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Abstract
A recent generalization of the Conley index to discrete multivalued dynamical systems with-
out a continuous selector is motivated by applications to data–driven dynamics. In the present
paper we continue the program by studying attractor–repeller pairs and Morse decomposi-
tions in this setting. In particular, we prove Morse equation and Morse inequalities.
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1 Introduction

The present data–driven world sets new challenges to contemporary science. There is a
growing interest in coarse theories capable to extract robust information hidden in noisy
experimental data. A good example is the rapid development in persistent homology (cf.
[15]) invented to investigate homological features of topological spaces known only from a
cloud of points or samples. Conley theory (cf. [12]) provides a robust topological invariant for
studying dynamical systems. It has been used to prove the existence of stationary and periodic
solutions, heteroclinic connections and chaotic invariant sets. The potential of Conley theory
in the context of data became apparent via a generalization to multivalued dynamical systems
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[21] proposed as a tool in computer assisted proofs in dynamics. Multivalued dynamics,
important on its own right (cf. e.g. [1]), becomes in such proofs a tool in the study of
single valued dynamics (cf. e.g. [22, 28, 30, 35, 40]). However, the practical use of the
generalization [21] has been severely restricted by some strong assumptions difficult to be
fulfilled in practice. Fortunately, a recent revision of the theory (cf. [3, 5]) removes these
limitations opening the way to applications in data–driven dynamics.

Assume time series data have been collected as a result of a measurement, an experiment,
or an observation of an unknown dynamical system. Using similar techniques as in [4, 7, 29,
39] one can construct a multivalued map that represents an unknown generator of the under-
lying system. Both, toy examples (cf. [3, 5]) and constructions for real applications (cf. [7, 8])
show that usually such amap does not admit a continuous selector. Nevertheless, we can iden-
tify isolated invariant sets, and hire the Conley index theory for multivalued maps, because
the construction of the index works under minimal assumptions on amultivaluedmap; in par-
ticular, it does not require single valued selectors. Eventually, we extend the obtained results
to the underlying unknown single valued dynamical system using continuation properties of
the index.

In the present paper we continue the program that we started in [3, 5]. Heading towards
the comprehensive description of the dynamics we need to gain more insight into the internal
structure of isolated invariant sets. One of the relevant descriptors is a Morse decomposition
of an isolated invariant set and the associated Morse equation. Leaving mathematical sophis-
tication aside, one can think that the Morse decomposition is a decomposition of a given
isolated invariant set into a finite union of pairwise disjoint isolated invariant sets, called
Morse sets, and connecting orbits between them, such that outside theMorse sets the dynam-
ics is gradient–like. There is a rich variety of approaches to global dynamics that involve
Morse decompositions; see for instance [2, 17–19] or [11, 27] for continuous-time dynami-
cal systems without uniqueness. For recent results that combine classical and combinatorial
dynamics we refer to [6, 14, 34]. An approach to the poset structure of Morse decomposition
with the emphasis on lattice structures of attractors, for both an underlying dynamical system
and its combinatorialization - a combinatorial multivalued map, is demonstrated in the series
of papers [23–26]. The presented list of papers is not complete and does not pretend to be
complete in any sense.

The Morse equation describes the relationship between the Conley index of an iso-
lated invariant set and the Conley indices of its Morse sets. In particular, information on
(co)homologically nontrivial connections between Morse sets can be derived. The classical
Morse inequalities concern nondegenerate critical points of a gradient flow on a compact
manifold, and show the correspondence between the k-th Betti number of the manifold and
the number of critical points withMorse index k, that is critical points with the k-dimensional
unstable invariant manifold (cf. e.g. [9, 10]). One of the possible generalizations of the classi-
cal inequalities due toMorse and to Smale (cf. [37]) in the Conley index theorywas developed
by Conley and Zehnder to flows (cf. [13]). Afterwords, the Morse equation in the Conley
index theory was proved by Rybakowski in [36] for semiflows, and in the discrete time case
by Franks [16] and Mrozek [33].

Assume that we are given a (continuous– or discrete–time) dynamical system on a locally
compact metric space. A set S is said to be isolated invariant if it is the maximal invariant
set contained in some compact neighborhood of itself. In the cohomological Conley index
theory with such a set one associates a special pair of sets, called an index pair. Then, the
cohomological Conley index of S is defined to be the Alexander–Spanier cohomology of
the index pair. One proves that, in line with the need, this is an invariant of S. Thus, we
can associate with S the Poincaré series p(t, S), the power series in t with the ranks of the
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cohomology modules as coefficients. Now, assume that M := {Mi | i ∈ {1, 2, . . . , n}} is
a Morse decomposition of S. Hence, in particular, the sets Mi are pairwise disjoint isolated
and invariant subsets of S. Then, the Morse equation takes the form

n∑

i=1

p(t, Mi ) = p(t, S) + (1 + t)Q(t),

where Q is a formal power series with nonnegative integer coefficients (cf. [13]). The terms
in Q provide information about nontrivial connections between pairs of Morse sets. One can
observe that the above equation generalizes the classicalMorse inequalities (cf. e.g. [36, 38]).

The aim of this paper is to prove theMorse equation in the Conley index theory for discrete
multivalued dynamical systems.

The organization of the paper is as follows. In Sect. 2 we provide basic definitions related
to the Conley index theory for multivalued maps. Section 3 is devoted to Morse decompo-
sitions. We define repeller–attractor pairs and provide a characterization of Morse sets via
the associated sequence of attractors. The key step for the prove of the Morse equation is the
construction of the, so called, index triple for a given repeller–attractor pair. This is presented
in Sect. 4. Finally, we prove the Morse equation in Sect. 5.

2 Preliminaries

Throughout the paper Z and N will stand for the sets of all integers and all positive integers,
respectively. By an interval in Z we mean the trace of a real interval in Z.

Given a topological space X and a subset A ⊂ X , by intX A, clX A we denote the interior
of A in X and the closure of A in X respectively. We omit the subscript X if the space is
clear from the context.

Let X , Y be topological spaces, and let F : X � Y denote a multivalued map, that is
a map F : X � x �→ F(x) ∈ P(Y ), where P(Y ) is the power set of Y . We define an
effective domain of F by dom(F) := {x ∈ X | F(x) �= ∅}. A multivalued map F is upper
semicontinuous if for any closed B ⊂ Y its large counter image under F , that is the set
F−1(B) := {x ∈ X | F(x) ∩ B �= ∅}, is closed.

Assume that a multivalued self-map F : X � X is given.
Let I be an interval in Z with 0 ∈ I . We say that a single valued mapping σ : I → X is

a solution for F through x ∈ X if σ(n + 1) ∈ F(σ (n)) for all n, n + 1 ∈ I and σ(0) = x .
Given a subset N ⊂ X , the set

Inv(N , F) := {x ∈ N | ∃σ : Z → N a solution for F through x}
is called the invariant part of N . A compact subset N ⊂ X is an isolating neighborhood for
F if Inv(N , F) ⊂ int N . A compact set S ⊂ X is said to be invariant with respect to F if
S = Inv(S, F). It is called an isolated invariant set if it admits an isolating neighborhood N
for F such that S = Inv(N , F) (cf. [5, Definitions 4.1 and 4.3]).

