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Abstract

We consider a class of nonlinear Fokker—Planck equations describing the dynamics of an
infinite population of units with mean-field interaction. Relying on a slow—fast viewpoint
and on the theory of approximately invariant manifolds we obtain the existence of a stable
periodic solution for the PDE, consisting of probability measures. Moreover we establish the
existence of a smooth isochron map in the neighborhood of this periodic solution.

Keywords Mean-field systems - Nonlinear Fokker—Planck equation - McKean—Vlasov
process - periodic behavior - Normally hyperbolic manifolds - Isochron map

Mathematics Subject Classification 35K55 - 35Q84 - 37N25 - 60K35 - 82C31 - 92B20

1 Introduction
1.1 The Model

We are interested in this paper in the existence, stability and regularity of periodic solutions
to the following nonlinear PDE on RY (d=>1):

duy =V - (0%u) + V- <1< (x - fd yu,(dy)) u,) — 8V (F(u). (L)
R
Here, t > 0 — u, is a probability measure-valued process on RY K = diag(ky, ..., kg) and

o = (o1, ..., 04) and are diagonal matrices with positive coefficients and F : RY » Reisa
smooth bounded function with bounded derivatives. Equation (1.1) has a natural probabilistic
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interpretation: if u is a probability distribution on R, it is well known [30, 37] that u, is the
law of the McKean—Vlasov process X; where X ~ ug and

dX, = 8F(X,)dt — K (X, — E[X,])dr + v20 dB,. (1.2)

The dynamics of the process (X;);>¢ is the superposition of a local part 6 F'(X;)d?, where
8 > 01is a scaling parameter, a linear interaction term K (X, — E[X,]) d¢, modulated by the
intensity matrix K, and an additive noise given by a standard Brownian motion (B;);> on
R?. The difficulty in the analysis of (1.2) lies in its nonlinear character: X, interacts with
its own law, more precisely its own expectation [E[X,]. The long-time dynamics of (1.2)
is a longstanding issue in the literature. In particular, the existence of stable equilibria for
(1.1) (that is invariant measures for (1.2)) has been studied for various choices of dynamics,
interaction and regimes of parameters §, K, o, mostly in a context where the corresponding
particle dynamics defined in (1.3) below is reversible (see e.g. [7, 11, 39] for further details
and references).

The question we address in the present paper concerns the existence of periodic solu-
tions to nonlinear equations such as (1.1). In this case, a major difficulty lies in the fact that
the underlying microscopic dynamics is not reversible. From an applicative perspective, the
emergence of periodicity in such models relates in particular to chemical reactions (Brus-
selator model [35]), neurosciences [2, 9, 14, 17, 20, 21, 27, 28, 33], and statistical physics
(e.g. spin-flip models [13, 16], see also [12], where the model considered is in fact not mean-
field, but the Ising model with dissipation). An example of particular interest concerns the
FitzHugh—Nagumo model [2, 34] (take d = 2 and F(x, y) = (x 2y leta- by))
with chosen constants @ € R and b, ¢ > 0), commonly used as a prototype for excitability in
neuronal models [26] or in physics [3]. Roughly speaking, excitability refers to the ability for
a neuron to emit spikes (oscillations) in the presence of perturbations (such as noise and/or
external input) whereas this neuron would be at rest (steady state) without perturbation. The
long-time dynamics of (1.1) in the FizHugh-Nagumo case has been the subject of several
previous works (existence of equilibria [31, 33] or periodic solutions [27, 28]) under various
asymptotics of the parameters (8, K, o). A crucial feature in this context is the influence of
noise and interaction in the emergence and stability of periodic solutions: generically, some
balance has to be found in the intensity of noise and interaction that one needs to put in the
system in order to observe oscillations (see [26—28] for further details).

1.1.1 Stability Properties and Regular Isochron Map

The purpose of the present paper is to complement the previous results concerning the exis-
tence of periodic orbits for (1.1) with accurate stability properties for this periodic solution
and with the existence of a sufficiently regular isochron map, properties that are absent in
the previous works cited above. We obtain these additional properties by applying a result
concerning normally hyperbolic invariant manifolds in Banach spaces proved by Bates, Lu
and Zeng [5]. The technical counterpart is that we require assumptions on F and o that are
somehow stricter than the ones used in [27, 28, 33, 35], in the sense that we are considering
a field F' that is bounded together with all its derivatives (the analog term in the Brusselator
and FitzHugh—Nagumo models grows polynomially) as well as nondegenerate noise on all
components (while in [28, 33] the noise is only present in one of the two variables).
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1.1.2 Large Time Asymptotics for the Mean-Field Particle System

Standard propagation of chaos results [37] show that (1.2) is the natural limit of the following
mean-field particle system

N
1
dX;, =8F(X;)dr — K [ X;; — 5 § X;, | dr + V20 dB; , (1.3)
j=1

in the sense that one can easily couple (1.3) and (1.2) by choosing the same realization of
the noise, so that the resulting error is of order ﬁ as N — o0, at least on any [0, T'] with
T that can be arbitrarily large but fixed independently from N. At the level of the whole
particle system, this boils down to the convergence as N — oo of the empirical measure

Uy, = % ZlN:l dx;, to u,, solution to (1.1). Hence, supposing that (1.1) has a periodic
solution (Ff)t>0,
6o, un ; has, for N large, a behavior close to being periodic, since it stays close to Fgo e
The companion paper [29] of the present work is concerned with the behavior of the
empirical measure uy ; on a time scale T that is no longer bounded, but of order N. We

show in [29] that uy, n; is close to Fg NN where /3tN is a random process in R whose
0 t

weak limit as N — oo has constant drift and diffusion coefficient. This kind of result
was already obtained in [8, 15] in the case of the plane rotators model (mean-field noisy
interacting oscillators defined on the circle), for which at the scale Nt the empirical measure
has a diffusive behavior along the curve of stationary points. Our aim in [29] is to get similar
results for models like (1.1) that are defined in R?, and are not reversible (while the plane
rotators model is). As we will explain in more detail later, the additional stability and regularity
results concerning periodic solution to (1.1) obtained in the present paper are crucial for the
study of long time behavior of the mean-field particle systems (1.3) made in [29].

if the empirical measure u y g is initially close to Fgo for some initial phase

1.2 Slow-Fast Viewpoint and Application to the FitzZHugh-Nagumo Model

We give in this paragraph informal intuition on the possibility of emergence of periodic
solutions to (1.1). The point of view we adopt here is a slow—fast approach, based on the
assumption that the parameter 6 in (1.1) is small, as it was already the case in [27, 28]. More
precisely, the linear character of the interaction term in (1.1) allows us to decompose the
dynamics of (1.1) into its expectation m; = fRd xus(x) and its centered version p;(x) =
us(x —my): (1.1) is equivalent to the system

A
where
Lu=V-(>Vf)+V-(Kxf), (1.5)
and
Fp(x) := F(x +m). (1.6)
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Remark that (p;, m;) is the weak limit as N — oo of the process (% ZlN:l 8y, mN,,),
where

N
1
my,;: = N E Xi,la and Yi,z = Xi,t — My . (1.7)
i=1

In this set-up, p; is the fast variable, while m; is the slow one. For § = 0, this system reduces
to

0 _ 0
=3;p, =Ltp (1.8)

0
m; = mg

so p) = ¢ £ pg is the distribution of an Ornstein-Uhlenbeck process, and thus converges
exponentially fast to p, the density of the Gaussian distribution on R with mean 0 and
variance o> K ~! (see Proposition 1.1 for more details on the contraction properties of £):

p(x) = ! - exp (—1,{ . (02K_1)_1x) , x € RY. (1.9)
() det(02K~1))? 2

So heuristically, taking § small, in a first approximation p; stays close to p while m; satisfies

my ~ 8/ Fu,(x)p(x)dx = 8/ F(x)p(m; —x)dx = 6(F * p)(my). (1.10)
R4 R4

For the non-centered PDE (1.1) this approximation means that u, is close to a Gaussian
distribution with variance 02K ~! and mean m,, where the dynamics of m; is governed at
first order by (1.10). Following this heuristics, we expect a periodic behavior for the system
(1.4) if the approximate dynamics of m; is itself periodic. In this spirit, the main hypothesis
we will adopt below is that the following equation

f=b [ Fuoptodx =5(F,.p) (1)
R

admits a periodic solution (oz,a) ref0, %y for some T, > 0, that we suppose to be stable (more
details on the notion of stability we consider will be given in Sect. 1.4). In Proposition 1.7 we
will show that under these hypotheses, the manifold M = (p, a)iepo.1, /81 1s approximately
invariant for (1.4).

Let us now describe a situation where the above heuristics is true: in [27, 28] we considered
the classical FitzZHugh—Nagumo model defined by d = 2 and

3

F(x,y):(x—%—y,é(x—i—a—by)). (1.12)

A direct calculation shows that in that case, with K = diag(ky, k2) and o = diag(oy, 02),

ol z 1
/ Fuon@,ypx,ydedy=\|{1-——)z1— = —22,—- (1 +a—bz) |, (1.13)
RrRd k] 3 c

2
which defines again a FitzHugh—Nagumo model. The additional factor %‘1 in (1.13) reflects
the influence of noise and interaction in the mean-field system (1.2). For an accurate choice
of parameters (take e.g. a = %, b = 1 and ¢ = 10), it can be shown that the dynamics of
2
o

= 0 whereas it admits a stable

the mean value (1.11) has a unique steady state when
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periodic solution for 7 k not too small and not too large, for example kz = 0.2. We refer to
[27], § 3.4 for more detaﬂs on the corresponding bifurcations). The purpose of [27, 28] was
to show that the heuristics developed above is true, i.e. the periodicity of (1.11) propagates
to (1.4). This emergence of periodic behavior induced by noise and interaction is a signature
of excitability: the system (1.1) exhibits a periodic behavior induced by the combined effect
of noise and interaction, which is not present in the isolated system z; = F(z;). We refer to
[27] for a discussion and references on this phenomenon.

As already said, the point of this present work is to go beyond the existence of oscillations
for (1.1), that is to prove regularity for the dynamics around such a limit cycle. Unfortunately
the FitzHugh Nagumo model does not satisfy the hypotheses of this present work, since
it has polynomial growth at infinity. However it is easy to see that if ¢ : Ry — Ry is
a smooth non-increasing function that satisfies ¥ () = 1 fort < 1 and ¥ () = 0 for
t > 2, then for any ¢ > 0 the function x — F(x)¥ (¢|x|) satisfies our hypotheses, and that
2> fpa F:(0)¥ (e|x +z])p(x)dx converges to z > [pa F-(x)p(x)dx in C' (B(0, R), RY)
for any ball B(0, R) centered at O with radius R. So, relying on classical results on normally
hyperbolic manifolds [18, 19, 40] (a definition of this notion will be provided in Sect. 1.4),
if (1.11) admits a stable limit cycle, then it will also be the case replacing F with x —
F(x)y (e|x|) for € small enough.

