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Abstract

Long-time dynamics of the solutions for the suspension bridge equation with constant and
time-dependent delays have been investigated, but there are no works on suspension bridge
equation with state-dependent delay. Thus, we first consider the existence of pullback attractor
for the non-autonomous suspension bridge equation with state-dependent delay by using the
contractive function methods.
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1 Introduction

Delay differential equations always play an important role in modeling a great variety of
phenomena, such as viscoelasticity, neural networks, interaction of species, biomedicine,
economy and many other fields. From the view of mathematics, we mainly concentrate on
the well-posedness and asymptotic behavior of solutions for the delay differential equations.
At the very beginning, the general theory of delay equations in infinite dimensional spaces
started with [1,2] at the abstract level. In the last decades, the authors mainly investigated the
parabolic-type models with constant and time-dependent delays [3-5].
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However, it appears that in many problems the constancy of the delay is just an extra
case which makes the problem easier, it is not really well motivated by real world models.
To describe a process more naturally, a new class of state-dependent delay models were
introduced and studied recently. When the delay term depends on unknown variables in a
equation, we call it a state-dependent delay differential equation. Partial differential equations
with state-dependent delay have been essentially less investigated, see the discussions in
references [6—9] where they considered the parabolic case. Chueshov and Rezounenko [9]
considered dynamics of second order in time evolution equations with state-dependent delay,
and obtained the existence of global and exponential attractors.

In this paper, our main goal is to consider the following non-autonomous suspension
bridge with state-dependent delay in 2 = [0, L]

rett + Ouaxtt + pupu + ku + fu) +u(t —wu']) =gx,0), x €Q, t > 1,

u(0,1) =u(L, 1) = e u(0,1) = du(L, 1) =0, xeQ, telt—h, +oo),(1 1l
u(x,t) =@, t—1), xeQ, telt—h,1], ’
Oru(x,t) = dp(x,t — 1), x €, telt—h,r]

The model (1.1) describes the vibration of the road bed in the vertical direc-
tion, where u(x, t) denotes the deflection in the downward direction; 7 is a mapping defined
on solutions with values in some interval [0, k], 2 > O presents the (maximal) retardation
time; 119, u represents the viscous damping, and  is a positive constant; ku™ represents the
restoring force, k > 0 denotes the spring constant, the function u™ (x, t) = max{u(x, t), 0}. 7
is the initial time. ¢ is the initial datum. The term u (¢ — 7 [1']) models effect of the Winkler
type foundation with delay response and u’ = u(t +0), 6 € [—h,0].

In the last several decades, the spectacular collapse of the Tacoma narrow bridge has
successfully attracted many of engineers, physicists, and mathematicians. They tried their
best to explain such an amazing event. A one-dimensional simply supported beam suspended
by hangers was modelled as a suspension bridge in [10] by Lazer and McKenna, which it
described the vibration of the roadbed in the vertical plane. We note that the dynamics of
suspension bridge without delay effects were studied by many authors. For instance, in [10-
12], the authors proved existence of periodic solutions, property of travelling wave solutions
and the numerical mountain pass solutions for the suspension bridge equation. Zhong et al.
have investigated systematically the long-time behavior of solution for both the single and
the coupled suspension bridge equations in [13—15]. Bochicchio et al. studied the existence
of the global attractor for the Kirchhoff suspension bridge equation and obtained a regularity
result of attractor, see [16] for details. The existence of global attractors for the suspension
bridge with linear memory was achieved by Kang in [17].

With respect to the suspension bridge equations with constant or time-dependent delay,
see [18-21] and references therein. The author [18] obtained the existence of the finite
dimensional global attractors under the condition of 0 < |a;| < ap. In [19], the authors
studied the non-autonomous suspension bridge with time delay

Oprut + Oxxxxtt + 0:u + kut +gw)=F(t,u)+ f(x, 1),

and proved the existence of pullback attractors when the delay term F (¢, u,) is driven by a
function with very weak assumptions. In addition, the authors proved the existence of uniform
attractors for the nonlinear plate modelling suspension bridges with delay, and investigated
the existence of strong pullback attractors for suspension bridge with variable delay (see
[20,21] for details).
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In this paper, we pay attention to the existence of pullback D—attractor for the suspension
bridge with state-dependent delay. Comparing with constant or time-dependent delays, the
state-dependent delay will bring new difficulties in analysis, including the well-posedness
and corresponding a priori estimates, thus the results about the systems with state-dependent
delay are not so rich as that for other kinds of delay differential equations. Regarding problem
(1.1), in order to guarantee the uniqueness of solutions, we have to choose a certain appropriate
C!-type space, and there need an additional term in energy functional as a compensator for
the delay term in the proof of a priori estimates. Finally, we obtain the compactness of the
process by using contractive function methods, which is different from reference [22], where
they proved the existence of global and exponential attractors of system by using quasi-stable
method.

The layout of this paper as follows. In Sect. 2, we define some functions setting and iterate
some useful lemmas and abstract results about pullback D—attractor. In Sect. 3, we make
a priori estimates and establish well-posedness of problem (1.1). In Sect. 4, we prove the
existence of pullback D—attractor for (1.1).

2 Preliminaries

Firstly, Let V, H be real Hilbert space. Define D(A) = {# € V,Au € H : u(0,t) =
u(L,t) = 0xxu(0,t) = 0xxu(L,t) = 0}, where A = A% = Oyyxx, then A : D(A) — H is
a strictly positive self-adjoint operator. For any s € R, the scale of Hilbert spaces generated
the powers of A is introduced as follows:

Vo = D(AT), (u,v)y, = (Afu, ATv), [ull}, = [ATul?.

When s = 0, denote Vo = H = L%(Q), whens = 2, V, = H& () N H2(Q), the scalar
product and the norm acting on Vj and V; are denoted as follows,

2 2
(u, v)vy = (u,v), lully, = llull”,

1 1 1
u, Vv, = (A2u, A7v), |ul}, = [AZul? = |[Aul®.

In particular, we denote as |Au| the norm of D(A). It is obvious that V4 C Vo C Vg =
Vo C V5, here Vi, V" are the dual space of Vo, V> respectively, and each space is dense
in the following one and the injections are continuous.

By the Poincaré inequality, we have

2 2
Allully, < llully,,,, Yu € Vi,

where )\% is the first eigenvalue of A.

