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Abstract
In the framework of a real Hilbert space, we address the problem of finding the zeros of
the sum of a maximally monotone operator A and a cocoercive operator B. We study the
asymptotic behaviour of the trajectories generated by a second order equation with vanishing
damping, attached to this problem, and governed by a time-dependent forward–backward-
type operator. This is a splitting system, as it only requires forward evaluations of B and
backward evaluations of A. A proper tuning of the system parameters ensures the weak
convergence of the trajectories to the set of zeros of A + B, as well as fast convergence of
the velocities towards zero. A particular case of our system allows to derive fast convergence
rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous
function and a smooth and convex function with Lipschitz continuous gradient. We illustrate
the theoretical outcomes by numerical experiments.
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1 Introduction

1.1 Problem Formulation and a Continuous Time Splitting Schemewith Vanishing
Damping

Let H be a real Hilbert, A : H → 2H a maximally monotone operator and B : H → H a
β-cocoercive operator for some β > 0 such that zer(A + B) �= ∅. Devising fast convergent
continuous and discrete time dynamics for solving monotone inclusions of the type

find x ∈ H such that 0 ∈ (A + B)(x) (1)

is of great importance in many fields, including, but not limited to, optimization, equilibrium
theory, economics and game theory, partial differential equations, and statistics. One of our
main motivations comes from the fact that solving the convex optimization problem

min
x∈H f (x) + g(x),

where f : H → R ∪ {+∞} is proper, convex and lower semicontinuous and g : H → R

is convex and Fréchet differentiable with a Lipschitz continuous gradient, is equivalent to
solving the monotone inclusion

0 ∈ (∂ f + ∇g)(x).

Wewant to exploit the additive structure of (1) and approach A and B separately, in the spirit
of the splitting paradigm.

For t ≥ t0 > 0, α > 1, ξ ≥ 0, and functions λ, γ : [t0,+∞) → (0,+∞), we will study
the asymptotic behaviour of the trajectories of the second order differential equation

(Split-DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Tλ(t),γ (t)(x(t))

)
+ Tλ(t),γ (t)(x(t)) = 0, (2)

where, for λ, γ > 0, the operator Tλ,γ : H → H is given by

Tλ,γ = 1

λ

[
Id−Jγ A ◦ (Id−γ B)

]
.

The sets of zeros of A + B and of Tλ,γ , for λ, γ > 0, coincide. The nomenclature
(Split-DIN-AVD) comes from the splitting feature of the continuous time scheme, as well
as the link with the (DIN-AVD) system developed by Attouch and László in [9] (Dynamic
Inertial Newton—Asymptotic Vanishing Damping), which we will emphasize later. We will
discuss the existence and uniqueness of the trajectories generated (Split-DIN-AVD), and also
show their weak convergence to the set of zeros of A + B as well as the fast convergence
of the velocities to zero, and convergence rates for Tλ(t),γ (t)(x(t)) and d

dt Tλ(t),γ (t)(x(t)) as
t → +∞.

For the particular case B = 0, we are left with the monotone inclusion problem

find x ∈ H such that 0 ∈ A(x),

and the attached system

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t),γ (t)(x(t))

)
+ Aλ(t),γ (t)(x(t)) = 0,
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where, for λ, γ > 0, the operator Aλ,γ : H → H can be seen as a generalized Moreau
envelope of the operator A, i.e.,

Aλ,γ = 1

λ

[
Id−Jγ A

]
.

In particular, we will be able to set γ (t) = λ(t) for every t ≥ t0. Since for λ > 0,
Aλ,λ = Aλ, this allows us to recover the (DIN-AVD) system

(DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t)(x(t))

)
+ Aλ(t)(x(t)) = 0,

addressed by Attouch and László in [9].
If A = 0, and after properly redefining some parameters, we obtain the following system

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt

1

η(t)
Bx(t)

)
+ 1

η(t)
Bx(t) = 0,

with η : [t0,+∞) → (0,+∞), which addresses the monotone equation

find x ∈ H such that B(x) = 0.

This dynamical system approaches the cocoercive operator B directly through a forward
evaluation, which is more natural, instead of having to resort to its Moreau envelope, as in
(DIN-AVD).

1.2 Notation and Preliminaries

In this subsection, we will explain the notions which were mentioned in the previous sub-
section, and we will introduce some definitions and preliminary results that will be required
later. Throughout the paper, we will be working in a real Hilbert spaceH with inner product
〈·, ·〉 and corresponding norm ‖ · ‖ = √〈·, ·〉.

Let A : H → 2H be a set-valued operator, that is, Ax is a subset of H for every x ∈ H.
The operator A is totally characterized by its graph gra A = {(x, u) ∈ H×H : u ∈ Ax}. The
inverse of A is the operator A−1 : H → 2H well-defined through the equivalence x ∈ A−1u
if and only if u ∈ Ax . The set of zeros of A is the set zer A = {x ∈ H : 0 ∈ Ax}. For a subset
C ⊆ H, we say that A(C) = ∪x∈C Ax . The range of A is the set ran A = A(H).

A set-valued operator A is said to be monotone if 〈v − u, y − x〉 ≥ 0 whenever
(x, u), (y, v) ∈ gra A, and maximally monotone if it is monotone and the following implica-
tion holds:

Ã is monotone, gra A ⊆ gra Ã �⇒ A = Ã.

Let λ > 0. The resolvent of index λ of A is the operator JλA : H → 2H given by

JλA = (Id+λA)−1,

and the Moreau envelope (or Yosida approximation or Yosida regularization) of index λ of
A is the operator Aλ : H → 2H given by

Aλ = 1

λ
(Id−JλA),

where Id : H → H, defined by Id(x) = x for every x ∈ H, is the identity operator ofH. For
λ1, λ2 > 0, it holds (Aλ1)λ2 = Aλ1+λ2 .
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A single-valued operator B : H → H is said to be β-cocoercive for some β > 0 if for
every x, y ∈ H we have

β‖Bx − By‖2 ≤ 〈Bx − By, x − y〉.
In this case, B is 1

β
-Lipschitz continuous, namely, for every x, y ∈ H we have

‖Bx − By‖ ≤ 1

β
‖x − y‖.

We say B is nonexpansive if it is 1-Lipschitz continuous, and firmly nonexpansive if it is
1-cocoercive. For α ∈ (0, 1), we say B is α-averaged if there exists a nonexpansive operator
R : H → H such that

B = (1 − α) Id+αR.

Let λ > 0 and A : H → 2H. According to Minty’s Theorem, A is maximally monotone
if and only if ran(Id+λA) = H. In this case JλA is single-valued and firmly nonexpansive,
Aλ is single-valued, λ-cocoercive, and for every x ∈ H and every λ1, λ2 > 0 we have

‖Jλ1A(x) − Jλ2A(x)‖ ≤ |λ1 − λ2|‖Aλ1(x)‖.
Let B : H → H be a single-valued operator. If B is α-averaged for some α ∈ (0, 1), then

Id−B is 1
2α -cocoercive. If B is monotone and continuous, then it is maximally monotone.

The following concepts and results show the strong interplay between the theory of mono-
tone operators and the convex analysis.

Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function. We
denote the infimum of f over H by minH f and the set of global minimizers of f by
argminH f . The subdifferential of f is the operator ∂ f : H → 2H defined, for every x ∈ H,
by

∂ f (x) = {x∗ ∈ H : 〈x∗, y − x〉 + f (x) ≤ f (y) ∀y ∈ H}.
The subdifferential operator of f is maximally monotone and x ∈ zer ∂ f ⇔ x is a global

minimizer of f .
Let λ > 0. The proximal operator of f of index λ is the operator proxλ f : H → H

defined, for every x ∈ H, by

proxλ f (x) = Jλ∂ f (x) = argminy∈H
[
f (y) + 1

2λ
‖x − y‖2

]
,

which also means that proxλ f is firmly nonexpansive. TheMoreau envelope of f of index λ

is the function fλ : H → R given, for every x ∈ H, by

fλ(x) = f
(
proxλ f (x)

)+ 1

2λ
‖x − proxλ f (x)‖2.

The function fλ is Fréchet differentiable and

∇ fλ(x) = 1

λ

(
x − proxλ f (x)

) = (∂ f )λ(x) ∀x ∈ H.

Finally, if f : H → R has full domain and is Fréchet differentiable with 1
β
-Lipschitz

continuous gradient, for β > 0, then, according to Baillon–Haddad’s Theorem, ∇ f is β-
cocoercive.
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1.3 A Brief History of Inertial Systems Attached to Optimization Problems and
Monotone Inclusions

In the last years there have been many advances in the study of continuous time inertial
systems with vanishing damping attached to monotone inclusion problems. We briefly visit
them in the following paragraphs.

1.3.1 The Heavy Ball Method with Friction

Consider a convex and continuously differentiable function f : H → R with at least one
minimizer. The heavy ball with friction system

(HBF) ẍ(t) + μẋ(t) + ∇ f (x(t)) = 0 (3)

was introduced by Álvarez in [2] as a suitable continuous time scheme to approach the
minimization of the function f . This system can be seen as the equation of the horizontal
position x(t) of an object that moves, under the force of gravity, along the graph of the
function f , subject to a kinetic friction represented by the term μẋ(t) (a nice derivation can
be seen in thework done byAttouch-Goudou-Redont in [8]). It is known that, if x is a solution
of (HBF), then x converges weakly to a minimizer of f and f (x(t)) − minH f = O ( 1t ) as
t → +∞.

