H1
per (S

1)∩W 1,∞(S1) satisfying

‖u0 − ϕ‖H1(S1) + ‖u′
0 − ϕ′‖L∞(S1) < δ,

such that the local solution u ∈ C([0, T ), H1
per (S

1) ∩ W 1,∞(S1)) to the μCH equation (1)
with the initial date u0 and T > t1 satisfies

‖ux (·, t1) − ϕ′(· − ξ(t1))‖L∞(S1) ≥ 1,

where ξ(t) is a point of peak of the function u(·, t) on S1. Moreover, there exist u0 such that
the maximal existence time T is finite.

The proof of Theorem 2 mainly relies on the method of characteristics, and is inspired
by the pioneer work of [26, 27] where the instability of the peakons and periodic peakons
of the CH equation is proved. The present work here is similar, but there are also differ-
ences. The main difference lies in that in [27] the Green function g(x) associated with
the convolution operator ( f ∗ g)(x) = ∫

S1 f (x − y)g(y)dy can be represented explic-

itly as g(x) = cosh( 12−|x |)
2 sinh( 12 )

, x ∈ [− 1
2 ,

1
2 ], whereas here the Green function is g(x) =

123
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1
2 (x

2 − |x |) + 13
12 , x ∈ [− 1

2 ,
1
2 ]. However, these two Green functions also have common

characters, that is, both of them are piecewise smooth. Thus, it turns out to be enough to
ascertain that in some sense that the μCH equation still keeps similar dynamical evolution
behaviour as the CH equation. In addition, it should be remarked here that the above Green
function for the μCH equation is piecewise smooth over the interval [− 1

2 ,
1
2 ] and x = 0

is the peak, and thus we have to split this interval into two subintervals [− 1
2 , 0) and (0, 1

2 ]
and analyze the corresponding problem separately. This will make the process more tedious.
For the sake of convenience in researching the problems, in view of translation invariance
one can shift the interval from [− 1

2 ,
1
2 ] to [0, 1], and then the corresponding Green function

becomes g(x) = 1
2 (x

2 − x) + 13
12 . It is easily seen that the Green function now is sufficiently

smooth over (0, 1) and its two peaks 0 and 1 are exactly the two endpoints, which is more
convenient for us to analyze the problem. Therefore, we choose the Green function for the
μCH equation to be g(x) = 1

2 (x
2 − x) + 13

12 , x ∈ [0, 1] throughout this paper.
The remainder of this paper is organized as follows. In Sect. 2, we define weak solutions

to the μCH equation and derive the evolution equations for perturbations near the peaked
periodic wave. In Sect. 3, we study the linearized evolution equations for perturbations to
the peaked periodic wave. By taking an approach similar to [27], we simplify the linearized
evolution equation and solve it explicitly by using the method of characteristics. Moreover,
we also show that the linearized instability in H1 is related to the two conservative quantities
H1(u) and H2(u) in (7). In Sect. 4, we study the nonlinear evolution equations for peaked
perturbations to the peaked periodic wave. By applying the method of characteristics, we
prove that the W 1,∞ norm of the perturbation can grow and even blows up in finite time.
Similar to [26, 27], we confirm once again that the passage from the linear to the nonlinear
theory is false in H1 as was stated in [16].

2 Peaked Periodic Waves asWeak Solutions

We first rewrite the Cauchy problem of the μCH equation (1) in the form

{
ut + uux + Q[u] = 0, t > 0,
u|t=0 = u0,

(12)

where

Q[u](x) :=
∫

S1
g′(x − y)

(

2μ(u)u(y) + 1

2
[u′(y)]2

)

dy, x ∈ S1. (13)

The properties of Q[u](x) are described in the following lemma.

Lemma 1 If u ∈ H1
per (S

1), then Q[u] ∈ C0
per (S

1). Furthermore, if u ∈ W 1,∞(S1), then

Q[u] is Lipschitz on S1.

Proof Q[u](x) can be rewritten as the explicit form

Q[u](x) =
∫ x

0
(x − y − 1

2
)

(

2μ(u)u(y) + 1

2
[u′(y)]2

)

dy

+
∫ 1

x
(x − y + 1

2
)

(

2μ(u)u(y) + 1

2
[u′(y)]2

)

dy.
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Each integral is continuous since it is given by an integral of the absolutely integrable function
if u ∈ H1

per (S
1). If u ∈ H1

per (S
1) ∩ W 1,∞(S1), then 2μ(u)u + 1

2u
′2 is also bounded, so that

each integral is Lipschitz on S1. 
�
We say that u ∈ C([0, T ), H1

per (S
1) ∩ W 1,∞(S1)) is a weak solution to the Cauchy

problem (12) for some maximal existence time T > 0 if
∫ T

0

∫

S1

(

uψt + u2

2
ψx − Q[u]ψ

)

dxdt +
∫

S1
u0(x)ψ(0, x)dx = 0 (14)

is satisfied for every test function ψ ∈ C1([0, T ] × S1) such that ψ(T , ·) = 0.
Following [27], in order to consider peaked periodic wave solutions with a peak on S1

placed at the point x = ξ(t) for every t ∈ [0, T ), we introduce the following function class

C1
ξ := {u ∈ H1

per (S
1) ∩ W 1,∞(S1) : ux ∈ C1(S1\{ξ})}. (15)

Similarly to [27], the location of the peak moves with its local characteristic speed.

