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Abstract
In this paper we consider a spatial discretization schemewith an adaptive grid for theNagumo
PDE and establish the existence of travelling waves. In particular, we consider the time
dependent spatial mesh adaptation method that aims to equidistribute the arclength of the
solution under consideration. We assume that this equidistribution is strictly enforced, which
leads to the non-local problem with infinite range interactions that we derived in Hupkes
and Van Vleck (J Dyn Differ Eqn, 2021). Using the Fredholm theory developed in Hupkes
and Van Vleck (J Dyn Differ Eqn, 2021) we setup a fixed point procedure that enables the
travelling PDE waves to be lifted to our spatially discrete setting.

Keywords Travelling waves · Adaptive grids · Singular perturbations · Spatial
discretizations

Mathematics Subject Classification 34K31 · 37L15

1 Introduction

Our goal in this paper is to complete the program initiated in [28, 29] to analyze the impact
of adaptive discretization schemes on scalar bistable reaction–diffusion PDEs of the form

ut = uxx + g(u). (1.1)

In particular, for any discretization distance h > 0 and any j ∈ Z, we write x jh(t) for the
time-dependent location of the relevant gridpoint andUjh(t) for the associated approximation
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for u
(
x jh(t), t

)
. We then study the system

U̇ jh(t) =
[
U( j+1)h (t)−U( j−1)h (t)
x( j+1)h (t)−x( j−1)h (t)

]
ẋ jh(t)

+ 2
x( j+1)h (t)−x( j−1)h (t)

[
U( j−1)h (t)−Ujh (t)
x jh(t)−x( j−1)h (t)

+ U( j+1)h (t)−Ujh (t)
x( j+1)h (t)−x jh (t)

]
+ g

(
Ujh(t)

)
,
(1.2)

in which x(t) is defined implicitly by demanding that
(
x( j+1)h(t) − x jh(t)

)2 + (
U( j+1)h(t) −Ujh(t)

)2 = h2 (1.3)

and imposing the boundary constraint

lim
j→−∞[x jh(t) − jh] = 0. (1.4)

This means that mesh locations are determined dynamically in time so that there is equidis-
tribution of a finite difference approximation of the arclength of the solution of (1.2). We
show that this system has solutions of the form

Ujh(t) = �(x jh(t) + ct), (1.5)

which can be interpreted as travelling waves. For concreteness, we will use the cubic non-
linearity

g(u) = gcub(u; a) = u(1 − u)(u − a), 0 < a < 1 (1.6)

throughout this introduction to explain the main ideas.

Travelling waves The pair (�, c) that we construct will be close to the travelling wave
(�∗, c∗) for the PDE (1.1). Using (1.6), this pair must satisfy the travelling wave ODE

c�′∗ = �′′∗ + gcub(�∗; a), �∗(−∞) = 0, �∗(+∞) = 1. (1.7)

Such solutions provide a mechanism through which the fitter biological species (correspond-
ing to the deepest well of the potential − ∫

gcub) can become dominant throughout a spatial
domain. For this reason they are sometimes referred to as invasion waves.

It is well-known that these waves play an important role in the global dynamics of (1.1).
For example, using the comparison principle one can show that these waves are nonlinearly
stable under a large class of perturbations [15] and that they determine the spreading speed
of localized structures [42]. In addition, they have been used extensively as building blocks
to construct general time dependent solutions of reaction–diffusion systems. For example,
planar versions of (1.1) support (sharp) travelling corners [5, 17], expansion waves [36],
scattering waves [4] and modulated waves [10] that connect periodic travelling waves of
nearby frequencies.

Uniform spatial discretizations In order to set the stage, let us return to the lattice differential
equation (LDE)

U̇ j (t) = 1

h2
[Uj−1(t) +Uj+1(t) − 2Uj (t)] + gcub

(
Uj (t); a

)
, (1.8)

which can be used to describe the uniformly discretized approximants Uj (t) ∼ u( jh, t).
Mathematically speaking, the transition from (1.1) to (1.8) breaks the continuous transla-
tional symmetry of the underlying space. Indeed, (1.8) merely admits the discrete group of
symmetries j �→ j + k with k ∈ Z. As a consequence, travelling wave solutions

Uj (t) = �( jh + ct) (1.9)
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can no longer be seen as equilibria in an appropriate comoving frame. Instead, they must
be treated as periodic solutions modulo the discrete shift symmetry discussed above. The
resulting challenges occur frequently in similar discrete settings and general techniques have
been developed to overcome them [3, 8, 16].

Direct substitution of (1.9) into (1.8) yields the travelling wave equation

c�′(ξ) = 1

h2
[�(ξ − h) + �(ξ + h) − 2�(ξ)] + gcub(�(ξ); a), (1.10)

to which we again append the boundary conditions

�(−∞) = 0, �(+∞) = 1. (1.11)

Due to the presence of the shifted arguments such equations are known as functional differ-
ential equations of mixed type (MFDEs). Note that the unbounded second derivative operator
in (1.7) has been replaced by a bounded second-difference operator. In addition, the transition
c → 0 is now singular since it changes the structure of the equation. As a consequence, there
is a fundamental difference between standing and moving wave solutions to (1.8).

In the anti-continuum regime h 	 1, the second-difference operator can be treated as
a small perturbation to the remaining ODE. An elegant construction pioneered by Keener
[31] allows one to construct standing waves for a 
= 1

2 that satisfy the boundary conditions
(1.11) and block the two stable background states � ≡ 0 and � ≡ 1 from invading the
domain. In particular, the shape of the potential − ∫

gcub no longer determines the sign of
the wave speed. This phenomenon is often referred to as pinning or propagation failure and
has attracted a considerable amount of attention [1, 9, 11, 12, 19, 24].

In the intermediate h ∼ 1 regime the shifted terms cannot be handled so easily and one
needs to understand the fullMFDE. Such equations are ill-posed as initial value problems and
hencemust be handled delicately. Several important tools have been developed to accomplish
this, such as Fredholm theory [32] and exponential dichotomies [18, 34, 37, 38]; see [23] for
a detailed overview.

Using a global homotopy argument together with the comparison principle, Mallet-Paret
[33] constructed a branch of solutions

(
�(a), c(a)

)
to (1.10) with (1.11), in which c(a)

is unique and �(a) is unique up to translation when c(a) 
= 0. For the uniform spatial
discretization of the FitzHugh-Nagumo PDE [28, Eq. (1.3)], a generalization of Lin’smethod
can be used to establish a version of the exchange Lemma for MFDEs and construct stable
travelling pulses [25, 26]. Further results in this area can be found in [6, 7, 31, 33, 43] and
the survey [23].

Finally, in the continuum regime 0 < h � 1 it is natural to treat the second-difference
operator in (1.10) as a perturbation to the second-derivative in (1.7). Johann [30] developed
a version of the implicit function theorem that can handle such singular perturbations in
some settings. In addition, the spectral convergence approach developed by Bates and his
coauthors in [2] can be used to study the impact of this transition directly on the linear
operators involved. We used the main ideas behind this technique in [29] to provide the key
linear result that underpins the nonlinear analysis in this paper.

Uniform spatial-temporal discretizations The so-called backward differentiation formula
(BDF) are a family of six schemes that can be used for discretizing the temporal derivative in
(1.8). These are well-known multistep methods that are appropriate for parabolic PDEs due
to their numerical stability properties. As an illustration, we note that the two lowest order
schemes prescribe the substitutions
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U̇ j (t) �→ 1
�t

[
Uj

(
n�t

) −Uj
(
(n − 1)�t

)]
,

U̇ j (t) �→ 1
2�t

[
3Uj

(
n�t

) − 4Uj
(
(n − 1)�t

) +Uj
(
(n − 2)�t

)]
,

(1.12)

in which �t > 0 denotes the timestep and t = n�t . The first scheme is also known as the
backward Euler method and has the advantage that it preserves the comparison principle,
unlike the five other members of the family.

In [27] we constructed fully discretized travelling wave solutions

Uj (n�t) = �( j + nc�t), �(−∞) = 0, �(+∞) = 1 (1.13)

for the coupledmap lattices arising from these discretization schemes. The relevant travelling
wave equations for the two lowest order schemes can be obtained bymaking the replacements

c�′(ξ) �→ 1
�t

[
�(ξ) − �(ξ − c�t)

]
,

c�′(ξ) �→ 1
2�t

[
3�(ξ) − 4�(ξ − c�t) + �(ξ − 2c�t)

] (1.14)

in the MFDE (1.10). In the first case we leveraged the comparison principle to obtain global
results. We established that the c(a) relation can become multi-valued, which clearly distin-
guishes the fully-discrete regime from its spatially-discrete counterpart. The same behaviour
occurs for the five other BDF methods, but here we only have results for small �t > 0. We
remark that related phenomena have been observed in monostable KPP systems [35] in the
presence of inhomogeneities.

These non-uniqueness results should be seen as part of the program that was initiated in
[12–14] to study the impact of temporal and full discretization schemes on various reaction–
diffusion systems. Indeed, these papers studied versions of (1.1) with various smooth and
piecewise linear bistable nonlinearities. The authors used adhoc techniques to obtain rigorous,
formal and first order information concerning the change in the dynamics of traveling wave
solutions. In addition, in [8] the authors considered the forward-Euler scheme and used
Poincaré return-maps and topological arguments to obtain the existence of fully-discretized
waves.

Computational frame In [28] we showed that the dynamics of the coupled system (1.2)–
(1.4) can be reduced to an equivalent system of the form

U̇kh = G
(
{Ujh} j≤k+1

)
, (1.15)

in which G is a (convoluted) nonlinear expression that we describe explicitly in Sect. 2. In
order to appreciate this equation, it is insightful to transform (1.1) into a new coordinate
system (θ, t) by demanding θx = √

1 + u2x . Indeed, in these new arclength coordinates the
transformed functions

w(θ, t) = u
(
x(θ, t), t

)
, γ (θ, t) =

√
1 − wθ(θ, t)2 (1.16)

can be shown [28, §1] to satisfy the nonlocal PDE

wt = γ −2wθθ + γ 2g(w) + wθ

∫

−

(
γ −4wθθ + g(w)

)
wθθ , (1.17)

in which we use the notation [∫− f ](θ) = ∫ τ

−∞ f (θ ′) dθ ′. This coincides with the system
that arises by taking the formal h ↓ 0 limit in (1.15).

In [29] we constructed a solution to (1.17) by stretching the PDE waveprofile �∗ into its
arclength parametrized form �∗ and writing

w(θ, t) = �∗(θ + ct). (1.18)
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Motivated by this observation, the main goal of this paper is to find solutions to (1.15) of the
form

Ujh(t) = �( jh + ct), �(−∞) = 0, �(+∞) = 1 (1.19)

that bifurcate from the pair (�∗, c∗). In particular, we study the travelling wave system

c� ′(τ ) = G
(
{�(τ + kh)}k≤1

)
(1.20)

posed in termsof the computational coordinate τ = jh+ct rather than the physical coordinate
ξ = x j (t) + ct appearing in (1.5). We note that the discrete term jh now plays the role of θ .

To appreciate the advantage of this indirect approach, we note that any attempt to use ξ

will lead to an equation for the waveprofile � with shifts that depend on the waveprofile �

itself. In particular, the resultingwave equation is a state-dependentMFDEwith infinite range
interactions. At the moment, even state-dependent delay equations with a finite number of
shifts are technically very challenging to analyze, requiring special care in the linearization
procedure [41]. Indeed, linearizations typically involve higher order (continuous) derivatives,
making it very hard to close fixed-point arguments.

Physical frame It turns out that there is a close relation between the two wave Ansatzes
(1.5) and (1.19). In order to see this, let us assume for the moment that we have found a
triplet (�, c, x) for which x and the function U defined in (1.5) satisfy (1.2) together with
(1.3)–(1.4). Let us also assume that for each ϑ ∈ R there is a unique increasing sequence
y jh;ϑ with y0;ϑ = ϑ for which

(
�(y( j+1)h;ϑ) − �(y jh;ϑ)

)2 + (y( j+1)h;ϑ − y jh;ϑ)2 = h2 (1.21)

holds for all j ∈ Z. This can be arranged by imposing a-priori Lipschitz bounds on� and �′
and picking h > 0 to be sufficiently small. Finally, let us assume for definiteness that c > 0
and that the wave outruns the grid in the sense that ẋ0(t) + c > ε > 0.

A direct consequence of this inequality is that

x0(T ) + cT = xh(0) (1.22)

for some T > 0, which implies

U0(T ) = Uh(0) = �
(
xh(0)

)
. (1.23)

The uniqueness property discussed above hence implies that

Ujh(T ) = �(y jh;xh(0)) = �
(
x( j+1)h(0)

)
(1.24)

for all j ∈ Z. Since

(
x( j+1)h(T ) − x jh(T )

)2 = h2 − (
U( j+1)h(T ) −Ujh(T )

)2

= h2 −
(
�

(
x( j+2)h(0)

) − �
(
x( j+1)h(0)

))2

= (
x( j+2)h(0) − x( j+1)h(0)

)2
,

(1.25)

we see that in fact

x jh(T ) + cT = x( j+1)h(0) (1.26)
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for all j ∈ Z. Taking the limit j → −∞, the boundary conditions (1.4) imply that cT = h.
Exploiting the well-posedness of our dynamics in forward and backward time, we conclude
that

x jh(t) = x0( jT + t) + jh (1.27)

holds for all j ∈ Z and t ∈ R. Writing �(ϑ) = x0(ϑ/c), we hence find

x jh(t) − jh = �( jh + ct), (1.28)

which implies that

Ujh(t) = �(x jh(t) + ct) = �
(
jh + �( jh + ct) + ct

)
(1.29)

for all j ∈ Z and t ∈ R. Upon introducing the function

�(τ) = �
(
τ + �(τ)

)
, (1.30)

this allows us to obtain the representation
(
Ujh(t), x jh(t) − jh

) = (
�( jh + ct),�( jh + ct)

)
. (1.31)

In fact, we show that for arbitrary solutions U to (1.15) for which U (t0) is close to
�∗(hZ+ϑ), we indeed have the pointwise inequalities |ẋ(t0)| < |c|whenever c is sufficiently
close to c∗. This can be used to show that the coordinate transformation (1.30) can be inverted,
allowing us to reconstruct the profile �(ξ) from �(τ).

Fixed-point setup In order to construct our travelling waves, we write � = �∗ + v and
decompose (1.20) into the form

(c − c∗)v′ = Lhv + Gnl
(
{v(τ + kh)}k≤1

)
+ G({�∗(τ + kh)}k≤1

) − c� ′∗, (1.32)

using the linear operators Lh that were introduced in [29]. In the limit h ↓ 0, these operators
reduce formally to the operator L∗ associated to the linearization (1.17) around the wave
(1.18). The singular nature of the transition between (1.15) and (1.17) is fully encoded in the
transition between L∗ and Lh , which was studied at length in [29]. As a result, our analysis
in this paper can be seen as the construction of a regular fixed point problem. However, there
are two main challenges that need to be overcome.

The first complication is that Lh is not the ‘exact’ linearization of G, which is far too
complicated to handle. Instead, we recover our operator Lh after several simplification steps,
which each introduce h-dependent errors that need to kept under control. In order to achieve
this, we reapply the approximation framework developed in [28] in order to systematically
bound the global errors that arise by modifying the individual factors of the products that
appear in the definition of G.

The second obstacle is that the nonlinearity G acts on sequences U : hZ → R, while the
fixed-point problem (1.32) is formulated in terms of functions v ∈ L2. Since the relevant
transitions between supremum and L2-based norms cost a factor of h−1/2, special care must
be taken to construct appropriate function spaces that allow uniform bounds for h ↓ 0. This is
particularly dangerous for the terms that are quadratic in the second differences ofU , which
correspond roughly to the

∫
− γ −4w2

θθ term in (1.17).
In fact, we need to exploit the special structure of G and take a discrete derivative of (1.32)

in order to close our problem. We hence need to obtain estimates on the discrete derivative
of the nonlinear residual Gnl, which requires an elaborate bookkeeping system.
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Fig. 1 Plots of the initial condition and approximate solution at t = 40 to the discretized PDE (1.2) using the
cubic nonlinearity (1.6) with a = 0.8536. This bistable reaction–diffusion equation was coupled to the moving
mesh system (1.33) with σ = 10−3 and α = 103, which aims to equidistribute a modified arclength monitor
function. The red markers represent the location of the gridpoints, which become denser in areas where the
solution profile is steep. The problem was solved on a finite domain (0, 50) with N = 51 grid points and
(inhomogeneous) Dirichlet boundary conditions

Outlook We view our work here as a first step towards understanding the impact of adap-
tive discretization schemes on travelling waves and other patterns that exist for all time. In
particular, we believe that the waves constructed here can be seen as a slow manifold for the
dynamics of the full system (1.2) with the non-instantaneous gridpoint behaviour

σ ẋ jh =
√

(x( j+1)h − x jh)2 + α(U( j+1)h −Ujh)2

−
√

(x( j−1)h − x jh)2 + α(U( j−1)h −Ujh)2
(1.33)

prescribed by the MMPDE5 scheme [22] with α = 1. Here σ > 0 is a tunable speed
parameter, which we effectively set to zero by passing to (1.3).

Using the Fredholm theory developed in [29] for the operators Lh one should be able to
leverage the ideas in [40] to effectively track the fast grid-dynamics in the 0 < σ � 1 regime.
A further step in the program would be to also handle temporal discretizations, inspired by
the approach developed in [27] that we described above. Finally, we feel that it is important
to understand the stability of the discretized waves under the full dynamics of the numerical
scheme. To achieve this, one could follow the approach in [39] to transfer information from
the operators Lh to the linearization around the actual adaptive travelling waves constructed
in this paper.

To illustrate the feasability of this program, we used the MMPDELab package [20] to
numerically compute the solution of the discretized system (1.2) coupled to the moving
mesh scheme (1.33); see Figs. 1 and 2. Upon initializing the problem with the exact wave
solution to the PDE (1.1), the system quickly converged to a modified state whereby both the
location of the gridpoints and the associated solution values displayed wave-like behaviour.

We are specially interested here in the pinning phenomenon. Indeed, numerical observa-
tions indicate that the set of detuning parameters a for which c(a) = 0 shrinks dramatically
when using adaptive discretizations. Understanding this in a rigorous fashion would give
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Fig. 2 Plots of the temporal evolution of the mesh locations and solution values for the system discussed in
Fig. 1. Notice that both quantities display the wave-like behaviour (1.31) after an initial transient has passed

considerable insight into the theoretical benefits of adaptive grids compared to the practical
benefits of increased performance. Preliminary results in this direction can be found in [21].

Let us emphasize that the application range of our techniques does not appear to be
restricted to the scalar problem (1.1) or the specific grid-update scheme (1.33) that we use.
Indeed, using the framework developed in [39], it should be possible to perform a similar anal-
ysis for the FitzHugh-Nagumo equation PDE and other multi-component reaction–diffusion
problems. In addition, any numerical scheme based on the arclength monitor function will
share (1.3) as the instantaneous equidistribution limit.

Overview This paper is organized as follows. After formulating our main results in Sect. 2,
we introduce our notational framework and recap the key contributions from [28, 29] in
Sect. 3. In Sect. 4 we simplify the nonlinear functions that appear as factors in the product
structure of G and obtain estimates on all the resulting errors. These estimates are used in
Sect. 5 to compute tractable expressions for the linearization of G and its discrete derivative
G+ around �∗ and obtain bounds on the residuals. We conclude in Sect. 6 by combining all
these ingredients with the theory developed in [29]. In particular, we develop an appropriate
fixed-point argument to construct our desired travelling waves.

In order to develop the main story in a reasonably streamlined fashion that focuses on
the key ideas, we have chosen to transfer many of the tedious underlying estimates and
algebraic manipulations to the appendices. In order to keep this paper as self-contained as
possible, these appendices also summarize some of the fundamental auxiliary bounds that
were obtained in [28, 29].

2 Main Results

The main results of this paper concern adaptive-grid discretizations of the scalar PDE

ut = uxx + g(u). (2.1)
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Throughout the paper, we assume that the nonlinearity g satisfies the following standard
bistability condition.

(Hg) The nonlinearity g : R → R is C3-smooth and has a bistable structure, in the sense
that there exists a constant 0 < a < 1 such that we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0, (2.2)

together with

g(u) < 0 for u ∈ (0, a) ∪ (1,∞), g(u) > 0 for u ∈ (−∞,−1) ∪ (a, 1). (2.3)

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the
two stable equilibria of g [15]. The key requirement in our next assumption is that this wave
is not stationary, which can be arranged by demanding

∫ 1
0 g(u) du 
= 0.

(H�∗) There exists a wave speed c∗ 
= 0 and a profile�∗ ∈ C5(R,R) that satisfies the limits

lim
ξ→−∞ �∗(ξ) = 0, lim

ξ→+∞ �∗(ξ) = 1 (2.4)

and yields a solution to the PDE (2.1) upon writing

u(x, t) = �∗(x + c∗t). (2.5)

In [28] we derived an effective equation for the dynamics of the sequenceU (t) : hZ → R

featuring in the adaptive scheme (1.2)–(1.4) for (2.1) that no longer explictly depends on the
location of the gridpoints. In order to formulate this reduced equation, we recall the discrete
derivatives

[∂+U ] jh = h−1[U( j+1)h −Ujh
]
,

[∂−U ] jh = h−1[Ujh −U( j−1)h
]
,

[∂0U ] jh = (2h)−1[U( j+1)h −U( j−1)h
]
, (2.6)

together with the first-order differences

D�±(U ) = ∂±U
√
1 − (∂±U )2

, D�0(U ) = 2∂0U
√
1 − (∂+U )2 + √

1 − (∂−U )2
(2.7)

and the second order analogues

D��0(U ) = 2

h

D�+(U ) − D�−(U )
√
1 − (∂+U )2 + √

1 − (∂−U )2
, D�0;+(U ) = ∂+D�0(U ). (2.8)

This allows us to introduce the auxiliary functions

p(U ) = D�+(U )

1 + D�+(U )D�0(U )
, q(U ) = h−1 ln

[
1 + hp(U )D�0;+(U )

]
, (2.9)

which using the notation
⎡

⎣
∑

−;h
a

⎤

⎦

jh

= h
∑

k>0

a( j−k)h,

⎡

⎣
∑

+;h
a

⎤

⎦

jh

= h
∑

k>0

a( j+k)h (2.10)

allows us to recall the definitions

Q(U ) =
∑

−;h
q(U ), Z±(U ) = exp

[ ± Q(U )
]

(2.11)
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and subsequently write

G(U ) = D��0(U
) + g

(
U

)

−D�0(U
)Z−(U )

∑

−;h
p(U )Z+(U )∂+[D��0(U ) + g(U )

]
. (2.12)

These ingredients allow us to formulate the effective reduced system [28, Eq. (2.25)] for the
dynamics of (1.2)–(1.4) as

U̇ (t) = G(
U (t)

)
, (2.13)

which will be the main system that we analyze in this paper.
We recall the arclength parametrization ξ∗(τ ) defined by the identity

A(
ξ∗(τ )

) =
∫ ξ∗(τ )

0

√
1 + [∂ξ ′�∗(ξ ′)]2 dξ ′ = τ, (2.14)

together with the stretched waveprofile �∗ : R → R given by

�∗(τ ) = �∗
(
ξ∗(τ )

)
. (2.15)

The main result of this paper states that for sufficiently small h > 0, the reduced problem
(2.13) admits a travelling wave solution

Ujh(t) = �h( jh + cht) (2.16)

with (�h, ch) ≈ (�∗, c∗) in an appropriate sense. These waves are locally unique up to
translation. We note that items (iv) and (v) use the notation ∂+

h v = h−1[v(· + h) − v(·)]
for functions v. In addition, we use the shorthands L2 = L2(R;R) and H1 = H1(R;R),
together with the Heaviside sequence Hjh = 1 j≥0.