In recent times, the questionwas raisedwhether the damping coefficientμ could be chosen
to be time-dependent. An important contribution was made by Su–Boyd–Candés (in [20])
who studied the case of an Asymptotic Vanishing Damping coefficient μ(t) = α

t , namely,

(AVD) ẍ(t) + α

t
ẋ(t) + ∇ f (x(t)) = 0, (4)

and provedwhenα ≥ 3 the rate of convergence for the functional values f (x(t))−minH f =
O
(

1
t2

)
as t → +∞. This second order system can be seen as a continuous counterpart to

Nesterov’s accelerated gradient method from [19]. Weak convergence of the trajectories
generated by (AVD) when α > 3 has been shown by Attouch-Chbani-Peypouquet-Redont
[6] and May [18], with the improved rate of convergence for the functional values f (x(t))−
minH f = o

(
1
t2

)
as t → +∞. For α = 3, the convergence of the trajectories remains an

open question, except for the one dimensional case (see [7]). In the subcritical case α ≤ 3,
it has been shown by Apidopoulos-Aujol-Dossal [5] and Attouch-Chbani-Riahi [7] that the

objective values converge at a rate O(t− 2α
3 ) as t → +∞.

1.3.2 Heavy Ball Dynamics and Cocoercive Operators

If f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function which is not
necessarily differentiable, then we cannot make direct use of (3). However, since for λ > 0
we have argmin f = argmin fλ, we can replace f by its Moreau envelope fλ, and the system
now becomes

ẍ(t) + μẋ(t) + ∇ fλ(x(t)) = 0.

In line with this idea, and in analogy with (3), Álvarez and Attouch [3] and Attouch and
Maingé [11] studied the dynamics

ẍ(t) + μẋ(t) + B(x(t)) = 0, (5)
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where B : H → H is a β-cocoercive operator. They were able to prove that the solutions of
this system weakly converge to elements of zer B provided that the cocoercitivity parameter
β and the damping coefficient μ satisfy βμ2 > 1. For a maximally monotone operator
A : H → 2H, we know that its Moreau envelope is λ-cocoercive and thus, under the
condition λμ2 > 1, the trajectories of

ẍ(t) + μẋ(t) + Aλ(x(t)) = 0

converge weakly to elements of zer Aλ = zer A.
Also related to (5), Boţ-Csetnek [16] considered the system

ẍ(t) + μ(t)ẋ(t) + ν(t)Bx(t) = 0, (6)

where B : H → H is again β-cocoercive. Under the assumption that μ and ν are locally

absolutely continuous, μ̇(t) ≤ 0 ≤ ν̇(t) for almost every t ∈ [0,+∞) and inf t≥0
μ2(t)
ν(t) > 1

β
,

the authors were able to prove that the solutions to this system converge weakly to zeros of
B.

In [12], Attouch and Peypouquet addressed the system

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0, (7)

where α > 1 and the time-dependent regularizing parameter λ(t) satisfies λ(t) α2

t2
> 1 for

every t ≥ t0 > 0. As well as ensuring the weak convergence of the trajectories towards
elements of zer A, choosing the regularizing parameter in such a fashion allowed the authors
to obtain fast convergence of the velocities and accelerations towards zero.

1.3.3 Inertial Dynamics with Hessian Damping

Let us return briefly to the (AVD) system (4). In addition to the viscous vanishing damping
term α

t ẋ(t), the following system with Hessian-driven damping was considered by Attouch-
Peypouquet-Redont in [13]

ẍ(t) + α

t
ẋ(t) + ξ∇2 f (x(t))ẋ(t) + ∇ f (x(t)) = 0,

where ξ ≥ 0. While preserving the fast convergence properties of the Nesterov accelerated
method, the Hessian-driven damping term reduces the oscillatory aspect of the trajectories.
In [9], Attouch and László studied a version of (7) with an added Hessian-driven damping
term:

ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Aλ(t)(x(t))

)
+ Aλ(t)(x(t)) = 0.

While preserving the convergence results of (7), the main benefit of the introduction of
this damping term is the fast convergence rates that can be obtained for Aλ(t)(x(t)) and
d
dt Aλ(t)(x(t)) as t → +∞. The regularizing parameter λ(t) is again chosen to be time-
dependent; in the general case, the authors take λ(t) = λt2, and in [12] it is shown that taking
λ(t) this way is critical. However, in the case where A = ∂ f for a proper, convex and lower
semicontinuous function f , it is also allowed to take λ(t) = λtr with r ≥ 0.
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1.4 Layout of the Paper

In Sect. 2, we give the proof for the existence and uniqueness of strong global solutions to
(Split-DIN-AVD) by means of a Cauchy–Lipschitz–Picard argument. In Sect. 3 we state the
main theorem of this work, and we show the weak convergence of the solutions of (2) to
elements of zer(A + B), as well as the fast convergence of the velocities and accelerations
to zero. We also provide convergence rates for Tλ(t),γ (t)(x(t)) and

d
dt Tλ(t),γ (t)(x(t)) as t →

+∞. We explore the particular cases A = 0 and B = 0, and show improvements with
respect to previous works. In Sect. 4, we address the convex minimization case, namely,
when A = ∂ f and B = ∇g, where f : H → R ∪ {+∞} is a proper, convex and lower
semicontinuous function and g : H → R is a convex and Fréchet differentiable function
with Lipschitz continuous gradient, and derive, in addition, a fast convergence rate for the
function values. In Sect. 5, we illustrate the theoretical results by numerical experiments. In
Sect. 5, we provide an algorithm that arises from a time discretization of (Split-DIN-AVD)
and discuss its convergence properties.

2 Existence and Uniqueness of Trajectories

In this section, we show the existence and uniqueness of strong global solutions to (Split-
DIN-AVD). For the sake of clarity, first we state the definition of a strong global solution.

Definition 2.1 Wesay that x : [t0,+∞) → H is a strong global solution of (Split-DIN-AVD)
with Cauchy data (x0, u0) ∈ H × H if

(i) x, ẋ : [t0,+∞) → H are locally absolutely continuous;
(ii) ẍ(t)+ α

t ẋ + ξ
( d
dt Tλ(t),γ (t)(x(t))

)+Tλ(t),γ (t)(x(t)) = 0 for almost every t ∈ [t0,+∞);
(iii) x(t0) = x0, ẋ(t0) = u0.

A classic solution is just a strong global solution which is C2. Sometimes we will mention
the terms strong global solution or classic global solution without explicit mention of the
Cauchy data.

The following lemma will be used to prove the existence of strong global solutions of our
system, and we will need it in the proof of the main theorem as well.

Lemma 2.2 Let A : H → 2H be a maximally monotone operator and B : H → H a
β-cocoercive operator for some β > 0. Then, the following statements hold:

(i) For λ > 0 and γ ∈ (0, 2β), Tλ,γ is a λ
4β−γ
4β -cocoercive operator. In particular, this

also implies that Tλ,γ is λ
2 -cocoercive.

(ii) Choose λ1, λ2 > 0, γ1, γ2 ∈ (0, 2β) and x, y ∈ H. Then, for x ∈ zer(A + B) it holds

‖λ1Tλ1,γ1 (x) − λ2Tλ2,γ2 (y)‖ ≤ 4‖x − y‖ + 4β|γ1 − γ2|
γ1

‖B(x)‖

+ 2|γ1 − γ2|
γ1

‖x − x‖,
∥∥Tλ1,γ1 (x)−Tλ2,γ2 (y)

∥∥≤ 1

λ1

[
4‖x−y‖+4β

|γ1−γ2|
γ1

‖Bx‖

+2
|γ1 − γ2|

γ1
‖x − x‖

]
+ 2

|λ2 − λ1|
λ1λ2

‖y − x‖.

123



734 Journal of Dynamics and Differential Equations (2024) 36:727–756

(iii) If x is a classic global solution to (2) and x ∈ zer(A + B), then, for every t ≥ t0, we
have∥∥∥∥ d

dt

(
λ(t)Tλ(t),γ (t)(x(t))

)∥∥∥∥ ≤ 4‖ẋ(t)‖ + 4β
|γ̇ (t)|
γ (t)

‖B(x(t))‖ + 2
|γ̇ (t)|
γ (t)

‖x(t) − x‖.

Proof (i) From [14, Proposition 26.1(iv)(d)] we know that the operator Jγ A ◦ (Id−γ B) is
α = 2β

4β−γ
-averaged. From [14, Proposition 4.39], we obtain that Id−Jγ A ◦ (Id−γ B)

is 1
2α -cocoercive, namely, it is 4β−γ

4β -cocoercive. Since γ ∈ (0, 2β), we have 4β−γ
4β >

2β
4β = 1

2 , which implies that Id−Jγ A ◦ (Id−γ B) is 1
2 -cocoercive and thus

Tλ,γ is λ
4β − γ

4β
-cocoercive and Tλ,γ is

λ

2
-cocoercive.

(ii) We have

‖λ1Tλ1,γ1(x) − λ2Tλ2,γ2(y)‖ ≤ ‖x − y‖ + ‖Jγ1A(x − γ1B(x)) − Jγ2A(y − γ2B(y))‖
≤ ‖x − y‖ + ‖Jγ1A(x − γ1B(x)) − Jγ2A(x − γ1B(x))‖

+ ‖Jγ2A(x − γ1B(x)) − Jγ2A(y − γ2B(y))‖
≤ 2‖x − y‖ + |γ1 − γ2|‖Aγ1(x − γ1B(x))‖ + ‖γ1B(x) − γ2B(y)‖
≤ 2‖x − y‖ + |γ1 − γ2|‖Aγ1(x − γ1B(x))‖

+ ‖γ1B(x) − γ2B(x)‖ + ‖γ2B(x) − γ2B(y)‖
= 2‖x − y‖ + |γ1 − γ2|‖Aγ1(x − γ1B(x))‖

+ |γ1 − γ2|‖B(x)‖ + γ2‖B(x) − B(y)‖.
Now, notice that

Aγ1(x − γ1B(x)) = 1

γ1
(Id−Jγ1A)(x − γ1B(x)) = −B(x) + 1

γ1
(x − Jγ1A(x − γ1B(x)))

= −B(x) + Tγ1,γ1(x),

so using (i) and the fact that Tγ1,γ2(x) = 0, we obtain

‖Aγ1(x − γ1B(x))‖ = ‖ − B(x) + Tγ1,γ2(x)‖ ≤ ‖B(x)‖ + ‖Tγ1,γ2(x) − Tγ1,γ2(x)‖
≤ ‖B(x)‖ + 2

γ1
‖x − x‖. (8)

Altogether, plugging (8) into our initial inequality yields

‖λ1Tλ1,γ2(x) − λ2Tλ2,γ2(y)‖ ≤ 2‖x − y‖ + 2|γ1 − γ2|‖B(x)‖ + 2|γ1 − γ2|
γ1

‖x − x‖
+ γ2‖B(x) − B(y)‖

≤ 2‖x − y‖ + 4β|γ1 − γ2|
γ1

‖B(x)‖ + 2|γ1 − γ2|
γ1

‖x − x‖ + 2β

(
1

β

)
‖x − y‖.

