
Journal of Dynamics and Differential Equations (2024) 36:633–671
https://doi.org/10.1007/s10884-022-10148-z

Existence, Stability and Regularity of Periodic Solutions for
Nonlinear Fokker–Planck Equations

Eric Luçon1 · Christophe Poquet2

Received: 13 September 2021 / Revised: 3 February 2022 / Accepted: 10 February 2022 /
Published online: 10 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We consider a class of nonlinear Fokker–Planck equations describing the dynamics of an
infinite population of units with mean-field interaction. Relying on a slow–fast viewpoint
and on the theory of approximately invariant manifolds we obtain the existence of a stable
periodic solution for the PDE, consisting of probability measures. Moreover we establish the
existence of a smooth isochron map in the neighborhood of this periodic solution.
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1 Introduction

1.1 TheModel

We are interested in this paper in the existence, stability and regularity of periodic solutions
to the following nonlinear PDE on Rd (d ≥ 1):

∂t ut = ∇ · (σ 2ut
) + ∇ ·

(
K

(
x −

∫

Rd
yut (dy)

)
ut

)
− δ∇ · (F(x)ut ) . (1.1)

Here, t ≥ 0 �→ ut is a probability measure-valued process onRd , K = diag(k1, . . . , kd) and
σ = (σ1, . . . , σd) and are diagonal matrices with positive coefficients and F : Rd → R

d is a
smooth bounded function with bounded derivatives. Equation (1.1) has a natural probabilistic
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interpretation: if u0 is a probability distribution onRd , it is well known [30, 37] that ut is the
law of the McKean–Vlasov process Xt where X0 ∼ u0 and

dXt = δF(Xt ) dt − K (Xt − E[Xt ]) dt + √
2σ dBt . (1.2)

The dynamics of the process (Xt )t≥0 is the superposition of a local part δF(Xt )dt , where
δ > 0 is a scaling parameter, a linear interaction term K (Xt − E[Xt ]) dt , modulated by the
intensity matrix K , and an additive noise given by a standard Brownian motion (Bt )t≥0 on
R
d . The difficulty in the analysis of (1.2) lies in its nonlinear character: Xt interacts with

its own law, more precisely its own expectation E [Xt ]. The long-time dynamics of (1.2)
is a longstanding issue in the literature. In particular, the existence of stable equilibria for
(1.1) (that is invariant measures for (1.2)) has been studied for various choices of dynamics,
interaction and regimes of parameters δ, K , σ , mostly in a context where the corresponding
particle dynamics defined in (1.3) below is reversible (see e.g. [7, 11, 39] for further details
and references).

The question we address in the present paper concerns the existence of periodic solu-
tions to nonlinear equations such as (1.1). In this case, a major difficulty lies in the fact that
the underlying microscopic dynamics is not reversible. From an applicative perspective, the
emergence of periodicity in such models relates in particular to chemical reactions (Brus-
selator model [35]), neurosciences [2, 9, 14, 17, 20, 21, 27, 28, 33], and statistical physics
(e.g. spin-flip models [13, 16], see also [12], where the model considered is in fact not mean-
field, but the Ising model with dissipation). An example of particular interest concerns the

FitzHugh–Nagumomodel [2, 34] (take d = 2 and F(x, y) =
(
x − x3

3 − y, 1
c (x + a − by)

)

with chosen constants a ∈ R and b, c > 0), commonly used as a prototype for excitability in
neuronal models [26] or in physics [3]. Roughly speaking, excitability refers to the ability for
a neuron to emit spikes (oscillations) in the presence of perturbations (such as noise and/or
external input) whereas this neuron would be at rest (steady state) without perturbation. The
long-time dynamics of (1.1) in the FizHugh-Nagumo case has been the subject of several
previous works (existence of equilibria [31, 33] or periodic solutions [27, 28]) under various
asymptotics of the parameters (δ, K , σ ). A crucial feature in this context is the influence of
noise and interaction in the emergence and stability of periodic solutions: generically, some
balance has to be found in the intensity of noise and interaction that one needs to put in the
system in order to observe oscillations (see [26–28] for further details).

1.1.1 Stability Properties and Regular Isochron Map

The purpose of the present paper is to complement the previous results concerning the exis-
tence of periodic orbits for (1.1) with accurate stability properties for this periodic solution
and with the existence of a sufficiently regular isochron map, properties that are absent in
the previous works cited above. We obtain these additional properties by applying a result
concerning normally hyperbolic invariant manifolds in Banach spaces proved by Bates, Lu
and Zeng [5]. The technical counterpart is that we require assumptions on F and σ that are
somehow stricter than the ones used in [27, 28, 33, 35], in the sense that we are considering
a field F that is bounded together with all its derivatives (the analog term in the Brusselator
and FitzHugh–Nagumo models grows polynomially) as well as nondegenerate noise on all
components (while in [28, 33] the noise is only present in one of the two variables).
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1.1.2 Large Time Asymptotics for the Mean-Field Particle System

Standard propagation of chaos results [37] show that (1.2) is the natural limit of the following
mean-field particle system

dXi,t = δF(Xi,t ) dt − K

⎛

⎝Xi,t − 1

N

N∑

j=1

X j,t

⎞

⎠ dt + √
2σ dBi,t , (1.3)

in the sense that one can easily couple (1.3) and (1.2) by choosing the same realization of
the noise, so that the resulting error is of order 1√

N
as N → ∞, at least on any [0, T ] with

T that can be arbitrarily large but fixed independently from N . At the level of the whole
particle system, this boils down to the convergence as N → ∞ of the empirical measure

uN ,t = 1
N

∑N
i=1 δXi,t to ut , solution to (1.1). Hence, supposing that (1.1) has a periodic

solution
(
�δ
t

)
t≥0, if the empirical measure uN ,0 is initially close to �δ

θ0
for some initial phase

θ0, uN ,t has, for N large, a behavior close to being periodic, since it stays close to �δ
θ0+t .

The companion paper [29] of the present work is concerned with the behavior of the
empirical measure uN ,t on a time scale T that is no longer bounded, but of order N . We
show in [29] that uN ,Nt is close to �δ

θ0+Nt+βN
t
, where βN

t is a random process in R whose

weak limit as N → ∞ has constant drift and diffusion coefficient. This kind of result
was already obtained in [8, 15] in the case of the plane rotators model (mean-field noisy
interacting oscillators defined on the circle), for which at the scale Nt the empirical measure
has a diffusive behavior along the curve of stationary points. Our aim in [29] is to get similar
results for models like (1.1) that are defined in R

d , and are not reversible (while the plane
rotatorsmodel is).Aswewill explain inmore detail later, the additional stability and regularity
results concerning periodic solution to (1.1) obtained in the present paper are crucial for the
study of long time behavior of the mean-field particle systems (1.3) made in [29].

1.2 Slow–Fast Viewpoint and Application to the FitzHugh–NagumoModel

We give in this paragraph informal intuition on the possibility of emergence of periodic
solutions to (1.1). The point of view we adopt here is a slow–fast approach, based on the
assumption that the parameter δ in (1.1) is small, as it was already the case in [27, 28]. More
precisely, the linear character of the interaction term in (1.1) allows us to decompose the
dynamics of (1.1) into its expectation mt = ∫

Rd xut (x) and its centered version pt (x) =
ut (x − mt ): (1.1) is equivalent to the system

{
∂t pt = Lpt − ∇ · (pt (δFmt − ṁt ))

ṁt = δ
∫
Rd Fmt dpt

, (1.4)

where

Lu = ∇ · (σ 2∇ f ) + ∇ · (Kx f ) , (1.5)

and

Fm(x) := F(x + m). (1.6)
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Remark that (pt ,mt ) is the weak limit as N → ∞ of the process
(

1
N

∑N
i=1 δYi,t ,mN ,t

)
,

where

mN ,t = 1

N

N∑

i=1

Xi,t , and Yi,t = Xi,t − mN ,t . (1.7)

In this set-up, pt is the fast variable, whilemt is the slow one. For δ = 0, this system reduces
to

{
∂t p0t = Lp0t
m0

t = m0
, (1.8)

so p0t = etL p0 is the distribution of an Ornstein-Uhlenbeck process, and thus converges
exponentially fast to ρ, the density of the Gaussian distribution on R

d with mean 0 and
variance σ 2K−1 (see Proposition 1.1 for more details on the contraction properties of L):

ρ(x) := 1
(
(2π)d det(σ 2K−1)

) 1
2

exp

(
−1

2
x · (σ 2K−1)−1

x

)
, x ∈ R

d . (1.9)

So heuristically, taking δ small, in a first approximation pt stays close to ρ whilemt satisfies

ṁt ≈ δ

∫

Rd
Fmt (x)ρ(x) dx = δ

∫

Rd
F(x)ρ(mt − x) dx = δ(F ∗ ρ)(mt ). (1.10)

For the non-centered PDE (1.1) this approximation means that ut is close to a Gaussian
distribution with variance σ 2K−1 and mean mt , where the dynamics of mt is governed at
first order by (1.10). Following this heuristics, we expect a periodic behavior for the system
(1.4) if the approximate dynamics of mt is itself periodic. In this spirit, the main hypothesis
we will adopt below is that the following equation

żt = δ

∫

Rd
Fzt (x)ρ(x) dx = δ

〈
Fzt , ρ

〉
(1.11)

admits a periodic solution (αδ
t )t∈[0, Tα

δ
], for some Tα > 0, that we suppose to be stable (more

details on the notion of stability we consider will be given in Sect. 1.4). In Proposition 1.7 we
will show that under these hypotheses, themanifold M̃δ = (ρ, αδ

t )t∈[0,Tα/δ] is approximately
invariant for (1.4).

Let us now describe a situationwhere the above heuristics is true: in [27, 28]we considered
the classical FitzHugh–Nagumo model defined by d = 2 and

F(x, y) =
(
x − x3

3
− y,

1

c
(x + a − by)

)
. (1.12)

A direct calculation shows that in that case, with K = diag(k1, k2) and σ = diag(σ1, σ2),

∫

Rd
Fz1,z2(x, y)ρ(x, y) dx dy =

((

1 − σ 2
1

k1

)

z1 − z31
3

− z2,
1

c
(z1 + a − bz2)

)

, (1.13)

which defines again a FitzHugh–Nagumo model. The additional factor
σ 2
1
k1

in (1.13) reflects
the influence of noise and interaction in the mean-field system (1.2). For an accurate choice
of parameters (take e.g. a = 1

3 , b = 1 and c = 10), it can be shown that the dynamics of

the mean value (1.11) has a unique steady state when
σ 2
1
k1

= 0 whereas it admits a stable
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periodic solution for
σ 2
1
k1

not too small and not too large, for example
σ 2
1
k1

= 0.2. We refer to
[27], § 3.4 for more details on the corresponding bifurcations). The purpose of [27, 28] was
to show that the heuristics developed above is true, i.e. the periodicity of (1.11) propagates
to (1.4). This emergence of periodic behavior induced by noise and interaction is a signature
of excitability: the system (1.1) exhibits a periodic behavior induced by the combined effect
of noise and interaction, which is not present in the isolated system żt = F(zt ). We refer to
[27] for a discussion and references on this phenomenon.

As already said, the point of this present work is to go beyond the existence of oscillations
for (1.1), that is to prove regularity for the dynamics around such a limit cycle. Unfortunately
the FitzHugh Nagumo model does not satisfy the hypotheses of this present work, since
it has polynomial growth at infinity. However it is easy to see that if ψ : R+ → R+ is
a smooth non-increasing function that satisfies ψ(t) = 1 for t ≤ 1 and ψ(t) = 0 for
t ≥ 2, then for any ε > 0 the function x �→ F(x)ψ(ε|x |) satisfies our hypotheses, and that
z �→ ∫

Rd Fz(x)ψ(ε|x + z|)ρ(x)dx converges to z �→ ∫
Rd Fz(x)ρ(x)dx in C1(B(0, R),Rd)

for any ball B(0, R) centered at 0 with radius R. So, relying on classical results on normally
hyperbolic manifolds [18, 19, 40] (a definition of this notion will be provided in Sect. 1.4),
if (1.11) admits a stable limit cycle, then it will also be the case replacing F with x �→
F(x)ψ(ε|x |) for ε small enough.

1.3 Weighted Sobolev Norms

We present in this section the Sobolev spaces that we will use in the paper. Let us denote
by |x |A = (x · Ax)1/2 the Euclidean norm twisted by some positive matrix A, and, for any
θ ∈ R, let us define the weight wθ by

wθ(x) = exp

(
−θ

2
|x |2Kσ−2

)
. (1.14)

Recall here that K = diag(k1, . . . , kd) and σ = (σ1, . . . , σd), with ki , σi > 0 for all
i = 1, . . . , d . Define in particular

kmin := min(k1, . . . , kd) and kmax := max(k1, . . . , kd), (1.15)

σmin := min(σ1, . . . , σd) and σmax := max(σ1, . . . , σd). (1.16)

We denote as L2
θ the L2-space with weight wθ , that is with norm

‖h‖L2
θ

=
(∫

Rd
|h(x)|2 wθ(x)dx

) 1
2

. (1.17)

For any θ > 0 we consider the Ornstein-Uhlenbeck operator

L∗
θ f = ∇ · (σ 2∇ f ) − θKx · ∇ f . (1.18)

It is well know (see for example [1]) that L∗
θ admits the following decomposition: for all

l ∈ N
d ,

L∗
θψl = −λlψl , with λl = θ

d∑

i=1

ki li and ψl(x) := ψl,θ (x)

=
d∏

i=1

hli

(√
θki
σ 2
i

xi

)

, (1.19)
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where hn is the nth renormalized Hermite polynomial:

hn(x) = (−1)n√
n!(2π)

1
4

e
x2
2

dn

dxn

{
e− x2

2

}
. (1.20)

The family (ψl,θ )l∈Nd is an orthonormal basis of L2
θ . For f , g with decompositions f =∑

l∈Nd flψl and g = ∑
l∈Nd glψl , we consider the scalar products

〈 f , g〉Hr
θ

= 〈
(aθ − L∗

θ )
r f , ḡ

〉
L2

θ
=

∑

l∈Nd

(aθ + λl)
r fl ḡl , (1.21)

where aθ = θ TrK and denote by Hr
θ the completion of the space of smooth function u

satisfying ‖u‖Hr
θ

< ∞. The choice of the constant aθ is made to simplify some technical
proofs given in the “Appendix 1” (see the proof of PropositionA.2).Another choice of positive
constant would produce an equivalent norm. From Lemma A.1 it is clear that

∥
∥∂xi f

∥
∥
Hr

θ
≤

‖ f ‖Hr+1
θ

, and that, if n ∈ N, the norm ‖ f ‖Hn
θ
is in fact equivalent to

√√
√
√

∑

l∈Nd ,
∑d

i=1 li≤n

∥
∥
∥∂ l1x1 . . . ∂

ld
xd f

∥
∥
∥
2

L2
θ

. (1.22)

We denote by H−r
θ the dual of Hr

θ . Relying on a “pivot” space structure (for more details,
see “Appendix 1”), the product 〈u, f 〉H−r

θ ,Hr
θ
can be identifiedwith the flat L2 product 〈u, f 〉:

L2−θ can be seen as a subset of H−r
θ , and for all f ∈ Hr

θ and u ∈ L2−θ we have

〈u, f 〉H−r
θ ,Hr

θ
= 〈u, f 〉. (1.23)

This identification allows us to view the operator Lθ defined by

Lθu = ∇ · (σ 2∇ f ) + ∇ · (θKx f ) , (1.24)

seen as an operator in H−r
θ , as the adjoint ofL∗

θ , seen as an operator in H
r
θ . This is in particular

the case for L = L1, whose contraction properties will be crucial in the results given in this
paper.