We will denote by Cy the Banach space C([—#h, 0]; X), equipped with the sup-norm, for
an element v € Cy, its norm will be written as |[vllcy = Supge—_p.0 IvO) I x-

Firstly, we introduce phase space

W = C([—h.0]; V2) N C'([—h, 0]; Vo),
its norm will be written as

lellw = llelicy, +1:@lcy,, Yo e W.
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Remark 2.1 [9] The main example of state-depenent delay term is

M(¢p) = ¢(—7m(¢)), ¢ € C([=h,0]: H),

where 7 maps C([—h, 0]; H) into some interval [0, #]. We note that this delay term M is not
locally Lipschitz in the classical space of continuous functions C ([—#, 0]; H). This may lead
to the non-uniqueness of solutions and make the study of differential equations with state-
dependent delays essentially differ from the ones with constant or time-dependent delays. In
order to prove the well-posedness of the system it requires additional assumptions. The main
approach to C!—solutions of general delay equations is the so-called “solution manifold
method” which assumes some type of compatibility condition (see [23,28]). There is also
an alternative approach avoiding compatibility condition (see [7]). Hence, it is important to
deal with spaces in which we can ensure Lipschitz property for the above mapping. So in the
paper, we choose a Banach space W defined above as a phase space allows us to guarantee
local Lipschitz property for the delay term. This phase space takes into account the natural
“displacement-velocity” relation from the very beginning.

Secondly, we assume that nonlinear term f satisfies the following conditions:

> 0, 2.1)
where F(s) = [; f(r)dr.

.. . Sf(s) —CoF(s)
lim inf ~————>—"—
|s|—o00 s

>0, Cp>0, (2.2)

and

[f'(s)] —0. (2.3)

lim sup
|s]— o0 s|?

where 0 < p < oo. For every n > 0, there exists C;; > 0, such that
1
el < cn+n(||Afu||2+[QF<u(x>>dx). 2.4)

Furthermore, we suppose that external force g € leo (R; L2(Q)) satisfies

t
/ e llg(s)lI*ds < oo, Vit € R, 2.5)
—00

where y > 0 will be determined later.
Finally, we assume that the mapping = : W — [0, k] is locally Lipschitz, i.e., for any
R > 0, there exists Cg > 0, such that

|7 (p1) — w(@2)| = Crllor — @2llw, (2.6)

forevery 1,92 € W, llojllw <R, j=1,2.

In the following, we iterate some useful lemmas and abstract results (see [24-26]).

Let D be a nonempty class of parameterized sets D= {D(t);t € R} C P(X), and P(X)
be a class of nonempty closed subsets of X.

Let {S(z, T)};>; be a process (or a two-parameter operator group) on a metric space
X, i.e.,afamily of continuous mappings {S(t, 7)};>r, —00 < T <t < +00: X — X, satisfy

S(t,t)x =x, Yx € X;
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Sit,t)y=S¢,rSr,r) Vr <r <t.

Definition 2.2 "The process {S(#, 7)}:> is said to be pullback D—asymptotically compact, if
forany t € R, D € D, any sequence 7, — —00, X, € D(1,), the sequence {S(t, 7,)x,};2;
is precompact in X.

Definition2.3 It is said that B € D _is pullback D—absorbing set for_the process
{S(t, ©)}i>r, if for any t € R and any D € D, there exists a 1o = to(t, D) < t such
that

S(t,1)D(x) C B(t), Yt < 10(t, D).
Lemma24 A family A = {A(1); 1 € R} C P(X) is said to be a pullback D—attractor for
the process {S(t, ©)}i>1 in X, if it satisfies

(1) 4(1‘) is compactin X forallt € R;
(2) Ais pullback D—attracting in X, i.e.,

lim distx(S(z, ) D(z), A(r)) =0
T—>—0Q
forall DeDandallt € R;
(3) Ais invariant, i.e., S(t, 1) A(t) = A(t), for —oo < 7 <t < 400.

Definition 2.5 Let (X, | - ||) be a Banach space and B = {B(1);t € R} be a subset of
X. We call a function <I>(-’,~-) defined on X x X to be a contractive function on B x B, if for
any sequence {x,},°; C B, there is a subsequence {x,, }7>, C {x,}52 such that

lim lim ®(x,,,x,) =0.
k—00[—00

We denote the set of all contractive functions on B x B by Contr(E).

Theorem 2.6 Let {S@t. D))= be a process on Banach space X and have a pullback
D—absorbing set B = {B(t);1 € R}. Moreover, assume that for any ¢ > 0, there exist
T =T(tB,e)=t—rtand ®, (-, -) € Contr(B) such that

| St t—=T)x =Sk, t—T)yl|<e+ P r(x,y), Vx,y e B(1),

where &, 7 depends on t and T. Then {S(t, T)};>1 is pullback D—asymptotically compact
in X.

Theorem 2.7  Let {S(t, T)}s>1 be a process on Banach space X. Then {S(t, ©)};>; has a
pullback D—attractor in X, provided that the following conditions hold:

(i) {S(t, v)};>1 has a pullback D—absorbing set B in X
(ii) {S(t, T)}s>1 is pullback D—asymptotically compact in B.

Lemma 2.8 [22] Let A is a linear positive self-adjoint operator with discrete spectrum on
separate Hilbert space. Then

o
A%~ < () 1>0, 020,
e

In particular, 00 = 1.
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Lemma 2.9 [22] Lets > o, Then the space Hy is compactly embedded into Hy. This means
that every sequence bounded in H; is relatively compact in H.

Theorem 2.10 [26] (Lumer-Phillips) Let A is dissipative and there exists . > 0, such that
R(AI — A) = X. Then A is the infinitesimal generator of a strongly continuous semigroup
in L(X).

3 Well-Posedness
3.1 A Priori Estimate

In this section, in order to obtain well-podedness associated to our problem (1.1), firstly, we
make a priori estimate. At the same time, in the sequel C, C;(i = 1, 2, - - -) denotes arbitrary
positive constants, which may be different from line to line and even in the same line.

Definition 3.1 A vector function
u(t) € C([t —h, T} V2) N C' (It — h, T1; Vo)
is said to be a weak solution of the problem (1.1) on the interval [z, T'], if u(x, ) satisfies:

) u@)=¢@t—1), Vi€t —h1];
(i) Vv € V,, we have that

(311, v) + (Au, Av) + (udsu, v) + (ku™, v)
+(f (), v) + (u(t — 7 [u']), v) = (g(1), v).
Lemma3.2 Assume that f satisfy (2.1)-(2.2) and (2.4), g € L%UC(R; H) satisfy (2.5). For

any o, there exists ho = h(ug) > 0, such that (i, h) € [po, +00) x (0, hgl. Then the
solution (u, o,u) of equation (1.1) satisfies the following estimates

1) + |AZu() ) < 4e™ O (E(T) + ahlol?)

o . 3.1
4 S / ¢’ llg(s)|ds + C.
n

—00

where C = 2y Ky +26Ka + 5.Cy).
Proof Taking the scalar product in Vj of (1.1) with z = d,u + su (¢ > 0), we have

