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Abstract
This paper aims to the investigation of the global threshold dynamics of an infection age-space
structured HIV infection model. Themodel is formulated in a bounded domain involving two
infection routes (virus-to-cell and cell-to-cell) and Neumann boundary conditions. We first
transform the original model to a hybrid system containing two partial differential equations
and a Volterra integral equation. By appealing to the theory of fixed point problem together
with Picard sequences, the well-posedness of the model is shown by verifying that the solu-
tion exists globally and the solution is ultimately bounded. Under the Neumann boundary
condition, we establish the explicit expression of the basic reproduction number. By analyz-
ing the distribution of characteristic roots of the associated characteristic equation in terms
of the basic reproduction number, we achieve the local asymptotic stability of the steady
states. The global asymptotic stability of the steady states is established by the technique
of Lyapunov functionals, respectively. Numerical simulations are performed to validate our
theoretical results.

Keywords HIV infection model · Age-space structure · Basic reproduction number · Global
stability · Lyapunov functional · Uniform persistence

Mathematics Subject Classification 35Q92 · 37N25 · 92D30

1 Introduction

Inspired by the classical works of Ho et al. [17] and Perelson et al. [30], the dynamical
properties of differential equations modelling the with-in host viral dynamics have obtained
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much attention (see, e.g., [6,13,19,23,24,33,39,45,49]). It has been widely recognized that
some typical features of viral dynamics, such as, time delays, infection age structure, and
spatial heterogeneity should be taken into account in studying with-in host dynamics, which
may give us new insights into the interactions among uninfected target T cells, infected T
cells, and free virus particles. Let T (t), u(t, a) and V (t) be the concentrations of uninfected
target T cells, infected T cells of infection age a and the free virus particles at time t ,
respectively. Here the infection age is defined by the time since infection began and the
infection-age structure is used to demonstrate the mechanisms that the death rate and virus
production rate of infected T cells should be infection-age-dependent, denoted by θ(a) and
p(a), respectively. The following initial-boundary-value problem was studied in Nelson et
al. [28], ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT (t)

dt
= h − dT (t) − β1T (t)V (t),

(
∂

∂t
+ ∂

∂a

)

u(t, a) = −θ(a)u(t, a),

dV (t)

dt
=

∫ ∞

0
p(a)u(t, a)da − cV (t),

u(0, t) = β1T (t)V (t),

T (0) = T0, u(0, a) = u0(a), and V (0) = V0,

(1.1)

where h and d are the constant recruitment rate and the natural death rate of uninfected
cells; β1 is the infection rate; c is the clearance rate of virions. In [28], the local dynamics
of the model was achieved for some special cases and the time to reach the peak viral level
are illustrated by numerical simulations. To evaluate the roles of a distinct combination of
therapies, Rong et al. [13,33] took the model (1.1) as a basis and adapted it incorporating
three different classes of drugs. The global dynamics of model (1.1) was completely solved
in Huang et al. [19] by the technique of Lyapunov functionals. Model (1.1) also be used as
a basic framework to investigate the dynamics of hepatitis B or C virus in Qesmi et al. [32].

As pointed in [3,7,31,48], the variant infectivity in different ages may arise from the
heterogeneous structure of the infected T cells. In recent years, more and more works have
been devoted to investigating the effects of cell-to-cell infection routes in lymphoid tissues
(via formation of virological synapses) on viral dynamics [11,18,37,38]. The cell-to-cell
infection routes have been recognized as important factors in virus spread (see, e.g., [6,
23,39,45,49]). Lai and Zou [23] formulated the distributed delay differential equations, and
investigated the global stability of equilibrium of themodel.Wang et al. [40] further extended
the model (1.1) to the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT (t)

dt
= h − dT (t) − β1T (t)V (t, x) − β2T (t)

∫ +∞

0
q(a)u(t, a)da,

(
∂

∂t
+ ∂

∂a

)

u(t, a) = −θ(a)u(t, a),

dV (t)

dt
=

∫ +∞

0
p(a)u(t, a)da − cV (t),

u(t, 0) = β1T (t)V (t) + β2T (t)
∫ +∞

0
q(a)u(t, a)da,

(1.2)

where β2 and q(a) measure the infection rate and the infectivity between uninfected target T
cells and infected T cells, respectively. The global threshold dynamics of (1.2) in terms of the
basic reproduction number was achieved by solid analysis. Subsequently, by incorporating
the logistic growth for target T cells, the oscillations via local Hopf bifurcation was studied
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in [45,46,49]. Shu et al. [39] gave the complete analysis on HIV infection model involving
nonlinear target-cell dynamics and nonlinear incidences, and studied global dynamics in the
aspect of global threshold dynamics and oscillations via global Hopf bifurcation. Cheng et al.
[6] proposed an age-structured HIV infectionmodel in the form of a two-compartment model
and analyzed the global attractivity of the equilibria by the perturbation theory. Zhang and
Liu [50] investigated theHopf bifurcation of a delayed infection-age structuredHIV infection
model by appealing to the theory of integrated semigroupwith the non-dense domain.Wu and
Zhao [43] studied the effects of drug resistance by formulating an infection-age HIV model
involving a drug-sensitive strain and a drug-sensitive strain, and revealed that the efficacy of
antiretroviral drug treatments becomes weaker arising from the presence of cell-to-cell route.

However, ordinary differential equations modeling of viral infection assumed that the
intracellular reaction occurs simultaneously.As argued in [12], theHIV spread and replication
in lymphoid tissues are affected by the tissue architecture and composition. The results in [25]
revealed that the dynamics of HIV in vivo may mainly be affected by different physiological
environments, especially, in the early stage of infection.

Due to the complexity of the physiological environment and the tissue architectures of
lymphoid tissues, the spatial aspects of the tissues should be taken into account on viral
dynamics. Very recently, Ren et al. [34] considered a reaction-diffusion within-host HIV
model in a heterogeneous environment. Let t and x be the time and location variables,
respectively. We denote by T (t, x), T ∗(t, x), and V (t, x) the densities of uninfected target
T cells, infected T cells, and the free virus particles, associated with diffusion rates D1(x),
D2(x), and D3(x), respectively. The model formulated in [34] is the following form,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− ∇ · [D1(x)∇T ] = h(x) − d(x)T − β1(x)T V − β2(x)T T

∗, x ∈ �, t > 0,

∂T ∗

∂t
− ∇ · [D2(x)∇T ∗] = β1(x)T V + β2(x)T T

∗ − r(x)T ∗, x ∈ �, t > 0,
∂V

∂t
− ∇ · [D3(x)∇V ] = N (x)T ∗ − c(x)V , x ∈ �, t > 0,

∂T

∂ν
= ∂T ∗

∂ν
= ∂V

∂ν
= 0, x ∈ ∂�, t > 0,

(1.3)
where � is the spatial domain. ν is the outward normal vector to ∂�. The space-dependent
parameters h(x), d(x), βi (x) (i = 1, 2), r(x), N (x) and c(x) (the biological meaning can be
found in [34]) are strictly positive, and uniformly bounded functions on �. In the bounded
domain, the authors obtained the global threshold type result in terms of the basic reproduction
number, while in the unbounded domain, the existence of traveling wave solutions and the
minimumwave speedwas established. Furthermore, the authors also found that theminimum
wave speed and the asymptotic spreading speed are affected by the diffusion of cells and cell-
to-cell infection route.

Recently, the infection age-space structured models have attracted wide attentions, which
are spent on understanding the effects of the time since infection and the spatial heterogeneity
on the transmission of infectious diseases. In 2009, Ducrot andMagal [8] studied the traveling
wave problem for a diffusive SIR model with infection age. As a continuous study of [8],
Ducrot and Magal [9] further considered the external supplies in the age-space structured
SIR model, and they found that the model admits a traveling wave connecting the two
different steady states. Until recently, Chekroun and Kuniya [4] proposed an infection age-
space structured SIR model on a bounded domain. After reformulating the model into a
hybrid system of one diffusive equation and oneVolterra integral equation, the threshold-type
results for the disease extinction and persistence in one-dimensional domain were studied.
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Later on, Yang et al. [47] made an attempt to extend the methods and ideas used in [4],
and proposed a spatial spreading of brucellosis model in a continuous bounded domain.
Some basic mathematical arguments, including the existence, uniqueness of the solution and
threshold dynamics were successfully addressed.

The stability analysis of infection-free and infection steady state has witnessed an impor-
tant and fundamental approach for understanding viral dynamics. We also mention that the
global asymptotic stability of the constant equilibrium of (1.3) was achieved in the spa-
tially homogeneous environment without considering the infection-age structure, and the
infection-age structured model (1.2) was investigated with two infection routes but without
considering the spatial aspects of the lymphoid tissues. Thus, we adopt the features of (1.3)
and (1.2), and continue to consider the global threshold-type results of the model involving
the following aspects:

• In the early stage of infection, uninfected target T cells, infected T cells, and the free
virus particles disperse at the target tissues (bounded domain) � ⊂ R

n according to the
Fickian diffusion or Brownian motion associated with the Neumann boundary condition
and constant diffusion coefficients d1 > 0, d2 > 0 and d3 > 0, respectively.

• With infection age a, we use u(t, a, x) to denote the concentration of infected T cells.
Based on model (1.2), the dynamics of infected cells is governed by

(
∂

∂t
+ ∂

∂a

)

u(t, a, x) = d2�u(t, a, x) − θ(a)u(t, a, x), (1.4)

where θ(a) ∈ L∞+ (0,+∞) is the natural mortality of infected cells. Further, we assume
that θ(a) > θmin for some positive number θmin. The free virus particles are produced at
the rate

∫ +∞
0 p(a)u(t, a, x)da, where p(a) ∈ L∞+ (0,+∞) is the age-specific per capita

viral production rate of infected cells. In fact, the functional form of the viral production
kernel, p(a), is unknown and remains to be determined experimentally. Here we give an
example that capture features of the biology:

p(a) =
{
Pmax(1 − e−β(a−a1)), a > a1,
0, else,

where Pmax is the maximum production rate, because cellular resources will ultimately
limit how rapidly virions can be produced. β controls how rapidly the saturation level
is reached. a1 is the delay in viral production. This kernel can mimic either a very rapid
increase to maximal production or a slow increase to maximal production depending on
the value of β. We refer the readers to [28] for more details.