Our aim in this paper is to give the existence of a periodic solution for (1.4) viewing
pt as an element of H−r

θ . The necessity of considering H−r
θ instead of simply taking H−r

1
goes back to the companion paper [29], in which we study the long time behavior of the
empirical measure uN ,t in the same functional space. Since this empirical measure involves
a sum of Dirac distributions, it can be seen as an element of H−r

θ for r > d/2, and we have
‖δx‖H−r

θ
≤ Cw θ

4−η
(x) for η > 0 (see Lemma 2.1 in [29]). Somemoment estimates, obtained

in [29], lead us to bound terms of the form E

[
w mθ

4−η
(Yi,t )

]
with m large and Yi,t defined in

(1.7). Since we consider cases where Yi,t has a distribution close to ρ given by (1.9), for this
expectation to be bounded we need to consider small values of θ . We need therefore to work
in H−r

θ for general θ and not only for θ = 1.
Due to the spectral decomposition (1.19), it is well known (see for example [23]) that

the semi-group etL satisfies, for λ < kmin (recall (1.15)) and u ∈ H−r
1 with

∫
u = 0, the

contraction property
∥∥etLu

∥∥
H−r
1

≤ Ct−
α
2 e−tλ ‖u‖

H−(r+α)
1

. (1.25)

By obtaining similar estimates (see the following Proposition, which is a particular case of
the slightly more general Proposition A.3), we will be able to work in the space H−r

θ with
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any value of θ smaller than 1, but with the constraint of considering values of r larger than a
r0 > 0 (independent of θ ).

Proposition 1.1 For all 0 < θ ≤ 1 the operator L is sectorial and generates an analytical
semi-group in H−r

θ . Moreover we have the following estimates: for any α ≥ 0, r ≥ 0 and

λ < kmin there exists a constant CL > 0 such that for all u ∈ H−(r+α)
θ ,

∥
∥etLu

∥
∥
H−r

θ
≤ CL

(
1 + t−α/2e−λt ) ‖u‖

H−(r+α)
θ

, (1.26)

and for r ≥ 1,

∥
∥etL∇u

∥
∥
H−r

θ
≤ CLt−

1
2 e−λt‖u‖H−r

θ
. (1.27)

Moreover for all r ≥ 0, 0 < ε ≤ 1 and s ≥ 0,
∥
∥
∥
(
e(t+s)L − etL

)
u
∥
∥
∥
H−r

θ

≤ CLsεt−
1
2−εe−λt ‖u‖

H−(r+1)
θ

. (1.28)

Finally, there exists r0 > 0 such that for any 0 < θ ≤ 1, for all r > r0, t > 0 and all
u ∈ H−r

θ satisfying
∫
u = 0,

∥∥etLu
∥∥
H−r

θ
≤ CLe−λt ‖u‖H−r

θ
. (1.29)

1.4 Main Results

With the notation μt := (pt ,mt ) the system (1.4) becomes
{

∂t pt = Lpt + δG1(μt )

ṁt = δG2(μt )
, (1.30)

where

G(μ) = G(p,m) =
(
G1(p,m)

G2(p,m)

)
=

(−∇ · (p (Fm − ∫
Fm p

))
∫
Fm p

)
. (1.31)

We place ourselves on the space Hr
θ := Hr

θ × R
d endowed with the scalar product

〈
( f ,m) , (g,m′)

〉
Hr

θ
:= 〈 f , g〉Hr

θ
+ m · m′. (1.32)

We will denote H−r
θ the dual of Hr

θ . Clearly H−r
θ = H−r

θ × R and, relying as above on
a “pivot" space structure, the product 〈(ν, h), (φ, ψ)〉H−r

θ ,Hr
θ
can be identified with the flat

scalar product
〈〈
(ν, h); (ϕ, ψ)

〉〉 = 〈ν, ϕ〉 + h · ψ. (1.33)

The following theorem states the existence and uniqueness of mild solutions of (1.30). Its
proof, given in Sect. 2, relies on classical arguments, due to the fact that G : H−r+1

θ → H−r
θ

is locally Lispchitz and L is sectorial (see [36]).

Theorem 1.2 For any initial condition μ = (p,m) ∈ H−r
θ with

∫
Rd p = 1 there exists a

unique maximal mild solution μt := (pt ,mt ) = T t (μ) to (1.30) on [0, tc] for some tc > 0,
which satisfies t �→ T t (μ) ∈ C (

[0, tc) ;H−r
θ

)
.
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Moreover, μ �→ T t (μ) is C2, and for any R > 0, there exists a δ(R) > 0 such that for
all 0 ≤ δ ≤ δ(R) and μ0 = (p0,m0) satisfying ‖p0 − ρ‖H−r

θ
≤ R the solution T t (μ0) is

well defined for all t ≥ 0 and there exists a C(R) > 0 such that

sup
t≥0

‖pt‖H−r
θ

≤ C(R). (1.34)

Remark 1.3 Sincewe are interested in the existence of a periodic solutionmade of probability
distributions, we will only consider initial conditions (p0,m0) satisfying

∫
Rd p0 = 1, and

the conservation of mass will induce that
∫
Rd pt = 1 for all t . In the same spirit, we will only

apply the differential of the semi-group DT t (μ) to elements ν = (η, n) ∈ H−r
θ that satisfy∫

Rd η = 0.

As it was previously mentioned, we suppose in the following that the ordinary differential
equation (1.11) admits a stable periodic solution (αδ

t )t∈[0, Tα
δ

]. To state more precisely this

hypothesis we rely on Floquet formalism (see for example [38]): let us denote by πδ
u+t,u the

principal matrix solution associated to the periodic solution αδ , that is the solution to

∂tπ
δ
u+t,u = δ〈DFαδ

u+t
, ρ〉πδ

u+t,u, πδ
u,u = I . (1.35)

The processπδ
u+t,u characterizes the linearized dynamics around (αδ

t )t∈[0, Tα
δ

]: more precisely

it corresponds to the differentiation of the flow of (1.11) with respect to the initial condition,
at time t and initial point αδ

u . We will suppose that this linearized dynamics is a contraction
on a supplementary space of the tangent space to (αδ

t )t∈[0, T
δ
]. More precisely, the stability of

the periodic solution (αδ
t )t∈[0, Tα

δ
] is expressed by the following hypothesis: we suppose that

there exist projections Pδ,c
u and Pδ,s

u for all u ∈ R with u �→ Pδ,c
u and u �→ Pδ,s

u smooth
and Tα

δ
-periodic, that satisfy Pδ,s

u + Pδ,c
u = I (Pδ,c

u being a projection on vect(α̇δ
u)), that

commute with πδ , i.e.

Pδ,s
u + Pδ,c

u = I , Pδ,s
u+tπ

δ
u+t,u = πδ

u+t,u P
δ,s
u , (1.36)

and such that there exist positive constants cα,Cα and λα such that for any n ∈ R
d

∣∣πδ
u+t,u P

δ,s
u n

∣∣ ≤ Cαe
−δλα t |n| and cα|n| ≤ ∣∣πδ

u+t,u P
δ,c
u n

∣∣ ≤ Cα|n|. (1.37)

For more details on the construction of these projections, see [38, Section 3.6] or [28, Section
3].Remark that the factor δ in (1.11) is responsible for a change of time-scale for the dynamics,
and induces the factor δ in the rate of contraction in (1.37) (the smaller δ, the slower the
dynamics, the period being then Tα/δ since αδ

t = α1
δt ). The effect of this factor on the

projections is only a change of parametrization: Pδ,s
u and Pδ,c

u are defined on [0, Tα/δ), and
Pδ,s
u/δ = P1,s

u , Pδ,c
u/δ = P1,c

u for u ∈ [0, Tα).

With these hypotheses (αδ
t )t∈[0, T

δ
] is in fact a simple example of Normally Hyperbolic

Invariant Manifold (NHIM). We follow here the definition given in [4] for this concept: on a
Banach spaceX, a smooth compact connectedmanifoldM is said to be a normally hyperbolic
invariant manifold for a continuous semi flow T (such that u �→ Tt (μ) is C1 for all t ≥ 0) if

(1) T(M) ⊂ M for all t ≥ 0,
(2) For each m ∈ M there exists a decomposition X = Xc

m +Xu
m +Xs

m of closed subspaces
with Xc

m the tangent space to M at m,
(3) For each m ∈ M and t ≥ 0, denoting m1 = Tt (m), we have DTt (m)|Xι

m
: Xι

m → Xι
m1

for ι = c, u, s, and DTt (m)|Xu
m
is an isomorphism from Xu

m to Xu
m1
.
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(4) There exists a t0 ≥ 0 and a λ > 0 such that, for all t ≥ t0,

λ inf{|DTt (m)[xu]| : xu ∈ Xu, |xu | = 1} > max
{
1,

∥
∥DTt (m)|Xc

m

∥
∥} , (1.38)

λmin{1, inf |DTt (m)[xc]| : xc ∈ Xc
m, |xc| = 1}} >

∥
∥DTt (m)|Xs

m

∥
∥ . (1.39)

The inequality (1.38) implies that the semi flow Tt is expansive at m in the direction Xu
m at

a rate strictly larger than on M, while (1.39) shows implies that it is contractive at m in the
direction Xs

m at a rate greater than onM.
This kind of structure is known to be robust under perturbation of the semi-flow: it has

been shown in [18, 19] for flows inRd , and then generalized in [24] in the case of Riemannian
manifolds and in [4, 36] in the infinite dimensional setting. An improvement of these classical
results has been obtained in [5] by Bates, Lu and Zeng, who showed that if a system admits
a manifold that is approximately invariant and approximately normally hyperbolic (a precise
definition of these notions will be given in Sect. 1.5), then the system possesses an actual
normally hyperbolic invariant manifold in a neighborhood of the approximately invariant
one.

We will rely on this deep result in our work. Here, the slow–fast viewpoint described in
Sect. 1.2 suggests that for δ small the manifold (recall the definition of ρ in (1.9) and that
(αt ) is a Tα-periodic solution to (1.11))

M̃δ := {(ρ, αt ) : t ∈ [0, Tα)} (1.40)

is an approximately invariant manifold which is approximately normally hyperbolic (without
unstable direction). This statement will be written rigorously in Sect. 1.5, and proved in
Sect. 3. This idea will allow us to prove for δ small enough the existence of a stable periodic
solution to (1.4), as an actual normally hyperbolic invariant manifold in a neighborhood
of M̃δ . For a stable periodic solution, conditions (1.38) and (1.39) reduce to the fact that
DT t (m) is bounded from above and below in the direction of the tangent space to the invariant
manifold defined by the periodic solution, and is contractive on a stable direction.

Theorem 1.4 There exists δ0 > 0 such that for r0 given in Proposition 1.1 and for all r ≥ r0,
δ ∈ (0, δ0) and θ ∈ (0, 1] the system (1.4) admits a periodic solution

(
�δ
t

)
t∈[0,Tδ] := (qδ

t , γ
δ
t )t∈[0,Tδ] (1.41)

in H−r
θ with period Tδ > 0. Moreover qδ

t is a probability distribution for all t ≥ 0, and
t �→ ∂t�

δ
t and t �→ ∂2t �δ

t are in C([0, Tδ),H
−r
θ ).

Denoting

Mδ := {�δ
t : t ∈ [0, Tδ)} (1.42)

and

�u+s,u(ν) = DT s(�δ
u)[ν] (1.43)

there exist families of projections �
δ,c
u and �

δ,s
t that commute with �, i.e. that satisfy

�
δ,ι
u+t�u+t,u = �u+t,u�

δ,ι
u , for ι = c, s. (1.44)

Moreover �
δ,c
t is a projection on the tangent space to Mδ at �δ

t , �
δ,c
t + �

δ,s
t = Id , t �→

�
δ,c
t ∈ C1([0, Tδ),B(H−r

θ )), and there exist positive constants c�,δ , C�,δ and λδ such that

c�,δ

∥∥�δ,c
u (ν)

∥∥
H−r

θ
≤ ∥∥�u+t,u�

δ,c
u (ν)

∥∥
H−r

θ
≤ C�,δ

∥∥�δ,c
u (ν)

∥∥
H−r

θ
, (1.45)

∥∥�u+t,u�
δ,s
u (ν)

∥∥
H−r

θ
≤ C�,δ t

− α
2 e−λδ t

∥∥�δ,s
u (ν)

∥∥
H−(r+α)

θ

, (1.46)
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and
∥
∥�u+t,uν

∥
∥
H−r

θ
≤ C�,δ

(
1 + t−

α
2 e−λδ t

)
‖ν‖

H−(r+α)
θ

. (1.47)

Remark 1.5 The invariant manifold Mδ is located at a distance of order δ from the approxi-
mately invariant manifold M̃δ given in (1.40) and the period Tδ is close to Tα/δ (the period
of the slow system (1.11)). Moreover λδ is of order δ due to the fact that zt contracts around
αt with rate δλα (recall (1.37)).

In [5] it is in addition proven that the stable manifold of the actual NHIM (in our caseMδ

is attractive, the stable manifold is in fact a neighborhoodWδ ofMδ) is foliated by invariant
foliations: Wδ = ∪m∈MδWδ

m , where ν ∈ Wδ
m if and only if T t (ν) − T t (m) converges to 0

exponentially fast. This implies the existence of an isochron map �δ : Wδ → R/TδZ that
satisfies �δ(ν) = t if ν ∈ Wδ

�δ
t
. The deep general result of [5] ensures that �δ is Hölder

continuous, which is not entirely satisfactory in view of the companion paper [29], in which
we aim to apply Itô’s Lemma to �δ(uN ,t ). However, the fact that in the present case we
simply deal with a stable periodic solution allow us to prove that �δ has in our particular
case C2 regularity, as stated in the following theorem.

Theorem 1.6 Recall the definitions of the flow T t associated to (1.30) in Theorem 1.2 and of
the manifoldMδ in Theorem 1.4. For r and δ as in Theorem 1.4, there exists a neighborhood
Wδ ∈ H−r

θ of Mδ and a C2 mapping �δ : Wδ → R/TδZ that satisfies, for all μ ∈ Wδ ,
denoting μt = T tμ,

�δ(μt ) = �δ(μ) + t mod Tδ, (1.48)

and there exists a positive constant C�,δ such that, for all μ ∈ Wδ with μt = T tμ,
∥∥∥μt − �δ

�δ(μ)+t

∥∥∥
H−r

θ

≤ C�,δe
−λδ t

∥∥∥μ − �δ
�δ(μ)

∥∥∥
H−r

θ

. (1.49)

Moreover �δ satisfies, for all μ ∈ Wδ ,
∥∥∥D2�δ(μ) − D2�δ

(
�δ

�δ(μ)

)∥∥∥BL(H−r
θ )

≤ C�,δ

∥∥∥μ − �δ
�δ(μ)

∥∥∥
H−r

θ

, (1.50)

where BL(H−r
θ ) denotes the space of bounded operators A : H−r

θ → H−r
θ .

1.5 An Approximately Invariant Manifold that is Approximately Normally
Hyperbolic

In view of the slow–fast formalism described in Sect. 1.2, our aim is to view M̃δ given by
(1.40) as an approximately invariant and approximately normally hyperbolic manifold, in the
sense of [5].

In fact the result of [5] is stated for dynamical systems taking values in a Banach space,
whilewewill consider here solutions (pt ,mt ) to (1.4) elements ofH−r

θ that satisfy
∫
Rd pt = 1

(since we are interested in probability distributions, recall Remark 1.3), so we will rather
consider an affine space. It will not pose any problem, since (pt − ρ,mt ) is an element of{
(v,m) ∈ H−r

θ : ∫
Rd v = 0

}
which is a Banach space.