Theorem 2.1 (see Sect. 6) Suppose that (Hg) and (H�∗) are satisfied. Then there exists a
constant δh > 0 together with pairs

(�h, ch) ∈ C1(R;R) × R, (2.17)

defined for 0 < h ≤ δh, such that the following properties are satisfied.

(i) For every 0 < h ≤ δh we have the limits

lim
ξ→−∞ �h(ξ) = 0, lim

ξ→+∞ �h(ξ) = 1. (2.18)

(ii) For every 0 < h ≤ δh we have the strict inequality

sup
τ∈R

|�h(τ + h) − �h(τ )| < h. (2.19)

(iii) For every 0 < h ≤ δh, the function U : R → �∞(hZ;R) defined by

U jh(t) = �h( jh + cht) (2.20)

satisfies the inclusion

t �→ U (t) − H ∈ C1(
R; �2(hZ;R)

)
. (2.21)

In addition, the identity (2.13) and the strict inequality
∥∥∂+U (t)

∥∥∞ < 1 both hold for
all t ∈ R.

123



Journal of Dynamics and Differential Equations (2023) 35:2743–2811 2753

(iv) We have �h − �∗ ∈ H1 for every 0 < h ≤ δh and the limit

|ch − c∗| + ‖�h − �∗‖H1 + ∥
∥∂+

h

[
�h − �∗

]∥∥
H1

+ ∥
∥∂+

h ∂+
h ∂+

h

[
�h − �∗]

∥
∥
L2 → 0

(2.22)

holds as h ↓ 0.
(v) Pick any 0 < h ≤ δh and consider a pair (�̃, c̃) ∈ L∞ ×R that has �̃ −�∗ ∈ H1 with

|c̃ − c∗| + ∥
∥�̃ − �∗

∥
∥
H1 + ∥

∥∂+
h

[
�̃ − �∗

]∥∥
H1

+ ∥
∥∂+

h ∂+
h ∂+

h

[
�̃ − �∗

]∥∥
L2 < h3/4. (2.23)

Then the function Ũ : R → �∞(hZ;R) defined by

Ũ jh(t) = �̃h
(
jh + c̃t

)
(2.24)

satisfies the inclusion

t �→ Ũ (t) − H ∈ C0(
R; �2(hZ;R)

)
, (2.25)

together with the strict inequality
∥
∥∂+Ũ

∥
∥∞ < 1 for all t ∈ R.

In addition, if Ũ is a solution to the system (2.13) for all t ∈ R, then we must have
(
�̃(·), c̃) = (

�h(· + ϑ), ch
)

(2.26)

for some ϑ ∈ R.

We emphasize that the location of the gridpoints for the waves (2.16) can be determined
by using

x jh(t) = jh −
∑

j ′< j

(
U( j ′+1)h(t) −Uj ′h(t)

)2
√
h2 − (U( j ′+1)h(t) −Uj ′h(t))2 + h

; (2.27)

see [28, Thm. 2.3]. In fact, our final result shows how these waves in the computational
coordinates can be interpreted as wave-like objects in the original physical coordinates.

Corollary 2.2 (see Sect. 6) Consider the setting of Theorem 2.1. Then there exists a constant
0 < δ̃h < δh so that for all 0 < h ≤ δ̃h there exist pairs

(�h,�h) ∈ C1(R;R) × C1(R;R) (2.28)

that satisfy the following properties.

(i) Upon writing

x jh(t) = jh + �h( jh + cht),
Ujh(t) = �h( jh + cht),

(2.29)

the adaptive grid equations (1.2)–(1.4) are satisfied for all t ∈ R.
(ii) For every t ∈ R and j ∈ Z, the functions defined in (2.29) satisfy the relation

U jh(t) = �h
(
x jh(t) + cht

)
. (2.30)

We remark that if (2.16) and (2.30) both hold, simple substitutions yield the identity
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�h( jh + cht) = Ujh(t)

= �h
(
jh + �h( jh + cht) + cht

)

= �h( jh + cht + �h( jh + cht)
)
. (2.31)

In particular, the main assertion in Corollary 2.2 is that the perturbed coordinate transforma-
tion

ξh(τ ) = τ + �h(τ ) (2.32)

is invertible for sufficiently small h > 0, allowing us to transfer the waves back to the original
physical framework.

3 Setup and Notation

In this section we recall several crucial results and notational conventions introduced in
the prequel papers [28, 29]. This will ensure that the current paper can be read reasonably
independently. As a preparation, we recall the sequence spaces

�2h = {V : hZ → R for which ‖V ‖2
�2h

:= h
∑

j∈Z

∣∣Vhj
∣∣2 < ∞},

�∞
h = {V : hZ → R for which ‖V ‖�∞

h
:= sup

j∈Z

∣∣Vhj
∣∣ < ∞} (3.1)

that were introduced in [28, §3.3], together with the higher order norms

‖V ‖
�
2;1
h

= ‖V ‖�2h
+ ∥∥∂+V

∥∥
�2h

,

‖V ‖
�
2;2
h

= ‖V ‖�2h
+ ∥∥∂+V

∥∥
�2h

+ ∥∥∂+∂+V
∥∥

�2h
,

‖V ‖
�
2;3
h

= ‖V ‖�2h
+ ∥∥∂+V

∥∥
�2h

+ ∥∥∂+∂+V
∥∥

�2h
+ ∥∥∂+∂+∂+V

∥∥
�2h

(3.2)

and their counterparts

‖V ‖
�
∞;1
h

= ‖V ‖�∞
h

+ ∥∥∂+V
∥∥

�∞
h

,

‖V ‖
�
∞;2
h

= ‖V ‖�∞
h

+ ∥∥∂+V
∥∥

�∞
h

+ ∥∥∂+∂+V
∥∥

�∞
h

. (3.3)

For a single fixed h > 0 all these norms are naturally equivalent to the �2h-norm or the �∞
h -

norm. The point here is that the h−1 factor in the definition of ∂+ introduces a natural scaling
that will allow us to formulate h-independent bounds.

In addition,we pick a reference functionUref;∗ ∈ C2(R, [0, 1]) that satisfies the properties
Uref;∗

(
(−∞,−2]) = 0, Uref;∗

([2,∞)
) = 1, 0 ≤ U ′

ref;∗ < 1,
∣∣U ′′

ref;∗
∣∣ < 1.

(3.4)

For any κ > 0, this allows us to write

Uref;κ (τ ) = Uref;∗(κτ) (3.5)

and introduce the subset

Vh;κ = {V ∈ �2h : ‖V ‖
�
2;2
h

+ ‖V ‖�∞
h

+ ∥∥∂+∂+V
∥∥

�∞
h

<
1

2
κ−1 and
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∥
∥∂+V

∥
∥

�∞
h

< 1 − 2κ}, (3.6)

which is open in �2h on account of the continuity of the difference operator and the supremum
norm. We can now recall the affine subset [28, §3.4]

�h;κ = Uref;κ (hZ) + Vh;κ ⊂ �∞
h (3.7)

that captures the admissable states of thewaves thatwe are interested in and provides adequate
control on the necessary difference operators.

Indeed, for each U ∈ �h;κ we have the crucial bound
∥
∥∂+U

∥
∥

�∞
h

≤ 1 − κ , which

ensures that our grid points are well-defined. In addition, the norms
∥
∥∂+U

∥
∥

�
2,1
h
, ‖U‖

�
∞;2
h

and ‖g(U )‖�2h
are all bounded uniformly in h > 0. Finally, it is possible to pick ε0 > 0 and

κ > 0 in such a way that for any 0 < h < 1 and any v ∈ H1 that has

‖v‖H1 + h−1/2
∥
∥∂+v

∥
∥
H1 < 2ε0, (3.8)

we have the inclusion
[
�∗ + v

]
(ϑ + hZ) ∈ �h;κ (3.9)

for all ϑ ∈ [0, h]. These statements all follow from [28, Prop. 3.1-3.3]. Note that none of
these estimates involve third-differences, which will always be tracked separately throughout
the paper. Indeed, in Sect. 6 we explain how their special structure plays a crucial role in the
proof of our main result.

3.1 Linear Operators

In [29] we analyzed several important linear operators that will turn out to be closely related
to our travelling wave system (1.20). To set the stage, we recall the sequences

γU =
√
1 − (∂0U )2, ∂(2)U = ∂+∂−U , (3.10)

which are well defined for any U ∈ �h;κ . Following [29, §5], we introduce the linear
operators MU : �2h → �2h that act as

MU [V ] = −c∗γ −1
U ∂0V + 4γ −4

U ∂0U [∂(2)U ]∂0V + γ −2
U ∂(2)V + γ 2

U g
′(U )V , (3.11)

together with their twisted counterparts LU : �2h → �2h defined by

LU [V ] = c∗∂0V + MU [V ] + ∂0U
∑

−;h γ −2
U [∂(2)U ]MU [V ], (3.12)

always taking U ∈ �h;κ .
A special role is reserved for the discrete derivative ∂+MU , which we approximate by the

linear operator

M+
U ;apx[V ] = γ 2

U

(
M̃U ;I [V ] + M̃U ;I I [V ] + M̃U ;I I I [V ])

−2γ −2
U ∂0U [∂(2)U ]MU [V ]. (3.13)

Based on the computations in [29, Prop. 5.5], this decomposition uses the expressions

M̃U ;I [V ] = 4[6γ −8
U − 5γ −6

U ][∂(2)U ]2∂0V
+8γ −6

U ∂0U [∂(2)U ]∂(2)V
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+g′′(U )[∂0U ]V + g′(U )∂0V ,

M̃U ;I I [V ] = −3c∗γ −5
U ∂0U [∂(2)U ]∂0V − c∗γ −3

U ∂(2)V (3.14)

that feature at most second differences of V , together with

M̃U ;I I I [V ] = 4γ −6
U ∂0U [∂+∂(2)U ]∂0V + γ −4

U ∂+∂(2)V (3.15)

which contains third differences that needs to be treated carefully. Several crucial bounds for
these operators are collected in Proposition C.1.

We are now ready to recall the linear operator Lh : H1 → L2 that acts as

Lhv = −c∗v′ + L�∗v, (3.16)

where we are slightly abusing notation. Indeed, recalling the discrete evaluation operator

[evϑ f ] jh = f (ϑ + jh) (3.17)

that ‘samples’ a function f on the grid ϑ + hZ, the identity Lhv = f should be interpreted
as the statement that

evϑ

[
c∗v′ + f

] = Levϑ�∗ [evϑv] (3.18)

holds for each ϑ ∈ [0, h]. We remark that the right-hand side above is continuous in �2h as a
function of ϑ as a consequence of (A.6) and the continuity of the translation operator on H1.

The key purpose of [29] was to construct a quasi-inverse for the operator Lh . Indeed, [29,
Thm. 2.3] establishes the existence of two linear maps

β∗
h : L2 → R, V∗

h : L2 → H1, (3.19)

defined for small h > 0, so that for each f ∈ L2 the pair

(β, v) = (
β∗
h f ,V∗

h f
) ∈ R × H1 (3.20)

is the unique solution to the problem

Lhv = f + β� ′∗ (3.21)

up to a normalization condition that can be used to fix the phase of our constructed wave.
The crucial point is that we obtain h-uniform bounds

∣∣β∗
h f

∣∣ + ∥∥V∗
h f

∥∥
H1 + ∥∥∂+

h ∂+
h V∗

h f
∥∥
L2 ≤ K ‖ f ‖L2 ,

∥∥∂+
h V∗

h f
∥∥
H1 + ∥∥∂+

h ∂+
h ∂+

h V∗
h f

∥∥
L2 ≤ K

[ ‖ f ‖L2 + ∥∥∂+
h f

∥∥
L2

]
, (3.22)

which will provide the required control on the second and third differences of our travelling
wave.

We remark that these difference operators cannot be replaced by the corresponding deriva-
tives, which forces us to develop a rather delicate fixed point argument in Sect. 6. In addition,
we note that the spectral convergence framework used to obtain (3.22) relies strongly on the
inner product structure of L2, which explains why we do not have L∞-based estimates (yet).
This is the reason that we go to great lengths throughout the paper to work with �2h-bounds as
much as possible. Indeed, the results in Sect. A show that these mix well with L2-functions,
unlike supremum bounds.
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3.2 Error Functions

The errors that need to be controlled during our reduction steps arise from various sources
that we briefly discuss here. As preparation, we recall the translation operators

[T+a] jh = a( j+1)h, [T−a] jh = a( j−1)h (3.23)

and the sums and products

S±a = 1

2
(a + T±a), P±a = aT±a. (3.24)

These allow us to recall the function

Esm(U ) = h∂−
[
γ −4
U (2 − γ 2

U )S+[∂(2)U ]
]

(3.25)

from [28, Eq. (7.28)], which measures the smoothness of U in some sense. Indeed, it
becomes small whenever third differences of U can be controlled, which is the case when
taking U = �∗.

In a similar vein, we introduce the error functions

Esh;U (V ) = h ‖V ‖
�
2;2
h

,

Esh;U (V ) = h ‖V ‖
�
3;2
h

+ h
[ ∥∥∂+∂+∂+U

∥∥
�2h

+ ∥∥∂+∂+∂+U
∥∥

�∞
h

] ‖V ‖
�
2;2
h

, (3.26)

which can be used to ‘shift’ function evaluations back and forth between neighbouring lattice
sites. We note in general that overlined symbols will be used for expressions related to
G+, which naturally involve higher order differences than those related to G. Indeed, the
nonlinearities in our problem will be controlled by the product

Eprod(W (1),W (2)) =
∥∥∥W (1)

∥∥∥
�
2;2
h

∥∥∥W (2)
∥∥∥

�
2;2
h

+
∥∥∥W (1)

∥∥∥
�
2;2
h

∥∥∥W (2)
∥∥∥

�
∞;1
h

+
∥∥∥W (1)

∥∥∥
�
∞;1
h

∥∥∥W (2)
∥∥∥

�
2;2
h

, (3.27)

together with

Eprod;U (W (1),W (2)) = ∥∥∂+∂+∂+U
∥∥

�∞
h

[ ∥∥∥W (1)
∥∥∥

�
2;1
h

∥∥∥W (2)
∥∥∥

�
∞;1
h

+
∥∥∥W (1)

∥∥∥
�
∞;1
h

∥∥∥W (2)
∥∥∥

�
2;1
h

]

+
∥∥∥W (1)

∥∥∥
�
2;2
h

∥∥∥W (2)
∥∥∥

�
2;2
h

+
∥∥∥W (1)

∥∥∥
�
2;2
h

∥∥∥W (2)
∥∥∥

�
∞;2
h

+
∥∥∥W (1)

∥∥∥
�
∞;2
h

∥∥∥W (2)
∥∥∥

�
2;2
h

+
∥∥∥W (1)

∥∥∥
�
2;3
h

∥∥∥W (2)
∥∥∥

�
∞;1
h

+
∥∥∥W (1)

∥∥∥
�
∞;1
h

∥∥∥W (2)
∥∥∥

�
2;3
h

. (3.28)

Observe here that the supremum norms are always at least one order smaller than the highest
�2-based norms. In addition, there are no squares of third-differences or products involv-
ing only supremum bounds. These facts will turn out to be crucial when passing between
sequences and functions in order to apply the estimates (3.22) in Sect. 6.

Our final error functions are given by

Etw(U ) = γ −4
U ∂(2)U + g(U ) − c∗γ −1

U ∂0U , (3.29)
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together with its approximate first difference

E+
tw;apx(U ) = 4γ −6

U ∂0US+[∂(2)U ]T+[∂(2)U ] + γ −4
U ∂+∂(2)U

+g′(U )∂0U − c∗γ −3
U S+[∂(2)U ]. (3.30)

The relation between these two functions is explored in Proposition C.2. We view both
expressions as a measure for the difference betweenU and the stretched travelling wave �∗.
Indeed, upon introducing the notation

γ∗(τ ) =
√
1 − � ′∗(τ )2, (3.31)

we recall from [29, Eq. (3.4)] that �∗ satisfies the ODE

c∗γ −1∗ � ′∗ = γ −4∗ � ′′∗ + g
(
�∗

)
, (3.32)

which resembles the continuum limit of (3.29). This can be differentiated to yield

c∗γ −3∗ � ′′∗ = γ −4∗ � ′′′∗ + 4γ −6∗ � ′∗(� ′′∗ )2 + g′(�∗
)
� ′∗, (3.33)

the natural limit of (3.30).
Together with the smoothness term Esm, the functions (3.29) and (3.30) can be used to

define our final remainder terms

Erem;U (V ) = ‖V ‖
�
2;2
h

[
‖Etw(U )‖�2h

+ ‖Etw(U )‖�∞
h

+ ‖Esm(U )‖�2h

]
,

E rem;U (V ) = ‖V ‖
�
2;2
h

[
‖Etw(U )‖�2h

+ ‖Etw(U )‖�∞
h

+ ‖Esm(U )‖�2h

]

+‖V ‖
�
2;1
h

∥∥∂+[Etw(U )]∥∥
�∞
h

. (3.34)

These are small when taking U = �∗ and describe the additional error contributions gener-
ated in this paper that cannot be absorbed by the terms in [28].

3.3 Initial Approximants forG andG+

The expression (2.12) for G(U ) is too convoluted for practical use, featuring third differences
and double sums. It hence needs to be simplified, at the cost of introducing error terms. An
initial step in this direction was performed in [28, Eq. (6.10)], where we decomposed G(U )

into a number of products featuring nonlinearities from the set

Snl;short = {Y1,Y2,D�0;+,D�−;+,XA,XB ,XC ,XD}, (3.35)

which were all defined in [28, §6] and contain at most second differences. A similar decom-
position was obtained for G+(U ) = ∂+G(U ) in [28, Eq. (6.16)], but now with nonlinearities
from the set

Snl;short = Snl;short ∪ {Y+
1 ,Y+

2b}, (3.36)

together with an explicit third-difference term. In addition, for each of the nonlinearities f ∈
Snl;short we (implicitly) defined an approximation fapx(U ) and an approximate linearization
flin;U [V ] in [28, §8].
In fact, the full definitions of the nonlinearities f ∈ Snl;short turn out to be irrelevant for

our purposes here, so there is no need to repeat them from [28, §6]. However, we do need
to manipulate their approximations, which we therefore evaluate in full here by substituting
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the relevant expressions from [28, §7] into the definitions [28, Eq. (8.1)-(8.4)]. This yields
the approximants

XA;apx(U ) = ∂0U , Y1;apx(U ) = ∂0U ,

XB;apx(U ) = S+[γ −1
U ]γ 4

U , Y2;apx(U ) = γ −4
U ∂(2)U + g(U ),

XC;apx(U ) = S+[γ −1
U ](γ 4

U − γ 2
U ), Y+

1;apx(U ) = γ −1
U S+[∂(2)U ]T+γU ,

XD;apx(U ) = S+[γU ∂0U ]∂0U , Y+
2b;apx(U ) =

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U
]

+c∗γ −3
U S+[∂(2)U ], (3.37)

together with the approximate linearizations

XA;lin;U [V ] = ∂0V + ∂0U
[∑

−;h
Esm(U )∂0V

]
,

XB;lin;U [V ] = S+[
γ −3
U ∂0U∂0V + γ −1

U

[∑

−;h
Esm(U )∂0V

]]
γ 4
U

+S+[γ −1
U ](−4γ 2

U )∂0U∂0V ,

XC;lin;U [V ] = S+[
γ −3
U ∂0U∂0V + γ −1

U

∑

−;h
Esm(U )∂0V

]
(γ 4

U − γ 2
U )

+S+[γ −1
U ][2 − 4γ 2

U ]∂0U∂0V ,

XD;lin;U [V ] = S+[γ −1
U (2γ 2

U − 1)∂0V ]∂0U + S+[γU ∂0U ]∂0V
+S+[γU ∂0U ]∂0U

∑

−;h
Esm(U )∂0V , (3.38)

respectively

Y1;lin;U [V ] = ∂0V − ∂0U
[∑

−;h
Esm(U )∂0V

]
,

Y2;lin;U [V ] = γ −2
U MU [V ] + c∗γ −3

U ∂0V ,

Y+
1;lin;U [V ] = [

γ −3
U ∂0U [S+∂(2)U ]∂0V + γ −1

U S+∂(2)V
]
T+γU

−γ −1
U S+[∂(2)U ]T+[

γ −1
U ∂0U∂0V + γU

∑

−;h
Esm(U )∂0V

]
,

Y+
2b;lin;U [V ] = 4[6γ −8

U − 5γ −6
U ]S+[∂(2)U ]T+[∂(2)U ]∂0V

+4γ −6
U ∂0U

[
T+[∂(2)U ]S+[∂(2)V ] + S+[∂(2)U ]T+[∂(2)V ]

]

+g′′(U )[∂0U ]V + g′(U )∂0V . (3.39)

The corresponding expressions for the two remaining second-difference operators can be
copied from [28, Eq. (7.22)] and read

D�0;+
apx (U ) = γ −3

U S+[∂(2)U ], D�0;+
lin;U [V ] = 3γ −5

U ∂0US+[∂(2)U ]∂0V
+γ −3

U S+[∂(2)V ],
D�−;+
apx (U ) = γ −3

U ∂(2)U , D�−;+
lin;U [V ] = 3γ −5

U ∂0U [∂(2)U ]∂0V
+γ −3

U ∂(2)V . (3.40)
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The expressions above were used in [28, §8.1] to define an initial approximant

Gapx;I (U ) = GA;apx;I (U ) + GB;apx;I (U ) + GC;apx;I (U ) + GD;apx;I (U ) (3.41)

for G(U ), featuring the four components

GA;apx;I (U ) =
[
1 − Y1;apx(U )T−[XA;apx(U )

]]Y2;apx(U ),

GB;apx;I (U ) = Y1;apx(U )
∑

−;h
Y2;apx(U )T−[

XB;apx(U )
]
D�−;+
apx (U ),

G#;apx;I (U ) = Y1;apx(U )
∑

−;h
Y2;apx(U )T−[

X#;apx(U )D�0;+
apx (U )

]
, (3.42)

for # ∈ {C, D}. In addition, we introduced the approximate linearization

Glin;U ;I [V ] = GA;lin;U ;I [V ] + GB;lin;U ;I [V ] + GC;lin;U ;I [V ] + GD;lin;U ;I [V ] (3.43)

by writing

GA;lin;U ;I [V ] = −Y1;lin;U [V ]T−[XA;apx(U )
]Y2;apx(U )

−Y1;apx(U )T−[XA;lin;U [V ]]Y2;apx(U )

+
[
1 − Y1;apx(U )T−[XA;apx(U )

]]Y2;lin;U [V ] (3.44)

and applying the analogous product-rule procedure to obtainG#;lin;U ;I [V ] for # ∈ {B,C, D};
see [28, Eq. (8.6)-(8.7)] and Sects. E.1–E.3. Treating G+ in a similar spirit, we defined initial
approximants

G+
apx;I (U ) = G+

A′a;apx;I (U ) + G+
A′b;apx;I (U ) + G+

A′c;apx;I (U )

+G+
B′;apx;I (U ) + G+

C ′;apx;I (U ) + G+
D′;apx;I (U ),

G+
lin;U ;I [V ] = G+

A′a;lin;U ;I [V ] + G+
A′b;lin;U ;I [V ] + G+

A′c;lin;U ;I [V ]
+G+

B′;lin;U ;I [V ] + G+
C ′;lin;U ;I [V ] + G+

D′;lin;U ;I [V ], (3.45)

in which we have introduced the expressions

G+
A′a;apx;I (U ) = γ −2

U ∂+∂(2)U ,

G+
A′b;apx;I (U ) =

[
1 − Y1;apx(U )XA;apx(U )

]
Y+
2b;apx(U ),

G+
A′c;apx;I (U ) = −Y+

1;apx(U )XA;apx(U )T+[Y2;apx(U )
]
, (3.46)

together with

G+
B′;apx;I (U ) = Y+

1;apx(U )T+ ∑

−;h
Y2;apx(U )T−[

XB;apx(U )
]
D�−;+
apx (U ),

G+
#′;apx;I (U ) = Y+

1;apx(U )T+ ∑

−;h
Y2;apx(U )T−[

X#;apx(U )D�0;+
apx (U )

]
, (3.47)

for # ∈ {C, D}. With the sole exception of

G+
A′a;lin;U ;I [V ] = γ 2

U M̃U ;I I I [V ] − 2γ −4
U ∂0U [∂+∂(2)U ]∂0V , (3.48)

all the approximate linearizations in (3.45) can be found by applying the product-rule proce-
dure underpinning (3.44) to the expressions (3.46)–(3.47); see [28, §8.2] and Sects. F.1–F.3.
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One of our main aims in [28] was to develop a framework to control the errors that arise
by these types of approximations. In particular, we needed to track the propagation of errors
on the individual factors of (2.12) through the full sums and exponents. The bounds in [28,
Lems. 8.1-8.3] provide a constant K = K (κ) > 0 so that these errors satisfy

∥
∥G(U ) − Gapx;I (U )

∥
∥ ≤ Kh,

∥
∥
∥G+(U ) − G+

apx;I (U )

∥
∥
∥

�2h

≤ Kh
[
1 + ∥

∥∂+∂+∂+U
∥
∥

�2h

]
(3.49)

for all U ∈ �h;κ . In addition, the nonlinear residuals

Gnl;U ;I (V ) = G(U + V ) − G(U ) − Glin;U ;I [V ],
G+
nl;U ;I (V ) = G+(U + V ) − G+(U ) − G+

lin;U ;I [V ] (3.50)

can be estimated as
∥
∥Gnl;U ;I (V )

∥
∥

�2h
≤ KEprod(V , V ) + KEsh;U (V ),

∥
∥
∥G+

nl;U ;I (V )

∥
∥
∥

�2h

≤ KEprod;U (V , V ) + KEsh;U (V ) (3.51)

for any U ∈ �h;κ and any V ∈ �2h for which U + V ∈ �h;κ .
These initial approximants for G and G+ are already much easier to work with than

(2.12) and enabled us to establish the well-posedness of our reduced system (2.13) in [28].
However, they are still unwieldy on account of the shifts and the sums. In addition, several
simplifications can bemade that only become apparent when looking at the full combinations
(3.41), (3.43) and (3.45). This will be the main focus of Sects. 4–5.