• Wemeasure the virus interference during infection as saturation effect. Thus, uninfected
target T cells are contacted by free virus particles at the rate β1T

V
1+αV , where α is a half-

saturation constant. As to the cell-to-cell transmission mechanism, we use the bilinear
mechanism

β2T
∫ +∞

0
q(a)u(t, a, x)da

to account for the sustaining interactions between uninfected target T cells and infected
T cells through the formation of the virological synapses, as it accounts for about 60%
of viral infection [22]. Here, q(a) ∈ L∞+ (0,+∞). Hence, we adopt
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u(t, 0, x) = β1T
V

1 + αV
+ β2T

∫ +∞

0
q(a)u(t, a, x)da. (1.5)

• To make things not too complicated (as model involving the two infection routes and
spatial diffusion have already made the problem very challenging), we adopt the recruit-
ment rate h, natural death rates of cells (d and b) and the clearance rate of virus particles
c as constant. Biologically, there exist 0 < a1 < a2 < +∞ such that q(a) > 0 and
p(a) > 0, for all a ∈ (a1, a2). Moreover, we give the following hypothesis: (H) Assume
that lima→∞ u(t, a, x) = 0, which means that all the biological individuals cannot sur-
vive all the time.

Therefore, we arrive at the following reaction-diffusion and infection-age structured HIV
infection model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
= d1�T + h − dT − u(t, 0, x),

(
∂

∂t
+ ∂

∂a

)

u(t, a, x) = d2�u(t, a, x) − θ(a)u(t, a, x),

u(t, 0, x) = β1T
V

1 + αV
+ β2T

∫ +∞

0
q(a)u(t, a, x)da,

∂V

∂t
= d3�V +

∫ +∞

0
p(a)u(t, a, x)da − cV ,

T (0, x) = φ1(x), u(0, a, x) = φ2(a, x), V (0, x) = φ3(x), a ≥ 0, x ∈ �,

(1.6)

with the following boundary condition

∂T

∂ν
= ∂u(t, a, x)

∂ν
= ∂V

∂ν
= 0, x ∈ ∂�, t > 0. (1.7)

For mathematical considerations, denote by X := C(�,R) the continuous functions
space equipped with the norm |·|X. Denote by Y := L1(R+,X) the integrable functions
space equipped with the norm |ϕ|Y := ∫ +∞

0 |ϕ(a)|X da, ϕ ∈ Y. Let X+ and Y
+ be the

positive cones of X and Y, respectively.
Suppose that Ti (t) (i = 1, 2, 3) : X → X, t ≥ 0, are the strongly continuous semigroups

corresponding to the operators, di� (i = 1, 2, 3) with Neumann boundary condition. It is
well-known that

(Ti (t)φ)(x) =
∫

�

�i (t, x, y)φ(y)dy, t ≥ 0, φ ∈ X,

where �i (t, x, y) (i = 1, 2, 3) is the Green function of di� (i = 1, 2, 3) subject to the
Neumann boundary condition. By the arguments as those in [36, Corollary 7.2.3] and [29,
Theorem 1.5], Ti (t) (i = 1, 2, 3) : X → X, t ≥ 0, is strongly positive and compact. Further,
T (t) = (T1(t), T2(t), T3(t)) : X

3 → X
3, t ≥ 0, forms a strongly continuous semigroup.

System (1.6) can be reformulated by the method of characteristics (see, e.g., [14,15,44]).
In the following, we give the details for this issue. Define Uc(x, t) = u(t, t + c, x) with
c ∈ R, one has that

∂

∂t
Uc(x, t) = d2�Uc(x, t) − δ(t + c)Uc(x, t), for t ≥ tc,
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with Neumann boundary condition

∂Uc

∂ν
= 0, x ∈ ∂�, t ≥ tc,

where tc = max{0, c}. It follows from [15] that

Uc(x, t) = e
∫ t
tc

δ(τ+c)dτ
∫

�

�2(t − tc, x, y)Uc(tc, y)dy.

If a > t , then tc = 0. Hence we have

u(t, a, x) = e
∫ t
tc

δ(τ+a−t)dτ
∫

�

�2(t, x, y)Uc(0, y)dy

= e
∫ t
tc

δ(τ+a−t)dτ
∫

�

�2(t, x, y)u(c, 0, y)dy

= e
∫ t
a−t δ(τ )dτ

∫

�

�2(t, x, y)u(a − t, 0, y)dy

= π(a)

π(a − t)

∫

�

�2(t, x, y)φ2(a − t, y)dy,

where π(a) = e− ∫ a
0 θ(σ )dσ .

If t > a, then tc = t − a. With a similar argument as above, we can obtain that

u(t, a, x) = π(a)

∫

�

�2(a, x, y)u(t − a, 0, y)dy.

Hence, u(t, a, x) can be solved as

u(t, a, x) =

⎧
⎪⎨

⎪⎩

π(a)

∫

�

�2(a, x, y)u(t − a, 0, y)dy, t > a,

π(a)

π(a − t)

∫

�

�2(t, x, y)φ2(a − t, y)dy, t ≤ a.

(1.8)

Note that

u(0, a, x) = φ2(a, x) =
∫

�

�2(0, x, y)φ2(a, y)dy, ∀t < a. (1.9)

Substituting (1.8) into (1.6) gives the following hybrid system containing two reaction-
diffusion equations (T and V ) and a Volterra integral equation (for simplicity, we denote
u(t, 0, x) as u(t, x)),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
= d1�T + h − u(t, x) − dT ,

u(t, x) = β1T
V

1 + αV
+ β2T (F1 + F2),

∂V

∂t
= d3�V + F3 + F4 − cV ,

T (0, x) = φ1(x), u(0, x) = β1φ1(x)
φ3(x)

1 + αφ3(x)
+ β2φ1(x)F2(0, x), V (0, x) = φ3(x), x ∈ �,

(1.10)
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where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 =
∫ t

0
q(a)π(a)

∫

�

�2(a, x, y)u(t − a, y)dyda,

F2 =
∫ +∞

t
q(a)

π(a)

π(a − t)

∫

�

�2(t, x, y)φ2(a − t, y)dyda,

F3 =
∫ t

0
p(a)π(a)

∫

�

�2(a, x, y)u(t − a, y)dyda,

F4 =
∫ +∞

t
p(a)

π(a)

π(a − t)

∫

�

�2(t, x, y)φ2(a − t, y)dyda.

(1.11)

The main goal of the current paper is to rigorously investigate the global threshold type
results of (1.6). In Sect. 2, Theorem 2.2 tell us that (1.10) has a unique nonnegative solution
defined on [0,∞) × �, and the solution is ultimately bounded in X

+ × Y
+ × X

+. Thus
it comes naturally to investigate system (1.10) in a bounded domain. Section 3 is spent
on defining the basic reproduction number (BRN). Our result in Lemma 3.1 indicates that
the next generation operator (NGO) L is strictly positive, bounded, and compact, which
is proved by the Ascoli-Arzela theorem. Thus one can get the specific expression of BRN
�0 by appealing to Krein-Rutman theorem, where �0 is the only positive eigenvalue of L,
corresponding to which, there is a positive eigenvector. Further, once �0 > 1, (1.6) has a
unique space-independent infection equilibrium Ê = (T̂ , û(a), V̂ ) (see Lemma 3.2). In Sect.
4, Theorem 4.1 below indicates that�0 works perfectly in determining the local dynamics for
infection-free steady state E0 and space-independent infection equilibrium Ê by checking
the distribution of characteristic root of Eq. (4.5). More specifically, if �0 < 1, E0 is locally
asymptotically stable (LAS), while Ê is LAS if �0 > 1. Section 5 is devoted to the study of
the persistence of infection in the system (1.10) for �0 > 1, where the strong persistence is
implied by the weak persistence. In Sect. 6, the global attractivity of E0 and Ê are obtained
by the technique of Lyapunov functionals. Lastly, the numerical simulations are performed
to reinforce the theoretical findings.

2 Well-Posedness of theModel

This section aims to verify that the solution of (1.10) exists globally. We first prove the
following result.

Theorem 2.1 For any (φ1, φ2, φ3) ∈ X
+ × Y

+ × X
+, system (1.10) with (1.11) admits a

unique nonnegative solution (T , u, V ) on [0, tmax), where tmax ∈ R
∗+.

Proof Let Ytmax := C([0, tmax],X), associated with the following norm in Ytmax ,

‖v‖Ytmax
= sup

0≤t≤tmax

‖v(t, ·)‖X , v ∈ Ytmax .

For (t, x) ∈ [0, tmax) × �, solving T and V from (1.10) yields that

⎧
⎪⎪⎨

⎪⎪⎩

T = F̆ +
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)[h − u(a, y)]dyda,

V = F̃ +
∫ t

0
e−c(t−a)

∫

�

�3(t − a, x, y)[F3(a, y) + F4(a, y)]dyda,

(2.1)
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where F̆ = e−dt
∫

�
�1(t, x, y)φ1(y)dy and F̃ = e−ct

∫

�
�3(t, x, y)φ3(y)dy. Putting T and

V into u equation, we get that for (t, x) ∈ [0, tmax) × �,

u(t, x) =
[

F̆ +
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)[h − u(a, y)]dyda
]

×
[

β1
(F̃ + ∫ t

0 e
−c(t−a)

∫

�
�3(t − a, x, y)[F3(a, y) + F4(a, y)]dyda)

1 + α(F̃ + ∫ t
0 e

−c(t−a)
∫

�
�3(t − a, x, y)[F3(a, y) + F4(a, y)]dyda)

+ β2(F1 + F2)

]

≤
[

F̆ +
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)[h − u(a, y)]dyda
]

×
[

β2(F1 + F2) (2.2)

+ β1(F̃ +
∫ t

0
e−c(t−a)

∫

�

�3(t − a, x, y)[F3(a, y) + F4(a, y)]dyda)

]

:= F(u)(t, x).

In what follows, we shall utilize the Banach-Picard fixed point theorem to verify that the
operator F : Ytmax → Ytmax admits a fixed point, that is, system (1.10) admits a unique local
solution. For the simplicity of notations, we denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = F̆ +
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)hdyda,

G1(u) = −
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)u(a, y)dyda,

G2(u) = β2

∫ t

0
q(a)π(a)

∫

�

�2(a, x, y)u(t − a, y)dyda,

G3(u) = β1

∫ t

0
e−c(t−b)

∫

�

�3(t − b, x, y)
∫ b

0
p(a)π(a)

∫

�

�2(a, y, z)u(b − a, z)dzdadydb,

F2 = β2F2(t, x) + β1F̃ + β1

∫ t

0
e−c(t−a)

∫

�

�3(t − a, x, y)F4(a, y)dyda.