1d
5 gl + 1AZul?) + el AZull® + (u — &)l|z]) — e(u — &) (u, 2) + k™, 2) 3.2)

=—(fu),2) — (u(t —x[u']), 2) + ((1), 2).
By using Young inequality, Holder and Poincaré inequalities, choosing & small
enough, such that
1 e 1 3u
elAZU|® + (1 — o) —e(u — &)@, v) = ZIA2ull® + ), (3.3)
1d
K, 2) = 5kl |+ ek 2, (3.4)
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According to (2.1),(2.2) and Poincaré inequality, there exist constants K1, K, > 0 such

that

1
/ F(u)dx + g||A%u||2 >—Ki, VueW,
Q

1
(f (), u) — co/ Fadx + gllA2ul’ = Kz, Vue Va.
Q

Then
—(fw),z) =— (f(u), 0u) — e(f(u), u)

d €
<_ 7/ F(u)dx — eCO/ Fudx + - | A2ul® + ¢Ko.
dt Jo Q 8
Furthermore, exploiting Holder and Young inequalities, it’s easy to get that

1 1
(e — 7[u']). 2) + (8(1). 2) < —u(e — (W' DI + — g1 + =11z
M 2 2

Substituting (3.3)-(3.4) and (3.7)-(3.8) into (3.2), we have
ld 2 o2 +12
s lzI” + A2ull” + kllu™||"+2 | F(udx)
2dt Q
3¢
+ §||A%u||2 + %nzn2 + kellut ) + 8C0/ F(u)dx
Q

1
< —llg®*+ ﬁnu(r — w2l DI? + eKs.

1
uw

By Holder inequality and variable substitution, it yields

t
lu(t — m[u' DI =lu(r) — / du(s)ds|?
t

—m[u']
t
<2[lu()|* +2 / 18,u(s) || ds
t—h
h
sz||u(z)||2+zh/ lou(r — r)|2dr.
0
Substituting (3.10) into (3.9), we deduce that
1d 1
f—<||z||2+||A2u||2+k||u+||2+2/ F(u)dx)
2dt Q
3¢ 1
+—||Azu||2+ﬁ||z||2+ke||u+||2+ec0/ F(u)dx
8 4 Q
1 , 2 5 2h (" )
< —lgOI*+ =Nu@l* + = | ldu@ —r)*dr +eK>.
iz iz n Jo

Applying condition (2.4), taking n = %", then

2 2 e 1 5 €
—lu@®|I” < =Cy+ = lA2ul|*+ -~ | F(u)dx.
2 % 4 4 Jo

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)
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Hence, we get
1d 2 o2 +12
- Ulzll” + AZull” + kllu™ |7 +2 | F(u)dx)
2dt Q
Enatonz L Ho2 +12 1
+f||A2u|| +fIIZI| +kellu™|| +8(Co—*) F(u)dx

1 2
< g1’ +—/ lonuts =) IPdr -+ eKz 4~ C;.

Set
E() = |zl + 1A2u))? + kllut ) + 2[ Fu)dx +2K; > 0. (3.11)
Q
Thus,
d 1
—E(t) < —f||A2u|| ||Z||2—2k8||u+||2—28(Co— f)f F(u)dx
dt 47 Jo
Y (3.12)
,  4h 5 4
+ *Ilg(t)ll +— 10:u(t — r)||“dr +2e Ky + —C,,.
JZ m Jo iz
We define
o h t
V(1) :E(t)+f/ / 18, u(r)||>drds,
h 0 t—s
where o > 0, and
h
E@®)<V(@) < E(t)+a/ ,u(t — r)|dr, (3.13)
0
Tyiy= LEW + alpuoP - & /h (s — )Pds
— = — ol|oru - = - .
dt dt ! nty
Moreover,
19 _ 2 2 24 o2
jul|? = [18pu + eu — eul|* < 2||d,u + eull® + 2&* ul> < 2|1z|1> + IIA ul|”.

Thus, we have

d d 2oe? 1 a [h
V(@) < —E(t) + 2a|z||> + ——||A2 Q—ff du(t —s)|*ds.  (3.14
7 ()_dt ) + 2allzl” + . A2 u A 10;u(t — s)|°ds.  (3.14)

Substituting (3.12) into (3.14), we can deduce that

d
—V<r>+e<f——>||m ||2+<— 2a)|I1zl|* + 2kellut)? 4+ 26(Co — 7> F(u)dx
Q
4 (3.15)
o
< —||g<t>||2 + (— - 7>/ I8;u(t — r)|2dr 4+ 26Kz + —C,.
u w  hJy u

Choosings > (O small enough, o = %and Co > %,suchthat%—ZaeAfl > 0, %—20{ > 0,
Co— 7 >0.
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Taking y = min{e(} — 2aer"), & — 2a, 2ke, 26(Cy — 1)}. According to (3.11), we
obtain that

d 2 ,  4h a_ [h 9
Lyvey+yE® < 2lgor+ & - —)f Vvt — r)Par
at 1 wo hJo (3.16)

4
+ 2y K| +2eK) + ;Cn.

Furthermore, using (3.13), we can get

d 2 5 4h o (N )
—VO) +yV@®) = —lgOI"+ ya+ — =) | lou@ —nr)ll"dr +2y K| + 2¢K>
dr iz w  hJo

4
+ G

When i < %, % — % < 0, choosing y small enough, such that yo + % — % < 0, then

d 2 4
—V@) +yV() < =llg®* + 2y K1 +2eK2 + —C). (3.17)
dt 2 iz

Multiplying (3.17) by e, then integrating over [, 7], we can obtain that

2 ! 1
V() < e OV (0) 4 2ot / g ()IPds + ~2y Ky
# d Y (3.18)

4
+2eKr + —Cp).
uw
According to (3.5),(3.11), it yields

1
E@t) = |lz|I* + | AZu|?
1 1
k) + 2/ F(u)dx + 2K > Z(Ilzllz +IAZu|? + ka1,
Q

and
1 1
V(t) > E(t) > Z(nzu2 + IAZull® + kllu™%).