1.3 Weighted Sobolev Norms

We present in this section the Sobolev spaces that we will use in the paper. Let us denote
by |x|4 = (x - Ax)'/? the Euclidean norm twisted by some positive matrix A, and, for any
0 € R, let us define the weight wg by

0
wp (x) = exp ( |x|K(,,2> (1.14)
Recall here that K = diag(ky,..., k) and 0 = (o1, ...,04), with k;,0; > 0 for all
i =1,...,d. Define in particular
kmin := min(ky, ..., kg) and kpax 1= max(ky, ..., k), (1.15)

Omin := min(oy, ..., og) and opmax ;= max(oy, ..., 0g). (1.16)

We denote as Lg the L?-space with weight wg, that is with norm

1

2
Ikl 2 = (f Ih(x)lzwe(x)dx> : (1.17)
6 R4
For any 6 > 0 we consider the Ornstein-Uhlenbeck operator
Lif=V-(@*Vf)—60Kx-Vf. (1.18)

It is well know (see for example [1]) that £}, admits the following decomposition: for all
] e N4,

Loy = =My, with 2 =0 Zkili and Yy (x) := Yy 9(x)
i=1

d
Ok
=[]m ( zlxi), (1.19)
N O
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where £, is the n™ renormalized Hermite polynomial:

I = g & {e*%} (1.20)
' Jnl@emyi dx

The family (y;,9);cne 18 an orthonormal basis of Lg. For f, g with decompositions f =
D iend fivr and g = ), e 1Y, we consider the scalar products

(f. &)y = a0 = LY £.8),2 = ) (o + 1) fid. (1.21)

leNd

where ag = 0 TrK and denote by H) the completion of the space of smooth function u
satisfying ||u|| HI < 00. The choice of the constant ay is made to simplify some technical
proofs given in the “Appendix 17 (see the proof of Proposition A.2). Another choice of positive
constant would produce an equivalent norm. From Lemma A.1 it is clear that H oy f || Hy <

| f1l jyr+1, and that, if n € N, the norm ||f||Hg is in fact equivalent to
0

2

1eNd, Y4 li<n

ld

(1.22)

We denote by H, " the dual of H]. Relying on a “pivot” space structure (for more details,
see “Appendix 1), the product (u, f) Hy" Hy €3N be identified with the flat L2 product (i, f):

L2_0 can be seen as a subset of H;r, and forall f € Hj andu € L2_0 we have
s gy gy = s f)- (1.23)
This identification allows us to view the operator £y defined by
Lou=V-@>Vf)+V-OKxf), (1.24)

seen as an operator in H, ", as the adjoint of £}, seen as an operator in Hj. This is in particular
the case for £ = L1, whose contraction properties will be crucial in the results given in this
paper.

Our aim in this paper is to give the existence of a periodic solution for (1.4) viewing
pr as an element of H, . The necessity of considering H, " instead of simply taking H, "
goes back to the companion paper [29], in which we study the long time behavior of the
empirical measure u y ; in the same functional space. Since this empirical measure involves
a sum of Dirac distributions, it can be seen as an element of H, " for r > d/2, and we have
18 ”H(;r < Cw% (x) forn > 0 (see Lemma 2.1 in [29]). Some moment estimates, obtained

in [29], lead us to bound terms of the form £ [w o (Yl-,,)] with m large and Y; ; defined in
—n

(1.7). Since we consider cases where Y; ; has a distribution close to p given by (1.9), for this
expectation to be bounded we need to consider small values of 6. We need therefore to work
in H, " for general # and not only for 6 = 1.

Due to the spectral decomposition (1.19), it is well known (see for example [23]) that
the semi-group e’ satisfies, for A < kmiy (recall (1.15)) and u € H{" with [u = 0, the
contraction property

e~ < Crm2e™™ full v - (1.25)
1

ul H'

By obtaining similar estimates (see the following Proposition, which is a particular case of
the slightly more general Proposition A.3), we will be able to work in the space H, " with

@ Springer



Journal of Dynamics and Differential Equations (2024) 36:633-671 639

any value of 6 smaller than 1, but with the constraint of considering values of r larger than a
ro > 0 (independent of 6).

Proposition 1.1 For all 0 < 6 < 1 the operator L is sectorial and generates an analytical
semi-group in Hy". Moreover we have the following estimates: for any o > 0, r > 0 and

A < kmin there exists a constant Cp > 0 such that for all u € He_(r"'a),
tL —a/2 =\t
le"“ull v = Co (1472 llull v, (1.26)
and forr > 1,
1L —b -
[e“Vu ||H9,, < Cot™2e M ull . (1.27)

Moreover forallr > 0,0 <& <lands >0,

1
[(err5 —e©)u] = Costt 370 Jull, i (1.28)
Hy" 0

Finally, there exists ro > 0 such that forany 0 < 6 < 1, forallr > ro, t > 0 and all
u € Hy " satisfying [u =0,

||e”cu”H97, < Cre ™ IIMIIH; . (1.29)

1.4 Main Results

With the notation p; := (p;, m;) the system (1.4) becomes

0pr = Lpr +8G1 (1)
. , 1.30
:m, = 5Ga(ur) (130
where
Gl(p,m)> (—V (p (Fn —mep))>
G(p) =G(p,m) = = . 1.31
We place ourselves on the space Hj, := Hj x R? endowed with the scalar product

((fom), (g.mO)ygy = (f, gy +m-m'. (1.32)

We will denote H " the dual of Hj. Clearly H,” = H," x R and, relying as above on
a “pivot" space structure, the product ((v, k), (¢, W))H;r’ﬂg can be identified with the flat
scalar product

(. 1): (@, ) = (v ) + 1 - 9. (1.33)

The following theorem states the existence and uniqueness of mild solutions of (1.30). Its
proof, given in Sect. 2, relies on classical arguments, due to the fact that G : ng 1 H, "
is locally Lispchitz and L is sectorial (see [36]).

Theorem 1.2 For any initial condition p = (p,m) € H," with [pq p = 1 there exists a

unique maximal mild solution w; := (p;, m;) = T' () to (1.30) on [0, t.] for some t. > 0,
which satisfies t — T' () € C ([0, 1) ; Hy").
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Moreover, ju — T'(w) is C%, and for any R > 0, there exists a §(R) > 0 such that for
all 0 < 8§ < 8(R) and o = (po, mo) satisfying || po — ,0||ng < R the solution T (o) is
well defined for all t > 0 and there exists a C(R) > 0 such that

sup || pill - = C(R). (1.34)
>0

Remark 1.3 Since we are interested in the existence of a periodic solution made of probability
distributions, we will only consider initial conditions (pg, mg) satisfying fR‘l po = 1, and
the conservation of mass will induce that f]Rd pr = 1forall ¢. In the same spirit, we will only
apply the differential of the semi-group DT (1) to elements v = (1, n) € Hy" that satisfy

fRd” =0.

As it was previously mentioned, we suppose in the following that the ordinary differential
equation (1.11) admits a stable periodic solution (ozf) ref0, T - To state more precisely this
8

hypothesis we rely on Floquet formalism (see for example [38]): let us denote by 7’ 41y the
principal matrix solution associated to the periodic solution o, that is the solution to

Oy sra =Dy PV T = 1. (1.35)

u,u

The process 7 4., Characterizes the linearized dynamics around (@) T 1: MOTE precisely

tel0,
it corresponds to the differentiation of the flow of (1.11) with respect to the initial condition,
at time ¢ and initial point e). We will suppose that this linearized dynamics is a contraction

on a supplementary space of the tangent space to (a?) 110,77 More precisely, the stability of
the periodic solution (af) [ 0.1 is expressed by the following hypothesis: we suppose that

there exist projections P, and P for all u € R with u +— P “and u P ¥ smooth
and —-perlodlc that satlsfy P = Pu C =1 (P *“ being a projection on vect(oz )), that
commute with 72, i.e.

PSSy pie =1, Pliml,, .= P, (1.36)

u u+t usu
and such that there exist positive constants c,, C, and A, such that for any n € R?
8 8,5 —8hat s,
|7Tu+t,uPu’3n| = Cqe of [n| and cqln| < ’77,44_; Y c”l| < Cqyln|. (1.37)

For more details on the construction of these projections, see [38, Section 3.6] or [28, Section
3]. Remark that the factor § in (1.11) is responsible for a change of time-scale for the dynamics,
and induces the factor § in the rate of contraction in (1.37) (the smaller &, the slower the
dynamics, the period being then T /5 since ot;S = agt). The effect of this factor on the
projections is only a change of parametrization: P,f * and P,f *“ are defined on [0, T,,/8), and
PYS = Pu*, Py = Py foru € [0, T,).

With these hypotheses (otf)t el0.Z
Invariant Manifold (NHIM). We follow here the definition given in [4] for this concept: on a
Banach space X, a smooth compact connected manifold M is said to be a normally hyperbolic
invariant manifold for a continuous semi flow T (such that u — T’ () is C! forall ¢ > 0) if

(1) TM) Cc M forall r > 0,

(2) For each m € M there exists a decomposition X = X¢ 4 X" + X7 of closed subspaces
with X¢, the tangent space to M at m,

(3) Foreachm € M and t > 0, denoting m; = T’ (m), we have DT (m)x., : X}, — X,
fort =c,u,s,and DT’ (m)|x« is an isomorphism from X}, to X}/

| is in fact a simple example of Normally Hyperbolic

mp -
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(4) There exists a fp > 0 and a A > 0 such that, for all ¢ > 1y,
Ainf{|DT' (m)[x"]| : x* € X*, [x"] = 1} > max {1, | DT (m)x,
Amin(l, inf [DT' (m)[x¢]| : x¢ € X, [x°| = 1}} > | DT (m)x;,

[}, (1.38)
. (139

The inequality (1.38) implies that the semi flow T’ is expansive at m in the direction X¥ at
a rate strictly larger than on M, while (1.39) shows implies that it is contractive at m in the
direction X7, at a rate greater than on M.

This kind of structure is known to be robust under perturbation of the semi-flow: it has
been shown in [18, 19] for flows in R¥, and then generalized in [24] in the case of Riemannian
manifolds and in [4, 36] in the infinite dimensional setting. An improvement of these classical
results has been obtained in [5] by Bates, Lu and Zeng, who showed that if a system admits
a manifold that is approximately invariant and approximately normally hyperbolic (a precise
definition of these notions will be given in Sect. 1.5), then the system possesses an actual
normally hyperbolic invariant manifold in a neighborhood of the approximately invariant
one.