In these settings, F can be rewritten as

Fu = [F1 + G1(u)][G2(u) + G3(u) + F2].
Hence, by selecting two functions u1 and u2 in Ytmax and set ũ := u1 − u2, we have

Fu1 − Fu2

= F1G2(ũ) + G1(u1)G2(ũ) + G2(u2)G1(ũ) + F1G3(ũ) + G1(u1)G3(ũ) + G3(u2)G1(ũ)

+ F2G1(ũ)

≤ |(F1 + G1(u1))(G2 + G3) + (G2(u2) + G3(u2) + F2)G1| |u1 − u2|Ytmax
,

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G1 = −
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)dyda,

G2 = β2

∫ t

0
q(a)π(a)

∫

�

�2(a, x, y)dyda,

G3 = β1

∫ t

0
e−c(t−b)

∫

�

�3(t − b, x, y)
∫ b

0
p(a)π(a)

∫

�

�2(a, y, z)dzdadydb.

Let

L̃(tmax) := sup
0≤t≤tmax

∣
∣(F1 + G1(u1))(G2 + G3) + (G2(u2) + G3(u2) + F2)G1

∣
∣
X

.
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We can choose sufficiently small 0 < tmax  1 such that L̃(tmax) < 1. Hence, we can get
the following inequality,

|Fu1 − Fu2|Ytmax
≤ L̃(tmax) |u1 − u2|Ytmax

,

whichmeans thatF is a strict contraction inYtmax . This confirms the assertion that the system
(1.10) admit a unique local solution on [0, tmax). ��

We next establish the positivity of the solution.

Proposition 2.1 For any (φ1, φ2, φ3) ∈ X
+ ×Y

+ ×X
+ and (t, x) ∈ [0, tmax)×�, we have

T (t, x) > 0, V (t, x) ≥ 0 and u(t, x) ≥ 0.

Proof By (1.9), we know that if φ2 ∈ Y
+, then

u(0, x) = β1φ1(x)
φ3(x)

1 + αφ3(x)
+ β2φ1(x)

∫ ∞

0
q(a)φ2(a, x)da ≥ 0, ∀x ∈ �.

Define the following positive linear operator �i (i = 1, 2) : Y → Y as
⎧
⎪⎪⎨

⎪⎪⎩

�1(ϕ)(t, x) :=
∫ t

0
q(a)π(a)

∫

�

�2(a, x, y)ϕ(t − a, y)dyda, ϕ ∈ Y,

�2(ϕ)(t, x) :=
∫ t

0
p(a)π(a)

∫

�

�2(a, x, y)ϕ(t − a, y)dyda, ϕ ∈ Y,

(2.3)

in the sense that �i (Y
+) ⊂ Y

+ as �2(a, x, y) > 0. It follows that
⎧
⎪⎨

⎪⎩

∂T

∂t
> d1�T −

[

β2(�1(u) + F2) + β1

α
+ d

]

T , t ∈ [0, tmax), x ∈ �,

∂T

∂ν
= 0, t ∈ [0, tmax), x ∈ ∂�.

(2.4)

Due to the fact that for any (t, x) ∈ [0, tmax) × �, β2(�1(u) + F2) + β1
α

+ d is continuous
and bounded, we have that T (t, x) > 0, by the standard strong maximum principle.

Next we shall show the positivity of u(t, x). If there exist (t1, x1) ∈ [0, tmax) × � such
that ⎧

⎨

⎩

u(t, x) ≥ 0, t ∈ [0, t1) and x ∈ �;
u(t, x1) = 0, t = t1 and x1 ∈ �;
u(t + ε, x1) < 0, t = t1, x1 ∈ � and 0 < ε  1.

Thus,

u(t1 + ε, x1) = β1T (t1 + ε, x1)
V (t1 + ε, x1)

1 + αV (t1 + ε, x1)
+ β2T (t1 + ε, x1)

×
(∫ t+ε

0
q(a)π(a)

∫

�

�2(a, x, y)u(t + ε − a, y)dyda + F2(t1 + ε, x1)

)

.

Moreover, it follows from the third equation of (1.10) that

V (t)=
∫ t

0
e−c(t−s)

∫

�

[F3(s, y)+F4(s, y)]�3(t−s, x, y)dyds+e−ct
∫

�

�3(t, x, y)φ3(y)dy.

Hence,

V (t1 + ε) ≥
∫ t1+ε

0
e−c(t+ε−s)

∫

�

F3(s, y)�3(t1 + ε − s, x, y)dyds.
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Note that

F3(s, y) =
∫ s

0
p(a)π(a)

∫

�

�2(a, x, y)u(s − a, y)dyda ≥ 0, s ∈ (0, t1 + ε),

for small enough ε. Together with F1 ≥ 0, F2 ≥ 0, we have u(t1 + ε, x1) ≥ 0 for small
enough ε, which results in a contradiction. By some similar arguments as above, we can
conclude that V (t, x) ≥ 0. This completes the proof. ��

We next show the solution of (1.10) exists globally.

Theorem 2.2 For any (φ1, φ2, φ3) ∈ X
+×Y

+×X
+, then (1.10) admits a unique nonnegative

solution (T , u, V ) on [0,∞)×�. Furthermore, the solution of (1.10) is ultimately bounded.

Proof In fact, by Proposition 2.1, we know that T equation of system (1.10) satisfies
⎧
⎪⎨

⎪⎩

∂T

∂t
< d1�T + h − dT , t ∈ [0, tmax), x ∈ �,

∂T

∂ν
= 0, t ∈ [0, tmax), x ∈ �,

(2.5)

which implies that h
d is the upper solution of T (t, x). We confirm that for any (t, x) ∈

[0, tmax)×�,u(t, x) < +∞. If it is not true,we suppose that there exists (t∗, x∗) ∈ [0, tmax)×
� satisfying limt→t∗−0 u(t, x∗) = +∞. Hence, limt→t∗−0 ∂t T (t, x∗) = −∞, which results
in the contradiction to the positivity of T (see in Proposition 2.1). Hence, u(t, x) < ∞. We
are now ready to confirm the boundedness of V (t, x). Let p+ = ess.supa∈R+ p(a) < +∞.
Since

F3 + F4 ≤ p+
∫ ∞

0
π(a)

∫

�

�2(a, x, y)u(t − a, y)dyda

+ p+
∫ ∞

0

π(a + t)

π(a)

∫

�

�2(t, x, y)φ2(a, y)dyda := Mu,

it follows that

V ≤
∫ t

0
e−c(t−a)

∫

�

�3(t − a, x, y)Mudyda + e−ct
∫

�

�3(t, x, y)φ3(y)dy

≤Mu

c
(1 − e−ct ) + e−ct ‖ φ3 ‖X:= Mv. (2.6)

Hence, V never blow up in t ∈ [0, tmax), x ∈ �. Consequently, we arrive at the assertion
that the solution of (1.10) exists globally in X

+ × Y
+ × X

+. After passing to some similar
arguments as before if necessary, we can confirm that for any (φ1, φ2, φ3) ∈ X

+ ×Y
+ ×X

+
and a sufficiently large positive numberM∞,

0 < lim sup
t→∞

(T (t, x), u(t, x), V (t, x)) ≤ M∞.

In fact, solving the T -equation of (2.1) gets

T ≤ h
∫ t

0
e−d(t−a)

∫

�

�1(t − a, x, y)dyda + e−dt
∫

�

�1(t, x, y)φ1(y)dy

≤ h

d
(1 − e−dt ) + e−dt ‖ φ1 ‖X< ∞.

(2.7)
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By taking the limit t → ∞ in (2.6) and (2.7), we immediately get

lim sup
t→∞

T (t, x) ≤ h

d
and lim sup

t→∞
V (t, x) ≤ Mv.

This together with u(t, x) < +∞ immediately gives the ultimate boundedness of the solution
in X

+ × Y
+ × X

+.
Since c is a constant, we have

⎧
⎪⎨

⎪⎩

∂V (t, x)

∂t
> d3�V (t, x) − cV (t, x), t ∈ [0, tmax), x ∈ �,

∂V (t, x)

∂ν
= 0, t ∈ [0, tmax), x ∈ ∂�.

(2.8)

By the standard strong maximum principle, we get that V (t, x) > 0. This completes the
proof. ��

3 Basic Reproduction Number

Following the classical theory in [10,42], in this section,we shall define the basic reproduction
number �0 of model (1.10). Obviously, (1.10) always exists an infection-free steady state
E0 = (T0, 0, 0) with T0 = h

d . We are now ready to define the next generation operator for
model (1.10) on X

+ × Y
+ × X

+. We consider the following linear sub-system of model
(1.10) at disease-free equilibrium E0.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+ ∂

∂a

)

u(t, a, x) = d2�u(t, a, x) − θ(a)u(t, a, x),

u(t, 0, x) = β1T0V + β2T0

∫ +∞

0
q(a)u(t, a, x)da,

∂V

∂t
= d3�V +

∫ +∞

0
p(a)u(t, a, x)da − cV .

(3.1)

Firstly, we have

V (t) =
∫ t

0
e−c(t−s)

∫

�

R1(s, y)�3(t − s, x, y)dyds + e−ct
∫

�

�3(t, x, y)φ3(y)dy,

where

R1(t, x) =
∫ +∞

0
p(a)u(t, a, x)da.

Recall that u(t, x) := u(t, 0, x). This combines with (1.8) gives that

u(t, x) = β2T0

(∫ t

0
q(a)π(a)

∫

�

�2(a, x, y)u(t − a, y)dyda + R2(t, x)

)

+ β1T0

(∫ t

0
e−c(t−a)

∫

�

�3(t−a, x, y)
∫ a

0
p(s)π(s)

∫

�

�2(s, y, z)u(a−s, z)dzdsdyda+R3(t, x)

)

,

where

R2(t, x) = β2T0

∫ ∞

0
q(a + t)

∫

�

�2(a + t, x, y)φ2(a, y)
π(a + t)

π(a)
dyda
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and

R3(t, x)=β1T0

∫ t

0
e−c(t−a)�3(t−a, x, y)

∫ ∞

a
p(s)

π(s)

π(a−s)

∫

�

�2(s, y, t)φ2(s−a, t)dzdsdyda.