Convention Throughout the remainder of this paper, we use the convention that primed
constants (such as C ′

1, C
′
2 etc) that appear in proofs are positive and depend only on κ and

the nonlinearity g, unless explicitly stated otherwise.

4 Component Estimates

The first important task in this paper is to build a bridge between the linear theory described
in Sect. 3.1 and the approximation framework outlined in Sect. 3.3. This requires us to refine
the approximants introduced in the latter section. We carry out the first step of this procedure
here, focusing our attention on the nonlinearities introduced in (3.35)–(3.36).

In particular, for any f ∈ Snl;short we introduce the further decompositions

fapx(U ) = fapx;expl(U ) + fapx;sh(U ) + fapx;rem(U ),

flin;U [V ] = flin;U ;expl[V ] + flin;U ;sh[V ] + flin;U ;rem[V ]. (4.1)

The expressions with the label ‘expl’ are the actual explicit simplifications that will play a
key role in our further computations. The label ‘sh’ is used for terms which are always small,
which we will be able to absorb into the error terms Esh and Esh defined in (3.26). Finally,
the label ‘rem’ is used for remainder terms that are small when using U = �∗.

The explicit decompositions (4.1) are provided in Sect. D. Our main contribution here is
to summarize the errors that arise in a structured fashion that resembles the main spirit of the
framework developed in [28, §7]. This will allow us to replace all the occurrences of fapx
and flin;U in Sect. 3.3 by their refinements fapx;expl and flin;U ;expl, leading to a second round
of approximations Gapx;I I , G+

apx;I I , Glin;U ;I I and G+
lin;U ;I I .
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In order to achieve this, we define a preferred exponent set

Q f ;pref ⊂ {2,∞} (4.2)

for each f ∈ Snl;short, together with its counterpart

Q f ;pref ⊂ {2,∞} (4.3)

for each f ∈ Snl;short. This is done in such a way that we can write

Gapx;I (U ) =
N∑

i=1

πi
[
fapx;i;1(U ), . . . , fapx;i;ki (U )

]
,

G+
apx;I (U ) − G+

A′a;apx;I (U ) =
N∑

i=1

π i
[
f apx;i;1(U ), . . . , f apx;i;ki (U )

]
, (4.4)

for a set of bounded multi-linear maps

πi : �
qi;1
h × . . . × �

qi;ki
h → �2h, π i : �

qi;1
h × . . . × �

qi;ki
h → �2h, (4.5)

each defined for 1 ≤ i ≤ N , where we have the inclusions

fi; j ∈ Snl;short, qi; j ∈ Q fi; j ;pref , f i; j ∈ Snl;short, qi; j ∈ Q f i; j ;pref , (4.6)

for all 1 ≤ j ≤ ki . Stated more informally, the �2h norm of Gapx;I (U ) can be bounded in
terms of products of �

q
2-norms of nonlinearities f ∈ Snl;short, where each q is taken from the

preferred set of exponents. This is the direct analogue of [28, Cor. 6.4].
A short inspection of the products (3.42), (3.46) and (3.47) readily shows that there is

some freedom as to which factors should be measured in �2h . In fact, it is possible to put
an �2h norm on any chosen factor, at the price of possibly having to flip the exponent of a
companion factor that has 2 ∈ Q f ;pref from two to infinity.

This freedom is essential to obtain sharp estimates and hence requires us to deviate from
the preferred exponents from time to time. The main focus of [28, §5,§7-8] was to develop
a bookkeeping framework to keep track of this procedure. We build on this investment here
and follow the spirit of [28, §5.2] to define further exponent sets

Q f ⊂ {2,∞}, Q f ;lin ⊂ {2,∞}, Q f ;lin;rem ⊂ {2,∞} (4.7)

for each f ∈ Snl;short∪Snl;short. The first of these contains all values of q for which fapx maps
into �

q
h . On the other hand, the set Q f ;lin contains all q for which we need to evaluate the

�
q
h -norm of flin;U ;expl and flin;U ;sh, while Q f ;lin;rem contains these exponents for flin;U ;rem.
In order to illustrate these points, let us consider the example

Iex;I ;U [V ] = ∑
−;h Y2;apx(U )XB;lin;U [V ]D�−;+

apx (U ), (4.8)

which appears (after dropping a shift for notational clarity) as a factor in the component
GB;lin;U ;I that needs to be evaluated in the supremum norm; see (E.17). Our goal is to
simplify this expression by writing

Iex;I I ;U [V ] = ∑
−;h Y2;apx;expl(U )XB;lin;U ;expl[V ]D�−;+

apx (U ), (4.9)

noting thatD�−;+
apx is not simplified further; see Sect. D. Exploiting the fact thatY2;apx;sh = 0,

a short computation readily yields the decomposition

Iex;I ;U [V ] = Iex;I I ;U [V ] + Iex;rem;a + Iex;sh;a + Iex;rem;b, (4.10)
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where we have introduced the terms

Iex;rem;a =
∑

−;h
Y2;apx(U )XB;lin;rem;U [V ]D�−;+

apx (U ),

Iex;sh;a =
∑

−;h
Y2;apx(U )XB;lin;U ;sh[V ]D�−;+

apx (U ),

Iex;rem;b =
∑

−;h
Y2;apx;rem(U )XB;lin;U ;expl[V ]D�−;+

apx (U ). (4.11)

We note here that the preferred exponent sets are defined in (D.12), (D.19) and (D.30) and
given by

QY2;pref = {2}, QXB ;pref = {∞}, QD�−;+;pref = {2}. (4.12)

Recalling the remainder function introduced in (3.34), we may readily use these preferred
exponents to compute

∥
∥Iex;rem;a

∥
∥

�∞
h

≤ ∥
∥Y2;apx(U )

∥
∥

�2h

∥
∥XB;lin;rem;U [V ]∥∥

�∞
h

∥
∥∥D�−;+

apx (U )

∥
∥∥

�2h

≤ KErem;U (V ).

(4.13)

Herewe use property (4.33) belowwith q = ∞ (see (D.36)) together with the a-priori bounds
(4.21). For the second term we can use the same properties, but now with q = 2 (see (D.36)).
In particular, we obtain

∥∥Iex;rem;a
∥∥

�∞
h

≤ ∥∥Y2;apx(U )
∥∥

�∞
h

∥∥XB;lin;sh;U [V ]∥∥
�2h

∥∥∥D�−;+
apx (U )

∥∥∥
�2h

≤ KEsh;U (V ).

(4.14)

Note that this required us to swap the first two exponents, which is made possible by the
demand ∞ ∈ Q f for each f ∈ Snl;short; see Proposition 4.1.

This swap is also required for the final term, which can be controlled by

∥∥Iex;rem;b
∥∥

�∞
h

≤ ∥∥Y2;apx;rem(U )
∥∥

�∞
h

∥∥XB;lin;U ;expl[V ]∥∥
�2h

∥∥∥D�−;+
apx (U )

∥∥∥
�2h

≤ KErem;U (V ).

(4.15)

Indeed, simply using �∞
h on the middle factor would lead to a contribution proportional to

‖V ‖�∞
h
; see the third line of (D.32). Such a term would lead to problems in Sect. 6 and hence

is not contained in Erem;U . This scenario is covered in our structural results below by using
options (b) from both Proposition 4.2 and 4.3. We feel that this relatively small example
already clearly illustrates the benefits of utilizing an abstract bookkeeping scheme instead of
direct estimates.

4.1 Summary of Estimates

In order to state our results, we introduce the expressions

Ssh;full(U ) = h, Ssh;2;fix(U ) = 0,
Ssh;full(U ) = h

[
1 + ∥∥∂+∂+∂+U

∥∥
�2h

+ ∥∥∂+∂+∂+U
∥∥

�∞
h

]
, Ssh;2;fix(U ) = 0,

(4.16)
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together with

Srem;full(U ) = ‖Etw(U )‖�2h
+ ‖Etw(U )‖�∞

h
, Srem;2;fix(U ) = 0,

Srem;full(U ) = Srem;full(U ) + ∥
∥∂+[Etw(U )]∥∥

�2h
, Srem;2;fix(U ) = 0

(4.17)

and finally

Sdiff;full(U (1),U (2)) = ∥
∥U (2) −U (1)

∥
∥

�
2;2
h

+ ∥
∥U (2) −U (1)

∥
∥

�
∞;1
h

,

Sdiff;2;fix(U (1),U (2)) = ∥
∥U (2) −U (1)

∥
∥

�
2;2
h

.
(4.18)

These expressions are all related to the size of the fapx functions and play a very similar role
as the quantities Sfull and S2;fix that were defined in [28, §7]. In particular, the ‘full’ terms
correspond to all the exponents that we need to use, while the ‘fix’ expressions reflect the
contributions that are only allowed to be evaluated in �2h ; see (4.26).

In addition, we recall the quantities

Tsafe(V ) = ‖V ‖
�
2;2
h

, T safe(V ) = Tsafe(V ),

T∞;opt(V ) = ∥
∥∂+V

∥
∥

�∞
h

, T∞;opt(V ) = T∞;opt(V ) + ∥
∥∂+∂+V

∥
∥

�∞
h

(4.19)

that are associated to the approximate linearizations flin. Here T∞;opt represents the contri-
butions where the use of the supremum norm is optional, in the sense that they could also be
measured in �2h . The remaining contributions are all reflected in Tsafe. We emphasize that the
main point of our bookkeeping scheme is to ensure that products of the form S#;fullT∞;opt
are never needed, where # ∈ {sh, rem, diff}.

Our main results summarize the structure that the decompositions described in Sect. D
will adhere to. Propositions 4.1 and 4.2 state that the approximants fapx;# are all uniformly
bounded and that the full linear approximants flin;U share the structure and estimates of
the nonlinearities in the sets Snl ∪ Snl analyzed in [28]. These can be interpreted as the
counterparts of [28, Cor. 7.6 and 7.8]. On the other hand, Propositions 4.3-4.4 should be
seen as the equivalents of [28, Cor. 7.7], while Propositions 4.5-4.6 are the equivalents of
[28, Cor. 7.9].

Proposition 4.1 (see Sect. D) For every f ∈ Snl;short we have ∞ ∈ Q f together with

Q f ;pref ⊂ Q f ∩ Q f ;lin ∩ Q f ;lin;rem. (4.20)

In addition, there exists K > 0 so that for each q ∈ Q f , the bound
∥∥ fapx;expl(U )

∥∥
�
q
h

+ ∥∥ fapx;sh(U )
∥∥

�
q
h

+ ∥∥ fapx;rem(U )
∥∥

�
q
h

≤ K (4.21)

holds for all h > 0 and U ∈ �h;κ . The same properties hold upon replacing
(Snl;short, Q f ;pref ) by (Snl;short, Q f ;pref ).

Proposition 4.2 (see Sect. D) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . For any

f ∈ Snl;short , any # ∈ {expl, sh, rem} and any q ∈ Q f ;pref , at least one of the following two
properties hold true.

(a) There exists K > 0 so that
∥∥ flin;U ;#[V ]∥∥

�
q
h

≤ KTsafe(V ) (4.22)

holds for every h > 0, U ∈ �h;κ and V ∈ �2h.
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(b) We have q = ∞ and there exists K > 0 so that the bounds
∥
∥ flin;U ;#[V ]∥∥

�2h
≤ KTsafe(V ),

∥
∥ flin;U ;#[V ]∥∥

�∞
h

≤ KT∞;opt(V )
(4.23)

hold for every h > 0, U ∈ �h;κ and V ∈ �2h.

The same properties hold upon making the replacement

(Snl;short, Q f ;pref , Tsafe, T∞;opt) �→ (Snl;short, Q f ;pref , T safe, T∞;opt). (4.24)

Proposition 4.3 (see Sect. D) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there

exists K > 0 so that for every f ∈ Snl;short , q ∈ Q f ;pref and # ∈ {sh, rem}, we have
∥
∥ fapx;#(U )

∥
∥

�
q
h

≤ K S#;full(U ) (4.25)

for any h > 0 and U ∈ �h;κ .
In addition, if 2 ∈ Q f ;pref then for every # ∈ {sh, rem} at least one of the following two

properties hold true.

(a) There exists K > 0 so that
∥∥ fapx;#(U )

∥∥
�2h

≤ K S#;2;fix(U ) (4.26)

holds for every h > 0 and U ∈ �h;κ .
(b) There exists K > 0 so that

∥∥ fapx;#(U )
∥∥

�∞
h

≤ K S#;full(U ) (4.27)

holds for every h > 0 and U ∈ �h;κ .

The same properties hold upon making the replacement

(Snl;short, Q f ;pref , S#;full, S#;2;fix) �→ (Snl;short, Q f ;pref , S#;full, S#;2;fix). (4.28)

Proposition 4.4 (see Sect. D) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there

exists K > 0 so that for every f ∈ Snl;short , q ∈ Q f ;pref and # ∈ {expl, sh, rem}, we have
∥∥ fapx;#(U (2)) − fapx;#(U (1))

∥∥
�
q
h

≤ K Sdiff;full(U (1),U (2)) (4.29)

for any h > 0 and any pair (U (1),U (2)) ∈ �2
h;κ .

In addition, if 2 ∈ Q f ;pref , then for every # ∈ {expl, sh, rem} at least one of the following
two properties hold true.

(a) There exists K > 0 so that
∥∥ fapx;#(U (2)) − fapx;#(U (1))

∥∥
�2h

≤ K Sdiff;2;fix(U (1),U (2)) (4.30)

holds for every h > 0 and any pair (U (1),U (2)) ∈ �2
h;κ .

(b) There exists K > 0 so that
∥∥ fapx;#(U (2)) − fapx;#(U (1))

∥∥
�∞
h

≤ K Sdiff;full(U (1),U (2)) (4.31)

holds for every h > 0 and any pair (U (1),U (2)) ∈ �2
h;κ .
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Proposition 4.5 (see Sect. D) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider

any f ∈ Snl;short and any # ∈ {sh, rem}. Then if 2 ∈ Q f ;pref , there exists a constant K > 0
so that

∥
∥ flin;U ;#(V )

∥
∥

�2h
≤ KE#;U (V ) (4.32)

holds for all h > 0, U ∈ �h;κ and V ∈ �2h for which U + V ∈ �h;κ .
Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that

∥
∥ flin;U ;#(V )

∥
∥

�
q
h

≤ KE#;U (V ) (4.33)

holds for all h > 0, U ∈ �h;κ and V ∈ �2h for which U + V ∈ �h;κ . The same properties
hold upon making the replacement

(Snl;short, Q f ;pref , E#) �→ (Snl;short, Q f ;pref , E#). (4.34)

Proposition 4.6 (see Sect. D)
Assume that (Hg) is satisfied and fix 0 < κ < 1

12 . Consider any f ∈ Snl;short and any
# ∈ {expl, sh, rem}. Then if 2 ∈ Q f ;pref , there exists a constant K > 0 so that

∥∥ flin;U (2);#(V ) − flin;U (1);#(V )
∥∥

�2h
≤ KEprod(U (2) −U (1), V ) (4.35)

holds for all h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h.

Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that
∥∥ flin;U (2);#(V ) − flin;U (1);#(V )

∥∥
�
q
h

≤ KEprod(U (2) −U (1), V ) (4.36)

holds for all h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h.

4.2 Refined Approximants forG andG+

We now introduce the expressions

{G#;apx;I I (U ), G#;lin;U ;I I (U ), G+
#′;apx;I I (U ), G+

#′;lin;U ;I I (U )} (4.37)

for # ∈ {A, B,C, D} respectively #′ ∈ {A′b, A′c, B ′,C ′, D′} by inspecting the definitions
of their predecessors labelled by I in Sect. 3.3 (see (3.42), (3.43) and (3.46)) and making the
replacements

fapx(U ) �→ fapx;expl(U ), flin;U [V ] �→ flin;U ;expl[V ] (4.38)

for each f ∈ Snl;short ∪ Snl;short. The full explicit forms can be found in Sects. E–F, but
are not important for our purposes here. We leave the expressions for A′a intact and simply
write

G+
A′a;apx;I I (U ) = G+

A′a;apx;I (U ), G+
A′a;lin;U ;I I [V ] = G+

A′a;apx;U ;I I [V ]. (4.39)

Our interest here is in the refined approximants

Gapx;I I (U ) = GA;apx;I I (U ) + GB;apx;I I (U )

+GC;apx;I I (U ) + GD;apx;I I (U )

G+
apx;I I (U ) = G+

A′a;apx;I I (U ) + G+
A′b;apx;I I (U )

+G+
A′c;apx;I I (U )
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+G+
B′;apx;I I (U ) + G+

C ′;apx;I I (U )

+G+
D′;apx;I I (U ) (4.40)

and the corresponding linearizations

Glin;U ;I I [V ] = GA;lin;U ;I I [V ] + GB;lin;U ;I I [V ]
+GC;lin;U ;I I [V ] + GD;lin;U ;I I [V ]

G+
lin;U ;I I [V ] = G+

A′a;lin;U ;I I [V ] + G+
A′b;lin;U ;I I [V ]

+G+
A′c;lin;U ;I I [V ]

+G+
B′;lin;U ;I I [V ] + G+

C ′;lin;U ;I I [V ] + G+
D′;lin;U ;I I [V ]. (4.41)

In particular, the results below describe the residuals that arise when replacing the initial
approximants defined in (3.41), (3.43) and (3.45) by these refined versions. Since our book-
keeping framework has the same overall structure as in [28], we can reuse the analysis
developed there in a streamlined fashion.

Lemma 4.7 Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with sequences

Gapx;sh;a(U ) ∈ �2h, Gapx;rem;a(U ) ∈ �2h, G+
apx;sh;a(U ) ∈ �2h, G+

apx;rem;a(U ) ∈ �2h,

(4.42)

defined for every h > 0 and U ∈ �h;κ , so that the following properties hold true.

(i) For every h > 0 and U ∈ �h;κ we have the identities

Gapx;I (U ) = Gapx;I I (U ) + Gapx;sh;a(U ) + Gapx;rem;a(U ),

G+
apx;I (U ) = G+

apx;I I (U ) + G+
apx;sh;a(U ) + G+

apx;rem;a(U ). (4.43)

(ii) For every h > 0 and U ∈ �h;κ we have the bounds
∥∥Gapx;sh;a(U )

∥∥
�2h

≤ K Ssh;full(U ),
∥∥Gapx;rem;a(U )

∥∥
�2h

≤ K Srem;full(U ), (4.44)

together with
∥∥∥G+

apx;sh;a(U )

∥∥∥
�2h

≤ K Ssh;full(U ),

∥∥∥G+
apx;rem;a(U )

∥∥∥
�2h

≤ K Srem;full(U ). (4.45)

Proof Restricting ourselves to G, we consider a single term of the sum (4.4). Dropping the
index i , we introduce the corresponding expression

Iπ (U ) = π
[
f1;apx(U ), . . . , fk;apx(U )

] − π
[
f1;apx;expl(U ), . . . , fk;apx;expl(U )

]
. (4.46)

Recalling the general identity

(a1 + b1)(a2 + b2)(a3 + b3) − a1a2a3 = b1(a2 + b2)(a3 + b3) + a1b2(a3 + b3) + a1a2b3

(4.47)
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and its extensions, we write

Iπ;#(U ) = π
[
f1;apx;#(U ), f2;apx(U ), . . . , fk;apx(U )

]

+π
[
f1;apx;expl(U ), f2;apx;#(U ), . . . , fk;apx(U )

]

+ . . . + π
[
f1;apx;expl(U ), f2;apx;expl(U ), . . . , fk;apx;#(U )

]
(4.48)

for # ∈ {sh, rem} and observe that
Iπ (U ) = Iπ;sh(U ) + Iπ;rem(U ). (4.49)

We now use (4.21) together with Proposition 4.3 to derive the bound
∥
∥Iπ;#(U )

∥
∥

�2h
≤ C ′

1S#;full(U ). (4.50)

The desired estimates now follow from the fact that Gapx;I (U ) − Gapx;I I (U ) can be written
as a sum of expressions of the form (4.46). ��
Lemma 4.8 Assume that (Hg) is satisfied and fix 0 < κ < 1

12 . There exists a constant K > 0
together with linear maps

Glin;U ;sh;a ∈ L(�2h, �
2
h), G+

lin;U ;sh;a ∈ L(�2h, �
2
h) (4.51)

and their counterparts

Glin;U ;rem;a ∈ L(�2h, �
2
h), G+

lin;U ;rem;a ∈ L(�2h, �
2
h), (4.52)

defined for all h > 0 and U ∈ �h;κ , so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the identities

Glin;U ;I [V ] = Glin;U ;I I [V ] + Glin;U ;sh;a[V ] + Glin;U ;rem;a[V ],
G+
lin;U ;I [V ] = G+

lin;U ;I I [V ] + G+
lin;U ;sh;a[V ] + G+

lin;U ;rem;a[V ]. (4.53)

(ii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds
∥∥Glin;U ;sh;a[V ]∥∥

�2h
≤ KEsh;U (V ),

∥∥Glin;U ;rem;a[V ]∥∥
�2h

≤ KErem;U (V ), (4.54)

together with
∥∥∥G+

lin;U ;sh;a[V ]
∥∥∥

�2h

≤ KEsh;U (V ),

∥∥∥G+
lin;U ;rem;a[V ]

∥∥∥
�2h

≤ KE rem;U (V ). (4.55)

(iii) For every h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the bound

∥∥Glin;U (2);rem;a[V ] − Glin;U (1);rem;a[V ]∥∥
�2h

≤ KEprod(U (2) −U (1), V ). (4.56)

Proof Restricting ourselves to G, we again consider a single term of the sum (4.4). Dropping
the index i , we introduce the two corresponding expressions

Iπ;a;U [V ] = π
[
f1;lin;U [V ], f2;apx(U ), . . . , fk;apx(U )

]

−π
[
f1;lin;U [V ], f2;apx;expl(U ), . . . , fk;apx;expl(U )

]
,
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Iπ;b;U [V ] = π
[
f1;lin;U [V ], f2;apx;expl(U ), . . . , fk;apx;expl(U )

]

−π
[
f1;lin;U ;expl[V ], f2;apx;expl(U ), . . . , fk;apx;expl(U )

]
. (4.57)

Writing

Iπ;a;U ;#[V ] = π
[
f1;lin;U [V ], f2;apx;#(U ), . . . , fk;apx(U )

]

+ . . . + π
[
f1;lin;U [V ], f2;apx;expl(U ), . . . , fk;apx;#(U )

]
,

Iπ;b;U ;#[V ] = π
[
f1;lin;U ;#[V ], f2;apx;expl(U ), . . . , fk;apx;expl(U )

]
(4.58)

for # ∈ {sh, rem}, we see that
Iπ;a;U [V ] = Iπ;a;U ;sh[V ] + Iπ;a;U ;rem[V ],
Iπ;b;U [V ] = Iπ;b;U ;sh[V ] + Iπ;b;U ;rem[V ]. (4.59)

Following the same reasoning used to obtain [28, Eq. (8.15)], we may use Propositions 4.2
and 4.3 to derive the bound

∥
∥Iπ;a;U ;#[V ]∥∥

�2h
≤ C ′

1

[
Tsafe(V )S#;full(U ) + T∞;opt(V )S#;2;fix(U )

]

≤ C ′
2E#;U (V ). (4.60)

Indeed, contributions of type T∞;opt(V )S#;full(U ) can be avoided by deviating from the
preferred exponents judiciously.