We will rely on this deep result in our work. Here, the slow—fast viewpoint described in
Sect. 1.2 suggests that for § small the manifold (recall the definition of p in (1.9) and that
(cty) is a Ty -periodic solution to (1.11))

M= {(p, ) : t €0, Ty)} (1.40)

is an approximately invariant manifold which is approximately normally hyperbolic (without
unstable direction). This statement will be written rigorously in Sect. 1.5, and proved in
Sect. 3. This idea will allow us to prove for § small enough the existence of a stable periodic
solution to (1.4), as an actual normally hyperbolic invariant manifold in a neighborhood
of M?. For a stable periodic solution, conditions (1.38) and (1.39) reduce to the fact that
DT (m) is bounded from above and below in the direction of the tangent space to the invariant
manifold defined by the periodic solution, and is contractive on a stable direction.

Theorem 1.4 There exists 8o > O such that for ry given in Proposition 1.1 and for all v > ro,
6 € (0, 80) and 6 € (0, 1] the system (1.4) admits a periodic solution

) . )
(F[ )l€[0,T3] = (51; s Vi )IE[O,Tg] (14])

in Hg_r with period Ts > 0. Moreover qf is a probability distribution for all t > 0, and
t > T8 and t — 32T? are in C([0, Ty), H,").
Denoting

M= (0 1 €0, T5)) (1.42)
and
Gyis,u(v) = DT*(TV] (1.43)
there exist families of projections Hﬁ’c and Hf’s that commute with ®, i.e. that satisfy
I'Ii’_:_tfbuﬂ_u = CD,H,,MI'[ﬁ", fori=c,s. (1.44)

Moreover l'[f’c is a projection on the tangent space to M® at Ff, Hf’c + l'[f’s =14t —
Hf’c e cl(o, Ty), B(H;r)), and there exist positive constants ¢ s, Co,s and Ls such that

cos [0 s < [ PureaT 0 [ < Cos [T ) [gr . (145)

[ @i T () [ = Cos e | I (v) ||Hg(r+m : (1.46)
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and

[@utiav s < Cos (1 + t—%e—w) [y (1.47)

Remark 1.5 The invariant manifold M? is located at a distance of order § from the approxi-
mately invariant manifold M? given in (1.40) and the period T is close to Ty /§ (the period
of the slow system (1.11)). Moreover A; is of order é due to the fact that z; contracts around
o with rate 81, (recall (1.37)).

In [5] it is in addition proven that the stable manifold of the actual NHIM (in our case M?
is attractive, the stable manifold is in fact a neighborhood W? of AM?) is foliated by invariant
foliations: W2 = U,,c y s WS, where v € W2 if and only if T"(v) — T’ (m) converges to 0

exponentially fast. This implies the existence of an isochron map ®° : W% — R/TsZ that
satisfies @ (v) = tif v € Wlfig. The deep general result of [5] ensures that @ is Holder
t

continuous, which is not entirely satisfactory in view of the companion paper [29], in which
we aim to apply It6’s Lemma to ®°(uy ). However, the fact that in the present case we
simply deal with a stable periodic solution allow us to prove that ®° has in our particular
case C? regularity, as stated in the following theorem.

Theorem 1.6 Recall the definitions of the flow T' associated to (1.30) in Theorem 1.2 and of
the manifold M® in Theorem 1.4. For r and § as in Theorem 1.4, there exists a neighborhood
Wt e H," of M® and a C? mapping ©° : W3 — R/Ts7Z that satisfies, for all i € W?,
denoting iy = T' pu,

@°(iuy) = @ () +1 mod Ty, (1.48)
and there exists a positive constant Cg s such that, for all i € WO with p, = T,
(T T HH? . (1.49)
Moreover ®° satisfies, for all ;i € W?,
H D*O’(w) — D*6" (F%‘S(M)HBUH;’) = Cou ”“ =T H;" (150

where BL(H,") denotes the space of bounded operators A : H,” — H,".

1.5 An Approximately Invariant Manifold that is Approximately Normally
Hyperbolic

In view of the slow—fast formalism described in Sect. 1.2, our aim is to view AM° given by
(1.40) as an approximately invariant and approximately normally hyperbolic manifold, in the
sense of [5].

In fact the result of [5] is stated for dynamical systems taking values in a Banach space,
while we will consider here solutions (p;, m;) to (1.4) elements of H, " that satisfy fRd pr=1
(since we are interested in probability distributions, recall Remark 1.3), so we will rather
consider an affine space. It will not pose any problem, since (p; — p, m;) is an element of
{(v,m) e H;" : [q v = 0} which is a Banach space.

Following the notations of [5] we set (recall (1.9) and (1.11))

s T
() = (p,a)), te R/EZ' (1.51)
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With this notation we have M = v (R/ L Z) (recall its definition in (1.40)). We will consider
the projections T15* and T15° defined for (p, m) € H," by

778, _ 8, T78.¢ _ 3,

I, (p,m) = (p, P;m),  T1,°(p,m) = (0, P,;“m), (1.52)

where P,s’s and P,‘S’c are the projections defined in Sect. 1.4. The subspaces X3¢ = T3¢ H;")
and§g’s = ﬁfﬁ (H, ") will correspond to the approximately tangent space and stable space
of M8 It is clear that for each ¢ € [0, %) we have

H =X o X, (1.53)

Consider t such that
“haT < @ 1.54
e =3¢y (1.54)

where ¢y, Cy, Ay are given by (1.46). The following proposition states that M? satisfies the
hypotheses given in [5], making it an approximately invariant and approximately normally
hyperbolic manifold.

Proposition 1.7 Recall the definition of the flow T' of (1.30) in Theorem 1.2. There exists
80 > 0 such that for ro given in Proposition 1.1 and for allr > ro, § € (0, 809) and 6 € (0, 1),
the following assertions are true.

(1) (Definition 2.1. in [5]) There exists a positive constant k1 such that for allu € R/ %Z,

750,00 — 0. 0usp)| =0, (155)

(2) (Hypothesis (H2) in [5]) There exist positive constants k2, k3, k4 such that for all s, t €
R/%Z suchthat|s —u| <1, |t —u| < 1,and 1 =s,c,

I s,y <2 I = T gy < s 190 = W@l (1.56)
and
[ =y - @ - v
V@ =)l

H,"

< Kk48. (1.57)

(4) (Hypothesis H3 in [5]) There exists a positive constant ks such that for all u € R/ %Z,

<5 .
Hu%DTS (P, o) go.c

max { |Fi2e. DT (o, ) g } < ks,
(1.58)

(5) (Hypothesis H3’ and C3 in [5]) There exist a € (0, 1) and % > 0 such that for all
ueR/LZ,

BMH,")’ BMH,")

—1
> a, (1.59)

BMH,")
—1
B(Hw)

(1.60)

—1
(07 )

and

~38.s z -
[T DT (o ) g0

~ ~ T —1
<% min [ 1, (H‘S’CTDTF , ~.C)
BE") mm( H wrg PTH 0 g

@ Springer



644 Journal of Dynamics and Differential Equations (2024) 36:633-671

(6) (Hypothesis H4 in [5]) There exist positive constants ke and k7 such that

2T
Ll L T

| <k7. (L61)
BH;") H;') H,')

where V(M‘S, Ry) denote the Ry-neighborhood of./\75.
(7) (Hypothesis H5 in [5]) For any ¢ > O there exists { > 0 such that for all uw = (p, m) €

V(M®, 1) and t € (5.5 +¢1,

|70 = 75 o) HH; <e. (1.62)

The first five items of Proposition 1.7 focus on properties of the semi-group (T"§) o
n>

discretized in time, showing that AM® given by (1.40) is an approximately invariant manifold
approximately normally hyperbolic for this semi-group, while the last item is an uniform
in time bound that implies that this property is also true for the semi-group ( ‘) . More

prec1sely (1) shows that M? is approximately invariant for the discrete semi-group, (2) shows
that X is an approximation of the tangent space to M? at (p, &) and that ¥ does not twist

too much, (3) implies that X3¢ and X%+ are approximately invariant under (DT" ) o and
nx

(4) implies that (D T"%) contracts more in the direction X*** than in the direction X,

n>0
while it does not contract too much in the direction X%-€. (5) is a technical assumption useful
in their proof.

Remark that we do not quote the hypothesis (H1) of [5] in this Proposition, since it is
simply (1.53). Moreover in [5] the authors treat first the inflowing invariant case, and then
the overflowing invariant case, while we are here interested in an actual invariant manifold
(both inflowing and overflowing), which is why we mix hypotheses (Hi) and (C3), as it is
done in Theorem 6.5 of [5].

1.6 Structure of the Paper

The proof of Theorem 1.2 concerning the well-posedness of (1.4) is carried out in Sect. 2.
Proposition 1.7 is proven in Sect. 3. The main result of existence of periodic solutions
(Theorem 1.4) is proven in Sect. 4. The question of regularity of the isochron is addressed in
Sect. 5. The “Appendix 1 gathers technical estimates on the Ornstein-Uhlenbeck operator
and some Gronwall type lemmas are listed in “Appendix 17,

2 Proof of Theorem 1.2

We give in this section the existence, uniqueness and regularity result of Theorem 1.2. We
rely here on classical arguments one can find for example in [36] or [23].

Proof of Theorem 1.2 Recall the definitions of G in (1.31), of the space H," in (1.32) and of
Fp, in (1.6). We first remark that G : Hy" — H r+D g locally Lispchitz. Indeed, for any
(p,m) € H;" and any (¢, ¥) € Hy*",

(cp.m), (go,x/f)>>=—<p (Fm—/F ) V¢>+w f nD- @.1)
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We have | [ Fn p| < I Enll H] Ip ||H;r , and due to the fact that all derivatives of F are bounded,
| Fll H = Cr independently on m. Moreover, due to the same reason, we have || F;, -
V(p||H§ <Cr ||V¢||Hé< independently on m. This means that

(G, m). (. )| = Cllpllgyr (14 1plgr ) @l ot + Cllplg 1yl @22)

We deduce ||G(v)||H5<r+1) <Clvllg-r (1 + ||v||H¢r), and thus that G is locally Lipschitz.

Remark that when p is a probability distribution |f Fmp| < Cr |f p| < CF, and in this
case G is in fact globally Lipschitz.

Now, since the e operator L (recall its definition in (1.5)) is sectorial in He , it also the case
for the operator L in H, " defined by L( D, m) L p, and thus, applying [36, Theorem 47.8],
for all initial condmons u = (p,m) € Hy" there exists a unique maximal mild solution
e = (pr,my) = T'(u) to (1.30) defined on some time interval [0, f.) and which satisfies
1 T'(n) € C([0,17); H").