Lemma 2 Assume that u ∈ C([0, T ), H1
per (S

1) ∩ W 1,∞(S1)) is a weak solution to the
μCH equation in the form (12) for some T > 0 with a jump of ux across x = ξ(t) such
that u(t, ·) ∈ C1

ξ(t), t ∈ [0, T ). Then, we have ξ ∈ C1(0, T ) and ξ ′(t) = u(t, ξ(t)), for
t ∈ [0, T ).

Note that the identity (11) can be checked directly by explicit computation, this then verifies
the validity of the peakons u(x, t) = ϕ(x − t) as solutions to the μCH equation.

In order to study the evolution dynamics near the peaked periodic wave, we need to search
a weak solution u ∈ C([0, T ), H1

per (S
1) ∩ W 1,∞(S1)) to the μ-CH equation in the form

(14), for which there exists ξ(t) = t + a(t) ∈ S1 for t ∈ [0, T ) such that u(t, ·) ∈ C1
ξ(t) for

t ∈ [0, T ). We now decompose this weak solution as in the form:

u(t, x) = ϕ(x − t − a(t)) + υ(t, x − t − a(t)), t ∈ [0, T ), x ∈ S1, (16)

where a(t) is the deviation of the peak position from its unperturbed position, and υ(t, x) is
the perturbation to the peaked periodic wave ϕ. By Lemma 2, we can know that a ∈ C1(0, T )

satisfies the equation

da

dt
= υ(t, 0), t ∈ [0, T ). (17)

Substituting (16) and (17) into the Cauchy problem (12) yields the following Cauchy
problem for the peaked perturbation υ to the peakon ϕ:

⎧
⎪⎪⎨

⎪⎪⎩

υt = (1 − 12
13g)υx + 12

13 (υ|x=0 − υ)gx + (υ|x=0 − υ)υx

− 24
13g

′ ∗ (ῡg + υ + 1
2 gxυx ) − Q[υ], t ∈ [0, T ),

υ|t=0 = υ0,

(18)

where

ῡ =
∫

S1
υ(t, x)dx .

Here we have used the relation (10)(ϕ(x) = 12
13g(x)) and replaced x − t − a(t) by x thanks

to the translational invariance of the system (12) with (13).
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3 Linearized Evolution Near the Periodic Peakon

In this section, we study the linearized evolution equation, which can be obtained by the
truncation of the nonlinear equation in system (18) at the linear terms in υ:

υt = (1 − 12

13
g)υx + 12

13
(υ|x=0 − υ)gx − 24

13
g′ ∗ (ῡg + υ + 1

2
gxυx ). (19)

Byusing straightforward computation,we can easily obtain the following result, which allows
us to simplify the nonlocal terms in (19).

Lemma 3 For υ ∈ H1
per (S

1), we have

g′ ∗ (ῡg + υ + 1

2
gxυx ) = x

12
(x + 1)(5 − 2x)ῡ − 1

2

∫ x

0
υ(y)dy

+ 1

2
(x − 1

2
)[υ(0) − υ(x)].

(20)

From Lemma 3, we can rewrite the Cauchy problem for the linear equation (19) in the
following equivalent form:

{
υt = 6

13 (x − x2)υx − 2x(x+1)(5−2x)
13 ῡ + 12

13w, t > 0,
υ|t=0 = υ0,

(21)

where

w(t, x) :=
∫ x

0
υ(t, y)dy, ῡ(t) :=

∫ 1

0
υ(t, y)dy = w(t, 1). (22)

We now consider the linearized Cauchy problem (21) in the space C1
0,1 defined by (15) with

ξ = 0 and ξ = 1 . The next result shows that both υ(t, 0) and ῡ(t) don’t depend on t .

Lemma 4 Assume that there exists a solution υ ∈ C(R+,C1
0,1) to the Cauchy problem (21).

Then, υ(t, 0) = υ0(0) and ῡ(t) = ῡ0 for every t ∈ R
+.

Proof If υ ∈ C(R+,C1
0,1), then w ∈ C(R+,C1(S1)) so that w(t, 0) = 0 in view of (22).

Thus, it follows from (21) that

lim
x→0+ υt (t, x) = lim

x→1− υt (t, x) = 0, t > 0,

due to υ(t, ·) ∈ C1
0,1 for every t ∈ R

+. Hence, υ(t, 0) = υ0(0) for every t ∈ R
+.

Integrating the evolution equation (21) with respect to x on S1 and using integration by
parts, we get for every t ∈ R

+:

d

dt
ῡ(t) =

∫ 1

0

[
6

13
(x − x2)υx − 2

13
x(x + 1)(5 − 2x)ῡ + 12

13
w(t, x)

]

dx

= − 6

13

∫ 1

0
(1 − 2x)υ(t, x)dx − 2

13
ῡ

∫ 1

0
x(x + 1)(5 − 2x)dx

+12

13

∫ 1

0
w(t, x)dx

= − 6

13
ῡ + 12

13

∫ 1

0
xυ(t, x)dx − 6

13
ῡ + 12

13

∫ 1

0
w(t, x)dx .

123
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= −12

13
ῡ + 12

13
w(t, 1) − 12

13

∫ 1

0
w(t, x)dx + 12

13

∫ 1

0
w(t, x)dx

= 0.