Definition 2.1 (cf. [5, Definition 4.7]] Let N ⊂ X be an isolating neighborhood for F . A
pair P = (P1, P2) of compact sets P2 ⊂ P1 ⊂ N is called a weak index pair in N if

(a) F(Pi ) ∩ N ⊂ Pi for i ∈ {1, 2},
(b) bdF P1 := cl P1 ∩ cl(F(P1) \ P1) ⊂ P2,
(c) Inv(N , F) ⊂ int(P1 \ P2),
(d) P1 \ P2 ⊂ int N .
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Given a weak index pair P in an isolating neighborhood N ⊂ X for F we set

TN (P) := (TN ,1(P), TN ,2(P)) := (P1 ∪ (X \ int N ), P2 ∪ (X \ int N )).

Assume F is determined by amorphism, which in particular holds true if F has acyclic values
(cf. [20]). Following [5] recall that FP , the restriction of F to the domain P , is a multivalued
map of pairs, FP : P � TN (P); the inclusion iP : P → TN (P) induces an isomorphism in
the Alexander–Spanier cohomology; and the index map IFP is defined as an endomorphism
of H∗(P) given by

IFP = F∗
P ◦ (i∗P )−1.

Applying the Leray functor L (cf. [31]) to the pair (H∗(P), IFP ) we obtain a graded module
L(H∗(P), IFP )with its endomorphism, called the Leray reduction of the Alexander–Spanier
cohomology of a weak index pair P . By [5, Definition 6.3], this is the cohomological Conley
index of Inv(N , F), which we denote by C(Inv(N , F), F).

We introduce the following notation for future use. Given N ⊂ X , x ∈ N and n ∈ Z
+ we

put:

FN ,n(x) := {y ∈ N | ∃ σ : [0, n] → N a solution for F with σ(0) = x, σ (n) = y},
FN ,−n(x) := {y ∈ N | ∃ σ : [−n, 0] → N a solution for F with σ(−n) = y, σ (0) = x},

F+
N (x) :=

⋃
{ FN ,n(x) | n ∈ Z

+ },
F−

N (x) :=
⋃

{ FN ,−n(x) | n ∈ Z
+ }.

3 Morse Decompositions and Repeller–Attractor Pairs

Given a solution σ : Z → X of a multivalued upper semicontinuous map F : X � X , we
define its α– and ω–limit sets respectively by

α(σ) :=
⋂

k∈Z
cl σ((−∞, k]), ω(σ ) :=

⋂

k∈Z
cl σ([k,+∞)).

Let us point out that unlike in the single valued case, we define α– andω–limit sets for a given
solution σ through an x ∈ X , not for an x itself, because backward nor forward solutions
through x need not be unique.

Definition 3.1 (cf. [6, Definition 3.9]) Let S be an isolated invariant set of F : X � X . We
say that the family M := {Mr | r ∈ P} indexed by a poset (P,≤) is a Morse decomposition
of S if the following conditions are satisfied:

(a) the elements of M are mutually disjoint isolated invariant subsets of S,
(b) for every full solution σ in X there exist r , r ′ ∈ P, r ≤ r ′, such that α(σ) ⊂ Mr ′ and

ω(σ) ⊂ Mr ,
(c) if for a full solution σ in X and r ∈ P we have α(σ) ∪ ω(σ) ⊂ Mr , then im σ ⊂ Mr .

The partial order≤ on Pwill be called an admissible ordering of theMorse decomposition
M. Note that it is not uniquely determined. Moreover, there is an “extremal” admissible
ordering ≤F , given by p ≤F q if and only if there exists a sequence of distinct elements
p = r0, r1, . . . , rk = q of P such that, for any j ∈ {1, 2, . . . , k}, there exists a solution σ for
F with α(σ) ⊂ Mr j and ω(σ) ⊂ Mr j−1 . The ordering ≤F is extremal in the sense that any
admissible ordering of M is an extension of ≤F . One can observe that for any admissible

123



Journal of Dynamics and Differential Equations (2023) 35:2725–2742 2729

ordering ≤ there exists its linear extension which is also admissible. In the latter case, that is
whenever the admissible ordering is linear, for simplicity we writeM = {M1, M2, . . . , Mn}.

Example 3.2 Consider multivalued map F : [0, 1] � [0, 1], graph of which is presented in
Fig. 1. Note that S = [0, k] is an isolated invariant set for F and M = {M1, M2, M3}, with
M1 = [0, a], M2 = [g, h], and M3 = [d, e] ∪ [ j, k], is a Morse decomposition of S (see
Fig. 1A and B).

Definition 3.3 We say that an isolating neighborhood T for F is a trapping region if F(T ) ⊂
T . A subset A of an isolated invariant set S is called an attractor (in S) if it admits a trapping
region T which isolates A (relative to S). Given an attractor A in S, the set A∗ := {x ∈
S | there exists a solution σ : Z → S through x with ω(σ) ∩ A = ∅} will be called the
repeller dual to A, and the pair (A∗, A) will be called the repeller–attractor pair in S.

Example 3.4 Consider Morse decomposition of an isolated invariant set S = [0, k] with
respect to a multivalued map presented in Example 3.2 (see Fig. 1). Note that the pairs of sets
(A∗

0, A0) = (S,∅), (A∗
1, A1) = ([0, m] ∪ [n, o] ∪ [p, q] ∪ [g, h], [d, e] ∪ [ j, k]) (Fig. 1C),

(A∗
2, A2) = ([0, a], [d, k]) (Fig. 1D) and (A∗

3, A3) = (∅, S) are repeller-attractor pairs in S.
Observe that M, the sequence of attractors ∅ = A1 ⊂ A2 ⊂ A3 = S, and the associated

sequence of dual repellers S = A∗
0 ⊃ A∗

1 ⊃ A∗
2 ⊃ A∗

3 = ∅, satisfy all the assertions of
upcoming Theorem 3.9, Proposition 3.10 and Theorem 3.11.

Assume that A is an attractor and T is a given trapping region of A. It is easily seen that
if σ : Z → S is a solution for F through an x ∈ T , say σ(0) = x , then σ(Z+) ⊂ T .
Consequently, ω(σ) ⊂ T according to the compactness of T . It follows that ω(σ) ⊂ A,
because ω(σ) is invariant and A = Inv(T , F). We state this simple observation as a lemma
for further references.

Lemma 3.5 Let A be an attractor in S with a trapping region T . If σ : Z → S is a solution
for F with im σ ∩ T �= ∅ then ω(σ) ⊂ A.

Lemma 3.6 Let (A∗, A) be a repeller–attractor pair in S. Then A∗ and A are disjoint isolated
invariant sets. Moreover, if T is a trapping region for A then N := S \ int T is an isolating
neighborhood for A∗.

