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Abstract
In this paper, we investigate the periodic pattern formations with spatial multi-peaks in a
classic diffusive Holling-Tanner predator-prey model with nonlocal intraspecific prey com-
petition. Themain innovation is that a spatial dependently kernel is considered in the nonlocal
effect, which mathematically complicates the linear stability analysis. We first generate the
existences of Hopf, Turing, Turing-Hopf and double-Hopf bifurcations, and determine the
stability of the positive equilibrium. It turns out that the stable parameter region for the positive
equilibrium decreases with α increasing, which implies that the parameter region of pattern
formation for such kernel is smaller than the spatial average case. For double-Hopf bifurca-
tion, we calculate the normal form up to the third-order term restricted on the center manifold,
which is expressed by the original parameters of the system. Via analyzing the equivalent
amplitude equations, the system exhibits stable spatially nonhomogeneous periodic patterns,
the bistability of such periodic solutions, as well as unstable spatially nonhomogeneous
quasi-periodic solutions, all of them possess multiple spatial peaks. Interestingly, some pos-
sible strange attractors are found numerically near the double-Hopf singularity. Biologically,
the emerging spatio-temporal patterns imply that such nonlocal intraspecific competition
can promote the coexistence of the prey and predator species in the form of more complex
periodic states.
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1 Introduction

Numerous studies show that diffusive predator-prey system can exhibit richer dynamics in
space and time [1–7]. If the interactions among individuals are local, in many previous inves-
tigations, Hopf bifurcation is regarded as an effective tool to capture the temporal oscillation,
and a general result was found that when the positive constant steady state is destabilized, the
time-periodic solution bifurcated through the Hopf bifurcation are always spatially homoge-
neous, which is first concluded in [8]. However, this may be not realistic since it is common
that a species can distribute in different patches in the environment, putting it another way, for
some reasons the species can aggregate in the habitat, for this motivation, many researchers
explicated such spatial heterogeneity through Turing bifurcations or Turing instability [9].
Accordingly, the combination of Hopf and Turing bifurcations can always be regarded as
one of the mechanisms to interpret spatio-temporal oscillations [10, 11].

There will be a breakthrough if the interaction between individuals is not limited to be
local, the spatially nonhomogeneous solution is probable to emerge even though only Hopf
bifurcation occurs. Furter and Grinfeld [12] argued that populations may share common
resources or communicate visually and chemically, it means that taking the nonlocal interac-
tion into account in reaction-diffusion systems may be more realistic in population systems.
Britton [13] proposed the following single population model

ut = DΔu + α

K

(
u − (1 + α)

∫
Ω

K (x, y)u(y, t)dy

)
. (1)

If a species encounters some natural causes, for instance the depletion of food resources,
then the intraspecific competition not only depends on the population density at the current
location but also depends on the population density near the origin. A interesting result was
carried out in [14, 15], i.e. under the influence of the nonlocal interaction merely in the form
of purely spatial convolution, complex spatio-temporal dynamics can occur as well in the
reaction-diffusion system, including bifurcations to spatially nonhomogeneous steady states,
spatially nonhomogeneous periodic solution and periodic travelling wave solutions, more
studies on nonlocal interactions refer to [16–20] and references therein.

Recently, the nonlocal intraspecific competition of prey was introduced to the Holling-
Tanner predator prey system by Merchant and Nagata [21], they put forward the following
model⎧⎪⎪⎨

⎪⎪⎩
ut = d1Δu + au

(
1 − 1

k

∫
Ω

K (x, y)u(y, t) dy

)
− buv

u + m
, x ∈ Ω, t > 0,

vt = d2Δv + cv
(
1 − ev

u

)
, x ∈ Ω, t > 0.

(2)

here u(x, t) and v(x, t) model the densities of the prey and predator, respectively, d1 and d2
are corresponding diffusive rates, k expresses the carrying capacity of the prey, a, c measure
the corresponding intrinsic growth rates, b, e measure the strength of Interaction between
predator and prey, m measures the ability of the prey evading predation. the prey species
adopts Holling type-II functional response. They considered three common kernel functions
in a unbounded domain: Laplace kernel, Gaussian kernel and uniformkernel, and numerically
verified complex spatio-temporal pattern formations from viewpoints of Hopf, Turing and
Turing-Hopf bifurcations.

For a boundeddomain, it isworth noticing that if the kernel function is chosen as K (x, y) =
δ(x − y), then the system (2) is reduced to the classic diffusive Holling-Tanner predater prey
model, which has been extensively studied, see [6, 7, 22–24]. From the viewpoint of the
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predator species invading prey habitats without predators, a symmetric stepfunction kernel is
considered in [25], where the authors found that such invasion process can induce complex
spatio-temporal structures of species. Chen et. al [26] study the system (2) with Neumann
boundary conditions on a bounded spatial domain and K (x, y) = 1

|Ω| , i.e. spatial average
kernel function, they found that the system can produce stable spatially nonhomogeneous
periodic solution through Hopf bifurcation, this is completely distinct with the previous
works on systems with local interaction. Furthermore, there are some other studies for (2)
with spatial average kernel, for example, considering the combination of Hopf and Turing
bifurcation, Turing-Hopf bifurcation and double-Hopf bifurcation are discussed in [27], the
results showed that in addition to stable spatially nonhomogeneous periodic solution and
steady states, spatially nonhomogeneous tristability phenomenon can also emerge.

A natural question arises, whether the system (2) can exhibit more complex spatio-
temporal patterns if the kernel is not spatially average on a bounded spatial region? In this
paper, we will study the following Holloing-Tanner predator prey system with the nonlocal
prey intraspecific competition and a spatial dependently kernel,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + au
(
1 − 1

k

∫ lπ

0
K (x, y)u(y, t) dy

)
− buv

u + m
, t > 0,

vt = d2vxx + cv
(
1 − ev

u

)
, t > 0,

ux (0, t) = vx (0, t) = 0, ux (lπ, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0.

(3)

with

K (x, y) = 1

lπ
+ 2

lπ

∞∑
k=1

cos
kx

l
cos

ky

l
e
− αk2

l2 , (4)

here x ∈ (0, lπ), l > 0 is a positive constant. The kernel function (4) was put forward in
[28] where a single reaction diffusion equation model with time delay and nonlocal effect
was studied in a one-dimension domain. Considering homogeneous Neumann boundary con-
dition, Su et. al. [29] investigated a diffusive nonlocal Nicholson’s blowflies equation with
time delay, they gave detailed analyses of Hopf bifurcations, the results revealed that the
nonlocal effect can promote more complex spatial distributions of the species since spatially
nonhomogeneous transient patterns appeared. As in [21], Gaussian kernel function was con-
sidered in the system (2) on a unbounded domain, this kernel can more realistically describe
the strength varying of intraspecific interaction between individuals with the distance. Since
homogeneous Neumann boundary conditions is included. Compared to the case of Gaussian
kernel in [21], based on the nonlocal term

∫
Ω
K (x, y)u(y, t) dy, it can be verified that the

effect of the kernel (4) for the system (3) is mathematically equivalent to the Gaussian kernel
function in the unbounded domain. It is still worth noting that the kernel (4) is actually a
general form, which includes the local kernel for α → 0 and the spatial average kernel for
α → ∞. Throughout this paper, the parameters d1, d2, a, b, c, d , e, k, α, l are positive
constants.

This paper is devoted to study spatio-temporal patterns of system (3). We find the kernel
function (4) can induce more complex spatio-temporal patterns with spatial multi-peaks for
the system (3) than corresponding Dirac and spatial average kernels. Firstly, we establish
the existence criteria of Turing, Hopf, Turing-Hopf and double-Hopf bifurcations, based on
these, we accurately characterize the stable and unstable regions of the positive constant
steady state. Importantly, when the positive constant steady state loses the stability, the
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system (3) could undergo any k-modeHopf bifurcation for different values, whichmeans that
bifurcating periodic solution can be not only spatially nonhomogeneous, it also can possess
multiple spatial peaks corresponding to multiple space wave frequencies. As a consequence,
the complexity of double-Hopf bifurcations increases as well, i.e. stable (k, k + 1)-mode
double-Hopf bifurcation with the nonnegative integer k can occur for the system (3). It
extremely differs from the cases of Dirac kernel and spatial average kernel, as is well known,
it is impossible to undergo double-Hopf bifurcations for the system (2) with Dirac kernel, and
for the system (2) with spatial average kernel, only (0, 1)-mode double-Hopf bifurcation can
be stable, see [27]. Furthermore, we still find that the stable parameter region of the positive
constant steady state decreases as the parameter α increases, which implies that the region
of pattern formations for the kernel (4) is smaller than the spatial average case. Biologically,
if the scope of such intraspecific interaction among individuals is farther, then the positive
equilibrium The farther the scope of such intraspecific interaction among individuals is, the
more likely the positive equilibrium will be destabilized, accordingly, the system is morel
likely to generate complex spatio-temporal patterns.

As is well known, double-Hopf bifurcation plays an important role in demonstrating
periodic, quasi-periodic or multi-periodic oscillations [30–32]. In this paper, on account of
the bifurcation theory for partial differential equations in [33] and the frame of the normal
form computation given in [34–36], we calculate the normal form up to the third order term
of (k, k + 1)-mode double-Hopf bifurcation for the positive integer k, which is expressed by
original system parameters, it is beneficial for analyzing the influence of original parameters
on pattern formations. By studying the equivalent amplitude system near the double-Hopf
singularity, we theoretically and numerically demonstrate the existence of two stable spatially
nonhomogeneous periodic solutions with different spatial peaks and the bistability of them,
as well as a unstable spatially nonhomogeneous quasi-periodic solution. Interestingly, we
also numerically find a strange periodic solution and a strange attractor with multi-period
near the double-Hopf singularity.

The rest of this paper is organized as follows. In Sect. 2, we perform a linear stability
analysis near the positive equilibrium, the existences of Turing, Hopf, Turing-Hopf and
double-Hopf bifurcations are established, the stability of positive equilibrium is derived as
well. In Sect. 3, we calculate the third order normal form of the (k, k+1)-mode double-Hopf
bifurcation for k ∈ N, complex spatio-temporal dynamics of system (3) near the double-Hopf
bifurcation point are illustrated theoretically. Appropriate numerical simulations are carried
out to complete the theoretical analyses. Finally, conclusions and discussions are given in
Sect. 4.

