
Journal of Dynamics and Differential Equations (2023) 35:1047–1082
https://doi.org/10.1007/s10884-021-10081-7

A Fixed Point Approach to Simulation of Functional
Differential Equations with a Delayed Argument

Vincenzo M. Isaia1

Received: 25 September 2020 / Revised: 2 September 2021 / Accepted: 9 September 2021 /
Published online: 7 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A computational method is developed for a family of functional differential equations in
one independent variable with a single deviating argument, assumed to be a delay. These
equations are mapped into a finite system of ODEs, a subsystem of which involves only the
function controlling the delay. Key features include efficiency during method of steps, free-
dom from Jacobians and root finding techniques, and computing a continuous approximation.
The nonlinear differential equations may be retarded, neutral or advanced. The method is
established for state dependent delays, stiff equations, discontinuous initial history, a specific
loss ofmonotonicity in the delay and extended naturally to distributed delays.When restricted
to ODEs, the method extends naturally to PDEs; the hope is the delayed version here can
eventually be extended to delayed PDEs. Conditions for convergence of the approximation
are established, and results of numerical experiments are reported to indicate robustness of
the implementation.

Keywords Functional differential equation · PSM · Picard iteration · Distributed delay ·
Nonmonotonic delay

Mathematics Subject Classification 65L03 · 34K07 · 34K40

1 Introduction

Functional differential equations arise when modeling situations in which earlier states of
a system as well as its current state, are needed to direct the evolution. Examples range
from control theory to disease transmission to the distribution of primes, see for example
[1] and the references therein. While resembling ODEs, there can be substantial changes in
a solution’s behavior when a delay is introduced. It is also possible that derivatives of the
solution may develop discontinuities, even if the vector field and initial data are smooth.

B Vincenzo M. Isaia
vincenzo.isaia@indstate.edu

1 Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-021-10081-7&domain=pdf
http://orcid.org/0000-0001-8319-4880

1048 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

If there is an incompatibility between the vector field and initial data, then this results in a
derivative discontinuity at the initial time, and would have potential to propagate in time.

The discussion begins with ODEs and a particular approach demonstrated in [2,3] and [4],
known as the Power Series Method, PSM, which has very attractive features: it is capable of
generating a Maclaurin expansion for the solution to IVPs involving ODEs. This is achieved
without taking any derivatives of the vector field, and usually for a low computational cost,
by leveraging Picard iteration with a polynomial environment. There is also an explicit a
priori error bound independent of the vector field’s derivatives.

The purpose here is to modify PSM to work in the presence of a single delayed argu-
ment, while attempting to retain the low cost, high accuracy attributes. Specifically, since
coefficients for a polynomial are computed, à la finite elements, the method bypasses the
need for dense output. The order of the method is flexible as well, and in practice it is to an
extent controlled by a user input. Standard monomials may not be the most robust basis for
particular situations, but when they are a viable option, they integrate very easily.

The deviating argument is assumed to be an explicit delay, as opposed to a delay of
threshold type, e.g. see [5], and the label DDE is used for differential equations whose vector
fields depend on arguments with an explicit delay. The initial focus is on a delay which enacts
a discrete time sampling of the solution’s history, including those with state dependence. A
specific continuous time sampling, namely a distributed delay is also considered.

The method that is developed here is related to the one given in [6], in that it uses PSM
as a motivation. However, there are significant differences in the execution, making them
independent of each other. Themethod presented here applies Picard iteration up to a stopping
iterate over a fixed time interval, then moves to the next interval and repeats. The approach
in [6] applies each Picard iteration globally in time, i.e. over all possible time intervals.

Thismethod,PSMd, ismuchmore efficient numerically than the one in [6]. However, there
is a more complicated situation concerning error bounds here than in [6]. The error generated
in any particular time interval is transferred to the next time interval. Hence, stability of the
vector field with respect to (wrt) the expansion errors is important to understand, while both
PSM and the method in [6] have no stability considerations. Also, the method in [6] currently
is better suited for multiple delays, while PSMd as developed here applies to a single delay.

As compared with other methods, PSMd as a MATLAB code does not require dynamic
memory allocation and tends to run quickly. Versus codeswritten in FORTRAN, the codes for
PSMd are not very cumbersome. Codes can be reused very easily with minor modifications
to capitalize on problem specific advantages. Passing information from one section of a
problem to another sometimes requires attention to detail on the programmer’s part, as such
the change of variables needed to develop PSMd are given across several steps to aid that
situation.

ThePSMphilosophy combines polynomial vector fields via auxiliary variableswithPicard
iteration, see [3]. A brief summary of PSM will appear in Sect. 2 to give a framework
for computational issues when the delayed argument is present. It also addresses the mild
assumption, known as projectively polynomial, for the vector fields under consideration,
which is not needed until Sect. 4. In addition to the benefits it provides for ODEs, the use of
Picard iteration neutralizes the difficulty of approximating state dependent delays.

Existence and uniqueness of solutions are important when numerical simulations are con-
cerned. Certain DDEs can have existence or uniqueness issues, even with smooth problem
data. The content of Sect. 3 begins with the family of problems, along with a discussion of
notation. An example concerning existence issues is presented, which also identifies how
uniqueness issues can occur. Assuming compatibility and Lipschitz continuity in most argu-
ments from the vector field and delay, a proof of existence and uniqueness is given. There are

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1049

no requirements on the Lipschitz constants. The proof provides the justification for PSMd.
The primary goal of this paper is not to explore existence and uniqueness issues, however
they also can not be ignored.

When applicable, themethod of steps (MoS) solves a DDE over one subinterval at a time,
and then uses that solution for the delayed terms in the next subinterval, see [7]. Over these
subintervals, the DDE appears to be an ODE, since the delayed terms are considered known.
Additionally, the previously mentioned jump discontinuities are possible in the solution’s
derivatives, but if the initial data, vector field, delay are all smooth, jumps can only appear at
the MoS endpoints. Using this framework, there is a discussion of the propagation of jump
discontinuities in the derivatives of the solution. This discussion and notation for MoS are
the first half of Sect. 4. Smoothness is not mandatory for the initial data with PSMd, but is
mandatory for the vector field and delay.

Formally, the subintervals are how far forward in time the solution can be determined
based on the information that is known. Suppose information defined on [−a, 0] is given for
some a ∈ R

+ and assume a delay which is increasing in time. The future time t∗ > 0 which
delays to 0 would represent the largest time for which the vector field’s delayed terms still
reference the given information. The DDE can then be solved or approximated over (0, t∗),
which would be the first MoS subinterval.

If the delay continues to increase, then the solution/approximation over (0, t∗) can be used
as the new given information. The time t∗∗ > t∗ which delays back to t∗ can be sought, and
the problem can then be solved or approximated over (t∗, t∗∗). This process is then continued
as long as the delay increases with time and doesn’t ever equal the current time.

Extending a polynomial vector field to the delay case comes from a very specific change
of variable, which is examined in the rest of Sect. 4. This change of variable, in the case of
discrete time sampling, removes the delayed argument from the history terms and renders
the DDE into a system of ODEs. It converts the delay into a single coefficient on the original
vector field. The delay also generates another system of ODEs which compute the MoS
endpoints without using root finding techniques along with the coefficient in the first system.
In addition, both systems have a fixed number of components for all time.

The presentation of PSMd and its algorithm, an error analysis and discussion of con-
vergence possibilities for PSMd begin Sect. 5. Generalizations of the differential equation
and initial data are considered. In particular, the notion of subdividing the MoS subinterval
is developed. Subdivisions play a major role in the approach’s ability to handle problems
involving stiff equations, nonhomogeneous (forcing) terms and discontinuous initial data.
The accommodations needed for delays which decrease and in particular, the failure of MoS,
and distributed delays, an integral form of continuous time sampling, conclude this section.

The results of a variety of numerical experiments are presented in Sect. 6 that demonstrate
the robustness of PSMd. These experiments involve most of the situations covered in this
paper. In this paper, Z+ represents 1, 2 . . . and Z

+
0 = Z

+ ∪ {0}.

2 PSM for ODEs

This subsection contains a summary of the PSM approach. The state of a system is denoted
u(t). The unique solution to an IVP with a nonlinear autonomous vector field is called
projectively polynomial if the solution u(t) is a component of the solution for some equivalent
system with a polynomial vector field.

123

1050 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

The change of variables, which convert the original vector field to an autonomous poly-
nomial equivalent, is comprised of auxiliary variables. The solution to the original system
along with the auxiliary variables make up the solution to the equivalent polynomial system.
An example will demonstrate these ideas.