To show the second inequality, we use the previous one. We have

∥∥Tλ1,γ1(x) − Tλ2,γ2(y)
∥∥ = 1

λ1

∥∥λ1Tλ1,γ1(x) − λ2Tλ2,γ2(y) + (λ2 − λ1)Tλ2,γ2(y)
∥∥

≤ 1

λ1

[
4‖x − y‖ + 4β

|γ1 − γ2|
γ1

‖Bx‖ + 2
|γ1 − γ2|

γ1
‖x − x‖

]
+ |λ2 − λ1|

λ1

∥∥Tλ2,γ2(y)
∥∥
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≤ 1

λ1

[
4‖x − y‖ + 4β

|γ1 − γ2|
γ1

‖Bx‖ + 2
|γ1 − γ2|

γ1
‖x − x‖

]

+ 2
|λ2 − λ1|

λ1λ2
‖y − x‖ ,

where the last line is a consequence of Tλ2,γ2 being
λ2
2 -cocoercive, and hence 2

λ2
-Lipschitz

continuous (see (i)).
(iii) For t, s ≥ t0 set

x = x(t), y = x(s), λ1 = λ(t), γ1 = γ (t), λ2 = λ(s), γ2 = γ (s)

and use (ii) to obtain, for every t ≥ t0,

‖λ(t)Tλ(t),γ (t)(x(t)) − λ(s)Tλ(s),γ (s)(x(s))‖
|t − s|

≤ 4
‖x(t) − x(s)‖

|t − s| + 4β

γ (t)

|γ (t) − γ (s)|
|t − s| ‖B(x(t))‖ + 2

γ (t)

|γ (t) − γ (s)|
|t − s| ‖x(t) − x‖.

Hence, by taking the limit as s → t we get, for any t ≥ t0,∥∥∥∥ d

dt
λ(t)Tλ(t),γ (t)(x(t))

∥∥∥∥ ≤ 4‖ẋ(t)‖ + 4β
|γ̇ (t)|
γ (t)

‖B(x(t))‖ + 2
|γ̇ (t)|
γ (t)

‖x(t) − x‖. ��
The next theorem concerns the existence and uniqueness of strong global solutions to

(Split-DIN-AVD).

Theorem 2.3 Assume that λ, γ : [t0,+∞) → (0,+∞) are Lebesgue measurable functions
and that inf t≥t0 λ(t) > 0. Then, for any (x0, u0) ∈ H×H there exists a unique strong global
solution x : [t0,+∞) → H of the system (2) that satisfies x(t0) = x0 and ẋ(t0) = u0.

Proof We will rely on [17, Proposition 6.2.1] and distinguish between the cases ξ > 0 and
ξ = 0. For each chase, we will check that the conditions of the afforementioned proposition
are fulfilled. We will be working in the real Hilbert space H × H endowed with the norm
‖(x, y)‖ = ‖x‖ + ‖y‖. Let x ∈ zer(A + B) be fixed.

The Case ξ > 0. First, it can be easily checked (see also [4, 9, 13]) that for all t ≥ t0 the
following dynamical systems are equivalent

∗ ẍ(t) + α

t
ẋ(t) + ξ

(
d

dt
Tλ(t),γ (t)(x(t))

)
+ Tλ(t),γ (t)(x(t)) = 0.

∗
⎧⎨
⎩
ẋ(t) + ξTλ(t),γ (t)(x(t)) −

(
1
ξ

− α
t

)
x(t) + 1

ξ
y(t) = 0,

ẏ(t) −
(
1
ξ

− α
t + αξ

t2

)
x(t) + 1

ξ
y(t) = 0.

In other words, (2) with Cauchy data (x0, u0) = (x(t0), ẋ(t0)) is equivalent to the first order
system {

ż(t) = F(t, z(t)),

z(t0) = (x0, y0),

where z(t) = (x(t), y(t)), F is given, for every t ≥ t0, by

F(t, (x, y)) =
[
−ξTλ(t),γ (t)(x) +

(
1

ξ
− α

t

)
x − 1

ξ
y,

(
1

ξ
− α

t
+ αξ

t2

)
x − 1

ξ
y

]

and the Cauchy data is x0 = x(t0), y0 = −ξ
(
u0 + ξTλ(t0),γ (t0)(x0) −

(
1
ξ

− α
t0

)
x0
)
.
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(i) Let t ∈ [t0,+∞) be fixed. We need to verify the Lipschitz continuity of F on the z
variable. Set z = (x, y), w = (u, v). We have

‖F(t, z) − F(t, w)‖ =
∥∥∥∥−ξ

(
Tλ(t),γ (t)(x) − Tλ(t),γ (t)(u) +

(
1

ξ
− α

t

)

(x − u) − 1

ξ
(y − v)

)∥∥∥∥
+
∥∥∥∥
(
1

ξ
− α

t
+ αξ

t2

)
(x − u) − 1

ξ
(y − v)

∥∥∥∥ .

Set λ := inf t≥t0 λ(t) > 0. According to Lemma 2.2(i), the term involving the operator
Tλ(t),γ (t) satisfies

∥∥Tλ(t),γ (t)(x) − Tλ(t),γ (t)(u)
∥∥ ≤ 2

λ(t)
‖x − u‖ ≤ 2

λ
‖x − u‖.

It follows that, if we take

K (t) := max

{
2ξ

λ
+
∣∣∣∣1ξ − α

t

∣∣∣∣+
∣∣∣∣1ξ − α

t
+ αξ

t2

∣∣∣∣ , 2

ξ

}
∀t ≥ t0,

then we have K ∈ L1
loc([t0,+∞),R) and

‖F(t, z) − F(t, w)‖ ≤ K (t)‖z − w‖ ∀t ≥ t0.

(ii) Now, we claim that F fulfills a boundedness condition. For t ∈ [t0,+∞) and z =
(x, y) ∈ H × H we have

‖F(t, z)‖ =
∥∥∥∥−ξTλ(t),γ (t)(x) +

(
1

ξ
− α

t

)
x − 1

ξ
y

∥∥∥∥+
∥∥∥∥
(
1

ξ
− α

t
+ αξ

t2

)
x − 1

ξ
y

∥∥∥∥ .

By Lemma 2.2(i), we have, for every t ≥ t0,

∥∥Tλ(t),γ (t)(x)
∥∥ = ∥∥Tλ(t),γ (t)(x) − Tλ(t),γ (t)(x)

∥∥ ≤ 2

λ(t)
‖x − x‖.

Hence, if we take

P(t) = max

{
2ξ

λ(t)
+
∣∣∣∣1ξ − α

t

∣∣∣∣+
∣∣∣∣1ξ − α

t
+ αξ

t2

∣∣∣∣ , 2ξ

λ(t)
,
2

ξ

}
∀t ≥ t0,

then we have P ∈ L1
loc([t0,+∞),R) and

‖F(t, z)‖ ≤ P(t)(1 + ‖z‖).
Wehave checked that the conditions of [17, Proposition 6.2.1] hold. Therefore, there exists

a unique locally absolutely continuous solution t �→ x(t) of (2) that satisfies x(t0) = x0 and
ẋ(t0) = u0.

The Case ξ = 0. Now, (2) is easily seen to be equivalent to{
ż(t) = F(t, z(t)),

z(t0) = (x0, u0),
,

where z(t) = (x(t), y(t)) and F is given, for every t ≥ t0, by

F(t, (x, y)) =
[
y, −α

t
y − Tλ(t),γ (t)(x)

]
.

Showing that F fulfills the required properties is starightforward. ��
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3 The Convergence Properties of the Trajectories

In this section, we will study the asymptotic behaviour of the trajectories of the system

(Split-DIN-AVD) ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
Tλ(t),γ (t)(x(t))

)+ Tλ(t),γ (t)(x(t)) = 0,

where

Tλ,γ (x) = 1

λ

[
Id−Jγ A ◦ (Id−γ B)

]
.

Wewill showweak convergence of the trajectories generated by (2) to elements of zer(A+B),
as well as the fast convergence of the velocities and accelerations to zero. Additionally, we
will provide convergence rates for Tλ(t),γ (t)(x(t)) and d

dt Tλ(t),γ (t)(x(t)) as t → +∞. To
avoid repetition of the statement “for almost every t”, in the following theorem we will
assume we are working with a classic global solution of our system.

Theorem 3.1 Let A : H → 2H be a maximally monotone operator and B : H → H a
β-cocoercive operator for some β > 0 such that zer(A+ B) �= ∅. Assume that α > 1, ξ ≥ 0,
λ(t) = λt2 for λ > 2

(α−1)2
and all t ≥ t0, and that γ : [t0,+∞) → (0, 2β) is a differentiable

function that satisfies γ̇ (t)
γ (t) = O ( 1t ) as t → +∞. Then, for a solution x : [t0,+∞) → H to

(Split-DIN-AVD), the following statements hold:

(i) x is bounded.
(ii) We have the estimates

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ 2(t)

t

∥∥∥Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

∥∥∥2 dt < +∞.