Following the notations of [5] we set (recall (1.9) and (1.11))

ψ(t) := (ρ, αδ
t ), t ∈ R/

T

δ
Z. (1.51)
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With this notationwe haveM̃δ = ψ
(
R/ T

δ
Z
)
(recall its definition in (1.40)).Wewill consider

the projections �̃
δ,s
u and �̃

δ,c
u defined for (p,m) ∈ H−r

θ by

�̃δ,s
u (p,m) = (p, Pδ,s

u m), �̃δ,c
u (p,m) = (0, Pδ,c

u m), (1.52)

where Pδ,s
t and Pδ,c

t are the projections defined in Sect. 1.4. The subspaces X̃δ,c
u = �̃

δ,c
u (H−r

θ )

and X̃δ,s
u = �̃

δ,s
u (H−r

θ ) will correspond to the approximately tangent space and stable space
of M̃δ . It is clear that for each t ∈ [0, T

δ
) we have

H−r
θ = X̃δ,c

t ⊕ X̃δ,s
t . (1.53)

Consider τ such that

e−λατ ≤ cα

8Cα

, (1.54)

where cα,Cα, λα are given by (1.46). The following proposition states that M̃δ satisfies the
hypotheses given in [5], making it an approximately invariant and approximately normally
hyperbolic manifold.

Proposition 1.7 Recall the definition of the flow T t of (1.30) in Theorem 1.2. There exists
δ0 > 0 such that for r0 given in Proposition 1.1 and for all r ≥ r0, δ ∈ (0, δ0) and θ ∈ (0, 1),
the following assertions are true.

(1) (Definition 2.1. in [5]) There exists a positive constant κ1 such that for all u ∈ R/ T
δ
Z,

∥∥∥T
τ
δ (ρ, αu) − (ρ, αu+ τ

δ
)

∥∥∥
H−r

θ

≤ κ1δ. (1.55)

(2) (Hypothesis (H2) in [5]) There exist positive constants κ2, κ3, κ4 such that for all s, t ∈
R/ T

δ
Z such that |s − u| ≤ 1, |t − u| ≤ 1, and ι = s, c,

∥∥�̃δ,ι
u

∥∥B(H−r
θ )

≤ κ2,
∥∥�̃δ,ι

u − �̃δ,ι
s

∥∥B(H−r
θ )

≤ κ3 ‖ψ(t) − ψ(s)‖H−r
θ

, (1.56)

and
∥∥∥ψ(t) − ψ(s) − �̃

δ,c
s (ψ(t) − ψ(s))

∥∥∥
H−r

θ

‖ψ(t) − ψ(s)‖H−r
θ

≤ κ4δ. (1.57)

(4) (Hypothesis H3 in [5]) There exists a positive constant κ5 such that for all u ∈ R/ T
δ
Z,

max

{∥∥∥�̃δ,c
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,s

u

∥∥∥
B(H−r

θ )
,

∥∥∥�̃δ,s
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,c

u

∥∥∥
B(H−r

θ )

}
≤ κ5δ.

(1.58)

(5) (Hypothesis H3’ and C3 in [5]) There exist a ∈ (0, 1) and λ̃ > 0 such that for all
u ∈ R/ T

δ
Z,

∥∥∥∥
(
�̃

δ,c
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,c

u

)−1
∥∥∥∥

−1

B(H−r
θ )

> a, (1.59)

and
∥∥∥�̃δ,s

u+ τ
δ
DT

τ
δ (ρ, αu)|X̃δ,s

u

∥∥∥
B(H−r

θ )
≤ λ̃min

(

1,

∥∥∥∥
(
�̃

δ,c
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,c

u

)−1
∥∥∥∥

−1

B(H−r
θ )

)

,

(1.60)
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(6) (Hypothesis H4 in [5]) There exist positive constants κ6 and κ7 such that
∥
∥
∥DT

τ
δ |V(M̃δ ,1)

∥
∥
∥B(H−r

θ )
≤ κ6,

∥
∥
∥D2T

τ
δ |V(M̃δ ,1)

∥
∥
∥BL

((
H−r

θ

)2
,H−r

θ

) ≤ κ7, (1.61)

where V(M̃δ, R0) denote the R0-neighborhood of M̃δ .
(7) (Hypothesis H5 in [5]) For any ε > 0 there exists ζ > 0 such that for all μ = (p,m) ∈

V(M̃δ, 1) and t ∈ [ τ
δ
, τ

δ
+ ζ ],

∥
∥
∥T t (μ) − T

τ
δ (μ)

∥
∥
∥
H−r

θ

≤ ε. (1.62)

The first five items of Proposition 1.7 focus on properties of the semi-group
(
T n τ

δ

)

n≥0

discretized in time, showing that M̃δ given by (1.40) is an approximately invariant manifold
approximately normally hyperbolic for this semi-group, while the last item is an uniform
in time bound that implies that this property is also true for the semi-group

(
T t

)
t≥0. More

precisely (1) shows thatM̃δ is approximately invariant for the discrete semi-group, (2) shows
that X̃δ,c

u is an approximation of the tangent space to M̃δ at (ρ, αu) and that ψ does not twist

too much, (3) implies that X̃δ,c and X̃δ,s are approximately invariant under
(
DTn τ

δ

)

n≥0
, and

(4) implies that
(
DTn τ

δ

)

n≥0
contracts more in the direction X̃δ,s than in the direction X̃δ,c,

while it does not contract too much in the direction X̃δ,c. (5) is a technical assumption useful
in their proof.

Remark that we do not quote the hypothesis (H1) of [5] in this Proposition, since it is
simply (1.53). Moreover in [5] the authors treat first the inflowing invariant case, and then
the overflowing invariant case, while we are here interested in an actual invariant manifold
(both inflowing and overflowing), which is why we mix hypotheses (Hi) and (C3), as it is
done in Theorem 6.5 of [5].

1.6 Structure of the Paper

The proof of Theorem 1.2 concerning the well-posedness of (1.4) is carried out in Sect. 2.
Proposition 1.7 is proven in Sect. 3. The main result of existence of periodic solutions
(Theorem 1.4) is proven in Sect. 4. The question of regularity of the isochron is addressed in
Sect. 5. The “Appendix 1” gathers technical estimates on the Ornstein-Uhlenbeck operator
and some Grönwall type lemmas are listed in “Appendix 1”.

2 Proof of Theorem 1.2

We give in this section the existence, uniqueness and regularity result of Theorem 1.2. We
rely here on classical arguments one can find for example in [36] or [23].

Proof of Theorem 1.2 Recall the definitions of G in (1.31), of the space H−r
θ in (1.32) and of

Fm in (1.6). We first remark that G : H−r
θ → H−(r+1)

θ is locally Lispchitz. Indeed, for any
(p,m) ∈ H−r

θ and any (ϕ, ψ) ∈ Hr+1
θ ,

〈〈
G(p,m), (ϕ, ψ)

〉〉 = −
〈
p

(
Fm −

∫
Fm p

)
,∇ϕ

〉
+ ψ ·

∫
Fm p. (2.1)
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Wehave
∣
∣∫ Fm p

∣
∣ ≤ ‖Fm‖Hr

θ
‖p‖H−r

θ
, and due to the fact that all derivatives of F are bounded,

‖Fm‖Hr
θ

≤ CF independently on m. Moreover, due to the same reason, we have ‖Fm ·
∇ϕ‖Hr

θ
≤ CF‖∇ϕ‖Hr

θ
independently on m. This means that

∣
∣〈〈G(p,m), (ϕ, ψ)

〉〉∣∣ ≤ C‖p‖H−r
θ

(
1 + ‖p‖H−r

θ

)
‖ϕ‖Hr+1

θ
+ C‖p‖H−r

θ
|ψ |. (2.2)

We deduce ‖G(ν)‖H−(r+1)
`

≤ C‖ν‖H−r
`

(
1 + ‖ν‖H−r

`

)
, and thus that G is locally Lipschitz.

Remark that when p is a probability distribution
∣
∣∫ Fm p

∣
∣ ≤ CF

∣
∣∫ p

∣
∣ ≤ CF , and in this

case G is in fact globally Lipschitz.
Now, since the operator L (recall its definition in (1.5)) is sectorial in H−r

θ , it also the case
for the operator L̃ inH−r

θ defined by L̃(p,m) = Lp, and thus, applying [36, Theorem 47.8],
for all initial conditions μ = (p,m) ∈ H−r

θ there exists a unique maximal mild solution
μt := (pt ,mt ) = T t (μ) to (1.30) defined on some time interval [0, tc) and which satisfies
t �→ T t (μ) ∈ C (

[0, tc) ;H−r
θ

)
.

Now, for μ = (p,m) and ν = (η, n), recalling the definition of G1,G2 given in (1.31),
the Frechet differential of G at μ and applied to ν, denoted by DG(μ)[ν], is given by

DG(μ)[ν] =
(
DG1(μ)[ν]
DG2(μ)[ν]

)

=
(−∇ · (η (

Fm − ∫
Fm p

)) − ∇ · (p (DFm[n] − ∫
Fmη − ∫

DFm[n]p))∫
Fmη + ∫

DFm[n]p
)

.

(2.3)

It satisfies, by similar arguments as above (in particular the fact that the derivatives of Fm
can be bounded independently on m)

‖DG(μ)[ν]‖H−(r+1)
θ

≤ C
(
1 + ‖μ‖H−r

θ

)
‖ν‖H−r

θ
, (2.4)

and by [36, Theorem 49.2], μ �→ T t (μ) is Frechet differentiable, with derivative
DT t (μ)[ν] = νt := (ηt , nt ) the unique mild solution to

{
∂tηt = Lηt + δDG1(μt )[νt ]
ṅt = δDG2(μt )[νt ] . (2.5)

By [36, Theorem 47.5] the solution νt = (ηt , nt ) to (2.5) depends continuously on μ =
(p,m), so that the flow T t (μ) is C1. One can proceed similarly for the second derivative.
We have this time, for νi = (ηi , ni ), i = 1, 2,

D2G1(μ)[ν1, ν2] = −∇ ·
(

η1

(
DFm[n2] −

∫
Fmη2 −

∫
DFm[n2]p

))

− ∇ ·
(

η2

(
DFm[n1] −

∫
Fmη1 −

∫
DFm[n1]p

))

− ∇ ·
(
p

(
D2Fm[n1, n2] −

∫
DFm[n1]η2 −

∫
DFm[n2]η1

−
∫

D2Fm[n1, n2]p
))

, (2.6)

and

D2G2(μ)[ν1, ν2] =
∫

DFm[n1]η2 +
∫

DFm[n2]η1 +
∫

D2Fm[n1, n2]p, (2.7)
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so that
∥
∥D2G(μ)[ν1, ν2]

∥
∥
H−(r+1)

θ

≤ C
(
1 + ‖μ‖H−r

θ

)
‖ν1‖H−r

θ
‖ν2‖H−r

θ
, (2.8)

and T t (μ) is C2 with D2T t (μ)[ν1, ν2] = ξt = (ξ1t , ξ2t ) where ξ0 = 0 and

∂tξt = (Lξ1t , 0
) + δDG(μt )[ξt ] + δD2G(μt )[ν1,t , ν2,t ], (2.9)

where νi,t = DT t (μ0)[νi ] for i = 1, 2.
To prove that, for R > 0 and ‖p0 − ρ‖H−r

θ
≤ R, this solution is in fact globally defined

when δ is taken small enough, remark that it satisfies

pt = etL p0 +
∫ t

0
e(t−s)L∇ · (ps(δFms + ṁs)) ds, (2.10)

and

ṁt = δ〈Fmt , pt 〉. (2.11)

The estimates obtained above imply directly |ṁs | ≤ δCF‖ps‖H−r
θ
. Using Proposition 1.1 we

get (for the constant CL introduced in Proposition 1.1 and any λ < kmin):

‖pt‖H−r
θ

≤ CL‖p0‖H−r
θ

+ C1

∫ t

0

e−λ(t−s)

√
t − s

∥∥ps(δFms + ṁs)
∥∥
H−r

θ
ds (2.12)

≤ C2

(

‖p0‖H−r
θ

+ δ

∫ t

0

e−λ(t−s)

√
t − s

‖ps‖H−r
θ

(
1 + ‖ps‖H−r

θ

)
ds

)

. (2.13)

Set t0 = inf
{
t > 0 : ‖pt‖H−r

θ
≥ 2C2

(
R + ‖ρ‖H−r

θ

)}
. By continuity, t0 > 0 and for all

t ∈ [0, t0],

‖pt‖H−r
θ

≤ C2

(
R + ‖ρ‖H−r

θ

)
+ δ

√
π

λ
2C2

(
R + ‖ρ‖H−r

θ

) (
1 + 2C2

(
R + ‖ρ‖H−r

θ

))
.

(2.14)

For the choice of δ > 0 sufficiently small such that δ
√

π
λ
2
(
1 + 2C2

(
R + ‖ρ‖H−r

θ

))
< 1,

this yields that t0 = ∞, so that (pt ,mt ) is a global solution. ��

3 Proof of Proposition 1.7

In this section we give the proof of Proposition 1.7 which shows that M̃δ given by (1.40) is
an approximately invariant approximately normally hyperbolic manifold. We do not prove
the assertions in the order they are given in Proposition 1.7.

Proof of Proposition 1.7 Proof of (1). Recall again the definitions of ρ in (1.9), of αt periodic
solution to (1.11) and of Fm in (1.6). Take p0 = ρ and m0 = αu . We then have, from (1.4),

pt − ρ =
∫ t

0
e(t−s)L∇ · (ps(δFms + ṁs)) ds, (3.1)

and

ṁt − α̇u+t = δ〈Fmt , pt 〉 − δ〈Fαu+t , ρ〉. (3.2)
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As it was already proved in the preceding section, we have |ṁs | ≤ CFδ‖ps‖H−r
θ
, and since

Theorem 1.2 with R = 1 implies that, choosing δ small enough, ‖pt‖H−r
θ

≤ C(1), we get
from Proposition 1.1,

‖pt − ρ‖H−r
θ

≤ C1

∫ t

0

e−λ(t−s)

√
t − s

∥
∥ps(δFms + ṁs)

∥
∥
H−r

θ
ds

≤ C1δ

∫ t

0

e−λ(t−s)

√
t − s

‖ps‖H−r
θ

(
1 + ‖ps‖H−r

θ

)
ds ≤ C2δ. (3.3)

Now since

1

δ
(ṁt − α̇u+t ) = 〈DFαu+t , ρ〉(mt − αu+t ) + 〈Fmt − Fαu+t − DFαu+t (mt − αu+t ), ρ〉

+ 〈Fmt , pt − ρ〉, (3.4)

we have the following mild representation (recall the definition of πδ
u+t,u in (1.35) and that

m0 = αu):

mt − αu+t

= δ

∫ t

0
πδ
u+t,u+s

(
〈Fms − Fαu+s − DFαu+s (ms − αu+s), ρ〉 + 〈Fms , ps − ρ〉

)
ds,

(3.5)

which leads to (recall that the derivatives of F are bounded and that (3.3) is valid for all
t ≥ 0):

|mt − αu+t | ≤ C3δ

∫ t

0
|ms − αu+s |2 ds + C3δ

2t . (3.6)

Consider t1 = inf{t > 0 : |mt − αu+t | ≥ 2τC4δ} (recall the definition of τ in (1.54)). By
continuity, t1 > 0 and for all t ≤ t1 we have

|mt − αu+t | ≤ (4τ 2C3
3δ

3 + C3δ
2)t, (3.7)

which means that t1 ≥ τ
δ
for δ small enough, and implies (1).