Similar to [47], the next generation operator L can be evaluated as follows,

L[ϕ](x) = β2T0

∫ ∞

0
q(a)π(a)

∫

�

�2(a, x, y)ϕ(y)dyda

+ β1T0

∫ ∞

0

∫ t

0
e−c(t−a)

∫

�

�3(t − a, x, y)
∫ a

0
p(s)π(s)

∫

�

�2(s, y, z)ϕ(z)dzdsdydadt

= β2T0

∫ ∞

0
q(a)π(a)

∫

�

�2(a, x, y)ϕ(y)dyda

+ β1T0

∫ ∞

0
e−ca

∫

�

�3(a, x, y)
∫ a

0
p(s)π(s)

∫

�

�2(s, y, z)ϕ(z)dzdsdyda,

(3.2)

for any ϕ ∈ X. Following the classical theory in [10,42], the basic reproduction number �0

is defined by the spectral radius of L, i.e., �0 := r(L).
As to L, we have the following result.

Lemma 3.1 Let L be defined by (3.2). The next generation operator L is strictly positive,
bounded, and compact.

Proof Obviously, the next generation operator L is positive. Due to the properties of �2 and
�3, we denote by {ϕn}n∈N the bounded sequence in X, which satisfies |ϕn |X ≤ K, for some
K > 0. Let {ψn}n∈N = Lϕn . It then follows that

‖ψn(x)‖X ≤ β2
h

d

∫ +∞

0
q(a)π(a)

∫

�

�2(a, x, y)dyda‖ϕn‖X

+ β1T0

∫ ∞

0
e−ca

∫

�

�3(a, x, y)
∫ a

0
p(s)π(s)dsdyda‖ϕn‖X

≤β2
h

d

∫ +∞

0
q(a)π(a)daK + β1T0

∫ ∞

0
e−ca

∫

�

�3(a, x, y)
∫ a

0
p(s)π(s)dsdydaK,

for all x ∈ �, which gives the uniform boundedness of {ψn}n∈N. By the Ascoli-Arzela
theorem, we are now ready to verify that {ψn}n∈N is equi-continuous. Taking any x, x̃ ∈ �

with |x − x̃ | ≤ δ. Direct calculation gives

|ψn(x)−ψn(x̃)|X ≤ β2
h

d

∫ +∞

0
q(a)π(a)

∫

�

|�2(a, x, y) − �2(a, x̃, y)|ϕn(y)dyda

+ β1T0

∫ ∞

0
e−ca

∫

�

|�3(a, x, y) − �3(a, x̃, y)|
∫ a

0
p(s)π(s)

∫

�

�2(s, y, z)ϕ(z)dzdsdyda.

Denote q+ = ess.supa∈R+q(a) < +∞ and p+ = ess.supa∈R+ p(a) < +∞. From the prop-
erties of �i (a, x, y), (i = 2, 3), we can select ε > 0 such that |�2(a, x, y) − �2(a, x̃, y)| ≤

ε
T0K|�|q+β2

and |�3(a, x, y) − �3(a, x̃, y)| ≤ cε
T0K|�|p+β1

for all y ∈ �, where |�| is the
volume of �. For such ε and δ, we immediately have

|ψn(x) − ψn(x̃)|X ≤ ε,
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that is, {ψn(x)}n∈N is equi-continuous. Thus, the next generation operatorL is compact. This
proves Lemma 3.1. ��

Generally speaking, it is not east to get the spectral radius of the next generation operator
L, if not impossible, so that we can not get further information on dynamical properties of
(1.10). By Lemma 3.1 combined with the Krein-Rutman theorem [1, Theorem 3.2], we know
that the basic reproduction number is the only positive eigenvalue of L, corresponding to
which, there is a positive eigenvector. Substituting ϕ(x) ≡ φ∗ > 0 (φ∗ is a constant) into
(3.2) and using

∫

�
�i (·, x, y)dy = 1, (i = 2, 3),

Lφ∗ = β2
h

d

∫ ∞

0
q(a)π(a)daφ∗ + β1h

cd

∫ ∞

0
p(a)π(a)daφ∗.

Hence, �0 = r(L) is given by

�0 = β2T0Q + β1

c
T0P, (3.3)

where

Q =
∫ ∞

0
q(a)π(a)da and P =

∫ ∞

0
p(a)π(a)da.

We should mention that with the assumption that all parameters of (1.10) are spatially homo-
geneous, E0 is constant equilibrium. It is crucial to (3.2) that the next generation operator
L does have a positive constant eigenvector, which in turn implies that �0 can be explicitly
characterized by a positive constant (see also in [4,5]).

Denote by Ê the space-independent infection equilibrium of (1.10), if it exists. Then it
satisfies ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h − û(0) − dT̂ = 0,
dû(a)

da
= −θ(a)û(a),

û(0) = β1T̂
V̂

1 + αV̂
+ β2T̂

∫ +∞

0
q(a)û(a)da,

∫ +∞

0
p(a)û(a)da − cV̂ = 0.

(3.4)

From the second equation of (3.4), one has that

û(a) = û(0)e− ∫ a
0 θ(s)ds = û(0)π(a).

Furthermore, from the first and forth equations of (3.4), we have

T̂ = h − û(0)

d
and V̂ = 1

c

∫ ∞

0
p(a)û(a)da = 1

c

∫ ∞

0
p(a)û(0)π(a)da = P

c
û(0). (3.5)

Now, we can see that T̂ , V̂ and û(0) can be written as terms of û(0). Putting T̂ and V̂ into
the third equation of (3.4) gives

ϒ(û(0)) = a0(û(0))2 + a1û(0) + a2, (3.6)

where a0 = αβ2PQ, a1 = cβ2Q+β1P+αdP−αβ2hQP and a2 = cd−β1hQ−cβ2hQ =
cd[1 − �0]. Since a0 > 0, it has ϒ(±∞) = +∞. In the case that �0 ≤ 1, we know that
ϒ(0) ≥ 0 and

ϒ ′(û(0)) = 2a0û(0) + a1.
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Since �0 ≤ 1, that is, cβ2hQ + β1hP ≤ cd , thus we can conclude that

cβ2Q + β1P + αdP − αβ2hQP > αP(d − β2hQ) ≥ 0,

we have that ϒ ′(û(0)) > 0 for any û(0) ≥ 0 when �0 ≤ 1. It follows that Eq. (3.6)
has no positive root, which in turn implies that (1.10) has no space-independent infection
equilibrium Ê . In the case that �0 ≥ 1, we know that ϒ(0) = a2 < 0. From the properties
of the quadratic function ϒ(û(0)), (3.6) admits a unique positive root û(0).

In summary, we have the following result.

Lemma 3.2 If �0 > 1, (1.6) has a unique space-independent infection equilibrium Ê =
(T̂ , û(a), V̂ ), which is unique and defined by (3.5).

4 Dynamics for the System

This section is paid to the local and global asymptotic stability of E0 and Ê .

4.1 Local Dynamics

We are now ready to establish the local asymptotic stability of E0 and Ê . Let E∗ =
(T ∗, u∗(a), V ∗) be E0 or Ê of (1.6), we linearize (1.6) around E∗ yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
= d1�T − dT − T ∗

(
β1V

(1 + αV ∗)2
+ β2

∫ +∞

0
q(a)u(t, a, x)da

)

−T

(
β1V ∗

1 + αV ∗ + β2

∫ +∞

0
q(a)u∗(a)da

)

,
(

∂

∂t
+ ∂

∂a

)

u(t, a, x) = d2�u(t, a, x) − θ(a)u(t, a, x),

∂V

∂t
= d3�V +

∫ +∞

0
p(a)u(t, a, x)da − cV ,

u(t, 0, x) = T ∗
(

β1V

(1 + αV ∗)2
+ β2

∫ +∞

0
q(a)u(t, a, x)da

)

+T

(
β1V ∗

1 + αV ∗ + β2

∫ +∞

0
q(a)u∗(a)da

)

,

∂T

∂ν
= ∂u(t, a, x)

∂ν
= ∂V

∂ν
= 0.

(4.1)

By a classical parabolic theory [2], we denote by ζ j ( j = 1, 2, · · · ) with 0 = ζ0 < ζ1 <

ζ2 < · · · the eigenvalues of−� subject to (1.7). Assume that the following parabolic problem
with the homogeneous Neumann boundary condition

⎧
⎪⎨

⎪⎩

∂U (t, x)

∂t
= �U (t, x),

∂U (t, x)

∂ν
= 0,

has the exponential solution in the form of U (t, x) = eηt z(x), z(x) ∈ Xi . Further from
the exponential Ansatz (see, e.g., [27, Theorem 3.1]), we have that �z(x) = −ζi z(x). We
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substitute T = eηtφ(x), u(t, a, x) = eηtϕ(a, x), V = eηtψ(x) into (4.1), obtaining that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηφ(x) = −d1ζiφ(x) − dφ(x) − T ∗
(

β1ψ(x)

(1 + αV ∗)2
+ β2

∫ +∞

0
q(a)ϕ(a, x)da

)

−φ(x)

(
β1V ∗

1 + αV ∗ + β2

∫ +∞

0
q(a)u∗(a)da

)

,

ηϕ(a, x) + ∂ϕ(a, x)

∂a
= −d2ζiϕ(a, x) − θ(a)ϕ(a, x),

ηψ(x) = −d3ζiψ(x) +
∫ +∞

0
p(a)ϕ(a, x)da − cψ(x),

ϕ(0, x) = T ∗
(

β1ψ(x)

(1 + αV ∗)2
+ β2

∫ +∞

0
q(a)ϕ(a, x)da

)

+φ(x)

(
β1V ∗

1 + αV ∗ + β2

∫ +∞

0
q(a)u∗(a)da

)

.

(4.2)

Combined with the second and fourth equation of (4.2), we get that

ϕ(a, x) = ϕ(0, x)π̂(a)e−ηa, with π̂(a) = π(a)e−d2ζi a .

We next claim that η �= −(d1ζi + d) and η �= −(d3ζi + c). In fact, if η = −(d1ζi + d),
together with the first equation of (4.2), imply that ϕ(0, x) = 0. Hence, by the third equation
of (4.2), η = −(d3ζi + c), which results in a contradiction. η �= −(d3ζi + c) < 0 can be
proved in a similar way. This claim together with the first and third equation of (4.2) imply
that

φ(x) = − ϕ(0, x)

η + d1ζi + d
and ψ(x) = ϕ(0, x)P̂(η)

η + d3ζi + c
, (4.3)

where P̂(η) := ∫ ∞
0 p(a)π̂(a)e−ηada. Plugging (4.3) into the fourth equation of (4.2) yields

(

1 + β1V ∗

(η + d1ζi + d)(1 + αV ∗)
+ β2

∫ +∞
0 q(a)u∗(a)da

η + d1ζi + d

)

ϕ(0, x)

= T ∗
(

β2 K̂ (η) + β1 P̂(η)

(η + d3ζi + c)(1 + αV ∗)2

)

ϕ(0, x), (4.4)

where K̂ (η) := ∫ ∞
0 q(a)π̂(a)e−ηada. Canceling ϕ(0, x) on both sides of (4.4), we conclude

that

1 + β1V ∗

(η + d1ζi + d)(1 + αV ∗)
+ β2

∫ +∞
0 q(a)u∗(a)da

η + d1ζi + d

= T ∗
(

β2 K̂ (η) + β1 P̂(η)

(η + d3ζi + c)(1 + αV ∗)2

)

. (4.5)

In what follows, we pay attention to analyze the characteristic roots of (4.5).