Example Suppose u̇ = u cos u, and note that the vector field is not polynomial due to the
cos term. Introducing U = cos u and V = sin u, yields the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇ = uU

U̇ = −V u̇ = −uUV

V̇ = Uu̇ = uU 2

where the first component of u = [u,U , V] solves u̇ = u cos u and the vector field for the
new system is polynomial, in fact cubic. Hence, the solution to u̇ = u cos u is projectively
polynomial and U , V are auxiliary variables.

This vector field can be reduced to a quadratic vector field; one possibility is to introduce
two more auxiliary variables: W = uU and X = uV . This demonstrates that the scalar
transcendental vector field u cos u is equivalent to a 5th order system of quadratic vector
fields (or a 3rd order cubic system).
Finding a set of auxiliary variables that converts the original vector field into a polynomial
vector field is not overly difficult and was given in a NASA technical report by Fehlberg
[8]. Coupling this idea with Picard iteration and developing the resulting theory was done by
Parker and Sochacki et al., see [4] and references therein.

For any given projectively polynomial solution, the equivalent polynomial vector field (not
unique) may be transformed into a quadratic one if enough auxiliary variables are used. In the
sequel, all polynomial vector fields are reduced to quadratic form, as far as any theoretical or
presentation matters are concerned. For computational purposes, it may or may not be worth
the effort to enact the reduction.

Vector fields which cannot be transformed into polynomial ones do exist, but they must be
constructed carefully, see [2] for details. Only IVPs with projectively polynomial solutions
are considered here, and this is the mild assumption mentioned in Sect. 1. Also, see the
discussion following (14).

If the initial time for the IVP is zero, PSM produces the Maclaurin expansion for each
component of the system. The initial data provides the constant term, the first iteration
produces the linear term, and in general, the degree of the expansions increases by one for
each Picard iteration performed. From a computational point of view, this generation of the
Maclaurin expansion occurs without taking any derivatives of the vector field. All the claims
made in this paragraph follow from the results in [3].

The key ingredient to the efficiency of PSM is that in any given iteration, it only com-
putes terms that produce new information, and these terms will subsequently be invariant
with increasing iteration. The relevant terms are discrete convolutions of the polynomial
coefficients. This structure for the expansion is retained during the move to PDEs, see [9].

Looking forward, an issue that arises from a delay is the presence of mixed terms t i

and powers of the delay, whose product may require significant work to integrate. This is
circumvented by the change of variable in Sect. 4.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1051

2.1 Computational Considerations

The computational aspect and its efficiency are now examined to shed light on some imple-
mentation details that are relevant for the deviating argument case. The focus will be on one
equation out of a system, with a single term quadratic vector field: ẇ = uv.

Let u(t) = ∑d
i=0Ui ti be polynomial in t and represent u(t) by [U0,U1, . . . ,Ud]. Simi-

larly let [V0, . . . , Vd] represent v(t) and [W0, . . . ,Wd] represent w(t). The focus is on one
iteration, which computes the ‘next’ coefficient of W ’s expansion.

For illustrative purposes, consider the case d = 3 and a 2D array using the monomials
Ui ti and Vi t i as row and column headings, respectively. If the 2D array’s entries are the
product of the row and column heading, then summing the array’s entries would represent
the product u(t)v(t).

Figure 2 contains a visual representation of the product u(t)v(t) for the case d = 3. The
choice of row and column headings is for presentation purposes: this array, when viewed as
a matrix, has its diagonals containing the same power of t in the product.

In particular, the trace is the discrete convolution of the polynomials currently representing
the expansion

U0V3 +U1V2 +U2V1 +U3V0

and it produces the coefficient on the t3 term in the product u(t)v(t), i.e. a3 = ∑3
i=1UiV3−i

where
∑

ai t i is the expansion of the product uv.
The role of integration is to transfer the given coefficient information to the coefficient in

the next power, i.e.Ui and Vi with i = 0 . . . 3 are used to obtainW4. ComputingW4 reduces
to computing a3 and integrating (which amounts to dividing by an appropriate integer). In
addition, only the main diagonal is needed to compute W4, see [3] for a proof.

Since the initial data are invariant, so is the linear term in the approximation for each
component. This can be extended via induction, to show that the underlined terms in the
array are also invariant: if the given coefficients, Ui , Vi , i = 0 . . . 3, are invariant wrt further
Picard iteration, then so is the coefficient for the next power. Hence, once these coefficients
are computed, they need not be recomputed during later iterations.

Individual terms below the main diagonal are also invariant wrt further Picard iteration,
but that particular convolution is not invariant, since all of the terms which would contribute
to that convolution have not been introduced yet. For example, the terms V4t4 and U4t4 are
not available, but are needed to compute the t5 coefficient.

This is the key ingredient for efficiency with PSM: in a given iteration, it computes only
the terms in the array that produce new information, and will be invariant with increasing
iteration. These are the terms that make up the current main diagonal, i.e. just compute the
trace.

2.2 Integration Algorithm

PSM can be quantified as follows: let N ∈ Z
+ be the size of a given IVP’s system when it

has a polynomial vector field, and let its components be labeled uλ, with λ ∈ {1, . . . , N }.
For presentation convenience, if the vector field contains linear terms, a dummy component
of u0 = [1, 0, . . . , 0] is used so that all terms appear to be quadratic. Suppose an arbitrary
component to a system has a d degree polynomial representation already known. Denote this
by uλ(t) = ∑d

i=0U
λ
i t

i with representation [Uλ
0 , . . . ,Uλ

d]. The method would then expand
the degree to d + 1 by computing the next coefficient Uλ

d+1.

123

1052 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

In algorithm form, given any IVP whose solution is projectively polynomial

1. Convert the IVP via auxiliary variables to have an autonomous, polynomial vector field
with initial time zero. Write the ODE for each component uλ with λ ∈ {1, . . . , N } as

u̇λ = Cλ +
N∑

λ1=0

N∑

λ2=λ1

Cλ
λ1λ2u

λ1uλ2

where the λ1, λ2 entry in the coefficient matrix Cλ is zero if the pairing of components
λ1 and λ2 does not contribute to the vector field.

2. For each λ ∈ {1, . . . , N }, enact the Picard iteration

a. Compute trace for each pair (λ1, λ2): c
λ
λ1λ2

=
d∑

i=0

Cλ
λ1λ2

Uλ1
i Uλ2

d−i

b. Sum over pairs: cλ =
∑

λ1

∑

λ2≥λ1

cλ
λ1λ2

c. Integrate and update:
cλ

d + 1
= Uλ

d+1

3. d �→ d + 1 and repeat steps 2-3 until d = dstop.

and this encapsulates the PSM approach. The list in step 2 will be dubbed the integration
algorithm, and ultimately, this is coupled with a different step 1 for the delay case. The
determination of auxiliary variables when a delay is involved is covered in more detail in
Sect. 4.

In closing, note that the order of the Maclaurin expansion is equal to the number of Picard
iterations performed. The accuracy in the PSMd approximation can be improved, to a certain
extent, by increasing the number of iterations, although the approximation is constrained by
being a Maclaurin polynomial, which can converge very slowly in some cases.

3 DDEs and Successive Approximation

For convenience, a scalar functional differential equation of arbitrary order with a delayed
argument is used as the starting point, although it will be apparent that this approach is
applicable to systems as well. In addition to assuming that the deviating argument is a
delay, assume (p, q) ∈ R

2 with Euclidean metric and that Δ(p, q) is uniformly Lipschitz
continuous wrt the second variable with Lipschitz constant CΔ and continuous in the first
variable.

The state dependent deviating argument would be given by Δ(t, u(t)), which is relabeled
Δu(t) and the condition that this be a delay implies Δu(t) ≤ t for all t of interest. So as not
to confuseΔu with a partial derivative, which is needed later, partials ofΔ are indicated with
∂ .

Let L1, L2 ∈ Z
+, t0 ∈ R and D be the differential operator, which is used until arbitrary

order derivatives are not required. The family of problems under consideration, with f :
(0, T) × R

L1 × R
L2 → R and Δ : (0, T) × R → R, is given by

⎧
⎪⎨

⎪⎩

DL1+1u(t) = f
(
t, DL1u(t), DL2u (Δu(t))

)
t > t0

u(t) = Ψ (t) t ∈ [a, t0]
(1)

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1053

with the lists L1, L2 on D indicating an ordered list of derivatives, where the entries specify
which derivatives are present. For example, D[0,2,4]u(t) would indicate that f has u(t),
D2u(t) and D4u(t) as its arguments. For convenience during analysis, takeL1 = [0, . . . , L1]
and let f absorb unused terms. Similarly, take L2 = [0, . . . , L2], with L2 independent of
L1.