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(
1

t

)
, ‖ẍ(t)‖ = O

(
1

t2

)
,

∥∥∥Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

∥∥∥ = o

(
1

γ (t)

)
,

∥∥∥∥ d

dt

(
Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

)∥∥∥∥ = O
(

1

tγ (t)

)
+ o

⎛
⎝ t2

∣∣∣ ddt γ (t)
λ(t)

∣∣∣
γ 2(t)

⎞
⎠

as t → +∞.
(iv) If 0 < inf t≥t0 γ (t) ≤ supt≥t0 γ (t) < 2β, then x(t) converges weakly to an element of

zer(A + B) as t → +∞.

Proof Integral Estimates and Rates. To develop the analysis, we will fix x ∈ zer(A+ B) and
make of use of the Lyapunov function E : [t0,+∞) → R ∪ {+∞} given by

E(t) := 1

2

∥∥∥∥α − 1

2
(x(t) − x) + t(ẋ(t) + ξ Tλ(t),γ (t)(x(t)))

∥∥∥∥
2

+ (α − 1)2

8
‖x(t) − x‖2. (9)
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Differentiation of E with respect to time yields, for every t ≥ t0,

Ė(t) =
〈
α − 1

2
(x(t) − x) + t

(
ẋ(t) + ξ Tλ(t),λ(t)(x(t))

)
,

α + 1

2
ẋ(t) + ξ Tλ(t),γ (t)(x(t)) + t

(
ẍ(t) + ξ

d

dt

(
Tλ(t),γ (t)(x(t))

))〉

+ (α − 1)2

4
〈x(t) − x, ẋ(t)〉.

After reduction and employing (2), we get, for every t ≥ t0,

Ė(t) = (α − 1)(ξ − t)

2

〈
x(t) − x, Tλ(t),γ (t)(x(t))

〉+ (1 − α)t

2
‖ẋ(t)‖2

+
(

−t2 + ξ(3 − α)t

2

) 〈
Tλ(t),γ (t)(x(t)), ẋ(t)

〉+ ξ(ξ − t)t
∥∥Tλ(t),γ (t)(x(t))

∥∥2 .

Now, by Lemma 2.2(i), we know that Tλ(t),γ (t) is
λ(t)
2 -cocoercive for every t ≥ t0. Using

this on the first summand of the right hand side of the previous inequality yields, for t ≥
t1 = max{ξ, t0},

Ė(t) ≤ (1 − α)t

2
‖ẋ(t)‖2 +

(
−t2 + ξ(3 − α)t

2

) 〈
Tλ(t),γ (t)(x(t)), ẋ(t)

〉

+
(

(α − 1)(ξ − t)λ(t)

4
+ ξ(ξ − t)t

)∥∥Tλ(t),γ (t)(x(t))
∥∥2 .

(10)

Now, since λ > 2
(α−1)2

, we can choose ε > 0 such that

0 < ε < α − 1 −
√
2

λ
< α − 1. (11)

From (10) we get, for every t ≥ t1,

Ė(t) + ε

2
t‖ẋ(t)‖2 + ε

4
tλ(t)

∥∥Tλ(t),γ (t)(x(t))
∥∥2

≤
(
1 − α

2
+ ε

2

)
t‖ẋ(t)‖2 +

(
−t2 + ξ(3 − α)t

2

) 〈
Tλ(t),γ (t)(x(t)), ẋ(t)

〉

+
((

(α − 1)(ξ − t)

2
+ ε

2
t

)
λ(t)

2
+ ξ(ξ − t)t

)∥∥Tλ(t),γ (t)(x(t))
∥∥2 .

(12)

By (11) and the definition of λ(t), we know that 1−α
2 + ε

2 < 0, and
((

(α − 1)(ξ − t)

2
+ ε

2
t

)
λ(t)

2
+ ξ(ξ − t)t

)
=
(
1 − α

2
+ ε

2

)
︸ ︷︷ ︸

<0

λ

2
t3 + O(t2),

so we can find t2 ≥ t1 such that for every t ≥ t2 the previous expression becomes nonpositive.
According to Lemma A.2, the right hand side of (12) is nonpositive whenever

R(t) :=
(

−t2 + ξ(3 − α)t

2

)2
− 4

(
1 − α

2
+ ε

2

)

t

((
(α − 1)(ξ − t)

2
+ ε

2
t

)
λ(t)

2
+ ξ(ξ − t)t

)
≤ 0.
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This quantity can be rewritten as

R(t) =
(
1 + 4

(
1 − α

2
+ ε

2

)(
α − 1

2
− ε

2

)
λ

2

)
t4 + O(t3) as t → +∞.

Since ε < α − 1 −
√

2
λ
, we have λ

2 > 1
(α−1−ε)2

. Hence,

1 + 4

(
1 − α

2
+ ε

2

)(
α − 1

2
− ε

2

)
λ

2
= 1 − (α − 1 − ε)2

λ

2
< 0.

This means we can find t3 ≥ t2 such that for every t ≥ t3 we have R(t) ≤ 0, that is, for every
t ≥ t3 we have

Ė(t) + ε

2
t‖ẋ(t)‖2 + ε

4
tλ(t)

∥∥Tλ(t),γ (t)(x(t))
∥∥2 ≤ 0. (13)

Now, integrating (13) from t3 to t we obtain

E(t) + ε

2

∫ t

t3
s‖ẋ(s)‖2ds + ε

4
λ

∫ t

t3
s3
∥∥Tλ(s),γ (s)(x(s))

∥∥2 ds ≤ E(t3). (14)

From (13) and the form of E we immediately obtain

t �→ ‖x(t) − x‖ is bounded, (15)∫ +∞

t0
t‖ẋ(t)‖2dt < +∞, (16)

∫ +∞

t0
t3
∥∥Tλ(t),γ (t)(x(t))

∥∥2 dt < +∞, (17)

sup
t≥t0

∥∥∥∥
(

α − 1

2

)
(x(t) − x) + t

(
ẋ(t) + ξ Tλ(t),γ (t)(x(t))

)∥∥∥∥ < +∞. (18)

From Lemma 2.2(i), we know that for every t ≥ t0 the operator Tλ(t),γ (t) is
2

λ(t) -Lipschitz
continuous, which gives, for every t ≥ t0,

∥∥Tλ(t),γ (t)(x(t))
∥∥ = ∥∥Tλ(t),γ (t)(x(t)) − Tλ(t),γ (t)(x)

∥∥ ≤ 2

λ(t)
‖x(t) − x‖.

Thus, from (15) and recalling that λ(t) = λt2 we arrive at

∥∥Tλ(t),γ (t)(x(t))
∥∥ = O

(
1

t2

)
as t → +∞. (19)

By combining (15), (18) and (19) we obtain supt≥t0 t‖ẋ(t)‖ < +∞ and therefore

‖ẋ(t)‖ = O
(
1

t

)
as t → +∞. (20)

From Lemma 2.2, (15), (20) and the fact that B is 1
β
-Lipschitz continuous we deduce that,

as t → +∞,∥∥∥∥ d

dt
λ(t)Tλ(t),γ (t)(x(t))

∥∥∥∥ ≤ 4‖ẋ(t)‖+4β
|γ̇ (t)|
γ (t)

‖B(x(t))‖+2
|γ̇ (t)|
γ (t)

‖x(t)− x‖ = O
(
1

t

)
.

(21)
On the other hand, for every t ≥ t0 we have∥∥∥∥ d

dt
λ(t)Tλ(t),γ (t)(x(t))

∥∥∥∥ =
∥∥∥∥λ̇(t)Tλ(t),γ (t)(x(t)) + λ(t)

d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥ , (22)
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so by combining (19), (21), (22) and the fact that λ̇(t) = 2λt we arrive at∥∥∥∥λ(t)
d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥ ≤
∥∥∥∥ d

dt
λ(t)Tλ(t),γ (t)(x(t))

∥∥∥∥︸ ︷︷ ︸
O
(
1
t

)
+λ̇(t)

∥∥Tλ(t),γ (t)(x(t))
∥∥︸ ︷︷ ︸

O
(

1
t2

)
= O

(
1

t

)

as t → +∞,

which yields ∥∥∥∥ d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥ = 1

λ(t)
O
(
1

t

)
= O

(
1

t3

)
as t → +∞. (23)

Let us now improve (19) and show that

∥∥Tλ(t),γ (t)(x(t))
∥∥ = o

(
1

t2

)
as t → +∞. (24)

According to (19) and (21) there exists a constant K > 0 such that for every t ≥ t0 it holds∣∣∣∣ ddt
∥∥λ(t)Tλ(t),γ (t)(x(t))

∥∥4∣∣∣∣ =
∣∣∣4 ∥∥λ(t)Tλ(t),γ (t)(x(t))

∥∥2

×
〈
λ(t)Tλ(t),γ (t)(x(t)),

d

dt
λ(t)Tλ(t),γ (t)(x(t))

〉∣∣∣∣
≤ 4

∥∥λ(t)Tλ(t),γ (t)(x(t))
∥∥2 ∥∥λ(t)Tλ(t),γ (t)(x(t))

∥∥
×
∥∥∥∥ d

dt
λ(t)Tλ(t),γ (t)(x(t))

∥∥∥∥
≤ 4K

t

∥∥λ(t)Tλ(t),γ (t)(x(t))
∥∥2 .

By (17), the right hand side belongs to L1([t0,+∞),R), so we get

d

dt

∥∥λ(t)Tλ(t),γ (t)(x(t))
∥∥4 ∈ L1([t0,+∞),R),

hence the limit

lim
t→+∞

∥∥λ(t)Tλ(t),γ (t)(x(t))
∥∥4

exists. Obviously, this implies the existence of L := limt→+∞
∥∥λ(t)Tλ(t),γ (t))(x(t))

∥∥2. By
using (17) again we come to

∫ +∞

t0

1

t

∥∥λ(t)Tλ(t),γ (t)(x(t))
∥∥2 dt = λ2

∫ +∞

t0
t3
∥∥Tλ(t),γ (t)(x(t))

∥∥2 dt < +∞,

and so we must have L = 0, which gives

∥∥Tλ(t),γ (t)(x(t))
∥∥ = o

(
1

t2

)
as t → +∞. (25)

By combining (2), (19), (20) and (23) we obtain, as t → +∞,

‖ẍ(t)‖ =
∥∥∥∥−α

t
ẋ(t) − ξ

d

dt
Tλ(t),γ (t)(x(t)) − Tλ(t),γ (t)(x(t))

∥∥∥∥
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≤ α

t
‖ẋ(t)‖︸ ︷︷ ︸
O
(
1
t

)
+ξ

∥∥∥∥ d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥︸ ︷︷ ︸
O
(

1
t3

)
+ ∥∥Tλ(t),γ (t)(x(t))

∥∥︸ ︷︷ ︸
O
(

1
t2

)
= O

(
1

t2

)
.