Theorem 4.1 If�0 < 1, E0 is locally asymptotically stable, while Ê is locally asymptotically
stable if �0 > 1.

Proof Let us first prove the local stability of E0. In this case, (4.5) can be simplified to

1 = h

d

(

β2 K̂ (η) + β1 P̂(η)

η + d3ζi + c

)

. (4.6)
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Suppose by contrary that (4.6) admits a real positive root η > 0. We directly have

h

d

∣
∣
∣
∣

(

β2 K̂ (η) + β1 P̂(η)

η + d3ζi + c

)∣
∣
∣
∣ ≤ �0.

If �0 < 1, the above inequality leads to a contradiction to (4.6). Hence, all the real roots of
(4.6) are negative.

Let η = m±ni (withm ≥ 0 and n > 0) be a pair of complex roots of (4.6). After passing
elementary analysis, we directly have

1 = h

d

(
β1(m + c + d3ζi )

∫ ∞
0 p(a)π̂(a)e−ma cos(na)da − β1n

∫ ∞
0 p(a)π̂(a)e−ma sin(na)da

(m + c + d3ζi )2 + n2

+β2

∫ ∞

0
q(a)π̂(a)e−ma cos(na)da

)

≤ �0.

This contradicts with �0 < 1. This proves the assertion that E0 is LAS.
We next prove the local stability of Ê . If η = m + ni with m ≥ 0, the left-hand side of

(4.5) satisfies
∣
∣
∣
∣
∣
1 + β1V̂

(η + d1ζi + d)(1 + αV̂ )
+ β2

∫ +∞
0 q(a)û(a)da

η + d1ζi + d

∣
∣
∣
∣
∣

=
√

[(m + d1ζi + d)(1 + αV̂ ) + �]2 + n2(1 + αV̂ )2

√

[(m + d1ζi + d)2 + n2](1 + αV̂ )2
> 1, (4.7)

where � = β1V̂ + β2
∫ +∞
0 q(a)û(a)da(1 + αV̂ ). However, the right-hand side of (4.5)

satisfies

T̂

∣
∣
∣
∣β2 K̂ (η) + β1 P̂(η)

(η + d3ζi + c)(1 + αV̂ )2

∣
∣
∣
∣ ≤ T̂

∣
∣
∣
∣β2 K̂ (η) + β1 P̂(η)

(η + d3ζi + c)(1 + αV̂ )

∣
∣
∣
∣

≤ T̂

û(0)

∣
∣
∣
∣
∣
β2Q + β1cV̂

(η + d3ζi + c)(1 + αV̂ )

∣
∣
∣
∣
∣
≤ T̂

û(0)

∣
∣
∣
∣
∣
β2

∫ ∞

0
q(a)π(a)da + β1

V̂

(1 + αV̂ )

∣
∣
∣
∣
∣
= 1.

(4.8)

Comparing (4.7) and (4.8), we conclude that all roots of (4.5) have negative real parts if
�0 > 1. This proves the assertion that Ê is LAS if �0 > 1. ��

4.2 Persistence of InfectionWhen�0 > 1

In this subsection, we are concerned with the uniform persistence of (1.10) for �0 > 1.
Considering a semiflow associated with system (1.10), and replacing u(t − a, 0, y) in (1.8)
by u(t − a, y) for short, we have the following result (see also in [35, Section 9.4]).

Lemma 4.1 Let (φ1, φ2, φ3) ∈ X
+ × Y

+ × X
+. For all t ≥ 0 and x ∈ �, system (1.10)

admits a continuous semiflow defined by �(t, φ1, φ2, φ3) := (T (t, ·), u(t, ·, ·), V (t, ·)) ∈
X

+ × Y
+ × X

+.

Proof For any r , t, a ≥ 0 and x ∈ �, let

Tr (t, x) = T (r + t, x), ur (t, x) = u(r + t, x), Vr (t, x) = V (r + t, x), ur (t, a, x) = u(r + t, a, x).
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Hence, we have
⎧
⎪⎨

⎪⎩

∂Tr (t, x)

∂t
= d1�Tr (t, x) + h − ur (t, x) − dTr (t, x),

∂Vr (t, x)

∂t
= d3�Vr (t, x) +

∫ +∞

0
p(a)π(a)

∫

�

�2(a, x, y)ur (t − a, a, y)dyda − cV (t, x),

(4.9)
with Tr (0, x) = T (r , x) and Vr (0, x) = V (r , x), and

ur (t, x) = β1Tr (t, x)
Vr (t, x)

1 + αVr (t, x)
+ β2Tr (t, x)

∫ +∞

0
q(a)ur (t, a, x)da. (4.10)

This together with (1.8) implies that for x ∈ �,

ur (t, a, x) =

⎧
⎪⎨

⎪⎩

π(a)

∫

�

�2(a, x, y)ur (t − a, y)dy, a < r + t,

π(a)

π(a − r − t)

∫

�

�2(r + t, x, y)φ2(a − r − t, y)dy, a ≥ r + t .
(4.11)

After passing elementary calculation, we have

ur (0, a − t, x) =

⎧
⎪⎨

⎪⎩

π(a − t)
∫

�

�2(a − t, x, y)ur (t − a, y)dy, a ∈ [t, r + t),

π(a − t)

π(a − r − t)

∫

�

�2(r , x, y)φ2(a − r − t, y)dy, a ≥ r + t .

On the other hand,

π(a)

π(a − t)

∫

�

�2(t, x, y)ur (0, a − t, y)dy

=

⎧
⎪⎨

⎪⎩

π(a)

∫

�

�2(a, x, y)ur (t − a, y)dy, a ∈ [t, r + t),

π(a)

π(a − r − t)

∫

�

�2(r + t, x, y)φ2(a − r − t, y)dy, a ≥ r + t .

Combined with (4.11), we directly have

ur (t, a, x) =

⎧
⎪⎪⎨

⎪⎪⎩

π(a)

∫

�

�2(a, x, y)ur (t − a, y)dy, t − a > 0,

π(a)

π(a − t)

∫

�

�2(t, x, y)ur (0, a − t, y)dy, a − t ≥ 0.
(4.12)

It then follows from (4.9), (4.10) and (4.12) that for all r ≥ 0 and t ≥ 0,

�(t, T (r , ·), ur (t, ·, ·), V (r , ·)) = (Tr (t), ur (t, ·), Vr (t)) = �(r + t, φ1, φ2, φ3).

This completes the proof. ��

Let

D :=
{

(φ1, φ2, φ3) ∈ X
+ × Y

+ × X
+ : β1φ1

φ3

1 + αφ3

+β2φ1

∫ +∞

0
q(a)φ2(a, x)da > 0 for some x ∈ �

}

.
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The following result implies that the solution of (1.10) is uniformly weak | · |X-persistence
(see also in [5, Lemma 6.1] and [4, Lemma 5.2]).

Lemma 4.2 If �0 > 1 and (φ1, φ2, φ3) ∈ D, then

lim sup
t→+∞

|u(t, ·)|X > ε1

holds for a sufficiently small constant number ε1 > 0.

Proof Since �0 > 1, choosing a sufficiently small number ε > 0 such that

h − ε

d

(

β2

∫ ∞

0
q(a)π(a)da + (β1 − ε)

∫ ∞

0
e−csds

∫ ∞

0
p(a)π(a)da

)

> 1. (4.13)

If there exists t1 > 0 such that

| u(t, x) |X≤ ε, for all t ≥ t1, x ∈ �,

then, by (4.13), we can choose a small λ > 0 and t2 > t1 such that �̃ > 1, where

�̃ := h − ε

d
(1 − e−ds̃)

(

β2

∫ ∞

0
q(a)π(a)e−λada + (β1 − ε)

∫ ∞

0
e−cse−λsds

∫ ∞

0
p(a)π(a)e−λada

)

,

(4.14)
and s̃ = t2 − t1. By using this ε,

∂T

∂t
≥ d1�T + h − ε − dT , t > t2, x ∈ �.

Hence,

T ≥ e−d(t−t1)
∫

�

�1(t − t1, x, y)T (t1, y)dy + h − ε

d

(
1 − e−d(t−t1)

)

≥ h − ε

d

(
1 − e−ds̃

)
, for all t > t2, x ∈ �.

Similarly,

V ≥
∫ t

0
e−c(t−s)

∫

�

�3(t − s, x, y)
∫ ∞

0
p(a)u(s, a, y)dadyds

≥
∫ t

0
e−cs

∫

�

�3(s, x, y)
∫ t−s

0
p(a)π(a)

∫

�

�2(a, y, z)u(t − s − a, z)dzdadyds

holds for all t > t2, x ∈ �. Not that the incidence function f (V ) = β1
V

1+αV satisfies f (0) =
0, f ′(V ) = β1

(1+αV )2
> 0 and f ′′(V ) = −2αβ1

(1+αV )3
< 0. Due to the fact that lim

V→0

f (V )
V = f ′(0),

there exists a �̂ such that

f (V ) ≥ (
f ′(0) − ε

)
V , ∀ ‖V ‖ < �̂.

Using the fact ε1 = min{�̂, ε}, together with Lemma 4.1, we take t2 = 0 (and thus, t1 = −s̃)
by taking T (t2, x), V (t2, x) and u(t2, a, x) as a new initial condition. Hence,

u(t, x) ≥ h − ε

d

(
1 − e−ds̃

)(

β2

∫ t

0
q(a)π(a)

∫

�
�2(a, x, y)u(t − a, y)dyda

+ (β1 − ε)

∫ t

0
e−cs

∫

�
�3(s, x, y)

∫ t−s

0
p(a)π(a)

∫

�
�2(a, y, z)u(t − s − a, z)dzdadyds

)

.

(4.15)
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Obviously, for all x ∈ �,
∫ ∞
0 e−λt u(t, x)dt < ∞. Define u(t, x̂) = minx∈� u(t, x).