Therefore, ῡ(t) = ῡ(0) for every t ∈ R
+. 
�

Following the idea of [26–28], we proceed to solve the linearized problem (21) by using
the method of characteristics. For this, we first define the characteristic curves X(t, s) as

{
dX
dt = 6

13 (X
2 − X),

X(0, s) = s.
(23)

For any fixed s ∈ S1, the initial-value problem (23) has a unique solution since the right hand
side of (23) is Lipschitz. Moreover, it follows that

Xs(t, s) = exp

(
6

13

∫ t

0
(2X(τ, s) − 1)dτ

)

(24)

thus X(t, ·) is a diffeomorphism on S1 for any t ∈ R
+.

Solving (23) explicitly, we obtain

X(t, s) = s

s + (1 − s)e
6
13 t

, t ∈ R
+, s ∈ [0, 1] (25)

such that

lim
s→0+ X(t, s) = 0 and lim

s→1− X(t, s) = 1.

Substituting υ = wx into (21) yields

wt x = 6

13
(x − x2)wxx − 2x(x + 1)(5 − 2x)

13
ῡ + 12

13
w, x ∈ [0, 1]

which can be integrated with respect to x as follows:

wt = 6

13
(x − x2)wx + 6

13
(2x − 1)w + x2(x2 − 2x − 5)

13
ῡ, x ∈ [0, 1]

where the integration constant is zero thanks to the boundary conditionw(t, 0) = 0 for every
t ∈ R

+.
Along each characteristic curve x = X(t, s) satisfying (23), function W (t, s) :=

w(t, X(t, s)) satisfies the initial-value problem:
{

dW
dt = 6

13 (2X − 1)W + X2(X2−2X−5)
13 ῡ,

W (0, s) = w0(s),
(26)

where w0(x) = ∫ x
0 υ0(y)dy. After simple computation, we can find that

∂X

∂s
(t, s) = e

6
13 t

[s + (1 − s)e
6
13 t ]2

, t ∈ R
+, s ∈ [0, 1], (27)

such that

lim
s→0+

∂X

∂s
(t, s) = e− 6

13 t and lim
s→1−

∂X

∂s
(t, s) = e

6
13 t .

123
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Integrating (26) with an integrating factor yields

W (t, s) = ∂X

∂s

[

w0(s) − ῡ

6
s2(s + 5) − ῡ

6
· s2(1 − s)

s + (1 − s)e
6
13 t

+ ῡs2e− 6
13 t

]

,

t ∈ R
+, s ∈ [0, 1],

(28)

such that

lim
s→0+ W (t, s) = 0 and lim

s→1− W (t, s) = ῡ.

Along each characteristic curve x = X(t, s) satisfying (23), V (t, s) := υ(t, X(t, s))
satisfies the initial-value problem:

{
dV
dt = 12

13W (t, s) + 2X(2X2−3X−5)
13 ῡ,

V (0, s) = υ0(s).
(29)

By using the chain rule

∂W

∂s
(t, s) = V (t, s)

∂X

∂s
(t, s),

we can obtain

V (t, s) = υ0(s) − 3s2 + 10s

6
ῡ + 2sῡe− 6

13 t − [2s(s − 1)2e
6
13 t + s2(1 − 2s)]ῡ

6[s + (1 − s)e
6
13 t ]2

+ 2(e
6
13 t − 1)

(1 − e
6
13 t )s + e

6
13 t

[w0(s) − s2(s + 5)

6
ῡ − s2(1 − s)ῡ

6(s + (1 − s)e
6
13 t )

+ ῡs2e− 6
13 t ]

(30)

such that

lim
s→0+ V (t, s) = υ0(0) and lim

s→1− V (t, s) = υ0(1) = υ0(0).

The next lemma follows from the solutions to the initial-value problems (23),(26) and (29).

Lemma 5 For every υ0 ∈ C1
0,1, there exists the unique solution υ ∈ C1(R+,C1

0,1) to the
Cauchy problem (21).

Proof Firstly, since υ0 ∈ C1
0,1, the map (0, 1)  s �→ V (t, s) ∈ R is C1 for every t ∈ R

+.
Secondly, since the right-hand side of (30) implies that V (t, 0) = v0(0) = v0(1) = V (t, 1),
then V (t, ·) ∈ C1

0,1 for every t ∈ R
+. Finally, it follows from (27) that the change of

coordinates R+ × (0, 1)  (t, s) → (t, X) ∈ R
+ × (0, 1) is a diffeomorphism. Combining

thiswith the compactness of S1 leads to that the solution v(t, ·) = V (t, s = X−1(t, ·)) ∈ C1
0,1

for every t ∈ R
+. 
�

By analyzing the exact solution (30), it is shown in the following lemma that υ(t, ·)
remains bounded in the L∞ norm.