Proof of (2). The first two points follow directly from the fact that the projections Pc
u defined

in (1.36) are smooth. For the third point we have
∥∥∥ψ(t) − ψ(s) − �̃

δ,c
s (ψ(t) − ψ(s))

∥∥∥
H−r

θ

‖ψ(t) − ψ(s)‖H−r
θ

=
∣∣∣αδ

t − αδ
s − Pδ,c

s (αδ
t − αδ

s )

∣∣∣
∣∣αδ

t − αδ
s

∣∣ , (3.8)

and since

αδ
t − αδ

s = α1
δt − α1

δs = δ(t − s)
d

du
α1
u|u=δs + O(δ2(t − s)), (3.9)

and

Pδ,c
s

d

du
α1
u|u=δs = P0,c

δs
d

du
α1
u|u=δs = d

du
α1
u|u=δs, (3.10)

the term

∥∥
∥ψ(t)−ψ(s)−�̃

δ,c
s (ψ(t)−ψ(s))

∥∥
∥
H−r

θ‖ψ(t)−ψ(s)‖H−r
θ

is indeed of order δ.
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Proof of (5).We choose in the following R0 = 1. For any (p,m) ∈ V(M̃δ, R0), wich means
in particular ‖p − ρ‖H−r

θ
≤ R0, we deduce from Theorem 1.2, if δ is small enough, that

sup
t≥0

‖pt‖H−r
θ

≤ C(R0). (3.11)

This means in particular, since mt = m0 + δ
∫ t
0 〈Fms , ps〉ds, that for C4,C5 > 0

sup
t≥0

|ṁt | ≤ δC4, and sup
t∈[0, τ

δ
]
|mt | ≤ C5, (3.12)

where C5 depends on τ . Now, using (2.5) we have, with μs = (ps,ms),

ηt = etLη0 + δ

∫ t

0
e(t−s)LDG1(μs)[ηs, ns] ds, (3.13)

and

nt = n0 + δ

∫ t

0
DG2(μs)[ηs, ns] ds. (3.14)

From (2.4) and Proposition 1.1 (recall that
∫
Rd η0 = 0, see Remark 1.3), we obtain

‖ηt‖H−r
θ

≤ CLe−λt‖η0‖H−r
θ

+ C6δ

∫ t

0

e−λ(t−s)

√
t − s

(
‖ηs‖H−r

θ
+ |ns |

)
ds, (3.15)

and

|nt | ≤ |n0| + C6δ

∫

0

(
‖ηs‖H−r

θ
+ |ns |

)
ds. (3.16)

We deduce that, for νt = DT t (p,m)[ν0] = (ηt , nt ),

‖νt‖H−r
θ

≤ C7‖ν0‖H−r
θ

+ C8δ

∫ t

0

(
1 + 1√

t − s

)
‖νs‖H−r

θ
ds. (3.17)

Applying Lemma B.1, we get the desired bound for the DT
τ
δ with κ6 = 2C7e3C8τ , when δ

is small enough.
For the second derivative, recall that D2T t (μ)[ν1, ν2] = ξt = (ξ1t , ξ2t ), where ξ0 = 0 and

(recall (2.9))

ξ1t = δ

∫ t

0
e(t−s)L (

DG1(μs)[ξs] + D2G1(μs)[ν1,s, ν2,s]
)
ds, (3.18)

and

ξ2t = δ

∫ t

0

(
DG2(μs)[ξs] + D2G2(μs)[ν1,s, ν2,s]

)
ds (3.19)

where μt = (pt ,mt ), and νi,t = DT t (μ0)[νi ] for i = 1, 2. This induces for t ∈ [0, τ
δ
],

recalling (2.4), (2.8) and since ‖νi,t‖H−r
θ

≤ κ6‖νi,0‖H−r
θ
,

∥∥ξ1t
∥∥
H−r

θ
≤ δC9

∫ t

0

e−λ(t−s)

√
t − s

(
‖ξs‖H−r

θ
+ ‖ν1,0‖H−r

θ
‖ν2,0‖H−r

θ

)
ds, (3.20)

and

∣∣ξ2t
∣∣ ≤ δC9

∫ t

0

(
‖ξs‖H−r

θ
+ ‖ν1,0‖H−r

θ
‖ν2,0‖H−r

θ

)
ds. (3.21)
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So for t ≤ τ
δ
,

‖ξt‖H−r
θ

≤ C10‖ν1,0‖H−r
θ

‖ν2,0‖H−r
θ

+ δC10

∫ t

0

(

1 + e−λ(t−s)

√
t − s

)

‖ξs‖H−r
θ

ds, (3.22)

and one deduces from Lemma B.1 that ‖ξt‖H−r
θ

≤ κ7‖ν1,0‖H−r
θ

‖ν2,0‖H−r
θ

with κ7 =
2C10e3C10τ for t ≤ τ

δ
and δ small enough, which concludes the proof of (5).

Proof of (3). We are now interested in DT
τ
δ (ρ, αu)(η0, n0) = (η τ

δ
, n τ

δ
) = ν τ

δ
. From the

proof of Point (3) we already know that supt∈[0, τ
δ
] ‖νt‖H−r

θ
≤ κ6‖ν0‖H−r

θ
, which means,

recalling (3.15), that

‖ηt‖H−r
θ

≤ CLe−λt‖η0‖H−r
θ

+ C11δ

∫ t

0

e−λ(t−s)

√
t − s

(
‖η0‖H−r

θ
+ |n0|

)
ds

≤ CLe−λt‖η0‖H−r
θ

+ C12δ
(
‖η0‖H−r

θ
+ |n0|

)
. (3.23)

Moreover, since

1

δ
ṅt = 〈DFαu+t [nt ] , ρ〉 − 〈DFαu+t [nt ] − DFmt [nt ] , ρ〉 + 〈DFmt [nt ] , pt − ρ〉

+ 〈Fmt , ηt 〉, (3.24)

we have the mild representation (recall again the definition of π in (1.35))

nt = πδ
u+t,un0 + δ

∫ t

0
πδ
u+t,u+s

(
− 〈DFαu+s [ns] − DFms [ns] , ρ〉

+ 〈DFms [ns] , ps − ρ〉 + 〈Fms , ηs〉
)
ds. (3.25)

From the proof of point (1), for t ≤ τ
δ
, ‖pt − ρ‖H−r

θ
and |mt −αu+t | are of order δ, and thus

we obtain (recall also that supt∈[0, τ
δ
] |nt | ≤ κ6‖ν0‖H−r

θ
):

∣∣nt − πδ
u+t,un0

∣∣ ≤ C13δ

∫ t

0

(
‖ηs‖H−r

θ
+ δ|n0|

)
ds

≤ C13δ

∫ t

0

(
CLe−λs‖η0‖H−r

θ
+ C12δ

(
‖η0‖H−r

θ
+ |n0|

)
+ δ|n0|

)
ds

≤ C14δ
(
‖η0‖H−r

θ
+ |n0|

)
. (3.26)

Suppose now that (η0, n0) ∈ X̃δ,s
u , that is Pδ,c

u n0 = 0 (recall the definitions of X̃δ,s
u and

Pδ,c
u in § 1.5). Then we have Pδ,c

u+ τ
δ
πδ
u+ τ

δ
,un0 = Pδ,c

u n0 = 0, and thus, recalling (3.26) and

(3.23),
∣∣∣Pδ,c

u+ τ
δ
n τ

δ

∣∣∣ =
∣∣∣Pδ,c

u+ τ
δ

(
n τ

δ
− πδ

u+ τ
δ
,un0

)∣∣∣ ≤ C15δ
(
‖η0‖H−r

θ
+ |n0|

)
. (3.27)

This shows that
∥∥∥�̃δ,c

u+ τ
δ
DT

τ
δ (ρ, αu)|X̃δ,s

u

∥∥∥
B(H−r

θ )
≤ C15δ. (3.28)

On the other hand, suppose that (η0, n0) ∈ X̃δ,c
u , that is η0 = 0 and Pδ,s

u n0 = 0. We then

have directly
∥∥∥η τ

δ

∥∥∥
H−r

θ

≤ C12δ|n0|, and since Pδ,s
u+ τ

δ
πδ
u+ τ

δ
,un0 = Pδ,s

u n0 = 0, from (3.26)
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we deduce
∣
∣
∣Ps

u+ τ
δ
n τ

δ

∣
∣
∣ =

∣
∣
∣Ps

u+ τ
δ

(
n τ

δ
− πδ

u+ τ
δ
,un0

)∣∣
∣ ≤ C16δ

2
∫ τ

δ

0
|n0| ds ≤ C16τδ|n0|. (3.29)

This means that
∥
∥
∥�̃δ,s

u+ τ
δ
DT

τ
δ (ρ, αu)|X̃δ,c

u

∥
∥
∥
B(H−r

θ )
≤ (C12 + C16δ)δ. (3.30)

Proof of (4).On the one hand consider (η0, n0) ∈ X̃δ,s
u , that is Pδ,c

u n0 = 0. Then, considering
δ small enough such that CLe−λ τ

δ ≤ C12δ, by (3.23) we obtain
∥
∥
∥η τ

δ

∥
∥
∥
H−r

θ

≤ 2C12δ
(
‖η0‖H−r

θ
+ |n0|

)
. (3.31)

Moreover, since Pδ,s
u+ τ

δ
πδ
u+ τ

δ
,un0 = πδ

u+ τ
δ
,un0 and Pδ,c

u n0 = 0 we obtain, by (3.26) and

(1.37),
∣
∣
∣Ps

u+ τ
δ
n τ

δ

∣
∣
∣ ≤

∣
∣
∣Ps

u+ τ
δ
πδ
u+ τ

δ
,un0

∣
∣
∣ +

∣
∣
∣Ps

u+ τ
δ

(
n τ

δ
− πδ

u+ τ
δ
,un0

)∣∣
∣ (3.32)

≤ Cαe
−λατ |n0| + C17δ

(
‖η0‖H−r

θ
+ |n0|

)
. (3.33)

We deduce that for δ small enough
∥∥∥�̃δ,s

u+ τ
δ
DT

τ
δ (ρ, αu)|X̃δ,s

u

∥∥∥
B(H−r

θ )
≤ 2Cαe

−λατ . (3.34)

On the other hand consider (η0, n0) ∈ X̃δ,c
u , which means η0 = 0 and Pδ,s

u n0 = 0. Then
similar arguments as above (recall that this time η0 = 0) lead to

∣∣∣Pδ,c
u+ τ

δ

(
n τ

δ
− πδ

u+ τ
δ
,un0

)∣∣∣ ≤ C18δ|n0|. (3.35)

We then obtain, for δ small enough, recalling (1.37),
∣∣∣Pc

u+ τ
δ
n τ

δ

∣∣∣ ≥ (cα − C18δ) |n0| ≥ cα

2
|n0|. (3.36)

This means in particular that �̃
δ,c
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,c

u
, which is a linear mapping in finite

dimensional spaces, is invertible and satisfies
∥∥∥∥
(
�̃

δ,c
u+ τ

δ
DT

τ
δ (ρ, αu)|X̃δ,c

u

)−1
∥∥∥∥B(H−r

θ )

≤ 2

cα

. (3.37)

We deduce (4) with a = cα
4 and λ̃ = 4Cαe−λατ

cα
, recalling (1.54).

Proof of (6). For any initial condition μ = (p0,m0) ∈ V(M̃δ, 1) recall that Theorem 1.2
implies supt≥0 ‖pt‖H−r

θ
≤ C(1). Then for τ

δ
≤ t < t ′, t ′ − t ≤ ζ , for some ζ ≤ 1 to be

chosen later, relying on (3.1), the following is true:

‖pt ′ − pt‖H−r
θ

≤
∥∥∥
(
et

′L − etL
)
p0
∥∥∥
H−r

θ

+
∫ t

0

∥∥∥
(
e(t ′−s)L − e(t−s)L

)
∇ · (ps(δFms + ṁs))

∥∥∥
H−r

θ

ds

+
∫ t ′

t

∥∥∥e(t ′−s)L∇ · (ps(δFms + ṁs))

∥∥∥
H−r

θ

ds. (3.38)
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Using Proposition 1.1, the first term above may be bounded as

∥
∥
∥
(
et

′L − etL
)
p0
∥
∥
∥
H−r

θ

≤ CL(t ′ − t)ε
′ e−λt

t
1
2+ε′ ‖p0‖H−(r+1)

θ

≤ C19ζ
ε′
δ
1
2+ε′ e−λ τ

δ

τ
1
2+ε′ , (3.39)

for some ε′ ∈ (0, 1). Concerning the second term,
∫ t

0

∥
∥
∥
(
e(t ′−s)L − e(t−s)L

)
∇ · (ps(δFms + ṁs))

∥
∥
∥
H−r

θ

ds

≤ CL(t ′ − t)ε
′
∫ t

0

e−λ(t−s)

(t − s)
1
2+ε′

∥
∥ps(δFms + ṁs)

∥
∥
H−r

θ
ds

≤ C20δ(t
′ − t)ε

′
∫ t

0

e−λ(t−s)

(t − s)
1
2+ε′ ‖ps‖H−r

θ

(
1 + ‖ps‖H−r

θ

)
ds

≤ C21δζ
ε′
. (3.40)

Now turning to the third term, relying again on Proposition 1.1,
∫ t ′

t

∥∥∥e(t ′−s)L∇ · (ps(δFms + ṁs))

∥∥∥
H−r

θ

ds

≤ C22δ

∫ t ′

t

e−λ(t ′−s)

√
t ′ − s

‖ps‖H−r
θ

(
1 + ‖ps‖H−r

θ

)
ds,

≤ C23δζ
1
2 . (3.41)

Gathering (3.39), (3.40), (3.41) into (3.38) yields

‖pt ′ − pt‖H−r
θ

≤ ε

2
(3.42)

if ζ ≤ 1 is chosen sufficiently small.
We now turn turn to the control of the mean: since ṁt = δ

∫
Fmt dpt we have that for

t ≤ t ′ ≤ t + ζ ,

mt ′ − mt = δ

∫ t ′

t
〈Fms , ps〉 ds.

Since we have the uniform bound sups≥0 ‖ps‖H−r
θ

≤ C(1) and since F and its derivatives

are bounded, the above quantity is easily bounded by some Cδ(t ′ − t) which can be made
smaller than ε/2, provided ζ is taken small enough. ��

4 Proof of Theorem 1.4

Proof of Theorem 1.4 From Proposition 1.7 we know that the hypotheses needed in [5] are
satisfied for δ small enough, which means that the system (1.4) admits a stable normally
hyperbolic manifoldMδ that is at distance δ from M̃δ . Indeed in [5] some constants η, χ, σ

need to be small for their result to be true, but in our case these constants are of order δ, so
we only need to suppose δ small enough. MoreoverMδ is constructed at a distance δ0 from
M̃δ , with δ0 chosen such that η/ε and ε/δ0 are bounded for some ε > 0 (see [5], Theorem
4.2). Since in our case η is of order δ, we can take δ0 of order δ, andMδ is indeed at distance
δ from M̃δ .
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The invariantmanifoldMδ is one dimensional, sinceM̃δ is, so to prove that it corresponds
to a periodic solution it is sufficient to prove that it does not possess any invariant point. But
for any (p0,m0) ∈ Mδ we have, since ‖p − ρ‖H−r

θ
and |m0 − αδ

u | are of order δ for some

u ∈ [0, Tα

δ
],

ṁ0 = δ

∫
Fm0 p0 = δ

∫
Fαuρ + O(δ2) = α̇u + O(δ2). (4.1)

Since there exists c > 0 such that |α̇δ
u/δ| > c independently on u, we have ṁ0 �= 0 for

the solutions starting from any point of Mδ , which means that Mδ does not possess any
fixed-point, and is thus defined by a periodic solution of positive period Tδ , that we denote
�δ
t = (qδ

t , γ
δ
t ) for t ∈ [0, Tδ].