Proof Directly by the definition, A is an isolated invariant set, and A∗ ∩ A = ∅. It is easy
to see that A∗ ∩ T = ∅. Indeed, otherwise we would have an x ∈ A∗ ∩ T , and a solution
σ : Z → S with σ(0) = x with ω(σ) ∩ A = ∅, as x ∈ A∗. However, x ∈ im σ ∩ T , which
according to Lemma 3.5 means that ω(σ) ⊂ A, a contradiction.

We shall prove that N is an isolating neighborhood for A∗. Clearly, N is compact. Let
x ∈ A∗. There exists a solution σ : Z → S through x with ω(σ) ∩ A = ∅. Note that
im σ ⊂ int N , because otherwise we would have im σ ∩ T �= ∅ and in turn, by Lemma 3.5,
ω(σ) ⊂ A, a contradiction. This shows the inclusions A∗ ⊂ Inv N and A∗ ⊂ int N . Now
consider an x ∈ Inv N and a solution σ : Z → N through x . By compactness of N we get
ω(σ) ⊂ N , showing that ω(σ) ∩ A = ∅. Thus, x ∈ A∗, showing the inclusion Inv N ⊂ A∗.
This completes the proof. ��
Lemma 3.7 Let (A∗, A) be a repeller–attractor pair in S, let σ : Z → S be a solution for F
through an x ∈ S, and let T be a trapping region for A. The following holds true:
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(A) Morse decomposition M =
{M1,M2,M3}, with M3 = [0, a], M2 =
[g, h], and M1 = [d, e] ∪ [j, k], of an
isolated invariant set S = [0, k] of F .
Morse sets depicted as thick lines in or-
ange, red and green, respectively, and
the associated isolating neighborhoods
as thin lines in the same colors.

(B)Morse graph of F - a directed graph
with the set of vertices M and arrows
presenting the existence of connecting
orbits.

(C) Repeller–attractor pair (A∗
1, A1) in

S. Attractor A1 = M1 = [d, e] ∪ [j, k]
and its trapping region [c, f ] ∪ [i, l] de-
picted as green lines. The dual repeller
A∗

1 = [0,m] ∪ [n, o] ∪ [p, q] ∪ [g, h] and
its isolating neighborhood in yellow.

(D) Repeller–attractor pair (A∗
2, A2) in

S. Attractor A2 = [d, k] and its trap-
ping region [c, l] in magenta. The dual
repeller A∗

2 = [0, a] = M3 and its iso-
lating neighborhood depicted as orange
lines. Note that [0, c] is an another iso-
lating neighborhood of A∗

2 (cf. Lemma
3.6).

Fig. 1 Graph of a multivalued map F : [0, 1] � [0, 1] in blue. Panel A—Morse decomposition of an isolated
invariant set S = [0, k] for F , panel B—Morse graph, panels C and D—repeller–attractor pairs in S (Color
figure online)
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(i) if x /∈ T then α(σ) ⊂ A∗,
(ii) if x /∈ A∗ ∪ A then α(σ) ⊂ A∗ and ω(σ) ⊂ A,

(iii) if ω(σ) ∩ A∗ �= ∅ then im σ ⊂ A∗,
(iv) if α(σ) ∩ A �= ∅ then im σ ⊂ A.

Proof Set N := S \ int T and, without loss of generality, assume that σ(0) = x .
For the proof of (i), observe that σ(Z−) ⊂ N . By the compactness of N we infer

that α(σ) ⊂ N . Consequently, α(σ) ⊂ A∗, because α(σ) is invariant and, according to
Lemma 3.6, Inv(N , F) = A∗.

We shall verify (ii). Since x /∈ A∗, we get ω(σ) ∩ A �= ∅. Then im σ ∩ T �= ∅, and by
Lemma 3.5, ω(σ) ⊂ A. If im σ �⊂ T then the inclusion α(σ) ⊂ A∗ follows from (i). We
have left the case im σ ⊂ T . However, in that case we would have im σ ⊂ A, and in turn
x ∈ A, leading to a contradiction.

We verify (iii). For contradiction suppose that im σ �⊂ A∗. By Lemma 3.6, N := S \ int T
is an isolating neighborhood for A∗, thereforewe have im σ �⊂ N . Thismeans that im σ∩T �=
∅. However, by Lemma 3.5 we get ω(σ) ⊂ A, a contradiction.

For the proof of (iv) observe that the assertion holds whenever im σ ⊂ T . Thus, assume
the contrary. But then, by (i), we get α(σ) ⊂ A∗, a contradiction. ��
Lemma 3.8 Let K be an isolating neighborhood of S, let (A∗, A) be a repeller–attractor
pair in S, and let N ⊂ K be a compact neighborhood of A∗ disjoint from A. Then N is an
isolating neighborhood for A∗.

Proof Since A∗ ⊂ int N and N is compact, it suffices to verify that A∗ = Inv(N , F).
Inclusion A∗ ⊂ Inv(N , F) is straightforward, as A∗ is invariant and A∗ ⊂ N . To see the

opposite inclusion consider an x ∈ Inv(N , F) and a solution σ through x in N ⊂ K . Then,
by compactness of N we have ω(σ) ⊂ N . In particular, ω(σ) ∩ A = ∅, as N and A are
disjoint. This along with Lemma 3.7 yields x ∈ A∗, and completes the proof. ��
Theorem 3.9 Let M := {M1, M2, . . . , Mn} be a Morse decomposition of an isolated invari-
ant set S with respect to an upper semicontinuous F : X � X. Then there exists a family
∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An = S of attractors in S such that M j = A j ∩ A∗

j−1 for
j ∈ {1, 2, . . . , n}, where A∗

j is a repeller dual to A j .

Proof We set A0 := ∅ and Ak := {x ∈ S | there exists a solution σ : Z → S through
x with α(σ) ⊂ M1 ∪ M2 ∪ · · · ∪ Mk}, for k ∈ {1, 2, . . . , n}.

The inclusions ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An = S are straightforward.
We shall prove that the sets Ak are attractors. We proceed inductively. First note that

directly by the definition we have An = S; hence, our claim holds true for k = n. Now
suppose that, for given k ∈ {0, 1, . . . , n − 1}, the set Ak+1 is an attractor. We need to verify
that Ak is an attractor.