Lemma 6 Assume that υ0 ∈ C1
0,1 in the Cauchy problem (21). Then, there exists M > 0 such

that

‖υ(t, ·)‖L∞(S1) ≤ M, t ∈ R
+. (31)
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Proof By Lemma 5, the unique solution to the Cauchy problem (21) with υ0 ∈ C1
0,1 satisfies

υ(t, ·) ∈ C1
0,1 for every t ∈ R

+. Using Sobolev’s embedding theorem leads to υ(t, ·) ∈
L∞(S1) for every t ∈ R

+. So we only need to show that (31) holds true uniformly for
t ∈ R

+.
Since X(t, ·) is a diffeomorphism on S1 for any t ∈ R

+, we have

‖υ(t, ·)‖L∞(S1) = max
s∈[0,1] |V (t, s)|,

Note that V (t, 0) = V (t, 1) = υ0(0) ∈ L∞, then it suffices to consider the exact solution
(30) for s ∈ (0, 1) and t ∈ R

+.
For s ∈ (0, 1) and t ∈ R

+, we have
∣
∣
∣
∣
∣

2s(s − 1)2e
6
13 t

6[s + (1 − s)e
6
13 t ]2

∣
∣
∣
∣
∣
= 2s(s − 1)2e− 6

13 t

6[se− 6
13 t + (1 − s)]2

≤ 2s(s − 1)2

6(1 − s)2
= s

3
≤ 1

3
,

and
∣
∣
∣
∣
∣

s2(1 − 2s)

6[s + (1 − s)e
6
13 t ]2

∣
∣
∣
∣
∣
≤ s2|1 − 2s|

6s2
≤ 1

6
,

which leads to
∣
∣
∣
∣
∣
[2s(s − 1)2e

6
13 t + s2(1 − 2s)]ῡ

6[s + (1 − s)e
6
13 t ]2

∣
∣
∣
∣
∣
≤

(
1

3
+ 1

6

)

|ῡ| = 1

2
|ῡ|.

Since υ0, w0 ∈ L∞(S1), we only need to estimate the function Y (t, s) denoted by

Y (t, s) := 2(e
6
13 t − 1)

(1 − s)e
6
13 t + s

.

Notice that

∂Y

∂s
(t, s) := 2(e

6
13 t − 1)2

[(1 − s)e
6
13 t + s]2

> 0,

this means that Y (t, s) is monotonically increasing with respect to s for any fixed t ∈ R
+.

Thus, for s ∈ (0, 1) it follows that

0 ≤ Y (t, s) ≤ Y (t, 1−) = 2(e
6
13 t − 1) ≤ 2e

6
13 t .

On the other hand, for s ∈ (0, 1) and t ∈ R
+, we also have

0 ≤ Y (t, s) = 2(1 − e− 6
13 t )

(1 − s) + se− 6
13 t

≤ 2

1 − s
.

Notice that

w0(s) − s2(s + 5)

6
ῡ − s2(1 − s)ῡ

6(s + (1 − s)e
6
13 t )

+ ῡs2e− 6
13 t

=
∫ s

1
υ0(s

′)ds′ +
[
6 − s2(s + 5)

6
− s2(1 − s)

6(s + (1 − s)e
6
13 t )

]

ῡ + ῡs2e− 6
13 t .
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And then based on the estimates of the function Y (t, s), we can derive that
∣
∣
∣ῡs2e− 6

13 t Y (t, s)
∣
∣
∣ ≤ 2|ῡ|s2 ≤ 2|ῡ|

and
∣
∣
∣
∣

(∫ s

1
υ0(s

′)ds′
)

Y (t, s)

∣
∣
∣
∣ ≤ ‖υ0‖L∞(S1)(1 − s) · 2

1 − s
= 2‖υ0‖L∞(S1).

We further can obtain
∣
∣
∣
∣
∣

[
6 − s2(s + 5)

6
− s2(1 − s)

6(s + (1 − s)e
6
13 t )

]

ῡY (t, s)

∣
∣
∣
∣
∣

≤ |ῡ| ·
[
6 − s2(s + 5)

6
+ s(1 − s)

6

]

· 2

1 − s

= (1 + s)(6 + s)

3
|ῡ| ≤ 14

3
|ῡ|.

A combination of all these estimates yields the bound (31). 
�
Lemma 6 implies that the peaked perturbations are linear stable in the L∞ norm. In what

follows, we show that the perturbations grow in the W 1,∞ norm as is listed in the following
Lemma.

Lemma 7 Assume that υ0 ∈ C1
0,1 in the Cauchy problem (21). Then we have

lim
x→0+ υx (t, x) = υ ′

0(0
+)e

6
13 t + (2υ0(0) − 5

3
ῡ)(e

6
13 t − 1) (32)

and

lim
x→1− υx (t, x) = υ ′

0(1
−)e− 6

13 t + (2υ0(0) − 5

3
ῡ)(1 − e− 6

13 t ). (33)

Proof Differentiating (21) with respect to x yields

υt x = 6

13
(x − x2)υxx + 6

13
(1 − 2x)υx − 2(−6x2 + 6x + 5)

13
ῡ + 12

13
υ.

Thus, along each characteristic curve x = X(t, s) satisfies (23), function �(t, s) =:
υx (t, X(t, s)) satisfies the initial-value problem:

{
d�
dt = 6

13 (1 − 2X)�(t, s) + 2(6X2−6X−5)
13 ῡ + 12

13V (t, s),
�(0, s) = υ ′

0(s).
(34)

Note that the coefficients in (34) are all C1(0, 1). Taking the limit s → 0+ in (34) yields

d

dt
�(t, 0+) = 6

13
�(t, 0+) + 12

13
υ0(0) − 10

13
ῡ, (35)

while the limit s → 1− in (34) yields

d

dt
�(t, 1−) = − 6

13
�(t, 1−) + 12

13
υ0(0) − 10

13
ῡ, (36)

where we have used V (t, 1) = V (t, 0) = υ0(0). Hence, the assertion of the Lemma 7 follows
by solving the linear differential equations (35) and (36).
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The exponential growth of υx (t, ·) as t → ∞ at the right side of the peak x = 0 indicates
the linear instability of the periodic peakon in the W 1,∞ norm.