Even though the data Ψ , referred to as initial history, only needs to defined over [a, t0] in
the DDE, the upcoming existence and uniqueness proof requiresΨ : [a, T) → Rwhere T is
the right end point for the domain of the DDE’s solution. The word ‘history’ unqualified is a
generic label identifying what known terms represent the delayed argument terms that occur
at times away from the initial time. The left endpoint of the initial history’s domain, denoted
a, depends on both Δu and Ψ . It is based on the minimum value achieved by Δu(t) over the
solution’s domain, which may not be known a priori. Assuming the delay is increasing, then
a = ΔΨ (t0).

One can arrive at (1) from the more general form

F
(
t, DL1+1(t), DL2 (Δu(t))

)
= 0

provided the inverse function theoremholds, allowing DL1+1u(t) to be isolated.This situation
can be approximated with proper modifications to PSMd, but this is not undertaken here.

Following [10], equations can be classified by comparing the highest derivative without a
delayed argument to the highest derivative with a delayed argument. In particular, if L1+1 >

L2 the equation is considered to be retarded, if L1+1 = L2, then the equation is considered to
be neutral, while if L1+1 < L2 the equation is considered to be advanced. This classification
effects the propagation of any discontinuities which may be present in derivatives of the
solution, which is discussed further in the next subsection.

In expectation of future notation, superscripts will be used for vector components. Define

L ≡ max{L1, L2} and denote u = (
ul

)L
l=0 as well as Ψ = (

Ψ l
)L
l=0 with ul = Dlu and

Ψ l = DlΨ . This provides the standard change of variables to convert (1) to a first order
system. Letting f absorb unused arguments, (1) can be written

⎧
⎨

⎩

u̇(t) = f (t,u(t),u(Δu(t))) , t > t0

u(t) = Ψ (t), t ∈ [a, t0]
(2)

where Δu0 has been shortened to Δu since the component u0 of u in (2) is the solution to
(1). Note that the system version (2) contains retarded, neutral and advanced problems in one
framework.

3.1 Breaking Points

This subsection highlights the need for a definition of a solution to (2). The definition of
interest here is based on the one given in [11] (see references therein), but the presentation
is postponed until some notation is developed in Sect. 4.1.

To discuss existence and uniqueness, an understanding of how jump discontinuities in
a derivative of the solution interact with the DDE is in order. The derivative that has the
jump discontinuity can be of any order. Breaking points, see [12], are times at which a jump
discontinuity appears in some derivative of the solution. The order of a breaking point equals
the highest order derivative of the solution which is still continuous at the breaking point.

123

1054 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

In the sequel, an nth order jump implies a jump discontinuity in the n+ 1 order derivative
of the solution. Note that a jump of a certain order implies all derivativeswith higher orders do
not exist at the breaking point. However, those higher order derivatives may not necessarily
jump; the discontinuity could be removable. The concern here is always with the lowest order
derivative that has a jump.

If f ,Ψ andΔu are all smooth, then the chain rule shows that breaking points can only occur
at the MoS endpoints as was mentioned in Sect. 1. Because of the jumps, these endpoints
are also the possible locations for existence and uniqueness issues. Failure of existence is
termination of the solution; the incompatibility of f and Δu prevents extension of the current
solution, at least locally. Another possibility is that more than one solution can be constructed
and there is a loss of uniqueness.

A breaking point tb is classified as resolved if there exists a unique solution over [tb, A]
for some A > tb. When either termination or loss of uniqueness occurs at a breaking point,
it is classified as unresolved. Classifying breaking points, determining termination vs loss of
uniqueness, and if termination occurs, whether there is reappearance of the solution at later
times, are all part of a decision making process that would sit on top of PSMd, which itself
is just the computational engine.

Concerning resolved breaking points, taking derivatives of the vector field can be used
to show the effect of retarded, neutral and advanced equations on jumps. As a general rule,
a retarded equation tends to smooth out a jump that occurs, by propagating it to the next
breaking point, but at a higher derivative order. A neutral equation will propagate the jump
at the same order, while for an advanced equation, the order of the jump will decrease until
the jump reaches u̇.

For a quick view of the mechanism of an unresolved breaking point, this modification to
a problem from [11] is presented.

Example Consider

u̇(t) = −u̇ (u(t) − 2) , t > 0, u(t) = 1 − t, t ≤ 0

which has solution u(t) = 1 + t over t ∈ (0, 1) and this is all that is needed here. The
delay Δu(t) = u(t) − 2 along with the initial history of 1− t are needed to compute the left
endpoint t = −1 for the initial history’s domain and to determine the next breaking point at
t = 1. What must be confronted now is the state dependency of the delay past the breaking
point with the solution still unknown.

On the right side of the breaking point, u̇(1+) = −u̇(u(1+) − 2). If u(t) − 2 > 0 as
t → 1+, then u̇(1+) = −u̇(0+) = −1. But the condition u(t) − 2 > 0 imposes a condition
on u̇(1+): since u(1) = 2 and u needs to increase to make u(t) − 2 > 0, then u̇(1+) > 0
which is a contradiction.

If there was existence and uniqueness for this problem, one would find that upon looking
at u(t)−2 < 0, this would be compatible with the vector field and give a value for u̇(1+) that
is consistent. But the assumption u(t) − 2 < 0 produces u̇(1+) = −u̇(0−) = −(−1) = 1,
which contradicts u decreasing from 2.

Since neither option is viable, the solution terminates at t = 1. Sometimes, incompatibility
is temporary and at a later time, a solution can be defined again. It is also possible that f and
Δu are ‘too’ compatible and that both conditions produce consistent results, which would
generate two viable solutions. Note that if these double solutions are subject to a breaking
point in the future, there is the possibility of having more than two solutions.
PSMd will compute the MoS endpoints, and hence the breaking points. Resolved breaking
points pose no issue for PSMd as they are not integrated over. When unresolved breaking

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1055

points occur, only testing for loss of uniqueness or termination (and possible reappearance)
of the solution are the required modifications to PSMd. This is a codification of the analysis
in the example, which tests whether the Picard computation is meaningful.

As opposed to unresolved breaking points, more attention will be given to situations when
MoS fails, which need to be handled more carefully. This is seen in the problem of Castleton
and Grimm, see [13], and for which numerical results are given in Sect. 6.8 on page 38.

3.2 Existence and Uniqueness Proof

In order to ensure existence and uniqueness, f and Δu need to be compatible see [11] in
particular, the inequality at the bottom of page 352. The theorem will apply up to the first
unresolved breaking point, as the Picard iteration does not detect termination or loss of
uniqueness unless analysis similar to the example is performed on the computed polynomial.

Under these circumstances, the assumptions needed for the existence and uniqueness proof
are now collected. Suppose f in (2) is continuous with respect to t and uniformly Lipschitz
continuous in the remaining variables on [t0, T ∗] × [−U ,U]2L , with fixed U , T ∗ < ∞.
Such vector fields will be referred to as admissible. Denote by Cl

1 the Lipschitz constant
of an admissible f with respect to component ul(t) of u(t), and denote by Cl

2 the Lipschitz
constant for component ul(Δu(t)) of u(Δu(t)). In addition, define

C f ≡
L∑

l=0

Cl
1 + Cl

2 and M f ≡ max
l

max[t0,T ∗] f (3)

where the T ∗ dependence in M f has been suppressed.
The assumption needed for Ψ as far as the existence and uniqueness result is concerned

is a bound on height difference. In particular, given an admissible f , for any fixed a, T > 0
such that a < T < T ∗, define

MΨ ≡ max
l

(

max
t∈[a,T] Ψ

l(t) − min
t∈[a,T] Ψ

l(t)

)

where the T dependence has been suppressed. If MΨ < ∞ then Ψ is called admissible. If
Ψ is continuous, then Ψ is admissible since [a, T] is compact.

Existence and uniqueness can be extended to (2) over compact intervals in time prior to the
first unresolved breaking point. The method is via the method of successive approximations:
applying Picard iteration to the case of admissible vector fields and initial histories. Alternate
notation |u(t) − v(t)| = |u − v|(t) will be used when convenient.

Proposition 1 For a given (2) with continuous Ψ and admissible f over the interval [t0, T ∗],
denote the smallest unresolved breaking point of (2) by t∗b . If there is no unresolved breaking
point, then t∗b = T ∗. Define the sequence uk by u0(t) = Ψ (t) for t ∈ [a, T ∗] and for k > 0,
define

uk+1(t) =
⎧
⎨

⎩

Ψ (t), t ∈ [a, t0]
uk(t0) +

∫ t

t0
f
(
s,uk(s),uk(Δuk (s))

)
ds, t > t0

(4)

The sequence uk(t) converges uniformly for t ∈ [a, T] for every T < t∗b and limk→∞ uk(t),
solves (2) uniquely whenever u(Δu(t)) is defined.

123

1056 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Proof For the entire proof, superscripts will denote components of u, and subscripts will
refer to iteration numbers.