Now, for © = (p, m) and v = (1, n), recalling the definition of G1, G, given in (1.31),
the Frechet differential of G at i and applied to v, denoted by DG (u)[v], is given by

_ ( DGi(w)[v]
DG(u)lv] = <DG2(M)[V])
- <_V (1 (Fw = [ Fnp)) = V- (P (DFnln] = [ Fuy = [ DFw "]P))>
[ Fun+ [ DE,[nlp

(2.3)

It satisfies, by similar arguments as above (in particular the fact that the derivatives of F,
can be bounded independently on m)

IDG GO+ = € (14 il ) 1Vl (2.4)

and by [36, Theorem 49.2], u +> T'(u) is Frechet differentiable, with derivative
DT!(u)[v] = v, := (1, n,) the unique mild solution to

3,7, = Ln; +3DG () [v] . (2.5)
n; =8DGo () [ve]

By [36, Theorem 47.5] the solution v; = (1, n;) to (2.5) depends continuously on u =
(p, m), so that the flow T7(x) is C'. One can proceed similarly for the second derivative.
We have this time, for v; = (9;, n;),i =1, 2,

D*Gi(w)[vi, 1] = -V - (m (DFm[”Z] —/anz —/DFm[nz]p)>
- V. <772 (DFm[nl] _/anl _/DFm[nl]p>>

-V <P<Dsz[n1,n2] —/DFm[m]ﬂz —/DFm[nzlm

- / Dsz[nl,nz]p)) 2.6)

D>Gy(u)[v1, 2] =/DFm[n1 n2+/DFm nalm +fD2Fm[n1,n2]p, Q2.7)

and
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so that
| D260 vl g e = € (14 Iallgye ) I g vzl 2.8)
and T'(p) is C? with D>T" (w)[v1, 2] = & = (&}, &?) where & = 0 and
O = (LE!,0) + 8DG () [&] + 8D G (1)1 .r, v2rr], (2.9)

where v; ; = DT (uo)[v;] fori =1, 2.
To prove that, for R > 0 and ||pp — pl| Hy < R, this solution is in fact globally defined
when § is taken small enough, remark that it satisfies

t
pr=e"“po+ / VY - (py(8 Fp, + 1i15)) ds, (2.10)
0
and
e = 8(Fm,, Pr)- @.11)

The estimates obtained above imply directly |ris| < CF || ps|| Hy' Using Proposition 1.1 we
get (for the constant C. introduced in Proposition 1.1 and any A < kpip):

t e—x(z—s)

0 AI—s
tef)\(tfs)
<G ||po||,,;+8fo T Il (1) ds ) @13

Set 1p = inf [z >0 Ipilly - = 2C (R el Hé;r)]. By continuity, 7p > 0 and for all
t € [0, 1],

T
1pellge = Co (R+ o) + 8\/;202 (R+ 1ol ) (142€2 (R+ ol )) -
(2.14)

1Pl g < Cellpoll g + Ci | ps@F, +1i0) | yor ds (2.12)

For the choice of § > 0 sufficiently small such that sﬁz (1 120, <R Tl ng>) <1,
this yields that #yp = oo, so that (p;, m,) is a global solution. ]

3 Proof of Proposition 1.7

In this section we give the proof of Proposition 1.7 which shows that M? given by (1.40) is
an approximately invariant approximately normally hyperbolic manifold. We do not prove
the assertions in the order they are given in Proposition 1.7.

Proof of Proposition 1.7 Proof of (1). Recall again the definitions of p in (1.9), of &, periodic
solution to (1.11) and of F}, in (1.6). Take pg = p and mg = «,. We then have, from (1.4),

t
pr—p= / e UIEY - (py(8 Fyny + 1its)) ds, 3.1
0
and

My = Gyty = 8(Fm,, i) — 8(Fa.., p). (3.2)
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As it was already proved in the preceding section, we have |rig| < Cré§| ps|| H' and since
Theorem 1.2 with R = 1 implies that, choosing § small enough, || p/|| Hy < C(1), we get
from Proposition 1.1,

t ef)n(tfs)
lpr — p”[{ﬁ*" = Cl/(; ﬁ |ps(5Fm: +m5)”HJ’ ds
t ef)h(tfs)
=0 [ tplyye (1 Il ) ds < Cb 33
Now since

I . .
~(m; — Oyqy) = <DFD(u+[7 pY(my — ayiy) + (Fm, - FauH - DFal¢+, (my — oyqy), p)
$

+ (Fm,, pr — p), (3.4

we have the following mild representation (recall the definition of 72 4. 10 (1.35) and that
mo = oy):

me — Qy+t
t
= 5/ n3+t,u+s<(Fms - FauH - DFauﬂ (ms - au+s)a ,0) + (Fmsa Ps — ,0)) ds,
0
(3.5)
which leads to (recall that the derivatives of F are bounded and that (3.3) is valid for all
t > 0):
t
= sl = € [y — P ds + Catr (3.6)
0

Consider #1 = inf{r > 0 : |m; — ay4+| > 21C48} (recall the definition of 7 in (1.54)). By
continuity, #; > 0 and for all # < #; we have

Im; — | < (4T2C38° + C387), 3.7)

which means that r; > % for § small enough, and implies (1).
Proof of (2). The first two points follow directly from the fact that the projections P; defined
in (1.36) are smooth. For the third point we have

[y v - @O -von| o —ad - PP - o)

= ., (33
V@) = v )y of — a?|
and since
d
o —dd =a) —a) =80 - s)aot;m:&, + 0%t —9)), (3.9)
and
. d 0.c d d
P;S’L diuailu:&v = P(Ss’cdiuali\u:&v = Ea}tlu:&w (3.10)

|vo—ve-wo-yen|

o
the term I\v/(t)—w(s)l\ng is indeed of order §.
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Proof of (5). We choose in the following Ry = 1. For any (p, m) € V(/\?‘S, Ry), wich means
in particular ||p — p|| HT < Ry, we deduce from Theorem 1.2, if § is small enough, that

sup || pill - = C(Ro). (3.11)
t>0

This means in particular, since m; = mqg + 8 fot(Fms, ps)ds, that for C4, C5 > 0

sup [ri;| < 8Cq4, and  sup |m,| < Cs, (3.12)
=0 1€[0,%]

where C5 depends on t. Now, using (2.5) we have, with uy = (ps, my),

t
mo= o+ 8 / L DGy (g5, ] ds, (3.13)
0

and
t
ny = ng + 5/ DG (ps)[ns, nglds. (3.14)
0

From (2.4) and Proposition 1.1 (recall that f]Rd no = 0, see Remark 1.3), we obtain

el s < Cee™ Inoll s + Cod OI e;fs) (W5l e + Insl) ds, (3.15)
and
Inel < Inol + céafo(nnsnf,; + Iny1) ds. (3.16)
We deduce that, for v, = DT (p, m)[vo] = (n;, ny),
Il = Cotbolg +Cud [ (14 <= ) el 0 (3.17)
Applying Lemma B.1, we get the desired bound for the DT with ke = 2C7¢3C87 when §

is small enough.
For the second derivative, recall that D2T7 (u)[vi, v2] = & = (S,l, 5,2), where &y = 0 and
(recall (2.9))

t
g =35 /0 eUIE (DG () [E] + D*G(1ts) V15, v2.51) ds, (3.18)

and

t
5[2 = 8/0 (DGZ(MV)[gv] + D2G2(,us)[vl,s, VZ,S]) ds (3.19)

T

where p, = (pr,my), and v; ; = DT'(uo)[v;] for i = 1, 2. This induces for ¢ € [0, 51
recalling (2.4), (2.8) and since ||v; ; ”H;r < K(,”U,',()HH;;-,

t ,—A(t—s)
1 e
et =3¢ | == (1l + Ivrolg Iozolly-) ds. (320
and
t
67| < 8Co fo (Necler + Iv10llg; V20l ) ds. (3.21)
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So for ¢ %

—A(t—s)
AJtE—S

and one deduces from Lemma B.1 that ||$,||H;r < K7||1)1’()||H;r ||v2,0||H;r with k7 =

! e
I8l = Crollviollyg V2,0l —I—Sclo/o (1 + ) 185l ds, (3.22)

2C10e3C107 forr < % and § small enough, which concludes the proof of (5).

Proof of (3). We are now interested in DTg(p, ay)(no, ng) = (ng, nﬁ) = vz. From the
proof of Point (3) we already know that SUP;(0, 2] vy ”H(;r < K6||\)0||H6—r, which means,
recalling (3.15), that

o—Mt=s)
Il e = Cee™ ol +Cnid | = (Inoll e +Inol) ds

< Cee™Inoll g + 18 (||no||H; +nol). (3.23)

Moreover, since

1
<t = (DFy,, (0], p) = (DFo,,, (0] — DFp, [n/], p) + (D Fp, 0], pr — p)

8
+ (Fm;» 1), (3.24)
we have the mild representation (recall again the definition of 7 in (1.35))
t
ne = mo ., no+ 8 / n;f+,,,,+s( — (DFq,,, [ng] — DFy, [ng], p)
0
+(DFy, 1,1, ps = p) + (F, 1)) ds. (3.25)

From the proof of point (1), for < %, || p; — PIIHe—r and |m; — a1, | are of order 8, and thus
we obtain (recall also that SUPye0, 1 |n:| < K5||V0||H9—r)l

t
e = 72y ol = €13 /0 (W15l r + 6ol ) ds
t
< Cizd f (Cee™ ol gy + Cr28 (Inoll gy + ol ) + 8ol ) ds
0
= C1a (Imoll 7 + Inol ) (3:26)

Suppose now that (19, ng) € )Niu : that is P,f‘cng = 0 (recall the definitions of iﬁ’s and
“in § 1.5). Then we have Pt C, 7l L0 = Pf’cno = 0, and thus, recalling (3.26) and

(3 23),

u +

§,¢c
Pu+%n%

= |ps, (n s no)‘ < Cys (||n0||ng + |n0|). (3.27)
This shows that

e
[fie DT (o, igs

< C156. (3.28)
BMH,")

On the other hand, suppose that (g, ng) € iﬁ’c, thatis 7o = 0 and P ng = 0. We then
ny = P2*ng = 0, from (3.26)

) )
<
C128|ngl, and since P ,nu_‘_%’u
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we deduce

z

8
P’ (n —xd . no)‘ < C1652/ Inolds < Cietdlnol. (3.29)
’ 0

s
PIH_%nr

This means that

Hl‘[qu,DTfS (p, Olu)|XM

. = (Ci2+ Ci69)8. (3.30)
BMH,")

Proof of (4). On the one hand consider (10, no) € X5, thatis P.*ng = 0. Then, considering
8 small enough such that Cre 35 < (8, by (3.23) we obtain

[nz],,.. = 2¢028 (1m0l + o). (331)

. 5,
Moreover, since P, ®

8 8,¢ _ .
e u+§,u"0 =7 +§’uno and P, "ngp = 0 we obtain, by (3.26) and

u

(1.37),
S Y §
P;Jr%n(S PIESLTES no‘ + PIjJr% (n% _”u+§,u"0)’ (3.32)
< Cae™ ol + C128 (Imoll -+ + Inol) (3.33)
We deduce that for § small enough
=4, z —Aa
HHH%DTa(p,ang,S sy = 2Ca¢ 2 (3.34)

On the other hand consider (170, n0) € X2, which means 19 = 0 and P>**ng = 0. Then
similar arguments as above (recall that this time 9 = 0) lead to

8,¢
Pu+§ (n% T

2c o) = Cisdlnl. (3.35)

We then obtain, for § small enough, recalling (1.37),

Ca

wr2ns] = (e — C1s8) Inol = S Inol. (3.36)

This means in particular that ﬁi’ilDT§(p, o) |gs.c, Which is a linear mapping in finite
5 u

dimensional spaces, is invertible and satisfies

2
< = 3.37)

—1
8, z
H (f25. DT (o )l )
5 u BMH;") Ca

We deduce (4) with a = % and % = 45" recalling (1.54).