We begin by showing that cl Ak and Mk+1 are disjoint. For contradiction, suppose that
there exists y ∈ cl Ak ∩ Mk+1, and consider a sequence {yt } in Ak convergent to y. For each
t ∈ N let σt : Z → S be a solution for F through yt with α(σt ) ⊂ M1∪· · ·∪ Mk . Since Ak+1

is an attractor, σt is a solution in Ak+1. We construct a solution σ : Z → Ak+1 through y.
Fix m ∈ N, choose an increasing sequence {tp} ⊂ N such that σtp (l) is convergent in Ak+1

for each l ∈ [−m, m], and set σ m(l) := lim p→∞ σtp (l). Clearly, σ m(0) = y. Moreover,
σtp (l +1) ∈ F(σtp (l)) for any tp ∈ N and l, l +1 ∈ [−m, m]. Therefore, by the closed graph
property of F we obtain σ m(l + 1) ∈ F(σ (l)). This shows that σ m : [−m, m] → Ak+1 is a
solution for F through y. Proceeding inductively and using pointwise limits of solutions σt ,
we can extend σ m to a full solution σ : Z → Ak+1 for F through y (cf. [7, Lemma 3.4]).
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Now, fix an arbitrary l ∈ {1, 2, . . . , k}. Note that F(Ml) ∩ Mk+1 = ∅, because otherwise
by the invariance of Ml and Mk+1 we would have a solution τ : Z → S with α(τ) ⊂ Ml

and ω(τ) ⊂ Mk+1, which is in contradiction with the ordering of the Morse sets in M.
Clearly, Ml and Mk+1 are compact. The set F(Ml) is compact as an image of a compact set
under an upper semicontinuous map. Therefore, by the upper semicontinuity of F we can
take compact and disjoint neighborhoods Nl and N ′

k+1 of Ml and Mk+1, respectively, such
that F(Nl) ∩ N ′

k+1 = ∅. It follows that there exists a compact neighborhood Nk+1 of Mk+1

such that

Nl ∩ Nk+1 = ∅ and F(Nl) ∩ Nk+1 = ∅
for all l ∈ {1, 2, . . . , k}. We set

Vk+1 := Ak+1 \
k+1⋃

i=1

int Ni

and

Vk := Ak+1 \
k⋃

i=1

int Ni .

Since σn(0) converges to y ∈ Mk+1 ⊂ int Nk+1, we may assume that σn(0) ∈ Nk+1 for
n ∈ N. Fix an n ∈ N. Observe that there exists a smallest kn ∈ N such that σn(−kn) ∈ Vk+1,
because α(σn) ⊂ M1 ∪ · · · ∪ Mk and F(N1 ∪ · · · ∪ Nk) ∩ Nk+1 = ∅.

Case 1 Sequence {kn} is bounded. Then we can find an l ∈ N such that σn(−l) ∈ Vk+1 for
all but finitely many n ∈ N. Passing in σn(−l) with n to infinity we obtain σ(−l) ∈ Vk+1,
as Vk+1 is compact. Since σ(0) ∈ Mk+1 and Mk+1 is invariant, there exists a solution
τ : Z → Mk+1 through σ(0). Now, the concatenation

σ ′(m) :=
{

τ(m), m ≥ 0
σ(m), m ≤ 0

is a solution for F in Ak+1 with ω(σ ′) ⊂ Mk+1 and α(σ ′) ⊂ M1 ∪ · · · ∪ Mk+1. However,
σ ′(−l) = σ(−l) /∈ Mk+1, thus we cannot have α(σ ′) ⊂ Mk+1. It follows that α(σ ′) ⊂ M j

for some j ∈ {1, 2, . . . , k}, a contradiction.
Case 2 Sequence {kn} is unbounded. Without loss of generality we may assume that

kn ≥ n. Observe that

dom(FVk ,kn ) ∩ Vk+1 ∩ Ak+1 �= ∅
for all n ∈ N. Taking into account that {dom(FVk ,n)} is a decreasing sequence of compact
sets, and Vk+1 and Ak+1 are compact, we get

⋂ {
dom(FVk ,kn ) ∩ Vk+1 ∩ Ak+1 | n ∈ N

} �= ∅.

By the identity Inv+(Vk, F) = ⋂ {
dom(FVk ,n) | n ∈ Z

+}
(cf. e.g. [5, Lemma 4.9], [21,

Lemma 2.8]) we obtain

Inv+(Vk, F) ∩ Vk+1 ∩ Ak+1 �= ∅.

Take an x ∈ Inv+(Vk, F) ∩ Vk+1 ∩ Ak+1 and a solution τ ′ : Z
+ → Vk for F through

x . Then ω(τ ′) ⊂ Vk , because Vk is compact. This, in turn, means that ω(τ ′) ⊂ Mk+1,
as Vk ∩ (M1 ∪ M2 ∪ · · · ∪ Mk) = ∅ and Vk ⊂ Ak+1. Now, by the inclusion x ∈ Ak+1

and the invariance of Ak+1, we can extend τ ′ to the full solution τ : Z → Ak+1. We
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have ω(τ) ⊂ Mk+1 and α(τ) ⊂ M1 ∪ M2 ∪ · · · ∪ Mk+1. Moreover, im τ �⊂ Mk+1, as
x ∈ Vk+1. Therefore, we cannot have α(τ) ⊂ Mk+1, showing that α(τ) ⊂ M j for some
j ∈ {1, 2 . . . , k}, a contradiction.

This completes the proof that cl Ak and Mk+1 are disjoint.
Take a compact neighborhood Wk of Ak such that Wk ∩ Mk+1 = ∅. We claim that Wk is an

isolating neighborhood of Ak . Indeed, it suffices to verify the identity Ak = Inv(Wk, F). To
this end consider x ∈ Inv(Wk, F) and σ : Z → Wk , a solution through x . By compactness
of Wk we have α(σ) ⊂ Wk , and consequently α(σ) ⊂ M1 ∪ · · · ∪ Mk , showing that x ∈ Ak .
We need to verify the other inclusion. It is straightforward to observe that Ak is invariant.
Thus, Ak = Inv(Ak, F) ⊂ Inv(Wk, F). This completes the proof that Wk is an isolating
neighborhood for Ak . In particular, it follows that Ak is compact. Moreover, using the same
reasoning, one can easily see that Inv−(Wk, F) = Ak .

Observe that F(Ak) = Ak ⊂ int Wk and consider an open neighborhood V of Ak such
that

F(V ) ⊂ int Wk . (1)

Using [21, Lemma 2.11] we can pick a compact neighborhood A of Ak such that Tk :=
F+

Wk
(A) ⊂ V . We shall show that Tk is a trapping region for Ak . First note that the set

Tk is compact, because Inv−(Wk, F) = Ak ⊂ A ⊂ Wk (cf. [21, Lemma 2.9]). Moreover,
Ak ⊂ int A ⊂ int Tk . The identity Inv(Tk, F) = Ak is easily seen. Thus, Tk is an isolating
neighborhood for Ak . There remains to verify that F(Tk) ⊂ Tk . Note that, directly by the
definition, Tk is positively invariant in Wk . Moreover, by (1) we have F(Tk) = F(F+