For any fixed T < T ∗, consider the compact interval [t0, T]. Continuity of Ψ l , the
Fundamental Theorem of Calculus and induction yield a well defined uk for all k ∈ Z

+
0 and

t ∈ [t0, T], and by hypothesis, uk(t) = Ψ (t) if t ∈ [a, t0].
Let fk(t) ≡ f(t,uk(t),uk(Δuk (t))) with components f lk for any 1 ≤ l ≤ L . Consider (4)

after the first iteration, and taking the maximum over all components produces

max
l

|ul1 − ul0|(t) = max
l

∣
∣
∣
∣Ψ

l(t0) +
∫ t

t0
f l0(s) ds − Ψ l(t)

∣
∣
∣
∣ ≤ MΨ + M f (t − t0)

for t ∈ [t0, T]. For t ∈ [t0, T], then Δu0(t) ∈ [a,Δu0(T)] ⊂ [a, T].
If Δu1(t) ≥ t0, then it follows that

max
l

∣
∣
∣ul1

(
Δu1(t)

) − ul0
(
Δu0(t)

)∣∣
∣ = max

l

∣
∣
∣
∣
∣
Ψ l(t0) +

∫ Δu1 (t)

t0
f l0(s) ds − Ψ l(Δu0(t))

∣
∣
∣
∣
∣

≤ MΨ + M f (Δu1(t) − t0)

thus max
l

∣
∣
∣ul1

(
Δu1(t)

) − ul0
(
Δu0(t)

)∣∣
∣ ≤ MΨ + M f (t − t0) since Δuk is a delay for any k.

If Δu1(t) < t0, then

max
l

∣
∣
∣ul1

(
Δu1(t)

) − ul0
(
Δu0(t)

)∣∣
∣ = |Ψ l(Δu1(t)) − Ψ l(Δu0(t))| ≤ MΨ

and it again follows that |ul1(Δu1(t)) − ul0(Δu0(t))| ≤ MΨ + M f (t − t0) for t > t0.
Defining

E0(t) ≡ max

{

max
l

∣
∣
∣ul1 − ul0

∣
∣
∣ (t),max

l

∣
∣
∣ul1(Δu1(t)) − ul0(Δu0(t))

∣
∣
∣

}

it follows that the previous bounds on |ul1 − ul0|(t) and |ul1(Δu1(t)) − ul0(Δu0(t))| can be
summarized by the single bound E0(t) ≤ MΨ + M f (t − t0).

In general, define

Ek(t) ≡ max

{

max
l

∣
∣
∣ulk+1 − ulk

∣
∣
∣ (t),max

l

∣
∣
∣ulk+1(Δuk+1(t)) − ulk(Δuk (t))

∣
∣
∣

}

and it will be shown that for each l, the differences in the vector field can be bound by the
error: | f lk+1 − f lk |(t) ≤ C f Ek(t) with C f given in (3).

To clarify the upcoming notation, a verbal description of the process is given first. The
difference in the vector field is telescoped and regrouped. The telescoping terms that are
introduced have the previous iteration’s (k − 1) information in each argument until a certain
argument is reached, after which the information comes from the next iterate (k). The terms
are regrouped so that the subtractions involve vector field terms which differ in only one
argument, and the result follows from the triangle inequality.

Introduce ulk = {(ui)lk}Li=1 where l = 0, . . . , L . For a fixed l, define the components via
(ui)lk = uik when l < i , and (ui)lk = uik−1 when i ≤ l. Inserting u0k = uk in the delay then
the difference | f lk+1 − f lk |(t)| can be written

| f l(uk+1(t),uk+1(Δuk+1(t))) − f l(uk(t),uk(Δuk (t)))|

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1057

=
∣
∣
∣
∣
∣

L∑

m=1

f l(um−1
k+1 (t),uk+1(Δuk+1(t))) − f l(umk (t),uk+1(Δuk+1(t)))

+
L∑

m=1

f l(uk(t),u
m−1
k+1 (Δuk+1(t))) − f l(uk(t),umk (Δuk (t)))

∣
∣
∣
∣
∣

≤
L∑

m=1

Cm
1

∣
∣umk+1(t) − umk (t)

∣
∣ +

L∑

m=1

Cm
2

∣
∣umk+1(Δuk+1(t)) − umk (Δuk (t))

∣
∣ (5)

after applying the triangle inequality and the Lipschitz condition. This implies

| f lk+1 − f lk |(t) ≤ C f Ek(t) (6)

Generalizing the previous bounds, define Pk(t) ≡
(
MΨ

(t−t0)k

k! + M f
(t−t0)k+1

k+1!
)
. Denote

C∗ = C f (1+CΔM f) andCk∗ as the kth power ofC∗. Note that the bound Ek(t) ≤ Ck∗ Pk(t),
holds when k = 0. It will now be demonstrated via induction that Ek(t) ≤ Ck∗ Pk for all k.
Using this bound and (6), there is for each l

|ulk+2 − ulk+1|(t) ≤
∫ t

t0
| f lk+1 − f lk |(s) ds ≤

∫ t

t0
C f C

k∗ Pk(s) ds

and subsequently, there is the bound

|ulk+2 − ulk+1|(t) ≤ C f C
k∗
(

MΨ

(t − t0)k+1

k + 1! + M f
(t − t0)k+2

k + 2!
)

= C f C
k∗ Pk+1(t) (7)

for each l as well.
A similar bound can be shown to hold for the difference between the delayed iterates. To

this end, denote t∗ = min{Δuk+2(t),Δuk+1(t)} and t∗ the maximum. It then follows that

∣
∣
∣ulk+2(Δuk+2(t)) − ulk+1(Δuk+1(t)

∣
∣
∣ ≤

∣
∣
∣
∣
∣

∫ Δuk+2 (t)

t0
f lk+1(s) ds −

∫ Δuk+1 (t)

t0
f lk (s) ds

∣
∣
∣
∣
∣

≤
∫ t∗

t0

∣
∣
∣ f lk+1(s) − f lk (s)

∣
∣
∣ ds +

∫ t∗

t∗

∣
∣
∣ f l∗(s)

∣
∣
∣ ds (8)

where f l∗ = f lk or f lk+1 depending on which iterate produces the larger Δu . In either case,
the last integral may be bound as

∫ t∗

t∗
| f l∗(s)| ds ≤ M f

∣
∣Δuk+2(t) − Δuk+1(t)

∣
∣

≤ M f CΔ |uk+2(t) − uk+1(t)| (9)

and using (6), (9) along with the induction argument, (8) then becomes

|ulk+2(Δuk+2(t)) − ulk+1(Δuk+1(t)| ≤ (C f C
k∗ + M f CΔC f C

k∗)Pk+1(t) = Ck+1∗ Pk+1(t)

(10)

since t∗ < t and Pk(t) is strictly increasing for t > 0. SinceC f < C∗ impliesC f Ck∗ < Ck+1∗ ,
then Ek+1(t) ≤ Ck+1∗ Pk+1(t). And thus, Ek(t) ≤ Ck∗ Pk(t) holds for all k ≥ 0.

For each 1 ≤ l ≤ L , it follows that
∑

k |ulk+1 − ulk |(t) ≤ ∑
k C

k∗ Pk(T) over the compact
interval [t0, T]. Since ∑

k C
k∗ Pk(T) ≤ max{MΨ , M f }e2C∗(T−t0), it follows from the Weier-

strass M-test that for each 1 ≤ l ≤ L , the sequence ulk(t) converges uniformly over [t0, T]

123

1058 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

to a continuous limit. This limit solves (2), since (2) and (4) are equivalent. In turn, Δuk (t)
converges as well since Δu is continuous wrt u. �

4 Polynomial Vector Fields for Delay Differential Equations

In this section, the original DDE (1) will undergo a series of changes of variable. The PSMd
method itself only relies on the final system, after all changes have been enacted. The first
change is the standard change to achieve autonomy, the second change, given by (14), is
the crucial one for PSMd: it removes the delay from the original problem, and it moves the
delay to the coefficient of the current vector field along with into its own subsystem. The
final change is just to couple (14) and the delay subsystem after the delay subsystem has been
developed.

The second change is based on the fact that the delay maps each interval from MoS into
the previous interval. If the delay is composed with itself, then this can map anyMoS interval
back to the first one. So a change of variable involving compositions of the delay allows
every MoS problem to be run over the same interval (or ‘local clock’), mainly (0,Δ−1(0)).
The benefits to linking each MoS problem to the same clock are seen in this section.

State independent delays are considered first, so the delay notation is shortened to Δ(t).
Anticipating the ideas of PSM, a standard change of variable is invoked which shifts the
initial time to the origin and makes the vector field autonomous. To this end, define t ≡ t − t0
and u(t) ≡ u(t + t0) = u(t).