From (3.18), we have

8 t
182 + [AZu() > <4V (7) + eV / e llg(s)|Pds + C
2 T

t

8
<4e VUTD(E(T) 4 ahllpldy) + ;e—w f e’ lg(s)?ds + C,
o0

where C = %(2)/ K| +2¢Ky + %Cn). The proof is completed. O

Remark3.3 The energy functional constructed in Lemma 3.2 contains 3 foh ffﬂ
18:u(r)||>drds, which as a compensator for the delay term in equations. We can also see that
the restriction on the delay time /4 has the form 2 < ¢, ¢ > 0, because large time lag may
destabilize the system. Thus we can increase the damping coefficient to make the system
stable.
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3.2 Existence and Uniqueness

SetU (1) = (u(t); v(t)), we can rewrite (1.1) as the following first order differential equation
in the space H = Vo x Vy

LU+ LU@) = NU"), (x,1) € Q x (7, +00),
U =0, (x,1) € 32 x (T — h, +00), (3.19)
U, t)=®(x,1—1), (x, 1) eQx[t—h, 1],

where ® = (p; 9;¢), ¢ € W, here the operator £ and the mapping N\ are defined by

Lz = (—v(t); Au+ pv(t)), U= (u;v)e D(L)=D(A) x D(A%),

(3.20)
N(®) = (0; — fp(1) — k(p(1)) — p(—n[p]) + g(x, ).

One can show (see, e.g., [27]) that the operator £ generates exponentially stable Co-
semigroup {¢~"* : t > 0} in H.

Definition 3.4 A mild solution of (1.1) on an interval [, T'] is defined as a function
ueC(r—h,TiV))NC'([x —h, T Vo),

such that u(0) = ¢(0), 0 € [t — h, t]and U(¢) = (u(t); 0;u(t)) satisfies

t
U(r)=e—<f—f>‘3U(r)+/ e TIEN(UNds, 1€ [T, T (3.21)

T

Theorem 3.5  Let assumptions (2.3) and (2.6) hold true. Then for any ¢; € W, |l¢illw <
C, i = 1,2, there exists T < Tmax < 00, and a unique mild solution U (t) = (u(t); d;u(t))
of (1.1) on the interval [t, Tmax], Tmax = 00 or limt%Tmax_ I | w = oo.

Proof _For fixed 0 > 0, we consider B, = {U € C([t, T];H) : |U — \7||C([,,T];H) <o},
where V = ¢~ (~9DL (7). We define the mapping K : C([t,T]; H) — C([r,T]; H) as
follows:

t
[KU](t):‘_/(t)—i—/ e UIEN(UNds, t e[, T).

T
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(D.Forany ¢t € [7,T], U1, Uy € B,, we have
KU 1) — [KU21O (e, 11:1)

t t
oy / e IEN U / e VEN US| e risn
T

T

t
< / le L F(ua(s)) — £t Dleqe.ryands

t
+ f le™ =% (kuf (s) — kui () e ey m)ds
T

¢ (3.22)
+/ le™ 9% ua(s — m[ud]) — ur(s — wul ) llee.r myds

t
S[ 1Cf (ua(s)) — fun)lleqr,rym)ds
t
+/ | (ku3 (s) — kui (Dl cqe, 71 myds

t
+ / l(ua(s — mw[u3]) —ui(s — wlwy D) e, 13; m)ds.

By (2.3), (3.1) and Sobolev embedding theorem, we know that f(u), f’(u) are uniformly
bounded in L. That is, there exists a constant K3 > 0, such that

|f @)l < K3, |f' ()|~ < K3. (3.23)
Thus, using differential mean value theorem, we get

1fu2) — F@) < Ksllug — uy | < MIA? (uy — u),

and
+ + A
klluy —uy || < kllluz —urll = M|AZ (uz2 — uy)ll,

where k|u?r — u;rl < kl|uy — uz|, ! is a proper positive constant.
We know that U; € B, and ||U; — V |lc(z,17:H) < 0, exploiting Lemma 2.8,

1
IUillcqe,m;7) = max (JJA2u; ()| + [10,u; (£)1)
relt,T]

<o+ IVlleqnri:m)

1 g 3.24
<o+ max (1A e LG + e L0 O
re[t.T]
1 1 -
<o+ (2f)2 le)Il + 13:9(x)l = R,
et
then we have [[A2u; (1)|| < R, t € [, T], i = 1,2.
Hence
- 1
| f(w2) — fuD)llcqe i < Mg max A2 (uz — up)||
te[r,T] (3.25)
< M3||Uz — Uilleqr, im0
and
k(s —uDleqerrm < M1§||U2 = Uilleqe, 11,H)- (3.26)
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From (3.24),fort <s < T,

lle N w = panax ||A2M 1N+ pnax [19ru; @)

= Jmax ||A2uz(r)||+ max |I3zu (Gl
rels— rels—

< 2( max ||A2u I+ max ||3z“ (@1
&lr— refr— (3.27)
+ 2(r1€1[13>;] ||A2ui(r)|| + rg{lg);} 10,2 ("))
1
=<2|lpllw +2 max (|[AZu; ()|l + 110,u; ("))
relr,T]

<2llollw + 2IU;llcqr,rim < 2llellw +2R £ R.
Since u(t — wlu'l) = u(t) — ftt_n[u,] o;u(s)ds, by (2.6) and (3.27)

luz(s — mwluy]) —ui(s — wluj Dl

< lua(s — mw[u3]) —ua(s — w[ui DI + lluals — w[ui]) — ui(s — wuiDl

[uil

K s
= [luz(s) — / Opua (r)dr — ua(s) +/ dpua (r)dr||
K JT[MZ] S—1

+, tnax ||uz(s +0) —ui(s+9)| (3.28)

s—m[u3]
<| 9wz (r)lldr| + lluy — uillw
s—mluil

< Rim(u}] = wlud]] + llul — w}lw < (R - Cr + Dllus — ulllw,

moreover,

I =l < max (142 (o) = wr )+ [ea(r) = dpur (1))
- max (1A% @a(r) = wn () 1302(r) = dar ()

= max (||A%(u2(r) —ur () + 18;u2(r) — dur (X)) (3.29)

relt—h,T]
1
<2 max ([A2@ua(r) —ur ()| + [18:u2(r) — dur(r))
relt—h,t]

1
+ Zrér[lfv;](llm(uz(r) —ur ()| + 10ru2(r) — dur (M) < 2|U2 — Urllw,
substituting (3.29) into (3.28), it yields

lua(s — wlus]) — ur(s — i Dllcqe.rym < 2(R - Cr + DUz — Ut llc(e.r1:70)-
(3.30)
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Substituting (3.25),(3.26) and (3.30) into (3.22), we obtain that
KU 1) — [KU2QO e (e, 11:M)

t
< / Mg+ Mz +2(R-Cr+ INIU2 = Ullleqr,1;1)ds
T

<(T—1)- (Mz+Mpz+2R-Cg+ D)\Us — Utllee,m1:7)-

choosing T, such that (T — 7) - (M + Mz +2(R - Cr + 1)) < L.
D). Forallt € [tr,T], U € By, and by (3.24)-(3.26),(3.30), we have

t
IKUI) — VOlleqerir = | / e IENWUHs Nl e )
T
t
< / le™ 9L (= fu(s) — ku™ —u(s — w[u’]) + g(x, )l c(te. 71 1yds
T

t
E/ 1f Dl

+klluTllcqe,rim + lluts =l Dleqer:my + 18, sH ez, 71 1y)ds
S(T—1)-[(Mz+Mzg+2R-Cr+ 1) R+ g llcqeryml

choosing T, such that (7 —7)-[(Mz +Ca+Mz+(R-Cr+ 1) -R+1g) lcqe,r1:m] < 0.
So, K : By — By is a contraction mapping based on (I)(II), then there exists a fixed point
UeC(rt, TI; H).
Let

_ fuw, telr 11,
"= o), t €[t —h, 7],

andu € C([t — h,T]; Vo) N Cl([r — h, T]; Vo), namely, u is a mild solution of (1.1) on
interval [t — h, T].