Proof of (6). For any initial condition u = (po, mo) € V(M‘S, 1) recall that Theorem 1.2
implies sup, ||p[||H9—r < C(1). Thenfor § <t <, —t < ¢, for some { < I to be
chosen later, relying on (3.1), the following is true:

s tL
P — pillg—r < H (e’ —e )poH B
0 H@ r

t
I / ” (e(t -L e(t—x)ﬁ) V- (ps(8Fp, +n'15))H _, ds
0 H9

t/
+/ Heo 7S)/3V.(ps(5FmS+n‘1s))HH7r ds. (3.38)
t 0
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Using Proposition 1.1, the first term above may be bounded as

[ =)ol

for some ¢’ € (0, 1). Concerning the second term,

/ & e e olye 67A%
< Cet =0 S poll, e = Crog®'s S 330
t§+€ 0 f§+£

Hy

t
/ H (eu —L e(t—s)ﬁ) V- (ps(8Fp, +n‘1s))H _ds
0 H9

, o t e—k(l—s)
=Cc —1)

_ SF, j - d
0 (t—s)%-&-s’ ps( mX+mS)”H9 s

/ o[ e
< Cd(t' —1)

1 ’
0 (t—s)27¢

< Cy8¢°. (3.40)

15l e (14 P51 ) ds

Now turning to the third term, relying again on Proposition 1.1,

t/
/ He(z =LY (ps(8 F, + 1)) H _ds
t Hy
t =it —s)

) ﬁ ||Ps||H9*'
< CndC2. (3.41)

< Cné (14 Ipell ) ds,
Gathering (3.39), (3.40), (3.41) into (3.38) yields

Iper = pellpr = (3.42)

N ™

if £ < 11is chosen sufficiently small.
We now turn turn to the control of the mean: since m, = § f Fyn,dp; we have that for
t<t' <t+¢,

’

t
my —m; = 8/ (Fmg» ps) ds.
t

Since we have the uniform bound sup,.q || ps |l Hy" < C(1) and since F and its derivatives

are bounded, the above quantity is easily bounded by some C§(¢t" — t) which can be made
smaller than ¢/2, provided ¢ is taken small enough. O

4 Proof of Theorem 1.4

Proof of Theorem 1.4 From Proposition 1.7 we know that the hypotheses needed in [5] are
satisfied for § small enough, which means that the system (1.4) admits a stable normally
hyperbolic manifold M? that is at distance § from AM°. Indeed in [5] some constants 1, x, o
need to be small for their result to be true, but in our case these constants are of order &, so
we only need to suppose 8 small enough. Moreover M? is constructed at a distance 8y from
M?®, with 8o chosen such that /e and /3¢ are bounded for some ¢ > 0 (see [5], Theorem
4.2). Since in our case 7 is of order §, we can take §y of order §, and M0 is indeed at distance
8 from M°.
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The invariant manifold M? is one dimensional, since M? is, so to prove that it corresponds
to a periodic solution it is sufficient to prove that it does not possess any invariant point. But
for any (po, mo) € M? we have, since lp — ,0||H9—r and |mg — Olg| are of order & for some

u e [0, L,

m0—5/ mopo—S/ Fo,p+ 0(8%) = &y + 0(3%). 4.1

Since there exists ¢ > 0 such that |d¢2 /8| > c¢ independently on u, we have mg # 0 for
the solutions starting from any point of M?, which means that AM® does not possess any
fixed-point, and is thus defined by a periodic solution of positive period Ty, that we denote
= (g%, y?) fort € [0, Ts].
Now, by the Herculean Theorem (see [36], Theorem 47.6), since M? is invariant, Ff
is in fact an element of H;Hz and, by [36] Theorem 48.5, 8,F§+, = (8,qf+,, )'/S5+t) is in
C([0, T5), H;") and it is solution to

{ dne = L + 5DG1(F i

iy = 8DGH(T2, )] ’ 4.2)

which means in particular that 9,8 = <I>S+t 507 Ff. Now 0, I‘f ; 1s a periodic solution to
(4.2), and the same arguments imply that 8 FYH isin C([0, T5), H,").

In addition, it is proved in [5] that M® is fohated by C! invariant foliations: a neighborhood
W3 of M? satisfies the decomposition wh = = Uselo, TA)W where V\/‘S corresponds to the
elements of € Hy" such that T"% (1) converges exponentially fast to I‘f as n goes to
infinity. The projections l'[f’c and Hf’s correspond then respectively to the projections on the
tangent space to M? and to Wf at I’f. The linear operator ®° trs = DT'(I'%) commutes
then with these projections, and is bounded from above and below in the direction of the
tangent space to M?, while it is contractive in the direction of the tangent space to stable
foliations.

In addition to the contractive property, the regularization effect of ®° given in (1.46) is a
consequence of the fact that &, ;v = v; where vop = v and v; = (3, ;) is solution to

{ dme = L +3DG (T3, )[v]

iy = DG, )] (4.3)

The operator L(n,n) = (Ln, 0) is sectorial in H, " and thus induces regularization properties
for the solutions to (4.3), and thus for ®°. More precisely we are in fact exactly in the situation
of [23], Theorem 7.2.3 and the following remark. Indeed, for s € [0, Ts) we can define the
operator U? d>‘2 +7,.5» and we can deduce from above spectral properties for U}. Since '
is a periodic solution, U2 admits 1 as eigenvalue, with eigenfunction 3;I"? and corresponding
projection Hf’c, and due to the contractive property of ®° the rest of the spectrum of U, S‘S is
located in a disk centered at O with radius e =75, We can then apply Theorem 7.2.3 and the
following remark to obtain (1.46) (reducing slightly the value of As).

The C! regularity of s > H?‘C is not a direct consequence of the normally hyperbolic
results of [5] (they prove that Vv‘S has a Holder regularity with respect to s), but since we
are in the case of a periodic solution we have an explicit formula for H : 1 is an isolated
eigenvalue of Uf, so for C; the circle centered at 1 with radius ¢ > 0, with & small enough,
we have

c 1 §y—1
= 5 [, = UDT . (4.4)
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But applying [23], Theorem 3.4.4., 1 + U? is C', with U2t = ¢r, = (&, ¢{7,), where
fo=2¢ and

{azg = £g! +3DGATL. &) +3D2G1 (T, DI, 41 “5)

o _8DG2(FS+,)[Q]+6D2G2(I‘ Ol ¢l

and thus s > T15°¢ is also Cl.

It is not immediate that qs is a probability distribution, since we apply the results of
[5] considering solutions P € He satisfying fRd p: = 1 but without any hypotheses on
nonnegativity. However, M? is in the basin of attraction of M?, so any (g}, m?) e M is
the limit in He of (pr,my) =T (p, a,‘i) for some u € [0, L ). So, since in this case p; is a
probability distribution (recall that it is the probability distribution of X; — E[X/,], where X,
satisfies (1.2) with initial distribution p), we deduce that (q§s , @) > 0 for any smooth function
@ with compact support, and thus ¢ is also a probability distribution. O

5 Proof of Theorem 1.6
Recall once again the definition of % in (1.41) as well as the definition of the flow 77 in

Theorem 1.2. As it was already explained in Sect. 1.4, the existence of the map ©° is a
consequence of the foliation property proved in [5]. Moreover @? satisfies the relation

) B nTs
Fog = nlggo T" . 5.1
Our aim in the present section is to prove the C2 regularity of ®%. Following ideas from [22],

we will prove uniform in time bounds for the first and second derivatives of the flow T,
which will induce the regularity of

S(u) := lim T"%p (5.2)
n—o0
and thus the regularity of @7,
Proof of Theorem 1.6 Step 1 let us first show that for some constant ¢; > 0

sup  sup DT'(w) - <ci, (5.3)
P || sty = e

where V(M?, ¢) 1= {u eH,". diStH(;r (1, M%) < 8} is a neighborhood of M? (given by
(1.42)) on which the trajectories are attracted to the cycle. For ng = (po, mo) € VMY, ¢)

and u = ©(up), denoting by v, = (1, n;) = DT'(1u0)[vo] and recalling the definitions of
G in (1.31) and of @ in (1.43), we have,

t
v= ), vo+ 5/0 D41 urs (DG () — DG L)) [vs]ds. (5.4)
Let us now prove that there exists a constant Cg such that, for u = (p,m) and I" = (¢, y),

DG () — DG(F)IIB<H;’H9—<V+1)) =Cqliu=Tlg,r- (5.5)
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We have, for v = (5, n)

(DG1() = DG (D) V] = =V - (n(Fp — F)) + V - ( (/ Fnp — / Fy‘])) (5.6)

n
— V- (pDFuln] — gDF,[n]) (5.7
+V. p/an—q/Fyn> (5.8)
+V. <pf DF,[n]p — q/DFy[n]q) , 5.9)

and
(DG2(n) — DGL(IM) [v] = /(Fm - Fy)n+/DFm[n]P - / DFy[nlg. (5.10)
For the first term, we obtain
HV ) (”(Fm - FV))||H9—<’+‘> =G ||’7(Fm - FV)” Hy' > (.11
and since, for f € H},
(Em = Fy), £ < Inll g | (En = Fy) fllag < Calm =y lllnll g 1 f s (5:12)

where we have used the fact that all the derivatives of F are Lipschitz, we get, for some
C3 >0,

|V - (n(Fn - Fy))HH;w) = Gslm = yllnll - (5.13)
For the second term, since

’/Fmp_/Fyq

=

/Fm<p —q)’ + ’/(Fm - Fm’