2 Stability of Positive Equilibrium and Bifurcation Analysis

In this section, the first purpose of is to establish the existence criteria for Turing, Hopf
bifurcations, considering the interaction of Turing and Hopf bifurcations, we further discuss
the existences of Turing-Hopf bifurcation and double-Hopf bifurcation. Then the second
purpose is to determine the stable and unstable regions for the unique positive constant steady
state of (3). Our results show that when the positive constant steady state is destabilized,
(k, k + 1)-mode double-Hopf bifurcation occurs for (3), which leads to complex spatio-
temporal periodic, quasi-periodic or multi-periodic phenomena. Throughout this paper we
denote the set of all positive integers by N and denote the set of all nonnegative integers by
N0.
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2.1 Hopf Bifurcation and Turing Bifurcation

This subsection is devoted to investigate the existence and non-existence of Turing bifurcation
and Hopf bifurcation for system (5). By transforming as in [26], t̃ = at, ũ = u

m , ṽ = ev
m ,

denoting

β̃ = m

k
, b̃ = b

ae
, c̃ = c

a
, d̃1 = d1

a
, d̃2 = d2

a
,

ignoring the tilde, system (3) can be transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + u
(
1 − β

∫ lπ

0
K (x, y)u(y, t) dy

)
− buv

u + 1
, x ∈ (0, lπ), t > 0,

vt = d2vxx + cv
(
1 − v

u

)
, x ∈ (0, lπ), t > 0,

ux (0, t) = vx (0, t) = 0, ux (lπ, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0,

(5)

with K (x, y) = 1
lπ + 2

lπ

∑k=∞
k=1 cos kxl cos

ky
l e

− αk2

l2 .

For any given β > 0 and b > 0, as in [27], the system (5) has a unique positive constant
steady state, denoted by (u∗, v∗) with

u∗ = v∗ := 1

2β

(
1 − β − b +

√
(1 − β − b)2 + 4β

)
. (6)

The linearized system of (5) at (u∗, v∗) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φt = d1φxx − βu∗
∫ lπ

0
K (x, y)φ(y, t)dy + u∗(1 − βu∗)

1 + u∗ φ − (1 − βu∗)ψ,

ψt = d2ψxx + cφ − cψ,

φx (0, t) = ψx (0, t) = 0, φx (lπ, t) = ψx (lπ, t) = 0,

(7)

with K (x, y) = 1
lπ + 2

lπ

∑k=∞
k=1 cos kxl cos

ky
l e

− αk2

l2 for x ∈ (0, lπ), t > 0. Let { k2
l2

}k∈N0 be

the eigenvalues of −d2/dx2 with zero Neumann boundary condition.
Then the characteristic equations of (7) are given by

Pk(λ) := λ2 − Tk(c)λ + Dk(c) = 0, k ∈ N0, (8)

where for k ∈ N0,

Tk(c) = −c − d2
k2

l2
+ ru∗ − βu∗e− αk2

l2 − d1
k2

l2
,

Dk(c) = c

(
r + βu∗e−α k2

l2 + d1
k2

l2

)
− d2

k2

l2

(
ru∗ − βu∗e−α k2

l2 − d1
k2

l2

)
,

(9)

with r denoted by

r := 1 − βu∗

1 + u∗ > 0.

As is well known that the stability of the positive equilibrium can be determined if the
existences of Turing and Hopf bifurcations are established by analyzing the critical situations
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of Tk(c) and Dk(c). To facilitate comparison with the system with the spatial average kernel
in [27], we introduce the following sets of β

B1 := {(β, b) | β ≥ 1, b > 0} ∪
{
(β, b) | 0 < β < 1, 0 < b ≤ (1+β)2

2(1−β)

}
,

B2 :=
{
(β, b) | 0 < β < 1, b >

(1+β)2

2(1−β)

}
,

(10)

which are defined by computing the sign of T0(β, b). As in [27], the (β, b)-plane can be
divided into two regions B1 and B2. It is obviously that when (β, b) ∈ B1, i.e. r ≤ β, for
any other positive parameters, the positive constant steady state is locally asymptotically
stable for the ordinary differential equations corresponding to (5). To further define Hopf and
Turing bifurcations curves, we denote

h(x) = ru∗ − βu∗e−αx − d1x, (11)

if h(x) = 0 has two different roots, then we denote them by x and x̄ with x < x̄ , based on
this, we address the following result.

Lemma 1 For any l, α > 0, if one of following conditions holds:

(i) (β, b) ∈ B1, d1 < αβu∗ and ru∗ − βu∗e−α
k2H
l2 − d1

k2H
l2

> 0, where kH is defined as in
(13), i.e. the positive integer that maximizes h(x);

(ii) (β, b) ∈ B2, d1 > 0,

then there exists a set Λ such that ru∗ − βu∗e−α k2

l2 − d1
k2

l2
> 0 for k ∈ Λ with

Λ := {k ∈ N0 | k ≤ k ≤ k}, (12)

where k =
{

	l√x� + 1, for condition (i)

0, for condition (ii)
, k = 	l√x̄�, where 	·� is the floor function.

Proof For any l, α > 0, we claim that Λ is nonempty since at least kH or 0 belongs to Λ.
For the proof of part (i), (β, b) ∈ B1 is equivalent to r ≤ β, according to (11), the

derivative of h(x) with respect to x is

h′(x) = αβu∗e−αx − d1,

if d1 < αβu∗, then there exists a unique positive constant 1
α
lnαβu∗

d1
such that

⎧⎪⎪⎨
⎪⎪⎩
h′(x) > 0, for x ∈

(
x, 1

α
lnαβu∗

d1

)
,

h′(x) = 0, for x = 1
α
lnαβu∗

d1
,

h′(x) < 0, for x ∈
(
1
α
lnαβu∗

d1
, x̄
)

.

Hence h(x) is monotonically increasing in (x, 1
α
lnαβu∗

d1
) and monotonically decreasing in

( 1
α
lnαβu∗

d1
, x̄), and it will attain the maximum at 1

α
lnαβu∗

d1
. Hence, let x = k2

l2
, considering

k ∈ N, if ru∗ − βu∗e−α
k2H
l2 − d1

k2H
l2

> 0 with

kH :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊√
l2
α
ln αβu∗

d1

⌋
, for h

(
1
l2

⌊√
l2
α
ln αβu∗

d1

⌋2)
>h

(
1
l2

(⌊√
l2
α
ln αβu∗

d1

⌋
+1

)2
)

,

⌊√
l2
α
ln αβu∗

d1

⌋
+ 1, for h

(
1
l2

⌊√
l2
α
ln αβu∗

d1

⌋2)
≤h

(
1
l2

(⌊√
l2
α
ln αβu∗

d1

⌋
+1

)2
)

,

(13)
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where h(x) defined in (11), 	·� is the floor function, then ru∗ − βu∗e−α k2

l2 − d1
k2

l2
> 0 for k

belongs to {k ∈ N0 | k ≤ k ≤ k̄}.
For the proof of part (ii), (β, b) ∈ B2 ia equivalent to r > β. It is obviously that h(x) = 0

has a unique solutions x̄ , thus let x = k2

l2
, k ∈ N0,we have ru∗ − βu∗e−α k2

l2 − d1
k2

l2
> 0 for

any {k ∈ N0 | 0 ≤ k ≤ k̄}.
Therefore, if one of the condition (i) and (ii) holds, ru∗ − βu∗e−α k2

l2 − d1
k2

l2
> 0 for

k ∈ Λ with Λ defined as in (12). �
As the definitions of Hopf, Turing, Turing-Hopf and double-Hopf bifurcations given in

[27], corresponding existence conditions can be obtained by the linear stability analysis. Next
we will address the existences of Turing and Hopf bifurcation.

Proposition 1 For any l, α, d2 > 0, the following statements hold:

(i) If (β, b) ∈ B1, d1 ≥ αβu∗ or d1 < αβu∗ and ru∗ − βu∗e−α
k2H
l2 − d1

k2H
l2

≤ 0 with kH
defined as in (13), then there are no Hopf bifurcations and Turing bifurcations of (5)
for all c > 0.

(ii) If (β, b) ∈ B2, d1 ≥ ru∗l2 − βu∗l2e− α

l2 , then there are no Turing bifurcations of (5)
for all c > 0 and only 0-mode Hopf bifurcation occurs for (5) when c = ru∗ − βu∗
(see Fig. 1a).

FollowingLemma1 andProposition 1, as kH is defined in (13),we can define the following
sets

Σ1 = {(β, b, d1) | (β, b) ∈ B1, d1 < αβu∗and ru∗ − βu∗e−α
k2H
l2 − d1

k2H
l2

> 0

for any α, l > 0},
Σ2 = {(β, b, d1) | (β, b) ∈ B2, 0 < d1 < ru∗l2 − βu∗l2e− α

l2 for any α, l > 0}.

(14)

In the view of (9), we denote

cHk (d2) := −d2
k2

l2
+ ru∗ − βu∗e−α k2

l2 − d1
k2

l2
,

cTk (d2) :=

(
ru∗ − βu∗e−α k2

l2 − d1
k2

l2

)
k2

l2
d2

r + βu∗e−α k2

l2 + d1
k2

l2

,

(15)

then we can define Hopf and Turing bifurcation curves according to Lemma 1 as follows

Hk : c = cHk (d2), 0 < d2 < d2
M
k , d2

M
k = ru∗l2

k2
− βu∗l2

k2
e
−α k2

l2 − d1, k ∈ Λ,

Tk : c = cTk (d2), d2 > 0, k ∈ Λ \ {0}.
(16)

Next we will establish the existence of Turing bifurcation.

Lemma 2 For any l, α, d2 > 0, if (β, b, d1) ∈ Σ1 ∪ Σ2, then there exists the unique

k∗
T ∈ (max{0,

⌊√
l2
α
lnαβu∗

d1

⌋
}, k], such that the slop of Tk reaches the maximum at k = k∗

T

with

k∗
T :=

{
κ, for cTκ (d2) > cTκ+1(d2),

κ + 1, for cTκ (d2) ≤ cTκ+1(d2),
with κ = 	l√x∗�, (17)
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where x∗ is the maximum of f (x) on x ∈ (max{0, x}, x̄) with f (x) defined in (18).

Proof Denote that

f (x) = (ru∗ − βu∗e−αx − d1x)x

r + βu∗e−αx + d1x
, (18)

it is obviously equivalent to

f (x) = r(1 + u∗)x
r + βu∗e−αx + d1x

− x .

Now let

f1(x) = r(1 + u∗)x
r + βu∗e−αx + d1x

, f2(x) = x .

It is easy to derive

f (x)

⎧⎪⎨
⎪⎩

> 0, for max{0, x} < x < x̄,

= 0, for x = x̄,

< 0, for x > x̄,

which means f ′(x̄) < 0, i.e. f ′(x̄) = f ′
1(x̄)− f ′

2(x̄) < 0 with x̄ defined as in (11). By direct
calculations,

f ′
1(x) = r(1 + u∗)(r + βu∗e−αx + αβu∗e−αx x)

(r + βu∗e−αx + d1x)2
> 0, f ′

2(x) = 1.

f ′′
1 (x) = −r(1 + u∗)[α2βu∗e−αx x + 2(r + βu∗e−αx + αβu∗e−αx x)(d1 − αβu∗e−αx )]

(r + βu∗e−αx + d1x)3
.