By using the standard method in [22]. The solution « on the interval [z, T'] can be extended
to the interval [t, T + €], where € depends on an upper bound for ||uT |lw, where, as above,
uT = {u(T 4+ 6) : 0 € [—h,0]}. This means that there is a maximal existence interval
[T, Tiax]. I Tnax < +oo and lim,7 _ |lu'|lw = +oc is not true, then there exists a
sequence T, — T,yux—, such that lu” |y < C,foralln = 1,2, - -. Thus using u” as
an initial data we can extend the solution to an interval [t, T, + €] for some ¢ > 0, which
dose not depend on n. Since T, — T,,,,-, this means that we are able to extend the solution
beyond 7,4 O

Theorem 3.6 (Well-posedness) Let assumptions (2.1)-(2.6) hold true. Then for any ¢y, @) €
W, llejllw < @, j = 1,2, there exists a unique global mild solution U(t) = (u(t); d,u(t))
of (1.1) on the interval [T, +00]. Moreover, for any @ > 0 and T > t there exists a positive
constant Co 1, such that

1
IAZ (i (t) — ua)1* + 181 (t) — dua(DI*> < Cor 1l — @213y, 1 €[7, T

Proof (Existence) In Theorem 3.5, the local existence of and uniqueness of mild solution
for equation (1.1) is obtained. Let U = (u; d;u) be a mild solution of (1.1) on the interval
[t —h, Thay] and

Gu) = fu@) +u@ - 7T[Mt]) € C([t, Thax]; H).
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It is clear that we can consider («; d;u) as a mild solution of the following linear non-delayed
problem

deu(t) + Au(t) + poyu(t) + ku™ (1) + Gu(t)) = g(t)
t €[1, Tnax]l, (u(t), dru(r)) = (¢(1), 0,0(1)).

Hence, one can see that u(¢) satisfies the following energy relation

t
Ev(t) + f Vv ()| Pds

2 ! 2 2 ! 512
<E(@+— | llg®lds+— | llullyds, © <t < Tax,
wJz " Jr

where

(3.31)

1
Ei(t) = 18,ul® + | AZu|? 4+ kllu™|* + 2/ F(u)dx +2K; >0
Q

In fact, taking the scalar product in Vj of (1.1) with d,u, we have

E%(”atu“ + AT U] + k|2 +2/ F(u)dx) + | du)?

(3.32)
—(u(t — 7 [u']), du) + (8(t), du)

integrating (3.32) over [, ¢], we can get energy relation (3.31)
On the other hand, for any s € [7, Tyax)

Ilusllw=6maX 1A% )] + pmax l19:u* (@)l

< max ||A2u(r)||—|— max ||A2u(r)|| + max
rels—h,t)

1
<llellw + \5\/ max [|A2u(r)||> 4+ max [[3,u(r)|?
relr,s] relr,s]

1
<llellw + 2\/ max (|A2u(r)||> + [[8;u(r)||?).
relr,s)

Substituting (3.33) into (3.32), we obtain that

||3zu(r)|| + max N9 (r) i

(3.33)

1
max ([|AZu(r)||* + |13u(r)]%)
relz,s)

t t
< C{(E1(0) + (t — Dllgl}y + f rgg§](||A%u(r>||2+ 13,u(r)||*)ds + / lg(s)lI*ds)

By the integral Gronwall Lemma, t < T},,4x

L 2 2
max ([[Azu(r)||” + 10,u(r)[I7)
relr,s)

; - (3.34)
-1
< Ci(Ei1(D) + llolly + / g IPds) .
T

Forany T > t, [7, Tmax) C [7, T], (3.34) holds true, then the solution of (1.1) can be
extended to [T, +00).
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(Uniqueness) Set w(t) = uy(t) — ua(t), then

duw + Aw + pdyw + kuf —ku3 + f(ur) — f(u2)
+u(t — n[u’l]) —up(t — n[utz]) =0. (3.35)

Taking the scalar product in Vj of (3.35) with d,w, we have

1d 1
~—(IA2w)? + 3wl*) + pld,w]*
2dt (3.36)

= —k@u] —u3, dw) — (fur) — fua), dw) — it — ww|]) — uz(t — wlub]), dw).

Furthermore, exploiting Holder and Young inequalities, it yields

1d 1
M(||Azw||2+||atw||2>+%||a,w||2
(3.37)
E + 42 l _ 2 l _ t _ _ t 2
< Sy = 1P 4 G2 = S@OI? o+ ¢ = 7)) = ot = wlusDIP,

by (3.25),(3.26) and (3.30), we can get that

kllug — w11+ 1 f @) = £+ lur (¢ = wlul]) — ua — wlub]
<[M% + M2 + (@ - Cs + D2Iw' 13 (3.38)
< M2 + M2 + (@ - Ci + D*12ler — @2y +4rren[g§](||A%w<r)||2 + 3w,

where @ = max{||u}|lw, lubllw}, Vi € [r, T].
Substituting (3.38) into (3.37), one can see that

d 1 jz
E(”A“"”z + lIBewll?) + Enatwnz

<4ulME + M + (@ - Ci + D 1(llo1 — @21y + 2,2}?,’51(”‘*%“’(’)”2 + 8w @) [1%).
By using the Gronwall Lemma, we obtain that
max (1AZw() | + 18,0 IP) < Cor(lor = all§). Vi € [2. 7).
The proof is completed. O

Now let’s consider the existence of smooth solutions for system (1.1). In the following we
show that under additional hypotheses mild solutions become strong. According to Corollary
2.6 in references [9], similarly, we have the following conclusion.