Following [21], we define the μ-inner product < u, v >μ and the associated μ-norm
‖u‖μ by

< u, v >μ= μ(u)μ(v) +
∫

S1
uxvxdx, ‖u‖2μ =< u, u >μ= H1[u], u, v ∈ H1(S1).

The following Lemma shows that the peaked perturbations are linearly unstable in the μ-
norm. This also means the instability of peaked perturbations in H1, since it is noted in [21,
Lemma 3.5] that the μ-norm is equivalent to the H1(S1)-norm.

Lemma 8 Assume that υ0 ∈ C1
0,1 in the Cauchy problem (21). Then we have

‖υ(t, ·)‖2μ = C+e
6
13 t + C0 + C−e− 6

13 t , (37)

for some uniquely defined constants C+,C0,C−.

Proof Firstly, the evolution equation for υ and υx can be written explicitly as

υt = 6

13
(x − x2)υx + 12

13
w − 2ῡ

13
(−2x3 + 3x2 + 5x), (38)

and

υt x = 6

13
(x − x2)υxx − 6

13
(2x − 1)υx + 12

13
υ − 2ῡ

13
(−6x2 + 6x + 5). (39)

By multiplying (39) by υx , integrating it on [0, 1] and using integration by parts, we get

1

2

d

dt
‖υx (t, ·)‖L2(0,1) =

∫ 1

0

[
6

13
(x − x2)υxυxx + 6

13
(1 − 2x)υ2

x + 12

13
υυx

]

dx

−
∫ 1

0

[
2ῡ

13
(−6x2 + 6x + 5)υx

]

dx

=
∫ 1

0

[
3

13
(2x − 1)υ2

x + 6

13
(1 − 2x)υ2

x + 12ῡ

13
(1 − 2x)υ

]

dx

= −
∫ 1

0
ϕ′

[

2ῡυ + υ2
x

2

]

dx,

where we have used υ(t, 0) = υ(t, 1) and ϕ is defined by (9). This is equivalent to

d

dt
H1[υ] = −2

∫ 1

0
ϕ′

[

2ῡυ + υ2
x

2

]

dx, (40)

due to the independence of μ(υ) with respect to t , where H1[υ] := μ(υ)2 + ∫
S1 υ2

x dx in
line with (7).

Next, by multiplying (38) by 2ῡϕ + 12
13υ and (39) by ϕυx , integrating it on [0, 1] and

using integration by parts, we obtain
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d

dt

∫ 1

0

(

2ῡυϕ + 6

13
υ2

)

dx =
∫ 1

0

[

2(2ϕ − 1)ϕ′ῡυ + 24ῡ

13
ϕw

]

dx

−
∫ 1

0

[
4ῡ2

13
(−2x3 + 3x2 + 5x)ϕ

]

dx + 72

169
ῡ2

+ 6

13

∫ 1

0

[

ϕ′υ2 − 4ῡυ

13
(−2x3 + 3x2 + 5x)

]

dx

and

d

dt

∫ 1

0

ϕυ2
x

2
dx = −

∫ 1

0
ϕ′

[
υ2
x

2
+ 6

13
υ2 + 2ῡυ

13
(−6x2 + 6x + 5)

]

dx

+12

13

∫ 1

0
(1 − 2x)ϕῡυdx

where we have used w′ = υ,w(t, 1) = ῡ. Adding these two identities yields

d

dt

∫ 1

0

[

ϕ(
υ2
x

2
+ 2ῡυ) + 6

13
υ2

]

dx = −
∫ 1

0
ϕ′

[

2ῡυ + υ2
x

2

]

dx . (41)

Now we define

P(t) :=
∫ 1

0

[

ϕ(
υ2
x

2
+ 2ῡυ) + 6

13
υ2

]

dx, S(t) :=
∫ 1

0
ϕ′

[

2ῡυ + υ2
x

2

]

dx . (42)

Then from (40) and (41) we can derive that

2P(t) = H1[υ] + C1, (43)

where C1 is an arbitrary constant.
Finally, by multiplying (38) by 2ῡϕ′ + 12

13υ and (39) by ϕ′υx , integrating it on [0, 1] and
using integration by parts, we obtain

d

dt

∫ 1

0
2ῡυϕ′dx =

∫ 1

0

[
72

169
ῡυ(6x2 − 6x + 1) − 24ῡ

13
ϕυ

]

dx + 24

13
ῡ2 − 4ῡ2

13
c0

and

d

dt

∫ 1

0

υ2
x

2
ϕ′dx = 24

169
υ|x=0(3υ|x=0 − 5ῡ)

+
∫ 1

0

[

− 36

169
(x2 − x + 1

2
)υ2

x − 72

169
υ2

]

dx

+
∫ 1

0

[
24

169
ῡυ(−18x2 + 18x + 2)