The rest of proof is divided into two parts.

(i) For d1 ≥ αβu∗, we just need consider x ∈ (0, x̄). It is obviously that f ′′
1 (x) ≤ 0,

f ′
1(x) > 0 and f ′

1(x) → 0 as x → +∞. In this case, we know that only (β, b) ∈ B2 is
possible, that is r > β, then

f ′
1(0) = r(1 + u∗)

r + βu∗ > 1,

i.e. f ′(0) = f ′
1(0) − f ′

2(0) > 0, therefore, there exists a unique x∗ ∈ (0, x̄) such
that f ′(x∗) = 0, and f (x) is monotonically increasing on [0, x∗) and monotonically
decreasing on (x∗, x̄).

(ii) For d1 < αβu∗, we consider x ∈ (max{0, x}, x̄] with x , x̄ defined as in (11) and we
know that ru∗ − βu∗e−αx − d1x > 0. We can compute the derivative of f (x) as

f ′(x) = 1

(r + βu∗e−αx + d1x)2

{
(r + βu∗e−αx + αβu∗e−αx x)[(ru∗ − βu∗e−αx

− d1x) + x(αβu∗e−αx − d1)] + x(ru∗ − βu∗e−αx − d1x)(αβu∗e−αx − d1)

}
.

Obviously, x = 1
α
lnαβu∗

d1
solves d1−αβu∗e−αx = 0.When x ∈ (max{0, x}, 1

α
lnαβu∗

d1
],

we have

αβu∗e−αx − d1 ≥ 0,
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hence f ′(x) > 0 in x ∈ (max{0, x}, 1
α
lnαβu∗

d1
]. When x ∈ ( 1

α
lnαβu∗

d1
, x̄), under this

condition αβu∗e−αx − d1 < 0, by utilizing the same argument as the part (i), we can
prove that there exists a unique x∗ ∈ ( 1

α
lnαβu∗

d1
, x̄) such that f ′(x∗) = 0, and f (x) is

monotonically increasing on [ 1
α
lnαβu∗

d1
, x∗) and monotonically decreasing on [x∗, x̄).

In conclusion, let x = k2

l2
, above results imply that for any d2 > 0, cTk (d2) reaches its

maximum in (max{0,
⌊√

l2
α
lnαβu∗

d1

⌋
}, k], denoted by k∗

T and it is monotonically increasing

on (max{0, k}, k∗
T ) and monotonically decreasing on (k∗

T , k̄].
�

Subsequently,we denote the intersection of cHi (d2) and cHj (d2)by (di, j2 , cHi, j ) for i, j ∈ Λ,
where

di, j2 :=
βu∗

(
e
−α i2

l2 − e
−α

j2

l2

)

j2

l2
− i2

l2

− d1, cHi, j := cHi (di, j2 ), (19)

and denote the the intersection of cHk (d2) and cTk∗
T
(d2) by (dk2 , c

H
k (d2∗

k)) with k ∈ Λ and k∗
T

defined as in Lemma 2, where

d2
∗
k :=

(
ru∗ − βu∗e−α k2

l2 − d1
k2

l2

)(
r + βu∗e−α

k∗T
2

l2 + d1
k∗
T
2

l2

)

(
r + βu∗e−α

k∗T
2

l2 + d1
k∗
T
2

l2

)
k2

l2
+
(
ru∗ − βu∗e−α

k∗T
2

l2 − d1
k∗
T
2

l2

)
k∗
T
2

l2

. (20)

It is well known that Turing bifurcations can theoretically interpret the emergence of noncon-
stant steady state solutions. As in Theorem 1, the system (5) will undergo k∗

T -mode Turing
bifurcation at first, and other Turing bifurcations can also occurs near the equilibrium for
k ∈ Λ\{0, k∗

T }, but the bifurcating solutions must be unstable since there have been unstable
flows. Moreover, when the condition cTκ = cTκ+1 holds, more generally, when cTk1 = cTk2 for
k1, k2 ∈ Λ, (k1, k2)-mode Turing-Turing bifurcation for the system (5), in this situation the
parameter d2 is not enough to describe the existence of Turing-Turing bifurcation, it can be
further study thus we ignore this case in following discussions. Our next theorem determines
the first Turing bifurcation.

Theorem 1 For any l, α > 0, if (β, b, d1) ∈ Σ1∪Σ2, cTκ �= cTκ+1, then for d2 > 0, d2 �= d2∗
k ,

the system (5) undergoes a k∗
T -mode Turing bifurcation near (u∗, v∗) at c = cTk∗

T
(d2) (see

Figs. 1b–e), where cTk∗
T
(d2), κ , d2∗

k are defined as in (15), (17) and (20), respectively.

Proof If (β, b, d1) ∈ Σ1 ∪ Σ2, by (9), (15) and (16), we know that Dk(cTk (d2)) = 0 for
d2 > 0, k ∈ Λ, in particular, Dk∗

T
(cTk∗

T
(d2)) = 0. Since cTk∗

T
(d2∗

k) = cHk (d2∗
k) when d2 = d2∗

k ,

that implies Tk(cHk (d2∗
k)) = 0, hence when d2 > 0, d2 �= d2∗

k , we have

Dk∗
T
(cTk∗

T
(d2)) = 0 and Tk(c

H
k∗
T
(d2)) �= 0, k ∈ Λ.

By utilizing Lemma 2, for any k ∈ Λ, k �= k∗
T and d2 > 0, we know that cTk∗

T
(d2) > cTk (d2) ,

then

Dk(c
T
k∗
T
(d2)) < Dk∗

T
(cTk∗

T
(d2)) = 0,

123



682 Journal of Dynamics and Differential Equations (2024) 36:673–702

provided by cTκ �= cTκ+1. Therefore, Pk∗
T
(λ) = 0 has a simple zero eigenvalue, all other

eigenvalues have nonzero real parts.
Moreover, suppose that λ(c) = α(c) + iγ (c) is a complex root of the characteristic

equation Pk∗
T
(λ) = 0 near c = cTk∗

T
(d2) with α(cTk∗

T
(d2)) = 0, γ (cTk∗

T
(d2)) = 0. By direct

calculations,

∂α(cTk∗
T
(d2))

∂c
= r + βu∗e−α

k∗
T
2

l2 + d1
k∗2
l2

Tk∗
T
(cTk∗(d2))

�= 0, (21)

i.e. the transversality condition holds. Therefore, system (5) undergoes a k∗
T -mode Turing

bifurcation near (u∗, v∗) at c = cTk∗
T
(d2) �

Next we will concern the existence of Hopf bifurcation.

Theorem 2 For any l, α > 0, if (β, b, d1) ∈ Σ1, then system (5) undergoes a k-mode Hopf
bifurcation near (u∗, v∗) at c = cHk (d2) for 0 < d2 < d2∗

k , d2 �= dk, j2 with k, j ∈ Λ (see
Fig. 1b,c). Moreover the bifurcating periodic orbits are spatially nonhomogeneous, where
Λ, cHk (d2), d2∗

k , d
k, j
2 are defined as in (12), (15), (19) respectively.

Proof For any l, α > 0, when (β, b, d1) ∈ Σ1, by Lemma 1, cHk (d2) > 0 0 < d2 <

ru∗l2
k2

− βu∗l2
k2

e
−α k2

l2 − d1 for k ∈ Λ. (β, b) ∈ B1 is equivalent to r ≤ β, in view of cHk (d2)

in (15), we know cH0 (d2) = ru∗ − βu∗ ≤ 0, i.e. there is no 0-mode Hopf bifurcation.
Let Tk(c) = 0, we obtain c = cHk (d2) with cHk (d2) defined as in (15), which means

for each k ∈ Λ, Tk(cHk (d2)) = 0, and (dk, j2 , cHk, j ) is the unique intersection of cHk (d2) and

cHj (d2), which is defined as in (19) with 0 < dk, j2 < d2Mk , then for the case of dk, j2 > 0, we

know that Tk(cHk (dk, j2 )) = Tj (cHj (dk, j2 )) = 0. Hence, if 0 < d2 < d2∗
k and d2 �= dk, j2 with

dk, j2 > 0, then Tj (cHk (d2)) �= 0 for any j ∈ Λ.
On the other hand, by direct calculation, we obtain

⎧⎪⎪⎨
⎪⎪⎩
cHk (d2) > cTk∗

T
(d2), for 0 < d2 < d2∗

k ,

cHk (d2) = cTk∗
T
(d2), for d2 = d2∗

k ,

cHk (d2) < cTk∗
T
(d2), for d2 > d2∗

k ,

(22)

where d2∗
k is defined as in (20). By Lemma 2, we know that if c > cTk∗

T
(d2) for d2 > 0, then

Dj (c) > 0 for any j ∈ Λ. Thus if 0 < d2 < d2kk∗ , then Dj (cHk (d2)) > 0 for any j ∈ Λ.
Therefore, all other eigenvalues of Pk(λ) = 0 have nonzero real parts, except a pair of

purely imaginary eigenvalues. Moreover, suppose λ(c) = α(c) ± iω(c) is a pair of roots of
characteristic equations Pk(λ) = 0 near c = cHk (d2) with α(cHk (d2)) = 0, ω(cHk (d2)) > 0,
the transversality condition holds, since

∂α(cHk )

dc
= 1

2

∂Tk(cHk )

∂c
= −1

2
< 0. (23)

The proof is complete. �

Theorem 3 For any l, α > 0, if (β, b, d1) ∈ Σ2, then the followings hold:
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(i) If d1 > αβu∗e− α

l2 , then when 0 < d2 < d2∗
k for k ∈ Λ then system (5) undergoes a

k-mode Hopf bifurcation near (u∗, v∗) at c = cHk (d2) (see Fig. 1d), where Λ, cHk (d2)
are defined as in (12), (15) respectively.

(ii) If 0 < d1 ≤ αβu∗e− α

l2 , then when 0 < d2 < d2∗
k and d2 �= dk, j2 for k, j ∈ Λ with

0 < dk, j2 < d2Mk , then system (5) undergoes a k-mode Hopf bifurcation near (u∗, v∗)
at c = cHk (d2) (see Fig. 1e), where Λ, cHk (d2), d2Mk , dk, j2 are defined as in (12), (15),
(19) respectively.

Moreover, the bifurcating periodic orbit is spatially homogeneous for k = 0 and spatially
nonhomogeneous for k �= 0.