Wk
(A)) ⊂

F(V ) ⊂ Wk . Consequently, F(Tk) = F(Tk) ∩ Wk ⊂ Tk .
This completes the proof that Ak is an attractor.
We will show the identity M j = A j ∩ A∗

j−1 for j ∈ {1, . . . , n}. Fix j ∈ {1, . . . , n}. Let
x ∈ M j and letσ : Z → M j be a solution through x . The set M j is compact, thereforeα(σ) ⊂
M j . This means that x ∈ A j . We shall verify that x ∈ A∗

j−1. For contradiction suppose that
x /∈ A∗

j−1. Then, for any solution τ : Z → S we have ω(τ) ∩ A j−1 �= ∅. In particular,
ω(σ) ∩ A j−1 �= ∅, which in turn implies ω(σ) ⊂ Mk for some k ∈ {1, 2, . . . , j − 1}.
However, σ is a solution in M j ; hence, ω(σ) ⊂ Mk ∩ M j , a contradiction. For the proof
of the other inclusion take an x ∈ A j ∩ A∗

j−1. Then there exists a solution σ ′ : Z → S
through x with α(σ ′) ⊂ M1 ∪ · · · ∪ M j . We also have a solution σ ′′ : Z → S such that
ω(σ ′′)∩ (M1 ∪· · ·∪ M j−1) = ∅. Consequently, there is k ≥ j such that ω(σ ′′) ⊂ Mk . Since
both σ ′ and σ ′′ are solutions through x , we can take their concatenation σ : Z → S so that
α(σ) ⊂ M1 ∪· · ·∪ M j and ω(σ) ⊂ Mk . Thus, by the ordering of the Morse sets α(σ) ⊂ M j

and ω(σ) ⊂ M j . It follows that im σ ⊂ M j , in particular x ∈ M j .
This completes the proof. ��

Proposition 3.10 Let M := {M1, M2, . . . , Mn} be a Morse decomposition of an isolated
invariant set S with respect to an upper semicontinuous F : X � X, and let ∅ = A0 ⊂
A1 ⊂ A2 ⊂ · · · ⊂ An = S be the sequence of associated attractors. Then (M j , A j−1) is a
repeller–attractor pair in A j for j ∈ {1, 2, . . . , n}.
Proof Let j ∈ {1, 2, . . . , n} and let Tj−1 be a trapping region for A j−1 in S. One can
observe that Tj−1 ∩ A j is a trapping region for A j−1 in A j , showing that A j−1 is an attractor
in A j . Now, the assertion of the proposition is straightforward according to the identity
M j = A j ∩ A∗

j−1. ��
The following theorem may be viewed as a converse of Theorem 3.9.
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Theorem 3.11 Let S be an isolated invariant set with respect to an upper semicontinuous
map F : X � X, and let ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An = S be a sequence
of attractors in S. Then M := {M1, M2, . . . , Mn}, where M j = A j ∩ A∗

j−1 and A∗
j is

a repeller dual to A j , for j ∈ {1, 2, . . . , n}, is a Morse decomposition of S. Moreover,
Ak = {x ∈ S | there exists a solution σ : Z → S through x with α(σ) ⊂ M1∪M2∪· · ·∪Mk},
k ∈ {1, 2, . . . , n}.
Proof The idea of the proof is similar to its single valued counterpart (cf. e.g. [36]), but the
details differ. We present the entire proof for the sake of completeness.

We shall verify all the assertions of Definition 3.1. Fix i < j . We have

Mi ∩ M j = Ai ∩ A∗
i−1 ∩ A j ∩ A∗

j−1
⊂ Ai ∩ A∗

j−1 ⊂ A j−1 ∩ A∗
j−1 = ∅.

Let j ∈ {1, 2, . . . , n} be fixed. We shall verify that M j is isolated and invariant with respect
to F . Let Tj be a trapping region for A j . Recall that NA∗

j−1
:= S \ int Tj is an isolating

neighborhood for A∗
j−1 (cf. Lemma 3.6). We claim that N j := Tj ∩ NA∗

j−1
is an isolating

neighborhood for M j . We have M j = A j ∩ A∗
j−1 ⊂ A j ⊂ int Tj and M j = A j ∩ A∗

j−1 ⊂
A∗

j−1 ⊂ int NA∗
j−1

. Thus, M j ⊂ int Tj ∩ int NA∗
j−1

= int(Tj ∩ NA∗
j−1

) = int N j . There
remains to show that M j = Inv(N j , F). To this end, consider an x ∈ M j . Since x ∈ A j ,
we can take a solution η : Z → A j with η(0) = x . Clearly, α(η) ⊂ A j . On the other
hand x ∈ A∗

j−1, therefore there exists a solution τ : Z → S with τ(0) = x such that
ω(τ) ∩ A j−1 = ∅. Define σ : Z → S by

σ(k) :=
{

η(k), k ≤ 0,
τ (k), k ≥ 0.

One easily sees thatσ is a solutionwith respect to F through x . Note thatω(σ) = ω(τ); hence,
ω(σ) ∩ A j−1 = ∅. Then, by Lemma 3.5, im σ ∩ TA j−1 = ∅ and by Lemma 3.6 the inclusion
im σ ⊂ A∗

j−1 follows. Moreover α(σ) = α(η) ⊂ A j , and by Lemma 3.7(iv), im σ ⊂ A j .
Consequently, im σ ⊂ A j ∩ A∗

j−1 = M j showing that M j is invariant with respect to F .
Therefore, M j = Inv(M j , F) ⊂ Inv(N j , F). For the proof of the other inclusion consider
an x ∈ Inv(N j , F) and a solution σ : Z → N j through x . We have im σ ⊂ N j ⊂ Tj , and in
turn im σ ⊂ A j , as Tj is a trapping region for A j . Similarly, im σ ⊂ N j ⊂ NA∗

j−1
and we

have the inclusion im σ ⊂ A∗
j−1, because NA∗

j−1
is an isolating neighborhood for A∗

j−1. As

a consequence, im σ ⊂ A j ∩ A∗
j−1 = M j . In particular x ∈ M j . We have proved that M j is

an isolated invariant set, which also justifies its compactness. The proof of Definition 3.1(1)
is complete.

In order to prove Definition 3.1(2) consider a solution σ : Z → S. Since the sequence
of attractors is increasing and An = S, there exists a smallest positive integer i such that
ω(σ) ⊂ Ai . Similarly, there is a largest j ∈ N, j < n, with α(σ) ⊂ A∗

j , as the sequence
of the dual repellers is decreasing and A∗

0 = S. Then, ω(σ) �⊂ Ai−1, which according to
Lemma 3.5 implies im σ ∩ Ti−1 = ∅. Hence, by Lemma 3.6 we get

im σ ⊂ A∗
i−1. (2)

In particular, ω(σ) ⊂ A∗
i−1. This, along with the inclusion ω(σ) ⊂ Ai implies

ω(σ) ⊂ Mi . (3)

By the choice of j we have α(σ) ⊂ A∗
j and α(σ) �⊂ A∗

j+1. We claim that

im σ ⊂ A j+1. (4)
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Indeed, otherwise we would have im σ �⊂ TA j+1 and, by Lemma 3.7(i), α(σ) ⊂ A∗
j+1, a

contradiction.
Observe that j + 1 ≥ i . If not, then by (4) im σ ⊂ A j+1 ⊂ Ai−1, which along with (2)

yields im σ ⊂ Ai−1 ∩ A∗
i−1 = ∅, a contradiction.