Now, by the Herculean Theorem (see [36], Theorem 47.6), since Mδ is invariant, �δ
t

is in fact an element of H−r+2
θ and, by [36] Theorem 48.5, ∂t�

δ
s+t = (∂t qδ

s+t , γ̇
δ
s+t ) is in

C([0, Tδ),H
−r
θ ) and it is solution to

{
∂tηt = Lηt + δDG1(�

δ
s+t )[νt ]

ṅt = δDG2(�
δ
s+t )[νt ] , (4.2)

which means in particular that ∂t�
δ
s+t = �s+t,s∂t�

δ
s . Now ∂t�

δ
s+t is a periodic solution to

(4.2), and the same arguments imply that ∂2t �δ
s+t is in C([0, Tδ),H

−r
θ ).

In addition, it is proved in [5] thatMδ is foliated byC1 invariant foliations: a neighborhood
Wδ of Mδ satisfies the decomposition Wδ = ∪s∈[0,Tδ)Wδ

s , where Wδ
s corresponds to the

elements of μ ∈ H−r
θ such that T nTδ (μ) converges exponentially fast to �δ

s as n goes to

infinity. The projections �
δ,c
s and �

δ,s
s correspond then respectively to the projections on the

tangent space to Mδ and to Wδ
s at �δ

s . The linear operator �δ
s+t,s = DT t (�δ

s ) commutes
then with these projections, and is bounded from above and below in the direction of the
tangent space to Mδ , while it is contractive in the direction of the tangent space to stable
foliations.

In addition to the contractive property, the regularization effect of �δ given in (1.46) is a
consequence of the fact that �t+s,sν = νt where ν0 = ν and νt = (ηt , nt ) is solution to

{
∂tηt = Lηt + δDG1(�

δ
s+t )[νt ]

ṅt = δDG2(�
δ
s+t )[νt ] . (4.3)

The operator L̃(η, n) = (Lη, 0) is sectorial inH−r
θ and thus induces regularization properties

for the solutions to (4.3), and thus for�δ . More precisely we are in fact exactly in the situation
of [23], Theorem 7.2.3 and the following remark. Indeed, for s ∈ [0, Tδ) we can define the
operator U δ

s = �δ
s+Tδ ,s

, and we can deduce from above spectral properties for U δ
t . Since �δ

is a periodic solution,U δ
s admits 1 as eigenvalue, with eigenfunction ∂s�

δ
s and corresponding

projection �
δ,c
s , and due to the contractive property of �δ the rest of the spectrum of U δ

s is
located in a disk centered at 0 with radius e−λδTδ . We can then apply Theorem 7.2.3 and the
following remark to obtain (1.46) (reducing slightly the value of λδ).

The C1 regularity of s �→ �
δ,c
s is not a direct consequence of the normally hyperbolic

results of [5] (they prove that Wδ
s has a Hölder regularity with respect to s), but since we

are in the case of a periodic solution we have an explicit formula for �
δ,c
s : 1 is an isolated

eigenvalue of U δ
t , so for Cε the circle centered at 1 with radius ε > 0, with ε small enough,

we have

�δ,c
s = 1

2iπ

∫

Cε

(λ −U δ
s )−1 dλ. (4.4)
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But applying [23], Theorem 3.4.4., t �→ U δ
s is C1, with ∂sU δ

s ζ = ζTδ = (ζ 1
Tδ

, ζ 2
Tδ

), where
ζ0 = ζ and

{
∂tζ

1
t = Lζ 1

t + δDG1(�
δ
s+t )[ζt ] + δD2G1(�

δ
s+t )[∂t�δ

s+t , ζt ]
ζ̇ 2
t = δDG2(�

δ
s+t )[ζt ] + δD2G2(�

δ
s+t )[∂t�δ

s+t , ζt ]. , (4.5)

and thus s �→ �
δ,c
s is also C1.

It is not immediate that qδ
s is a probability distribution, since we apply the results of

[5] considering solutions pt ∈ H−r
θ satisfying

∫
Rd pt = 1 but without any hypotheses on

nonnegativity. However, M̃δ is in the basin of attraction of Mδ , so any (qδ
s ,m

δ
s ) ∈ Mδ is

the limit in H−r
θ of (pt ,mt ) = T t (ρ, αδ

u) for some u ∈ [0, Tα

δ
). So, since in this case pt is a

probability distribution (recall that it is the probability distribution of Xt −E[Xt ], where Xt

satisfies (1.2) with initial distribution ρ), we deduce that 〈qδ
s , ϕ〉 ≥ 0 for any smooth function

ϕ with compact support, and thus qδ
s is also a probability distribution. ��

5 Proof of Theorem 1.6

Recall once again the definition of �δ in (1.41) as well as the definition of the flow T t in
Theorem 1.2. As it was already explained in Sect. 1.4, the existence of the map �δ is a
consequence of the foliation property proved in [5]. Moreover �δ satisfies the relation

�δ
�(μ) = lim

n→∞ T nTδμ. (5.1)

Our aim in the present section is to prove the C2 regularity of�δ . Following ideas from [22],
we will prove uniform in time bounds for the first and second derivatives of the flow T t ,
which will induce the regularity of

S(μ) := lim
n→∞ T nTδμ (5.2)

and thus the regularity of �δ .

Proof of Theorem 1.6 Step 1 let us first show that for some constant c1 > 0

sup
t≥0

sup
μ∈V(Mδ ,ε)

∥∥DT t (μ)
∥∥B(H−r

θ )
≤ c1, (5.3)

where V(Mδ, ε) :=
{
μ ∈ H−r

θ , distH−r
θ

(
μ,Mδ

)
< ε

}
is a neighborhood ofMd (given by

(1.42)) on which the trajectories are attracted to the cycle. For μ0 = (p0,m0) ∈ V(Mδ, ε)

and u = �(μ0), denoting by νt = (ηt , nt ) = DT t (μ0)[ν0] and recalling the definitions of
G in (1.31) and of � in (1.43), we have,

νt = �δ
u+t,uν0 + δ

∫ t

0
�δ

u+t,u+s

(
DG(μs) − DG(�δ

u+s)
) [νs] ds. (5.4)

Let us now prove that there exists a constant CG such that, for μ = (p,m) and � = (q, γ ),

‖DG(μ) − DG(�)‖B(
H−r

θ ,H−(r+1)
θ

) ≤ CG ‖μ − �‖H−r
θ

. (5.5)
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We have, for ν = (η, n)

(DG1(μ) − DG1(�)) [ν] = −∇ · (η(Fm − Fγ )
) + ∇ ·

(
η

(∫
Fm p −

∫
Fγ q

))
(5.6)

− ∇ · (pDFm[n] − qDFγ [n]) (5.7)

+ ∇ ·
(
p
∫

Fmη − q
∫

Fγ η

)
(5.8)

+ ∇ ·
(
p
∫

DFm[n]p − q
∫

DFγ [n]q
)

, (5.9)

and

(DG2(μ) − DG2(�)) [ν] =
∫

(Fm − Fγ )η +
∫

DFm[n]p −
∫

DFγ [n]q. (5.10)

For the first term, we obtain
∥
∥∇ · (η(Fm − Fγ )

)∥∥
H−(r+1)

θ

≤ C1
∥
∥η(Fm − Fγ )

∥
∥
H−r

θ
, (5.11)

and since, for f ∈ Hr
θ ,

〈η(Fm − Fγ ), f 〉 ≤ ‖η‖H−r
θ

‖(Fm − Fγ ) f ‖Hr
θ

≤ C2|m − γ |‖η‖H−r
θ

‖ f ‖Hr
θ
, (5.12)

where we have used the fact that all the derivatives of F are Lipschitz, we get, for some
C3 > 0,

∥∥∇ · (η(Fm − Fγ )
)∥∥

H−(r+1)
θ

≤ C3|m − γ |‖η‖H−r
θ

. (5.13)

For the second term, since
∣∣∣∣

∫
Fm p −

∫
Fγ q

∣∣∣∣ ≤
∣∣∣∣

∫
Fm(p − q)

∣∣∣∣ +
∣∣∣∣

∫
(Fm − Fγ )q

∣∣∣∣

≤ C4

(
‖p − q‖H−r

θ
+ |m − γ |

)
, (5.14)

we have
∥∥∥∥∇ ·

(
η

(∫
Fm p −

∫
Fγ q

))∥∥∥∥
H−(r+1)

θ

≤ C5

(
‖p − q‖H−r

θ
+ |m − γ |

)
. (5.15)

The other terms can be tackled in a similar way. Now, since μ0 ∈ Wδ
u , we have for some

C�δ > 0,
∥∥μs − �δ

u+s

∥∥
H−r

θ
≤ C�δe−λδs

∥∥μ0 − �δ
u

∥∥
H−r

θ
, (5.16)

and from the estimates obtained above , we deduce

‖νt‖H−r
θ

≤ C6‖ν0‖H−r
θ

+ C6δ

∫ t

0

(
1 + (t − s)−

1
2 e−λδ(t−s)

)
e−λδs‖νs‖H−r

θ
ds. (5.17)

Applying Lemma B.2 for φ(u) = u− 1
2 e−λδu , we obtain from (B.3) that

sup
t≥0

‖νt‖H−r
θ

≤ c1 ‖ν0‖H−r
θ

, (5.18)

for some c1 > 0.
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Step 2 let us now show that
(
DTnTδ

)
n≥0 is a Cauchy sequence in the space C

(V(Mδ, ε),

B (
H−r

θ

) )
, which implies that μ �→ S(μ) is C1 (recall (5.2)).

For n ≥ m we have

νnTδ − νmTδ = (
�δ

u+nTδ,u − �δ
u+mTδ ,u

)
ν0 (5.19)

+ δ

∫ nTδ

mTδ

�δ
u+nTδ,u+s

(
DG(μs) − DG(�δ

u+s)
) [νs] ds

+ δ

∫ mTδ

0

(
�δ

u+nTδ ,u+s − �δ
u+mTδ ,u+s

) (
DG(μs) − DG(�δ

u+s)
) [νs] ds.

For the first term, we get
∥
∥(�u+nTδ ,u − �u+mTδ ,u

)
ν0
∥
∥
H−r

θ
= ∥

∥(�u+nTδ,u − �u+mTδ ,u
)
�δ,uν0

∥
∥
H−r

θ

≤ C7e
−λδmTδ ‖ν0‖H−r

θ
. (5.20)

For the second one, using (5.18),
∥∥∥∥

∫ nTδ

mTδ

�δ
u+nTδ ,u+s

(
DG(μs) − DG(�δ

u+s)
)[νs] ds

∥∥∥∥
H−r

θ

≤ C8
∥∥μ − �δ

u

∥∥
H−r

θ
‖ν0‖H−r

θ

∫ nTδ

mTδ

(
1 + (nTδ − s)−

1
2 e−λδ(nTδ−s)

)
e−λδs ds

=
C8

∥∥μ − �δ
u

∥∥
H−r

θ
‖ν0‖H−r

θ

λδ

e−λδmTδ

(
1 + e−λδ(n−m)Tδ

(
2λδ

√
(n − m)Tδ − 1

))

≤ C9
∥∥μ − �δ

u

∥∥
H−r

θ
‖ν0‖H−r

θ
e−λδmTδ . (5.21)

For the last term, remark first that

�δ
u+nTδ,u+s − �δ

u+mTδ ,u+s = (
�δ

u+nTδ ,u+mT − Id
)
�

δ,s
u+mTδ

�δ
u+mTδ ,u+s, (5.22)

so that, using again (5.18),
∥∥∥∥

∫ mTδ

0

(
�δ

u+nTδ,u+s − �δ
u+mTδ ,u+s

)
(DG(μs) − DG(�u+s)) [νs]ds

∥∥∥∥
H−r

θ

≤ C10
∥∥μ − �δ

u

∥∥
H−r

θ
‖ν0‖H−r

θ

∫ mTδ

0
(mTδ − s)−

1
2 e−λδ(mTδ−s)e−λδsds

= 2C10
∥∥μ − �δ

u

∥∥
H−r

θ
‖ν0‖H−r

θ

√
mTδe

−λδmTδ . (5.23)

Since the constants above are uniform in μ ∈ V , we deduce that
(
DTnTδ

)
n≥0 is indeed a

Cauchy sequence. Thus S is C1 with DS(μ) = limn→∞ DTnTδ (μ).
Before moving to the second derivative, let us have a closer look at DS. We have

∥∥∥�δ,s
u+nTδ

νnTδ

∥∥∥
H−r

θ

≤
∥∥∥�δ,s

u+nTδ
�δ

u+nTδ,uν0

∥∥∥
H−r

θ

+
∥∥∥∥

∫ nTδ

0
�

δ,s
u+nTδ

�δ
u+nTδ,u+s

(
DG(μs) − DG(�δ

u+s)
) [νs]ds

∥∥∥∥
H−r

θ

,

(5.24)
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and we can bound the right hand side in three steps. Firstly,
∥
∥
∥�δ,s

u+nTδ
�δ

u+nTδ,uν0

∥
∥
∥
H−r

θ

≤ C�,δe
−λδnTδ ‖ν0‖H−r

θ
. (5.25)

Secondly, since supμ∈V ‖DG(μ)‖B(
H−r

θ ,H−(r+1)
θ

) ≤ CG ,

∥
∥
∥
∥

∫ nTδ
2

0
�δ

u+nTδ
�δ

u+nTδ ,u+s

(
DG(μs) − DG(�δ

u+s)
) [νs] ds

∥
∥
∥
∥
H−r

θ

≤ C11
∥
∥μ − �δ

u

∥
∥
H−r

θ
‖ν0‖H−r

θ

∫ nTδ
2

0
(nTδ − s)−

1
2 e−λδ(nTδ−s) ds

≤ C12
∥
∥μ − �δ

u

∥
∥
H−r

θ
n

1
2 e− λδnTδ

2 ‖ν0‖H−r
θ

. (5.26)

Thirdly, by similar arguments as above (replacing mTδ with n Tδ

2 ),
∥
∥
∥
∥
∥

∫ nTδ

nTδ
2

�δ
u+nTδ ,u+s

(
DG(μs) − DG(�δ

u+s)
) [νs] ds

∥
∥
∥
∥
∥
H−r

θ

≤ C13
∥∥μ − �δ

u

∥∥
H−r

θ
e−λδn

Tδ
2 ‖ν0‖H−r

θ
. (5.27)

We deduce that ��(μ)DS(μ) = 0, so that DS has rank 1 and thus there exists a family of
linear forms lμ ∈ B (

H−r
θ ,R

)
(that depend continuously on μ) such that, for u = �(μ),

DS(μ)[ν] = lμ[ν]∂u�u, (5.28)

and we have proved, for νt = DT t (μ)[ν0],
∥∥νnTδ − lμ[ν0]∂u�u

∥∥
H−r

θ
≤ C13n

1
2 e−λδn

Tδ
2 ‖ν0‖H−r

θ
. (5.29)

With similar computations one can in fact show that
∥∥νt − lμ[ν0]∂u�u+t

∥∥
H−r

θ
≤ C14t

1
2 e−λδ

t
2 ‖ν0‖H−r

θ
. (5.30)

In the case when μ = �δ
u , we deduce in particular that

DS(�δ
u) = �δ,c

u . (5.31)

In fact, we have proved a more precise estimate: if ν2t = DT t (μ)[ν0], ν1t = DT t (�δ
u)[ν0]

with u = �(μ), the estimates above lead to
∥∥∥ν2t − ν1t −

(
lμ[ν0] − l�δ

u
[ν0]

)
∂u�u+t

∥∥∥
H−r

θ

≤ C15
∥∥μ − �δ

u

∥∥
H−r

θ
t
1
2 e−λδ

t
2 ‖ν0‖H−r

θ
.