Proof For any l > 0 and (β, b) ∈ B2, we know r > β, i.e. cH0 (d2) > 0. In view of cHk (d2)
in (15), we can obtain

cHk (0) = ru∗ − βu∗e−α k2

l2 − d1
k2

l2
,

then

dcHk (0)

d( k
2

l2
)

= αβu∗e−α k2

l2 − d1. (24)

It is easy to verify that αβu∗e− α

l2 < ru∗l2 − βu∗l2e− α

l2 , so the rest of the proof is divided
into two parts.

For the proof of part (i), if d1 > αβu∗e− α

l2 , then

⌊√
l2
α
lnαβu∗

d1

⌋
≤ 0, thus for any k ∈

Λ, cHk (0) is monotonically decreasing with respect to k. Moreover, since cH0 (d2) > 0,
(β, b, d1) ∈ Σ2 and the slop of cHk (d2) is monotonically decreasing, so cHk+1(d2) < cHk (d2)
for each k ∈ Λ.

By (9), Tk(cHk (d2)) = 0, D0(cHk (d2)) > 0. If 0 < d2 < d2∗
k , then by the monotonicity of

cHk (d2), Tj (cHk (d2)) �= 0 for any j ∈ Λ, j �= k. On the other hands, according to (22), we
derive Dj (cHk (d2)) > 0 for any j ∈ Λ. Therefore, Pk(λ) = 0 has a pair of purely imaginary
eigenvalues and all other eigenvalues have nonzero real parts, the transversality condition is
satisfied as well by (23).

For the proof of part (ii), If 0 < d1 ≤ αβu∗e− α

l2 , then

⌊√
l2
α
lnαβu∗

d1

⌋
> 0. Since cH0 (d2) >

0, thus for any k ∈ Λ, cHk (0) is monotonically increasing for 0 ≤ k ≤
⌊√

l2
α
lnαβu∗

d1

⌋
, and

monotonically increasing for

⌊√
l2
α
lnαβu∗

d1

⌋
< k ≤ k̄. Similarly, the slop of cHk (d2) is

monotonically decreasing with k, then there exists some j ∈ Λ, j �= k such that 0 < dk, j2 <

d2Mk and Tk(cHk (dk, j2 )) = Tj (cHj (dk, j2 )) = 0. Therefore, if 0 < d2 < d2∗
k and d2 �= dk, j2

for k, j ∈ Λ with 0 < dk, j2 < d2Mk , then by using the similar argument as the Proof of
Theorem 2, we can prove that all other eigenvalues of the characteristic equation Pk(λ) = 0
have nonzero real parts, except a pair of purely imaginary eigenvalues, and the transversality
condition holds. �
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2.2 Turing-Hopf Bifurcation and Double-Hopf Bifurcation

In this subsection, we consider the interactions of Turing and Hopf bifurcations and derive
sufficient conditions for the existence of Turing-Hopf bifurcation and double-Hopf bifurca-
tion. First we define the following notation

k∗
H := max{k ∈ Λ | d2∗

k attains the maximum in Λ with d2
∗
k > 0}. (25)

Remark 1 We can assert that k∗
H defined as in (25) satisfies k∗

H ≤ kH with kH defined in
(13), since when k ∈ Λ, k ≥ kH , cHk (d2) is monotonically decreasing for any d2 > 0 as the
argument in Theorem 3, this means all cHk (d2) for any k ∈ Λ, k > kH completely lay below
cHkH (d2).

Theorem 4 For any l, α > 0, if (β, b, d1) ∈ Σ1, cTκ �= cTκ+1, k
∗
H is defined as in (25), then

the following hold:

(i) The system (5) undergoes a (k∗
T , k∗

H )-mode Turing-Hopf bifurcation near (u∗, v∗) at
(d2, c) = (d2∗, c∗), provided by k∗

T �= k∗
H and d2∗ �= d

k∗
H ,k∗

H+1
2 (see Fig. 1b, c), where

d2
∗ := d2

∗
k∗
H
, c∗ := cHk∗

H
(d2

∗
k∗
H
). (26)

Moreover, the real parts of other eigenvalues for the characteristic Eq. (8) are negative
except a pair of purely imaginary eigenvalues and a simple zero eigenvalue.

(ii) If k∗
H < kH , the system (5) undergoes a (k, k + 1)-mode double-Hopf bifurcation near

(u∗, v∗)at (d2, c) = (dk,k+1
2 , cHk,k+1) for all k ∈ Λ, k∗

H ≤ k < kH (seeFig.1b,c), where

dk,k+1
2 , cHk,k+1 are defined as (19). Moreover, the real parts of other eigenvalues for the

characteristic Eq. (8) are negative except two pairs of purely imaginary eigenvalues. In
particular, there is no double-Hopf bifurcation if k∗

H = kH .

Proof If (β, b, d1) ∈ Σ1, then r ≤ β, i.e. cH0 (d2) ≤ 0 for any d2 > 0. For the proof of part
(i), denote

d2
∗ := d2

∗
k∗
H
, c∗ := cHk∗

H
(d2

∗
k∗
H
).

By Theorem 2, we know that (d2, c) = (d2∗, c∗), and for each k ∈ Λ,

Tk(d2
∗, c∗) < Tk∗

H
(d2

∗, c∗) = 0. (27)

In addition, since cTκ �= cTκ+1, applying Theorem 1, we derive that when (d2, c) = (d2∗, c∗),
for k ∈ Λ

Dk(d2
∗, c∗) > Dk∗

T
(d2

∗, c∗) = 0, (28)

As results of k∗
T �= k∗

H and d2∗ �= dk,k+1
2 , when (d2, c) = (d2∗, c∗), Pk∗

H
(λ) = 0 has two

purely imaginary roots, and Pk∗
T
(λ) = 0 has a zero eigenvalue. Moreover, (27) and (28)

also imply that Tk(d2∗, c∗) < 0, Dk(d2∗, c∗) > 0 for each k ∈ Λ, k �= k∗
H , k∗

T , i.e. all
the eigenvalues of Pk(λ) = 0 for k ∈ Λ, k �= k∗

H , k∗
T have negative real part, and the

transversality conditions hold via (23) and (21). Therefore, system (5) undergoes (k∗
T , k∗

H )-
mode Turing-Hopf bifurcation near (u∗, v∗) when (d2, c) = (d2∗, c∗).

For the proof of part (ii), as in (19), by setting x = i2

l2
, y = j2

l2
we define g(x, y) as

g(x, y) = βu∗(e−αx − e−αy)

y − x
− d1,
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then for fixed y > 0,

∂g(x, y)

∂x
= −αβu∗e−αx (y − x) + βu∗(e−αx − e−αy)

(y − x)2
,

by direct calculation, when y ≥ x ,

− αβu∗e−αx (y − x) + βu∗(e−αx − e−αy)

= βu∗e−αx [−α(y − x) + 1 − e−α(y−x)] ≤ 0,

thus ∂g(x,y)
∂x ≥ 0 when y ≥ x , which implies that di, j2 is monotonically decreasing with i ∈ Λ

for fixed j . Similarly, it can be proved that di, j2 is monotonically decreasing with j ∈ Λ for
fixed i . As a consequence,

dk−1,k
2 > dk,k+1

2 > dk+1,k+2
2 , for k ∈ Λ \ {0}, (29)

and (dk,k+1
2 , cHk,k+1) is the first double-Hopf bifurcation point as (d2, c) crossesHk from top

to bottom. For each k ∈ Λ, if k∗
H = kH , then Dk(d

k,k+1
2 , cHk,k+1) < 0 for any k ∈ Λ, this

implies double-Hopf bifurcation can not occur. If k∗
H < kH , for k ≤ k∗

H , then d
k,k+1
2 < d2∗,

by (9), (15), (19) and Lemma 2, we obtain

Tk(d
k,k+1
2 , cHk,k+1) = 0, Dk(d

k,k+1
2 , cHk,k+1) > 0,

Tk+1(d
k,k+1
2 , cHk,k+1) = 0, Dk+1(d

k,k+1
2 , cHk,k+1) > 0,

and for any j ∈ Λ, j �= k, k + 1,

Tj (d
k,k+1
2 , cHk,k+1) ≤ Tk(d

k,k+1
2 , cHk,k+1) = 0,

Dj (d
k,k+1
2 , cHk,k+1) > Dk(d

k,k+1
2 , cHk,k+1) > 0.

Therefore, when (d2, c) = (dk,k+1
2 , cHk,k+1), both of Pk(λ) = 0 and Pk+1(λ) = 0 have

two pairs of purely imaginary roots, all the other eigenvalues of P j (λ) = 0 for j ∈ Λ,
j �= k have negative real part, and the transversality conditions hold via (23). Therefore,
system (5) undergoes (k, k+1)-mode double-Hopf bifurcation near (u∗, v∗)when (d2, c) =
(dk,k+1

2 , cHk,k+1). �

Theorem 5 For any l, α > 0, if (β, b, d1) ∈ Σ2 and d1 > αβu∗e− α

l2 , cTκ �= cTκ+1, k
∗
H is

defined as in (25), then the followings hold:

(i) The system (5) undergoes a (k∗
T , 0)-mode Turing-Hopf bifurcation near (u∗, v∗) at

(d2, c) = (d2∗, c∗), where d2∗, c∗ are defined as in (26) with k∗
H = 0 (see Fig. 1d).

Moreover, the real parts of other eigenvalues for the characteristic Eq. (8) are negative
except a pair of purely imaginary eigenvalues and a simple zero eigenvalue.

(ii) There is no double-Hopf bifurcation of system (5) for any d2 > 0, c > 0.

Proof If (β, b, d1) ∈ Σ2 and d1 > αβu∗e− α

l2 , then cH0 (d2) > 0, as a consequence of
Theorem 3-(i), for any k ∈ Λ, cHk+1(d2) < cHk (d2) < cH0 (d2) since cHk (0) is monotonically
decreasingwith k, whichmeans for any i, j ∈ Λ, cHi (d2) and cHj (d2) can not intersect for any
d2 > 0. Therefore, There is no double-Hopf bifurcation of system (5) for any d2 > 0, c > 0.

In addition, by Lemma 2 and Theorem 1, we know that when (d2, c) = (d2∗, c∗) with
d2∗, c∗ defined as (26) for k∗

H = 0, for each k ∈ Λ,

Tk(d2
∗, c∗) < T0(d2

∗, c∗) = 0.
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and

Dk(d2
∗, c∗) > Dk∗

T
(d2

∗, c∗) = 0.