]

dx

where c0 = ∫ 1
0 ϕ′(−2x3 + 3x2 + 5x)dx is obviously a constant. Adding the two identities

yields

d

dt
S(t) = −12

13
P(t) + 60

169
H1[υ] + C2, (44)

where C2 is a constant defined by

C2 := 372 − 52c0
169

ῡ2 + 24

169
υ|x=0(3υ|x=0 − 5ῡ),

123



528 Journal of Dynamics and Differential Equations (2024) 36:515–534

since both υ|x=0 and ῡ don’t depend on t . By combining with equations (41),(43) and (44),
we obtain the following system of differential equations

P ′(t) = −S(t), S′(t) = − 36

169
P(t) + C3,

whereC3 := C2− 60
169C1. Thus, we have S′′(t) = ( 6

13 )
2S(t). This allows us to solve explicitly

the above system of differential equations and its general solution is given by

S(t) = S+e
6
13 t + S−e− 6

13 t , P(t) = −13

6
S+e

6
13 t + 13

6
S−e− 6

13 t + 169

36
C3,

where S+ and S− are arbitrary constants. Substituting it into (43) leads to (37) for some
constants C+,C0, and C−. 
�

4 Nonlinear Evolution Near the Periodic Peakon

In this section, we study the nonlinear evolution equation (18) and prove Theorem 2.
Firstly, we derive the evolution equation for υx and w. It follows that the Cauchy problem

(18) can be rewritten as

{
υt = 6

13 (x − x2)υx − 2x(x+1)(5−2x)
13 ῡ + 12

13w + (υ|x=0 − υ)υx − Q[υ]
υ|t=0 = υ0,

(45)

where w and ῡ are still defined by (22) and

Q[υ](x) :=
∫

S1
g′(x − y)

[

2μ(υ)υ + 1

2
υ2
y

]

(y)dy.

Differentiating (45) with respect to x yields
⎧
⎪⎨

⎪⎩

υt x = 6
13 (x − x2)υxx + 6

13 (1 − 2x)υx − 2(−6x2+6x+5)
13 ῡ + 12

13υ

+(υ|x=0 − υ)υxx − υ2
x − P[v] + 2ῡ2 + 1

2

∫ 1
0 υ2

x dx,
υx |t=0 = υ ′

0,

(46)

where

P[υ](x) :=
∫

S1
g(x − y)

[

2μ(υ)υ + 1

2
υ2
y

]

(y)dy,

and we have used the relation
∫

S1
g′′(x − y)

[

2μ(υ)υ + 1

2
υ2
y

]

(y)dy =
∫

S1
g(x − y)

[

2μ(υ)υ + 1

2
υ2
y

]

(y)dy

−2ῡ2 − 1

2

∫ 1

0
υ2
x dx .

Substituting υ = wx into (45) leads to

wt x = 6

13
(x − x2)wxx − 2x(x + 1)(5 − 2x)

13
ῡ + 12

13
w + (υ|x=0 − υ)wxx − Q[υ].
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By integrating this evolution equation with respect to x and in view of that w(t, 0) = 0, we
obtain

⎧
⎨

⎩

wt = 6
13 (x − x2)wx + 6

13 (2x − 1)w − x2(−x2+2x+5)
13 ῡ

− 1
2 (υ|x=0 − υ)2 − P[υ] + P[υ]|x=0,

w|t=0 = w0,

(47)

where w0 := ∫ x
0 υ0(y)dy.

The following Lemma shows that ῡ still does not depend on t . However, υ|x=0 indeed
depends on t .

Lemma 9 Assume that there exists a solution υ ∈ C([0, T ),C1
0,1) to the Cauchy problem

(45). Thus, ῡ(t) = ῡ0 for every t ∈ [0, T ).

Proof By integrating the evolution equation (45) with respect to x on [0, 1] and using the
results presented in Lemma 4, we can know that d

dt ῡ(t) = 0 holds true if and only if

∫ 1

0
Q[υ](t, x)dx =

∫ 1

0

∫ 1

0
g′(x − y)q[υ](t, y)dydx = 0,

where both g′ and q[υ](t, y) := 2μ(υ)υ + 1
2υ

2
y are absolutely integrable.

By direct computation, we obtain

∫ 1

0
g′(x − y)q[υ](t, y)dy=(x+ 1

2
)

∫ 1

0
q[υ](t, y)dy−

∫ 1

0
yq[υ](t, y)dy−

∫ x

0
q[υ](t, y)dy,

so that
∫ 1

0
Q[υ](t, x)dx =

∫ 1

0
q[υ](t, y)dy −

∫ 1

0
yq[υ](t, y)dy −

∫ 1

0

∫ x

0
q[υ](t, y)dydx

=
∫ 1

0
(1 − y)q[υ](t, y)dy −

∫ 1

0
dy

∫ 1

y
q[υ](t, y)dx

=
∫ 1

0
(1 − y)q[υ](t, y)dy −

∫ 1

0
(1 − y)q[υ](t, y)dy = 0.

Therefore, ῡ(t) = ῡ0 for every t ∈ [0, T ). 
�

Notice that the local well-posedness in C1
0,1 for the Cauchy problem (45) has not been

established in S1. Now, our attention is turned to get the local well-posedness result by using
the method of characteristics as well as the theory of dynamical systems.