Corollary 3.7 Assume that the hypotheses of Theorem 3.6 be in force, for every @1, ¢2 €
W, lgjlw <@, j =12

7 (p1) — 7 (p2)| = Collor — 2llcy, (3.39)
hold. If the initial data function ¢(0) possesses the property
o(t) € D(A), 0p(r) e Vs, (3.40)
for every T > 0, then the solution satisfies the relations

u(t) € L®(t, T; D(A)), d;u(t) € L®(x, T; V), 0u(t) € L®(zr,T; Vy). (3.41)
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Furthermore, if in addition G (u) is Fréchet differentiable and |G’ (u)v|| < C, ||A%v||,f0r
everyu € D(A) with |Au| < r, then we have

u(t) € C(Ry; D(A)), du(t) € C(Ry; V2), yu(t) € C(Ry; Vo). (3.42)

For the proof of Corollary 3.7, we can refer to references [9,30].

Remark 3.8 [9] The property in (3.39) means that 7 is Lipschitz on subsets in C ([—£, 0]; Vo)
which are bounded in W. In order to obtain strong solutions, we need to assume an additional
smoothness of initial data in the right end point of the interval [t — &, 7] only.

More precisely, if we let

¢ € Wom = C*(=h, 0); Vo) N C'(=h, 0); V2) N C(=h, 0); D(A)).  (3.43)
Furthermore, if we have the following compatibility hypotheses
3 p(v) + Ap(r) + pud p(v) + ko™ (1) + f(9(0) + o(=7[g]) = 0. (3.44)

One can see that the set M = {p € Wy, : ¢ satisfies (3.44)}C W. Thus we can define the
dynamics in a smoother space. The set M is an analog to the solution manifold used in [28].

4 Pullback D —attractors
4.1 Pullback D—absorbing Set

Owing to Theorem 3.6, we can define an evolution process S(¢,t) : W — W,t > 1.
S, ) = {u'(-; T, ¢)|u(-) isasolution of (1.1) with ¢ € W}, and satisfy u® = ¢. Moreover,
by Theorem 3.6, for any ¢ > 7, (t, 7, x) — S(t,7)x, x € W is a continuous process and
generates a dynamical system (S(z, 7), W) (see [27,31]).

Remark 4.1 We can equivalently define the dynamical system on the linear space of vector-
functions W = {® = (¢, 3;¢)|¢ € W} C C([—h, 0]; V2 x Vp). In this notations evolution
process reads S(¢, 7)® = U’ and we have G : W > ¢ — (¢, 8,¢) € W satisfying
GS(t,7) = S(t,1)G.

Lemma4.2  Suppose that assumptions (2.1)-(2.5) hold true. Then the solution (u, d;u) of
equation (1.1) satisfies the following estimates

Nl 13,
1
= max |zt +0)* + max [|A2u(t +6)|
0e[—h.,0] 0e[—h.0]

<2 max (|2t + 017+ 1AZu(t +0)|?) “.1
6e[—h,0]

16 ! ;
<877 TTIE ) +ahlgly) + re VT / e"*1g(s)ds + C,
—0o0

_ 4 2
where C = y(yKl +eK>r + #C,]).

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:3563-3588 3579

Proof Taking the scalar product in Vy of (1.1) with z = 9;u + eu (¢ > 0), we have

1d
EZ(IIZII + ||A2u|| )+8||A2ull +(w—e)lzll* — e(p — &) (u, 2) + k™, 2)
=—(fw,z) — (@ — '), z) + (g), 2).
Similar to the priori estimates in Sect. 3.1, we can get
8 £
Iz1? + 1AZull? + kllut)? < 4e 7OV (2) + —e—V’/ e’ lg(s)?ds + C
. ot r (4.2)
<4e VD (E @) + ahllgld) + e f ¢ llg(s)]1%ds + C.
o

T

where C = %(2)/K1 + K> + %C,,).
Now setting ¢t + 6 instead of t (where 6 € [—h, 0]) in (4.2), there holds

1
IAZu(t + )1 + llz(t + OI* +kllut (¢ +0)|I?

8 46 ]
<4e 7 HTD(E(T) + ahllelfy) + ;e‘ﬂ”") f lg@)IPds +C (43
T

8 t
<4V CTIE(T) + ahllel) + ;e—“’—“ / e’ lg()IIPds + C.
T
Furthermore, from (4.3) we get

Ilud ||W—0max ||z(t+9)|| + I%lax ||A2u(t+9)||

<2 max (2t + 0>+ A ut + 0)]%)
0e[—h,0]

16
sSe—V“—f—’”(E(r)+ah||<p||%v>+ em7 = / e |lg(s)lPds + C.

For any y > 0, we denote by D, the class of all families of nonempty subsets D =
{D(t); t € R} C P(W) such that

hm (e”" sup ||u||W)_O
- ueD(1)

[}

Theorem 4.3 (pullback D, —absorbing set) Let assumptions of Lemma 4.2 be in force. Then
the family of bounded sets D1 = {D1(t); t € R} with D1(t) = B(0, ~/Cr(t)), where

t
r2(t) = Ce—V<’—”>/ e’ |lg(s)?ds + C < oo, (4.4)

—00
is pullback D), —absorbing set for the process {S(t, t)} and Dy € D,,.
Proof That Dy is pullback D, —absorbing set for the problem (1.1) is an immediate conse-

quence of (4.1) in Lemma 4.2.
Thanks to (4.4), we have e”'r%(t) — 0, as  — —oo. Then D belongs to D,,. m]
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4.2 Pullback D—asymptotically Compact

In order to prove pullback D—asymptotically compact, we furthermore assume that there
exists 8 > 0, the delay term satisfies for any R > 0, ¢;, i = 1, 2, there exists Lr > 0, such
that ||¢; ||lw < R, one has

T (p1) —m(p2)| < Lr pmax 1427 (1(0) — 2 (@)]. (4.5)

Remark 4.4 1n this paper, we consider the one-dimensional suspension bridge equation with
state-dependent delay, but we still need to assume that the delay term satisfies the above
condition when we use the contractive function methods to verify asymptotical compactness
of the process {S(¢, T)}i>z-

Lemma4.5 Suppose that (2.1)-(2.6) hold true. Then the process {S(t, T)};>r corresponding
to (1.1) is pullback D-asymptotically compact.

Proof  For any fixed T € R. Let (u;(t), d;u; (t)) be the solution of (1.1) corresponding to
the initial data (¢; (x, 6), 0;¢; (x,0)) € D1(t) x Di(z)(i = 1,2, 6 € [—h, 0]).
Set w = u(t) — uy(t), then
(w(0); dw(0)) = (@1(0); hrp1(0)) — (92(0); rp2(0)), 0 € [—h,0], x € [0, L],
satisfies
B W + Opxrxw + wdw = k(uy —ul) + fua(t)) — fu1(1)) “6)
+ua(t — wlub]) — uy (r — 7lul). '

We define
1 L2 2
Ey(r) = E(IIAZwII + [[8:w(%).