(5.32)

Step 3 let us now show that for a constant c2 > 0,

sup
t≥0

sup
μ∈V(�δ,ε)

∥∥D2T t (μ)
∥∥BL(H−r

θ )
≤ c2. (5.33)

From (2.9), we deduce, for ξt = D2T t (μ)[ν,w], the following mild formulation (recall
that ξ0 = 0):

ξt = δ

∫ t

0
�δ

u+t,u+s

(
D2G(μs)[νs, ws] + (

DG(μs) − DG(�δ
u+s)

)
ξs
)
ds, (5.34)
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where νt = DT t (μ0)[ν], wt = DT t (μ0)[w]. With similar arguments as above, we obtain
∥
∥
∥
∥

∫ t

0
�δ

u+t,u+s

(
D2G(μs)[νs, ws] − D2G(�δ

u+s)[νs, ws]
)
ds

∥
∥
∥
∥
H−r

θ

≤ C16

∫ t

0

(
1 + (t − s)−

1
2 e−λδ(t−s)

) ∥
∥μs − �δ

u+s

∥
∥
H−r

θ
‖νs‖H−r

θ
‖ws‖H−r

θ
ds

≤ C16 ‖ν0‖H−r
θ

‖w0‖H−r
θ

. (5.35)

Remark now that

∂2t �δ
u+t = (L∂t q

δ
u+t , 0) + δDG(�δ

u+t )[∂t�u+t ], (5.36)

and

∂3t �δ
u+t = (L∂2t q

δ
u+t , 0

) + δDG(�δ
u+t )[∂2t �δ

u+t ] + δD2G(�δ
u+t )[∂t�δ

u+t , ∂t�
δ
u+t ],

(5.37)

and thus

∂2t �δ
u+t = �δ

u+t,u∂
2
t �δ

u + δ

∫ t

0
�δ

u+t,u+s D
2G(�δ

u+s)[∂s�δ
u+s, ∂s�

δ
u+s]ds. (5.38)

So, in particular, since

�δ,c
u �δ

u+Tδ ,u∂
2
u�u = �δ,c

u (∂2u�u), (5.39)

we deduce from (5.38) that

�δ,c
u

(∫ Tδ

0
�δ

u+Tδ ,u+s D
2G(�δ

u+s)[∂s�δ
u+s, ∂s�

δ
u+s]ds

)
= 0. (5.40)

Now, recalling (5.30),

∥∥νt − lμ[ν0]∂u�u+t
∥∥
H−r

θ
≤ C14t

1
2 e−λδ

t
2 ‖ν0‖H−r

θ
, (5.41)

∥∥wt − lμ[w0]∂u�u+t
∥∥
H−r

θ
≤ C14t

1
2 e−λδ

t
2 ‖w0‖H−r

θ
, (5.42)

and we deduce
∥∥∥∥

∫ t

0
�u+t,u+s D

2G(μs)[νs, ws]ds

− lμ[ν0]lμ[w0]
∫ t

0
�u+t,u+s D

2G(μs)[∂u�u+s, ∂u�u+s] ds
∥∥∥∥
H−r

θ

≤ C17 ‖ν0‖H−r
θ

‖w0‖H−r
θ

. (5.43)

So, recalling (5.40), and since
∥∥∥∥�

δ,s
u+t

∫ t

0
�δ

u+t,u+s D
2G(μs)[∂u�δ

u+s, ∂u�
δ
u+s] ds

∥∥∥∥
H−r

θ

≤ C18

∫ t

0
(t − s)−

1
2 e−λδ(t−s)ds ≤ C19, (5.44)
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we deduce, coming back to (5.34), that

‖ξt‖H−r
θ

≤ C19 ‖ν0‖H−r
θ

‖w0‖H−r
θ

+ δ

∥
∥
∥
∥

∫ t

0
�δ

u+t,u+s

(
DG(μs) − DG(�δ

u+s)
)
ξsds

∥
∥
∥
∥
H−r

θ

.

(5.45)

Relying again on (5.16), we deduce that, for some c2 > 0,

‖ξt‖H−r
θ

≤ c2 ‖ν0‖H−r
θ

‖w0‖H−r
θ

, (5.46)

which implies (5.33).
Step 4 let us now prove that

(
D2T nTδ

)
n≥0 is a Cauchy sequence in the space

C
(V(Mδ, ε),BL (

H−r
θ

))
, which implies that μ �→ S(μ) is C2.

We have, for n ≥ m,

ξnTδ − ξmTδ =
∫ nTδ

0
�δ

u+nTδ,u+s D
2G(�δ

u+s)[νs, ws] ds (5.47)

−
∫ mTδ

0
�δ

u+mTδ ,u+s D
2G(�δ

u+s)[νs, ws] ds

+
∫ nTδ

mTδ

�δ
u+nTδ,u+s

(
D2G(μs)[νs, ws] − D2G(�δ

u+s)[νs, ws]
)
ds

+
∫ mTδ

0

(
�δ

u+nTδ ,u+s − �δ
u+mTδ ,u+s

)

× (
D2G(μs)[νs, ws] − D2G(�δ

u+s)[νs, ws]
)
ds

+
∫ nTδ

mTδ

�δ
u+nTδ,u+s

(
DG(μs) − DG(�δ

u+s)
)
ξs ds

+
∫ nTδ

0

(
�δ

u+nTδ,u+s − �δ
u+mTδ ,u+s

) (
DG(μs) − DG(�δ

u+s)
)
ξs ds.

Let us define

Rnorm
n :=

∫ nTδ

0
�

δ,s
u+nTδ

�δ
u+nTδ,u+s D

2G(�δ
u+s)[∂s�δ

u+s, ∂s�
δ
u+s] ds (5.48)

=
n−1∑

j=0

(
�δ

u+Tδ ,u�
δ,s
u

) j
∫ Tδ

0
�δ

u+Tδ ,u+s D
2G(�δ

u+s)[∂s�δ
u+s, ∂s�

δ
u+s] ds,

and

Rtang
n [ν0, w0] :=

∫ nTδ

0
�

δ,c
u+nTδ

�δ
u+nTδ ,u+s D

2G(�δ
u+s)[νs, ws] ds (5.49)

=
n−1∑

j=0

∫ Tδ

0
�

δ,c
u+Tδ

�δ
u+Tδ ,u+s D

2G(�δ
u+s)[ν jTδ+s, w jTδ+s] ds. (5.50)

It is clear that
∥∥Rnorm

n − Rnorm
m

∥∥
H−r

θ
≤ Ce−λδmTδ . (5.51)
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Now, for j ≥ 1, recalling (5.40), (5.41) and (5.42) we have

∥
∥
∥
∥

∫ Tδ

0
�

δ,c
u+Tδ

�δ
u+Tδ ,u+s D

2G(�δ
u+s)[ν jTδ+s, w jTδ+s] ds

∥
∥
∥
∥
H−r

θ

≤ C20 ‖ν0‖H−r
θ

‖w0‖H−r
θ

∫ Tδ

0

(
1 + (Tδ − s)−

1
2 e−λδ(Tδ−s)

)
( jTδ + s)

1
2 e−λδ

jTδ+s
2 ds

≤ C21 ‖ν0‖H−r
θ

‖w0‖H−r
θ

( j + 1)
1
2 e−λδ j

Tδ
2 , (5.52)

so that

∥
∥
∥Rtan

n [ν0, w0] − Rtang
m [ν0, w0]

∥
∥
∥
H−r

θ

≤ C22e
−λδm

Tδ
4 ‖ν0‖H−r

θ
‖w0‖H−r

θ
. (5.53)

Using similar arguments as above, relying on (5.41) and (5.42),

∥
∥∥∥

∫ nTδ

0
�δ

u+nTδ,u+s D
2G(�δ

u+s)[νs, ws]ds − Rtan
n [ν0, w0] − lμ[ν0]lμ[w0]Rnorm

n ds

∥
∥∥∥
H−r

θ

≤ C23 ‖ν0‖H−r
θ

‖w0‖H−r
θ

∫ nTδ

0
(nTδ − s)−

1
2 e−λδ(nTδ−s)s

1
2 e−λδ

s
2 ds

≤ C24n
1
2 e−λδn

Tδ
2 ‖ν0‖H−r

θ
‖w0‖H−r

θ
. (5.54)

With all these estimates we are able to tackle the first two lines of (5.47):

∥∥∥∥

∫ nTδ

0
�δ

u+nTδ ,u+s D
2G(�δ

u+s)[νs, ws] ds −
∫ mTδ

0
�δ

u+mTδ ,u+s D
2G(�δ

u+s)[νs, ws] ds
∥∥∥∥
H−r

θ

≤ C25n
1
2 e−λδn

Tδ
4 ‖ν0‖H−r

θ
‖w0‖H−r

θ
. (5.55)

The other terms can be treated in a straightforward way, with similar estimates as the ones
used in Step 2 and Step 3. At the end, one obtains

∥∥ξnTδ − ξmTδ

∥∥
H−r

θ
≤ C26m

1
2 e−λδm

Tδ
4 , (5.56)

with a constant C25 uniform in V . Hence, μ �→ S(μ) is thus C2. Remark that we have in
particular

D2S(�u)[ν,w] = lim
n→∞

∫ nTδ

0
�u+nTδ ,u+s D

2G(�u+s)[�u+s,uν,�u+s,uw] ds. (5.57)

Step 5 from the previous steps, and the fact that t �→ �δ
t is a C

2 bijection from R/TδZ to
Mδ implies that �δ is itself C2.

For the last estimate of the Theorem, let us denote ξ2t = D2T t (μ)[ν,w], ξ1t =
D2T t (�δ

u)[ν,w], ν2t = DT t (μ)[ν], ν1t = DT t (�δ
u)[ν], w2

t = DT t (μ)[w] and w1
t =
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DT t (�δ
u)[w]. We then have the decomposition

ξ2t − ξ1t = δ

∫ t

0
�δ

u+t,u+s

(
DG(μs) − DG

(
�δ
u+s

))
ξ2s ds (5.58)

+ δ

∫ t

0
�δ

u+t,u+s

(
D2G(μs) − D2G

(
�δ
u+s

)) [ν2s , w2
s ] ds

+ δ

∫ t

0
�δ

u+t,u+s D
2G

(
�δ
u+s

) [ν2s − ν1s , w
2
s ] ds

+ δ

∫ t

0
�δ

u+t,u+s D
2G

(
�δ
u+s

) [ν1s , w2
s − w1

s ] ds.

Following similar estimates as in the previous steps, relying in particular on (5.32), we obtain
∥∥ξ2t − ξ1t

∥∥
H−r

θ
≤ C27

∥∥μ − �δ
u

∥∥
H−r

θ
‖ν‖H−r

θ
‖w‖H−r

θ
, (5.59)

which implies indeed that
∥
∥D2�δ(μ) − D2�δ

(
�δ
u

)∥∥BL(H−r
θ )

≤ C28
∥
∥μ − �δ

u

∥
∥
H−r

θ
. ��
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Appendix A. Ornstein–Uhlenbeck Operators

The aim of this Section is to give bounds for the operators and norms that where defined
in Sect. 1.3. In the sequel, the following notation will be used: for any multi-index l =
(l1, . . . , ld) ∈ N

d and i ∈ {1, . . . , d}, denote by
l↓i = (l1, . . . , li−1, li − 1, li+1, . . . , ld), (A.1)

l↑i = (l1, . . . , li−1, li + 1, li+1, . . . , ld) (A.2)

as the shifts w.r.t. the i th coordinate (multiple arrows notation such as l↑↑i corresponding to
iterated shifts).

We first prove the following lemma, which shows the link between the norm ‖ f ‖Hr
θ
and

the space derivatives.

Lemma A.1 For all θ > 0, there exists explicit positive constants C1, C2 such that for all
r ≥ 0:

C1

(

‖u‖2Hr
θ

+
d∑

i=1

∥∥∂xi u
∥∥2
Hr

θ

)

≤ ‖u‖2
Hr+1

θ

≤ C2

(

‖u‖2Hr
θ

+
d∑

i=1

∥∥∂xi u
∥∥2
Hr

θ

)

. (A.3)

Proof Recall the definitions of ψl in (1.19) and of hn in (1.20). For u with decomposition
u = ∑

l∈Nd ul ψl , we have ∂xi u = ∑
l∈Nd ul ∂xi ψl , and straightforward calculations using

the fact that h′
n(x) = √

nhn−1(x) show that

∂xi ψl = √
li

√
θki
σ 2
i

ψl↓i 1li≥1, (A.4)
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where we used the notation (A.1). Then we have the decomposition

∂xi u =
√

θki
σ 2
i

∑

l∈Nd

√
li1li≥1ul ψl↓i , (A.5)

so that, by definition of the Hr
θ -norm in (1.21) (recall in particular that aθ = θTrK )

‖u‖2Hr
θ

+
d∑

i=1

‖∂xi u‖2Hr
θ

=
∑

l∈Nd

u2l

(

(aθ + λl)
r +

d∑

i=1

li1li≥1
θki
σ 2
i

(aθ + λl − θki )
r

)

.