Firstly, the evolution problem (45) suggests us to introduce the characteristic curves x =
X(t, s) which satisfy the following evolution problem:

{ dX
dt = 6

13 (X
2 − X) + υ(t, X) − υ(t, 0),

X(0, s) = s, s ∈ S1.
(48)

Assuming that v(t, ·) for every t ∈ [0, T ), and then differentiating (48) with respect to
s ∈ (0, 1) yields

{ d
dt

∂X
∂s = [ 6

13 (2X − 1) + υx (t, X)] ∂X
∂s ,

Xs(0, s) = 1, s ∈ (0, 1).
(49)
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with the unique solution

Xs(t, s) = exp

(∫ t

0
[ 6

13
(2X(t ′, s) − 1) + υx (t

′, X(t ′, s))]dt ′
)

> 0, (50)

thus X(t, ·) is invertible with respect to s ∈ [0, 1] for t ∈ [0, T ). Moreover, the peak’s
locations at 0 and 1 are invariant in the time evolution if υ(t, ·) ∈ C1

0,1 for every t ∈ [0, T ),
since X(t, 0) = 0 and X(t, 1) = 1 are equilibrium points of (48).

Next, we establish the following local well-posedness result for the Cauchy problem (45).

Lemma 10 For every υ0 ∈ C1
0,1, there exists the maximal existence time T > 0 (finite or

infinite) and the unique solution υ ∈ C1([0, T ), H1 ∩C1
0,1) to the Cauchy problem (45) that

depends continuously on υ0 ∈ C1
0,1.

Proof Setting V (t, s) := υ(t, X(t, s)),W (t, s) := w(t, X(t, s)) and �(t, s) := υx

(t, X(t, s)), then along each characteristic curve x = X(t, s) satisfying (48), the functions
V (t, s),W (t, s) and �(t, s) satisfy the following Cauchy problem

{
dV
dt = 12

13W − 2ῡ
13 X(−2X2 + 3X + 5) − Q[υ](X),

V |t=0 = υ0(s),
(51)

⎧
⎪⎨

⎪⎩

dW
dt = 6

13 (2X − 1)W − ῡ
13 X

2(−X2 + 2X + 5) + 1
2 [V 2 − (υ|X=0)

2]
−P[υ](X) + P[υ](0),

W |t=0 = w0(s),

(52)

and
⎧
⎪⎪⎨

⎪⎪⎩

d�
dt = 6

13 (1 − 2X)� − 2ῡ
13 (−6X2 + 6X + 5) + 12

13V − �2

−P[υ](X) + 2ῡ2 + 1
2

∫ 1
0 υ2

ydy,

�|t=0 = υ ′
0(s).

(53)

If υ ∈ C1
0,1, then by Lemma 1 we can know that Q[υ] ∈ C0

per (S
1) ∩ Lip(S1). By

Lemma 9 and in view of
∫
S1 Q[υ](t, x)dx = ∫

S1 P[υ]x (t, x)dx = 0, we can derive that
P[υ] ∈ C1

per (S
1). Therefore, the nonlocal parts of the Cauchy problems (51), (52), and (53)

are well-defined and we can regard X ∈ [0, 1] as corresponding to s ∈ [0, 1].
For s ∈ [0, 1], we can rewrite the evolution equations (48),(51),(52) and (53) as the

dynamical system

d

dt

⎛

⎜
⎜
⎝

X
V
W
�

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

f (X)(X , V )

f (V )(X , V ,W )

f (W )(X , V ,W )

f (�)(X , V ,W ,�)

⎞

⎟
⎟
⎠ := F(X , V ,W ,�),

with the initial datum
⎡

⎢
⎢
⎣

X
V
W
�

⎤

⎥
⎥
⎦

∣
∣
∣
∣
t=0

=

⎡

⎢
⎢
⎣

s
υ0(s)
w0(s)
υ ′
0(s)

⎤

⎥
⎥
⎦ ,
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and the boundary conditions
⎧
⎨

⎩

X(t, 0) = 0, X(t, 1) = 1,
V (t, 0) = V (t, 1) = V |s=0,

W (t, 0) = 0, W (t, 1) = ῡ,

where components of F(X , V ,W ,�) are given by

f (X)(X , V ) = 6

13
(X2 − X) + V − V |s=0,

f (V )(X , V ,W ) = 12

13
W − 2ῡ

13
X(−2X2 + 3X + 5) − Q[υ](X),

f (W )(X , V ,W ) = 6

13
(2X − 1)W − ῡ

13
X2(−X2 + 2X + 5)

+1

2
[V 2 − (V |s=0)

2] − P[υ](X) + P[υ]|s=0,

f (�)(X , V ,W ,�) = 6

13
(1 − 2X)� − 2ῡ

13
(−6X2 + 6X + 5) + 12

13
V − �2

−P[υ](X) + 2ῡ2 + 1

2

∫ 1

0
υ2
ydy.

In particular, V |s=0 satisfies

d

dt
V |s=0 = −Q[υ](0).