= i (Ip = allyr +1m=v1). (5.14)

we have

o (o[ o 1)) =t
2

The other terms can be tackled in a similar way. Now, since o € W,‘f, we have for some
Cr& > 0,

Jite = T s < Croe™ o = T (5.16)
and from the estimates obtained above , we deduce

' —L —xst—s)\ ,—rss
Il = Collwolggr +Cod | (14 6= )72 50 ) 740 gy ds. - (5.17)

Applying Lemma B.2 for ¢ (u) = u’%e”\a“, we obtain from (B.3) that

sup [[vellg=+ < c1 llvollg—» (5.18)
tZO 0 0

for some ¢y > 0.
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Step 2 let us now show that (DT"%) _ “is a Cauchy sequence in the space C(V(M?, &),
B (H,") ), which implies that s > S(u) is C! (recall (5.2)).
For n > m we have

8 8
UnTs — VmTs = (cpu+nT5,u - <I>u#»mT(;,u) Vo (519)

nTs
+a/ D) g uss (DG (i) — DG(TY, ) [vs]ds
T

mTs
mTs s s
+ 5/0 (P sty ts — Phymtyuws) (DG (1s) — DG(T) ) [vs]ds.
For the first term, we get

” (¢u+nT5,u - q)qung,u) VOHH(;V = H (q)qunTa,u - qDlH»ng,u) HS,MVOHH;r

< C7e™ " gl gy - (5.20)

For the second one, using (5.18),

nTy
/ q)3+nT5 u+s (DG(/’LS) - DG(FL1+S))[VS] ds

mis

H,"

T
< Cy = T2 s Iollgr [ (14 0Ty — ) 0Ti=9)) g5 g
= Cg||m wllmy” ollg," - 5

8

Cs |1 =Tl Ivolly-

. 0 Cemhm s (1 e (25— m) Ty — 1) )

As
< Co |l = Tylgsr Ivollggr ™" (5.21)

For the last term, remark first that

q)a

u+nTs,u+s CD

u+mTys,u+s — (q>u+nT3 u+mT Id) nu—&-ng q)u-‘rng u+s> (5'22)

so that, using again (5.18),

mTy
/0 (P v nzyurs — Poimtyurs) (PG (s) — DG (L)) [vylds

H,"

<C ” _rd T =4 —As(mTs—s) ,—Ass

< Cio |l =Ty s Ivollg A (mTs —5) e e Mds

=2C10 |1t = Ty g+ ol /mTye™ "%, (5.23)

Since the constants above are uniform in 4 € V, we deduce that (DT”T5)n>0 is indeed a

Cauchy sequence. Thus S is C! with DS(w) = limy— 0o DT" T (1).
Before moving to the second derivative, let us have a closer look at DS. We have

)
Hnu+nT5V"T6 H — Hnu+nT5¢u+nT5,uv0HH7,
6 6

H;" ’
(5.24)

(S 8
H/ u-i—nTa u+nTs,u+s (DG(/’LS) - DG(ru+s)) [vslds
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and we can bound the right hand side in three steps. Firstly,
“Hu+nT5 q)?t-HIT(s,quHH_, = CCD,(Sé'_)\MT‘S ||V0||H9—r . (5.25)
0
Secondly, since su DG P—— <Cg,
y Pucy IDG Gy, o) = Co

nT,;

” / u+nT5 u+nT5 u+s (DG(MV) - DG(FL,.H)) [vs]ds

H,"
nTy
2 1
s —1 —As(nTs—
<Cn ”,u -T, ||H;r ||v0||H;r/O (nTs — 5)"2 e 2T5=9) g5

e e ] P e [T (5.26)

Thirdly, by similar arguments as above (replacing mTs with n %),

We deduce that TTg ) DS(n) = 0, so that DS has rank 1 and thus there exists a family of
linear forms /,, € B (H, ", R) (that depend continuously on 1) such that, for u = © (),

DS(w)v] = 1u[v]0,Tu, (5.28)

nTs
/; ¢i+nT5,u+s (DG(M&) - DG(F,iH)) [vs]ds

Ts
2

H,"

=Cn ”M - Fg HH;’ ei)\w% ||V0||H;V~ (5.27)

and we have proved, for v, = DT (u)[vo],
[vn, = Lulv01u | gyr < Crane ™ uglly - (5.29)
With similar computations one can in fact show that
[ve = GulvolouT g | gyr < Crat?e™ % gl - - (5.30)

In the case when u = I'?, we deduce in particular that

DS(I'%) = 12, (5.31)

u’

In fact, we have proved a more precise estimate: if sz = DT"()[wvo], v,1 = DT! (F,‘z)[vo]
with u = ©(u), the estimates above lead to

[v2 = vl = (1ulvol = Irglvol) BTt

< Cus [ =T s 12€7% 00y -

H—r
(5.32)
Step 3 let us now show that for a constant ¢, > 0,
sup sup | D*T'(w)| Boar) < €2 (5.33)

120 pev (I e)

From (2.9), we deduce, for & = D*T! (w)[v, w], the following mild formulation (recall
that & = 0):

g =5 /O B, vvs (D*G )y, wsl + (DG () — DG, ) &) ds.  (5.34)
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where v, = DT (ug)[v], w; = DT (uo)[w]. With similar arguments as above, we obtain

t
H fo DD 41 ups (DG (1) vy, wy] — DG, )y, ws]) ds

H,"
! r —
< C16/ (1 +(t —s5)"2e M0 ”) s — T8, ||H9_, v g lws gy ds
0
= Ci6 lvollg;~ llwolly - (5.35)
Remark now that
92T, = (Ldqd 4, 0) + DG, [ L], (5.36)
and

3Ty = (£87d51,, 0) +8DG(T) NI Th 1 + DG (T N[BTy 0 Th ],
(5.37)

and thus
1
PFre,, = @b, 7 +5/ D s DG OO, TE (L TS, 1ds.  (5.38)
0

So, in particular, since

M@, 7, 00Ty = T5C(;T), (5.39)
we deduce from (5.38) that
s b5 2 s s s
I </o @y s DTG 0T s asI‘Lth]ds) =0. (5.40)
Now, recalling (5.30),
L5t
[ = L [0)0uTue | e = Crat?e ™2 vollgg (541)
Lt
e = Lulwoldu T | g < CrarZe™ 2 ol (5.42)

and we deduce

t
H/ q>u+t,1¢+sD2G(Ms)[Vs’ws]ds
0

t
_lu[VO]l;L[WO]/O q>u+t,u+sD2G(Hs)[auFqum 0y Tyys]ds

H,"

<Cyi7 HVOHHQ_’ ”wOHHe_r . (5.43)

So, recalling (5.40), and since
t
H Hftit /0 q>i+t,u+sD2G(luS)[8“ F2+s’ 8MF2+S] ds
H,"

t

< c18/ (t — 5)"2e™MU=9ds < Cpo, (5.44)
0
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we deduce, coming back to (5.34), that

18l = Cro llvollgr lwolly;r + 8 “/ b ituts (DG(s) — DG(Th,)) &ds

—r

0

(5.45)

Relying again on (5.16), we deduce that, for some ¢z > 0,
&l < €2 Ivollg+ lwolyg » (5.46)
which implies (5.33).
Step 4 let us now prove that (D?7"%) _ is a Cauchy sequence in the space
C (V(M®, &), BL (H,")), which implies that y — S(u) is C2.
‘We have, for n > m,
nTy
EnTy — EmT =/ ) gy urs D7 G, Olvs, wyl ds (5.47)
q)3+mT,g,u+s DzG(Fg+s)[vSa wy] ds

D0 g ugs (DPG () [vs, wyl — D*G(TS Olvs, wy]) ds

s 8 8
+ /0 (q)u+nT5,u+s - cbu+mT5,u+S)
(D

x (D*G(s)[vs, ws] — D*G(T5 )lvs, wy]) ds
nTy

+ D iy (DG(g) — DG(TY ) & ds
mlis

nTy
) )
+ /0 (q>u+nT5,u+s - q)u+mT5,u+s) (DG(MX) - DG(Fu+s )SS ds.

Let us define

nTs
RO = /(; Hu+nT5 q>u+nT5 u+€D G(F”_H)[a Fu+s’ 0y F2+s] ds (5.48)

n—1

8,5\J 8
Z (q)quT,s unu s) [O cbu+T5 u+vD G(Fu+s)[3 Fu+s’ 3‘Fu+s] ds,
j=0

and
tan nTs
R v, wol :=/ nwrmcbuﬂm5 s DPG (T3 Olvg, wylds (5.49)
()
—Z / e Pty urs DPG (T DTy s, iz as]ds. (5.50)

It is clear that

[ R = R gy < e (5.51)
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Now, for j > 1, recalling (5.40), (5.41) and (5.42) we have

Ts
8,c S 2 8 i .
H/() Hu+T5q)u+T5,u+sD G(Fu+s)[va5+Sv ij5+&]ds i
Hy

b -3 —rs(Ts—s) : Lol
< Coo ol ool [ - (14 (T =972 ) GTs + ke 75 ds

. 1, T
= Car lvollg; lwollg - (7 + 1D2e Mg (5.52)
so that

. am
| R0, wol = R o, wol |, < Cone ™% ooy s lwollyr - (553)
6
Using similar arguments as above, relying on (5.41) and (5.42),

nTs
H [ B gy s PP G, O lvs, wilds — R [vo, wol — L [vollu [wol RO ds
0

H,"
nTs L nTies) L gss

= Cos vl - ||wo||H;r/ (nTy — 5) 2 M=) 207403 gy
0

1y Is
< Coan2e™ "2 lwollggr llwolly - - (5.54)

With all these estimates we are able to tackle the first two lines of (5.47):

nTs mTs
H /0 quJF”Tﬁ»”*‘V DzG(Fg‘H)[vS’ wslds — /0 q>3+mT5,u+sD2G(Fti+s)[Vs’ wy]ds

H,"

15 Ts
< Cysn2e "3 Iollgg+ llwollg~ - (5.55)

The other terms can be treated in a straightforward way, with similar estimates as the ones
used in Step 2 and Step 3. At the end, one obtains

[&07; = &ty ly-r < CogmEe %, (5.:56)

with a constant Cos uniform in V. Hence, i > S(u) is thus C2. Remark that we have in
particular

nTs

D*S(T)[v, w] = lim Putntyuts D*G (i) [Pus v, Py uwlds. (5.57)

n—oo 0

Step 5 from the previous steps, and the fact that ¢ +— Ff is a C? bijection from R/T5Z to
M?® implies that @ is itself C.