In addition, append any auxiliary variables needed to make the vector field autonomous
to u as well as appending their evolution equations to f . The time, the new variable list, the
delay and the new vector field are relabeled as t , u, Δ(t) and f since recovery of the original
solution is simply to shift the first component of u by t0.

Due to the derivative being invariant with respect to a time shift, (2) then becomes under
these changes

⎧
⎨

⎩

u̇(t) = f (u(t),u (Δ(t))) , t > 0

u(t) = Ψ (t + t0), t ∈ [a − t0, 0]
(11)

where the vector field is now autonomous and the initial time is 0. If t0 �= 0, then some
computational effort must be exerted to put Ψ (t + t0) into standard polynomial form wrt t .
For convenience, assume t0 = 0 in the sequel.

Prior to examining the auxiliary variables for (11), MoS is reviewed in the next section.
This process partitions the solution’s domain into subintervals based on the given delay.
MoS provides a convenient framework for discussing both propagation of jumps along with
computational aspects. After that, auxiliary variables will be addressed in Sects. 4.2, 4.3 and
4.4 .

4.1 Method of Steps and its Failure

A state independent deviating argumentΔ(t)will be called a simple delay ifΔ is continuous,
monotonically increasing andΔ(t) < t for all t in its domain. In particular, ifΔ(t) is a simple
delay then its inverse Δ−1(t) exists. Define the lag via τ(t) ≡ t − Δ(t) > 0.

MoS is well defined in the case of a simple delay, and it uses the given delay to partition
the domain into subintervals, over which the DDEs can be cast into an ODE form, which

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1059

gives ODEmethods traction to be utilized. The delay maps each subinterval (except the first)
into the preceding one.

Recalling the assumption that t0 = 0, first consider the case t1 = ∞, i.e. the solution’s
domain is (0,∞). Define τ0 ≡ 0 as well as the sets

TΔ ≡ {τm−1 | Δ(τm) = τm−1,m ∈ Z
+
0 }

and, after defining Im ≡ (τm, τm+1),

IΔ ≡ {Im−1 | m ∈ Z
+
0 }

which are well defined for any simple delay. Note that elements of IΔ are also the intervals
over which the history does not change: over I0, Ψ is the history, over I1, the solution over
(τ0, τ1) is the history etc.

If t1 < ∞, then there are two cases to consider: there exists an m∗ ∈ Z
+ such that

τm∗ = t1, i.e. the right edge of the domain coincides with the right edge of an interval for
MoS. If the solution’s domain falls in the middle of an interval fromMoS, i.e. there exists an
m∗ ∈ Z

+ such that τm∗−1 < t1 < τm∗ , then set τm∗ = t1. In either of these cases, m would
be an element of {0, 1, . . . ,m∗} rather than Z+

0 .
If any of f , Ψ or Δu are not smooth, then the first occurrence of a jump would also be

used to seed a set like TΔ and all of these sets should be unioned together to act as TΔ as the
analysis for termination or loss of uniqueness needs to be checked at each of these points.
This is considered in a little more detail in Sect. 5.4 for the case of initial history jumps.

It is also possible to present the definition of a solution to (11).As per [11] and the reference
therein, u(t) is a solution if u(t) is continuous over (t0, t1), continuously differentiable and
satisfies (11) overIΔ. The information on the right side of a jump should be used to evaluate
the vector field, in order to obtain u̇ to the right of τm ∈ TΔ.

MoS can fail two ways: if there is a vanishing lag at t∗ < t1, i.e. Δ(t∗) = t∗, then
τm → t∗ but t∗ < t1. Another failure mechanism is for Δ to have a turning point so that Δ is
not invertible. For a specific situation examined here, minor modifications to the increasing
version are possible, such that MoS can be extended to include a change in monotonicity.
The failures of traditional MoS are addressed in Sect. 6.8.

Proposition 1 implies a unique solution will exist for (11) with admissible f at least up
to the first unresolved breaking point. Denote this unique solution over elements of IΔ

by um(t) ≡ u(t), t ∈ Im with m ∈ Z
+
0 . Define um+1(τm+1) = um(τm+1) so that by

construction, the piecewise function made up of um is continuous if the individual um are
continuous.

It is straightforward to modify the proof of Proposition 1 to handle the case when um(t)
is considered known, and (4) is used to compute um+1(t), along with using the identification
uk(Δ(s)) = (um)k(Δ(s)) in the vector field. Hence, by induction the piecewise function
{(um)k | m ≥ 0, k ≥ 0} computed from (4) approximates the solution to (11).

By definition of τm , it follows thatΔ : Im → Im−1 for eachm ≥ 0. Consider compositions
of the delay, denoted

Δm(t) ≡ Δ ◦ · · · ◦ Δ(t) (12)

with Δ1(t) = Δ(t) and Δ0(t) ≡ t = t − τ0, and it follows that Δm : Im → I0. For the case
of a constant lag, there is Δ(t) = t − τ for some fixed τ > 0, and τm = mτ for all m ≥ 0,
while Δm(t) reduces to t − mτ .

123

1060 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

4.2 Vector Field Auxiliary Variables and Time Change

There are several issues to address concerning auxiliary variables and delays. In the upcoming
example, the case of a constant lag is considered since this delay itself does not require auxil-
iary variables. The choice of auxiliary variables to convert the vector field into a polynomial
one is the exact same as in the ODE case up to the delay terms, which can then be examined
carefully. The next two subsections are devoted to the more general case of nonconstant lag.

Example Let u̇(t) = u(t) cos(u(t − τ))+u(t − τ) with t > 0 with some given initial history
over [−τ, 0]. The choice of auxiliary variables v(t) = cos(u(t−τ)) andw(t) = sin(u(t−τ))

would yield the following (neutral) system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇(t) = u(t)v(t) + u(t − τ)

v̇(t) = −w(t)u̇(t − τ)

ẇ(t) = v(t)u̇(t − τ)

(13)

and the question is how to compute the history terms.

One could use the currently generated approximation for u from the system above, which
would be polynomial, and evaluate that at t − τ . However, this poses a small problem, since
the polynomial with arguments t−τ must be expanded andwhile this is theoretically feasible,
computationally it is expensive compared to the trace convolutions.

Another possibility is to use more auxiliary variables, and then try to compute U (t) =
u(t − τ) by finding a vector field for U ’s evolution and applying Picard iteration. However,
this causes the system to not close, since this simply passes the issue to the next derivative.
Specifically, U̇ = u̇(t − τ) and so now an auxiliary variable is needed for u̇(t − τ) = V (t),
whose evolution requires knowledge of ü(t − τ) = V̇ (t), and so on. Note that the presence
of a nonconstant delay would compound the issues seen in both approaches mentioned so
far.
Changing to a local time in each Im ∈ IΔ manages to remove the computational issue
entirely for history terms that appear in the vector field, so these details are now addressed.
Bellman, Buell and Kalaba had proposed a method in [14] based on MoS. The change of
variable there led to a system whose size increased as time increased.

Instead, consider the change of variable for time: for t ∈ Im with fixed m ≥ 1, define
t ≡ Δm(t) so that t ∈ I0 for every m ≥ 1. Now t becomes the local variable for each
Im ∈ IΔ. Noting that

(Δ−1)m ≡ Δ−1 ◦ Δ−1 ◦ · · · ◦ Δ−1 = (Δm)−1

implies Δ−1
m is unambiguous, define

Um(t) ≡ u(Δ−1
m (t)) = um(t)

Now (11) can be used when m = 0 and then, for each m ≥ 1 such that τm < T , replace (11)
with

⎧
⎨

⎩

U̇m(t) = fΔ
(
Um(t),Um−1(t)

)
, t ∈ (τ0, τ1)

Um(τ0) = Um−1(τ1)

(14)

where fΔ = (Δ−1
m)′(t)f , so that the new vector field is only a scalar multiple of the original

vector field. Attention is called to the fact that u’s clock is t (global time) and U and its

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1061

variants’ clocks are t (local time), and that the prime notation looks better for Δ−1
m than the

dot notation.
Note that the system for Δ−1

u , to be introduced in the next subsection, is a system of
ODEs. In the original DDE, if Δu(t) were taken to be identically t , suppose the resulting
vector field produces a projectively polynomial solution. If so, then the original DDE has a
projectively polynomial solution as well. This shows that the choice for auxiliary variables
needed to make the vector field polynomial is based on Δu , in particular Δ−1

m , and the vector
field but not on delayed terms u(Δu(t)), u′(Δu(t)) etc. themselves.

In particular, if the lag is constant, then (Δ−1
m)′ = 1 and fΔ = f . Note that the open interval

implies the differential equation does not apply at τ1 due to jump discontinuities. However,
the solution is continuous and so Um may be evaluated at t = τ1 to define Um(τ1).