Multiplying (4.6) by ¢’ 9; w and integrating it over €2, thanks to Young and Holder inequal-
ities, we get
d K212
i B @+ S Il < () = fan, dw) + = e ful?

di 4.7

1
+ye’ Ey(t) + ;eﬂ lua(t — wlub]) — wy (t — w[u! 1)1

Furthermore, integrating (4.7) over [s, T], it yields

T
T Ey(T) ~ 7 Enls) + 5 / 8 9w (E)|PdE

A

T k212 T
<y / By @)de + 1 [ et w2
15 . wJs (4.8)
+;/ S lluz(E — wlu3]) — uy (5 — wluf])%de

T
+/ eV (fu?) — fuh), dw(E))de,
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and then integrating (4.8) over [T — t, t] with respect to s, we can see that

T
te’TEL(T) — / " Ey(s)ds + = / /ey§||8tw(§)||2d$ds
T—1

<y /T / erEw(s>dsds+— /T / 78 Jw(®)|2dkds

4.9)
+;/T /ernuz(s—n[ui])—ul(s—n[u?]nzdsds
T T
+ fT f Y5 (Fu2(®)) — Fur(€)), dyw(E))dEds.

On the other hand, multiplying (4.6) by e”'w and integrating it over 2, applying Young
and Holder inequalities, we arrive at

—(eV’(atw w)) + eWnAzwn
<(@y- u)e”(atw, w) + kle? w4+ ¥ |3, w|? (4.10)
1
+ eV (f(u2) — fur), w) + Z—Me”nuz(r — w[uh]) — ui (¢ — wul DI
Integrating (4.10) over [s, T'], one can see that
T 1 T £ 1 2
e’ @w(T), w(l) + 5 / S lATw(E) | dE
T
< " B (s), w(s)) + / 8 9w (®)|PdE
T ’ T
4kl / 8 lw(®)IPdE + (v — ) / EQuwE), wEnds @11
1 T
+ E/ S lluz (& — wlu5]) — uy (5 — wlu§ ]| %de

T
+ / 7 (f a(€) — f (1 (5)), w(E))dE.

Integrating (4.11) over [T — 7, T] again, we have that
1 T T 1
re’T @u(T), w(T)) + + / / A  w(©)|PdEds
T—1
T
- / &7 (Brw(s), w(s))ds + (7 — ) / / 7 (w(E), w(E))dEds
wy / / " w(®)|Pdeds + / / &8 9w (E)|PdEds @.12)
T—1 T—1Js
T
TeLs / f 6 un e — wuk]) — (& — wlu$DIPdEds
1 JT—1

+/T e}’g(f(uz(é))—f(ul(é)) w(§))déds.
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Multiplying (4.12) by y and substituting result into (4.9), it follows that
T 1 T T
W B - [ Eeds+ 3= [ [ efawePdeds
T—1 2 T—tJs
T ‘ T T
< y/ e’ (Bw(s), w(s)ds + y(y — u)/ / e’ (dw(€), w(§))dEds
T—1 T—tJs

T
T (kiy + —) f f I w(E) [2deds — yre’ T Grw(T), w(T))
I (4.13)

“KJF*)/ f "¢ ua (s — mlu3]) — ur (6 — wlui D deds
1 T—t

+ V/T / V5 (fua(®)) — [ (), w(&))dEds
T T
+/T / 5 (f (ua(€)) — f(w1(8)), dw(€))dEds.

Integrating (4.10) over [T — 7, T'] with respect to ¢, it yields

1 T 1 T
E/T A w(E)IPdE < (v —u)/T 7w (E), w(E))dE

+e" T @u(T — 1), w(T — 1)) — T @w(T), w(T))

1 T
S €y§||uz($ — 7lu§]) — ui (5 — wlu§])2de
T T
+ / &8 1w (®)|PdE + ki f o w(®)|PdE
T—t T—1
T
+ fT 5 (Fun) — Fun), wiE)dE. (4.14)

Noticing that 6 < . Substituting (4.14) into (4.13), we get that

T

re’T Eo(T) + / e E, (6)ds
T—1
T

<@y =20 | e @uw(s). ws)ds — yre’T @w(T), w(T))
T—t

by — ) f / 78 (9w &), w(E))dEds + 2K / 6 w(E)|2de

T—1

+<k1y+—> / / " w(®)|PdEds — 26T @w(T), w(T))
T—1

“K*”/ /eyélluz(%‘—n[uil)—ul(%‘—n[uf])llzdéds
1 T—1

+y fT / e (fua(§) — fur(§)), w(&))deds + 3 / e 9 w(E))*de

T—t

T
+2 f S (f(uz) — fur), wE)dé 4 2¢" T2 (w(T — 1), w(T — 7))
T—1
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/T f 5 (Fua(®) — f(u1(§)), w(E))dEds

+ = e”glluz(é — wlu]) — u1 (€ — wluiD|de. (4.15)
)\1 T—t
Multiplying (4.8) by g and integrating result over [T — 7, T'] with respect to ¢, we obtain
that
T

geVTEw(T>+3/ 8 1w E)|Pde
22 T—1
T
<Sprop i / 7  Ey(6)dE
2 nJr—2
6 [T e £ 12
b [ e — i) — 6 — )P

6 T
L6 / E(fur) — Flun), dw(&))dE
wJr—«

6k22 T
! fT &7 (@) |PdE. 4.16)

Substituting (4.16) into (4.15), we have that
_ T
E(T) < Y 2K e / 7S (Bw(s), wis))ds + eV Ey (T — 1)
T T—1 T
2 2
+ ;e_VT(a,w(T -1, w(T —1)) — (; + ) @w(T), w(T))
. T T
+ Me*” / / 75 (Bw(&), w(E))dEds
T—t Js
1 k212 T T
+ 2y + =T [ f & |w &) |2dgds
T—1
*e_ﬂ /T / S (f(u2(8)) — f(u1(8)), w(&))dEds

1
L Lor /T / 8 (f a(®)) — £ (). dw(E))dEds

T

6 T
+ —e 7T / S (f(u2) — fur), dw(&))dE
T T—t

2 T
2o /T 78 (fuz) — fur), wiE))dE

322

T
—( +ktye T / ¢ w(®)|Pde
T—1
1 1 A £ £1vy2
b+ ;T) Y/ 8 Jua (e — wll]) — ur (€ — (D)2

T
7(—+ ) ‘VT/ f ¥ luz (s — wlul]) — ui (5 — wlu§])|déds.
T 20 T—1
“4.17)
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By Holder inequality and (4.1) in Lemma 4.2, we can get

T
e*VTf e’ (dw(s), w(s))ds
T—1

T T
< (" / S apw(s)2ds)t - (7 / & lw(s)2ds)*
T"T I (4.18)
< T / ¢’ Jw(s)|2ds)}
T—1
T