If j + 1 = i then by (4) we have im σ ⊂ A j+1 = Ai . Now, using (2) we obtain
im σ ⊂ Ai ∩ A∗

i−1 = Mi .
If j + 1 > i then we have α(σ) ⊂ A∗

j and, by (4), α(σ) ⊂ A j+1. Thus, α(σ) ⊂
A j+1 ∩ A∗

j = M j+1. This along with (3) completes the proof of Definition 3.1(2).
For the proof of Definition 3.1(3) fix a j ∈ {1, 2, . . . , n} and take a solution σ : Z → S

with α(σ) ∪ ω(σ) ⊂ M j . Then the inclusion im σ ⊂ A j follows from Lemma 3.7(iv), as
α(σ) ⊂ A j . Similarly, by Lemma 3.7(iii) and the inclusion ω(σ) ⊂ A∗

j−1 we get im σ ⊂
A∗

j−1. Consequently, im σ ⊂ M j .
We have proved that the family M is a Morse decomposition of S.
There remains to justify the last assertion of the theorem. Fix a k ∈ {1, 2, . . . , n}. Take

an x ∈ Ak and a solution σ : Z → Ak through x . Clearly, α(σ) ⊂ Ak . Let i ≤ k be the
smallest integer such that α(σ) ⊂ Ai . Then α(σ) �⊂ Ai−1. This means that im σ �⊂ Ti−1,
which along with Lemma 3.7(i) yields α(σ) ⊂ A∗

i−1. Thus, α(σ) ⊂ Ai ∩ A∗
i−1 = Mi . For

the proof of the other inclusion consider an x ∈ S and a solution σ : Z → S through x with
α(σ) ⊂ M1 ∪ M2 ∪ · · · ∪ Mk . There is i ≤ k such that α(σ) ⊂ Mi . Then α(σ) ⊂ Ai , which
along with Lemma 3.7(iv) shows that im σ ⊂ Ai . In particular, x ∈ Ai ⊂ Ak .

This completes the proof. ��

4 Index Triples

Throughout this section assume that X is a locally compact metric space and F : X � X is
an upper semicontinuous multivalued map determined by a morphism.

Lemma 4.1 Let N be an isolating neighborhood for F and let a pair P = (P1, P2) of
compact sets P2 ⊂ P1 ⊂ N satisfy conditions (a) and (d) of Definition 2.1. Then P satisfies
condition (b).

Proof First we show that bdF P1 ⊂ bd N . For contradiction assume that there exists a y ∈
bdF P1 \bd N . Then y ∈ cl(F(P1)\ P1), and we can consider a sequence {yn} ⊂ F(P1)\ P1

convergent to y. Observe that y ∈ int N , because y ∈ P1 ⊂ N and y /∈ bd N . Therefore,
yn ∈ int N for large enough n ∈ N. This along with yn ∈ F(P1) and (a) implies yn ∈ P1, a
contradiction.

To prove inclusion (b) assume the contrary and consider an x ∈ bdF P1 \ P2. Then
x ∈ P1\P2 ⊂ int N , by property (d). On the other hand, x ∈ bdF P1 ⊂ bd N , a contradiction.

��
The next lemma is straightforward.

Lemma 4.2 Let A, B, N , M be subsets of X. The following holds true:

(i) if A, B are positively invariant with respect to F in N then so are A ∪ B and A ∩ B,
(ii) if A and B are positively invariant with respect to F in N and M, respectively, then

A ∩ B is positively invariant with respect to F in N ∩ M,
(iii) if A is positively invariant with respect to F in N and B is positively invariant with

respect to F, then A ∩ B is positively invariant with respect to F in N,
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(iv) if A is positively invariant with respect to F in M and N ⊂ M then A is positively
invariant with respect to F in N.

Definition 4.3 We will say that a pair R = (R1, R2) of compact sets is an F--pair if there is
a compact set M with R2 ⊂ R1 ⊂ M and

(Fp1) R1, R2 are positively invariant with respect to F in M ,
(Fp2) cl(R1 \ R2) is an isolating neighborhood,
(Fp3) R1 \ R2 ⊂ int M .

Note that a weak index pair is a special F–pair.
Given an F–pair R in M we set

TM (R) := (TM,1(R), TM,2(R)) := (R1 ∪ (X \ int M), R2 ∪ (X \ int M)).

Lemma 4.4 If R is an F–pair in M, then

(i) F(R) ⊂ TM (R),
(ii) the inclusion iR := iR,TM (R) : R → TM (R) induces an isomorphism in the Alexander-

Spanier cohomology.

Proof Property (i) follows from the positive invariance of R1 and R2 with respect to F in M .
Since TM,1(R)\ TM,2(R) = R1 \ R2, inclusion iR is an excision, and property (ii) follows. ��

By Lemma 4.4 we can define an endomorphism IR : H∗(R) → H∗(R) by

IR := F∗
R ◦ (i∗R)−1,

where FR stands for the restriction of F to the domain R and the codomain TM (R). In the
following endomorphism IR will be called an index map associated with an F–pair R.

Note that if an F–pair R is a weak index pair then the above notion of the index map
coincides with that for a weak index pair.

Proposition 4.5 Let R be an F–pair in M, and let S := Inv(cl(R1 \ R2), F). If N ⊂ M is
an isolating neighborhood of S such that R1 \ R2 ⊂ int N then

(i) P := R ∩ N is a weak index pair for F in N,
(ii) the inclusion iP R : P → R induces an isomorphism in the Alexander-Spanier cohomol-

ogy,
(iii) index maps IFP and IR are conjugate.

As a consequence, C(S, F) = L(H∗(R), IR).

Proof We shall verify that P is a weak index pair. First observe that, by the positive invariance
of R in M , the inclusion N ⊂ M , and Lemma 4.2(iv), P is positively invariant in N , i.e.
P satisfies property (a) of Definition 2.1. Properties (c) and (d) are straightforward. Now,
property (b) is justified by Lemma 4.1.

Since R1 \ R2 ⊂ int N , we have P1 \ P2 = (R1 \ R2)∩ N = R1 \ R2. Therefore, inclusion
iP R induces an isomorphism, as an excision.

There remains to verify (iii). Consider the commutative diagram

(P1, P2) (TN ,1(P), TN ,2(P)) (P1, P2)

(R1, R2) (TM,1(R), TM,2(R)) (R1, R2)

iP R

FP

iP R

iP

FR

j

iR
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in which iP , iR , iP R and j are inclusions. Recall that iP and iR and iP R induce isomorphisms
in cohomology by the strong excision property. And, so does j . The commutativity of the
diagram shows that the index maps IFP and IR are conjugate. This completes the proof. ��
Lemma 4.6 Assume S1 ⊂ S2 are isolated invariant sets with respect to F, with isolating
neighborhoods N1 and N2, respectively. Then, N1 ∩ N2 is an isolating neighborhood for S1.