Taking Laplace transform on both sides of (4.15), we get
∫ ∞

0
e−λt u(t, x̂)dt

≥ h − ε

d

(
1 − e−ds̃

)(

β2

∫ ∞

0
e−λt

∫ t

0
q(a)π(a)

∫

�

�2(a, x̂, y)u(t − a, y)dydadt

+ (β1 − ε)

∫ ∞

0
e−λt

∫ t

0
e−cs

∫

�

�3(s, x̂, y)
∫ t−s

0
p(a)π(a)

∫

�

�2(a, y, z)u(t − s − a, z)dzdadydsdt

)

≥ h − ε

d

(
1 − e−ds̃

)(

β2

∫ ∞

0
q(a)π(a)

∫ ∞

a
e−λt

∫

�

�2(a, x̂, y)u(t − a, y)dydtda

+ (β1 − ε)

∫ ∞

0
e−cs

∫ ∞

s
e−λt

∫

�

�3(s, x̂, y)
∫ t−s

0
p(a)π(a)

∫

�

�2(a, y, z)u(t − s − a, z)dzdadydtds

)

.

After passing elementary calculations, we obtain
∫ ∞

0
e−λt u(t, x̂)dt

≥ h − ε

d

(
1 − e−ds̃

)(

β2

∫ ∞

0
q(a)π(a)e−λa

∫

�

�2(a, x̂, y)
∫ ∞

0
e−λ(t−a)u(t, y)dtdyda

+ (β1 − ε)

∫ ∞

0
e−cse−λs

∫ ∞

0
e−λt

∫

�

�3(s, x̂, y)

∫ t

0
p(a)π(a)

∫

�

�2(a, y, z)u(t − a, z)dzdadydtds

)

≥ h − ε

d

(
1 − e−ds̃

)(

β2

∫ ∞

0
q(a)π(a)e−λa

∫

�

�2(a, x̂, y)
∫ ∞

0
e−λt u(t, y)dtdyda

+ (β1 − ε)

∫ ∞

0
e−cse−λs

∫ ∞

0
p(a)π(a)e−λa

∫

�

�3(s, x̂, y)

∫ ∞

0
e−λt

∫

�

�2(a, y, z)u(t, z)dzdtdydads

)

.

Consequently, we obtain that
∫ ∞

0
e−λt u(t, x̂)dt

≥ h − ε

d

(
1 − e−ds̃

) (

β2

∫ ∞

0
q(a)π(a)e−λa

∫

�

�2(a, x̂, y)

∫ ∞

0
e−λt u(t, y)dtdyda

+ (β1 − ε)

∫ ∞

0
e−cse−λs

∫ ∞

0
p(a)π(a)e−λa

∫

�

�3(s, x̂, y)

∫

�

�2(a, y, z)
∫ ∞

0
e−λt u(t, z)dtdzdydads

)
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≥ �̃
∫ ∞

0
e−λt u(t, x̂)dt,

which is a contradiction with (4.14). This proves Lemma 4.2. ��
By the arguments similar to those in [4, Proposition 5.3] and [16, Theorem 1], we arrive

at the below assertion on the strong | · |X -persistence.
Proposition 4.1 Suppose that �0 > 1. For any (φ1, φ2, φ3) ∈ D, there exists a sufficiently
small number ε2 > 0 such that

lim inf
t→+∞ |u(t, ·)|X > ε2.

With the help of Proposition 4.1, we show the following result.

Proposition 4.2 If �0 > 1, system (1.6) is uniformly strongly persistent, namely, there exists
a positive value ε such that for any solution with the initial condition in D

lim inf
t→∞,x∈�

T (t, x) > ε, lim inf
t→∞,x∈�

u(t, a, x) > ε, lim inf
t→∞,x∈�

V (t, x) > ε,

for (a, x) ∈ R+ × �.

Proof By Proposition 4.1, there exists positive constants η and T0 such that u(t, a, x) ≥
ηπ(a) for t ≥ T0. Then there exists a sufficiently small constant η0 such that u(t, a, x) ≥
ηπ(a) − η0. It follows from the third equation of (1.6) that

∂V

∂t
≥ d3�V + H − cV

where H = ∫ ∞
0 p(a)(ηπ(a) − η0)da. Hence,

V (t, x) ≥ H
∫ t

0
e−ca

∫

�

�3(a, x, y)dady = H

c
(1 − e−ct ).

Thus, there exists η1 and T2 > T1 such that V (t, x) ≥ ε1. Lastly, by the positivity of T (t, x)
and choose η = min{η0, η1}, we finish the proof. ��

4.3 Global Attractivity of Steady States

This subsection is spent on the global asymptotic stability of E0 and Ê . Combined with local
asymptotic stability and global attractivity of equilibria, we shall confirm that both E0 and
Ê are globally asymptotically stable. The global attractivity of E0 and Ê is achieved by the
technique of Lyapunov functionals.

Theorem 4.2 Suppose that �0 < 1, then E0 is globally asymptotically stable.

Proof Let g(α) = α − 1 − ln α, α ∈ R
+. Then g(α) ≥ 0 for all α ∈ R

+ and the equality
holds if and only if α = 1.

Define a Lyapunov function LE0(t) : D → R:

LE0(t) =
∫

�

[LT (t, x) + Lu(t, x) + LV (t, x)]dx,
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where LT = T0g(
T
T0

), Lu = ∫ ∞
0 �(a)u(t, a, x)da and LV = β1T0

c V . The function �(a) is
nonnegative and integrable. We define �(a) as

�(a) =
∫ ∞

a

(

β1T0
p(θ)

c
+ β2T0q(θ)

)
π(θ)

π(a)
dθ.

Obviously, we have the following properties for �(a),
⎧
⎨

⎩

� ′(a) = −
(

β1T0
p(a)

c
+ β2T0q(a)

)

+ θ(a)�(a),

�(0) = �0.

(4.16)

We first calculate the derivative of LT (t, x) along the solution of system (1.6), obtaining
that

∂LT

∂t
= d1

(T − T0)�T

T
− d

(T − T0)2

T
+

[

β1T0
V

1 + αV

+β2T0

∫ +∞

0
q(a)u(t, a, x)da

]

− u(t, 0, x). (4.17)

By (1.8), we rewrite Lu(t, x) as

Lu =
∫ t

0
�(t − a)π(t − a)

∫

�

�2(t − a, x, y)u(a, 0, y)dyda

+
∫ ∞

0
�(a + t)

π(a + t)

π(a)

∫

�

�2(t, x, y)φ2(a, y)dyda.

It then follows that

∂Lu

∂t
= �(0)

∫

�

�2(0, x, y)u(t, 0, y)dy +
∫ t

0

∂�(t − a)

∂t
π(t − a)

∫

�

�2(t − a, x, y)u(a, 0, y)dyda

−
∫ t

0
θ(t − a)�(t − a)π(t − a)

∫

�

�2(t − a, x, y)u(a, 0, y)dyda

+
∫ t

0
�(t − a)π(t − a)

∫

�

∂�2(t − a, x, y)

∂t
u(a, y)dyda

+
∫ ∞

0

∂�(t + a)

∂t

π(t + a)

π(a)

∫

�

�2(a + t, x, y)φ2(a, y)dyda (4.18)

−
∫ ∞

0
θ(t + a)�(t + a)

π(t + a)

π(a)

∫

�

�2(a + t, x, y)φ2(a, y)dyda

+
∫ ∞

0
�(t + a)

π(t + a)

π(a)

∫

�

∂�2(a + t, x, y)

∂t
φ2(a, y)dyda.

It follows from [21] that the Green function �2 satisfies
∫

�
�2(0, x, y)u(t, 0, y)dy =

u(t, 0, x) and ∂�2
∂t = d2�u(t, a, x). On the other hand, it follows from (1.8) that

∫ t

0
�t (t − a)π(t − a)

∫

�

�2(t − a, x, y)u(a, 0, y)dyda

+
∫ ∞

0
�t (t + a)

π(t + a)

π(a)

∫

�

�2(t, x, y)φ2(a, y)dyda

=
∫ t

0
� ′(a)π(a)

∫

�

�2(a, x, y)u(t − a, 0, y)dyda
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+
∫ ∞

t
� ′(a)

π(a)

π(a − t)

∫

�

�2(t, x, y)φ2(a − t, y)dyda

=
∫ ∞

0
� ′(a)u(t, a, x)da

where �t (t − a) := ∂�(t−a)
∂t and � ′(a) := ∂�(a)

∂a . Same arguments with the other terms of
(4.18), we have

∂Lu

∂t
= �(0)u(t, 0, x) +

∫ ∞

0
[� ′(a) − (θ(a) − d2�)�(a)]u(t, a, x)da. (4.19)

Further, we calculate the derivative of LV , obtaining that

∂LV

∂t
= β1T0

c
d3�V + β1T0

c

∫ ∞

0
p(a)u(t, a, x)da − β1T0V . (4.20)

Finally, we integrate the equation (4.17), (4.19) and (4.20) over �, obtaining that

dLE0 (t)

dt
=

∫

�

[

d1
(T − T0)�T

T
− d

(T − T0)2

T
+ [β1T0

V

1 + αV
+ β2T0

∫ +∞

0
q(a)u(t, a, x)da]

− u(t, 0, x) + �(0)u(t, 0, x) +
∫ ∞

0
[� ′(a) − (θ(a) − d2�)�(a)]u(t, a, x)da

+ β1T0
c

d3�V + β1T0
c

∫ ∞

0
p(a)u(t, a, x)da − β1T0V

]

dx

= − d1T0

∫

�

‖∇T ‖2
T 2 dx − d

∫

�

(T − T0)2

T
dx

+
∫

�

(�(0) − 1)u(t, 0, x)dx −
∫

�

T0β1αV 2

1 + αV
dx

+
∫

�

∫ ∞

0

[

β1T0
p(a)

c
+ β2T0q(a) + � ′(a) − (θ(a) − d2�)�(a)

]

u(t, a, x)dadx .

Here we have used
∫

�
�T dx = 0 and

∫

�
�T
T dx = ∫

�
‖∇T ‖2
T 2 dx . With the help of (4.16), one

arrives at
dLE0(t)

dt
= −d1

∫

�

‖∇T ‖2
T 2 dx − d

∫

�

(T − T0)2

T
dx

−
∫

�

β1T0
αV 2

1 + αV
dx +

∫

�

(�0 − 1)u(t, 0, x)dx .