So the characteristic equation P0(λ) = 0 has two purely imaginary roots, Pk∗
T
(λ) = 0 has a

zero eigenvalue, and for k ∈ Λ, k �= 0, k∗
T , all the eigenvalues of Pk(λ) = 0 have negative

real part. Furthermore, the transversality conditions hold via (23) and (21). Therefore, system
(5) undergoes (k∗

T , 0)-mode Turing-Hopf bifurcation near (u∗, v∗). �

Theorem 6 For any l, α > 0, if (β, b, d1) ∈ Σ2 and 0 < d1 ≤ αβu∗e− α

l2 , cTκ �= cTκ+1, k
∗
H

is defined as in (25), then the followings hold:

(i) The system (5) undergoes a (k∗
T , k∗

H )-mode Turing-Hopf bifurcation near (u∗, v∗) at
(d2, c) = (d2∗, c∗), provided by k∗

T �= k∗
H and d2∗ �= dk,k+1

2 with k = k∗
H (see Fig. 1e),

where d2∗, c∗ are defined as (26). Moreover, the real parts of other eigenvalues for the
characteristic Eq. (8) are negative except a pair of purely imaginary eigenvalues and a
simple zero eigenvalue.

(ii) If k∗
H < kH , system (5) undergoes a (k, k + 1)-mode double-Hopf bifurcation near

(u∗, v∗) at (d2, c) = (dk,k+1
2 , cHk,k+1) for all k ∈ Λ, k∗

H ≤ k < kH (see Fig. 1e),

where dk,k+1
2 , cHk,k+1 are defined as (19). Moreover, the real parts of other eigenvalues

for the characteristic equation (8) are negative except two pairs of purely imaginary
eigenvalues. In particular, there is no double-Hopf bifurcation if k∗

H = kH .

Proof The part (i) can be proved by utilizing the same argument as the Proof of Theorem4-(i),
we omit here.

For the proof of part (ii), the case of k∗
H = kH is simple, we just give the proof for

k∗
H < kH . If (β, b, d1) ∈ Σ2 and 0 < d1 ≤ αβu∗e− α

l2 , then cH0 (d2) > 0, as a consequence

of Theorem 3-(ii), then

⌊√
l2
α
lnαβu∗

d1

⌋
> 0, for k ∈ Λ, cHk (0) is monotonically increasing for

0 ≤ k <

⌊√
l2
α
lnαβu∗

d1

⌋
, and monotonically increasing for

⌊√
l2
α
lnαβu∗

d1

⌋
< k ≤ k̄, and there

exists dk,k+1
2 > 0 for each k ∈ Λ, k∗

H ≤ k < kH . Similar to the proof of Theorem 4-(ii),

we can derive that when (d2, c) = (dk,k+1
2 , cHk,k+1), both of Pk(λ) = 0 and Pk+1(λ) = 0

have two pairs of purely imaginary roots, and all the eigenvalues of P j (λ) = 0 for j ∈ Λ,
j �= k have negative real part. Furthermore, the transversality conditions can be verified by
(23), therefore, system (5) undergoes (k, k+1)-mode double-Hopf bifurcation near (u∗, v∗)
when (d2, c) = (dk,k+1

2 , cHk,k+1). �
Remark 2 Theorems 4 and 6 exhibit similar results on the existences of Turing-Hopf bifurca-
tion and double-Hopf bifurcation, nevertheless, there still exist some major differences, i.e.
under the conditions in Theorem 4, 0-mode Hopf bifurcation is nonexistent, that is k∗

H �= 0,
this means all bifurcating solutions through Turing-Hopf or double-Hopf bifurcations are
spatially nonhomogeneous. In particular, they could have more than two spatial peaks.

Remark 3 In Theorems 4–6, we neglect the situation of k∗
H = k∗

T and d2∗ = dk,k+1
2 . Actually,

if k∗
H = k∗

T , we can claim that a Bogdanov-Takens may occur for the system (5) when

parameter cross some critical values. If d2∗ = dk,k+1
2 , the system (5) may undergoes a more

highly degenerated Turing-double-Hopf bifurcation. We will not give more corresponding
investigations in this paper.
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(a) (b) (c)

(d) (e)

Fig. 1 Graphs (a)–(e) characterize the stable and unstable regions of the positive equilibrium in (d2, c)- plane,
which correspond to Corollary 1-(ii)(iii). Where TH represents Turing-Hopf bifurcation point, HH represents
double-Hopf bifurcation point, Hk and Tk for integer k are Hopf and Turing bifurcation curves defined as in
(16), respectively

The existences criteria for Hopf, Turing, Turing-Hopf and double-Hopf bifurcation are
contribute to further characterize the stability of the unique positive equilibrium. For the
sake of comparing to the case of the spatial average kernel in [27], we define the first Hopf
bifurcation curve CH for (β, b, d1) ∈ Σ1 ∪ Σ2, it is given by

CH (d2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cHkH (d2), 0 < d2≤dkH−1,kH
2 ,

cHk (d2), dk,k+12 <d2<dk−1,k
2 for k∈Λ, k∗

H <k<kH ,

cHk∗
H
(d2), d

k∗
H ,k∗

H+1
2 ≤ d2 < d2∗,

if k∗
H < kH − 1,

⎧⎨
⎩
cHkH (d2), 0 < d2 ≤ dkH−1,kH

2 ,

cHk∗
H
(d2), dkH−1,kH

2 < d2 < d2∗,
if k∗

H = kH − 1,

cHkH (d2), 0 < d2 < d∗
2 , if k∗

H = kH ,

(30)

then we define the following sets in the first quadrant of (d2, c)-plane:

S1 := {(d2, c) ∈ R
2+ | c > cH0 (d2) for d2 > 0},

S2 := {(d2, c) ∈ R
2+ | c > CH (d2) for 0 < d2 < d2

∗ and c > cTk∗
T
(d2) for d2 ≥ d2

∗}.
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As consequences of Proposition 1, Theorems 2, 3, 1 and 4–6, the stability of the positive
equilibrium can be determined as follows:

Corollary 1 Denote the closure of Si by Si , 1 ≤ i ≤ 2, kH is defined as in (13). For any
l, α > 0, the following statements hold:

(i) If (β, b) ∈ B1, d1 ≥ αβu∗ or d1 < αβu∗ and ru∗ − βu∗e−α
k2H
l2 − d1

k2H
l2

≤ 0, then
(u∗, v∗) is locally asymptotically stable;

(ii) If (β, b) ∈ B2, d1 ≥ ru∗l2 − βu∗l2e− α

l2 , then (u∗, v∗) is locally asymptotically stable
for (d2, c) ∈ S1 and unstable for (d2, c) ∈ R

2+\S1;
(iii) If (β, b, d1) ∈ Σ1 ∪ Σ2, then (u∗, v∗) is locally asymptotically stable for (d2, c) ∈ S2

and unstable for (d2, c) ∈ R
2+\S2.

We provide respective figures in (d2, c)-plane to illustrate Corollary 1; see Fig. 1, where
the colored regions match with the stable parameter regions of (u∗, v∗), and Fig. 1 can also
be used to illustrate Proposition 1,Theorems 1–3 and 4–6.

Remark 4 To explore the effect of the kernels on the spatio-temporal dynamics of the system
(3), we review the situation of (3) with the spatial average kernel,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + u
(
1 − β

lπ

∫ lπ

0
u(y, t) dy

)
− buv

u + 1
, x ∈ (0, lπ), t > 0,

vt = d2vxx + cv
(
1 − v

u

)
, x ∈ (0, lπ), t > 0,

ux (0, t) = vx (0, t) = 0, ux (lπ, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0.

(31)

In [27], if the positive equilibrium of (31) loses the stability through Hopf bifurcation, which
only can be 0-mode Hopf or 1-mode Hopf bifurcation, the system (31) can exhibit spatially
nonhomogeneous periodic solutions quasi-periodic solutions induced by Hopf, Turing-Hopf
or double-Hopf bifurcations, but there is only one spatialwave frequency, thismeanswhen the
positive equilibrium is destabilized through Hopf, double-Hopf or Turing-Hopf bifurcations,
the bifurcating solutions can only have one spatial peak for (31). Whereas, according to
Theorems 1, 2–3 and 4–6, when taking the kernel (4) into account instead of spatial average
kernel, the phenomena will be distinct, that is spatially nonhomogeneous periodic solutions
or quasi-periodic solutions can possess any spatial wave frequencies, i.e. there can bemultiple
spatial peaks in one space period, this leads to the system can exhibit more complex spatio-
temporal patterns.

Remark 5 It is worth noting that the kernel function (4) may be more reasonable, the effect of
which is equivalent to Gaussian kernel on a unbounded domain in [21], and it includes spatial
average kernel and Dirac kernel through parameter α. In view of

∫
Ω
K (x, y)u(y, t) dy and

Neumann boundary condition, let u(y, t) = Σk=∞
k=1 eλtcos kxl , then∫

Ω

K (x, y)u(y, t) dy = u(x, t),

which indicates that the effect of the kernel (4) is equivalent to Dirac kernel when α → 0, i.e.
the classic Holling-Tanner predator prey system. In this case, only the spatially homogeneous
periodic solution generated byHopf bifurcation could be stable, and double-Hopf bifurcations
are impossible, this also means that there is no the peak alternating periodic solution.
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On the other hand, it is obvious that

K (x, y) = 1

lπ
+ 2

lπ

k=∞∑
k=1

cos
kx

l
cos

ky

l
e
− αk2

l2 → 1

lπ
as α → +∞,

i.e. the system (5) is equivalent to the system (31) when α → +∞. In view of (15), it is easy
to calculate the derivative of cHk (d2) and cTk (d2) with respective to α,

∂cHk (d2)

∂α
= βu∗ k2

l2
e
− αk2

l2 > 0,
∂cTk (d2)

∂α
= (r + ru∗)d2βu∗ k4

l4
e
− αk2

l2

(r + βu∗e− αk2

l2 + d1
k2

l2
)2

> 0.

HenceHopf bifurcations curve cHk (d2) andTuring bifurcation curve cTk (d2) aremonotonically
increasing on α, which imply that the stable region of positive constant steady state will
be smaller as α increases. Thus to some extent, we can assert that the pattern formation
region of the positive equilibrium may be smaller for the system (5) than (31), but spatio-
temporal patterns are more diverse. Ecologically, For the kernel (4), when the range of
nonlocal interaction is wider, the system is more likely to produce complex spatio-temporal
patterns.

3 Spatio-Temporal Patterns Near the Double-Hopf Singularity

In this section we investigate the spatio-temporal patterns of system (5) near the double-
Hopf singularity by the method of center manifold theory and the normal form reduction.
we first calculate the normal form up to third-order term by applying the formulas of the
normal form at double-Hopf singularity in [37]. Subsequently, the dynamics of system (5)
near the double-Hopf bifurcation point is illustrated by analyzing the reduced normal form,
and appropriate numerical simulations are carried out to support the theoretically results.