In addition, following the arguments used to derive [28, Eq. (8.12)], we may use Propo-
sition 4.5 to obtain the bound

∥∥Iπ;b;U ;#[V ]∥∥
�2h

≤ C ′
3E#;U (V ). (4.61)

Writing

�b;i = π
[
f1;lin;U (2);rem[V ] − f1;lin;U (1);rem[V ], f2;apx;expl(U (2)), . . . , fk;apx;expl(U (2))

]
,

�b;i i = π
[
f1;lin;U (1);rem[V ], f2;apx;expl(U (2)) − f2;apx;expl(U (1)), . . . , fk;apx;expl(U (2))

]

+ . . .

+π
[
f1;lin;U (1);rem[V ], f2;apx;expl(U (1)), . . . , fk;apx;expl(U (2)) − fk;apx;expl(U (1))

]
,

(4.62)

we easily see that

�b;i + �b;i i = Iπ;b;U (2);rem[V ] − Iπ;b;U (1);rem[V ]. (4.63)

Arguing as above, Proposition 4.6 yields
∥∥�b;i

∥∥
�2h

≤ C ′
1Eprod(U (2) −U (1), V ), (4.64)

while Propositions 4.2 and 4.4 imply
∥∥�b;i i

∥∥
�2h

≤ C ′
2

[
Tsafe(V )Sdiff;full(U (1),U (2)) + T∞;opt(V )Sdiff;2;fix(U (1),U (2))

]

≤ C ′
3Eprod(U (2) −U (1), V ). (4.65)

Finally, we write

�a = Iπ;a;U (2);rem[V ] − Iπ;a;U (1);rem[V ]. (4.66)
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We note that�a consists of sums of expressions that arise from�b;i and�b;i i after replacing
f1;lin;U (i);rem by f1;lin;U (i) and each occurrence of f j;apx;expl by an element of the set

{ f j;apx, f j;apx;expl, f j;apx;rem}. (4.67)

We can hence again use Propositions 4.2, 4.4 and 4.6 to conclude that ‖�a‖�2h
can be bounded

by terms that have already appeared above. The desired bounds now follow from the fact that
Glin;U ;I [V ] − Glin;U ;I I [V ] can be written as a sum of expressions of the form Iπ;a + Iπ;b,
together with their obvious permutations. ��

5 Estimates forG andG+

In this section we exploit the component estimates from Sect. 4 to analyze the function G
defined in (2.12), together with its first difference G+. In particular, recalling the operator
LU defined in (3.12), we introduce our final approximants

Gapx(U ) = c∗∂0U , Glin;U [V ] = LU [V ],
G+
apx(U ) = ∂+[Gapx(U )

]
, G+

lin;U [V ] = ∂+[Glin;U [V ]] (5.1)

and write

Gnl;U (V ) = G(U + V ) − G(U ) − Glin;U (V ) (5.2)

together with

G+
nl;U (V ) = ∂+[Gnl;U (V )] = G+(U + V ) − G+(U ) − G+

lin;U (V ). (5.3)

Using the discrete calculus outlined in Sect. A, one may readily verify the identities

G+
apx(U ) = c∗S+[∂(2)U ],

G+
lin;U [V ] = c∗S+[∂(2)V ] + ∂+[

MU [V ]] + γ −2
U ∂0U [∂(2)U ]MU [V ]

+S+[∂(2)U ]T+ ∑

−;h
γ −2
U ∂(2)UMU [V ]. (5.4)

Our main result quantifies the approximation errors in terms of the functions Esh;U , Erem;U
and Eprod and their counterparts Esh;U , E rem;U and Eprod;U defined in (3.26), (3.27), (3.28)
and (3.34). For convenience, we also reference the quantities (4.16)–(4.17).

Proposition 5.1 Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0

so that the following properties hold.

(i) For every h > 0 and U ∈ �h;κ we have
∥∥G(U ) − Gapx(U )

∥∥
�2h

≤ K
[
h + ‖Etw(U )‖�2h

+ ‖Etw(U )‖�∞
h

]
,

= K Ssh;full + K Srem;full∥∥∥G+(U ) − G+
apx(U )

∥∥∥
�2h

≤ Kh
[
1 + ∥∥∂+∂+∂+U

∥∥
�2h

+ ∥∥∂+∂+∂+U
∥∥

�∞
h

]

+K
[ ‖Etw(U )‖�2h

+ ‖Etw(U )‖�∞
h

+ ∥∥∂+Etw(U )
∥∥

�2h

]

= K Ssh;full + K Srem;full. (5.5)
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(ii) For any h > 0, U ∈ �h;κ and V ∈ �2h for which U + V ∈ �h;κ , we have the estimates
∥
∥Gnl;U (V )

∥
∥

�2h
≤ KEprod(V , V ) + KEsh;U (V ) + KErem;U (V ),

∥
∥
∥G+

nl;U (V )

∥
∥
∥

�2h

≤ KEprod;U (V , V ) + KhEsh;U (V ) + KE rem;U (V ). (5.6)

(iii) Consider any h > 0, U ∈ �h;κ and any pair (V (1), V (2)) ∈ �2h × �2h for which the
inclusions U +V (1) ∈ �h;κ and U +V (2) ∈ �h;κ both hold. Then we have the Lipschitz
estimate

∥
∥∥Gnl;U (V (2)) − Gnl;U (V (1))

∥
∥∥

�2h

≤ KEprod(V (1), V (2) − V (1)) + KEprod(V (2), V (2) − V (1))

+KEsh;U (V (2) − V (1)) + KErem;U (V (2) − V (1)). (5.7)

5.1 Refinement Strategy

We recall the refined approximants Gapx;I I (U ) and Glin;U ;I I [V ] that we defined in Sect. 4.2.
The main task in this section is to track the errors that accumulate as we reduce these
expressions even further to our relatively simple approximants (5.1). In contrast to the abstract
approach in Sect. 4, we achieve this in a direct fashion through several explicit computations.
Indeed, in Sects. E–F we obtain the following representations.

Proposition 5.2 (see Sects. E–F) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There

exists a constant K > 0 together with sequences

Gapx;sh;b(U ) ∈ �2h, Gapx;rem;b(U ) ∈ �2h, G+
apx;sh;b(U ) ∈ �2h, G+

apx;rem;b(U ) ∈ �2h,

(5.8)

defined for every h > 0 and U ∈ �h;κ , so that the following properties hold true.

(i) For every h > 0 and U ∈ �h;κ we have the identities

Gapx;I I (U ) = Gapx(U ) + Gapx;sh;b(U ) + Gapx;rem;b(U ),

G+
apx;I I (U ) = G+

apx(U ) + G+
apx;sh;b(U ) + G+

apx;rem;b(U ). (5.9)

(ii) For every h > 0 and U ∈ �h;κ we have the bounds
∥∥Gapx;sh;b(U )

∥∥
�2h

≤ K Ssh;full(U )
∥∥Gapx;rem;b(U )

∥∥
�2h

≤ K Srem;full(U ), (5.10)

together with
∥∥∥G+

apx;sh;b(U )

∥∥∥
�2h

≤ K Ssh;full(U ),

∥∥∥G+
apx;rem;b(U )

∥∥∥
�2h

≤ K Srem;full(U ). (5.11)

Proposition 5.3 (see Sects. E–F) Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There

exists a constant K > 0 together with linear maps

Glin;U ;sh;b ∈ L(�2h, �
2
h), G+

lin;U ;sh;b ∈ L(�2h, �
2
h) (5.12)
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and their counterparts

Glin;U ;rem;b ∈ L(�2h, �
2
h), G+

lin;U ;rem;b ∈ L(�2h, �
2
h), (5.13)

defined for all h > 0 and U ∈ �h;κ , so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the identities

Glin;U ;I I [V ] = Glin;U [V ] + Glin;U ;sh;b[V ] + Glin;U ;rem;b[V ],
G+
lin;U ;I I [V ] = G+

lin;U [V ] + G+
lin;U ;sh;b[V ] + G+

lin;U ;rem;b[V ]. (5.14)

(ii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds
∥
∥Glin;U ;sh;b[V ]∥∥

�2h
≤ KEsh;U (V ),

∥
∥Glin;U ;rem;b[V ]∥∥

�2h
≤ KErem;U (V ), (5.15)

together with
∥∥
∥G+

lin;U ;sh;b[V ]
∥∥
∥

�2h

≤ KEsh;U (V ),

∥∥∥G+
lin;U ;rem;b[V ]

∥∥∥
�2h

≤ KE rem;U (V ). (5.16)

(iii) For every h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the bound

∥∥Glin;U (2);rem;b[V ] − Glin;U (1);rem;b[V ]∥∥
�2h

≤ KEprod(U (2) −U (1), V ). (5.17)

Recalling the initial nonlinear residuals (3.50) together with the expressions (4.42), (4.51)
and (4.52), we have hence obtained the decompositions

Gnl;U (V ) = Gnl;U ;I (V ) + Glin;U ;rem;a[V ] + Glin;U ;rem;b[V ] + Glin;U ;sh;a[V ]
+Glin;U ;sh;b[V ],

G+
nl;U (V ) = G+

nl;U ;I (V ) + G+
lin;U ;rem;a[V ] + G+

lin;U ;rem;b[V ] + G+
lin;U ;sh;a[V ]

+G+
lin;U ;sh;b[V ]. (5.18)

We now turn towards the Lipschitz bounds for Gnl.

Corollary 5.4 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . There exists a constant

K > 0 so that the estimate
∥∥Glin;U (2) [V ] − Glin;U (1) [V ]∥∥

�2h
≤ KEprod

(
U (2) −U (1), V

)
(5.19)

holds for all h > 0, all V ∈ �2h and all pairs (U (1),U (2)) ∈ �2
h;κ .

Proof This is a direct restatement of [29, Cor. 5.3]. ��
Lemma 5.5 Assume that (Hg) is satisfied and pick 0 < κ < 1

12 . There exists a constant
K > 0 so that the estimate

∥∥∥Gnl;U (V (2)) − Gnl;U (V (1))

∥∥∥
�2h

≤ KEprod
(
V (2) − V (1), V (2) − V (1))

+Kh
∥∥∥V (2) − V (1)

∥∥∥
�
2;2
h
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+KErem;U
(
V (2) − V (1))

+KEprod
(
V (1), V (2) − V (1)) (5.20)

holds for all h > 0, all U ∈ �h;κ and all pairs (V (1), V (2)) ∈ �2h×�2h for which the inclusions
U + V (1) ∈ �h;κ and U + V (2) ∈ �h;κ both hold.

Proof By definition, we have

Gnl;U (V ) = G(U + V ) − G(U ) − Glin;U [V ]. (5.21)

In particular, we get

Gnl;U (V (2)) − Gnl;U (V (1)) = G(U + V (2)) − Glin;U [V (2)] + Glin;U [V (1)] − G(U + V (1))

= G(
U + V (1) + (V (2) − V (1))

) − G(U + V (1))

−Glin;U [V (2) − V (1)]
= Glin;U+V (1) [V (2) − V (1)] + Gnl;U+V (1) (V (2) − V (1))

−Glin;U [V (2) − V (1)]
= Gnl;U+V (1) (V (2) − V (1))

+[Glin;U+V (1) − Glin;U
][V (2) − V (1)]. (5.22)

For convenience, we write

Glin;U ;rem[V ] = Glin;U ;rem;a[V ] + Glin;U ;rem;b[V ],
Glin;U ;sh[V ] = Glin;U ;sh;a[V ] + Glin;U ;sh;b[V ]. (5.23)

In view of (5.18), we find

Gnl;U (V (2)) − Gnl;U (V (1)) = Gnl;U+V (1);I (V (2) − V (1))

+Glin;U+V (1);rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+[Glin;U+V (1) − Glin;U
][V (2) − V (1)]

= Gnl;U+V (1);I (V (2) − V (1))

+Glin;U ;rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+
[
Glin;U+V (1);rem − Glin;U ;rem

]
(V (2) − V (1))

+[Glin;U+V (1) − Glin;U
][V (2) − V (1)]. (5.24)

The desired bound now follows from (3.51), Lemma’s 4.7-4.8, Propositions 5.2-5.3 and
Corollary 5.4. ��
Proof In view of the expression (5.18), the statements follow from (3.49), (3.51), Lemma’s
4.7–4.8, Propositions 5.2–5.3 and Lemma 5.5. ��

6 TravellingWaves

Formally substituting the travelling wave Ansatz (2.20) into the reduced system (2.13) leads
to the nonlocal differential equation

c� ′ = G(�). (6.1)
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In this section we set out to construct solutions to this equation for small h > 0 that can be
written as

� = �∗ + v, c = c∗ + c̃ (6.2)

for pairs (c̃, v) that tend to zero as h ↓ 0. Care must be taken to ensure that the expression
G(�) is well-defined, but based on our preparations we are able to provide a relatively
streamlined fixed-point argument here, which allows us to prove the results stated in Sect. 2.

In order to control the size of the perturbation (c̃, v) ∈ R × H1, we introduce the norms

‖(c̃, v)‖Zh
= |c̃| + ‖v‖H1 + ∥

∥∂+
h ∂+

h v
∥
∥
L2 (6.3)

for h > 0 and write Zh for the set R × H1 equipped with this new norm. Observe that for
fixed h this norm is equivalent to the usual one on R × H1.

Recalling the discussion at the start of Sect. 3, we pick 0 < κ < 1
12 and ε0 > 0 in such a

way that the inclusion

evϑ [�∗ + v] ∈ �h;κ (6.4)

holds for all 0 < h < 1, all ϑ ∈ [0, h] and all v ∈ H1 that satisfy (3.8). In order to
accommodate this and control the third-differences of v, we pick two parameters δ > 0 and
δ+
v > 0 and introduce the set

Zh;δ,δ+
v

= {
(c̃, v) ∈ Zh : ‖(c̃, v)‖Zh

≤ min{δ, ε0}
and

∥∥(0, ∂+
h v)

∥∥Zh
≤ min{δ+

v , h1/2ε0}
}
. (6.5)

Since ∂+
h is bounded on H1 and L2 for each fixed h, we note that this is a closed subset of

Zh .
Substituting (6.2) into (6.1), we obtain

c∗� ′∗ + c̃� ′∗ + c̃v′ + c∗v′ = G(�∗ + v)

= G(�∗) + Glin;�∗ [v] + Gnl;�∗(v), (6.6)

which should be interpreted in a sense similar to that of (3.18).
Upon introducing the nonlinearity

Hh(c̃, v) = c̃v′ − Gnl;�∗(v) (6.7)

and inspecting the definitions (3.16) and (5.1), we can rewrite (6.6) as

Lh[v] = c̃� ′∗ + Hh(c̃, v) + c∗� ′∗ − G(�∗). (6.8)

Recalling the two solution operators (3.19), we now introduce the map Wh : Zh;δ,δ+
v

→ Zh

that acts as

Wh(c̃, v) = [β∗
h ,V∗

h ]
[
Hh(c̃, v) + c∗� ′∗ − G(�∗)

]
, (6.9)

which allows us to recast (6.8) as the fixed point problem

(c̃, v) = Wh
(
c̃, v

)
. (6.10)

In order to show thatWh is a contraction mapping on Zh;δ,δ+
v
, we study the two expressions

Hh and c∗� ′∗ −G(�∗) separately in our first results. The sampling bounds from Sect. A play
a key role here, as they enable us to extract L2-based bounds on Gnl;�∗ from the sequence
estimates obtained in Sect. 5.
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Notice that the control (6.15) on ‖v‖
�
2;2
h

would not have been possible using only bounds

on (6.3), since L2-norms cannot directly be turned into �2h-norms. This would prevent us
from bounding the terms that are quadratic in these second differences. In fact, this is the
reason that we needed to obtain such detailed bounds on G+ in this series of papers. Indeed,
the additional third-differences only appear in a linear fashion, which does allow us to easily
pass between sequences and functions; see (A.18).

Lemma 6.1 Suppose that (Hg) and (H�∗) are satisfied. There exists K > 0 so that for any
pair (δ, δ+

v ) ∈ (0, 1)2 and any 0 < h < 1 the estimates

‖Hh(c̃, v)‖L2 ≤ K
[
hδ + δ2 + δδ+

v

]
,

∥
∥∂+Hh(c̃, v)

∥
∥
L2 ≤ K

[[δ + δ+
v ]2 + h−1/2δ[δ + δ+

v ] + h[δv + δ+
v ]] (6.11)

hold for each (c̃, v) ∈ Zh;δ,δ+
v
, while the estimate

∥∥
∥Hh(c̃

(2), v(2)) − Hh(c̃
(1), v(1))

∥∥
∥
L2

≤ K
[
h−1/2[δ + δ+

v ] + h
] ∥∥
∥(c̃(2) − c̃(1), v(2) − v(1))

∥∥
∥
Zh

(6.12)

holds for each set of pairs (c̃(1), v(1)) ∈ Zh;δ,δ+
v
and (c̃(2), v(2)) ∈ Zh;δ,δ+

v
.

Proof The first term in Hh can be handled by the elementary estimates
∥∥c̃v′∥∥

L2 ≤ δ2,
∥∥c̃∂+v′∥∥

L2 ≤ δ,
∥∥∂+v

∥∥
H1 ≤ δδ+

v , (6.13)

together with
∥∥∥c̃(2)[v(2)]′ − c̃(1)[v(1)]′

∥∥∥
L2

≤
∣∣∣c̃(2) − c̃(1)

∣∣∣
∥∥∥v(2)

∥∥∥
H1

+
∣∣∣c̃(1)

∣∣∣
∥∥∥v(1) − v(2)

∥∥∥
H1

≤ δ

∥∥∥
(
c̃(2) − c̃(1), v(2) − v(1))

∥∥∥Zh
. (6.14)

Using Corollary A.1 we see that

‖v‖
�
2;2
h

+ ‖v‖
�
∞;1
h

≤ C ′
1[δ + δ+

v ] (6.15)

for all (c̃, v) ∈ Zh;δ,δ+ . For any ϑ ∈ R, we may hence exploit Propositions C.3 and 5.1 to
obtain the estimate

∥∥Gnl;�∗(evϑv)
∥∥

�2h
≤ C ′

2

[
δ + δ+

v + h
] ‖evϑv‖

�
2;2
h

, (6.16)

together with
∥∥∥Gnl;�∗(evϑv(2)) − Gnl;�∗(evϑv(1))

∥∥∥
�2h

≤ C ′
2

[
δ + δ+

v + h
] ∥∥∥evϑv(1) − evϑv(2)

∥∥∥
�
2;2
h

+C ′
2

[
δ + δ+

v ]
∥∥∥evϑv(1) − evϑv(2)

∥∥∥
�
∞;1
h

.

(6.17)

A second application of Corollary A.1 yields the bound

‖v‖
�
2;2
h

+ ‖v‖
�
∞;2
h

≤ C ′
3h

−1/2[δ + δ+
v ]. (6.18)
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For any ϑ ∈ R, we may hence use Propositions C.3 and 5.1 to find
∥
∥
∥G+

nl;�∗(evϑv)

∥
∥
∥

�2h

≤ C ′
4

[
δ + δ+

v + h
] ‖evϑv‖

�
2;3
h

+ C ′
4h

−1/2[δ + δ+
v ] ‖evϑv‖

�
2;2
h

.