Two items to address concerning (14) are discussed in both this and the next subsections.
The items are the computational advantages of this particular form of the problem and the
computation of (Δ−1

m)′ along with other Δ related information.
With regards to efficiency, the important part of (14), especially for the computation, is

that the um−1(Δ(t)) term in the vector field [from (2) when t ∈ Im] appears to lose its delayed
argument in (14). As such, (14) is amenable to the integration algorithm from Sect. 2.

The auxiliary variables’ ability to remove the deviating argument is now examined. The
apparent loss of the deviating argument is achieved by noting that t and t∗ = Δ(t) each have
their own local variable, and these local variables would be independent of each other. For
each t ∈ Im , and the associated t∗ = Δ(t) ∈ Im−1, denote the local time t for time t and the
local time t∗ for t∗. Now consider for t ∈ Im

t = Δm(t) = Δm−1(Δ(t)) = Δm−1(t
∗) = t∗

and so t and Δ(t) have local times that are equal.
This formulation of putting each subinterval in IΔ on the same clock allows for rapid

computation ofUm sinceUm−1 is used in its current form as the delay term in the vector field
for Um .

Returning to the example, for t ∈ Im and V0 = Ψ ′, (13) would become

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇m = umvm + um−1 ≡ Vm

v̇m = −wmVm−1

ẇm = vmVm−1

(15)

i.e. the vector field computation for u′
m is retained for use during integration in the next

subinterval Im+1. The impact of state independent nonlinear delays on auxiliary variables is
thus reduced to the auxiliary variables needed for (Δ−1

m)′(t).

4.3 Delay Auxiliary Variables: State Independent

Inspection of (14) shows that knowledge of Δ−1
m (t) is needed for two reasons: to determine

τm ∈ T , and also to build the scalar multiplier for the vector field in (14), (Δ−1
m)′. While

there are several ways to enact these ideas, computation of Δ−1
m only is pursued here, since

it is capable of rectifying both issues: a derivative would yield the scalar multiplier, and it
also follows that for any m ≥ 1, τm = Δ−1

m (τ0). PSMd uses Δ−1(t) to compute τm without
utilizing root finding techniques.

123

1062 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Attention is now placed on getting (Δ−1
m)′ into a polynomial form that can be com-

puted efficiently. If Δ−1
m (t) is considered as an unknown function, and if a vector field for

(Δ−1
m)′(t) can be found in terms of this unknown, then assuming the delay is projectively

polynomial, PSM can be applied directly to this problem since the delay function is now the
dependent variable, not a deviating argument. Thus, the Maclaurin expansion for Δ−1

m (t)

can be computed.
To this end, re-using the identity Δ′

m(t) = Δ′(Δm−1(t)) · Δ′
m−1(t) on the equation

(Δ−1
m)′(t) = (

(Δm)′(Δ−1
m (t))

)−1
and the change of variable to local time, there is

(Δ−1
m)′(t) = (

Δ′(Δm−1 ◦ Δ−1
m (t)) · Δ′

m−1(Δ
−1
m (t)))

)−1

=
(
Δ′(Δ−1(t)) · Δ′(Δ−1

2 (t)) · · · Δ′(Δ−1
m (t))

)−1
(16)

and upon defining Wj (t) ≡ Δ−1
j (t) for j ≥ 1 with Wm the current variable, there is

Ẇm =
(

m∏

1

Δ′(Wi)

)−1

=
(
m−1∏

1

Δ′(Wi)

)−1

· (Δ′(Wm))−1 (17)

and since the terms from j = 1 to m − 1 have been computed before t ∈ Im , their product
is relabeled as pm−1(t).

Hence, (17) can be written Ẇm = pm−1(t)
(
Δ′(Wm)

)−1 ≡ g(Wm), with p0(t) = 1, so

that Ẇ1 = (
Δ′(W1)

)−1 allowsWm to be found from a dynamic programming approach. Note
that the size of the system to be solved to determine Δ−1

m does not change as m increases,
unlike in [14].

Example [14] LetΔ(t) = t−1−e−t . Then using (Δ−1)′(t) = (Δ′(Δ−1(t)))−1 and denoting
W (t) = Δ−1(t), there is Ẇ = (1+e−W)−1. This ODE forW can be expanded to a quadratic
vector field using X(t) = (1 + e−W (t))−1 and Y (t) = X2(t).

Choosing the DDE was u̇(t) = −u(t)u(Δ(t)), then for Im with any m ≥ 0, the vector
field for the system would be, recalling τ0 = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇m = −pm−1XmUmUm−1 Um(0) = Um−1(τ1)

Ẇm = pm−1Xm Wm(0) = Wm−1(τ1)

Ẋm = Ym(1 − Xm) Xm(0) =
(
1 + e−Wm (0)

)−1

Ẏm = 2Ym(Xm − Ym) Ym(0) = X2
m(0)

(18)

where pm−1 = ∏m−1
i=1 Xi or pm−1 = Xm−1 pm−2 with p0 = 1. Denoting W = [W , X , Y],

then in (τm, τm+1) , there is Ẇm = g(Wm), with g given by the right hand sides of the
second, third and fourth lines of (18).

In general, the right hand side of the ODE for the delay (the Wm equation above) also
appears as a multiplier in each equation from the original DDE. Working backwards from
(18), the term pm−1Xm is both a right hand side (2nd equation) and amultiplier (1st equation).
Note that pm−1 does not appear in the 3rd and 4th equations. Hence, 3rd and 4th equation are
in the delay subsystem, along with the 2nd. So, only the 1st equation came from the DDE,
hence the original DDE was scalar. Ignoring the pm−1Xm multiplier in the first equation, the

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1063

remaining terms are UmUm−1, which is the original vector field, with the m − 1 indicating
the delayed term.

For the casem = 0, the scalar multiplier (Δ−1
0)′ = 1, and the systems uncouple. The term

pm−1Xm is replaced with 1 in the equation for U̇ and replaced with X0 in the equation for
Ẇ0. In addition, the proper time interval for the delay problem, the subsystem involvingW0,
X0 and Y0, is (τ−1, τ0) rather than (τ0, τ1). In particular, the initial data for W0(τ−1) is zero,
since Δ(τ1) = τ0 �⇒ Δ−1(τ1) = τ0 = 0.
Let the solution to (14) be relabeled as Um rather than Um . Appending Δ−1

m to the end of the
variable list in u from (14), along with any necessary auxiliary variables, denote this new list
as Um = [Um,Wm]. Appending (17) to fΔ, along with the ODEs for the auxiliary variables
yields the following system for m ≥ 1

⎧
⎨

⎩

U̇m(t) = fW
(
Um(t),Um−1(t)

)
, t ∈ (τ0, τ1)

Um(τ0) = Um−1(τ1)

(19)

with fW = [Ẇmf, g].
The result of the Δ−1

0 subsystem is used to find the value of τ1, which is necessary to
setup (19) when m ≥ 1 from τ1 = W0(τ0). It would be convenient to integrate the delay
subsystem first, get τ1, then integrate the solution subsystem, since τ1 would be known to
transfer the information. Note that either system could be integrated first, but the transfer of
U0’s information can not occur until τ1 is known. However, if the delay were state dependent,
it would be important to be able to integrate the solution subsystem before having to integrate
the delay subsystem.

4.4 State Dependent Delays

A single state dependent delay is now considered and for presentation purposes with a delay
whose state dependency preserves the properties of a simple delay, so that MoS does not fail.
More specifically, for a fixed state u from some admissible set of functions, Δu(t) < t for
all t ≥ 0 and Δu(t) is increasing wrt t .

It remains to determine the scalar multiplier. For clarity, shorten the notation for the delay
to δ(t) ≡ Δu(t). Define δm(t) ≡ δ ◦ · · · ◦ δ(t) for m ≥ 1, and also define t m ≡ δm(t).
Exchange D in favor of a prime.