3.1 Normal Form of Double-Hopf Bifurcation

Introduce perturbation parameters (ε1, ε2) by plugging d2 = dk,k+1
2 + ε1, c = cHk,k+1 + ε2

into (5), and translate (u∗, v∗) to (0, 0), consequently, the system (5) can be transformed into
⎧⎪⎪⎨
⎪⎪⎩
ut = d1uxx + (u + u∗)

(
1 − β

∫ lπ

0
K (x, y)(u(y, t) + u∗) dy

)
− b(u + u∗)(v + u∗)

(1 + u + u∗)
,

vt = (dk,k+1
2 + ε1)vxx + (cHk,k+1 + ε2)(v + u∗)

(
1 − v + u∗

u + u∗
)
,

(32)

where x ∈ (0, lπ), t > 0, K (x, y) is given by (4). Via denoting

U (t) = (u(t), v(t))T , Û (t) =
∫ lπ

0
K (x, y)U (y, t)dy,

we can abstract (32) as

U̇ (t) = D0(ε)ΔU (t) + L(ε)U (t) + L̂(ε)Û (t) + G(U (t), Û (t), ε), (33)
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where

D(ε) =
(
d1 0

0 dk,k+1
2 + ε1

)
, L(α) =

⎛
⎝ u∗(1−βu∗)

1+u∗ −(1 − βu∗)

cHk,k+1 + ε2 −cHk,k+1 + ε2

⎞
⎠ , L̂(ε) =

(−βu∗ 0
0 0

)
,

G(ξ, ξ̂ , α) =
⎛
⎝(ξ1 + u∗)(1 − βu∗ − βξ̂1) − b(ξ1+u∗)(ξ2+u∗)

(1+ξ1+u∗)
+ βu∗ξ̂1 − u∗(1−βu∗)

1+u∗ ξ1 + (1 − βu∗)ξ2

(c∗ + ε2)(ξ2 + u∗)
(
1 − ξ2+u∗

ξ1+u∗
)

− (c∗ + ε2)(ξ1 − ξ2)

⎞
⎠ .

where ξ = (ξ1, ξ2)
T , ξ̂ = (ξ̂1, ξ̂2)

T �
∫ lπ
0 K (x, y)ξ(y, t)dy and ε = (ε1, ε2). and

D(0) =
(
d1 0
0 dk,k+1

2

)
, D1(ε) =

(
0 0
0 ε1

)
,

L(0) =
(

u∗(1−βu∗)
1+λ

−(1 − βu∗)
cHk,k+1

)
, L̂(0) =

(−βu∗ 0
0 0

)
,

L1(ε) =
(
0 0
ε2 −ε2

)
, L̂1(ε) =

(
0 0
0 0

)
. (34)

Q(X , Y ) =
(

−βx1 ŷ1 − β y1 x̂1 + 2bu∗
(1+u∗)3 x1y1 − b

(1+u∗)2 (x1y2 + x2y1)

− 2c
u∗ x1y1 + 2c

u∗ (x1y2 + x2y1) − 2c
u∗ x2y2

)
, (35)

C(X , Y , Z)

=
(

− 6bu∗
(1+u∗)4 x1y1z1 + 2b

(1+u∗)3 (x1y1z2 + x1y2z1 + x1y1z1)
6c
u∗2 x1y1z1 − 4c

u∗2 (x1y1z2 + x1y2z1 + x2y1z1) + 2c
u∗2 (x1y2z2 + x2y2z1 + x2y1z2)

)
.

(36)

where X = (x1, x2)T , Y = (y1, y2)T , Z = (z1, z2)T , x̂1 = ∫ lπ
0 K (x, y)x1(y, t)dy, and

ŷ1 = ∫ lπ
0 K (x, y)y1(y, t)dy. As

∫ lπ

0
K (x, y)βk(y)dy = e−αμkβk, for k ∈ N0, (37)

with μk = k2

l2
and βk are the eigenvalues and corresponding eigenfunctions of Laplace

operator −d2/dx2, then the characteristic equation of (33) is equivalent to a sequence of
characteristic equations

det�k(λ) = 0 with �k(λ) = λI + μk D0 − (L(0) + e−αμk L̂(0))(eλ· I ), k ∈ N0,

(38)

For any k ∈ N0, denote the m × m matrix-valued function of bounded variation on [−r , 0]
by ηk ∈ BV ([−r , 0],Cm×m), which satisfies

− μk D0ψ(0) + (L(0) + e−αμk L̂(0))ψ =
∫ 0

−r
dηk(θ)ψ(θ), ψ ∈ C . (39)

Denote the eigenfunctions of characteristic Eq. (38) for k, k + 1 ∈ N0 by φi , φ̄i , and ψi , ψ̄i ,
i = 1, 2 represent eigenfunctions of adjoint characteristic equations, which satisfyψiφi = 1,
ψiφ j = 0 for i, j = 1, 2, j �= i . Denote corresponding purely imaginary eigenvalues by
±iω1 and ±iω2, here

ω1 =
√
Dk(d

k,k+1
2 , cHk,k+1), ω2 =

√
Dk+1(d

k,k+1
2 , cHk,k+1). (40)
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By direct calculating as in [38], we derive that

φ1 =
(
1
p1

)
, φ2 =

(
1
p2

)
, ψ1 =

(
1
N1q1
N1

)T

, ψ2 =
(

1
N2q2
N2

)T

, (41)

with

p1 = −iω1 + ru∗ − βu∗e−α k
l2 − d1

k
l2

1 − βu∗ , q1 = − 1 − βu∗

iω1 + cHk,k+1 + dk,k+1
2 k2

l2

,

p2 = −iω2 + ru∗ − βu∗e−α k+1
l2 − d1

k+1
l2

1 − βu∗ , q2 = − 1 − βu∗

iω2 + cHk,k+1 + dk,k+1
2 (k+1)2

l2

,

N1 = 1 − iω1 − ru∗ + βu∗e−α k
l2 + d1

k
l2

iω1 + cHk,k+1 + dk,k+1
2 k2

l2

, N2 = 1 − iω2 − ru∗ + βu∗e−α k+1
l2 + d1

k+1
l2

iω2 + cHk,k+1 + dk,k+1
2 (k+1)2

l2

.

So far we have derived the Q, C , and corresponding eigenfunctions φi , ψi , i = 1, 2, as a
consequent of (37) and utilizing the formulas of the normal form for double-Hopf bifurcation
in [37], we derive the normal form up to third-order of (5) at (k1, k2)-mode double-Hopf
bifurcation point as in the following proposition.

Proposition 2 For any l, α > 0, (β, b, d1) ∈ Σ1 ∪ Σ2, k1,k2 ∈ Λ with Λ defined as in
(12), the normal form up to third-order term restricted on the center manifold of (5) at
(k1, k2)-mode double-Hopf singularity (dk,k+1

2 , cHk,k+1) is given by

ż1 = iω1z1 + a1(ε)z1 + a2100z
2
1 z̄1 + a1011z1z2 z̄2 + h.o.t .,

˙̄z1 = −iω1 z̄1 + a1(ε)z̄1 + a2100z1 z̄
2
1 + a1011 z̄1z2 z̄2 + h.o.t .,

ż2 = iω2z2 + b2(ε)z2 + b0021z
2
2 z̄2 + b1110z1 z̄1z2 + h.o.t .,

˙̄z2 = −iω2 z̄2 + b2(ε)z̄2 + b0021z2 z̄
2
2 + b1110z1 z̄1 z̄2 + h.o.t .,

(42)

where

a1(ε) = 1

2
ψ1(0)((L1(ε) + e−αμk L̂1(ε))(φ1) − μk1D1(ε)φ1(0)),

b2(ε) = 1

2
ψ2(0)((L1(ε) + e−αμk L̂1(ε))(φ2) − μk2D1(ε)φ2(0)), (43)

a2100 = 3

4
ψ1(0)Cφ1φ1φ̄1

+ 1

4
δ(k2 − 2k1)ψ1(0)

[
1

iω2
(−Qφ1φ2ψ2(0) + Qφ1φ̄2

ψ̄2(0))Qφ1φ̄1

+
(

1

i(2ω1 − ω2)
Qφ̄1φ2

ψ2(0) + 1

i(2ω1 + ω2)
Qφ̄1φ̄2

ψ̄2(0)

)
Qφ1φ1

]

+ψ1(0)[Qφ1(h
0
1100

+ 1√
2
h2k11100) + Qφ̄1

(h02000 + 1√
2
h2k12000)],

a1011 = ψ1(0)Cφ1φ2φ̄2
+ 1

2
δ(k2 − 2k1)ψ1(0)

[(
1

iω2
Qφ1φ̄2

ψ1(0)

+ 1

i(2ω1 + ω2)
Qφ̄1φ̄2

ψ̄1(0)

)
Qφ1φ2 +

(
− 1

iω2
Qφ1φ2ψ1(0)
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+ 1

i(2ω1 − ω2)
Qφ̄1φ2

ψ̄1(0)

)
Qφ1φ̄2

]
+ 1

2
δ(k1 − 2k2)ψ1(0)

[(
1

iω1
Qφ2φ̄2

ψ2(0)

+ 1

i(ω1 + 2ω2)
Qφ̄2φ̄2

ψ̄2(0)

)
Qφ1φ2 +

(
1

i(ω1 − 2ω2)
Qφ2φ2ψ2(0)

+ 1

iω1
Qφ2φ̄2

ψ̄2(0)

)
Qφ1φ̄2

]
+ ψ1(0)

[
Qφ1h

0
0011 + Qφ2

(
1√
2
h|k1−k2|
1001

+ 1√
2
hk1+k2
1001

)
+ Qφ̄2

(
1√
2
h|k1−k2|
1010 + 1√

2
hk1+k2
1010

)]
,

b0021 = 3

4
ψ2(0)Cφ2φ2φ̄2

+ 1

4
δ(k1 − 2k2)ψ2(0)

[
1

iω1
(−Qφ1φ2ψ1(0) + Qφ̄1φ2

ψ̄1(0))

]
Qφ2φ̄2

+
(

1

i(2ω2 − ω1)
Qφ1φ̄2

ψ1(0) + 1

i(2ω2 + ω1)
Qφ̄1φ̄2

ψ̄1(0)

)
Qφ2φ2 ]

+ψ2(0)
[
Qφ2 (h

0
0011

+ 1√
2
h2k20011) + Qφ̄2

(
h00020 + 1√

2
h2k20020

)]
,

b1110 = ψ2(0)Cφ1φ̄1φ2
+ 1

2
δ(k2 − 2k1)ψ2(0)

[(
1

i(ω2 − 2ω1)
Qφ1φ1ψ1(0)

+ 1

iω2
Qφ1φ̄1

ψ̄1(0)