Moreover, by using the well-known inequality ‖a + b + c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2 for
every a, b, c ∈ H, for every t ≥ t0 it holds

t3‖ẍ(t)‖2 ≤ t3
∥∥∥∥−α

t
ẋ(t) − ξ

d

dt
Tλ(t),γ (t)(x(t)) − Tλ(t),γ (t)(x(t))

∥∥∥∥
2

≤ 3αt‖ẋ(t)‖2 + 3ξ2t3
∥∥∥∥ d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥
2

+ 3t3
∥∥Tλ(t),γ (t)(x(t))

∥∥2 .

From (16), (23) and (17) it follows∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞. (26)

To see that ‖ẋ(t)‖ = o
( 1
t

)
as t → +∞, we write, for every t ≥ t0,

d

dt

(
t2‖ẋ(t)‖2) = 2t‖ẋ(t)‖2 + 2t2〈ẋ(t), ẍ(t)〉 ≤ 3t‖ẋ(t)‖2 + t3‖ẍ(t)‖2.

From (16) and (26) we deduce that the left hand side belongs to L1([t0,+∞),R), fromwhich
we infer that the limit limt→+∞ t2‖ẋ(t)‖2 exists. Using (16) again, we get∫ +∞

t0

1

t

(
t2‖ẋ(t)‖2) dt =

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

from which we finally deduce limt→+∞ t2‖ẋ(t)‖2 = 0, therefore

‖ẋ(t)‖ = o

(
1

t

)
as t → +∞. (27)

Notice that we can write for every t ≥ t0

Tλ(t),γ (t) = 1

λ(t)

[
Id−Jγ (t)A(Id−γ (t)B)

]
= γ (t)

λ(t)

(
Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

)
.

Hence, multiplying both sides of (25) by λ(t)
γ (t) and remembering the definition of λ(t) we

obtain ∥∥∥Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

∥∥∥ = o

(
1

γ (t)

)
as t → +∞. (28)

For every t ≥ t0, we have

d

dt
Tλ(t),γ (t)(x(t)) = d

dt

(
γ (t)

λ(t)

)(
Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

)

+ γ (t)

λ(t)

d

dt

(
Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

)
.

Therefore, by using (23) and (28), and recalling that λ(t) = λt2, we obtain
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∥∥∥∥ d

dt

(
Aγ (t)

[
x(t) − γ (t)Bx(t)

]
+ Bx(t)

)∥∥∥∥ = O
(

1

tγ (t)

)

+o

⎛
⎝ t2

∣∣∣ ddt γ (t)
λ(t)

∣∣∣
γ 2(t)

⎞
⎠ as t → +∞.

The fact that ‖ẍ(t)‖ = O
(

1
t2

)
as t → +∞ comes from (2), (27), (23) and (24).

Weak Convergence of the Trajectories. Let x ∈ zer(A + B). We will work with the energy
function h : [t0,+∞) → R given by

h(t) := 1

2
‖x(t) − x‖2.

For every t ≥ t0, we have

ḣ(t) = 〈x(t) − x, ẋ(t)〉, ḧ(t) = 〈x(t) − x, ẍ(t)〉 + ‖ẋ(t)‖2. (29)

Combining (2) and (29) gives us, for every t ≥ t0,

ḧ(t) + α

t
ḣ(t) + 〈Tλ(t),γ (t)(x(t)), x(t) − x

〉 = ‖ẋ(t)‖2 +
〈
−ξ

d

dt
Tλ(t),γ (t)(x(t)), x(t) − x

〉
.

By using the λ(t)
2 -cocoercitivity of Tλ(t),γ (t) on the left hand side, Cauchy–Schwarz on the

right hand side and multiplying both sides by t , the previous inequality entails, for every
t ≥ t0,

t ḧ(t) + αḣ(t) + t
λ(t)

2

∥∥Tλ(t),γ (t)(x(t))
∥∥ ≤ t‖ẋ(t)‖2 + ξ t

∥∥∥∥ d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥
‖x(t) − x‖ ∀t ≥ t0.

Now, puttin together results in

k(t) := t‖ẋ(t)‖2 + ξ t

∥∥∥∥ d

dt
Tλ(t),γ (t)(x(t))

∥∥∥∥ ‖x(t) − x‖ ∈ L1([t0,+∞),R).

Now apply Lemma A.1 with θ(t) := t λ(t)
2

∥∥Tλ(t),γ (t)(x(t))
∥∥ for every t ≥ t0 to deduce that

the limit

lim
t→+∞ h(t)

exists, which fulfills the first condition of Opial’s Lemma A.3.
Let us now move on to the second condition. Suppose x̂ is a weak sequential cluster point

of t �→ x(t), that is, there exists a sequence (tn)n∈N ⊆ [t0,+∞) such that tn → +∞ and
xn := x(tn) converges weakly to x̂ as n → +∞. Define

Uγ := Id−Jγ A ◦ (Id−γ B).

According to (25), we haveUγ (t)(x(t)) = λ(t)Tλ(t),γ (t)(x(t)) → 0 as t → +∞. Now, since
γ (t) ∈ [δ, 2β − δ] for all t ≥ t0 for some δ > 0, we can extract a subsequence (γ (tnk ))k∈N
such that γ (tnk ) → γ ∈ (0, 2β) as k → +∞. We may assume without loss of generality
then that γn := γ (tn) → γ as n → +∞. We now have for every n ∈ N

‖Uγn (xn) −Uγ (xn)‖ = ‖Jγn A(xn − γn B(xn)) − Jγ A(xn − γ B(xn))‖
= ‖Jγn A(xn − γn B(xn)) − Jγn A(xn − γ B(xn))‖
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+ ‖Jγn A(xn − γ B(xn)) − Jγ A(xn − γ B(xn))‖
≤ |γ − γn |‖B(xn)‖ + |γ − γn |‖Aγ (xn − γ B(xn))‖.

Now, since every weakly convergent sequence is bounded and the operators B and Aγ are
Lipschitz-continuouswededuce that the right-hand side of the previous inequality approaches
zero as n → +∞, therefore getting

Uγ (xn) = Uγn (xn) + (Uγ (xn) −Uγn (xn)
)→ 0

as n → +∞. Now, from the proof of part (i) of Lemma 2.2, we know that Uγ is 4β−γ
4β -

cocoercive, thus monotone and Lipschitz continuous and therefore maximally monotone.
Summarizing, we have

1. Uγ is maximally monotone and thus its graph is closed in the weak×strong topology of
H × H (see [14, Proposition 20.38(ii)]),

2. xn converges weakly to x̂ and Uγ (xn) → 0 as n → +∞,

which allows us to conclude that Uγ (̂x) = 0, and gives finally x̂ ∈ zer(A + B). Now we
just invoke Opial’s Lemma to achieve that x(t) converges weakly to x as t → +∞ for some
x ∈ zer(A + B). ��

In the following subsections, we explore the particular cases B = 0 and A = 0, and
we will show improvements with respect to previous results from the literature addressing
continuous time approaches to monotone inclusions.

3.1 The Case B = 0

If we let B = 0 in the (Split-DIN-AVD) system (2), then, attached to the monotone inclusion
problem

find x ∈ H such that 0 ∈ A(x),

we obtain the dynamics

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
Aλ(t),γ (t)(x(t)

)+ Aλ(t),γ (t)(x(t)) = 0, (30)

where

Aλ,γ (x) = 1

λ
(Id−Jγ A).

We can state the following theorem.

Theorem 3.2 Let A : H → 2H be a maximally monotone operator such that zer A �= ∅.
Assume that α > 1, ξ ≥ 0, λ(t) = λt2 for λ > 1

(α−1)2
and all t ≥ t0, and that γ :

[t0,+∞) → (0,+∞) is a differentiable function that satisfies |γ̇ (t)|
γ (t) = O ( 1t ) as t → +∞.

Then, for a solution x : [t0,+∞) → H to (30), the following statements hold:

(i) x is bounded.
(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ 2(t)

t

∥∥Aγ (t)(x(t))
∥∥2 dt < +∞.
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(iii) We have the convergence rates

‖ẋ(t)‖ = o

(
1

t

)
, ‖ẍ(t)‖ = O

(
1

t2

)
,

∥∥Aγ (t)(x(t))
∥∥ = o

(
1

γ (t)

)
,

∥∥∥∥ d

dt
Aγ (t)(x(t))

∥∥∥∥ = O
(

1

tγ (t)

)
+ o

⎛
⎝ t2

∣∣∣ ddt γ (t)
λ(t)

∣∣∣
γ 2(t)

⎞
⎠

as t → +∞.
(iv) If 0 < inf t≥t0 γ (t), then x(t) converges weakly to an element of zer A as t → +∞.