Let Δ−1(p, q) be such that Δ−1(δ(t), u(δ(t))) = t and promptly shorten Δ−1(t, u(t)) to
δ−1(t). In addition, define δ−1

m (t) as the composition δ−1 ◦ · · · ◦ δ−1(t). Then the functional
inverse of δm is δ−1

m . Hence the state dependent version of the scalar multiplier from (19),
for fixed u can be written (δ−1

m)′ = (δ′
m ◦ δ−1

m)−1. Suppressing t dependence, the analog of
(4.6) can be written

(δ−1
m)′(t) =

m∏

i=1

(
∂Δ

∂ p

(
δ−1
i (t), u(δ−1

i (t))
)

+ ∂Δ

∂q

(
δ−1
i (t), u(δ−1

i (t))
)
u̇(δ−1

i (t))

)−1

and upon relabeling Wi (t) = δ−1
i (t) and considering the state dependent version of (19),

one can write more compactly

Ẇm =
(

m∏

i=1

∂Δ

∂ p
(Wi ,Ui) + ∂Δ

∂q
(Wi ,Ui) U̇i∗

)−1

123

1064 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

= pm−1

(
∂Δ

∂ p
(Wm,Um) + ∂Δ

∂q
(Wm,Um) U̇m∗

)−1

(20)

with pm−1 ≡
(∏m−1

i=1
∂Δ
∂ p (Wi ,Ui) + ∂Δ

∂q (Wi ,Ui) U̇i∗
)−1

and the asterisk in Ui∗ indicates

the derivative is on U only with no (δ−1
m)′ term, in other words it is the derivative delayed,

not the derivative of the delay term.
To illustrate this in more detail, the problem of Bellman et al. is extended to a state

dependent case by taking δ(t) = t − 1− e−u(t) and it follows that this δ(t) is a simple delay
if u̇ > −eu , since d

dt Δu = 1 + e−uu̇ > 0. Using ∂Δ
∂ p = 1 and ∂Δ

∂q = e−u(t), (20) would
become

Ẇm = pm−1

(
1 + e−UmU̇m∗

)−1

with pm−1 = ∏m−1
i=1

(
1 + e−Ui U̇i∗

)−1
and this can be converted to a polynomial vector field.

In particular, assuming the same DDE as before u̇ = −uu∗, the first two equations are the
same as the first two in (18), the remaining would be, for m ≥ 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋm = −ZmXmΦm Xm(0) = (
1 + e−Um−1(τ1)U̇m−1(τ1)

)−1

Ẏm = −pmYmUmUm−1 Ym(0) = e−Um−1(τ1)

Żm = −Z2
mΦm + pm ZmUmUm−1 Zm(0) = Xm−1(τ1)Ym−1(τ1)

(21)

for X(t) = (1 + e−U (t)U̇ (t))−1, Y (t) = e−U (t) and Z(t) = X(t)Y (t), along with pm =
pm−1Xm and Φm = Üm − (U̇m)2. from this, one can see that the state dependency forces a
slightly different set of auxiliary variables than was seen in the state independent version.

If m = 0, then U̇0 = −U0U−1 = −U0Ψ with U0(0) = Ψ (0) and Ẇ0 = X0Φ0. The
initial data should be: W0(0) = 0, X0(0) = (1 + e−U0(0)U̇0(0))−1, Y0(0) = e−U0(0), and
Z0(0) = X0(0)Y0(0).

4.5 Summary

The system in (19) achieves having a (multivariate) polynomial vector field in terms of
components which are all evaluated at the same time (local clock). It also has a subsystem

Fig. 1 A product in the vector
field as an array

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1065

specific to the delay in the original problem. The degree of the vector field polynomials are
all two. Each component is itself a standard polynomial in variable t whose degree grows
with further Picard iterations.

With polynomials, Picard iteration becomes very easy to implement: the vector field
polynomial and integration simply becomes a convolution of two expansion polynomials’
coefficients (in t). The next coefficient in theMaclaurin expansion for a particular component
is achieved by simply computing some traces (see Fig. 1) and then possibly summing some
of those together (integration algorithm). This approach applied to (19) [or with (20)] works
for a single simple delay.

5 PSMd

Having accomplished the task of making (1) become (19) so that it is amenable to the
integration algorithm, the Picard formula may be put into an algorithm. After presenting
the algorithm, an error analysis, which amounts to checking stability in error propagation
by the vector field, is also considered. Major variants of the approach are then examined,
which include applying the method to a subdivided Im ∈ IΔ and both decreasing (which
are handled by modifying MoS) and distributed delays.

5.1 Algorithm

Since both function evaluations in the vector field are not delayed, (19) has the appearance
of an ODE system, and the integration algorithm from Sect. 2 may be used directly over
(τ0, τ1). Note that the solution to (11) can be recovered from the solution to (19) by equating
the value ofUm at local time t with the value of u at the (computed) global timeΔ−1

m (t). The
solution to (2) is recovered from that by a subsequent time shift of t0, and the first component
of this result solves (1).

Assuming for presentation convenience that the number of Picard iterations to be per-
formed remains constant in each Im , and call that number k∗. Note that it is straightforward
to allow k∗ to be m dependent, i.e. using a different number of Picard iterations in each Im
(or even subdivisions).

The kth iteration of the PSMd approximation is denoted Uk
m(t), and is computed via

Picard as

Uk+1
m (t) = Uk

m(τ0) +
∫ t

τ0

fW
(
Uk
m(s),Uk∗

m−1(s)
)
ds (22)

for k ∈ Z
+ using the integration algorithm.

This can be put into algorithm form by denoting the initial history as U−1 = Uk∗
−1, PSMd

becomes

1. Convert (1) into (19), which includes (17), via the necessary auxiliary variables.
2. Use Uk∗

m−1 as initial history.
3. Run the integration algorithm on (19) over (τ0, τ1) to generate Uk

m , k = 1, . . . , k∗.
4. m �→ m + 1 and repeat steps 2-4 until m = mstop.

Constructing the piecewise function from Um would produce the computed approximation
to the solution of (19) by PSMd.

123

1066 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

5.2 Error Analysis

There is a price to pay for the efficiency in PSMd versus the version in [6]. When a finite
number of Picard iterations is used in practice, in particular, for U0 with t ∈ I0, this error
propagates to I1 when the vector field receives U∗

1 = U0 as the history. The evolution of the
magnitude of this error as m increases is of interest, i.e. the stability of the vector field with
respect to history errors.

A sufficient condition for stability will be given for a subclass of problems, and this can be
extended to larger subclasses by considering specific vector fields. Recalling Proposition 1
notation, define Ci = ∑L

l=1 C
l
i with i = 1, 2, so that C1 + C2 = C f . Now in the face of

stability wrt history errors, a condition is put on one of the Lipschitz constants.

Proposition 2 For a given f and Δ from (2), suppose C1τ1 < 1. Then, for a given m∗ > 0
and ε > 0, there exists κ ∈ Z

+ such that if k∗
m = κ for every m ≤ m∗, then the error in the

approximation from PSMd to the solution of (19) is bounded by ε, i.e. for any 1 ≤ k ≤ k∗
m

∣
∣
∣(Uk

m)l − (Um)l
∣
∣
∣ (t) ≤ ε

Proof Consider an idealized approach: apply (22) to (19) and let k∗
m → ∞ for eachm < m∗,

while leaving k finite for m = m∗, so that the only error incurred is the error in Im . Denote
this approximation by Vk

m(t) over Im .
Now consider the error between the non-idealized (i.e. k∗

m finite for all m) approximation
and the solution to (19). Denoting (Uk

m)l , (V k
m)l as the components of Uk

m , V
k
m , respectively,

the following inequality holds
∣
∣
∣(Uk

m)l − (Um)l
∣
∣
∣ (t) ≤

∣
∣
∣(Uk

m)l − (V k
m)l

∣
∣
∣ (t) +

∣
∣
∣(V k

m)l − (Um)l
∣
∣
∣ (t)

for each component l = 1, . . . , L . The second term on the right hand side of the inequality
is the PSM error, assuming the initial data is error free. This particular error is quantified in
[15] and it converges to zero with increasing k.

Concerning the first term, define the error at each grid point by

Ek
m ≡ max

l
max[τ0,τ1]

|(Uk
m)l − (V k

m)l |(t)

Using (22) with the pair k, k−1 rather than k+1, k alongwithUm ,Vm , the triangle inequality
and Lipschitz condition, there is

Ek
m ≤ Eκ

m−1(1 + C2τ1) + C1τ1E
k−1
m (23)

Noting that κ is fixed wrt k, there is

Ek
m ≤ Eκ

m−1(1 + C2τ1) + C1τ1

(
Eκ
m−1(1 + C2τ1) + C1τ1E

k−2
m

)

≤
k−1∑

i=0

(1 + C2τ1)(C1τ1)
i Eκ

m−1 + (C1τ1)
k E0

m (24)

By construction,

E0
m = max

l
max[τ0,τ1]

∣
∣
∣(U 0

m)l − (V 0
m)l

∣
∣
∣ (t) =

∣
∣
∣(U κ

m−1)
l − (V κ

m−1)
l
∣
∣
∣ (τm) ≤ Eκ

m−1

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1067

so that when k = κ , the inequality may be updated to

Eκ
m ≤ (1 + C2τ1)

(

1 +
κ∑

i=1

(C1τ1)
i

)

Eκ
m−1

≤ (1 + C2τ1)
m

(

1 +
κ∑

i=1

(C1τ1)
i

)m

Eκ
0 ≡ M f τ

κ Eκ
0

when the inequality is iterated with respect to m, with Eκ
0 being the PSM error in I0.