)
Qφ̄1φ2

+
(

1

iω2
Qφ1φ̄1

ψ1(0)+ 1

i(ω2 + 2ω1)
Qφ̄1φ̄1

ψ̄1(0)

)
Qφ1φ2

]

+1

2
δ(k1 − 2k2)ψ2(0)

[(
− 1

iω1
Qφ1φ2ψ2(0) + 1

i(2ω2 − ω1)
Qφ1φ̄2

ψ̄2(0)

)
Qφ̄1φ2

+
(

1

iω1
Qφ̄1φ2

ψ2(0) + 1

i(2ω2 + ω1)
Qφ̄1φ̄2

ψ̄2(0)

)
Qφ1φ2

]
+ ψ2(0)

[
Qφ2h

0
1100

+Qφ1

(
1√
2
h|k1−k2|
0110 + 1√

2
hk1+k2
0110

)
+ Qφ̄1

(
1√
2
h|k1−k2|
1010 + 1√

2
hk1+k2
1010

)]
, (44)

here
hq1q2q3q4 (q1 + q2 + q3 + q4 = 2, q1, q2, q3, q4 ∈ N0) given by

h02000(θ) = 1

2
[2iω1 I −

∫ 0

−r
e2iω1θdη0(θ)]−1Qφ1φ1e

2iω1θ ,

h2k12000(θ) = 1

2
√
2
δ(k2 − 2k1)

(
1

i(ω2 − 2ω1)
φ2(θ)ψ2(0) − 1

i(ω2 + 2ω1)
φ̄2(θ)ψ̄2(0)

)
Qφ1φ1

+ 1

2
√
2
[2iω1 I −

∫ 0

−r
e2iω1θdη2k1(θ)]−1Qφ1φ1e

2iω1θ ,

h01100(θ) = −
[∫ 0

−r
dη0(θ)

]−1

Qφ1φ̄1
, h2k21100(θ) ≡ 0,

h2k11100(θ) = 1√
2

[∫ 0

−r
dη2k1(θ)

]−1

[−I + δ(k2 − 2k1)(φ2(0)ψ2(0) + φ̄2(0)ψ̄2(0))]Qφ1φ̄1
,

h00020(θ) = 1

2

[
2iω2 I −

∫ 0

−r
e2iω2θdη0(θ)

]−1

Qφ2φ2e
2iω2θ ,

h2k20020(θ) = 1

2
√
2
δ(k1 − 2k2)

(
1

i(ω1 − 2ω2)
φ1(θ)ψ1(0)− 1

i(ω1+2ω2)
φ̄1(θ)ψ̄1(0)

)
Qφ2φ2
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+ 1

2
√
2
[2iω2 I −

∫ 0

−r
e2iω2θdη2k2 (θ)]−1Qφ2φ2e

2iω2θ ,

h00011(θ) = −
[∫ 0

−r
dη0(θ)

]−1

Qφ2φ̄2
, h2k10011(θ) ≡ 0,

h2k20011(θ) = 1√
2
[
∫ 0

−r
dη2k2 (θ)]−1[−I + δ(k1 − 2k2)(φ1(0)ψ1(0) + φ̄1(0)ψ̄1(0))]Qφ2φ̄2

,

h01010(θ) ≡ 0, h01001(θ) ≡ 0,

hk1+k2
1010 (θ) = 1√

2
[i(ω1 + ω2)I −

∫ 0

−r
ei(ω1+ω2)θdηk1+k2 (θ)]−1Qφ1φ2e

i(ω1+ω2)θ ,

hk1+k2
1001 (θ) = 1√

2
[i(ω1 − ω2)I −

∫ 0

−r
ei(ω1−ω2)θdηk1+k2 (θ)]−1Qφ1φ̄2

ei(ω1−ω2)θ ,

h|k1−k2|
1010 (θ) = 1√

2
[i(ω1 + ω2)I −

∫ 0

−r
ei(ω1+ω2)θdη|k1−k2|(θ)]−1Qφ1φ2e

i(ω1+ω2)θ

− 1√
2

[
δ(k2 − 2k1)

(
1

iω2
φ1(θ)ψ1(0) + 1

i(2ω1 + ω2)
φ̄1(θ)ψ̄1(0)

)

+δ(k1 − 2k2)

(
1

iω1
φ2(θ)ψ2(0) + 1

i(ω1 + 2ω2)
φ̄2(θ)ψ̄2(0)

)]
Qφ1φ2 ,

h|k1−k2|
1001 (θ) = 1√

2
[i(ω1 − ω2)I −

∫ 0

−r
ei(ω1−ω2)θdη|k1−k2|(θ)]−1Qφ1φ̄2

ei(ω1−ω2)θ

+ 1√
2

[
δ(k2 − 2k1)

(
1

iω2
φ1(θ)ψ1(0) − 1

i(2ω1 + ω2)
φ̄1(θ)ψ̄1(0)

)

−δ(k1 − 2k2)

(
1

iω1
φ2(θ)ψ2(0) + 1

i(ω1 + 2ω2)
φ̄2(θ)ψ̄2(0)

)]
Qφ1φ̄2

,

h00110(θ) = h01001(θ), h|k1−k2|
0110 (θ) = h|k1−k2|

1001 (θ), hk1+k2
0110 (θ) = hk1+k2

1001 (θ),

h00101(θ) = h01010(θ), h|k1−k2|
0101 (θ) = h|k1−k2|

1010 (θ), hk1+k2
0101 (θ) = hk1+k2

1010 (θ), (45)

θ ∈ [−r , 0], and δ(x) = 0 for x �= 0; δ(x) = 1 for x = 0, and φ1, φ2, ψ1(0) = ψ1, ψ2(0) =
ψ2 and ηk are defined as in (41) and (39).

Remark 6 The formula of the third normal form restricted on the center manifold of double-
Hopf bifurcation is also applicable to the system without time delay. As we did not consider
the effect of time delay in (32), the formulas in Proposition 2 satisfy r = 0, this implies
θ = 0 and φi (θ) = ψi , ψi (0) = ψi , i = 1, 2 in all formulas. Therefore, the normal form of
(5) can be directly derived by Proposition 2.

3.2 Pattern Formation Induced by Double-Hopf Bifurcation

In this subsection, we will investigate the spatio-temporal dynamics of system (5) near the
(k, k + 1)-mode double-Hopf bifurcation point. Based on the formulas of the normal form
given in the Sect. 3.1, the general third normal form of (5) at (k, k + 1)-mode double-Hopf
bifurcation point have been derived, Next we fix the parameters

l = 5, α = 0.5, β = 0.15, b = 0.8, d1 = 0.4,
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Table 1 The correspondence
between (5) and (47)

Planar system Original system

E0 Positive constant steady state solution

E1 Spatially nonhomogeneous periodic solution
(with two spatial frequencies)

E2 Spatially nonhomogeneous steady state solution
(with three spatial frequencies)

E3 Spatially nonhomogeneous quasi-periodic
solution

then the positive equilibrium (u∗, v∗) = (2.7540, 2.7540), utilizing the results in Sect. 2,
the system (5) can undergo (2, 3)-mode double-Hopf bifurcation near (u∗, v∗) at (d2, c) =
(d2,32 , cH2,3) with (d2,32 , cH2,3) = (0.0945, 0.0515). According to (40), we can figure out ω1 =
0.2931,ω2 = 0.2826. Corresponding 2-mode and 3-modeHopf bifurcation curves in (d2, c)-
plane are characterized as

H2 : c = −0.16d2 + 0.0666, 0 < d2 < 0.4162,

H3 : c = −0.36d2 + 0.0855, 0 < d2 < 0.2375.

Through applying Lemma 2, the third-order truncated normal form of (5) near (2, 3)-mode
double-Hopf bifurcation point (d2,32 , cH2,3) can be figured out, corresponding coefficients in
(42) are given by

a1(ε) = −(0.08 + 0.02034i)ε1 − (0.5 − 0.9955i)ε2;
b2(ε) = −(0.18 + 0.0602i)ε1 − (0.5 − 0.9802i)ε2;
a2100 = −0.0410 + 0.0145i; a1011 = −0.0617 + 0.0288i;
b0021 = −0.0422 + 0.0195i; b1110 = −0.0649 + 0.0338i .

(46)

By the transformation

z1 = ρ1cos(θ) + iρ1sin(θ), z2 = ρ2cos(θ) − iρ2sin(θ),

and let
√|Re(a2100)|ρ1 → ρ1,

√|b0021|ρ2 → ρ2, ignoring the equations of θ , the normal
form is transformed into the following planar system,

ρ̇1 = ρ1(−0.08ε1 − 0.5ε2 + ρ2
1 + 1.4618ρ2

2 ),

ρ̇2 = ρ2(−0.18ε1 − 0.5ε2 + 1.583ρ2
1 + ρ2

2 ).
(47)

Via direct calculations, there are four equilibria for (47), denoted by E0, E1, E2 and
E3,which are given by

E0 = (0, 0), E1 =
(√−0.08ε1 − 0.5ε2, 0

)
, for ε2 < −0.16ε1,

E2 =
(
0,
√−0.18ε1 − 0.5ε2

)
, for ε2 < −0.36ε1,

E3 =
(√−0.1393ε1 − 0.1757ε2,

√
0.0406ε1 − 0.2219ε2

)
,

for ε2 + 0.7931ε1 < 0 and ε2 − 0.1829ε1 < 0.

Similar to [27], we give Table 1 to illustrate the correspondence of these equilibria and
the solutions of (5), including the positive constant steady state, periodic solutions and the
quasi-periodic solution. It follows from the twelve unfoldings classifications given in [39,
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(a) When (β, b, d1) ∈ Σ2, for fixed pa-
rameters l = 5, α = 0.5, β = 0.15, b =
0.8, d1 = 0.4. Diagram (a) is the bifurca-
tion set near the positive constant steady
state (u∗, v∗) of (47) in (d2, c)- plane.
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(b) The diagram shows the local graph of
diagram (a) near the (2, 3)-mode double-
Hopf bifurcation point.

(c) The diagram shows the corresponding
phase portraits in D1-D6 in diagram (b).

Fig. 2 HH and TH represent double-Hopf bifurcation point and Turing-Hopf bifurcation point, H0, H1,
H2, H3 are corresponding 0-mode, 1-mode, 2-mode, 3-mode Hopf bifurcation curves, T4 is 4-mode Turing
bifurcation curve. H+

2 , H
−
2 , H

+
3 , H

−
3 , L1 and L2 represent critical bifurcation curves defined as in (48)

Chap.7.5], the Case Ib occurs for (47), and the critical bifurcation curves in (d2, c)-plane are
characterized as

H+
2 : c = cH2,3 − 0.16(d2 − d2,32 ), for d2 > d2,32 ,

H−
2 : c = cH2,3 − 0.16(d2 − d2,32 ), for 0 < d2 < d2,32 ,

H+
3 : c = cH2,3 − 0.36(d2 − d2,32 ), for d2 > d2,32 ,

H−
3 : c = cH2,3 − 0.36(d2 − d2,32 ), for 0 < d2 < d2,32 ,

L1 : c = cH2,3 − 0.7931(d2 − d2,32 ), for d2 > d2,32 ,

L2 : c = cH2,3 + 0.1829(d2 − d2,32 ), for 0 < d2 < d2,32 .