As a result, with the help of [41, Theorem 4.2], E0 is globally attractive in D if �0 < 1. ��
Now we are ready to confirm that Ê is globally attractive in D, where Ê is the space-

independent infection equilibrium of (1.10). We first show the following lemma.

Lemma 4.3 The infection steady state (T̂ , û(a), V̂ ) satisfies

β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

[

1 − (1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)

]

da

+ β2T̂
∫ ∞

0
q(a)û(a)

[

1 − Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)

]

da = 0.

Proof By the forth equation of (3.4), we have

β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)da + β2T̂

∫ ∞

0
q(a)û(a)da
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= β1T̂
V̂

1 + αV̂
+ β2T̂

∫ +∞

0
q(a)û(a)da

= û(0).

On the other hand, using the fact that

u(t, 0, x) = β1T
V

1 + αV
+ β2T

∫ ∞

0
q(a)u(t, a, x)da,

we have

β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

(1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)
da + β2 T̂

∫ ∞

0
q(a)û(a)

Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)
da

=
(

β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

(1 + αV̂ )T V

(1 + αV )T̂ V̂
da + β2 T̂

∫ ∞

0
q(a)û(a)

Tu(t, a, x)

T̂ û(a)
da

)
û(0)

u(t, 0, x)

= û(0).

This finishes the proof. ��
Theorem 4.3 Suppose that �0 > 1 and initial data (φ1, φ2, φ3) ∈ D, then Ê is globally
asymptotically stable.

Proof In this proof, we first give some notations,

L̄T (t, x) = G[T (t, x), T̂ ],
L̄u(t, x) =

∫ ∞

0
�1(a)G[u(t, a, x), û(a)]da,

L̄V (t, x) = β1T̂

c(1 + αV̂ )
G[V (t, x), V̂ ],

where
G[m, n](t, x) = m − n − n ln

m

n
,

and

�1(a) =
∫ ∞

a

(
β1T̂ p(θ)

c(1 + αV̂ )
+ β2T̂ q(θ)

)
π(θ)

π(a)
dθ.

Define a Lyapunov functional as

L Ê (t) =
∫

�

[L̄T (t, x) + L̄u(t, x) + L̄V (t, x)]dx .

We calculate the derivative of L̄T , together with h = dT̂ + û(0), obtaining that

∂ L̄T

∂t
=

(

1 − T̂

T

)

d1�T − d
(T − T̂ )2

T
+

(

1 − T̂

T

)

(û(0) − u(t, 0, x)).

Next, we deal with L̄u , clearly,

∂ L̄u

∂t
=

∫ ∞

0
�1(a)

[

1 − û(a)

u(t, a, x)

]
∂u(t, a, x)

∂t
da
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=
∫ ∞

0
�1(a)

[

1 − û(a)

u(t, a, x)

](

d2�u(t, a, x) − θ(a)u(t, a, x) − ∂u(t, a, x)

∂a

)

da.

Note that

û(a)
∂

∂a

(
u(t, a, x)

û(a)
− 1 − ln

u(t, a, x)

û(a)

)

= û(a)

(

1 − û(a)

u(t, a, x)

) (
ua(t, a, x)û(a) − u(t, a, x)ûa(a)

û2(a)

)

=
(

1 − û(a)

u(t, a, x)

)
∂u(t, a, x)

∂a
+

(

1 − û(a)

u(t, a, x)

)

θ(a)u(t, a, x),

here we have used the fact that ûa(a) = −θ(a)û(a). Further, direct calculation yields

�1
′(a)û(a) + �1(a)û′(a) = −

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

)

û(a).

Using integration by parts, one has
∫ ∞

0
�1(a)

(

1 − û(a)

u(t, a, x)

)
∂u(t, a, x)

∂a
da

=
∫ ∞

0
�1(a)û(a)

∂

∂a

(
u(t, a, x)

û(a)
− 1 − ln

u(t, a, x)

û(a)

)

da

−
∫ ∞

0
�1(a)

(

1 − û(a)

u(t, a, x)

)

θ(a)u(t, a, x)da

= �1(a)û(a)

(
u(t, a, x)

û(a)
− 1 − ln

u(t, a, x)

û(a)

) ∣
∣
∣
∣

a=∞

a=0

−
∫ ∞

0

(
u(t, a, x)

û(a)
− 1 − ln

u(t, a, x)

û(a)

)
(
�1

′(a)û(a) + �1(a)û′(a)
)
da

−
∫ ∞

0
�1(a)

(

1 − û(a)

u(t, a, x)

)

θ(a)u(t, a, x)da

= lim
a→∞ �1(a)û(a)g

(
u(t, a, x)

û(a)

)

− �1(0)û(0)g

(
u(t, 0, x)

û(0)

)

+
∫ ∞

0
û(a)

[
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

]

g

(
u(t, a, x)

û(a)

)

da

+
∫ ∞

0
û(a)θ(a)�1(a)g

(
u(t, a, x)

û(a)

)

da

−
∫ ∞

0
�1(a)

(

1 − û(a)

u(t, a, x)

)

θ(a)u(t, a, x)da

= lim
a→∞ �1(a)û(a)g

(
u(t, a, x)

û(a)

)

− �1(0)û(0)g

(
u(t, 0, x)

û(0)

)

+
∫ ∞

0
û(a)

[
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

]

g

(
u(t, a, x)

û(a)

)

da

−
∫ ∞

0
�1(a)

(

1 − û(a)

u(t, a, x)

)

θ(a)u(t, a, x)da,
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where g(x) was defined in the proof of Theorem 4.2. By hypothesis (H), we know that

lim
a→∞ �1(a)û(a)g

(
u(t, a, x)

û(a)

)

= 0.

Hence,

∂ L̄u

∂t
=

∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

) [

û(a) − u(t, a, x) + û(a) ln
u(t, a, x)

û(a)

]

da

+
∫ ∞

0
�1(a)

[

1 − û(a)

u(t, a, x)

]

d2�u(t, a, x)da + �1(0)G[u(t, 0, x), û(0)].

We further have the derivative of L̄V as follows:

∂ L̄V

∂t
= β1T̂

c(1 + αV̂ )

∂

∂t

[

V − V̂ − V̂ ln
V

V̂

]

= β1T̂

c(1 + αV̂ )

(

1 − V̂

V

)
∂V

∂t

=
(

1 − V̂

V

) (
d3β1T̂

c(1 + αV̂ )
�V + β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)u(t, a, x)da − β1T̂ V

1 + αV̂

)

.

By denoting L̂ = L̄T + L̄u + L̄V , we directly have

∂ L̂

∂t
=

(

1 − T̂

T

)

d1�T − d
(T − T̂ )2

T
+

∫ ∞

0
�1(a)

[

1 − û(a)

u(t, a, x)

]

d2�u(t, a, x)da

+
(

1 − V̂

V

)
d3β1T̂

c(1 + αV )
�V + �(t, x),

where

�(t, x) =
(

1 − T̂

T

)

(û(0) − u(t, 0, x))

+
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

) [

û(a) − u(t, a, x) + û(a) ln
u(t, a, x)

û(a)

]

da

+ �1(0)û(0)

(
u(t, 0, x)

û(0)
− 1 − ln

u(t, 0, x)

û(0)

)

+
(

1 − V̂

V

) (
β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)u(t, a, x)da − β1T̂ V

1 + αV̂

)

.

Recall that ⎧
⎪⎪⎨

⎪⎪⎩

u(t, 0, x) = β1T
V

1 + αV
+ β2T

∫ ∞

0
q(a)u(t, a, x)da,

û(0) = β1T̂
V̂

1 + αV̂
+ β2T̂

∫ ∞

0
q(a)û(a)da.

Furthermore, by the forth equation of (3.4), we have

β1T̂
V̂

1 + αV̂
=

∫ ∞

0

β1T̂

c(1 + αV̂ )
p(a)û(a)da.
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Moreover, since

�1(0) =
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(θ)

)

π(a)da,

and recall that û(a) = û(0)π(a), we have

�1(0)û(0)

(
u(t, 0, x)

û(0)
− 1 − ln

u(t, 0, x)

û(0)

)

=
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

)

û(0)π(a)

(
u(t, 0, x)

û(0)
− 1 − ln

u(t, 0, x)

û(0)

)

da

=
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

)

û(a)

(
u(t, 0, x)

û(0)
− 1 − ln

u(t, 0, x)

û(0)

)

da.

It then follows that

�(t, x) = β1T̂
V̂

1 + αV̂
+ β2 T̂

∫ ∞

0
q(a)û(a)da − β1T

V

1 + αV
− β2T

∫ ∞

0
q(a)u(t, a, x)da

− β1T̂
V̂

1 + αV̂

T̂

T
− β2 T̂

∫ ∞

0
q(a)û(a)da

T̂

T
+ β1T̂

V

1 + αV
+ β2 T̂

∫ ∞

0
q(a)u(t, a, x)da

+
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2 T̂ q(a)

) [

û(a) − u(t, a, x) + û(a) ln
u(t, a, x)

û(a)

]

da

+
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2 T̂ q(a)

)

û(a)

(
u(t, 0, x)

û(0)
− 1 − ln

u(t, 0, x)

û(0)

)

da

+ β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)u(t, a, x)da − β1T̂ V

1 + αV̂

− V̂

V

β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)u(t, a, x)da + β1T̂ V̂

1 + αV̂

= β2 T̂
∫ ∞

0
q(a)û(a)

[

1 − T̂

T
− ln

u(t, a, x)

u(t, 0, x)

]

da

+ β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

[

2 − T̂

T
− V

V̂
+ V (1 + αV̂ )

V̂ (1 + αV )
− V̂ u(t, a, x)

V û(a)
+ ln

u(t, a, x)

u(t, 0, x)

]

da.