(A.6)

Let us prove the upper bound in (A.3): note that for li ≥ 1, we have λl ≥ θki . Hence, since
for all μ ≥ 0, r ≥ 0, λ ≥ μ, (aθ + λ − μ)r ≥ arθ

(aθ+λ)r

(aθ+μ)r
, we deduce that

‖u‖2Hr
θ

+
d∑

i=1

‖∂xi u‖2Hr
θ

≥
∑

l∈Nd

u2l (aθ + λl)
r

(

1 +
d∑

i=1

li1li≥1
θkiarθ

σ 2
i (aθ + θki )r

)

,

≥
∑

l∈Nd

u2l (aθ + λl)
r
(
1 + arθ

σ 2
max (aθ + θkmax)

r λl

)
,

so that the upper bound in (A.3) is true for C2 := max
(

σ 2
max(aθ+θkmax)

r

arθ
, aθ

)
. Concerning the

lower bound in (A.3), we have from (A.6),

‖u‖2Hr
θ

+
d∑

i=1

‖∂xi u‖2Hr
θ

≤
∑

l∈Nd

u2l (aθ + λl)
r

(

1 + λl

σ 2
min

)

,

where σmin is given in (1.16), so that the upper bound holds for C1 := 1
min

(
σ 2
min,aθ

) . ��

For all θ > 0, the operator −L∗
θ (recall its definition (1.18) and its decomposition (1.19))

is sectorial in L2
θ and generates a semigroup etL

∗
θ satisfying (see e.g. [23]) for all α ≥ 0,

r ≥ 0, and λ < θ min(k1, . . . , kd), there exists some C > 0 such that for all f ∈ Hr
θ ,

∥∥∥etL
∗
θ f

∥∥∥
Hr+α

θ

≤ C
(
1 + t−α/2e−λt ) ‖ f ‖Hr

θ
, (A.7)

and for all f ∈ Hr
θ such that

∫
f wθ = 0,

∥∥∥etL
∗
θ f

∥∥∥
Hr+α

θ

≤ Ct−
1
2 e−λt‖ f ‖Hr

θ
. (A.8)

Let θ ′ > 0. The point of the following result is to state similar contraction results for L∗
θ ′

in Hr
θ , in the case θ ′ �= θ :

Proposition A.2 For all 0 < θ ≤ θ ′ the following is true: the operator L∗
θ ′ generates an

analytic semigroup in Hr
θ and for all r ≥ 0, α ≥ 0 and λ < θkmin, there exists a constant

C > 0 such that for all f ∈ Hr
θ and t > 0

∥∥∥etL
∗
θ ′ f

∥∥∥
Hr+α

θ

≤ C
(
1 + t−α/2e−λt ) ‖ f ‖Hr

θ
, (A.9)
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and for all r ≥ 1,

∥
∥
∥∇etL

∗
θ ′ f

∥
∥
∥
Hr

θ

≤ Ct−
1
2 e−λt‖ f ‖Hr

θ
. (A.10)

Moreover for all r ≥ 0, 0 < ε ≤ 1 and s ≥ 0,

∥
∥
∥
(
e(t+s)L∗

θ ′ − etL
∗
θ ′
)
f
∥
∥
∥
Hr+1

θ

≤ Csεt−
1
2−εe−λt ‖ f ‖Hr

θ
. (A.11)

Finally, there exists r0 > 0 such that for all r > r0, t > 0 and all f ∈ Hr
θ ,

∥
∥
∥
∥
∥
etL

∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

∥
∥
∥
∥
∥
Hr

θ

≤ e−λt
∥
∥
∥
∥ f −

∫

Rd
f wθ

∥
∥
∥
∥
Hr

θ

. (A.12)

Proof of Proposition A.2 First remark that for all smooth test function u

(L∗
θ − L∗

θ ′
)
u = (θ ′ − θ)Kx · ∇u. (A.13)

Recalling the decomposition (1.19),since h′
n(x) = √

nhn−1(x) and xhn−1(x) = √
nhn(x)+√

n − 1hn−2(x) (see e.g. [6], p.102), we get, for all l ∈ N,

(L∗
θ − L∗

θ ′
)
ψθ,l = (θ ′ − θ)

d∑

i=1

ki

√
θki
σ 2
i

√
li xiψθ,l↓i (A.14)

= (θ ′ − θ)

d∑

i=1

ki
(
liψθ,l + √

li (li − 1)ψθ,l�i

)
, (A.15)

where we used the notation (A.1) and (A.2) and the convention ψl = 0 if li < 0 for some
i ∈ {1, . . . , d}. In particular we have, recalling that λθ,l = θ

∑d
i=1 ki li ,

− L∗
θ ′ψθ,l = θ ′λθ,l

θ
ψθ,l + (θ ′ − θ)

d∑

i=1

ki
√
li (li − 1)ψθ,l�i

, (A.16)

So, we deduce that for f = ∑
l flψθ,l , with fl ∈ C for all l,

∥∥∥∥

(
L∗

θ − θ

θ ′L
∗
)

f

∥∥∥∥

2

Hr
θ

=
(
1 − θ

θ ′

)2 ∑

l

(aθ + λθ,l)
r

∣∣∣∣∣

d∑

i=1

θki
√

(li + 1)(li + 2) fl�i

∣∣∣∣∣

2

.

Setting

I (r , f ) :=
∑

l

(aθ + λθ,l)
r

(
d∑

i=1

θki
√

(li + 1)(li + 2) fl�i

)2

. (A.17)
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Using Jensen’s inequality, we obtain (recalling that aθ = θTr(K )),

I (r , f ) ≤
+∞∑

l1,...,ld=0

(
aθ + λθ,l

)r
(

d∑

i=1

θki (li + 1)

)(
d∑

i=1

θki (li + 2)
∣
∣
∣ fl�i

∣
∣
∣
2
)

=
+∞∑

l1,...,ld=0

(
aθ + λθ,l

)r+1

(
d∑

i=1

θki (li + 2)
∣
∣
∣ fl�i

∣
∣
∣
2
)

=
+∞∑

l1,...,ld=2

(
aθ + λθ,l−2

)r+1

(
d∑

i=1

θki li
∣
∣ fl1−2,...,li ,li+1−2,ld−2

∣
∣2
)

=
d∑

i=1

+∞∑

l1,...,ld=2

(
aθ + λθ,l−2

)r+1
θki li

∣
∣ fl1−2,...,li ,li+1−2,ld−2

∣
∣2

=
d∑

i=1

+∞∑

li=2

+∞∑

l p=0
p �=i

(
aθ + λθ,l�i

)r+1
θki li | fl |2 .

Now we use that λθ,l�i
≤ λθ,l for any l and i , so that

I (r , f ) ≤
d∑

i=1

+∞∑

li=2

+∞∑

l p=0
p �=i

(
aθ + λθ,l

)r+1
θki li | fl |2 , (A.18)

This sum is anyway smaller than

I (r , f ) ≤
d∑

i=1

+∞∑

li=0

+∞∑

l p=0
p �=i

(
aθ + λθ,l

)r+1
θki li | fl |2 =

+∞∑

l1=0

. . .

+∞∑

ld=0

(
aθ + λθ,l

)r+1
λθ,l | fl |2 ,

≤
+∞∑

l1=0

. . .

+∞∑

ld=0

(
aθ + λθ,l

)r+2 | fl |2 = ∥∥(aθ − L∗
θ ) f

∥∥2
Hr

θ
. (A.19)

Coming back to (A.17), we obtain

∥∥∥∥

(
L∗

θ − θ

θ ′L
∗
θ ′

)
f

∥∥∥∥
Hr

θ

≤
(
1 − θ

θ ′

)∥∥(aθ − L∗
θ ) f

∥∥
Hr

θ
, (A.20)

which implies in particular that

∥∥∥∥

(
aθ − θ

θ ′L
∗
θ ′

)
f

∥∥∥∥
Hr

θ

≤
(
2 − θ

θ ′

)∥∥(aθ − L∗
θ ) f

∥∥
Hr

θ
=

(
2 − θ

θ ′

)
‖ f ‖Hr+2

θ
.

(A.21)
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Let us now look for a lower bound. Using (a + b)2 ≥ ε
1+ε

a2 − εb2 (ε > 0), we get

∥
∥
∥∥

(
aθ − θ

θ ′L
∗
θ ′

)
f

∥
∥
∥∥

2

Hr
θ

=
∑

l

(aθ + λθ,l)
r
(

(aθ + λθ,l) fl

+
(
1 − θ

θ ′

) d∑

i=1

θki
√

(li + 1)(li + 2) fl�i

)2

≥ ε

1 + ε

∑

l

(aθ + λθ,l)
r+2 f 2l − ε

(
1 − θ

θ ′

)2

I (r , f ). (A.22)

Hence, recalling (A.19), we obtain

∥
∥
∥
∥

(
aθ − θ

θ ′L
∗
θ ′

)
f

∥
∥
∥
∥

2

Hr
θ

≥ ε

(
1

1 + ε
−

(
1 − θ

θ ′

)2
)
∥
∥(aθ − L∗

θ ) f
∥
∥2
Hr

θ
. (A.23)

So for ε > 0 small enough (depending only on θ, θ ′), there exists a constant cθ,θ ′ > 0
such that we have

∥∥(aθ − θ
θ ′ L∗

θ ′
)
f
∥∥
Hr

θ
≥ cθ,θ ′

∥∥(aθ − L∗
θ ) f

∥∥
Hr

θ
. This means, together with

(A.21), that

cθ,θ ′ ‖ f ‖Hr+2
θ

≤
∥∥∥∥

(
aθ − θ

θ ′L
∗
θ ′

)
f

∥∥∥∥
Hr

θ

≤
(
2 − θ

θ ′

)
‖ f ‖Hr+2

θ
. (A.24)

In particular 0 is in the resolvent set of aθ − θ
θ ′ L∗

θ ′ , and aθ − θ
θ ′ L∗

θ ′ has a compact resolvent,
since it is the case for aθ − L∗

θ . So L∗
θ ′ has a discrete spectrum, composed of a sequence of

eigenvalues with modulus going to infinity. But any eigenfunction ψ of L∗
θ ′ in Hr

θ is also
an eigenfunction of L∗

θ ′ in Hr
θ ′ , and thus the eigenvalues of L∗

θ ′ in Hr
θ are the λl,θ ′ ’s, with

associated eigenfunctions the ψl,θ ′ ’s. So in particular L∗
θ ′ is sectorial, and thus generates an

analytic semigroup etL
∗
θ ′ in Hr

θ .
Let us now prove that the interpolation spaces induced byL∗

θ ′ andL∗
θ in Hr

θ are equivalent.

Since the operator
(

θ
θ ′ L∗

θ ′ − L∗
θ

) (
aθ − θ

θ ′ L∗
θ ′
)−1

(and thus (1+ (θL∗ −L∗
θ )(aθ − θL∗)−1)α

for α ≥ 0) is bounded in Hr
θ , we obtain

‖ f ‖Hr+α
θ

=
∥∥∥
(
aθ − L∗

θ

)α/2
f
∥∥∥
Hr

θ

=
∥∥∥∥∥∥

(

1 +
(

θ

θ ′L
∗
θ ′ − L∗

θ

)(
aθ − θ

θ ′L
∗
θ ′

)−1
)α/2 (

aθ − θ

θ ′L
∗
θ ′

)α/2

f

∥∥∥∥∥∥
Hr

θ

≤ C

∥∥∥∥∥

(
aθ − θ

θ ′L
∗
θ ′

)α/2

f

∥∥∥∥∥
Hr

θ

. (A.25)

The inverse bound
∥∥∥
(
aθ − θ

θ ′ L∗
θ ′
)α/2

f
∥∥∥
Hr

θ

≤ C‖ f ‖Hr+α
θ

follows from similar arguments.

We are now in condition to prove (A.7), applying [23], Th. 1.4.3. Indeed, L∗
θ ′ has a real

spectrum located on the left of−θ ′kmin on the subspace of Hr
θ generated by the eigenfunctions

ψl,θ ′ with l �= 0, so applying this Theorem we get, denoting Pθ ′ f = f −
∫
Rd f wθ ′

(∫
Rd wθ ′

)2 the
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projection on this subspace (which is an element of B(Hr
θ ) for 0 < θ ≤ θ ′),

∥
∥
∥etL

∗
θ ′Pθ ′ f

∥
∥
∥
Hr+α

θ

≤ C1

∥
∥
∥
∥
∥

(
aθ − θ

θ ′L
∗
θ ′

)α/2

etL
∗
θ ′Pθ ′ f

∥
∥
∥
∥
∥
Hr

θ

≤ C2t
−α/2e−λt ‖ f ‖Hr

θ
.

(A.26)

This implies (A.7), since etL
∗
θ ′ (1 − Pθ ′) f = (1 − Pθ ′) f .

The proof of (A.8) relies on the classical identity, valid for f ∈ L2
θ ′ ,

etL
∗
θ ′ f = E

[
f
(
e−tθ ′K x +

√
1 − e−2tθ ′KGθ ′

)]
, (A.27)

where Gθ ′ is a gaussian variable on R
d with mean 0 and variance (θ ′K )−1σ 2. This implies

directly, for f ∈ Hr
θ with r ≥ 1,

∇etL
∗
N f = e−tθ ′K etL

∗
N ∇ f , (A.28)

and thus, recalling the definition of kmin in (1.15),

∥∥∥∇etL
∗
N f

∥∥∥
Hr

θ

≤ e−θ ′kmint
∥∥∥etL

∗
N ∇ f

∥∥∥
Hr

θ

≤ C
(
1 + t−

1
2 e−λt

)
e−θ ′kmint ‖∇ f ‖Hr−1

θ

≤ C ′t−
1
2 e−λt ‖ f ‖Hr

θ
. (A.29)

For the proof of the third assertion, since [23], Th. 1.4.3. implies that for 0 < ε ≤ 1,

∥∥∥
(
esL

∗
θ ′ − 1

)
f
∥∥∥
Hr

θ

≤ Cεs
ε ‖ f ‖Hr+2ε

θ
, (A.30)

we obtain, since
(
esL

∗
θ ′ − 1

)
Pθ ′ f =

(
esL

∗
θ ′ − 1

)
f and Pθ ′ commutes with etL

∗
θ ′ ,

∥∥∥
(
e(t+s)L∗

θ ′ − etL
∗
θ ′
)
f
∥∥∥
Hr+1

θ

=
∥∥∥
(
esL

∗
θ ′ − 1

)
etL

∗
θ ′Pθ ′ f

∥∥∥
Hr+1

θ

≤ Cεs
ε
∥∥∥etL

∗
θ ′Pθ ′ f

∥∥∥
Hr+1+2ε

θ

≤ Csεt−
1
2−εe−λt ‖ f ‖Hr

θ
. (A.31)

The last assertion is not a direct consequence of the estimates obtained above, since the
hypothesis

∫
Rd f wθ = 0 is not well adapted to the eigenfunctions ψl,θ ′ of L∗

θ ′ . In particular,

having
∫
Rd f wθ = 0 does not imply

∫
Rd e

tL∗
θ ′ f wθ = 0, while it is the case when θ = θ ′. We

will only be able to obtain this estimates for r large enough, via direct calculations. Remark
first that

1

2

d

dt

∥∥∥∥∥
etL

∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

∥∥∥∥∥

2

Hr
θ

=
〈

L∗
θ ′e

tL∗
θ ′ f −

∫
Rd L∗

θ ′e
tL∗

θ ′ f wθ∫
Rd wθ

, etL
∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

〉

Hr
θ

. (A.32)
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Recalling that L∗
θ ′a = 0 and remarking that

〈

a, etL
∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

〉

Hr
θ

= 0 for any

constant a, we get

1

2

d

dt

∥
∥
∥
∥
∥
etL

∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

∥
∥
∥
∥
∥

2

Hr
θ

=
〈

L∗
θ ′

(

etL
∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

)

, etL
∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

〉

Hr
θ

, (A.33)

so the proof of the last assertion reduces to the study of 〈L∗
θ ′ f , f 〉Hr

θ
with

∫
Rd f wθ = 0.

Now for f satisfying
∫
Rd f wθ = 0, with decomposition f = ∑

l �=0 flψl,θ , we get

− θ

θ ′
〈L∗

θ ′ f , f
〉
Hr

θ
=

∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2

+
(
1 − θ

θ ′

)⎛

⎝
∑

l �=0

(aθ + λθ,l)
r

d∑

i=1

θki
√

(li + 1)(li + 2) fl f̄l�i

⎞

⎠ .

(A.34)

Now remark that for the second term, using Cauchy–Schwarz inequality, we get

∣∣∣∣∣∣

∑

l �=0

(aθ + λθ,l)
r

d∑

i=1

θki
√

(li + 1)(li + 2) fl f̄l�i

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

l �=0

{
(aθ + λθ,l)

r/2
√

λθ,l fl
}{(

aθ + λθ,l
)r/2

√
λθ,l

d∑

i=1

θki
√

(li + 1)(li + 2) f̄l�i

}∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2

∣∣∣∣∣∣

1
2
∣∣∣∣∣∣

∑

l �=0

(
aθ + λθ,l

)r

λθ,l

(
d∑

i=1

θki
√

(li + 1)(li + 2) f̄l�i

)2
∣∣∣∣∣∣

1
2

.