Proof We have S1 = Inv(S1, F) ⊂ Inv(N1 ∩ N2, F), because S1 is invariant and S1 ⊂ N1 ∩
N2. On the other hand, Inv(N1 ∩ N2, F) ⊂ Inv(N1, F) = S1. Thus, S1 = Inv(N1 ∩ N2, F).
There remains to verify that S1 ⊂ int(N1 ∩ N2). To this end observe that S1 ⊂ int N1 and
S1 ⊂ S2 ⊂ int N2. Therefore, S1 = S1 ∩ S2 ⊂ int N1 ∩ int N2 = int(N1 ∩ N2). ��
Theorem 4.7 Let S be an isolated invariant set with respect to F and let N be its isolating
neighborhood. Assume that (A∗, A) is a repeller–attractor pair in S. Then, there exist a triple
(P0, P1, P2) of compact subsets P2 ⊂ P1 ⊂ P0 of N such that

(i) (P0, P2) is a weak index pair for F and C(S, F) = L(H∗(P0, P2), I(P0,P2)),
(ii) (P1, P2) is an F–pair and C(A, F) = L(H∗(P1, P2), I(P1,P2)),

(iii) (P0, P1) is an F–pair and C(A∗, F) = L(H∗(P0, P1), I(P0,P1)).

Proof Let (P0, P ′
2) be aweak index pair for S and F in an isolating neighborhood N . Consider

a trapping region M ′ for attractor A. By Lemma 4.6 the set M := M ′ ∩ N is an isolating
neighborhood of A. So, we can take a weak index pair Q′ = (Q′

1, Q′
2) for A and F in M .

Set Qi := Q′
i ∩ P0, i ∈ {1, 2}, and Q := (Q1, Q2).

First we prove that Q is a weak index pair for A in M . Fix i ∈ {1, 2}. Since Q′
i is positively

invariant in M and P0 is positively invariant in N , byLemma4.2(ii) Qi = Q′
i ∩P0 is positively

invariant in M ∩ N = M . This shows that Q satisfies property (a) of Definition 2.1. Observe
that A ⊂ S ⊂ int P0 and A ⊂ int(Q′

1 \ Q′
2), as (P0, P ′

2) and (Q1, Q′
2) are weak index

pairs for S and A, respectively. Therefore, A ⊂ int(Q′
1 \ Q′

2) ∩ int P0 = int((Q′
1 \ Q′

2) ∩
P0) = int(Q1 \ Q2), showing (c). Property (d) follows from the straightforward inclusions
Q1 \ Q2 = (Q′

1 ∩ P0) \ (Q′
2 ∩ P0) = (Q′

1 \ Q′
2) ∩ P0 ⊂ Q′

1 \ Q′
2 ⊂ int M . Now, property

(b) is a consequence of (a), (d), and Lemma 4.1.
Set

P1 := Q1 ∪ P ′
2 and P2 := Q2 ∪ P ′

2. (5)

We shall show that (P1, P2) is an F–pair in N . Clearly, P2 ⊂ P1 are compact subsets of N .
Property (Fp3) inDefinition 4.3 is straightforward, because P1\P2 ⊂ Q1\Q2 and Q is aweak
index pair for F in M ⊂ N . For the proof of (Fp2) observe that cl(P1 \ P2) ⊂ cl(Q1 \ Q2) ⊂
M , therefore Inv(cl(P1 \ P2), F) ⊂ Inv(M, F) = A. Moreover, A ⊂ int(Q1 \ Q2) and A ⊂
int(P0 \ P ′

2), as Q is a weak index pair for A, (P0, P ′
2) is a weak index pair for S, and A ⊂ S.

Thus, Inv(cl(P1\P2), F) ⊂ int(Q1\Q2)∩int(P0\P ′
2) = int(P1\P2). There remains to verify

(Fp1). For i ∈ {1, 2}we have F(Pi )∩N = F(Qi ∪ P ′
2)∩N = ((F(Qi )∩N )∪(F(P ′

2))∩N ).
By the positive invariance of P ′

2 in N we have the inclusion F(P ′
2) ∩ N ⊂ P ′

2. Recall that
M ′ is an attracting neighborhood and Qi ⊂ M ′; hence, F(Qi ) ⊂ M ′. Taking this into
account we obtain F(Qi ) ∩ N ⊂ F(Qi ) ∩ N ∩ M ′ = F(Qi ) ∩ M ⊂ Qi , where the
last inclusion is a consequence of the positive invariance of Qi in M . Finally, we have
F(Pi ) ∩ N ⊂ Qi ∪ P ′

2 = Pi , i.e. P satisfies (Fp1). This shows that (P1, P2) is an F–pair in
N .

Notice that Inv(P1 \ P2, F) = A and M is an isolating neighborhood of A with P1 \ P2 ⊂
int M . Therefore, by Proposition 4.5 we infer that C(A, F) = L(H∗(P1, P2), I(P1,P2)). This
completes the proof of (ii).
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We shall show that P := (P0, P2) is a weak index pair for S and F in N . Recall that
(P0, P ′

2) is a weak index pair for F in N . Thus, in order to verify that P satisfies property
(a) in Definition 2.1 it suffices to show that P2 = Q2 ∪ P ′

2 is positively invariant in N . Since
the sets Q2 and P ′

2 are positively invariant in N , our claim follows from Lemma 4.2(i). We
have P1 \ P2 = P1 \ (Q2 ∪ P ′

2) ⊂ P1 \ P ′
2 ⊂ int N , showing property (d). Property (b)

is a consequence of (a), (d) and Lemma 4.1. There remains to verify property (c), i.e. the
inclusion S ⊂ int(P1 \ P2). Since S ⊂ int(P1 \ P ′

2), for contradiction suppose that there is
an x ∈ S ∩ Q2. Consider a solution σ through x in S. Since Q2 is compact and positively
invariant in N , we infer that ∅ �= ω(σ) ⊂ Q2. Moreover, Q2 ⊂ M and ω(σ) is invariant
with respect to F , hence we have ω(σ) = Inv(ω(σ ), F) ⊂ Inv(M, F) = A, showing that
A ∩ Q2 �= ∅. However, (Q1, Q2) is a weak index pair for A, a contradiction.

Since (P0, P2) is a weak index pair for S and F in N , the identity C(S, F) =
L(H∗(P0, P2), I(P0,P2)) is straightforward. This completes the proof of (i).

Now we focus on a repeller A∗ dual to A in S. We shall verify that (P0, P1) is an F–pair
in N . Clearly, the sets P1 ⊂ P0 are compact subsets of N . Recall that we have already
justified the positive invariance of P0 and P1 in N , that is property (Fp1). Moreover, by the
inclusions P0 \ P1 ⊂ P0 \ P2 ⊂ int N , (Fp3) follows.We claim that cl(P0 \ P1) is an isolating
neighborhood for A∗. According to (ii) we have A ⊂ int P1, showing that cl(P0\P1)∩ A = ∅.
Thus, according to Lemma 3.8, it suffices to verify that

A∗ ⊂ int(P0 \ P1). (6)

To this end consider an x ∈ A∗ and a solution σ through x such that ω(σ) ∩ A = ∅.
Observe that x /∈ Q1, because otherwise we would have ∅ �= ω(σ) ⊂ Q1, and consequently
ω(σ) ⊂ A, leading a contradiction. Thus, by the inclusion A∗ ⊂ S ⊂ int(P0 \ P2) and (5),
that is the definition of P1, inclusion (6) follows.