(6.19)

We now apply Lemma A.2 to obtain
∥
∥Gnl;�∗(v)

∥
∥
L2 ≤ C ′

2

[
δ + δ+

v + h
][ ‖v‖H1 + ∥

∥∂+∂+v
∥
∥
L2

]

≤ C ′
2

[
δ + δ+

v + h
]
δ,

∥
∥
∥G+

nl;�∗(v)

∥
∥
∥
L2

≤ C ′
4

[
δ + δ+

v + h
][ ‖v‖H1 + ∥

∥∂+∂+v
∥
∥
L2 + ∥

∥∂+v
∥
∥
H1 + ∥

∥∂+∂+∂+v
∥
∥
L2

]

+C ′
4h

−1/2[δ + δ+
v ][ ‖v‖H1 + ∥

∥∂+∂+v
∥
∥
L2

]

≤ C ′
4

[
δ + δ+

v + h
][

δ + δ+
v

] + C ′
4h

−1/2[δ + δ+
v ]δ. (6.20)

Using (A.6) we note that
∥
∥∥v(2) − v(1)

∥
∥∥

�
∞;1
h

≤ 2h−1/2
∥
∥∥v(2) − v(1)

∥
∥∥
H1

. (6.21)

Applying Lemma A.2 once more, we obtain
∥∥∥Gnl;�∗(v

(2)) − Gnl;�∗(v
(1))

∥∥∥
L2

≤ C ′
2

[
δ + δ+

v + h
][ ∥∥∥v(1) − v(2)

∥∥∥
H1

+
∥∥∥∂+∂+v(1) − ∂+∂+v(2)

∥∥∥
L2

]

+2C ′
2

[
δ + δ+

v ]h−1/2
∥∥∥v(1) − v(2)

∥∥∥
H1

. (6.22)

The desired bounds follow readily from these estimates. ��
Lemma 6.2 Suppose that (Hg) and (H�∗) are satisfied. There exists K > 0 so that for each
0 < h < 1 we have the bounds

∥∥c∗� ′∗ − G(�∗)
∥∥
L2 ≤ Kh,

∥∥∂+[
c∗� ′∗ − G(�∗)

]∥∥
L2 ≤ Kh. (6.23)

Proof Applying Lemma A.2 together with Propositions C.3 and 5.1, we find
∥∥Gapx(�∗) − G(�∗)

∥∥
L2 +

∥∥∥G+
apx(�∗) − G+(�∗)

∥∥∥
L2

≤ C ′
1h. (6.24)

We now compute

c∗� ′∗ − G(�∗) = c∗� ′∗ − Gapx(�∗) + Gapx(�∗) − G(�∗)
= c∗� ′∗ − c∗∂0�∗ + Gapx(�∗) − G(�∗), (6.25)

together with

∂+[c∗� ′∗ − G(�∗)
] = ∂+[

c∗� ′∗ − Gapx(�∗)
] + ∂+[Gapx(�∗) − G(�∗)

]

= c∗
[
∂+�∗]′ − c∗∂0[∂+�∗] + G+

apx(�∗) − G+(�∗). (6.26)

Applying (A.8) we see that
∥∥c∗� ′∗ − G(�∗)

∥∥
L2 ≤ C ′

2h
∥∥� ′′∗

∥∥
L2 + C ′

1h ≤ C ′
3h, (6.27)
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together with
∥
∥∂+[c∗� ′∗ − G(�∗)]

∥
∥
L2 ≤ C ′

2h
∥
∥∂+� ′′∗

∥
∥
L2 + C ′

1h ≤ C ′
3h, (6.28)

as desired. ��
Utilizing the linear theory from [29] that we outlined in Sect. 3.1, we are now in a position

to study the full nonlinear term Wh . Our main result subsequently follows in a relatively
standard fashion from the uniqueness properties of the contraction mapping theorem.

Lemma 6.3 Suppose that (Hg) and (H�∗) are satisfied. Then for each sufficiently small
h > 0, the fixed point problem (6.10) posed on the set Zh;h3/4,h3/4 has a unique solution.

Proof Using the estimates (3.22) together with the a-priori bounds (h, δ, δ+
v ) ∈ (0, 1)3, we

obtain the inequalities

‖Wh(c̃, v)‖Zh
≤ C ′

1

[ ‖Hh(c̃, v)‖L2 + ∥
∥c∗� ′∗ − G(�∗)

∥
∥
L2

]

≤ C ′
2

[
δ2 + δδ+

v + h
]
,

∥∥[0, ∂+]Wh(c̃, v)
∥∥Zh

≤ C ′
1

[ ‖Hh(c̃, v)‖L2 + ∥∥∂+Hh(c̃, v)
∥∥
L2

]

+C ′
1

[ ∥∥c∗� ′∗ − G(�∗)
∥∥
L2 + ∥∥∂+[

c∗� ′∗ − G(�∗)
]∥∥

L2

]

≤ C ′
2

[
h−1/2δ[δ + δ+

v ] + (δ + δ+
v )2 + h

]
, (6.29)

together with
∥∥∥Wh

(
c̃(2), v(2)) − Wh

(
c̃(1), v(1))

∥∥∥Zh
≤ C ′

1

∥∥∥Hh(c̃
(2), v(2)) − Hh(c̃

(1), v(1))

∥∥∥
L2

≤ C ′
2

[
h−1/2[δ + δ+

v ] + h
]

∥∥∥
(
c̃(2) − c̃(1), v(2) − v(1))

∥∥∥Zh
. (6.30)

Picking

δ = δ+
v = h3/4, (6.31)

we see that δ = δ+
v ≤ h1/2ε0 for all sufficiently small h > 0. In addition, we find

‖Wh(c̃, v)‖Zh
≤ C ′

2

[
2h3/4 + h1/4

]
δ,

∥∥[0, ∂+]Wh(c̃, v)
∥∥Zh

≤ C ′
2

[
2h1/4 + 4h3/4 + h1/4

]
δ, (6.32)

together with
∥∥Wh

(
c̃(2), v(2)

) − Wh
(
c̃(1), v(1)

)∥∥Zh
≤ C ′

2[2h1/4 + h] ∥∥(
c̃(2) − c̃(1), v(2) − v(1)

)∥∥Zh
.

(6.33)

The result hence follows from the contraction mapping theorem. ��
Proof of Theorem 2.1 We write (c̃h, vh) for the unique solution to the fixed point problem
(6.10) that is provided by Lemma 6.3. This allows us to define

�h = �∗ + vh, ch = c∗ + c̃h . (6.34)

For fixed h > 0, we claim that the map

ϑ �→ evϑ [�∗ + vh] − ev0�∗ ∈ �2h (6.35)
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is continous. Indeed, this follows from the smoothness of�∗ together with (A.6) and the fact
that the translation operator is continuous on H1. Since the map

V �→ G(�∗ + V ) ∈ �2h (6.36)

is continuous on a subset of �2h that contains evϑvh for all ϑ ∈ [0, h], we conclude that
ϑ �→ G(

evϑ�h
) ∈ �2h (6.37)

is continuous. The travelling wave equation (6.1) now implies the inclusion (2.21).
In a similar fashion, the inclusion (2.25) follows from (A.6) and the continuity of the

translation operator on H1. The remaining statements are a direct consequence of Lemma 6.3.
��

We now turn to the proof of Corollary 2.2, which asserts the existence of a waveprofile
�h in the original physical coordinates. The key tool for our purpose here is [28, Prop. 4.2],
which states that the gridpoints associated to a solution U of (2.13) satisfy

ẋ(t) = M(
U (t)

)
. (6.38)

Here the sequence M can be written as

M(U ) = −Z−(U )T−[XA(U )]Y2(U ) + Z−(U )
∑

−;h
Y2(U )T−[XB(U )

]D�−;+(U )

+Z−(U )
∑

−;h
Y2(U )T−[XC (U )D�0;+(U ) + XD(U )D�0;+(U )

]; (6.39)

see [28, Eq. (6.31) and (6.33)] where this function was referred to as Y . Notice the strong
resemblance with the structure of (3.42). Indeed, we see that

Y1(U )M(U ) = Z−(U )[G(U ) − Y2(U )] (6.40)

see also [28, Eq. (6.9)] for comparison. In view of the identities

Z−
apx(U ) = γU , Y1;apx(U ) = ∂0U ,

Gapx(U ) = c∗∂0U , Y2;apx;expl(U ) = c∗γ −1
U ∂0U (6.41)

from [28, Eq. (7.29)], (D.1), (5.1) and (D.11), it makes sense to formally factor out ∂0U and
introduce the approximant

Mapx(U ) = γUc∗(1 − γ −1
U ) = c∗(γU − 1). (6.42)

This allows us to extract a crucial lower bound for the speed of the gridpoints.

Proof of Corollary 2.2 Upon defining

�h = −
∑

−;h

(∂+�h)
2

√
1 − (∂+�h)2 + 1

, (6.43)

the identity (2.27) implies that (i) is satisfied. Using [28, Prop. 4.2] we see that

ẋ jh(t) = ch�
′
h( jh + cht) = [M(

�h(· + cht)
)]

jh . (6.44)

Notice that the terms appearing in (6.39) also all appear in (3.42) after making the replace-
mentZ− �→ Y1. The reductionZ− �→ Z−

apx leads to error terms that are covered by the theory
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in [28]. Since Z−
apx does not need to be reduced further, we can follow all the computations

in the present paper to obtain the error bound
∥
∥M(U ) − Mapx(U )

∥
∥

�∞
h

≤ C ′
1

[
h + ‖Etw(U )‖�2h

+ ‖Etw(U )‖�∞
h

]
, (6.45)

which is the natural analogue of (5.5). Substituting U = �h and applying the Lipschitz
bounds (C.6), we find

‖Etw(�h) − Etw(�∗)‖�2h
≤ C ′

2 ‖�h − �∗‖�
2;2
h

≤ C ′
2

[ ‖�h − �∗‖H1 + ∥
∥∂+[�h − �∗]

∥
∥
H1

]

≤ C ′
2h

3/4. (6.46)

Using Proposition C.3, we obtain

‖Etw(�h)‖�2h
≤ C ′

3h
3/4 (6.47)

and hence

‖Etw(�h)‖�∞
h

≤ C ′
3h

1/4. (6.48)

In a similar fashion, we may exploit (B.4) to conclude
∥∥γ�h − γ�∗

∥∥
�2h

≤ C ′
2h

3/4 (6.49)

and hence
∥∥γ�h − γ�∗

∥∥
�∞
h

≤ C ′
2h

1/4. (6.50)

Together, these observations yield the pointwise bound
∣∣M(�h) − c∗(γ�∗ − 1)

∣∣ ≤ C ′
4h

1/4. (6.51)

Assuming for clarity that c∗ > 0, this implies the pointwise inequality

M(�h) > c∗(γ�∗ − 1) − C ′
4h

1/4. (6.52)

Since |ch − c∗| ≤ h3/4, we find

ch
[
�′

h + 1
]

> c∗(γ�∗ − 1) + ch − C ′
4h

1/4

> c∗γ�∗ − C ′
5h

1/4. (6.53)

Since γ�∗ is strictly bounded away from zero, uniformly in h, we conclude that

�′
h(τ ) > −1 (6.54)

for all sufficiently small h > 0 and all τ ∈ R. This shows that the coordinate transformation
(2.32) is invertible, as desired. ��
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A Discrete Calculus

In this appendix we collect several useful identities and bounds from [28, 29] related to the
interplay between discrete and continuous calculus. In particular, we state a discrete version
of the product rule, provide two summation-by-parts identities and show how taking discrete
samples of functions in L2 and H1 affects the various norms.

Recalling the notation introduced at the start of Sects. 3.1 and 3.2, a short computation
yields the basic identities

∂(2)a = ∂+∂−a, ∂+∂0a = S+[∂(2)a], (A.1)

together with the product rules

∂+[ab] = ∂+aT+b + a∂+b,
∂0[ab] = ∂0aT+b + T−a∂0b,

∂−[ab] = [∂−a]b +
[
T−a

]
∂−b, (A.2)

which hold for a, b ∈ �∞
h . As in [28, §3.1], these can subsequently be used to derive the

second-order product rule

∂(2)[ab] = (∂(2)a)b + ∂+a∂+b + ∂−a∂−b + a∂(2)b. (A.3)

Recalling the discrete summation operators (2.10), one can read-off the identities

∂+
⎡

⎣
∑

−;h
a

⎤

⎦

jh

= a jh, ∂−
⎡

⎣
∑

+;h
a

⎤

⎦

jh

= −a jh (A.4)

for a ∈ �1(hZ;R). In addition, the discrete summation-by-parts identities

∑

−;h
b∂+a = aT−b −

∑

−;h
a∂−b,

∑

−;h
bS+a = 1

2
haT−b +

∑

−;h
aS−b (A.5)

hold whenever a, b ∈ �2h ; see [28, Eq. (3.13) and (3.15)].
Turning to sampling issues, we repeat the useful estimates [28, Eq. (A.6), (A.4)] which

state that

‖u‖�2h
≤ (2 + h) ‖u‖H1 ,

∥∥∂±
h u

∥∥
�∞
h

≤ h−1/2
∥∥u′∥∥

L2 , (A.6)

for any u ∈ H1. On the other hand, for any q ∈ {2,∞} and u ∈ W 1,q , we have
∥∥∂±

h u
∥∥

�
q
h

≤ ∥∥u′∥∥
Lq ,

∥∥∂±
h u

∥∥
Lq ≤ ∥∥u′∥∥

Lq (A.7)
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for any h > 0; see [28, Eq. (A.3), (A.13)]. For any q ∈ {2,∞} and h > 0 we also obtain
the error estimate

∥
∥∂±

h u − u′∥∥
�
q
h

≤ h
∥
∥u′′∥∥

Lq (A.8)

whenever u ∈ W 2;q (see [29, Lem. 4.1]), together with

max{
∥
∥
∥∂

(2)
h u − u′′

∥
∥
∥

�
q
h

,

∥
∥
∥∂

(2)
h u(· + h) − u′′

∥
∥
∥

�
q
h

} ≤ 2h
∥
∥u′′′∥∥

Lq (A.9)

whenever u ∈ W 3;q (see [29, Cor. 4.2]) and finally
∥
∥
∥∂+

h ∂
(2)
h u − u′′′

∥
∥
∥

�
q
h

≤ 3h
∥
∥
∥u(iv)

∥
∥
∥
Lq

(A.10)

whenever u ∈ W 4;q (see [29, Cor. 4.3]).
We now recall the sampling operator evϑ defined in (3.17). Our final two results here

show how to pass back and forth between discrete and continuous estimates.

Corollary A.1 [28, Cor. A.3] There exists K > 0 so that for any ϑ ∈ R, any v ∈ H1 and
any 0 < h < 1, we have the bounds

‖evϑv‖�∞
h

≤ K ‖v‖H1 ,

‖evϑv‖
�
∞;1
h

≤ K
[ ‖v‖H1 + ∥∥∂+

h v
∥∥
H1

]
,

‖evϑv‖
�
∞;2
h

≤ K
[ ‖v‖H1 + h−1/2

∥∥∂+
h v

∥∥
H1

]
, (A.11)

together with

‖evϑv‖
�
2;1
h

≤ K ‖v‖H1 ,

‖evϑv‖
�
2;2
h

≤ K
[ ‖v‖H1 + ∥∥∂+

h v
∥∥
H1

]
. (A.12)

Lemma A.2 [28, Lem. A.4] Consider any f ∈ C(R;R) and any g ∈ H1. Then the following
properties hold for all h > 0.

(i) If the bound

‖evϑ f ‖�2h
≤ ‖g‖∞ (A.13)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖ f ‖L2 ≤ ‖g‖∞ . (A.14)

(ii) If the bound

‖evϑ f ‖�2h
≤ ‖evϑg‖�

2;2
h

(A.15)

holds for all ϑ ∈ (0, h), then f ∈ L2 with

‖ f ‖L2 ≤ ‖g‖H1 + ∥∥∂+
h ∂+

h g
∥∥
L2 . (A.16)

(iii) If the bound

‖evϑ f ‖�2h
≤ ‖evϑg‖�

2;3
h

(A.17)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖ f ‖L2 ≤ ‖g‖H1 + ∥∥∂+
h g

∥∥
H1 + ∥∥∂+

h ∂+
h ∂+

h g
∥∥
L2 . (A.18)
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B The Gridspace Function �U

The gridpoint spacing function

γU =
√
1 − (∂0U )2 (B.1)

plays an important role throughout this paper and was analyzed at length in the prequels [28,
29]. We recall some of these results here and also obtain several novel bounds related to
the sums that are evaluated in Sects. E and F. Recalling the definitions (3.24) for sums and
products, we first state some useful identities pertaining to powers of γU .

Lemma B.1 [28, Lem. C.2] Consider any U ∈ �∞(hZ;R) for which
∥
∥∂+U

∥
∥∞ < 1. Then

we have the identities

∂+[γ −4
U ] = 4S+[∂0U ]S+[∂(2)U ]

P+[γ 2
U ]

S+[γ 2
U ]

P+[γ 2
U ] ,

∂+[γ −2
U ] = 2S+[∂0U ]S+[∂(2)U ]

P+[γ 2
U ] ,

∂+[γ −1
U ] = S+[∂0U ]S+[∂(2)U ]

S+[γU ]P+[γU ] ,

∂+[γU ] = − S+[∂0U ]S+[∂(2)U ]
S+γU

,

∂+[γ 2
U ] = −2S+[∂0U ]S+[∂(2)U ]. (B.2)

Turning to estimates, we first note that

γU (b) − γU (a) = −[γU (a) + γU (b) ]−1(∂0U (a) + ∂0U (b))(∂0U (b) − ∂0U (a)) (B.3)

holds for any U (a),U (b) ∈ �h;κ ; see [28, Eq. (C.4)]. This can be used [28, Cor. D.2] to
obtain the Lipschitz bound

∥∥γU (a) − γU (b)

∥∥
�
q
h

≤ K
∥∥∥∂+U (b) − ∂+U (a)

∥∥∥
�
q
h

(B.4)

for q ∈ {2,∞}, where K depends on κ but not on h. In addition, it can be exploited to
establish the following approximation errors for various expressions involving γU .

Lemma B.2 [28, Lem. D.4] Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0

and any U ∈ �h;κ , we have the pointwise estimates
∣∣∣∂+[γ 2

U ] + 2∂0US+[∂(2)U ]
∣∣∣ ≤ Kh

[ ∣∣∣∂(2)U
∣∣∣
2 + T+

∣∣∣∂(2)U
∣∣∣
2 ]

,

∣∣∣∂+[γU ] + γ −1
U ∂0US+[∂(2)U ]

∣∣∣ ≤ Kh
[ ∣∣∣∂(2)U

∣∣∣
2 + T+

∣∣∣∂(2)U
∣∣∣
2 ]

,

∣∣∣∂+[γ −1
U ] − γ −3

U ∂0US+[∂(2)U ]
∣∣∣ ≤ Kh

[ ∣∣∣∂(2)U
∣∣∣
2 + T+

∣∣∣∂(2)U
∣∣∣
2 ]

,

∣∣∣∂+[γ −2
U ] − 2γ −4

U ∂0US+[∂(2)U ]
∣∣∣ ≤ Kh

[ ∣∣∣∂(2)U
∣∣∣
2 + T+

∣∣∣∂(2)U
∣∣∣
2 ]

,

∣∣∣∂+[γ −4
U ] − 4γ −6

U ∂0US+[∂(2)U ]
∣∣∣ ≤ Kh

[ ∣∣∣∂(2)U
∣∣∣
2 + T+

∣∣∣∂(2)U
∣∣∣
2 ]

. (B.5)
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Lemma B.3 Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any

U ∈ �h;κ , we have the pointwise estimate
∣
∣∣
∣∂

+[∂0U

γU

] − γ −3
U S+[∂(2)U ]

∣
∣∣
∣ ≤ Kh

[ ∣
∣
∣∂(2)U

∣
∣
∣ + T+

∣
∣
∣∂(2)U

∣
∣
∣
]
. (B.6)

Proof Using ∂+∂0U = S+∂(2)U and the definition (3.10) for γU , we compute

∂+[∂0U

γU

] = ∂+[γ −1
U ]T+∂0U + γ −1

U ∂+∂0U

= ∂+[γ −1
U ]∂0U + E1(U ) + γ −1

U ∂+∂0U

= γ −3
U ∂0US+[∂(2)U ]∂0U + E1(U ) + E2(U ) + γ −1

U S+[∂(2)U ]
= γ −3

U S+[∂(2)U ] + E1(U ) + E2(U ), (B.7)

in which

E1(U ) = h∂+[γ −1
U ]∂+∂0U ,

E2(U ) =
[
∂+[γ −1

U ] − γ −3
U ∂0US+[∂(2)U ]

]
∂0U . (B.8)

The estimates (B.5) now yield the bounds

|E1(U )| + |E2(U )| ≤ C ′
1h

[ ∣∣∣∂(2)U
∣∣∣ + T+

∣∣∣∂(2)U
∣∣∣
]
, (B.9)

which establishes (B.6). ��
We now continue the discussion from [28, §D] and consider discrete versions of the

integral identities
∫ τ

−∞
u′(τ ′)u′′(τ ′)
√
1 − u′(τ ′)2

dτ ′ = 1 −
√
1 − u′(τ )2,

∫ τ

−∞
u′(τ ′)v′′(τ ′)
√
1 − u′(τ ′)2

= u′(τ )v′(τ )
√
1 − u′(τ )2

−
∫ τ

−∞
u′′(τ ′)v′(τ ′)

(1 − u′(τ ′)2)3/2
dτ ′. (B.10)

Instead of computing the corresponding sums exactly, we obtain useful approximation that
are O(h)-accurate.

Lemma B.4 Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any

U ∈ �h;κ , the two linear expressions

SA;U [V ] =
∑

−;h
γ −1
U [∂0U ]∂(2)V ,

SB:U [V ] = γ −1
U [∂0U ]∂0V −

∑

−;h
γ −3
U [∂(2)U ]∂0V (B.11)

satisfy the pointwise estimate
∣∣SB;U [V ] − SA;U [V ]∣∣ ≤ Kh

[
T− ∣∣∂−V

∣∣ + ∣∣∂−V
∣∣ + ∣∣∂(2)V

∣∣ + ∥∥∂+V
∥∥

�2h

+ ∥∥∂+∂+V
∥∥

�2h

] (B.12)

for all V ∈ �2h.
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Proof Using (A.4) we first observe that
∣
∣T+SA;U [V ] − SA;U [V ]∣∣ = h

∣
∣∂+SA;U [V ]∣∣ ≤ C ′

1

∣
∣
∣∂(2)V

∣
∣
∣ . (B.13)

The summation-by-parts identity (A.5) allows us to compute

T+SA;U [V ] = T+[∑

−;h
γ −1
U [∂0U ]∂(2)V

]

= T+[∑

−;h
γ −1
U [∂0U ]∂+∂−V

]

= T+[
T−1

[
γ −1
U ∂0U

]
∂−V −

∑

−;h
∂−[γ −1

U ∂0U ]∂−V
]

= γ −1
U [∂0U ]∂+V −

∑

−;h
∂+[γ −1

U ∂0U ]∂+V . (B.14)

Upon writing

SA;U ;I [V ] = γ −1
U [∂0U ]∂0V −

∑

−;h
∂+[γ −1

U ∂0U ]∂0V , (B.15)

we use the identity

∂+V − ∂0V = 1

2
h∂(2)U (B.16)

together with (B.6) to obtain
∣∣SA;U ;I [V ] − T+SA;U [V ]∣∣ ≤ C ′

2h
∣∣∣∂(2)V

∣∣∣ + C ′
2h

∥∥∂+∂+V
∥∥

�2h
. (B.17)

We now write

SA;U ;I I [V ] = γ −1
U [∂0U ]∂0V −

∑

−;h
γ −3
U S+[∂(2)U ]∂0V , (B.18)

which gives

SA;U ;I I [V ] − SA;U ;I [V ] = −
∑

−;h

[
∂+[γ −1

U ∂0U ] − γ −3
U S+[∂(2)U ]

]
∂0V . (B.19)

In particular, (B.6) yields
∣∣SA;U ;I I [V ] − SA;U ;I [V ]∣∣ ≤ C ′

3h
∥∥∂+∂+U

∥∥
�2h

∥∥∂0V
∥∥

�2h
≤ C ′

4h
∥∥∂+V

∥∥
�2h

. (B.20)

We now transfer the S+ using the summation-by-parts identity (A.5) to obtain

SA;U ;I I [V ] = γ −1
U [∂0U ]∂0V − 1

2
hT−[γ −3

U ∂0V ]∂(2)U −
∑

−;h
S−[

γ −3
U ∂0V

]
∂(2)U .(B.21)

We hence see that

SB;U [V ] − SA;U ;I I [V ] = hT−[
γ −3
U ∂0V ] + ∑

−;h h∂−[
γ −3
U ∂0V

]
∂(2)U . (B.22)

Using the fact that
∥∥∥∂−[

γ −3
U ∂0V

]∥∥∥
�2h

≤ C ′
5

[ ∥∥∂+V
∥∥

�2h
+ ∥∥∂+∂+V

∥∥
�2h

]
(B.23)

the desired estimate follows. ��
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Lemma B.5 Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any

U ∈ �h;κ , we have the pointwise estimate
∣
∣
∣
∣
∣
∣

∑

−;h
γ −1
U [∂0U ]∂(2)U − (1 − γU )

∣
∣
∣
∣
∣
∣
≤ Kh. (B.24)

Proof Since [γU ] jh → 1 as j → −∞, we have

γU − 1 = ∑
−;h ∂+γU . (B.25)

In particular, writing

SI = ∑
−;h γ −1

U ∂0US+[∂(2)U ] (B.26)

we may use the estimates (B.5) to obtain

|SI − (1 − γU )| ≤ 2Kh
∥
∥∂+∂+U

∥
∥2

�2h
≤ C ′

1h. (B.27)

Using the second summation-by-parts identity in (A.5), we can transfer the S+ to obtain

SI = 1
2h∂(2)UT−[

γ −1
U ∂0U + ∑

−;h S−[
γ −1
U ∂0U

]
∂(2)U

]
. (B.28)

In particular, writing

I = SI − ∑
−;h γ −1

U [∂0U ]∂(2)U , (B.29)

we see that

I = h
2 ∂(2)UT−[

γ −1
U ∂0U

] − ∑
−;h h

2 ∂−[
γ −1
U ∂0U

]
∂(2)U . (B.30)

Using Lemma B.3 we see that

|I| ≤ C ′
1h

∥∥∂+∂+U
∥∥2

�2h
+ C ′

2h, (B.31)

from which the desired estimate follows. ��

C Operator Bounds

Our goal here is to establish several crucial bounds on the linear operators and error functions
introduced in Sects. 3.1–3.2. The errors that arise when approximating ∂+MU and ∂+Etw by
M+

U ;apx and E+
tw;apx are of special importance.