(48)

The bifurcation set and corresponding phase are shown in Fig. 2. As in Fig. 2b, the (d2, c)-
plane is divided into six regions near (d2,32 , cH2,3), corresponding phase portraits in each region
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Fig. 3 The solution of (5), for parameters (d2, c) = (0.1445, 0.1015) ∈ D1 with initial conditions u(x, 0) =
2.7540 + 0.2cos( 2x5 ), v(x, 0) = 2.7540 + 0.2cos( 2x5 ) Figures show that the constant steady state is locally
asymptotically stable

Fig. 4 The solution of (5), for parameters (d2, c) = (0.1445, 0.0415) ∈ D2 with initial conditions u(x, 0) =
v(x, 0) = 2.7540+0.2cos 2x5 . The left figure shows that the spatially nonhomogeneous periodic solution with
two spatial wave frequencies is locally asymptotically stable, the right figure is corresponding projections in
(x, t)-plane. Here we omit the graphs of v for simplification since it is similar to the graphs of u

are portrayed in Fig. 2b. Next we will elaborate the spatio-temporal dynamics of (5) near the
(2, 3)-mode double-Hopf singularity, which are summarized in the following proposition.

Proposition 3 For l = 5, α = 0.5, β = 0.15, b = 0.8, d1 = 0.4, the unique positive equi-
librium E∗ = (2.7540, 2.7540), when (d2, c) perturb near (d2,32 , cH2,3) = (0.0945, 0.0515)
with frequencies ω1 = 0.3014 and ω2 = 0.2199, (5) exhibits following dynamics near E∗ :

(i) When (d2, c) ∈ D1, E∗ is locally asymptotically stable and a 2-mode Hopf bifurcation
of (5) occurs when (d2, c) crosses H+

2 .
(ii) When (d2, c) ∈ D2, E∗ becomes unstable, a locally asymptotically stable spatially

nonhomogenoes periodic solution with two spatial frequencies Ẽ1 bifurcates from E∗,
which can be approximated by

E∗ + (ρ11φ1(0)e
ω1t + ρ̄11φ̄1(0)e

−ω1t )cos
2x

l
,

with ρ11 → 0 for (d2, c) approaching (d2,32 , cH2,3). Moreover, (5) undergoes a 3-mode

Hopf bifurcation from E∗ when (d2, c) crosses H+
3 .
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Fig. 5 The solution of (5), for parameters (d2, c) = (0.1445, 0.0315) ∈ D3 with initial conditions
u(x, 0) = v(x, 0) = 2.7540 + 0.3cos 3x5 . The left and middle figures exhibit the transition from spatially
nonhomogeneous periodic solution with three spatial wave frequencies to the stable spatially nonhomoge-
neous periodic solution with two spatial wave frequencies. The right shows the spatio-temporal patterns with
two spatial wave frequencies. Here we omit the graphs of v

(iii) When (d2, c) ∈ D3, E∗ is unstable, spatially nonhomogenoes periodic solution Ẽ1

remains stable, a spatially nonhomogenoes periodic solution with three spatial fre-
quencies Ẽ2 appears through 3-mode Hopf bifurcation, it is unstable and shaped like

E∗ + (ρ21φ2(0)e
ω2t + ρ̄21φ̄2(0)e

−ω2t )cos
3x

l
,

with ρ21 → 0 when (d2, c) close to (d2,32 , cH2,3).

(iv) When (d2, c) ∈ D4, E∗ is unstable, spatially nonhomogeneous periodic solution Ẽ1 still
remains the stability, Ẽ2 becomes locally asymptotically stable through a 2-mode Hopf
bifurcation when (d2, c) crosses L1, and a spatially nonhomogeneous quasi-periodic
solution bifurcates from Ẽ2, which is unstable and close to

E∗ + (ρ12φ1(0)e
ω1t + ρ̄12φ̄1(0)e

−ω1t )cos
2x

l
+ (ρ22φ2(0)e

ω2t + ρ̄22φ̄2(0)e
−ω2t )cos

3x

l
,

with ρ12 → 0, ρ22 → 0 for (d2, c) closing to (d2,32 , cH2,3).

(v) When (d2, c) ∈ D5, E∗ and spatially nonhomogeneous periodic solution Ẽ1 are unsta-
ble, the spatially nonhomogeneous periodic solution Ẽ2 persists stable, and spatially
nonhomogeneous quasi-periodic solution Ẽ3 disappears (through a 3-mode Hopf bifur-
cation at Ẽ1 on L2), .

(vi) When (d2, c) ∈ D6, E∗ is still unstable, the spatially nonhomogenoes periodic solution
Ẽ3 remains the stability, the spatially nonhomogenoes periodic solution Ẽ2 disappears
(through 3-mode Hopf bifurcation on H−

3 from E∗).

Proposition 3 illustrates complex spatio-temporal dynamics near the double-Hopf bifur-
cation point, some numerical simulations with bifurcation parameters (d2, c) fixed in regions
D1-D6 are carried out to support the theoretical results; see Figs. 3, 4, 5, 6, 7 and 8. Figure 5
show the locally asymptotically stable constant steady state in D1. As shown in Figs. 4 and 5,
the spatially nonhomogeneous periodic solution with two spatial wave frequencies is locally
asymptotically stable in D2 and D3, in particular, when (d2, c) belongs to D3, there exist a
transition from spatially nonhomogeneous periodic solution with spatial three-peaks to the
one with spatial two-peaks. In D4, Fig. 6 show that the system exhibits the bistability, that
is the coexistence of spatially nonhomogeneous periodic solution with two and three spatial
wave frequencies, both of them are peak alternating, this is the distinct phenomenon revealed
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Fig. 6 The solution of (5), for parameters (d2, c) = (2.4587, 0.1512) ∈ D4. The left figures show the
bistability of spatially nonhomogeneous periodic solutions with two and three spatial wave frequencies, and
the right are corresponding spatio-temporal patterns. Here we omit the graphs of v

Fig. 7 The solution of (5), for parameters (d2, c) = (0.0445, 0.0465) ∈ D3 with initial conditions u(x, 0) =
v(x, 0) = 2.7540+0.02cos 3x5 +0.3cos 2x5 . The left andmiddle figures exhibit the transition from the spatially
nonhomogeneous periodic solutionwith three spatial wave frequencies to the stable spatially nonhomogeneous
periodic solution with three spatial wave frequencies. The right shows the spatio-temporal patterns with three
spatial wave frequencies. Here we omit the graphs of v
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Fig. 8 The solution of (5), for parameters (d2, c) = (0.0445, 0.0615) ∈ D6 with initial conditions
u(x, 0) = v(x, 0) = 2.7540 + 0.3cos 3x5 , the spatially nonhomogeneous periodic solution with three spa-
tial wave frequencies is locally asymptotically stable. Here we omit the graphs of v
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Fig. 9 The solution of (5), for parameters (d2, c) = (0.1445, 0.0015) with initial conditions u(x, 0) =
v(x, 0) = 2.7540 + 0.2cos 2x5 , Figures exhibit strange spatially homogeneous periodic solutions

by double-Hopf bifurcation for the system with kernel (4). Analogously, 8 illustrates a tran-
sition from spatially nonhomogeneous periodic solution with spatial two-peaks to the one
with spatial three -peaks in D5, and the system will eventually convergent to the tree-peaks
one in both of D5 and D6. Corresponding spatio-temporal patterns are addressed in Fig. 4,
5, 6, 7 and 8 as well.
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Fig. 10 The solution of (5), for parameters (d2, c) = (0.1445, 0.0015) with initial conditions u(x, 0) =
v(x, 0) = 2.7540 + 0.2cos 2x5 . Figures show spatially nonhomogeneous multi-periodic solutions emerge

4 Conclusion

This paper investigated the spatio-temporal dynamics ofHolling-Tanner predator prey system
with nonlocal intraspecific prey competition and homogeneous Neumann boundary condi-
tions. The main distinction with previous investigations is that a spatial dependently kernel

K (x, y) = 1
lπ + 2

lπ

∑k=∞
k=1 cos kxl cos

ky
l e

− αk2

l2 is considered. Our results reveals that the
system can undergo more complex bifurcations when the unique positive equilibrium is
destabilized, which implies that such kernel can induce more diverse teme-periodic patterns
with spatial multi-peaks.

We establish the existences of Turing bifurcation, Hopf bifurcation, Turing-Hopf bifur-
cation and double-Hopf bifurcation in the current paper. As usual, double-Hopf bifurcations
occurs in the system with time delay, Our results reveal that it could occur under the effect
of the nonlocal interaction. If the nonlocal cometition is spatial average, i.e. the system (31),
double-Hopf bifurcation only can be (0, 1)-mode, which was argued in [27]. As in Remark 5,
if other system parameters are fixed, then the region of pattern formations in (d2, c)-plane
will be smaller for the system (5) than the system (31). Based on the similar progress in [37],
the normal form up to the third-order at double-Hopf singularity is derived, in particular, it is
expressed by the original parameters of the system. Via analyzing the reduced normal form,
rich spatio-temporal dynamics near the double-Hopf bifurcation point are shown when the
positive constant steady state is destabilized. Especially, the system could exhibit periodic
oscillations with multiple spatial peaks alternating. In addition, bistability of such periodic
solutions with different spatial wave frequencies could appear as well.

Biologically, we can assert that the farther scope of such intraspecific interaction can lead
to complex spatio-temporal patterns. As a consequently of the existence of (k, k + 1)-mode
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double-Hopf bifurcations for any k ∈ N0 for the system (5), the coexistence states of the prey
and predator species will be more diverse, especially in spatially nonhomogeneous states.

Finally, we still find that some novel simulations for the system (5), see Figs. 9 and
10. Under the influence of the nonlocal effect, the system (5) can undergo more multiplicate
Hopf and double-Hopf bifurcations, the bifurcating periodic solutions could transshape when
bifurcation parameters vary from one critical value to another. As a result, Fig. 9 could
illustrate the periodic solution when the bifurcation parameter is away from the 0-mode
Hopf bifurcation singularity. Figure 10 exhibits the strange attractor with multiple time-
periods, which generally can be induced by double-Hopf bifurcations. It will be of interest to
analytically investigate these phenomena as the bifurcation parameter varying from a global
perspective.
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