Now, using (6), (5) and Lemma 3.8, one can easily prove that K := N \ int Q1 is an
isolating neighborhood of A∗. We claim that (P0 ∩ K , P1 ∩ K ) is a weak index pair for F
in K . Indeed, in view of Proposition 4.5(i) it suffices to justify that P0 \ P1 ⊂ int K , which
follows from the inclusions P0 \ P1 ⊂ int N and P0 \ P1 ⊂ P0 \ Q1.

Eventually, according to Proposition 4.5 we have the identity
C(A∗, F) = L(H∗(P0, P1), I(P0,P1)), which proves (iii).

This completes the proof. ��

Example 4.8 Consider multivalued map given in Example 3.2 (see Fig. 1). We present some
examples of weak index triples.

(a) Consider a repeller–attractor pair (A∗
1, A1) = ([0, m] ∪ [n, o] ∪ [p, q] ∪ [g, h], [d, e] ∪

[ j, k]) in S = [0, k] (Fig. 1C). Note that ([0, l],∅) is a weak index pair for S in [0, l] and
([c, f ] ∪ [i, l],∅) is a weak index pair for A1 in [c, f ] ∪ [i, l]. Observe that P0 := [0, l],
P1 := [c, f ] ∪ [i, l] and P2 := ∅ is a triple satisfying the assertions of Theorem 4.7.

(b) Observe that for the repeller–attractor pair (A∗
2, A2) = ([0, a], [d, k]) in S (Fig. 1D), the

weak index triple is given by P0 := [0, l], P1 := [c, l] and P2 := ∅.
(c) Note that (A∗

2, M2) is a repeller–attractor pair in A∗
1 (see Fig. 1C and D. Then, ([0, c] ∪

[ f , i], {c}∪ { f }∪ {i}) is a weak index pair for A∗
1, and ([ f , i], { f }∪ {i}) is a weak index

pair for M2. One can verify that the triple ([0, c] ∪ [ f , i], [ f , i] ∪ {c}, {c} ∪ { f } ∪ {i})
satisfies the assertions.
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5 Morse Equation

The aim of this section is to prove the Morse equation.
As in the preceding section, X is a locally compact metric space and F : X � X is an

upper semicontinuous multivalued map determined by a morphism.

Proposition 5.1 Assume (A∗, A) is a repeller–attractor pair in an isolated invariant set S
with respect to an upper semicontinuous map F : X � X. Then

p(t, A∗) + p(t, A) = p(t, S) + (1 + t)Q(t)

for some power series Q with nonnegative integer coefficients.

Proof The proof runs along the lines of the proof of [33, Theorem 5.5] with the use of
Theorem 4.7 instead of [33, Theorem 4.3]. ��
Theorem 5.2 Let M := {M1, M2, . . . , Mn} be a Morse decomposition of an isolated invari-
ant set S with respect to an upper semicontinuous F : X � X. Then

n∑

i=1

p(t, Mi ) = p(t, S) + (1 + t)Q(t), (7)

where Q is a formal power series with nonnegative integer coefficients. Moreover,

Q(t) =
n∑

i=1

Qi (t),

where

(1 + t)Qi (t) = p(t, Mi ) + p(t, Ai−1) − p(t, Ai ). (8)

If Qi �= 0 then there exists a solution σ : Z → S with α(σ) ⊂ Mi and ω(σ) ⊂ M j for some
j < i .

Proof The proof runs similarly as the proof of [33, Theorem 5.6]. By Theorem 3.9 and
Proposition 3.10 we can consider the associated sequence of attractors such that (Mi , Ai−1)

is a repeller–attractor pair in Ai . Applying Proposition 5.1 to this pair we find a formal power
series Qi with nonnegative integer coefficients satisfying

p(t, Mi ) + p(t, Ai−1) = p(t, Ai ) + (1 + t)Qi (t). (9)

Summing these equations over i ∈ {1, 2, . . . , n} and taking into account that An = S and
A0 = ∅ we obtain the first assertion.

In order to prove the second assertion, for contradictions suppose that there is no solution
σ : Z → S with α(σ) ⊂ Mi and ω(σ) ⊂ M j , where j < i . This means that Ai is a disjoint
union of Mi and Ai−1, F(Mi )∩ Ai−1 = ∅, and F(Ai−1)∩Mi = ∅. By the additivity property
of the Conley index [3, Theorem 5.3] we obtain

C(Ai , F) = C(Mi , F) × C(Ai−1, F).

In particular,

dim Cq(Ai , F) = dim Cq(Mi , F) + dim Cq(Ai−1, F).

123



2740 Journal of Dynamics and Differential Equations (2023) 35:2725–2742

Now, there remains to multiply the above equalities by tq and sum over q ∈ N in order to
get

p(t, Ai ) = p(t, Mi ) + p(t, Ai−1),

which, along with (9), implies Qi = 0, a contradiction. ��
Example 5.3 Consider Morse decomposition of an isolated invariant set S = [0, k] with
respect to a multivalued map presented in Example 3.2 and Fig. 1. One can verify that
p(t, M1) = 2, p(t, M2) = t , p(t, M3) = 0, and p(t, S) = 1, so that the Morse equation has
the form

2 + t + 0 = 1 + (1 + t)Q(t),

showing that Q(t) = 1.Moreover, p(t, A0) = 0, p(t, A1) = 2, p(t, A2) = 1 and p(t, A3) =
1. Therefore, by (8) we obtain that Q1(t) = Q3(t) = 0 and Q2(t) = 1. Thus, the Morse
equation shows that there exists a solution σ : Z → S with α(σ) ⊂ M2 and ω(σ) ⊂ M1.

Assume, we are given a Morse decomposition with respect to a flow on X . Recall that,
according to [32, Theorem 1], any isolated invariant set with respect to a flow is isolated and
invariant with respect to time-one-map. Note that this extends over theMorse decomposition.
Thus, by Theorem 5.2 we get Morse equation (7) for the flow. Therefore, arguing as in [36]
or [38], as a corollary we obtain the classical Morse inequalities.

Corollary 5.4 Let M be a d-dimensional compact manifold with k-th Betti number βk , k ∈
{0, 1, 2 . . . , d}. Let nondegenerate critical points {x1, x2, . . . , xn} with respect to a given
gradient flow on M constitute a Morse decomposition of M, and let λ(x j ) stand for the
Morse index of x j . Then

n∑

j=1

tλ(x j ) =
d∑

j=0

β j t
j + (1 + t)Q(t),

where Q is a formal power series with nonnegative integer coefficients.
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