Proposition C.1 [29, Prop. 5.1] Assume that (Hg) is satisfied and fix κ > 0. There exists
K > 0 so that for any h > 0, U ∈ �h;κ and V ∈ �2h we have the a-priori bounds

‖MU [V ]‖�2h
≤ K ‖V ‖

�
2;2
h

,
∥∥∂+MU [V ]∥∥

�2h
≤ K ‖V ‖

�
2;3
h

+ K
∥∥∂+∂+∂+U

∥∥
�∞
h

∥∥∂+V
∥∥

�2h
,

∥∥∂+MU [V ] − MU [∂+V ]∥∥
�2h

≤ K ‖V ‖
�
2;2
h

+ K
∥∥∂+∂+∂+U

∥∥
�∞
h

∥∥∂+V
∥∥

�2h
, (C.1)

together with the estimate
∥∥∥∂+MU [V ] − M+

U ;apx[V ]
∥∥∥

�2h

≤ Kh ‖V ‖
�
2;3
h

+ Kh
∥∥∂+∂+∂+U

∥∥
�∞
h

‖V ‖
�
2;2
h

. (C.2)
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In addition, for any h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the

Lipschitz bound
∥
∥MU (2) [V ] − MU (1) [V ]∥∥

�2h
≤ K

∥
∥U (2) −U (1)

∥
∥

�
2;2
h

‖V ‖
�
∞;1
h+K

∥
∥U (2) −U (1)

∥
∥

�
∞;1
h

‖V ‖
�
2;2
h

.
(C.3)

Proposition C.2 Assume that (Hg) and (H�∗) are satisfied and fix 0 < κ < 1
12 . There exists

K > 0 so that for any h > 0 and U ∈ �h;κ we have the a-priori bounds

‖Esm(U )‖�∞
h

+ ‖Esm(U )‖�2h
≤ K ,

‖Etw(U )‖�∞
h

+ ‖Etw(U )‖�2h
≤ K (C.4)

together with the estimate
∥
∥∥∂+[Etw(U )] − E+

tw;apx(U )

∥
∥∥

�∞
h

+
∥
∥∥∂+[Etw(U )] − E+

tw;apx(U )

∥
∥∥

�2h

≤ Kh, (C.5)

while for any U (1) ∈ �h;κ and U (2) ∈ �h;κ we have the Lipschitz bounds

∥∥Esm(U (1)) − Esm(U (2))
∥∥

�2h
≤ K

[ ∥∥∂+U (2) − ∂+U (1)
∥∥

�2h

+ ∥∥∂+∂+U (2) − ∂+∂+U (1)
∥∥

�2h

]
,

∥∥Etw(U (1)) − Etw(U (2))
∥∥

�2h
≤ K

∥∥U (2) −U (1)
∥∥

�
2;2
h

.

(C.6)

Proof The bounds in (C.4) and (C.6) follow directly from
∥∥h∂−∥∥L(�2h ,�

2
h)

≤ 2, the Lipschitz

bounds (B.4), the estimate

‖g(U )‖�2h
≤ 4

[
sup|u|≤κ−1

∣∣g′(u)
∣∣
]

(C.7)

from [28, Eq. (3.43)] and the pointwise inequality
∣∣∣g(U (2)) − g(U (1))

∣∣∣ ≤
[
sup|u|≤κ−1

∣∣g′(u)
∣∣
] ∣∣∣U (2) −U (1)

∣∣∣ . (C.8)

In order to establish (C.5), we compute

∂+[Etw(U )] = ∂+[γ −4
U ]T+[∂(2)U ] + γ −4

U ∂+∂(2)U + ∂+[g(U )] − c∗∂+[γ −1
U ∂0U ]

(C.9)

and notice that

∂+[g(U )] − g′(U )∂0U = ∂+[g(U )] − g′(U )∂+U + h
2 g

′(U )∂(2)U . (C.10)

Upon estimating
∣∣∂+[g(U )] − g′(U )∂+U

∣∣ = h−1
∣∣g(U + h∂+U ) − g(U ) − g′(U )h∂+U

∣∣

≤ 1

2

[
sup|u|≤κ−1

∣∣g′′(u)
∣∣
]
h−1

∣∣h∂+U
∣∣2

= 1

2
h
[
sup|u|≤κ−1

∣∣g′′(u)
∣∣
] ∣∣∂+U

∣∣2 , (C.11)

we can use (B.5) together with (B.6) to obtain the desired bound. ��
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Proposition C.3 Assume that (Hg) and (H�∗) are satisfied. Then there exists K > 0 so that
for any h > 0 we have the estimates

‖Esm(�∗)‖�∞
h

+ ‖Esm(�∗)‖�2h
≤ Kh,

‖Etw(�∗)‖�∞
h

+ ‖Etw(�∗)‖�2h
≤ Kh,

∥
∥∂+[Etw(�∗)]

∥
∥

�∞
h

+ ∥
∥∂+[Etw(�∗)]

∥
∥

�2h
≤ Kh. (C.12)

Proof We have �∗ ∈ W 3;q for q ∈ {2,∞}, which allows us to apply (A.7) and (A.6) to
obtain

‖Esm(�∗)‖�
q
h

≤ C ′
1h

∥∥∂−∂+∂−�∗
∥∥

�
q
h

≤ C ′
1h

∥∥� ′′′∗
∥∥
Lq . (C.13)

This yields the first bound.
Since the functions

γ∗ =
√
1 − (� ′∗)2, γ�∗ =

√
1 − (∂0�∗)2 (C.14)

are both uniformly bounded away from zero, we have the pointwise estimate
∣∣∣γ −1∗ − γ −1

�∗

∣∣∣ +
∣∣∣γ −3∗ − γ −3

�∗

∣∣∣ +
∣∣∣γ −4∗ − γ −4

�∗

∣∣∣ +
∣∣∣γ −6∗ − γ −6

�∗

∣∣∣ ≤ C ′
1

∣∣∂0�∗ − � ′∗
∣∣ .

(C.15)

Exploiting the fact that � ′∗, � ′′∗ , , γ −1∗ γ −1
�∗ , ∂

0�∗ and ∂(2)�∗ are all uniformly bounded, we
now see that

∥∥∥γ −1∗ � ′∗ − γ −1
�∗ ∂0�∗

∥∥∥
�
q
h

≤ C ′
2

∥∥∂0�∗ − � ′∗
∥∥

�
q
h
,

∥∥∥γ −4∗ � ′′∗ − γ −1
�∗ ∂(2)�∗

∥∥∥
�
q
h

≤ C ′
2

[ ∥∥∂0�∗ − � ′∗
∥∥

�
q
h

+
∥∥∥∂(2)�∗ − � ′′∗

∥∥∥
�
q
h

]
,

∥∥∥γ −4
�∗ ∂+∂(2)�∗ − γ −4∗ � ′′′∗

∥∥∥
�
q
h

≤ C ′
2

[ ∥∥∂0�∗ − � ′∗
∥∥

�
q
h

+
∥∥∥∂+∂(2)�∗ − � ′′′∗

∥∥∥
�
q
h

]

(C.16)

for q ∈ {2,∞}.
Since �∗ ∈ W 3,2 ∩ W 3,∞, we may apply (A.8) and (A.9) to obtain∥

∥∥γ −1∗ � ′∗ − γ −1
�∗ ∂0�∗

∥
∥∥

�
q
h

+
∥
∥∥γ −4∗ � ′′∗ − γ −4

�∗ ∂(2)�∗
∥
∥∥

�
q
h

+
∥∥
∥γ −4∗ � ′′′∗ − γ −4

�∗ ∂(2)�∗
∥∥
∥

�
q
h

≤ C ′
3h

(C.17)

for q ∈ {2,∞}. The travelling wave equation (3.32) allows us to write

Etw(�∗) = γ −4
�∗ ∂(2)�∗ − γ −4∗ � ′′∗ − c∗γ −1

�∗ ∂0�∗ + c∗γ −1∗ � ′∗, (C.18)

which using (C.17) yields the second bound.
Using the fact that �∗ ∈ W 4,2 ∩ W 4,∞, which allows us to apply (A.10), we may argue

in a similar fashion as above to conclude
∥∥∥γ −6∗ � ′′∗� ′∗� ′′∗ − γ −6

�∗ ∂0�∗S+[∂(2)�∗]T+[∂(2)�∗]
∥∥∥

�
q
h

≤ C ′
4h,

∥∥∥γ −3∗ � ′′∗ − γ −3
�∗ S

+[∂(2)�∗]
∥∥∥

�
q
h

≤ C ′
4h,

∥∥∥γ −4∗ � ′′′∗ − γ −4
�∗ ∂+∂(2)�∗

∥∥∥
�
q
h

≤ C ′
4h (C.19)
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for q ∈ {2,∞}. The differentiated travelling wave equation (3.33) allows us to write

E+
tw;apx(�∗) = 4γ −6

�∗ ∂0�∗S+[∂(2)�∗]T+[∂(2)�∗] − 4γ −6∗ � ′′∗� ′∗� ′′∗
+γ −4

�∗ ∂+∂(2)�∗ − γ −4∗ � ′′′∗
+g′(�∗)∂0�∗ − g′(�∗)� ′∗

−c∗γ −3
�∗ S

+[∂(2)�∗] + c∗γ −3∗ � ′′∗ . (C.20)

Using (C.19) together with (C.5) we may hence conclude

∥
∥∂+[Etw(�∗)]

∥
∥

�
q
h

≤
∥
∥
∥E+

tw;apx(�∗)
∥
∥
∥

�
q
h

+
∥
∥
∥∂+[Etw(�∗)] − E+

tw;apx(�∗)
∥
∥
∥

�
q
h

≤ C ′
3h,

(C.21)

which yields the third bound. ��

D Decompositions for f ∈ Snl;short

Our goal here is to provide the explicit decompositions (4.1) for the nonlinearities (3.35)
and (3.36). In addition, we validate the bookkeeping claims made in Propositions 4.1-4.6,
providing the underpinning for the estimates in Sect. 4.2. For efficiency purposes, we combine
our treatment of nonlinearities that admit similar bounds.

D.1 Decompositions forY1 andXA

Recalling the definitions

Y1;apx(U ) = ∂0U , Y1;lin;U [V ] = ∂0V − ∂0U
[∑

−;h Esm(U )∂0V
]
,

XA;apx(U ) = ∂0U , XA;lin;U [V ] = ∂0V + ∂0U
[∑

−;h Esm(U )∂0V
] (D.1)

from (3.37) and (3.39), we realize the splittings (4.1) by writing

Y1;apx;expl(U ) = ∂0U , Y1;lin;U ;expl[V ] = ∂0V ,

Y1;apx;sh(U ) = 0, Y1;lin;U ;sh[V ] = 0,
Y1;apx;rem(U ) = 0, Y1;lin;U ;rem[V ] = −∂0U

[∑
−;h Esm(U )∂0V

]
,

(D.2)

together with

XA;apx;expl(U ) = ∂0U , XA;lin;U ;expl[V ] = ∂0V ,

XA;apx;sh(U ) = 0, XA;lin;U ;sh[V ] = 0,
XA;apx;rem(U ) = 0, XA;lin;U ;rem[V ] = ∂0U

[∑
−;h Esm(U )∂0V

]
.

(D.3)

In addition, for both nonlinearities f ∈ {Y1,XA} we introduce the exponent sets

Q f ;pref = Q f ;pref = Q f = Q f ;lin = Q f ;lin;rem = {2,∞}. (D.4)
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Lemma D.1 Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. Then there exists a constant K > 0 so

that the bounds
∥
∥ flin;U ;rem[V ]∥∥

�2h
≤ K

∥
∥∂+V

∥
∥

�2h
≤ KTsafe(V ),

∥
∥ flin;U ;rem[V ]∥∥

�∞
h

≤ K
∥
∥∂+V

∥
∥

�2h
≤ KTsafe(V ),

∥
∥ flin;U ;expl[V ]∥∥

�2h
+ ∥

∥ flin;U ;sh[V ]∥∥
�2h

≤ K
∥
∥∂+V

∥
∥

�2h
≤ KTsafe(V ),

∥
∥ flin;U ;expl[V ]∥∥

�∞
h

+ ∥
∥ flin;U ;sh[V ]∥∥

�∞
h

≤ K
∥
∥∂+V

∥
∥

�∞
h

≤ KT∞;opt(V )

(D.5)

hold for all h > 0, U ∈ �h;κ and V ∈ �2h.

Proof The bounds follow from inspection. ��

Lemma D.2 Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0 and U ∈ �h;κ we have the bound
∥
∥ fapx;expl(U )

∥
∥

�2h
+ ∥

∥ fapx;expl(U )
∥
∥

�∞
h

≤ K . (D.6)

(ii) For any h > 0 and any pair (U (1),U (2)) ∈ �h;κ , we have the bounds
∥∥∥ fapx;expl(U (1)) − fapx;expl(U (2))

∥∥∥
�2h

≤ K
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�2h

≤ K Sdiff;full
(
U (1),U (2)),

∥∥∥ fapx;expl(U (1)) − fapx;expl(U (2))

∥∥∥
�∞
h

≤ K
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�∞
h

≤ K Sdiff;full
(
U (1),U (2)). (D.7)

Proof These estimates follow by inspection. ��

Lemma D.3 Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0, any pair U ∈ �h;κ and any V ∈ �2h, we have the bound
∥∥ flin;U ;rem[V ]∥∥

�2h
≤ K ‖Esm(U )‖�2h

∥∥∂+V
∥∥

�2h

≤ KErem;U (V ). (D.8)

(ii) For any h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the bounds

∥∥∥ flin;U (1);expl[V ] − flin;U (2);expl[V ]
∥∥∥

�2h

= 0,

∥∥ flin;U (1);rem[V ] − flin;U (2);rem[V ]∥∥
�2h

≤ K
∥∥∂+V

∥∥
�2h

[ ∥∥∥∂+U (1) − ∂+U (2)
∥∥∥

�2h

+
∥∥∥∂(2)U (1) − ∂(2)U (2)

∥∥∥
�2h

]

≤ KEprod(U (2) −U (1), V ). (D.9)

Proof Recalling the Lipschitz bound (C.6), the estimates follow by inspection. ��
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D.2 Decomposition forY2

Recalling the definitions

Y2;apx(U ) = γ −4
U ∂(2)U + g(U ), Y2;lin;U [V ] = γ −2

U MU [V ] + c∗γ −3
U ∂0V

(D.10)

from (3.37) and (3.39) and Etw from (3.29), we realize the splittings (4.1) by writing

Y2;apx;expl(U ) = c∗γ −1
U ∂0U , Y2;lin;U ;expl[V ] = γ −2

U MU [V ] + c∗γ −3
U ∂0V ,

Y2;apx;sh(U ) = 0, Y2;lin;U ;sh[V ] = 0,
Y2;apx;rem(U ) = Etw(U ), Y2;lin;U ;rem[V ] = 0.

(D.11)

In addition, we introduce the sets

QY2;pref = QY2;pref = {2}, (D.12)

together with

QY2 = {2,∞}, QY2;lin;rem = QY2;lin = {2}. (D.13)

Lemma D.4 Fix 0 < κ < 1
12 and write f = Y2. Then there exists a constant K > 0 so that

the bound
∥∥ flin;U ;expl[V ]∥∥

�2h
≤ K ‖V ‖

�
2;2
h

≤ KTsafe(V ) (D.14)

holds for all h > 0, U ∈ �h;κ and V ∈ �2h.

Proof This follows from Proposition C.1. ��
Lemma D.5 Fix 0 < κ < 1

12 . There exists a constant K > 0 so that the following properties
are true.

(i) For any h > 0 and U ∈ �h;κ we have the bound
∥
∥Y2;apx;expl(U )

∥
∥

�2h
+ ∥

∥Y2;apx;expl(U )
∥
∥

�∞
h

+ ∥
∥Y2;apx;rem(U )

∥
∥

�2h+ ∥
∥Y2;apx;rem(U )

∥
∥

�∞
h

≤ K .
(D.15)

(ii) For any h > 0 and U ∈ �h;κ , we have the bounds
∥∥Y2;apx;rem(U )

∥∥
�2h

≤ ‖Etw(U )‖�2h
≤ Srem;full(U ),

∥∥Y2;apx;rem(U )
∥∥

�∞
h

≤ ‖Etw(U )‖�∞
h

≤ Srem;full(U ). (D.16)

(iii) For any h > 0 and any pair (U (1),U (2)) ∈ �h;κ , we have the bounds
∥∥∥Y2;apx;expl(U (1)) − Y2;apx;expl(U (2))

∥∥∥
�2h

≤ K
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�2h

≤ K Sdiff;2;fix
(
U (1),U (2)),

∥∥∥Y2;apx;rem(U (1)) − Y2;apx;rem(U (2))

∥∥∥
�2h

≤ K
∥∥∥U (1) −U (2)

∥∥∥
�
2;2
h

≤ K Sdiff;2;fix
(
U (1),U (2)). (D.17)

Proof Recalling (C.6), these bounds follow by inspection. ��
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Lemma D.6 Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bound

∥
∥
∥Y2;lin;U (1);expl[V ] − Y2;lin;U (2);expl[V ]

∥
∥
∥

�2h

≤ K
∥
∥
∥U (1) −U (2)

∥
∥
∥

�
2;2
h

‖V ‖
�
∞;1
h

+K
∥
∥
∥U (1) −U (2)

∥
∥
∥

�
∞;1
h

‖V ‖
�
2;2
h

≤ KEprod(U (1) −U (2), V ) (D.18)

for any h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h.

Proof This bound follows directly from (B.4) and [29, Prop 5.1].
��

D.3 Decomposition forD�0;+ andD�−;+

For both functions f ∈ {D�0;+,D�−;+} we write fapx;sh(U ) = fapx;rem(U ) = 0 and
flin;sh(U ) = flin;rem(U ) = 0 and introduce the exponent sets

Q f ;pref = Q f ;pref = Q f ;lin = Q f ;lin;rem = {2}, Q f = {2,∞}. (D.19)

Besides the Lipschitz estimates below, all the estimates we require here can be found in [28,
Prop. 7.3].

Lemma D.7 Fix 0 < κ < 1
12 and pick f ∈ {D�0;+,D�−;+}. There exists a constant K > 0

so that the following properties are true.

(i) For any h > 0 and any pair (U (1),U (2)) ∈ �h;κ , we have the bounds
∥∥∥ fapx;expl(U (1)) − fapx;expl(U (2))

∥∥∥
�2h

≤ K
[ ∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�2h

+
∥∥∥∂(2)U (1) − ∂(2)U (2)

∥∥∥
�2h

]

≤ K Sdiff;2;fix
(
U (1),U (2)). (D.20)

(ii) For any h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the bound

∥∥∥ flin;U (1);expl[V ] − flin;U (2);expl[V ]
∥∥∥

�2h

≤ K
[ ∥∥∂+V

∥∥
�2h

+ ∥∥∂+∂+V
∥∥

�2h

] ∥∥∥∂+U (1) − ∂+U (2)
∥∥∥

�∞
h

+K
∥∥∂+V

∥∥
�∞
h

∥∥∥∂+∂+U (1) − ∂+∂+U (2)
∥∥∥

�2h

≤ KEprod(U (2) −U (1), V ). (D.21)

Proof These bounds follow by inspecting the definitions (3.40). ��

D.4 Decompositions forXB,XC andXD

Recalling the definitions

XB;apx(U ) = S+[γ −1
U ]γ 4

U ,
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XC;apx(U ) = S+[γ −1
U ](γ 4

U − γ 2
U ),

XD;apx(U ) = S+[γU ∂0U ]∂0U (D.22)

from (3.37) together with

XB;lin;U [V ] = S+[
γ −3
U ∂0U∂0V + γ −1

U

[∑

−;h
Esm(U )∂0V

]]
γ 4
U

+S+[γ −1
U ](−4γ 2

U )∂0U∂0V ,

XC;lin;U [V ] = S+[
γ −3
U ∂0U∂0V + γ −1

U

∑

−;h
Esm(U )∂0V

]
(γ 4

U − γ 2
U )

+S+[γ −1
U ][2 − 4γ 2

U ]∂0U∂0V ,

XD;lin;U [V ] = S+[γ −1
U (2γ 2

U − 1)∂0V ]∂0U + S+[γU ∂0U ]∂0V
+S+[γU ∂0U ]∂0U

∑

−;h
Esm(U )∂0V (D.23)

from (3.38), we realize the splittings (4.1) by writing

XB;apx;expl(U ) = T+[γ 3
U ], XB;lin;U ;expl[V ] = −3T+

[
γU ∂0U∂0V

]
, (D.24)

together with

XC;apx;expl(U ) = −XD;apx;expl(U )

= γU (γ 2
U − 1),

XC;lin;U ;expl[V ] = −XD;lin;U ;expl[V ]
= γ −1

U (1 − 3γ 2
U )∂0U∂0V (D.25)

for the explicit terms. The shift terms are given by

XB;apx;sh(U ) = −hS+[γ −1
U ]∂+[γ 4

U ] − h

2
∂+[γ −1

U ]T+[γ 4
U ],

XC;apx;sh(U ) = h

2
∂+[γ −1

U ]γ 2
U (γ 2

U − 1),

XD;apx;sh(U ) = h

2
∂+[γU ∂0U ]∂0U , (D.26)

together with

XB;lin;U ;sh[V ] = −h

2
∂+[

γ −3
U ∂0U∂0V

]
γ 4
U

−hS+[γ −1
U ]∂+[−4γ 2

U ∂0V ] − h∂+[γ −1
U ]T+[ − 2γ 2

U ∂0V ],
XC;lin;U ;sh[V ] = h

2
∂+[

γ −3
U ∂0U∂0V

]
γ 2
U (γ 2

U − 1)

+h

2
∂+[

γ −1
U

][2 − 4γ 2
U ]∂0U∂0V ,

XD;lin;U ;sh[V ] = h

2
∂+[

γ −1
U (2γ 2

U − 1)∂0V
]
∂0U + h

2
∂+[γU ∂0U ]∂0V , (D.27)

while the remainder terms are given by

XB;apx;rem(U ) = XC;apx;rem(U ) = XD;apx;rem(U ) = 0, (D.28)
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together with

XB;lin;U ;rem[V ] = S+[
γ −1
U

[ ∑

−;h
Esm(U )∂0V

]]
γ 4
U ,

XC;lin;U ;rem[V ] = S+[
γ −1
U

∑

−;h
Esm(U )∂0V

]
(γ 4

U − γ 2
U ),

XD;lin;U ;rem[V ] = S+[γU ∂0U ]∂0U
∑

−;h
Esm(U )∂0V . (D.29)

In addition, for any f ∈ {XB ,XC ,XD} we introduce the exponent sets
Q f ;pref = Q f ;pref = {∞}, (D.30)

together with

Q f = {∞}, Q f ;lin = {2,∞}, Q f ;lin;rem = {∞}. (D.31)

Lemma D.8 Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. Then there exists a constant

K > 0 so that the bounds
∥∥ flin;U ;rem[V ]∥∥

�∞
h

≤ K
∥∥∂+V

∥∥
�2h

≤ KTsafe(V ),
∥∥ flin;U ;expl[V ]∥∥

�2h
+ ∥∥ flin;U ;sh[V ]∥∥

�2h
≤ K

∥∥∂+V
∥∥

�2h

≤ KTsafe(V ),
∥∥ flin;U ;expl[V ]∥∥

�∞
h

+ ∥∥ flin;U ;sh[V ]∥∥
�∞
h

≤ K
∥∥∂+V

∥∥
�∞
h

≤ KT∞;opt(V ) (D.32)

hold for all h > 0, U ∈ �h;κ and V ∈ �2h.