Denote V (s) = υ(X(s)),W (s) = w(X(s)),�(s) = υx (X(s)). Thanks to invertibility of
X(t, ·) with respect to s ∈ [0, 1] for t ∈ [0, T ), we have V ,W ∈ C1

0,1 and � is bounded and

continuous. Thanks to the chain rule, it follows from υ ∈ H1 that V ,W ∈ L2 and � ∈ L2.
Thus, the nonlocal term

∫ 1
0 υ2

ydy in f (�)(X , V ,W ,�) is locally Lipschitz in (X , V ,W ,�)

for every X ∈ [0, 1], V ,W ∈ L2, and � ∈ L2, thanks to integrability of υ2
x , invertibility of

X(s) with respect to s and the following chain rule
∫ 1

0
υ2
ydy =

∫ 1

0
�2(s′)Xs(s

′)ds′.

Note that Q[υ] ∈ C0
per (S

1) ∩ Lip(S1) and P[υ] ∈ C1
per (S

1), then it follows that the
nonlocal terms in F(q, V ,W ) are locally Lipschitz in (X , V ,W ,�). Also, it is easily seen
that all local terms in F(X , V ,W ,�) are locally Lipschitz in (X , V ,W ,�). Therefore, the
vector field F(X , V ,W ,�) of the dynamical system is locally Lipschitz in (X , V ,W ,�)

on [0, 1] × R × R × R. By the existence and uniqueness theory for differential equations,
there exists the unique local solution X(·, s), V (·, s),W (·, s),U (·, s) ∈ C1([0, T )) to the
Cauchy problem for somemaximal existence time T > 0. The solution depends continuously
on the initial data for every s ∈ [0, 1]. Moreover, since the initial data is C1(0, 1), then
X(t, ·), V (t, ·),W (t, ·),�(t, ·) ∈ C1(0, 1) for every t ∈ [0, T ). Thanks to preservation of
the boundary conditions, the solution V (t, ·) ∈ C1(0, 1) can be extended to V (t, ·) ∈ C1

0,1 on

S1. Therefore, the invertibility of the transformation formula V (t, s) = υ(t, X(t, s)) yields
the unique solution υ ∈ C1([0, T ), H1 ∩C1

0,1) which depends continuously on υ0 ∈ C1
0,1. 
�

Proof of Theorem 2. By Lemma 10, we can define the one-sided limits �± ∈ C1(0, T ) by

�+ := lim
s→0+ �(t, s) = lim

s→0+ υx (t, X(t, s)),
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�− := lim
s→1− �(t, s) = lim

s→1− υx (t, X(t, s)),

By taking the limits s → 0+ and s → 1− in (53), and in view of P[υ](0) = P[υ](1) we
can know that for t ∈ (0, T ) the functions �± satisfies:

d�±

dt
= ± 6

13
�± − 10

13
ῡ + 12

13
V |s=0 − (�±)2 − P[υ](0) + 2ῡ2 + 1

2

∫ 1

0
υ2
ydy. (54)

The instability argument relies on the behavior of υx (t, x) near the peak at x = 0 from
the right side, where Lemma 7 has demonstrated the exponential growth of solutions υx .
Therefore, we now focus on the the study of evolution of �+.

It follows from the decomposition (16) that the initial bound presented in Theorem 2 can
be rewritten as the form

‖υ0‖H1(S1) + ‖υ ′
0‖L∞(S1) < δ. (55)

Then picking �+ in (54) and we obtain

d�+

dt
= 6

13
�+ − 10

13
ῡ + 12

13
V |s=0 − (�+)2 − P[υ](0) + 2ῡ2 + 1

2

∫ 1

0
υ2
ydy. (56)

By Theorem 1, we know that for every small ε > 0, there exists ν(ε) > 0 such that if
‖υ0‖H1(S1) < ν(ε), then ‖υ(t, ·)‖H1(S1) < ε for every t ∈ [0, T ). Therefore Sobolev
embedding implies that

‖υ(t, ·)‖L∞(S1) ≤ r‖υ(t, ·)‖H1(S1) < rε, (57)

for a positive constant r .
Due to the bound (57), we have for sufficiently small ε

∣
∣
∣
∣ − 10

13
ῡ + 12

13
V |s=0 − P[υ](0) + 2ῡ2 + 1

2

∫ 1

0
υ2
ydy

∣
∣
∣
∣ ≤ 10

13
rε + 12

13
rε

+25

6
r2ε2 + 25

24
ε2

≤ r1ε

for some ε-independent constant r1 > 0. Thus, it follows from (56) that �+ satisfies the
following Ricatti inequality

d�+

dt
≤ −(�+ − 3

13
)2 + 9

169
+ r1ε.

By performing simple analysis of this differential inequality (see [29]), we can know that if
the initial datum satisfy

�+(0) <
3 − √

9 + 169r1ε

13
, (58)

then �+(t) → −∞ in finite time. To this end, we only need to pick the initial datum
v0 ∈ H1 ∩ C1

0,1 satisfying

‖υ0‖H1 < ν(ε), lim
x→0+ υ ′

0(x) = −5r1ε, ν(ε) + 5r1ε < δ,

then (58) is satisfied, and therefore υx (t, 0) → −∞ as t → T ∗ for some T ∗ < ∞. This
implies that the maximal existence time T is finite. Meanwhile, this also implies that there
exists t1 ∈ (0, T ) such that ‖υx (t1, ·)‖L∞(0,1) ≥ 1. So the proof of Theorem 2 is completed.


�
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