Proof The proof proceeds in the exact same way as the proof of Theorem 3.1. However, a
few comments are in order: first of all, now we have Tλ,γ = 1

λ
(Id−Jγ A) = Aλ,γ . Since

JλA is firmly nonexpansive, by [14, Proposition 4.4] so is Id−JλA. In other words, Id−Jγ A

is 1-cocoercive, therefore Aλ,γ = 1
λ
(Id−Jγ A) is λ-cocoercive, so now the condition on λ

becomes λ > 1
(α−1)2

.
The proof also changes when we verify the second part of the Opial’s Lemma, to get

weak convergence of the trajectories t �→ x(t). This is in order to allow for γ (t) not to be
necessarily bounded. We do need, however, the assumption 0 < inf t≥t0 γ (t). Indeed, from

‖Aλ(t),γ (t)(x(t))‖ = o
(

1
t2

)
as t → +∞, we obtain

y(t) := x(t) − Jγ (t)Ax(t) = λ(t)Aλ(t),γ (t)(x(t)) → 0

as t → +∞. Using the definition of the resolvent, we come to

Jγ (t)Ax(t) = x(t) − y(t) ⇔ y(t) ∈ γ (t)A(x(t) − y(t)) ⇔ 1

γ (t)
y(t) ∈ A(x(t) − y(t)).

for all t ≥ t0. If (tn)n∈N ⊆ [t0,+∞) is such that tn → +∞ and x(tn) converges weakly to
x̂ as n → +∞, then the previous inclusion, together with the assumption on γ gives

x(tn) − y(tn) converges weakly to x̂ and
1

γ (t)
y(t) → 0 as n → +∞,

and by the closedness of the graph of A in the weak×strong topology ofH ×H, we deduce
that x̂ ∈ zer A. ��
Remark 3.3 The hypotheses required for γ are fulfilled at least by two families of functions.
First, take r ≥ 0 and set γ (t) = et

−r
. Then, we have

γ̇ (t)

γ (t)
= −r t−(r+1)et

−r

et−r = − r

tr+1 = O
(
1

t

)
as t → +∞,

and

γ (t) = et
−r ≥ e0 = 1 ∀t ≥ 0.

If γ is a polynomial of degree n for some n ∈ N, the conditions are also fulfilled. Assume
γ (t) = antn + an−1tn−1 + · · · + a0 for all t ≥ t0, for some ai ∈ R for i ∈ {0, . . . , n} and
an > 0. Then, we have

t · γ̇ (t)

γ (t)
= t · nant

n−1 + (n − 1)an−1tn−1 + · · · + a1
antn + an−1tn−1 + · · · + a0

→ nan
an

= n as t → +∞,
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so γ̇ (t)
γ (t) = O ( 1t ) as t → +∞. Since we also have γ (t) → +∞ as t → +∞, the condition

inf t≥t0 γ (t) > 0 is fulfilled for large enough t0.
In particular, we can choose γ (t) = λ(t) = λt2, which fulfills γ (t) ≥ λt20 > 0 for any

t ≥ t0 and any t0. Since Aλ,λ = Aλ for λ > 0, this choice of γ allows us to recover the
(DIN-AVD) system studied by Attouch and László in [9]. Notice the way the convergence
rates for Aγ (t)(x(t)) and d

dt Aγ (t)(x(t)) exhibited in part (iii) of Theorem 3.2 depend on
γ (t). If we set γ (t) = tn for every t ≥ t0 for any natural number n > 2, (Split-DIN-AVD)
performs from this point of view better than (DIN-AVD) without increasing the complexity
of the governing operator.

3.2 The Case A = 0

Let us return to (Split-DIN-AVD) dynamics (2). Set A = 0, and for every t ≥ t0 take
γ (t) = γ ∈ (0, 2β) and η(t) = ηt2 with η = λ/γ . Then, associated to the problem

find x ∈ H such that B(x) = 0,

we obtain the system

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
1

η(t)
Bx(t)

)
+ 1

η(t)
Bx(t) = 0. (31)

The conditions λ > 2
(α−1)2

and γ ∈ (0, 2β) imply

η = λ

γ
>

2

γ (α − 1)2
>

2

2β(α − 1)2
= 1

β(α − 1)2
.

With the previous observation, we are able to state the following theorem.

Theorem 3.4 Let B : H → H be a β-cocoercive operator for some β > 0 such that
zer B �= ∅. Assume that α > 1, ξ ≥ 0 and η(t) = ηt2 for η > 1

β(α−1)2
and all t ≥ t0. Take

x : [t0,+∞) → H a solution to (31). Then, the following hold:

(i) x is bounded, and x(t) converges weakly to an element of zer B as t → +∞.
(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

1

t
‖Bx(t)‖2 dt < ∞.

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(
1

t

)
, ‖ẍ(t)‖ = O

(
1

t2

)

as well as the limit

‖Bx(t)‖ → 0

as t → +∞.

Proof Since η > 1
β(α−1)2

, we can find ε ∈ (0, β) such that η > 1
(β−ε)(α−1)2

, equivalently,

2(β−ε)η > 2
(α−1)2

. Since (31) is equivalent to (Split-DIN-AVD)with A = 0 and parameters

λ = 2(β − ε)η > 1
(α−1)2

and γ (t) ≡ 2(β − ε) ∈ (0, 2β), the conclusion follows from
Theorem 3.1. ��
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Remark 3.5 (a) As we mentioned in the introduction, the dynamical system (31) provides a
way of finding the zeros of a cocoercive operator directly through forward evaluations,
instead of having to resort to its Moreau envelope when following the approach in [9].

(b) The dynamics (31) bear some resemblance to the system (6) (see also [16]) withμ(t) =
α
t and ν(t) = 1

η(t) , with an additional Hessian-driven damping term. In our case, since

η > 1
β(α−1)2

, the parameters satisfy

μ̇(t) = − α

t2
≤ 0,

μ2(t)

ν(t)
= α2ηt2

t2
= α2η >

1

β
∀t ≥ t0.

However, we have

ν̇(t) = − 2

λt3
≤ 0 ∀t ≥ t0,

so one of the hypotheses which is needed in (6) is not fulfilled, which shows that one
cannot address the dynamical system (31) as a particular case of it; indeed, for (6) a
vanishing damping is not allowed. With our system, we obtain convergence rates for
ẋ(t) and ẍ(t) as t → +∞, which are not obtained in [16].

4 Structured ConvexMinimization

We can specialize the previous results to the case of convex minimization, and show addi-
tionally the convergence of functional values along the generated trajectories to the optimal
objective value at a rate that will depend on the choice of γ . Let f : H → R ∪ {+∞}
be a proper, convex and lower semicontinuous function, and let g : H → R be a convex
and Fréchet differentiable function with L∇g-Lipschitz continuous gradient. Assume that
argminH( f + g) �= ∅, and consider the minimization problem

min
x∈H f (x) + g(x). (32)

Fermat’s rule tells us that x is a global minimum of f + g if and only if

0 ∈ ∂( f + g)(x) = ∂ f (x) + ∇g(x).

Therefore, solving (32) is equivalent solving the monotone inclusion 0 ∈ (A + B)(x)
addressed in the first section, with A = ∂ f and B = ∇g. Moreover, recall that if ∇g is L∇g-
Lipschitz then it is 1

L∇g
-cocoercive (Baillon–Haddad’s Theorem, see [14, Corollary 18.17]).

Therefore, associated to the problem (32) we have the dynamics

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
γ (t)

λ(t)

(∇ fγ (t)(u(t)) + ∇g(x(t))
))

+ γ (t)

λ(t)

(∇ fγ (t)(u(t)) + ∇g(x(t))
) = 0, (33)

where we have denoted u(t) = x(t) − γ (t)∇g(x(t)) for all t ≥ t0 for convenience.

Theorem 4.1 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous
function, and let g : H → R be a convex and Fréchet differentiable function with a L∇g-
Lipschitz continuous gradient such that argminH( f + g) �= ∅. Assume that α > 1, ξ ≥
0, λ(t) = λt2 for λ > 2

(α−1)2
and all t ≥ t0, and that γ : [t0,+∞) →

(
0, 2

L∇g

)
is

123



Journal of Dynamics and Differential Equations (2024) 36:727–756 747

a differentiable function that satisfies γ̇ (t)
γ (t) = O(1/t) as t → +∞. Then, for a solution

x : [t0,+∞) → H to (33), the following statements hold:

(i) x is bounded.
(ii) We have the estimates∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ 2(t)

t

∥∥∥∇ fγ (t)

[
x(t) − γ (t)∇g(x(t))

]
+ ∇g(x(t))

∥∥∥2 dt < +∞.

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(
1

t

)
, ‖ẍ(t)‖ = O

(
1

t2

)
,

∥∥∥∇ fγ (t)

[
x(t) − γ (t)∇g(x(t))

]
+ ∇g(x(t))

∥∥∥ = o

(
1

γ (t)

)
,

∥∥∥∥ d

dt

(
∇ fγ (t)

[
x(t) − γ (t)∇g(x(t))

]
+ ∇g(x(t))

)∥∥∥∥ = O
(

1

tγ (t)

)
+ o

⎛
⎝ t2

∣∣∣ ddt γ (t)
λ(t)

∣∣∣
γ 2(t)

⎞
⎠

as t → +∞.
(iv) If 0 < inf t≥t0 γ (t) ≤ supt≥t0 γ (t) < 2

L∇g
, then x(t) converges converges to a minimizer

of f + g as t → +∞.
(v) Additionally, if0 < γ (t) ≤ 1

L∇g
for every t ≥ t0 andwe set u(t) := x(t)−γ (t)∇g(x(t)),

then

f
(
proxγ (t) f (u(t))

)+ g
(
proxγ (t) f (u(t))

)− minH( f + g) = o

(
1

γ (t)

)

as t → +∞. Moreover,
∥∥proxγ (t) f (u(t)) − x(t)

∥∥→ 0 as t → +∞.

Proof Parts (i)–(iv) are a direct consequence of Theorem 3.1. For checking (v), first notice
that for all t ≥ t0 we have

Tλ(t),γ (t)(x(t)) = 1

λ(t)

[
Id−Jγ (t)∂ f ◦ (Id−γ (t)∇g)

]
(x(t))

= 1

λ(t)

[
x(t) − proxγ (t) f (u(t))

]
. (34)

Now, let x ∈ argminH( f + g). According to [15, Lemma 2.3], for every t ≥ t0, we have the
inequality

f
(
proxγ (t) f (u(t))

)+ g
(
proxγ (t) f (u(t))

)− minH( f + g)

≤ f
(
proxγ (t) f (u(t))

)+ g
(
proxγ (t) f (u(t))

)− f (x) − g(x)

≤ − 1

2γ (t)

∥∥proxγ (t) f (u(t)) − x(t)
∥∥2 + 1

γ (t)

〈
x(t) − x∗, x(t) − proxγ (t) f (u(t))

〉
.