For the last estimate of the Theorem, let us denote &% = D>T'(u)[v,w], & =
DXT'(T)[v, w], v} = DT (wlvl, v} = DT'THIv], w? = DT'(w)[w] and w/

@ Springer



660 Journal of Dynamics and Differential Equations (2024) 36:633-671

DT'(I'})[w]. We then have the decomposition
g2 - = a/ ®D sy (DG(ug) — DG () ,)) £7 ds (5.58)
45 [0 (07600 — D26 (18,,)) b ufas
+ 3/01 wtrass D2G (Togy) v = vy, wi]ds
+ 5/Z wteats D2G (Tagy) o) wi —wilds.
Following similar estimates as in the previous steps, relying in particular on (5.32), we obtain
|67 = &' lu;r < Cor 1t = Thlggr 10 lgr Il (5.59)

which implies indeed that || D2©° () — D*@° (1) | gpyry < Cas [ = Tayr - D
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Appendix A. Ornstein-Uhlenbeck Operators

The aim of this Section is to give bounds for the operators and norms that where defined
in Sect. 1.3. In the sequel, the following notation will be used: for any multi-index / =
(i,..., 1) eNlandi € {1,...,d}, denote by

=0l = L, oo ), (A.1)

-—(11,~- Licv, i+ 1Ly, oo La) (A.2)

as the shifts w.r.t. the ith coordinate (multiple arrows notation such as /44, corresponding to
iterated shifts).

We first prove the following lemma, which shows the link between the norm || f| HY and
the space derivatives.

LemmaA.1 For all 0 > 0, there exists explicit positive constants Cy, Co such that for all
r>0:

d
(nunHr +Z \|ax,u||Hr> = Il = 6 (nun%{g +> Haxl.u||i,5>. (A3)

i=1 i=1

Proof Recall the definitions of v; in (1.19) and of 4, in (1.20). For u with decomposition

u =Yy ;o Uy Y1, we have dy,u = Y na U1 dx; ¥y, and straightforward calculations using
the fact that i), (x) = /nh,_1(x) show that

Ok;
0¥ =Vl |01, Lz, (A4)
i
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where we used the notation (A.1). Then we have the decomposition

Ok;
dgu= [ 3 Vil . (A5)

’ leNd

so that, by definition of the Hj-norm in (1.21) (recall in particular that ag = 0TrK)

d
Ok;
el + D Mo ulizyy = D uj ((619 + )+ Zz V=1 — (ao + b = 0ki) )

i=1 leNd i=1 9
(A.6)

Let us prove the upper bound in (A.3): note that for /; > 1, we have A; > 6k;. Hence, since

forallu >0,r > 0,1 > u, (ag + 1 — )" > aj ((Z:Iﬁ))', , we deduce that
d Ok;a)
el + > Mg uldy = > uflag+a)" |1 +Zz Lo ———— p .
0 L o (ap + 0k;)
i=l1 leNd
> Y ujlag+ ) (1 + = % ,M) .
JeNd O hax (ap + Okmax)

2
O hax (ag +0kmax)"
A s
6

so that the upper bound in (A.3) is true for C; := max ( ag). Concerning the

lower bound in (A.3), we have from (A.6),

Al
||M||Hr + Z ||3x,M||Hr < Z ui(ag + Ap)" <1 + 2) ,

leNd min

where oy is given in (1.16), so that the upper bound holds for C; := ]

min(o-min’ae) ’
For all § > 0, the operator — L (recall its definition (1.18) and its decomposition (1.19))

is sectorial in Lg and generates a semigroup Lo satisfying (see e.g. [23]) for all ¢ > O,

r>0,and A < 6 min(ky, ..., kg), there exists some C > 0 such that for all f € H},

Y| = COHT P 1 Ny, (A7)

and for all f € H] such that ffwg =0,

o'Ch Y
] e = R (A8)

Let 6" > 0. The point of the following result is to state similar contraction results for £,
in Hj, in the case 6’ # 6:

Proposition A.2 For all 0 < 0 < 0’ the following is true: the operator L}, generates an
analytic semigroup in Hj and for all r > 0, « > 0 and ) < Okmin, there exists a constant
C > O such that forall f € Hj andt > 0

S| = C UMY | (A.9)

Hr+ot
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and forall r > 1,

[ver<i-]

_1
L=< Cr2e M fllyg. (A.10)
HG
Moreover forallr > 0,0 <& <lands >0,

* * 1
H (e(f"rS)L‘rg/ _ et£9/> fHHr+1 < Csé‘t*jfgef)\t ||f||H5 . (All)
0

Finally, there exists ro > 0 such that for allr > ro, t > O and all f € Hp,

tL
* ae 0 fw
etﬁg/f_ le f 6 < e—)ut f_/ fw9 (A12)
fRd We Hef R? ng
Proof of Proposition A.2 First remark that for all smooth test function u
(5 — L) )u= (0" —0)Kx - Vu. (A.13)

Recalling the decomposition (1.19),since A}, (x) = /nh,—1(x) and xh,_1 (x) = /nh,(x) +
vn—1h,_2(x) (seee.g. [6], p.102), we get, forall/ € N,

d
, 0k;
(L5 — L) Yo =" —60)) ki /U—Qﬂx,-we,u,. (A.14)

i=1

d
=@ =0 Y ki (vos + Vil = Dvory, ). (ALS)
i=1

where we used the notation (A.1) and (A.2) and the convention y; = 0 if /; < 0 for some

i €{l,...,d}. In particular we have, recalling that Ay ; = 6 Z?:l kil;,
03 -
— Lo = o ~ g+ (6 —6) Zki\/li(li — Doy, (A.16)
i=1

So, we deduce that for f =", five,, with f; € Cforall [,

* 6 *
H(ﬁe‘e/‘>f

Setting

2 2

0 2
= (1 - @> le(ae + 2o0)"

d
Y 0ki/Ui + DU +2) fir,,
i=1

Hy

2

d
I, f) =) (ag +2a) (Zewai + D+ 2)ﬁm) : (A17)
1 i=1
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Using Jensen’s inequality, we obtain (recalling that ag = 0Tr(K)),

+oo d 5
Ir. /)< Y (ag+2ey) (Zek U +1>) (Zeki(zi+z>]ﬁm\ )
Iy, lg=0 i=1
= r+1 2
= Y (as+20) (Zeki(li +2) ’fzm‘ )
I1,...,l4=0 i=1
+00 d
= Z (a0 + A@,z—z)r+1 (Z 0k;l; \fll—2,...,z,~,z,~+1—2,zd—2\2>
Iyolg=2 i=1
d 400
= Z Z (ag + )»9,172)”1 0k;l; |f1172,...,l[,l[+172,l,172’2
i=11y,.0g=2
d +00 400
_ > (a0 +200y,)  Okili 1
i=11;=21,=0

p#i

Now we use that Ay < Ao for any / and i, so that

d 400 400

1 )< D33 (ag +200) ™ 0kili 112 (A.18)

i=11=21,=0
pFi

This sum is anyway smaller than

d 400 +o0 +oo
10 ) <D 30 (as +200) ™ 0kili 111 = Z Z ag +ne.0) " e 1Al
i=11;=01,=0 11=0 14=0
p#i
+00
<y . Z ag +201) " 1Al = [ @0 = £ F |, (A.19)
11=0 ;=0

Coming back to (A.17), we obtain

%]
H (Ee ) f H < 9,> @0 =22, (A.20)

which implies in particular that

0
<a0 — @E?/)

(2 - —) @ =257 |4 (2 - g) £ 1l g2

(A.21)
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Let us now look for a lower bound. Using (a + b)? > mu —eb? (s > 0), we get
4 L ’ ro)" A
ap — oLy . Z(ae-i- 0.)" | (ao + Aa,0) fi
0

) 2
+ (] — y) ;9/@ G+ D +2)ﬁﬁi>

0 2
> 1% ;me ) 2f2 -k (1 - @> Ir. f).  (A22)

Hence, recalling (A.19), we obtain

2 2
a—2e5) 1| ze(ae = (1=2) ) @ - i) (A23)
") gy T \1+e 0’ . '

So for ¢ > 0 small enough (depending only on 6, 8”), there exists a constant cg g/ > 0
such that we have | (a9 — %E;,) f||H, > cg.o' ||(ag — £3) f| ;- This means, together with
0 0

(A.21), that
9 *
<a9 - §£9,> fH (2 - 7) 11 ez - (A24)

In particular O is in the resolvent set of ag — 7 £0,, and ag — 7 E;, has a compact resolvent,
since it is the case for ap — L. So £}, has a discrete spectrum, composed of a sequence of
eigenvalues with modulus going to infinity. But any eigenfunction ¥ of L}, in Hj is also
an eigenfunction of £9, in HG’,, and thus the eigenvalues of C;, in HO’ are the A g/’s, with
associated eigenfunctions the v ¢/’s. So in particular L3, is sectorial, and thus generates an

co.00 I/l gp2 =

*
analytic semigroup ¢'Fo in Hy.
Let us now prove that the interpolation spaces induced by £}, and £ in Hy are equivalent.

Since the operator (& L5, — £3) (ag — gcg,)” (and thus (14 (0L* — £})(ag — 60.L*) ™
for @ > 0) is bounded in H), we obtain

2
I ges = | (@ = £3)7 1,

a2
0 0 - 0 /2
(1 + <9/£0/ E;) (a@ — @ﬁz/) ) <a9 — @EZ/) f

0 /2
(ag - aﬁ;/) f

/2

Hy

c

IA

(A.25)

Hy

The inverse bound H ag — @Eg,) f H ur <C|fI He follows from similar arguments.
(4

We are now in condition to prove (A.7), applying [23], Th. 1.4.3. Indeed, £, has a real
spectrum located on the left of —60’ ki, on the subspace of H) generated by the eigenfunctions
Y19 with [ # 0, so applying this Theorem we get, denoting Py f = f — (%d fw”)/ the

rd Wo/
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projection on this subspace (which is an element of B(H}) for0 < 6 < 6'),

0 /2 .
<a9 - — */> etﬁe’Pg/ f

< C] 9/ ”

—a/2 —ht )
rie = <Gt e M | fllgr -
6

0
,
Hy

.
oL P@/f’

(A.26)

This implies (A.7), since 'Ly A=Poy) f=0A—=Py) f.