1
<C(| lws)*ds)z,
T—1

and

T T
e_yT/T /eyé(atw(s),w@))déds

T T
<7 / & 0w (s)|Pds)E - (7 / ) Pds)} @19)
T—1 T—1

T
<cr(|  Jw())Pds).
T—1

Finally, by (4.5), we get that

T
/T " ur(e — 7 lul]) — (€ — 7l |Pde
T
< 2/T " (e — 7S] — ua(e — w [l |Pde

T
+2f ¢ lun(E —n[uf])—ul(s—n[uf])||2d5
. (4.20)
< 2/ eV5||/ 3tu2(r)dr||2d.§ +2/ e’ max ||w(& + 0)|2dE
T—1 E—m “1 T—1 6e[—h,0]

T
5262/ eyf||n[u?]—n[u§]n2ds+2/ e’® max |w(E +0)|dé
-1 0e[—h,0]

T—t
T

T
SZC%TLCTT/ et max ||Az—5wf(9)||2dg+2/ e’ max |w(& + 0)°dE.
’ CJr—t fel— T—7 6e[—h,0]

Similarly, we have

T T ¢ ¢
/ / 8 ua (e — w L] — un (€ — wlu ] 2dEds
T—1Js

4.21)
T T
gzrc%rLC”/ e?t max ||Af—‘S “'5(9)||2d.f,:+21/ e’ max ||w(& + 0)|>dE.
’ T—1 0e[—h,0]

T—7 Oel—h,
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Let
D7, f((wl, 9:01), (92, 0r92))
—2u 1 2
= C( +y(y — u))(/ lw(s)|*ds)? — (; + y)@w(T), w(T))

3k2L2

T
+ %e—”(atw(T — 1), w(T — ))+%( +kL)e —”/ e’ lw()|2dé
T—1

6 y 2 r |
G L IVe T2 L 143 A28 0)1%d
+[r(k1 + M2)+(A1 + ,u)]e T.oLcr. /T_re pnax l w(§ +0)]°dé

+[2(1+6>+(y+2)]e‘”fT "¢ max |w(E +0)|2de
T A p? AW T_7  0€[—h0]

% T T

$ Lo fT f E(fa(§)) — f(u1(6), w(&)déds
1
b Lo /T / 78 (fa(®) — fu1(®), dw(€))dEds

L +7) —VT/ /er||w<s>||2dsds
T T—1Js

6 T
L Ot / TE(fu2) — fuy), dw(&))dE
Tn T—t

5 T
+ ;e_yT /;ﬂ e (f(u2) — fuy), w(g))dé. (4.22)
Thus,
Ey(T) < %ewaw(T = 1)+ @7 (91, 1), (92, 0192)). (4.23)
Choosing 79 = 19(t,D1,e) < T, such that for any (¢;,d¢;) € D

(T — 19) x Di(T —19)(i = 1,2), we have
Ey(T) < e+ @7, ((91, 0r91), (92, 9r92)).

Subsequently, we will verify (4.22) is a contractive function.

Let (u,(t), 0;u,(t)) be the solution corresponding to initial data (¢,, d:¢,) € Di
(T —19) x D\(T —19)(n = 1,2), VT € R, Di(T — t9) x D{(T — 10) is bounded in
Vo x Vp. Then for any s € [T — 19, T], n € N, we conclude that

[ (s), alun(s))”szVo =< Cl,r < +00,

here C;,; dependson ¢, 7.
According to Alaoglu Theorem, without loss of generality, we can assume that

u, — u weakly star in L®(T — 19, T; V3); (4.24)
d,u, — 9,u weakly star in L°(T — 19, T; Vp). (4.25)
Hence
up — uin L*(T — 19, T: V); (4.26)
U (T — 10) = u(T —10), un(T) — u(T) in Vp. (4.27)
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Now, we will deal with each term in (4.22) one by one. Firstly, from (4.25)-(4.27), we get
T
lim lim 4 (r) — ()| 2dr = 0, (4.28)

n—>oom—o0 Jr_o

lim lim (atun(T —7) = (T — 7)) (Up(t) —up(r))dx =0, (4.29)

n—00 m—00

lim lim_ ||u,,(T)—um(T)|| (4.30)

n—o0 m—

Secondly, f(un,) — f(u) weakly star in Lo(T — 1o, T; Vo) and together with (4.25),
(4.26),

T
lim lim /T /Q Un (&) — tmE)(F un(E)) — fumE)dxde =0,  (@31)
.

n—o0 m— 00

and

T
lim  lim ]; fQ(arun(é) = yum (E))(f (un(§)) — f(um(§)))dxdg = 0. (4.32)
-

n—o00 m— 00

At the same time, since IfsT JoBrun(€) = dumEN(f Un () — f(um(§)))dxdg] is
bounded, for each s € [T — 79, T], then by (4.32) and the Lebesgue dominated convergence
Theorem, we have

T T
lim lim /T / /Q (Orttn (&) — dytim EN S Wn(E)) — f (um(€)))dxdEds
—10 Js

n—00 m—00

n—00 m— 00

T T
:/T (lim lim / /Q(atun(é)—azum(é))(f(un(é))—f(um(é)))dxdé)ds
70

T
= / 0ds = 0. (4.33)
T—19

Similarly, we can obtain

T T
lim lim /T / /Q Un () — tm (E)(f (n(®)) — m(E))dxdEds = O.
—10 Js

n—o00 m— 00

(4.34)
Finally, since {ui} is bounded in W, it yields
1
,max [AZu5 @) < Cr.qy < 00, & €[T — 10, T].
Then by Lemma 2.9, sequence {A ”‘Sun (6)} has convergent subsequence, hence
T
lim lim e’é maX ||A2 5(14,,(5 +0) —up €+ 9)||2d.§ =0, (4.35)
n—00m—>00 Jr_ oo Oe[—h,
and
T
lim lim e’é max ||(u,,(§ +0) — um (& +0)7de = 0. (4.36)
n—00m—00 Jr_ . Oe[—
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Combining with (4.28)-(4.36), ®r (-, -) is a contractive function on D1(T — 19) X
Dy (T — 10). In view of Theorem 2.6 we conclude that the process {S(¢, 7)};> is pullback
D—asymptotically compact.

By Theorem 4.3 and Lemma 4.5, we know that the conditions of Theorem 2.7 are all
satisfied. So we immediately obtain the following conclusion. O

Theorem 4.6 (Pullback D, —attractors) Suppose that (2.1)-(2.6) and (4.5) hold true. Then
the process {S(t, t)};>. generated by problem (1.1) has a pullback D,, —attractor.
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