After summing the norm squared term and using the Cauchy–Schwarz inequality, for every
t ≥ t0 we obtain

1

2γ (t)

∥∥proxγ (t) f (u(t)) − x(t)
∥∥2
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≤ f
(
proxγ (t) f (u(t))

)+ g
(
proxγ (t) f (u(t))

)+
1

2γ (t)

∥∥proxγ (t) f (u(t)) − x(t)
∥∥2 − minH( f + g)

≤
〈

1

γ (t)

(
x(t) − proxγ (t) f (u(t))

)
, x(t) − x

〉

≤
∥∥∥∥ 1

γ (t)

(
x(t) − proxγ (t) f (u(t))

)∥∥∥∥ ‖x(t) − x‖

= λ(t)

γ (t)

∥∥Tλ(t),γ (t)(x(t))
∥∥ ‖x(t) − x‖

= o

(
1

γ (t)

)
as t → +∞,

which follows as a consequence of x being bounded and
∥∥Tλ(t),γ (t)(x(t))

∥∥ = o
(

1
t2

)
as

t → +∞. ��

Remark 4.2 It is also worth mentioning the system we obtain in the case where g ≡ 0,
since we also get some improved rates for the objective functional values when we compare
(Split-DIN-AVD) to (DIN-AVD) [9]. In this case, we have the system

ẍ(t) + α

t
+ ξ

d

dt

(
γ (t)

λ(t)
∇ fγ (t)(x(t))

)
+ γ (t)

λ(t)
∇ fγ (t)(x(t)) = 0 (35)

attached to the convex optimization problem

min
x∈H f (x).

If we assume λ > 1
(α−1)2

, allow γ : [t0,+∞) → (0,+∞) to be unbounded from above and
otherwise keep the hypotheses of Theorem 4.1, for a solution x : [t0,+∞) → H to (35), the
following statements hold:

(i) x is bounded,
(ii) We have the estimates

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0
t3‖ẍ(t)‖2dt < +∞,

∫ +∞

t0

γ 2(t)

t

∥∥∇ fγ (t)(x(t))
∥∥2 dt < +∞,

(iii) We have the convergence rates

‖ẋ(t)‖ = o

(
1

t

)
, ‖ẍ(t)‖ = O

(
1

t2

)
,

∥∥∇ fγ (t)(x(t))
∥∥ = o

(
1

γ (t)

)
,

∥∥∥∥ d

dt
∇ fγ (t)(x(t))

∥∥∥∥ = O
(

1

tγ (t)

)
+ o

⎛
⎝ t2

∣∣∣ ddt γ (t)
λ(t)

∣∣∣
γ 2(t)

⎞
⎠

as t → +∞.
(iv) If 0 < inf t≥t0 γ (t), then x(t) converges weakly to a minimizer of f as t → +∞.

123



Journal of Dynamics and Differential Equations (2024) 36:727–756 749

(v) We also obtain the rate

fγ (t)(x(t)) − minH f = o

(
1

γ (t)

)
as t → +∞,

which entails

f
(
proxγ (t) f (x(t))

)− minH f = o

(
1

γ (t)

)
and

∥∥proxγ (t) f (x(t)) − x(t)
∥∥→ 0

as t → +∞.

Parts (i)–(iv) are a direct consequence of Theorem 3.2 for the case A = ∂ f . For showing
part (v), first notice that for λ > 0 and u ∈ H we have, according to the definition of fλ and
proxλ f ,

fλ(u) = f
(
proxλ f (u)

)+ 1

2λ

∥∥proxλ f (u) − u
∥∥2 ≤ f (u).

Let x ∈ H be a minimizer of f . We apply the gradient inequality to fγ (t), from which we
obtain, for every t ≥ t0

fγ (t)(x(t)) − minH f = fγ (t)(x(t)) − f (x) ≤ fγ (t)(x(t)) − fλ(t)(x)

≤ 〈∇ fγ (t)(x(t)), x(t) − x
〉 ≤ ∥∥∇ fγ (t)(x(t))

∥∥ ‖x(t) − x‖,
where the last inequality follows from the Cauchy–Schwarz inequality. Since

∥∥∇ fγ (t)(x(t))
∥∥

= o
(

1
γ (t)

)
as t → +∞ and x is bounded, the previous inequality entails the first statement

of (v). Again recalling the definition of the Moreau envelope of f , this finally gives

f
(
proxγ (t) f (x(t))

)+ 1

2γ (t)

∥∥proxγ (t) f (x(t)) − x(t)
∥∥2 − minH f = fγ (t)(x(t))

−minH f = o

(
1

γ (t)

)

as t → +∞, which implies the last two statements and concludes the proof.
As pointed out in Remark 3.3, we can choose γ (t) = λt2 for every t ≥ t0 and recover the

(DIN-AVD) system for nonsmooth convex minimization problems studied in [9]. Moreover,
we can also set γ (t) = tn for a natural number n > 3 and all t ≥ t0. Now, not only are the
convergence rates for ∇ fγ (t)(x(t)) and

d
dt ∇ fγ (t)(x(t)) as t → +∞ improved with respect

to the system in [9], but (Split-DIN-AVD) also provides a better rate for the convergence of
fγ (t)(x(t)) to minH f as t → +∞.

5 Numerical Experiments

In the following paragraphs we describe some numerical experiments that portray some
aspects of the theory.

5.1 Minimizing a Smooth and Convex Function

As an example of a continuous time scheme minimizing a convex and Fréchet differentiable
function g : H → R with L∇g-Lipschitz continuous gradient via (Split-DIN-AVD), we

123



750 Journal of Dynamics and Differential Equations (2024) 36:727–756

(a) (b)

Fig. 1 Trajectories of (Split-DIN-AVD) for B = ∇g

(a) (b)

Fig. 2 Fast convergence of the velocities

consider the system

ẍ(t) + α

t
ẋ(t) + ξ

d

dt

(
1

η(t)
∇g(x(t))

)
+ 1

η(t)
∇g(x(t)) = 0, (36)

where for (x1, x2) ∈ R
2 we set g(x1, x2) = 1

2 (x
2
1 + 100x22 ) and therefore ∇g(x1, x2) =

(x1, 100x2). A trajectory generated by (36) is a pair x(t) = (x1(t), x2(t)). Figure 1 plots
both components of the solution to (36) with initial Cauchy data x0 = (1, 1), u0 = (1, 1).
Notice that the Lipschitz constant of ∇g is L∇g = 100, which means that the cocoercitivity
modulus of ∇g is β = 1

L∇g
= 1

100 . To fulfill η > 1
β(α−1)2

= 100
(α−1)2

, we choose α = 20,
η = 0.278. Figure 1a corresponds to the case with no Hessian damping, that is, ξ = 0. Figure
1b corresponds to a Hessian damping parameter ξ = 0.2.

Figure 2 depicts the fast convergence of the velocities to zero for the cases ξ = 0 (Fig.
2a) and ξ = 0.2 (Fig. 2b). In both figures, notice the effect of the damping parameter ξ > 0,
which attenuates the oscillations of the second component of the trajectories, as well as the
oscillations present in the velocities.
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(a) (b) (c)

Fig. 3 Trajectories and objective function values in the case A = ∂ f

5.2 Minimizing a Nonsmooth and Convex Function

As an example of a continuous time scheme minimizing a proper, convex and lower semi-
continuous function f : H → R ∪ {+∞} via (Split-DIN-AVD), we consider the system

ẍ(t) + α

t
+ ξ

d

dt

(
γ (t)

λ(t)
∇ fγ (t)(x(t))

)
+ γ (t)

λ(t)
∇ fγ (t)(x(t)) = 0. (37)

We will consider three options for f and plot for each of them the trajectories, the objective
function values and the gradients of the Moreau envelopes as follows:

• f (x) = 1
2 x

2 (Figs. 3a and 4a),
• f (x) = |x | (Figs. 3b and 4b),
• f (x) = |x | + 1

2 x
2 (Figs. 3c and 4c).

In order to fulfill α > 1 and λ > 1
(α−1)2

, we choose the parameters α = 2, λ = 1.1, and

we take ξ = 0 and γ (t) = t8. We compare the results given by (DIN-AVD) (that is, when
γ (t) = λt2) and the ones given by our system (Split-DIN-AVD). The choice of ξ does not
seem to change the plots in a significant way for the examples we have chosen.

Figure 3 depicts the trajectories x(t) of (37) and the function values f
(
proxγ (t)(x(t))

)
for

our choices of f as t → +∞. Figure 4 portrays the fast convergence to zero of ‖∇ fγ (t)(x(t))‖
as t → +∞. Notice the big improvement over (DIN-AVD) for nonsmooth convex mini-
mization in [9] when choosing γ (t) = t8, a result which we already knew theoretically.
Polynomials of high degree seem to be the ones which give the biggest improvements in
terms of rates.

(a) (b) (c)

Fig. 4 Gradients of the Moreau envelopes of f
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5.3 An Example with Operator Splitting

Now we consider the monotone inclusion problem (1) for A(x1, x2) = (−x2, x1) and
B(x1, x2) = (x1, x2) for every (x1, x2) ∈ R

2. For every (x1, x2) ∈ R
2, an easy calcula-

tion gives

Jγ A

[
x1
x2

]
=
[

1
1+γ 2

γ

1+γ 2
−γ

1+γ 2
1

1+γ 2

][
x1
x2

]
,

and so

(Id−Jγ A(Id−γ Id))

[
x1
x2

]

=
[
x1
x2

]
− (1 − γ )

[
1

1+γ 2
γ

1+γ 2
−γ

1+γ 2
1

1+γ 2

][
x1
x2

]
=
⎡
⎣ γ 2+γ

1+γ 2
γ−1
1+γ 2

1−γ

1+γ 2
γ 2+γ

1+γ 2

⎤
⎦
[
x1
x2

]
,

and

Tλ,γ

[
x1
x2

]
=
⎡
⎣ γ 2+γ

λ(1+γ 2)

γ−1
λ(1+γ 2)

1−γ

λ(1+γ 2)

γ 2+γ

λ(1+γ 2)

⎤
⎦
[
x1
x2

]
.