The proof of (A.8) relies on the classical identity, valid for f € L2

0/’
. [f (e—tG’Kx V1o 6—210’KG0,):| ’ (A.27)

where Gy is a gaussian variable on R? with mean 0 and variance (8’K)~'o2. This implies
directly, for f € Hy withr > 1,

Ve'fh f = ¢ 'K gLy (A.28)
and thus, recalling the definition of kpi, in (1.15),
< efg/kmin[

Hj —

[P Y
=Cr2e " | flly - (A.29)

|ver<is]

v |

1 A
<cC (1 + ffe*“) e kmint |7 £ 0
Hj 0

For the proof of the third assertion, since [23], Th. 1.4.3. implies that for 0 < ¢ < 1,
H (esﬁ;‘/ _ 1) 7 H < Cos® |1 fll e (A.30)
Hj 0
we obtain, since <es£z/ - 1) Po f = (eM;/ - 1) f and Py commutes with e,

< Cgs°®

” (e(z+s)£:;, _ ezﬁ;,) f‘

_ sL* 1L
wr = |5 =) o]
0

< Cs* I M f Ly (A31)

tL*
e~ Py f H
+1 +142
H) Hytitee

The last assertion is not a direct consequence of the estimates obtained above, since the
hypothesis fRd fwg = 0is not well adapted to the eigenfunctions ¥ ¢ of Lj,. In particular,
having [ps fwe = 0 does not imply [pa ¢'Fo fwy = 0, while it is the case when 6 = 0. We
will only be able to obtain this estimates for r large enough, via direct calculations. Remark
first that

* 2
lLd | Jaa ¢ fwg
—— e 9/f N v 7
2dt f]Rd We Hr
o
L tLk
x ke o fw x e fw
- E;,ewe/f _ M, el[:g/f _ M ) (A.32)
Jra wo Jra wo Hr
o
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f]Rd wep

- tLr,
Recalling that £},a = 0 and remarking that <a, e'Fo f— deef?fwg> = 0 for any
HV

0
constant a, we get

* 2
Vd || oo . fra €™ fwg
—— |le g/f P A,
2d fRd We H(;

Ly 1L
* R4 o fw * e’ fw
=(c etcg/f _ M ,et‘cg/f _ M . (A33)
fRd We f]Rtl wo HT
o

so the proof of the last assertion reduces to the study of (£, f, f) H. with fRd fwy = 0.
Now for f satisfying fRd fws = 0, with decomposition f =), £0 fivi.0, we get

0
— g \Cor S Flgy =D @0 + 200 3ol fil?

170
0 d i
+ (1 - @> > (ao + 200" Y 0ki/ Ui + D +2) fifiry,
170 i=1
(A.34)
Now remark that for the second term, using Cauchy—Schwarz inequality, we get
> (as + ro0)" Zek VG + DU +2) fifiy,
10
/2 d
ag + ro.1)
=2 { @ + 200 rou £} [( 20k DG+ D i, ]
170 Viar
3 ( 2|2
ag + A 91
<D (ag + o) 2ol fil?] Y Zek V&G + DG +2) fiyy,
10 R

Using Jensen’s inequality

2

Z(aeﬂel(zekmﬁw)

10 .1

’

<y Lot ron) a9+kez (Zok (i +2)>Z@k (i +2)‘flTT

10 i=1 i=1

, d
-y L) (2an +20.) Y0kt +) | i [

A
10 0. i=1
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Denoting by N; :=11; (Nd \ {0}) = il eNd [; >2, Z‘;Zl lj > 3}, we obtain

2

Z(a‘ﬁm (Zek V@G + D +2) f,n>

120 .1

IA

22“': (ae "‘)‘(%lu,-) (

2ap + A )Hk-l- 2
Roi ag + ro,1y), ) Okili | fil

1le

Z

(a0 + ro, — 20k;)"
Ao, — 20k;

(2ap + ro, i — 20k;) Okil; | 1]

2

i=
d
i=l1le

2

d
=Y b (ag +2o.1)" Okili | fil?,

i=lle

2

where
(ag + Ao — 29k,’)r (Za(; +Xos — 29/{[)
(a0 + 20.)" (hos — 20k;)

20k; r < 2ag )
={1-— 1+ —). A.35
( ap + Ke./) Ao, — 20k; ¢ )

bg i =

Now, for [ € N;, we have

kmax
ap +rp < dOkmax + Ao < (d +1)—2g 1, (A.36)
min
and
d .
hoa =20k = 0| > 1 =2 | kmin = Ao, (A.37)
j=1 3 max
so that

2%2. 1 ' 6d k2 1
bgi < <1 — min_ i ) (1 + e ) . (A398)
(d + Dkmax Zj:l kjl; Kmin Zj:l kjlj

Now, observe that for ¢1, ¢ > 0, x > (1 — %)r (14 <) is strictly increasing with limit 1
as x — 00, provided that » > 2. Hence, taking r large enough in (A.38) (r depending only
on K and d, noton/, i and €) we have |bg ; ;| < 1, which means that the second term of the
right-hand side of (A.34) is bounded as follows:

> g + ro.0)" Zek VUG + DU+ fifry, | <Y (@o + 2o hoal fil*. (A39)

170 1£0
We deduce from (A.34) and this estimate that

9 0
<£9/f iy Z(ae + 0.0 kol fil?] < ( @) Z(aa + 20,0 kol fil%s
10 170
(A.40)
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which means that

—Re(Ly f. fyy = D (@0 +2o) Aol fil® = Okminl £ 117 (A4
170
This concludes the proof of Proposition A.2. O

As already stated in Sect. 1.3, we rely in this paper on a “pivot” space structure (see [10],
pp- 81-82): observe first that for u € L_g, v E Lg > [pa uvdx defines a continuous linear
form on L2. Respectively, for u € (L2)', the mapping ¢ > Tu(y) == (u, Yrw_g) defines
a continuous linear form on L? (that is the usual L? space without weight, i.e. w = 1 in
(1.17)). By Riesz Theorem there exists v € L2, such that Tu(y) = f vy = f’f)‘@ v e L2,
for v := vwg 2 € L_G, w Yw g € Le This observation permits the identification of
(L2) with L?, (and hence, (-, )(L2), 12 With (-, )2 = (. )). Now, since Hj — L2 is

dense, we have a dense injection (L ) — H,". ". With the identification (L ) & L%e, we
obtain, for all u € L—e C He and all f € H},

(W Fogr ey = (s f)-
Remark in particular that if u € Lag, then for all f € ngJrl we have
(e, £)] = | =G 5, ] < Cllull o 1F Wl g1 (A42)

so that if u € H, " then Vu € Hé)_(”]) with

IVull v < Clluel oo (A.43)

With this structure since Lg is reflexive, the closure of £y seen as an operator on (Lg)’ is
the adjoint of £, ([25], Th. 5.29) and is thus sectorial and defines an analytical semi-group

e'Lo in H,".In the same way, since Hj is reflexive, the adjoint of ¢'“o seen as an operator
on Hj is e'£o' seen as an operator on H," ([32], Cor. 10.6).

From Proposition A.2 and the structure described above we deduce directly the following
estimates for the semi-group induced by Ly (recall (1.24)) in H, "andt > 0.

Proposition A.3 Forall 0 < 6 < 0’ the operator Ly is sectorial and generates an analytical
semi-group in H, . Moreover we have the following estimates: for any r > 0, a > 0 and

A < Okmin, there exists a constant C > 0 such that for all u € H_(H_a)
1Ly —a/2 ,—A
[e= ] o = € (U177 ) Null i (Aad)
and forallr > 1,
tLy -1 —\t
e WHHG,, < Ctm2e M ul s - (A.45)
Moreover forallr > 0,0 <& <lands >0,
H (e(’“)‘cﬁ’ - e’L"’) uH < Csé1™ 2 ¢e™ el —c+1) (A.46)
Hy" H,

Finally, there exist rg > 0, C > 0 such that for any 0 < 0 < 0’, forallr > ro, t > 0 and all
u € Hy " satisfying [u =0,

| Hr S Ce™M el g - (A.47)
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Proof of Proposition A.3 The spectral structure of Ly follows directly from the one of Lj,.
To prove the first estimate of the proposition it is now sufficient to remark that for all f €
Hj,uelL?

9 —0°

[(e"“ou, £)] = ‘(u,etﬁz/f)’ < C (1417927 ||f||H(;||M||H6—(r+a)-
For the second point,
(€2 Vu, )] = (. V'S5 £)] < Com e fll gy Nl y-ios

The third point follows from similar estimates. For the last point, remark that if (u, 1) =0,

tL*
* * ae v fwy
|(€t£9/u, f>| = ‘<M, etl:@/f>‘ = <u, etLH/f — 7‘/‘R f

7= [ fus

and [ £ — [ fwg |, < 20 £l 0

fRd wq

< thoz/Zef)\t

luell =+ (A.48)
Hj o

Appendix B. Gronwall Lemma

LemmaB.1 Let t — y; be a nonnegative and continuous function on [0, T) satisfying, for
all t € [0, T) and some positive constants cy and cy,

! 1
yt§C0+C1[) <1+ﬁ>yyds (Bl)

Then for allt € [0,T), y; < 2coe® with a = 2c + 40% (F (%))2, where T is the usual
special function T'(r) = fooo x e *dx.

For the proof of this Lemma, see [20], Lemma 5.2.

LemmaB.2 Leta, b, A > 0 and ¢ a nonnegative measurable function on [0, 400) such that
¢ is integrable on [0, 400). Suppose that t > 0 — u, is a nonnegative function satisfying

t
u, <a-+ b/ (14 ¢ —s)) e Mugds. (B.2)
0

Then, there exists some constant C (b, ¢) > 0 such that

sup u; < 2aexp (@) . (B.3)

>0
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Proof of LemmaB.2 Define A = A(b, ¢) > 0 such that f0+°° W pwy>aydu < 2177~ Then,
forallv <t

v v
uy, < a-+ b/ e Musds + b/ ¢(v— s)l{d,(v_s)zA}e*“usds
0 0

v
+ b/ ¢ (v —s)1{¢(v,s)5A}e_“uSds,
0

IA

v v v
a—+ b/ e Muds +b sup i / (v — $)gw—s)>a1ds + bA/ e Muds,
0 0 0

s<v

IA

v ) 1 d ) 1
a—i—b(l—i—A)/ ef)“usds—l—iu: §a+b(1+A)/ ef}“u’;ds—l—iuf,
0 0

where we have defined u*(s) := sup, . u,. Since the last inequality is true for all v < ¢, we
get

*
Uy

IA

t
2a—|—2b(1+A)/ e Mutds.
0

The usual Gronwall lemma applied to ¢ — u] gives the conclusion, for C(b, ¢) = 2b(1 +

A(b, 9)). O
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