Note that
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

)

û(a)
u(t, 0, x)

û(0)
da

=
∫ ∞

0

(
β1T̂ p(a)

c(1 + αV̂ )
+ β2T̂ q(a)

)

û(a)da
u(t, 0, x)

û(0)

= u(t, 0, x)

= β1T
V

1 + αV
+ β2T

∫ ∞

0
q(a)u(t, a, x)da,

and using the zero trick in Lemma 4.3, one has that

�(t, x) = β1 T̂
V̂

1 + αV̂
+ β2 T̂

∫ ∞
0

q(a)û(a)da
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− β1 T̂
V̂

1 + αV̂

T̂

T
− β2 T̂

∫ ∞
0

q(a)û(a)da
T̂

T
+ β1 T̂

V

1 + αV

+
∫ ∞
0

(
β1 T̂ p(a)

c(1 + αV̂ )
+ β2 T̂ q(a)

)

û(a) ln
u(t, a, x)

û(a)
da

−
∫ ∞
0

(
β1 T̂ p(a)

c(1 + αV̂ )
+ β2 T̂ q(a)

)

û(a) ln
u(t, 0, x)

û(0)
da

− β1 T̂ V

1 + αV̂
− V̂

V

β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)u(t, a, x)da + β1 T̂ V̂

1 + αV̂

+ β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)û(a)

[

1 − (1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)

]

da

+ β2 T̂
∫ ∞
0

q(a)û(a)

[

1 − Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)

]

da

= β2 T̂
∫ ∞
0

q(a)û(a)

[

2 − Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)
− T̂

T
+ ln

u(t, a, x)

û(a)
+ ln

û(0)

u(t, 0, x)

]

da

+ β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)û(a)

[

2 − T̂

T
− V

V̂
+ V (1 + αV̂ )

V̂ (1 + αV )
− V̂ u(t, a, x)

V û(a)

]

da

+ β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)û(a)

[

1 − (1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)
+ ln

u(t, a, x)

û(a)
+ ln

û(0)

u(t, 0, x)

]

da

+ β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)û(a)

[

1 − 1 + 1 + αV

1 + αV̂
− 1 + αV

1 + αV̂

]

da

+ β1 T̂

c(1 + αV̂ )

∫ ∞
0

p(a)û(a)

[

ln
T

T̂
+ ln

T̂

T
+ ln

V

V̂
+ ln

V̂

V

1 + αV

1 + αV̂
+ ln

1 + αV̂

1 + αV

]

da.

Clearly, the last two terms of the above equation is zero, where we have used the fact that
ln a

b + ln b
a = 0. We then have

∂ L̂

∂t
=

(

1 − T̂

T

)

d1�T − d
(T − T̂ )2

T

+
∫ ∞

0
�1(a)

[

1 − û(a)

u(t, a, x)

]

d2�u(t, a, x)da +
(

1 − V̂

V

)
d3β1T̂

c(1 + αV̂ )
�V

−β2T̂
∫ ∞

0
q(a)û(a)

[

g

(
T̂

T

)

+ g

(
Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)

)]

da

− β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

[

g

(
T̂

T

)

+ g

(
V̂ u(t, a, x)

V û(a)

)

+g

(
1 + αV

1 + αV̂

)

+ g

(
(1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)

)]

da

+ β1T̂

c(1 + αV̂ )

∫ ∞

0
p(a)û(a)

[

−1 + 1 + αV

1 + αV̂
+ V (1 + αV̂ )

V̂ (1 + αV )
− V

V̂

]

da.

(4.21)
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Consequently, we integrate (4.21) over �, obtaining that

dL Ê (t)

dt
= − d1T̂

∫

�

‖∇T ‖2
T 2 dx − d

∫

�

(T − T̂ )2

T
dx − d3β1T̂ V̂

c(1 + αV̂ )

∫

�

‖∇V ‖2
V 2 dx

− d2

∫ ∞

0
�1(a)û(a)

∫

�

‖∇u(t, a, x)‖2
u2(t, a, x)

dxda

− β2T̂
∫

�

∫ ∞

0
q(a)û(a)

[

g

(
T̂

T

)

+ g

(
Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)

)]

dadx

− β1T̂

c(1 + αV̂ )

∫

�

∫ ∞

0
p(a)û(a)

[

g

(
T̂

T

)

+ g

(
V̂ u(t, a, x)

V û(a)

)

+g

(
1 + αV

1 + αV̂

)

+ g

(
(1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)

)]

dadx

− β1T̂

c(1 + αV̂ )

∫

�

∫ ∞

0
p(a)û(a)

α(V − V̂ )2

V̂ (1 + αV )(1 + αV̂ )
dadx

≤ 0,

where g(α) = α − 1− ln α ≥ 0, for α ∈ R
+. Note that each term of

dL Ê (t)
dt is non-negative,

Hence, due to the terms contain (T − T̂ )2 and (V − V̂ )2, we must have
dL Ê (t)

dt = 0 holds if

and only if T = T̂ , V = V̂ . Moreover, since g(α) = 0 if and only if α = 1, then
dL Ê (t)

dt = 0
means that

T̂

T
= V̂ u(t, a, x)

V û(a)
= 1 + αV

1 + αV̂
= (1 + αV̂ )T V û(0)

(1 + αV )T̂ V̂ u(t, 0, x)
= Tu(t, a, x)û(0)

T̂ û(a)u(t, 0, x)
= 1.

Inserting T = T̂ and V = V̂ into the above relation, give us u(t, a, x) = û(a). With
the help of [41, Theorem 4.2], together with Theorem 4.1, we confirm that Ê is globally
asymptotically stable if �0 > 1. This proves Theorem 4.3. ��

5 Numerical Simulation

To support and validate the global threshold type result of (1.10), we perform numerical
simulations in the cases of the 1-dimensional and 2-dimensional domain. We first consider
the spatially 1-dimensional case and fix � = (0, 1). We artificially set

h = 1, d = 0.1, b = 0.2, α = 1, c = 0.1, d1 = d2 = d3 = 0.0002, p = q = 1, θ = 0.1.
(5.1)

If we take β1 = β2 = 0.0026, then�0 = 0.95335 < 1. From Theorem 4.2, E0 is globally
attractive. Figure 1a–c demonstrate that the density of uninfected target T cells approaches
a positive level, the densities of infected T cells and the free virus particles decay to zeros
as time evolves. The spatial distributions of infected T cells gradually enlarge with higher
prevalence but decays as time evolves (see Fig. 1d).

If we take β1 = β2 = 0.003, then�0 = 1.100021. Theorem 4.3 ensures that Ê is globally
attractive. From Fig. 2a–c, the densities of uninfected target T cells, the densities of infected
T cells and the free virus particles go towards some positive distributions as time evolves.
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(a) (b)

(c) (d)

Fig. 1 The time evolution of the densities of uninfected target T cells, infected T cells (with U (t, x) =∫ ∞
0 u(t, a, x)da) and the free virus particles of system (1.6) with (5.1) and β1 = β2 = 0.0026 (�0 =
0.95335 < 1). The initial data is φ1(x) = 10, φ2(a, x) = e−b×a−∫ a

0 θ(s)ds (x−0.3)(0.7− x), and φ3(x) = 0

We have seen from Fig. 2d that the spatial distributions of infected T cells gradually enlarge
with higher prevalence as time evolves.

We next consider the spatially 2-dimensional case and fix � = (0, 1) × (0, 1). We arti-
ficially set the parameters the same as in (5.1). In Fig. 3, we see from Theorem 4.2 that E0

is globally attractive. Figure 3a demonstrates that the density of uninfected target T cells
approaches a positive level. Figure 3b, c demonstrate that the densities of infected T cells and
the free virus particles decay to zeros as time evolves. In Fig. 4, we see from Theorem 4.3
that Ê is globally attractive, that is, the densities of uninfected target T cells, the densities of
infected T cells and the free virus particles converges to some positive distributions as time
evolves.

6 Discussion

The stability analysis of infection-free and infection steady state has witnessed an important
and fundamental approach for understanding viral dynamics. This paper is spent on the
global threshold type dynamics of an infection age-space structured HIV infection model
involving two infection routes. The formulated model is inspired from previous models (1.3)
and (1.2), where global threshold dynamics of (1.3) is obtained in a spatially homogeneous
case and global threshold dynamics of (1.2) is obtained without considering the spatial
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(a) (b)

(c) (d)

Fig. 2 The time evolution of the densities of uninfected target T cells, infected T cells (with U (t, x) =∫ ∞
0 u(t, a, x)da) and the free virus particles of system (1.6) with (5.1) and β1 = β2 = 0.003 (�0 =
1.100021 > 1). The initial data is φ1(x) = 10, φ2(a, x) = e−b×a−∫ a

0 θ(s)ds (x − 0.3)(0.7 − x), and
φ3(x) = 0

(a) (b) (c)

Fig. 3 The time evolution of the densities of uninfected target T cells, infected T cells (with U (t, x) =∫ ∞
0 u(t, a, x)da) and the free virus particles of system (1.6) with (5.1), � = (0, 1) × (0, 1) and β1 =

β2 = 0.0026 (�0 = 0.95335 < 1). The initial data is φ1(x, y) = 10, φ2(a, x, y) = e−b×a−∫ a
0 θ(s)ds (x −

0.3)(0.7 − x)(y − 0.3)(0.7 − y), and φ3(x, y) = 0

(a) (b) (c)

Fig. 4 The time evolution of the densities of uninfected target T cells, infected T cells (with U (t, x) =∫ ∞
0 u(t, a, x)da) and the free virus particles of system (1.6) with (5.1), � = (0, 1) × (0, 1) and β1 =

β2 = 0.003 (�0 = 1.100021 > 1). The initial data is φ1(x, y) = 10, φ2(a, x, y) = e−b×a−∫ a
0 θ(s)ds (x −

0.3)(0.7 − x)(y − 0.3)(0.7 − y), and φ3(x, y) = 0
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aspects of the lymphoid tissues. The formulated model also extend models in [19,23,28,40]
in spatial aspects. In a bounded domain, we investigated the model (1.6) under the Neumann
boundary condition. We first transform the system into a hybrid system containing two
reaction-diffusion equations and a Volterra integral equation. By appealing to the Banach-
Picard fixed point theorem, we have proved the well-posedness of the system (1.10), that is,
the solution of (1.10) exists globally, and it is ultimately bounded. Following the classical
theory in [10,42], the basic reproduction number �0 is defined by the spectral radius of
L. We should mention that with the assumption that all parameters of (1.10) are spatially
homogeneous, E0 is constant. It is crucial to (3.2) that the next generation operator L does
have a positive constant eigenvector, which in turn implies that basic reproduction number
�0 can be explicitly characterized by a positive constant (see also in [4,5]).

The global threshold dynamics in terms of basic reproduction number �0 is investigated
by determining the local and global asymptotic stability of E0 and Ê (see Theorems 4.2 and
4.3). The methods used here are standard but not trivial. We also proved the strong | · |X-
persistence of (1.10) with �0 > 1, which is implied by the uniformly weak | · |X-persistence
(see (Proposition 4.1)). The global attractivity of E0 and Ê are achieved by the technique of
Lyapunov functional. Biologically, the HIV infection can be controlled with eradication and
persistence in terms of basic reproduction number �0 as time evolves. Finally, numerical
simulations in the 1-dimensional and 2-dimensional domain are carried out to validate our
main results.
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