Proof These bounds follow by inspection. ��
Lemma D.9 Fix 0 < κ < 1

12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0 so
that the following properties are true.

(i) For any h > 0 and U ∈ �h;κ we have the bound
∥∥ fapx;expl(U )

∥∥
�∞
h

+ ∥∥ fapx;sh(U )
∥∥

�∞
h

≤ K . (D.33)

(ii) For any h > 0 and U ∈ �h;κ , we have the bound
∥∥ fapx;sh(U )

∥∥
�∞
h

≤ Kh ≤ K Ssh;full(U ). (D.34)

(iii) For any h > 0 and any pair (U (1),U (2)) ∈ �h;κ , we have the bounds
∥∥∥ fapx;expl(U (1)) − fapx;expl(U (2))

∥∥∥
�∞
h

≤ K
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�∞
h

≤ K Sdiff;full
(
U (1),U (2)),

∥∥∥ fapx;sh(U (1)) − fapx;sh(U (2))

∥∥∥
�∞
h

≤ K
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�∞
h

≤ K Sdiff;full
(
U (1),U (2)). (D.35)
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Proof These bounds follow from the discrete derivative expressions in Lemma B.1 and the
Lipschitz bounds for γU in (B.4). ��
Lemma D.10 Fix 0 < κ < 1

12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0
so that the following properties are true.

(i) For any h > 0, any pair U ∈ �h;κ and any V ∈ �2h, we have the bounds
∥
∥ flin;U ;sh[V ]∥∥

�2h
≤ Kh

[ ∥
∥∂+V

∥
∥

�2h
+ ∥

∥∂+∂+V
∥
∥

�2h

]

≤ KEsh;U (V ),
∥
∥ flin;U ;rem[V ]∥∥

�∞
h

≤ K ‖Esm(U )‖�2h

∥
∥∂+V

∥
∥

�2h

≤ KErem;U (V ). (D.36)

(ii) For any h > 0, any pair (U (1),U (2)) ∈ �2
h;κ and any V ∈ �2h, we have the bounds

∥
∥
∥ flin;U (1);expl[V ] − flin;U (2);expl[V ]

∥
∥
∥

�2h

≤ K
∥
∥
∥∂+U (2) − ∂+U (1)

∥
∥
∥

�∞
h

∥
∥∂+V

∥
∥

�2h

≤ KEprod(U (2) −U (1), V ),
∥∥ flin;U (1);sh[V ] − flin;U (2);sh[V ]∥∥

�2h
≤ K

∥∥∥∂+U (2) − ∂+U (1)
∥∥∥

�∞
h

∥∥∂+V
∥∥

�2h

≤ KEprod(U (2) −U (1), V ),
∥∥ flin;U (1);rem[V ] − flin;U (2);rem[V ]∥∥

�∞
h

≤ K
∥∥∂+V

∥∥
�2h

[ ∥∥∥U (1) −U (2)
∥∥∥

�
2,2
h

+
∥∥∥∂+U (1) − ∂+U (2)

∥∥∥
�∞
h

]

≤ KEprod(U (2) −U (1), V ). (D.37)

Proof Recalling the Lipschitz bounds (C.6), these estimates follow from inspection. ��

D.5 Decomposition forY+
1

Recalling the definitions

Y+
1;apx(U ) = γ −1

U S+[∂(2)U ]T+γU ,

Y+
1;lin;U [V ] = [

γ −3
U ∂0U [S+∂(2)U ]∂0V + γ −1

U S+∂(2)V
]
T+γU

−γ −1
U S+[∂(2)U ]T+[

γ −1
U ∂0U∂0V + γU

∑

−;h
Esm(U )∂0V

]
. (D.38)

from (3.37) and (3.39), we realize the splittings (4.1) by writing

Y+
1;apx;expl(U ) = ∂(2)U ,

Y+
1;apx;sh(U ) = h

2
∂+∂(2)U + h∂+[γU ]γ −1

U S+[∂(2)U ],
Y+
1;apx;rem(U ) = 0, (D.39)

together with

Y+
1;lin;U ;expl[V ] = S+[∂(2)V ],

123



Journal of Dynamics and Differential Equations (2023) 35:2743–2811 2795

Y+
1;lin;U ;sh[V ] = hγ −3

U ∂+[γU ]∂0US+[∂(2)U ]∂0V
+hγ −1

U ∂+[γU ]S+[∂(2)V ]
−hγ −1

U S+[∂(2)U ]∂+[
γ −1
U ∂0U∂0V

]
,

Y+
1;lin;U ;rem[V ] = γ −1

U S+[∂(2)U ]T+[
γU

∑

−;h
Esm(U )∂0V

]
. (D.40)

Notice that we have eliminated the T+[∂(2)U ] term in the explicit expressions, while keeping
the T+[∂(2)V ] dependency. This inconsistency is deliberate as it will help us to make a useful
substitution in the sequel.

In addition, we introduce the sets

QY+
1 ;pref = {2,∞}, (D.41)

together with

QY+
1

= {2,∞}, QA
Y+
1 ;lin = QB

Y+
1 ;lin = {2,∞}. (D.42)

Lemma D.11 Fix 0 < κ < 1
12 and write f = Y+

1 . Then there exists a constant K > 0 so
that the bounds

∥∥ flin;U ;expl[V ]∥∥
�2h

+ ∥∥ flin;U ;sh[V ]∥∥
�2h

≤ K
[ ∥∥∂+V

∥∥
�2h

+ ∥∥∂+∂+V
∥∥

�2h

]

≤ KT safe(V ),
∥∥ flin;U ;expl[V ]∥∥

�∞
h

+ ∥∥ flin;U ;sh[V ]∥∥
�∞
h

≤ K
[ ∥∥∂+V

∥∥
�∞
h

+ ∥∥∂+∂+V
∥∥

�∞
h

]

≤ KT∞;opt(V ),
∥∥ flin;U ;rem[V ]∥∥

�2h
+ ∥∥ flin;U ;rem[V ]∥∥

�∞
h

≤ K
∥∥∂+V

∥∥
�2h

≤ KT safe(V ) (D.43)

hold for all h > 0, U ∈ �h;κ and V ∈ �2h.

Proof These bounds follow by inspection. ��
Lemma D.12 Fix 0 < κ < 1

12 . There exists a constant K > 0 so that the following properties
are true.

(i) For any h > 0 and U ∈ �h;κ we have the bound
∥∥∥Y+

1;apx;expl(U )

∥∥∥
�2h

+
∥∥∥Y+

1;apx;expl(U )

∥∥∥
�∞
h

+
∥∥∥Y+

1;apx;sh(U )

∥∥∥
�2h

+
∥∥∥Y+

1;apx;sh(U )

∥∥∥
�∞
h

≤ K . (D.44)

(ii) For any h > 0 and U ∈ �h;κ , we have the bound
∥∥∥Y+

1;apx;sh(U )

∥∥∥
�2h

≤ Kh[1 + ∥∥∂+∂+∂+U
∥∥

�2h
]

≤ K Ssh;full(U ),
∥∥∥Y+

1;apx;sh(U )

∥∥∥
�∞
h

≤ Kh[1 + ∥∥∂+∂+∂+U
∥∥

�∞
h

]
≤ K Ssh;full(U ). (D.45)
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Proof These bounds follow from the discrete derivative identities in Lemma B.1. ��
Lemma D.13 Fix 0 < κ < 1

12 . There exists a constant K > 0 so that we have the bounds
∥
∥∥Y+

1;lin;U ;sh[V ]
∥
∥∥

�2h

≤ Kh
[ ∥
∥∂+V

∥
∥

�2h
+ ∥

∥∂+∂+V
∥
∥

�2h

]

≤ KEsh;U (V ),
∥
∥
∥Y+

1;lin;U ;rem[V ]
∥
∥
∥

�2h

≤ K ‖Esm(U )‖�2h

∥
∥∂+V

∥
∥

�2h

≤ KE rem;U (V ) (D.46)

for any h > 0, any pair U ∈ �h;κ and any V ∈ �2h.

Proof These estimates follow by inspection. ��

D.6 Decomposition forY+
2b

Recalling the definitions

Y+
2b;apx(U ) =

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U
]

+ c∗γ −3
U S+[∂(2)U ],

Y+
2b;lin;U [V ] = 4[6γ −8

U − 5γ −6
U ]S+[∂(2)U ]T+[∂(2)U ]∂0V

+4γ −6
U ∂0U

[
T+[∂(2)U ]S+[∂(2)V ] + S+[∂(2)U ]T+[∂(2)V ]

]

+g′′(U )[∂0U ]V + g′(U )∂0V (D.47)

from (3.37) and (3.39), we realize the first splitting in (4.1) by writing

Y+
2b;apx;expl(U ) =

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U
]

+ c∗γ −3
U ∂(2)U ,

Y+
2b;apx;sh(U ) = 1

2
c∗hγ −3

U ∂+[∂(2)U ],
Y+
2b;apx;rem(U ) = 0. (D.48)

The second splitting (4.1) is obtained implicitly by recalling the definition (3.15) and writing

Y+
2b;lin;U ;expl[V ] = γ −2

U ∂+[
MU [V ]] + 2γ −4

U ∂0U [∂(2)U ]MU [V ] − M̃U ;I I I [V ]
+c∗

[
3γ −5

U ∂0U [∂(2)U ]∂0V + γ −3
U S+[∂(2)V ]

]
,

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U [V ] − Y+
2b;lin;U ;expl[V ],

Y+
2b;lin;U ;rem[V ] = 0. (D.49)

In addition, we introduce the sets

QY+
2b;pref = QY+

2b;lin = QY+
2b;lin;rem = {2}, QY+

2b
= {2,∞}. (D.50)

Lemma D.14 Fix 0 < κ < 1
12 and write f = Y+

2b. Then there exists a constant K > 0 so
that the bound

∥∥ flin;U ;expl[V ]∥∥
�2h

+ ∥∥ flin;U ;sh[V ]∥∥
�2h

≤ K ‖V ‖
�
2;2
h

≤ KT safe(V ) (D.51)

holds for all h > 0, U ∈ �h;κ and V ∈ �2h.
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Proof The bound follows by inspection. ��
Lemma D.15 Fix 0 < κ < 1

12 . There exists a constant K > 0 so that the following properties
are true.

(i) For any h > 0 and U ∈ �h;κ we have the bound
∥
∥
∥Y+

2b;apx;expl(U )

∥
∥
∥

�2h

+
∥
∥
∥Y+

2b;apx;sh(U )

∥
∥
∥

�2h

+
∥
∥
∥Y+

2b;apx;expl(U )

∥
∥
∥

�∞
h

+
∥
∥
∥Y+

2b;apx;sh(U )

∥
∥
∥

�∞
h

≤ K .
(D.52)

(ii) For any h > 0 and U ∈ �h;κ , we have the bound
∥
∥
∥Y+

2b;apx;sh(U )

∥
∥
∥

�2h

≤ Kh[1 + ∥
∥∂+∂+∂+U

∥
∥

�2h
] ≤ K Ssh;full(U ),

∥
∥
∥Y+

2b;apx;sh(U )

∥
∥
∥

�∞
h

≤ Kh[1 + ∥
∥∂+∂+∂+U

∥
∥

�∞
h

] ≤ K Ssh;full(U ).
(D.53)

Proof Recalling (3.30), the bounds follow by inspection. ��
Lemma D.16 Fix 0 < κ < 1

12 . There exists a constant K > 0 so that we have the bound
∥∥∥Y+

2b;lin;U ;sh[V ]
∥∥∥

�2h

≤ Kh
[
‖V ‖�2h

+ ∥∥∂+V
∥∥

�2h
+ ∥∥∂+∂+V

∥∥
�2h

+ ∥∥∂+∂+∂+V
∥∥

�2h

]

+Kh
∥∥∂+∂+∂+U

∥∥
�∞
h

[
‖V ‖�2h

+ ∥∥∂+V
∥∥

�2h
+ ∥∥∂+∂+V

∥∥
�2h

]

≤ KEsm;U (V ) (D.54)

for any h > 0, any pair U ∈ �h;κ and any V ∈ �2h.

Proof Recalling (3.14), we make the decomposition

Y+
2b;lin;U [V ] = M̃U ;I [V ] + Y+

2b;lin;U ;sh;a[V ] (D.55)

by writing

Y+
2b;lin;U ;sh;a[V ] = 2h[6γ −8

U − 5γ −6
U ][∂(2)U ]∂+[∂(2)U ]∂0V

+4h[6γ −8
U − 5γ −6

U ]S+[∂(2)U ]∂+[∂(2)U ]∂0V
+2hγ −6

U ∂0U
[
∂+[∂(2)U ]∂(2)V + [∂(2)U ]∂+[∂(2)V ]

]

+4hγ −6
U ∂0U

[
∂+[∂(2)U ]T+[∂(2)V ] + [∂(2)U ]∂+[∂(2)V ]

]
.

(D.56)

Introducing the function

Y+
2b;lin;U ;sh;b[V ] = −γ −2

U

[
∂+[

MU [V ]] − M+
U ;apx[V ]

]
− 1

2
hc∗γ −3

U ∂+[∂(2)V ]
(D.57)

and recalling (3.13), we see that

Y+
2b;lin;U ;expl[V ] + Y+

2b;lin;U ;sh;b[V ] = γ −2
U M+

U ;apx[V ] + 2γ −4
U ∂0U [∂(2)U ]MU [V ] − M̃U ;I I I [V ]

+c∗
[
3γ −5

U ∂0U [∂(2)U ]∂0V + γ −3
U [∂(2)V ]

]

= M̃U ;I [V ] + M̃U ;I I [V ] + M̃U ;I I I [V ]
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−M̃U ;I I I [V ] − M̃U ;I I [V ]
= Y+

2b;lin;U − Y+
2b;lin;U ;sh;a[V ]. (D.58)

In particular, we obtain

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U ;sh;a[V ] + Y+
2b;lin;U ;sh;b[V ]. (D.59)

In view of Proposition C.1, the desired bound now follows by inspection. ��
Proof of Propositions 4.1–4.6 The statements can be readily verified by inspecting the results
in Sects. D.1–D.6. ��

E Reductions forG
Our goal here is to construct the functions Gapx;sh;b, Gapx;rem;b, Glin;U ;sh;b and Glin;U ;rem;b
and demonstrate that they satisfy the corresponding bounds in Propositions 5.2–5.3. We
proceed in a relatively direct fashion, treating each of the components in (3.42) separately
and subsequently combining the results.

E.1 Simplifications forGA

We recall the definition

GA;apx;I I (U ) =
[
1 − Y1;apx;expl(U )T−[XA;apx;expl(U )

]]Y2;apx;expl(U ). (E.1)

Substituting the relevant expressions from Sect. D we find

GA;apx;I I (U ) =
[
1 − ∂0UT−[

∂0U
]]
c∗γ −1

U ∂0U . (E.2)

We now make the decomposition

GA;apx;I I (U ) = GA;apx;I I I (U ) + GA;apx;sh;b(U ), (E.3)

by introducing

GA;apx;I I I (U ) = c∗
[
1 − (∂0U )2

]
γ −1
U ∂0U

= c∗γU ∂0U ,
(E.4)

together with

GA;apx;sh;b(U ) = −c∗h∂0U∂−[
∂0U

]
γ −1
U ∂0U . (E.5)

We also recall the definition

GA;lin;U ;I I [V ] = −Y1;lin;U ;expl[V ]T−1[XA;apx;expl(U )
]Y2;apx;expl(U )

−Y1;apx;expl(U )T−1[XA;lin;U ;expl[V ]]Y2;apx;expl(U )

+
[
1 − Y1;apx;expl(U )T−1[XA;apx;expl(U )

]]Y2;lin;U ;expl[V ]. (E.6)

Substituting the relevant expressions from Sect. D, we find

GA;lin;U ;I I [V ] = −∂0V T−1[∂0U ](c∗γ −1
U ∂0U

)

−∂0UT−1[∂0V ](c∗γ −1
U ∂0U

)

123



Journal of Dynamics and Differential Equations (2023) 35:2743–2811 2799

+
[
1 − ∂0UT−1[∂0U

]](
γ −2
U MU [V ] + c∗γ −3

U ∂0V
)
. (E.7)

We now make the decomposition

GA;lin;U ;I I [V ] = GA;lin;U ;I I I [V ] + GA;lin;U ;sh;b[V ] (E.8)

by introducing

GA;lin;U ;I I I [V ] = −c∗∂0V [∂0U ]γ −1
U ∂0U − c∗∂0U [∂0V ]γ −1

U ∂0U

+
[
1 − ∂0U∂0U

](
γ −2
U MU [V ] + c∗γ −3

U ∂0V
)

= c∗γ −1
U (2γ 2

U − 1)∂0V + MU [V ], (E.9)

together with

GA;lin;U ;sh;b[V ] = −c∗h∂0V ∂−[
∂0U

]
γ −1
U ∂0U

−c∗h∂0U∂−[
∂0V

]
γ −1
U ∂0U

−h∂0U∂−[
∂0U

](
γ −2
U MU [V ] + c∗γ −3

U ∂0V
)
. (E.10)

We summarize our results by writing

GA;apx(U ) = GA;apx;I I I (U ) = c∗γU ∂0U ,

GA;lin;U [V ] = GA;lin;U ;I I I [V ] = c∗γ −1
U (2γ 2

U − 1)∂0V + MU [V ] (E.11)

and obtaining the following bound.

Lemma E.1 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identities

GA;apx;I I (U ) = GA;apx(U ) + GA;apx;sh;b(U ),

GA;lin;U ;I I [V ] = GA;lin;U [V ] + GA;lin;U ;sh;b[V ]. (E.12)

(ii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds
∥∥GA;apx;sh;b(U )

∥∥
�2h

≤ Kh = K Ssh;full(U ),
∥∥GA;lin;U ;sh;b[V ]∥∥

�2h
≤ Kh ‖V ‖

�
2;2
h

≤ KEsh;U (V ).
(E.13)

Proof In view of Proposition C.1, the bounds follow by inspection. ��

E.2 Simplifications forGB

We recall the definition

GB;apx;I I (U ) = Y1;apx;expl(U )
∑

−;h Y2;apx;expl(U )T−[XB;apx;expl(U )
]D�−;+

apx (U ).

(E.14)

Substituting the relevant expressions from §D we find

GB;apx;I I (U ) = c∗∂0U
∑

−;h γ −1
U [∂0U ]∂(2)U . (E.15)
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In view of Lemma B.5, we introduce the expressions

GB;apx;I I I (U ) = c∗∂0U (1 − γU ),

GB;apx;sh;b(U ) = GB;apx;I I (U ) − GB;apx;I I I (U ). (E.16)

We also recall the definition

GB;lin;U ;I I [V ] = Y1;lin;U ;expl[V ]
∑

−;h
Y2;apx;expl(U )T−[XB;apx;expl(U )

]D�−;+
apx (U )

+Y1;apx;expl(U )
∑

−;h
Y2;lin;U ;expl[V ]T−[XB;apx;expl(U )

]D�−;+
apx (U )

+Y1;apx;expl(U )
∑

−;h
Y2;apx;expl(U )T−[XB;lin;U ;expl[V ]]D�−;+

apx (U )

+Y1;apx;expl(U )
∑

−;h
Y2;apx;expl(U )T−[XB;apx;expl(U )

]D�−;+
lin;U [V ].

(E.17)

Substituting the relevant expressions from Sect. D, we find

GB;lin;U ;I I [V ] = ∂0V
∑

−;h

[
c∗γ −1

U ∂0U
]
∂(2)U

+∂0U
∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
∂(2)U

−3∂0U
∑

−;h

[
c∗γ −1

U ∂0U
][

∂0U∂0V
]
γ −2
U ∂(2)U

+∂0U
∑

−;h

[
c∗γ −1

U ∂0U
](
3γ −2

U ∂0U [∂(2)U ]∂0V + ∂(2)V
)
. (E.18)

A little algebra yields

GB;lin;U ;I I [V ] = c∗∂0V
∑

−;h
γ −1
U [∂0U ]∂(2)U

+∂0U
∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
∂(2)U

+c∗∂0U
∑

−;h
γ −1
U [∂0U ]∂(2)V . (E.19)

In view of Lemma’s B.4 and B.5, we introduce the expressions

GB;lin;U ;I I I [V ] = c∗∂0V (1 − γU )

+∂0U
∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
∂(2)U

+c∗∂0Uγ −1
U [∂0U ]∂0V − c∗∂0U

∑

−;h

[
γ −3
U [∂(2)U ]∂0V

]
,

GB;lin;U ;sh;b[V ] = GB;lin;U ;I I [V ] − GB;lin;U ;I I I [V ]. (E.20)

After a short computation, we find

GB;lin;U ;I I I [V ] = c∗∂0V (1 + γ −1
U − 2γU ) + ∂0U

∑
−;h γ −2

U [∂(2)U ]MU [V ]. (E.21)
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We summarize our results by writing

GB;apx(U ) = GB;apx;I I I (U ) GB;lin;U [V ] = GB;lin;U ;I I I [V ] (E.22)

and obtaining the following bounds.