(Split-DIN-AVD) now reads

[
ẍ1(t)
ẍ2(t)

]
+ α

t

[
ẋ1(t)
ẋ2(t)

]
+ ξ

d

dt

⎛
⎝
⎡
⎣ γ 2(t)+γ (t)

λ(t)(1+γ 2(t))
γ (t)−1

λ(t)(1+γ 2(t))
1−γ (t)

λ(t)(1+γ 2(t))
γ 2(t)+γ (t)

λ(t)(1+γ 2(t))

⎤
⎦
[
x1(t)
x2(t)

]⎞
⎠

+
⎡
⎣ γ 2(t)+γ (t)

λ(t)(1+γ (t)2)
γ (t)−1

λ(t)(1+γ 2(t))
1−γ (t)

λ(1+γ 2(t))
γ 2(t)+γ (t)

λ(t)(1+γ 2(t))

⎤
⎦
[
x1(t)
x2(t)

]
=
[
0
0

]
.

We choose the parameters α = 7, λ = 0.056, γ (t) ≡ 1.5, and the Cauchy data x0 = (1, 2)
and u0 = (−1,−1). Figure 5a corresponds to the case ξ = 0, and Fig. 5b depicts the
trajectory when the Hessian damping parameter is ξ = 0.8. Again, notice how, not only
for optimization problems, but also for monotone inclusions which cannot be reduced to the
former, the presence of ξ seems to attenuate the oscillations present in the trajectories.

6 A Numerical Algorithm

In the following we will derive via time discretization of (Split-DIN-AVD) a numerical
algorithm for solving the monotone inclusion problem (1). We perform a discretization of
(Split-DIN-AVD) with stepsize 1 and set, for an integer k ≥ 1, x(k) := xk , λ(k) := λk ,
γ (k) := γk . We make the approximations

ẍ(t) ≈ xk+1 − 2xk + xk−1,
α

t
ẋ(t) ≈ α

k
(xk − xk−1),

d

dt
Tλ(t),γ (t)(x(t)) ≈ Tλk ,γk (xk) − Tλk−1,γk−1(xk−1), Tλ(t),γ (t)(x(t)) ≈ Tλk+1,γk+1(xk+1),
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(a) (b)

Fig. 5 Trajectories of (Split-DIN-AVD) for finding the zeros of A + B

so we get, for every k ≥ 1,

xk+1−2xk−xk−1+α

k
(xk−xk−1)+ξ

(
Tλk ,γk (xk) − Tλk−1,γk−1(xk−1)

)+Tλk+1,γk+1(xk+1) = 0.

(38)
After rearranging the terms of (38), for every k ≥ 1 we obtain

xk+1 + Tλk+1,γk+1(xk+1) = xk +
(
1 − α

k

)
(xk − xk−1) − ξ

(
Tλk ,γk (xk) − Tλk−1,γk−1(xk−1)

)
.

(39)
In other words, after setting αk = 1 − α

k and denoting the right hand side of (39) by yk for
every k ≥ 1, we obtain the following iterative scheme

(∀k ≥ 1)

{
yk = xk + αk(xk − xk−1) − ξ

(
Tλk ,γk (xk) − Tλk−1,γk−1(xk−1)

)
,

xk+1 = (Id+Tλk+1,γk+1

)−1
(yk).

(40)

Observe that the second step in (40) is always well-defined. Indeed, for λ, γ > 0, Tλ,γ is
λ
2 -cocoercive, hencemonotone (see Lemma 2.2(i)). This also implies that Tλ,γ is 2

λ
-Lipschitz

continuous, and a monotone and continuous operator is maximally monotone, according to
[14, Corollary 20.28]. Hence, by Minty’s Theorem (see [14, Theorem 21.1]), we know that
Id+Tλ,γ : H → H is surjective.

We are in conditions of stating the main theorem concerning our previous algorithm.

Theorem 6.1 Let A : H → 2H be a maximally monotone operator and B : H → H a
β-cocoercive operator for some β ≥ 0 such that zer(A + B) �= ∅. Choose x0, x1 ∈ H any
initial points. Let α > 1, ξ ≥ 0, and (λk)k≥0, (γk)k≥0 sequences of positive numbers that
fulfill

λk = λk2 ∀k ≥ 1, with λ >
4ξ + 2

(α − 1)2
,

0 < inf
k≥0

γk ≤ sup
k≥0

γk < 2β and
γk − γk−1

γk
= O

(
1

k

)
as k → +∞.

Now, consider the sequences (yk)k≥1 and (xk)k≥0 generated by algorithm (40). The following
properties are satisfied:
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(i) We have the estimates

‖xk+1 − xk‖ = O
(
1

k

)
and

∥∥Aγk (xk − γk Bxk) + Bxk
∥∥ = o

(
1

γk

)
as k → +∞.

(ii) The sequence (xk)k≥0 converges weakly to an element of zer(A + B).
(iii) The sequence (yk)k≥1 converges weakly to an element of zer(A+B). Precisely, we have

‖xk − yk‖ = O ( 1k ) as k → +∞.

The proof can be done by transposing the techniques used in the continuous time case to
the discrete time case. Algorithm (40) can be seen as a splitting version of the (PRINAM)
algorithm studied by Attouch and László in [10].

Remark 6.2 The second step in (40) can be quite complicated to compute. However, if B = 0,
we can resort to the fact that (Aλ1)λ2 = Aλ1+λ2 for λ1, λ2 > 0. We now have, for λ, γ > 0,

Tλ,γ = 1

λ

[
Id−Jγ A

]
= γ

λ
Aγ ,

which gives (
Id+Tγ,λ

)−1 = J γ
λ
Aγ

= −γ

λ
(Aλ) γ

λ
+ Id = Id−γ

λ
Aλ+ γ

λ
.

It is now possible to write (40) in terms of the resolvents of A. We have, for every k ≥ 1,

Tλk ,γk (xk) − Tλk−1,γk−1(xk−1) = 1

λk

[
xk − Jγk A(xk)

]
− 1

λk−1

[
xk−1 − Jγk−1A(xk−1)

]

=
(

1

λk
− 1

λk−1

)
xk + 1

λk−1
(xk − xk−1)

−
(

1

λk
Jγk A(xk) − 1

λk−1
Jγk−1A(xk−1)

)
,

yk − γk+1

λk+1
A

λk+1+ γk+1
λk+1

(yk) = yk − γk+1

λk+1

1
λ2k+1+γk+1

λk+1

[
yk − J(

λk+1+ γk+1
λk+1

)
A
(yk)

]

= λ2k+1

λ2k+1 + γk+1
yk + γk

λ2k+1 + γk+1
J(

λk+1+ γk+1
λk+1

)
A
(yk).

So now (40) becomes

(∀k ≥ 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk =
(
1 − ξ

(
1

λk
− 1

λk−1

))
xk +

(
αk − ξ

λk−1

)
(xk − xk−1)

+ ξ

(
1

λk
Jγk A(xk) − 1

λk−1
Jγk−1A(xk−1)

)
,

xk+1 = λ2k+1

λ2k+1 + γk+1
yk + γk

λ2k+1 + γk+1
J(

λk+1+ γk+1
λk+1

)
A
(yk).

(41)

Now, if we assume 0 < infk≥0 γk and λ >
2ξ+1

(α−1)2
and otherwise keep the hypotheses of

Theorem 6.1, then for the sequences (xk)k≥0 and (yk)k≥1 generated by (41), the following
statements hold:

(i) We have the estimates

‖xk+1 − xk‖ = O
(
1

k

)
and

∥∥Aγk (xk)
∥∥ = o

(
1

γk

)
as k → +∞.
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(ii) The sequence (xk)k≥0 converges weakly to an element of zer A.
(iii) The sequence (yk)k≥1 converges weakly to an element of zer A as well. Precisely, we

have ‖xk − yk‖ = O ( 1k ) as k → +∞.

Notice that the condition required for (γk)k≥0 is fulfilled in particular for γk = kn for every
k ≥ 1 and a natural number n ≥ 1. Thus, by choosing large n, we obtain a fast convergence
rate for Aγk (xk) as k → +∞.
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A Appendix

The following are three auxiliary lemmas that are used in the proof of Theorem 3.1. The
proof for Lemma A.1 can be found in [12], while the proof of Lemma A.2 is straightforward.
For the proof of Opial’s Lemma, we refer the reader to [1, Lemma 1.10].

Lemma A.1 Let t0 > 0, and let u : [t0,+∞) → R be a continuously differentiable function
which is bounded from below. Given α > 1, a nonnegative function θ : [t0,+∞) → R and
a nonnegative function k ∈ L1([t0,+∞),R), let us assume that

t ü(t) + αu̇(t) + θ(t) ≤ k(t)

for almost every t ≥ t0. Then, the positive part [u̇]+ of u̇ belongs to L1([t0,+∞),R) and
limt→+∞ u(t) exists. Moreover, we have

∫ +∞
t0

θ(t)dt < +∞.

Lemma A.2 Let A, B,C ∈ R and H a real Hilbert space. Then the inequality

A‖X‖2 + 2C〈X , Y 〉 + B‖Y‖2 ≤ 0

holds for every X , Y ∈ H if and only if A, B ≤ 0 and C2 − AB ≤ 0.

Lemma A.3 (Opial’s Lemma) Let S ⊆ H be a nonempty set and x : [t0,+∞) → H a given
map, where t0 > 0. Assume that

(i) for every x∗ ∈ S, limt→+∞ ‖x(t) − x∗‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then, there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t → +∞.
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