Using Jensen’s inequality

∣∣∣∣∣∣

∑

l �=0

(
aθ + λθ,l

)r

λθ,l

(
d∑

i=1

θki
√

(li + 1)(li + 2) f̄l�i

)2
∣∣∣∣∣∣

≤
∑

l �=0

(
aθ + λθ,l

)r

λθ,l

(
d∑

i=1

θki (li + 2)

)
d∑

i=1

θki (li + 2)
∣∣∣ fl�i

∣∣∣
2
,

=
∑

l �=0

(
aθ + λθ,l

)r

λθ,l

(
2aθ + λθ,l

) d∑

i=1

θki (li + 2)
∣∣∣ fl�i

∣∣∣
2
,
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Denoting by Ni :=�i
(
N
d \ {0}) =

{
l ∈ N

d , li ≥ 2,
∑d

j=1 l j ≥ 3
}
, we obtain

∣
∣
∣
∣
∣
∣

∑

l �=0

(
aθ + λθ,l

)r

λθ,l

(
d∑

i=1

θki
√

(li + 1)(li + 2) f̄l�i

)2
∣
∣
∣
∣
∣
∣

≤ 2
d∑

i=1

∑

l∈Ni

(
aθ + λθ,l�i

)r

λθ,l�i

(
2aθ + λθ,l�i

)
θki li | fl |2

=
d∑

i=1

∑

l∈Ni

(
aθ + λθ,l − 2θki

)r

λθ,l − 2θki

(
2aθ + λθ,l − 2θki

)
θki li | fl |2

=
d∑

i=1

∑

l∈Ni

bθ,l,i
(
aθ + λθ,l

)r
θki li | fl |2 ,

where

bθ,l,i :=
(
aθ + λθ,l − 2θki

)r (2aθ + λθ,l − 2θki
)

(
aθ + λθ,l

)r
(λθ,l − 2θki )

=
(
1 − 2θki

aθ + λθ,l

)r (
1 + 2aθ

λθ,l − 2θki

)
. (A.35)

Now, for l ∈ Ni , we have

aθ + λθ,l ≤ dθkmax + λθ,l ≤ (d + 1)
kmax

kmin
λθ,l , (A.36)

and

λθ,l − 2θki ≥ θ

⎛

⎝
d∑

j=1

l j − 2

⎞

⎠ kmin ≥ kmin

3kmax
λθ,l , (A.37)

so that

bθ,l,i ≤
(

1 − 2k2min

(d + 1)kmax
· 1
∑d

j=1 k j l j

)r (

1 + 6d k2max

kmin

1
∑d

j=1 k j l j

)

. (A.38)

Now, observe that for c1, c2 > 0, x �→ (
1 − c1

x

)r (1 + c2
x

)
is strictly increasing with limit 1

as x → ∞, provided that r > c2
c1
. Hence, taking r large enough in (A.38) (r depending only

on K and d , not on l, i and θ ) we have |bθ,l,i | ≤ 1, which means that the second term of the
right-hand side of (A.34) is bounded as follows:

∣∣∣∣∣∣

∑

l �=0

(aθ + λθ,l)
r

d∑

i=1

θki
√

(li + 1)(li + 2) fl f̄l�i

∣∣∣∣∣∣
≤

∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2. (A.39)

We deduce from (A.34) and this estimate that
∣∣∣∣∣∣
− θ

θ ′
〈L∗

θ ′ f , f̄
〉
Hr

θ
−

∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2

∣∣∣∣∣∣
≤

(
1 − θ

θ ′

)∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2,

(A.40)
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which means that

− Re
〈L∗

θ ′ f , f̄
〉
Hr

θ
≥

∑

l �=0

(aθ + λθ,l)
rλθ,l | fl |2 ≥ θkmin‖ f ‖2Hr

θ
. (A.41)

This concludes the proof of Proposition A.2. ��
As already stated in Sect. 1.3, we rely in this paper on a “pivot” space structure (see [10],

pp. 81–82): observe first that for u ∈ L2−θ , v ∈ L2
θ �→ ∫

Rd uvdx defines a continuous linear

form on L2
θ . Respectively, for u ∈ (

L2
θ

)′
, the mapping ψ �→ Tu(ψ) := 〈u , ψw−θ 〉 defines

a continuous linear form on L2 (that is the usual L2 space without weight, i.e. w ≡ 1 in
(1.17)). By Riesz Theorem, there exists v ∈ L2, such that Tu(ψ) = ∫

vψ = ∫
ṽψ̃ , ψ ∈ L2,

for ṽ := vwθ/2 ∈ L2−θ , ψ̃ = ψw−θ/2 ∈ L2
θ . This observation permits the identification of

(L2
θ )

′ with L2−θ (and hence, 〈·, ·〉(L2
θ )′×L2

θ
with 〈·, ·〉L2 = 〈·, ·〉). Now, since Hr

θ → L2
θ is

dense, we have a dense injection (L2
θ )

′ → H−r
θ . With the identification (L2

θ )
′ ≈ L2−θ , we

obtain, for all u ∈ L2−θ ⊂ H−r
θ and all f ∈ Hr

θ ,

〈u, f 〉H−r
θ ×Hr

θ
= 〈u, f 〉.

Remark in particular that if u ∈ L2−θ , then for all f ∈ Hr+1
θ we have

∣∣〈∂xi u, f 〉∣∣ = ∣∣−〈u, ∂xi f 〉
∣∣ ≤ C‖u‖H−r

θ
‖ f ‖Hr+1

θ
, (A.42)

so that if u ∈ H−r
θ then ∇u ∈ H−(r+1)

θ with

‖∇u‖
H−(r+1)

θ

≤ C‖u‖H−r
θ

. (A.43)

With this structure since L2
θ is reflexive, the closure of Lθ ′ seen as an operator on (L2

θ )
′ is

the adjoint of L∗
θ ′ ([25], Th. 5.29) and is thus sectorial and defines an analytical semi-group

etLθ ′ in H−r
θ . In the same way, since Hr

θ is reflexive, the adjoint of etL
∗
θ ′ seen as an operator

on Hr
θ is etLθ ′ seen as an operator on H−r

θ ( [32], Cor. 10.6).
From Proposition A.2 and the structure described above we deduce directly the following

estimates for the semi-group induced by Lθ ′ (recall (1.24)) in H−r
θ and t > 0.

Proposition A.3 For all 0 < θ ≤ θ ′ the operator Lθ ′ is sectorial and generates an analytical
semi-group in H−r

θ . Moreover we have the following estimates: for any r ≥ 0, α ≥ 0 and

λ < θkmin, there exists a constant C > 0 such that for all u ∈ H−(r+α)
θ ,

∥∥etLθ ′ u
∥∥
H−r

θ
≤ C

(
1 + t−α/2e−λt ) ‖u‖

H−(r+α)
θ

, (A.44)

and for all r ≥ 1,
∥∥etLθ ′ ∇u

∥∥
H−r

θ
≤ Ct−

1
2 e−λt‖u‖H−r

θ
. (A.45)

Moreover for all r ≥ 0, 0 < ε ≤ 1 and s ≥ 0,
∥∥∥
(
e(t+s)Lθ ′ − etLθ ′

)
u
∥∥∥
H−r

θ

≤ Csεt−
1
2−εe−λt ‖u‖

H−(r+1)
θ

. (A.46)

Finally, there exist r0 > 0, C > 0 such that for any 0 < θ ≤ θ ′, for all r > r0, t > 0 and all
u ∈ H−r

θ satisfying
∫
u = 0,

∥∥etLθ ′ u
∥∥
H−r

θ
≤ Ce−λt ‖u‖H−r

θ
. (A.47)
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Proof of Proposition A.3 The spectral structure of Lθ ′ follows directly from the one of L∗
θ ′ .

To prove the first estimate of the proposition it is now sufficient to remark that for all f ∈
Hr

θ , u ∈ L2−θ ,

∣
∣〈etLθ ′ u, f 〉∣∣ =

∣
∣∣〈u, etL

∗
θ ′ f 〉

∣
∣∣ ≤ C

(
1 + t−α/2e−λt ) ‖ f ‖Hr

θ
‖u‖

H−(r+α)
θ

.

For the second point,

∣
∣〈etLθ ′ ∇u, f 〉∣∣ =

∣
∣
∣〈u,∇etL

∗
θ ′ f 〉

∣
∣
∣ ≤ Ct−α/2e−λt ‖ f ‖Hr

θ
‖u‖

H−(r+α)
θ

.

The third point follows from similar estimates. For the last point, remark that if 〈u , 1〉 = 0,

∣
∣〈etLθ ′ u, f 〉∣∣ =

∣
∣
∣
〈
u, etL

∗
θ ′ f

〉∣∣
∣ =

∣
∣
∣
∣
∣

〈

u, etL
∗
θ ′ f −

∫
Rd e

tL∗
θ ′ f wθ∫

Rd wθ

〉∣∣
∣
∣
∣

≤ Ct−α/2e−λt
∥
∥
∥
∥ f −

∫
f wθ

∥
∥
∥
∥
Hr

θ

‖u‖
H−(r+α)

θ

, (A.48)

and
∥∥ f − ∫

f wθ

∥∥
Hr

θ
≤ 2‖ f ‖Hr

θ
. ��

Appendix B. Grönwall Lemma

Lemma B.1 Let t �→ yt be a nonnegative and continuous function on [0, T ) satisfying, for
all t ∈ [0, T ) and some positive constants c0 and c1,

yt ≤ c0 + c1

∫ t

0

(
1 + 1√

t − s

)
ys ds. (B.1)

Then for all t ∈ [0, T ), yt ≤ 2c0eαt with α = 2c1 + 4c21
(
�
( 1
2

))2
, where � is the usual

special function �(r) = ∫ ∞
0 xr−1e−xdx.

For the proof of this Lemma, see [20], Lemma 5.2.

Lemma B.2 Let a, b, λ > 0 and φ a nonnegative measurable function on [0,+∞) such that
φ is integrable on [0,+∞). Suppose that t ≥ 0 �→ ut is a nonnegative function satisfying

ut ≤ a + b
∫ t

0
(1 + φ(t − s)) e−λsusds. (B.2)

Then, there exists some constant C(b, φ) > 0 such that

sup
t≥0

ut ≤ 2a exp

(
C(b, φ)

λ

)
. (B.3)
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Proof of Lemma B.2 Define A = A(b, φ) ≥ 0 such that
∫ +∞
0 φ(u)1{φ(u)≥A}du ≤ 1

2b . Then,
for all v ≤ t

uv ≤ a + b
∫ v

0
e−λsusds + b

∫ v

0
φ(v − s)1{φ(v−s)≥A}e−λsusds

+ b
∫ v

0
φ(v − s)1{φ(v−s)≤A}e−λsusds,

≤ a + b
∫ v

0
e−λsusds + b sup

s≤v
us

∫ v

0
φ(v − s)1{φ(v−s)≥A}ds + bA

∫ v

0
e−λsusds,

≤ a + b (1 + A)

∫ v

0
e−λsusds + 1

2
u∗

v ≤ a + b (1 + A)

∫ t

0
e−λsu∗

s ds + 1

2
u∗
t ,

where we have defined u∗(s) := supr≤s ur . Since the last inequality is true for all v ≤ t , we
get

u∗
t ≤ 2a + 2b (1 + A)

∫ t

0
e−λsu∗

s ds.

The usual Grönwall lemma applied to t �→ u∗
t gives the conclusion, for C(b, φ) = 2b(1 +

A(b, φ)). ��

References

1. Bakry,D.,Gentil, I., Ledoux,M.:Analysis andGeometry ofMarkovDiffusionOperators.Grundlehren der
MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer,
Berlin (2014)

2. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean-field description and propagation of chaos in
networks of Hodgkin-Huxley and FitzHugh–Nagumo neurons. J. Math. Neurosci. 2(1), 10 (2012)

3. Barland, S., Piro, O., Giudici, M., Tredicce, J.R., Balle, S.: Experimental evidence of van der Pol–
Fitzhugh–Nagumo dynamics in semiconductor optical amplifiers. Phys. Rev. E 68, 036209 (2003)

4. Bates, P.W., Lu, K., Zeng, C.: Existence and persistence of invariant manifolds for semiflows in Banach
space, vol. 645. American Mathematical Society (1998)

5. Bates, P.W., Lu, K., Zeng, C.: Approximately invariant manifolds and global dynamics of spike states.
Inventiones Mathematicae 174, 355–422 (2008)

6. Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials. Cambridge University Press (2016)
7. Benachour, S., Roynette, B., Vallois, P.: Nonlinear self-stabilizing processes. II. Convergence to invariant

probability. Stoch. Process. Appl. 75(2), 203–224 (1998)
8. Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-field

plane rotators. Probab. Theory Relat. Fields 160(3–4), 593–653 (2014)
9. Bossy, M., Faugeras, O., Talay, D.: Clarification and complement to “Mean-field description and propa-

gation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons.” J. Math. Neurosci. 5,
Art. 19, 23 (2015)

10. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of
Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). Théorie et applications. [Theory
and applications]

11. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-
uniformly convex case. Probab. Theory Relat. Fields 140(1), 19–40 (2008)

12. Cerf, R., Dai Pra, P., Formentin, M., Tovazzi, D.: Rhythmic behavior of an Ising model with dissipation
at low temperature. ALEA, Lat. Am. J. Probab. Math. Stat. 18, 439–467 (2021)

13. Collet, F., Dai Pra, P., Formentin, M.: Collective periodicity in mean-field models of cooperative behavior.
Nonlinear Differ. Equ. Appl. DEA22(5), 1461–1482 (2015)

14. Cormier, Q., Tanré, E., Veltz, R.: Hopf bifurcation in a mean-field model of spiking neurons. Electron. J.
Probab. 26, 1–40 (2021)

15. Dahms, R.: Long time behavior of a spherical mean field model. PhD Thesis, Technische Universität
Berlin, Fakultät II—Mathematik und Naturwissenschaften (2002)

123



Journal of Dynamics and Differential Equations (2024) 36:633–671 671

16. Dai Pra, P., Formentin, M., Pelino, G.: Oscillatory behavior in a model of non-Markovian mean field
interacting spins. J. Stat. Phys. 179(3), 690–712 (2020)

17. Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stoch. Process.
Appl. 127(6), 1840–1869 (2017)

18. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21,
193–226 (1972)

19. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ.
31, 53–98 (1979)

20. Giacomin, G., Pakdaman, K., Pellegrin, X., Xavier, Poquet, C.: Transitions in active rotator systems:
invariant hyperbolic manifold approach. SIAM J. Math. Anal. 44, 4165–4194 (2012)

21. Giacomin, G., Poquet, C.: Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors.
Braz. J. Probab. Stat. 29(2), 460–493 (2015)

22. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1(3), 259–273 (1975)
23. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)
24. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583.

Springer-Verlag, Berlin (1977)
25. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin

(1995). Reprint of the 1980 edition
26. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems.

Phys. Rep. 392(6), 321–424 (2004)
27. Lucon, E., Poquet, C.: Emergence of oscillatory behaviors for excitable systemswith noise andmean-field

interaction, a slow-fast dynamics approach. Commun. Math. Phys. 373(3), 907–969 (2020)
28. Luçon, E., Poquet, C.: Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh–

Nagumo model. Ann. Appl. Probab. 31(2), 561–593 (2021)
29. Luçon, E., Poquet, C.: Periodicity and longtime diffusion for mean field systems in R

d (2021). arXiv
e-prints:2107.02473

30. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl.
Acad. Sci. USA 56(6), 1907–1911 (1966)

31. Mischler, S., Quiñinao, C., Touboul, J.: On a kinetic Fitzhugh–Nagumo model of neuronal network.
Commun. Math. Phys. 342(3), 1001–1042 (2016)

32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied
Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)

33. Quiñinao, C., Touboul, J.D.: Clamping and synchronization in the strongly coupled FitzHugh–Nagumo
model. SIAM J. Appl. Dyn. Syst. 19(2), 788–827 (2020)
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