Lemma E.2 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identities

GB;apx;I I (U ) = GB;apx(U ) + GB;apx;sh;b(U ),

GB;lin;U ;I I [V ] = GB;lin;U [V ] + GB;lin;U ;sh;b[V ]. (E.23)

(ii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds

∥
∥GB;apx;sh;b(U )

∥
∥

�2h
≤ Kh = K Ssh;full(U ),

∥
∥GB;lin;U ;sh;b[V ]∥∥

�2h
≤ Kh

[ ∥
∥∂+V

∥
∥

�2h
+ ∥

∥∂+∂+V
∥
∥

�2h

] ≤ KEsh;U (V ).
(E.24)

Proof The estimates follow from Lemma’s B.4 and B.5. ��

E.3 Simplifications forGC andGD

We recall the definition

G#;apx;I I (U ) = Y1;apx;expl(U )
∑

−;h Y2;apx;expl(U )T−
[
X#;apx;expl(U )D�0;+

apx (U )
]

(E.25)

for # ∈ {C, D}. Inspecting (D.25), we see that

GC;apx;I I (U ) = −GD;apx;I I (U ). (E.26)

We also recall the definition

G#;lin;U ;I I [V ] = Y1;lin;U ;expl[V ]
∑

−;h
Y2;apx;expl(U )T−[

X#;apx;expl(U )D�0;+
apx (U )

]

+Y1;apx;expl(U )
∑

−;h
Y2;lin;U ;expl[V ]T−[

X#;apx;expl(U )D�0;+
apx (U )

]

+Y1;apx;expl(U )
∑

−;h
Y2;apx;expl(U )T−[

X#;lin;U ;expl[V ]D�0;+
apx (U )

]

+Y1;apx;expl(U )
∑

−;h
Y2;apx;expl(U )T−[

X#;apx;expl(U )D�0;+
lin;U [V ]

]

(E.27)

for # ∈ {C, D}. Using (D.25) once more, we hence see

GC;lin;U ;I I [V ] = −GD;lin;U ;I I [V ]. (E.28)
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E.4 Final Decomposition

Recalling the definitions (5.1), we observe that

GA;apx(U ) + GB;apx(U ) = c∗γU ∂0U + c∗∂0U (1 − γU ) = c∗∂0U = Gapx(U ), (E.29)

together with

GA;lin;U [V ] + GB;lin;U [V ] = c∗γ −1
U (2γ 2

U − 1)∂0V + MU [V ]
+c∗∂0V (1 + γ −1

U − 2γU ) + ∂0U
∑

−;h
γ −2
U [∂(2)U ]MU [V ]

= c∗∂0V + MU [V ] + ∂0U
∑

−;h
γ −2
U [∂(2)U ]MU [V ]

= Glin;U [V ]. (E.30)

Proof (Proof of Propositions 5.2-5.3 for G) Upon writing
Gapx;sh;b(U ) = GA;apx;sh;b(U ) + GB;apx;sh;b(U ),

Glin;U ;sh;b[V ] = GA;lin;U ;sh;b[V ] + GB;lin;U ;sh;b[V ], (E.31)

together with Gapx;rem;b = Glin;U ;rem;b = 0, the statements follow from Lemma’s E.1 and
E.2. ��

F Reductions forG+

Our goal here is to construct the functions G+
apx;sh;b, G+

apx;rem;b, G+
lin;U ;sh;b and G+

lin;U ;rem;b
and demonstrate that they satisfy the corresponding bounds in Propositions 5.2-5.3. As in
the previous section, we treat each of the components in (3.46) and (3.47) separately and
subsequently combine the results.

F.1 Simplifications forG+
A′b

We recall the definition

G+
A′b;apx;I I (U ) =

[
1 − Y1;apx;expl(U )XA;apx;expl(U )

]
Y+
2b;apx;expl(U ). (F.1)

Substituting the relevant expressions from Sect. D, we find

G+
A′b;apx;I I (U ) = γ 2

U

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U + c∗γ −3
U ∂(2)U ]

]

= γ 2
UE+

tw;apx(U ) − γ −2
U ∂+∂(2)U + c∗γ −1

U ∂(2)U . (F.2)

We now make the decomposition

G+
A′b;apx;I I (U ) = G+

A′b;apx;I I I (U ) + G+
A′b;apx;sh;b(U ) (F.3)

by introducing

G+
A′b;apx;I I I (U ) = γ 2

UE+
tw;apx(U ) − γ −2

U ∂+∂(2)U + c∗γ −1
U S+[∂(2)U ], (F.4)

together with

G+
A′b;apx;sh;b(U ) = −1

2
c∗hγ −1

U ∂+[∂(2)U ]. (F.5)
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We also recall the definition

G+
A′b;lin;U ;I I [V ] = −Y1;lin;U ;expl[V ]XA;apx;expl(U )Y+

2b;apx;expl(U )

−Y1;apx;expl(U )XA;lin;U ;expl[V ]Y+
2b;apx;expl(U )

[
1 − Y1;apx;expl(U )XA;apx;expl(U )

]Y+
2b;lin;U ;expl[V ]. (F.6)

Substituting the relevant expressions from Sect. D, we find

G+
A′b;lin;U ;I I [V ] = −2∂0U∂0V

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U + c∗γ −3
U ∂(2)U

]

+γ 2
U

[
γ −2
U ∂+[

MU [V ]] + 2γ −4
U ∂0U [∂(2)U ]MU [V ] − M̃U ;I I I [V ]

]

+γ 2
Uc∗

[
3γ −5

U ∂0U [∂(2)U ]∂0V + γ −3
U S+[∂(2)V ]

]

= c∗γ −3
U ∂0U [∂(2)U ]∂0V + c∗γ −1

U S+[∂(2)V ]
+∂+[

MU [V ]] + 2γ −2
U ∂0U [∂(2)U ]MU [V ] − γ 2

U M̃U ;I I I [V ]
−2∂0U

[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U
]
∂0V . (F.7)

We conclude by writing

G+
A′b;apx(U ) = G+

A′b;apx;I I I (U )

= γ 2
UE+

tw;apx(U ) − γ −2
U ∂+∂(2)U + c∗γ −1

U S+[∂(2)U ],
G+
A′b;lin;U [V ] = G+

A′b;lin;U ;I I [V ] (F.8)

and obtaining the following bound.

Lemma F.1 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identity

G+
A′b;apx;I I (U ) = G+

A′b;apx(U ) + G+
A′b;apx;sh;b(U ). (F.9)

(ii) For every h > 0 and U ∈ �h;κ we have the bound
∥∥∥G+

A′b;apx;sh;b(U )

∥∥∥
�2h

≤ Kh
∥∥∂+∂+∂+U

∥∥
�2h

≤ K Ssh;full(U ). (F.10)

Proof The results follow by inspection. ��

F.2 Simplifications forG+
A′c

We recall the definition

G+
A′c;apx;I I (U ) = −Y+

1;apx;expl(U )XA;apx;expl(U )T+[Y2;apx;expl(U )
]
. (F.11)

Substituting the relevant expressions from Sect. D, we find

G+
A′c;apx;I I (U ) = −∂(2)U [∂0U ]T+[

c∗γ −1
U ∂0U

]
. (F.12)

We now make the decomposition

GA′c;apx;I I (U ) = GA′c;apx;I I I (U ) + GA′c;apx;sh;b(U ) (F.13)
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by introducing

G+
A′c;apx;I I I (U ) = −c∗[∂(2)U ]∂0U[

γ −1
U ∂0U

]

= −c∗γ −1
U (1 − γ 2

U )∂(2)U ,
(F.14)

together with

G+
A′c;apx;sh;b(U ) = −h[∂(2)U ]∂0U∂+[

c∗γ −1
U ∂0U

]
. (F.15)

In addition, we make the splitting

GA′c;apx;I I I (U ) = GA′c;apx;I V (U ) + GA′c;apx;sh;c(U ) (F.16)

by writing

G+
A′c;apx;I V (U ) = −c∗γ −1

U (1 − γ 2
U )S+[∂(2)U ], (F.17)

together with

G+
A′c;apx;sh;c(U ) = 1

2hc∗γ −1
U (1 − γ 2

U )∂+[∂(2)U ]. (F.18)

We also recall the definition

G+
A′c;lin;U ;I I [V ] = −Y+

1;lin;U ;expl[V ]XA;apx;expl(U )T+[Y2;apx;expl(U )
]

−Y+
1;apx;expl(U )XA;lin;U ;expl[V ]T+[Y2;apx;expl(U )

]

−Y+
1;apx;expl(U )XA;apx;expl(U )T+[Y2;lin;U ;expl[V ]]. (F.19)

Substituting the relevant expressions from Sect. D, we find

G+
A′c;lin;U ;I I [V ] = −S+[∂(2)V ]∂0UT+[

c∗γ −1
U ∂0U

]
− ∂(2)U [∂0V ]T+[

c∗γ −1
U ∂0U

]

−∂(2)U [∂0U ]T+[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
. (F.20)

We now make the decomposition

G+
A′c;lin;U ;I I [V ] = G+

A′c;lin;U ;I I I [V ] + G+
A′c;lin;U ;sh;b[V ] (F.21)

by introducing

G+
A′c;lin;U ;I I I [V ] = −c∗γ −1

U (1 − γ 2
U )S+[∂(2)V ] − c∗γ −3

U (1 + γ 2
U )[∂(2)U ]∂0U∂0V

−[∂(2)U ]∂0U
[
γ −2
U MU [V ]

]
, (F.22)

together with

G+
A′c;lin;U ;sh;b[V ] = −hS+[∂(2)V ]∂0U∂+[

c∗γ −1
U ∂0U

]

−h[∂(2)U ]∂0V ∂+[
c∗γ −1

U ∂0U
]

−h[∂(2)U ]∂0U∂+[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
. (F.23)

We summarize our results by writing

G+
A′c;apx(U ) = G+

A′c;apx;I V (U ) G+
A′c;lin;U [V ] = G+

A′c;lin;U ;I I I [V ] (F.24)

and obtaining the following bounds.

Lemma F.2 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.
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(i) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identities

G+
A′c;apx;I I (U ) = G+

A′c;apx(U ) + G+
A′c;apx;sh;b(U ) + G+

A′c;apx;sh;c(U ),

G+
A′c;lin;U ;I I [V ] = G+

A′c;lin;U [V ] + G+
A;lin;U ;sh;b[V ]. (F.25)

(ii) For every h > 0 and U ∈ �h;κ we have the bounds
∥
∥
∥G+

A′c;apx;sh;b(U )

∥
∥
∥

�2h

≤ Kh ≤ K Ssh;full(U ),
∥
∥
∥G+

A′c;apx;sh;c(U )

∥
∥
∥

�2h

≤ Kh
∥
∥∂+∂(2)U

∥
∥

�2h
≤ K Ssh;full(U ).

(F.26)

(iii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds
∥
∥
∥G+

A′c;lin;U ;sh;b[V ]
∥
∥
∥

�2h

≤ Kh ‖V ‖
�
2;3
h

+ Kh
∥
∥∂+∂+∂+U

∥
∥

�∞
h

∥
∥∂+V

∥
∥

�2h

≤ KhEsh;U [V ]. (F.27)

Proof Recalling Proposition C.1, the bounds follow by inspection. ��

F.3 Simplifications forG+
B′

We recall the definition

G+
B′;apx;I I (U ) = Y+

1;apx;expl(U )T+ ∑
−;h Y2;apx;expl(U )T−

[
XB;apx;expl(U )

]
D�−;+

apx (U )

(F.28)

Substituting the relevant expressions from Sect. D, we find

G+
B′;apx;I I (U ) = [∂(2)U ]T+ ∑

−;h
c∗γ −1

U ∂0U
[
γ 3
U [γ −3

U ∂(2)U
]]

= c∗[∂(2)U ]T+ ∑

−;h
γ −1
U [∂0U ]∂(2)U . (F.29)

In view of Lemma B.5, we introduce the expressions

G+
B′;apx;I I I (U ) = c∗[∂(2)U ]T+(1 − γU ),

G+
B′;apx;sh;b(U ) = G+

B′;apx;I I (U ) − G+
B′;apx;I I I (U ). (F.30)

In addition, we make the splitting

G+
B′;apx;I I I (U ) = G+

B′;apx;I V (U ) + G+
B′;apx;sh;c(U ) (F.31)

by writing

G+
B′;apx;I V (U ) = c∗S+[∂(2)U ](1 − γU ), (F.32)

together with

G+
B′;apx;sh;c(U ) = −1

2
c∗h∂+[∂(2)U ]T+(1 − γU )

+c∗hS+[∂(2)U ]∂+(1 − γU ). (F.33)
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We also recall the definition

G+
B′;lin;U ;I I [V ] = Y+

1;lin;U ;expl[V ]T+ ∑

−;h
Y2;apx;expl(U )T−[XB;apx;expl(U )

]D�−;+
apx (U )

+Y+
1;apx;expl(U )T+ ∑

−;h
Y2;lin;U ;expl[V ]T−[XB;apx;expl(U )

]D�−;+
apx (U )

+Y+
1;apx;expl(U )T+ ∑

−;h
Y2;apx;expl(U )T−[XB;lin;U ;expl[V ]]D�−;+

apx (U )

+Y+
1;apx;expl(U )T+ ∑

−;h
Y2;apx;expl(U )T−[XB;apx;expl(U )

]D�−;+
lin;U [V ].

(F.34)

Substituting the relevant expressions from Sect. D, we find

G+
B′;lin;U ;I I [V ] = S+[∂(2)V ]T+ ∑

−;h
c∗γ −1

U ∂0U
[
γ 3
U [γ −3

U ∂(2)U
]]

+[∂(2)U ]T+ ∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
][

γ 3
U [γ −3

U ∂(2)U
]]

+[∂(2)U ]T+ ∑

−;h
c∗γ −1

U ∂0U
[
(−3)γU ∂0U∂0V [γ −3

U ∂(2)U
]]

+[∂(2)U ]T+ ∑

−;h
c∗γ −1

U ∂0U
[
γ 3
U [3γ −5

U ∂0U∂(2)U∂0V + γ −3
U ∂(2)V ]

]
.

(F.35)

A little algebra yields

G+
B′;lin;U ;I I [V ] = S+[∂(2)V ]T+ ∑

−;h
c∗γ −1

U [∂0U ]∂(2)U

+[∂(2)U ]T+ ∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
∂(2)U

+[∂(2)U ]T+ ∑

−;h
c∗γ −1

U ∂0U [∂(2)V ]. (F.36)

In view of Lemma’s B.5 and B.4, we introduce the expressions

G+
B′;lin;U ;I I I [V ] = c∗S+[∂(2)V ]T+(1 − γU )

+[∂(2)U ]T+ ∑

−;h

[
γ −2
U MU [V ] + c∗γ −3

U ∂0V
]
∂(2)U

+c∗[∂(2)U ]T+[
γ −1
U [∂0U ]∂0V −

∑

−;h
γ −3
U [∂(2)U ]∂0V

]
,

G+
B′;lin;U ;sh;b[V ] = G+

B′;lin;U ;I I [V ] − G+
B′;lin;U ;I I I [V ]. (F.37)

A short computation yields

G+
B′;lin;U ;I I I [V ] = c∗S+[∂(2)V ]T+(1 − γU ) + c∗[∂(2)U ]T+[

γ −1
U ∂0U∂0V

]

+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ]. (F.38)
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We now make the decomposition

G+
B′;lin;U ;I I I [V ] = G+

B′;lin;U ;I V [V ] + G+
B′;lin;U ;sh;c[V ] (F.39)

by writing

G+
B′;lin;U ;I V [V ] = c∗S+[∂(2)V ](1 − γU ) + c∗[∂(2)U ]γ −1

U [∂0U ]∂0V
+S+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ], (F.40)

together with

G+
B′;lin;U ;sh;c[V ] = c∗hS+[∂(2)V ]∂+[1 − γU ] + hc∗[∂(2)U ]∂+[

γ −1
U ∂0U∂0V

]

−1

2
h∂+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ]. (F.41)

We summarize our results by writing

G+
B′;apx(U ) = G+

B′;apx;I V (U ) G+
B′;lin;U [V ] = G+

B′;lin;U ;I V [V ] (F.42)

and obtaining the following bounds.

Lemma F.3 Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(a) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identities

G+
B′;apx;I I (U ) = G+

B′;apx(U ) + G+
B′;apx;sh;b(U ) + G+

B′;apx;sh;c(U ),

G+
B′;lin;U ;I I [V ] = G+

B′;lin;U [V ] + G+
B′;lin;U ;sh;b[V ] + G+

B′;lin;U ;sh;c[V ]. (F.43)

(ii) For every h > 0 and U ∈ �h;κ we have the bounds

∥∥∥G+
B′;apx;sh;b(U )

∥∥∥
�2h

≤ Kh ≤ K Ssh;full(U ),
∥∥∥G+

B′;apx;sh;c(U )

∥∥∥
�2h

≤ Kh
∥∥∂+∂(2)U

∥∥
�2h

≤ K Ssh;full(U ).
(F.44)

(iii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds

∥∥∥G+
B′;lin;U ;sh;b[V ]

∥∥∥
�2h

≤ Kh
[ ∥∥∂+V

∥∥
�2h

+ ∥∥∂+∂+V
∥∥

�2h

]

≤ KhEsh;U (V ),
∥∥∥G+

B′;lin;U ;sh;c[V ]
∥∥∥

�2h

≤ Kh ‖V ‖
�
2;2
h

+ Kh
∥∥∂+∂+∂+U

∥∥
�2h

‖V ‖
�
2;2
h

≤ KhEsh;U (V ). (F.45)

Proof Recalling Lemma’s B.4 and B.5, the bounds in (ii) and the first bound in (iii) follow
by inspection. The final bound in (iii) follows from Proposition C.1. ��
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F.4 Final Decomposition

Arguing as in Sect. E.3 we see that

G+
C;apx;I I (U ) = −G+

D;apx;I I (U ), G+
C;lin;U ;I I [V ] = −G+

D;lin;U ;I I [V ], (F.46)

so these can be neglected. Leaving the remaining component G+
A′a intact, we recall (3.46),

(3.48) and (4.39) to write

G+
A′a;apx(U ) = G+

A′a;apx;I I (U ) = γ −2
U ∂+∂(2)U ,

G+
A′a;lin;U [V ] = G+

A′a;lin;U ;I I [V ] = γ 2
U M̃U ;I I I [V ] − 2γ −4

U ∂0U [∂+∂(2)U ]∂0V .

(F.47)

This allows us to define the total

G+
apx;I I I (U ) = G+

A′a;apx(U ) + G+
A′b;apx(U ) + G+

A′c;apx(U ) + G+
B′;apx(U ). (F.48)

Substituting the relevant expressions from Sects. F.1–F.3 we obtain

G+
apx;I I I (U ) = γ −2

U ∂+∂(2)U

γ 2
UE+

tw;apx(U ) − γ −2
U ∂+∂(2)U + c∗γ −1

U S+[∂(2)U ]
−c∗γ −1

U (1 − γ 2
U )S+[∂(2)U ]

c∗S+[∂(2)U ](1 − γU )

= c∗S+[∂(2)U ] + γ 2
UE+

tw;apx(U ). (F.49)

In order to suppress the final term, we introduce the expressions

G+
apx;sh;b;i (U ) = γ 2

U

[E+
tw;apx(U ) − ∂+[Etw(U )]],

G+
apx;rem;b;i (U ) = γ 2

U ∂+[Etw(U )]. (F.50)

Moving on to the linear approximants, we define the function

G+
lin;U ;I I I [V ] = G+

A′a;lin;U [V ] + G+
A′b;lin;U [V ] + G+

A′c;lin;U [V ] + G+
B′;lin;U [V ].

(F.51)

As a first step towards evaluating this expression, we substitute the relevant identities from
Sects. F.1–F.3 to compute

G+
A′a;lin;U [V ] + G+

A′b;lin;U [V ] = γ 2
U M̃U ;I I I [V ] − 2γ −4

U ∂0U [∂+∂(2)U ]∂0V
+c∗γ −3

U ∂0U [∂(2)U ]∂0V + c∗γ −1
U S+[∂(2)V ]

+∂+[
MU [V ]] + 2γ −2

U ∂0U [∂(2)U ]MU [V ] − γ 2
U M̃U ;I I I [V ]

−2∂0U
[
E+
tw;apx(U ) − γ −4

U ∂+∂(2)U
]
∂0V

= c∗γ −3
U ∂0U [∂(2)U ]∂0V + c∗γ −1

U S+[∂(2)V ]
+∂+[

MU [V ]] + 2γ −2
U ∂0U [∂(2)U ]MU [V ]

−2∂0U
[
E+
tw;apx(U )

]
∂0V . (F.52)

In a similar fashion, we find

G+
A′c;lin;U [V ] + G+

B′;lin;U [V ] = −c∗γ −1
U (1 − γ 2

U )S+[∂(2)V ]
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−c∗γ −3
U (1 + γ 2

U )[∂(2)U ]∂0U∂0V

−[∂(2)U ]∂0U
[
γ −2
U MU [V ]

]

+c∗S+[∂(2)V ](1 − γU ) + c∗[∂(2)U ]γ −1
U [∂0U ]∂0V

+S+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ]

= c∗S+[∂(2)V ] − c∗γ −1
U S+[∂(2)V ] − c∗γ −3

U ∂0U [∂(2)U ]∂0V
−γ −2

U ∂0U [∂(2)U ]MU [V ]
+S+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ]. (F.53)

In particular, we see that

G+
apx;lin;U ;I I I [V ] = c∗S+[∂(2)V ] + ∂+[

MU [V ]] + γ −2
U ∂0U [∂(2)U ]MU [V ]

+S+[∂(2)U ]T+ ∑

−;h
γ −2
U [∂(2)U ]MU [V ]

−2∂0U [E+
tw;apx(U )]∂0V . (F.54)

Comparing this expression with (5.4), we set out to suppress the final term by introducing
the functions

G+
lin;U ;sh;b;i [V ] = −2∂0U

[E+
tw;apx(U ) − ∂+[Etw(U )]]∂0V ,

G+
lin;U ;rem;b;i [V ] = −2∂0U∂+[Etw(U )]∂0V . (F.55)

Lemma F.4 Assume that (Hg) is satisfied, pick 0 < κ < 1
12 and recall the definitions (5.4).

There exists a constant K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ �h;κ and V ∈ �2h, we have the identities

G+
apx;I I I (U ) = G+

apx(U ) + G+
apx;sh;b;i (U ) + G+

apx;rem;b;i (U ),

G+
lin;U ;I I I [V ] = G+

lin;U [V ] + G+
lin;U ;sh;b;i [V ] + G+

lin;U ;rem;b;i [V ]. (F.56)

(ii) For every h > 0 and U ∈ �h;κ we have the bounds
∥∥∥G+

apx;sh;b;i (U )

∥∥∥
�2h

≤ Kh ≤ K Ssh;full(U ),

∥∥∥G+
apx;rem;b;i (U )

∥∥∥
�2h

≤ K
∥∥∂+[Etw(U )]∥∥

�2h
≤ K Srem;full(U ). (F.57)

(iii) For every h > 0, U ∈ �h;κ and V ∈ �2h we have the bounds
∥∥∥G+

lin;U ;sh;b;i [V ]
∥∥∥

�2h

≤ Kh
∥∥∂+V

∥∥
�2h

≤ KEsh;U (V ),
∥∥∥G+

lin;U ;rem;b;i [V ]
∥∥∥

�2h

≤ K
∥∥∂+[Etw(U )]∥∥

�∞
h

∥∥∂+V
∥∥

�2h

≤ KE rem;U (V ). (F.58)

Proof Recalling (C.5), the bounds follow by inspection. ��
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Proof (Proof of Proposition 5.2–5.3 for G+) Upon introducing the full remainder functions

G+
apx;rem:b(U ) = G+

apx;rem;b;i (U ),

G+
lin;U ;rem;b[V ] = G+

lin;U ;rem;b;i [V ], (F.59)

together with their counterparts

G+
apx;sh;b(U ) = G+

A′b;apx;sh;b(U ) + G+
A′c;apx;sh;b(U ) + G+

A′c;apx;sh;c(U )

+G+
B′;apx;sh;b(U ) + G+

B′;apx;sh;c(U ) + G+
apx;sh;b;i (U ),

G+
lin;U ;sh;b[V ] = G+

A′c;lin;U ;sh;b[V ]
+G+

B′;lin;U ;sh;b[V ] + G+
B′;lin;U ;sh;c[V ] + G+

lin;U ;sh;b;i [V ], (F.60)

the desired estimates follow directly from Lemma’s F.1–F.4. ��
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