The assumption C1τ1 < 1 implies that M f τ
κ <

(
1+C2τ1
1−C1τ1

)m
, which is independent of κ ,

so there exists a κ big enough so that Eκ
0 <

(
1−C1τ1
1+C2τ

)m
ε, which implies Eκ

m ≤ ε for any

ε > 0 and for any finite m, i.e. m ≤ m∗. �

Remarks If m → ∞, then these bounds are too coarse to provide any useful information.
In particular, the overly coarse assumption of using global values C1 and τ1 in (23) rather
than local information is required because of the general nature of the vector field. For a
specific vector field, sharper approximations to these multipliers may be possible in different
Im , thereby weakening the restriction imposed by C1τ1 < 1.

5.3 Segments

The idea of resetting a PSM computation is now extended to PSMd. There are a few reasons
to consider subdividing elements of IΔ over which PSMd computes its approximation. The
differential equation may be stiff, or there may be a nonhomogeneous (forcing) term present
with a support that is smaller than the lag, see Experiment 6 on page 29, or the initial history
may have a discrete number of jump discontinuities. The constant lag case is considered in
this subsection, since the notation and concepts are easier to present. In the next subsection,
a nonlinear delay is considered.

Assume a constant lag, and subdivide I0 in (14) into N segments of equal length δ,
so that Nδ = τ1. Let i = 0, . . . , N . In segment (iδ, (i + 1)δ) = (i, i + 1)δ of Im , let
Um,i (t̄) ≡ Um(t̄) for t̄ ∈ (i, i + 1)δ. Then (14) becomes

⎧
⎨

⎩

U̇m,i (t̄) = fΔ
(
Um,i (t̄),Um−1,i (t̄)

)
, t̄ ∈ (i, i + 1)δ

Um,i (iδ) = Um,i−1(iδ)

To be able to use the integration algorithm, one more change of variable must be invoked
after the first segment: resetting the time in each segment to begin at zero. Let t = t̄ − iδ
with Um,i (t) = Um,i (t̄), which is independent of m. Hence, the previous IVP becomes

⎧
⎨

⎩

U̇m,i (t) = fΔ
(
Um,i (t),Um−1,i (t)

)
, t ∈ (0, δ)

Um,i (0) = Um,i−1(δ)

(25)

and the original approximation can be found from um(t) = Um,i (t − mτ − iδ). Note that
(25) becomes (14) if N = 1. Computationally, with N segments, then N different sets of
polynomials that make up the approximation from the previous iteration must be stored. For
m = 0, the initial history must be partitioned into N segments as well. In the case of N > 1
segments, replace m with mN in M f τ

κ in Theorem 2.

123

1068 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

A small computational benefit can occur for short segment lengths. Whenever the initial
history is not polynomial, it must be Taylor expanded, for which an error occurs. A smaller
order approximation can be used to achieve the same accuracy, since segments would have
a smaller length than Im does.

5.4 Subdivisions

This approach is now extended to the case whenΔu is nonlinear. Even if one starts with equal
sized subintervals in (τ−1, τ0), a nonlinearΔu will map these to subintervals in (τ0, τ1)which
are not uniform in length, and this will remain the case asm increases. The term subdivisions
indicates they may be arbitrarily sized, while segments imply equal sized subdivisions.

Consider the case when the initial history has a finite number of isolated jumps. To this
end, assume the initial history has been subdivided at discrete locations {τ 1−1, . . . , τ

N−1} ⊂
(τ−1, τ0) with N ∈ Z

+. These locations can be used to generalize the set TΔ. In particular,

TΔ

({τ n−1}
) = {

τ nm | Δ(τ nm) = τ nm−1, n = 1, . . . , N , m ∈ Z
+
0

}

assuming the domain of u is (0,∞). Under this definition, Δu maps (τ nm, τ nm+1) ≡ I nm into
I nm−1 for every n = 1, . . . , N and m ≥ 0, i.e. Δu maps subdivisions of Im into subdivisions
of Im−1. In addition, note that τ 1m = τm as defined earlier.

For the case of a forcing term, the constraint on subdividing comes from (0, τ1) rather
than (τ−1, 0), in which case the important aspect with subdividing a PSMd problem when
Δu is nonlinear, is to make sure the subdivision endpoints are mapped byΔu into subdivision
endpoints of the initial history.

5.5 Decreasing Delay

PSMd can be modified to work when the delay lacks monotonicity, andMoS is still appropri-
ate (i.e. away from turning points or vanishing lags). Using a specific example that appears in
the numerical experiments, consider Δu(t) = t sin2(t) over t ∈ [0, π]. During the decreas-
ing section, the elements of TΔ are chosen to delay to elements in TΔ associated with the
increasing section, but visited in reverse order.

In particular, denote by τ 1m elements in the increasing section,while τ 2m are in the decreasing
section and assume that there are M subintervals fromIΔ in the increasing section. As such,
the relation between different points in TΔ would need to be updated in the decreasing
section to look like Δu(τ

2
M−m−1) = τ 1m with m = 0, . . . , M , as opposed to the the relation

Δu(τ
1
m) = τ 1m−1 found in the increasing section.

Concerning the (Δ−1
m)′ term, the composition needed to put each subinterval on the same

clock will have one term representing the decreasing section, while the remaining terms will
come from the increasing section to delay back to (τ 10 , τ 11). Hence the decreasing section
is put on the same clock as the increasing section that preceded it. Using superscripts to
represent sections, Δm−1 ◦ Δ2(t) would delay I 2m back to I 10 : Δ2 would delay I 2m back to
I 1M−1−m while Δm−1 would delay I 1M−1−m back to I 10 .

Concerning any history, note that these need local variables which are centered on the
right, rather than left, endpoint of the subinterval. So any terms involving the delay that are
needed, like u∗, (Δ−1

m)′ etc., must be re-expanded around the right endpoint as well as having
the independent variable reverse direction. With these modifications, MoS can be used on
the decreasing section of the delay.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1069

5.6 Distributed Delays

Given an autonomous ODE u′(t) = f (u(t)), this will be extended to a distributed delay
problem by the addition of the convolution of the solution at earlier times with a kernel.
Consider the family of problems with τ > 0 given arbitrarily

u̇(t) = f (u(t)) +
∫ τ

0
K (s)g(u(t − s)) ds (26)

where K is real analytic and g does not inhibit the projectively polynomial property. As
before, extending this approach to a system rather than a scalar equation is straightforward.

For convenience, the approach is presented for g composed with u only and not any of
its derivatives, along with an exponential kernel K (s) = exp(−αs) with α > 0. Comments
concerning a general analytic kernel are made afterward. Examination of the case when
τ = ∞ will not be undertaken here.

Introducing these with a given α, τ , and b > 0, (26) becomes

u̇(t) = f (u(t)) +
∫ τ

0
be−αsu(t − s) ds (27)

for t > 0 and thiswill be themodel scalar problem. The formof the delay implies this problem
acts like a constant lag problem: functional forms in the approximation will change across
values τm = mτ and similarly, these are times at which discontinuities in the derivatives may
reside. Consider t ∈ Im . Then the application of Picard iteration produces, for 0 ≤ t−τm ≤ τ

u̇n(t) = f (un−1(t)) +
∫ t−τm

0
be−αsun−1(t − s) ds +

∫ τ

t−τm

be−αsun−1(t − s) ds

and after invoking the change of variables t = t − τm and u(t) = u(t), there is

u̇n(t) = f (un−1(t)) +
∫ t

0
be−αsun−1(t − s) ds +

∫ τ

t
be−αsun−1(t − s) ds

Invoking a change of variable for the first integral, consider S = t − s with dS = − ds. In
addition, for s < τ note that un−1(t − s) = uold(t +τ − s), where uold is the approximation
computed over Im−1. Invoking a different change of variable in the second integral, let
S = t + τ − s with dS = − ds. Using the fact that the kernel is exponential, so that the
variables separate, there is

u̇n(t) = f (un−1(t)) + e−αt
∫ t

0
beαSun−1(S) dS + e−α(t+τ)

∫ τ

t
beαSuold(S) dS

(28)

and this form can easily be computed with the following recipe:

1. Taylor expand all exponentials and include the next power to be computed.
2. Convolve the approximation with the integrand exponentials and then apply the integra-

tion algorithm.
3. Convolve the resulting polynomials with the coefficient exponentials and then apply the

integration algorithm again.
4. Apply PSM to u̇ = f (u(t)), and then combine with step 3 and repeat steps 1-4.

123

1070 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Concerning the kernel, the properties of the exponential allow the variables to be separated
in a multiplicative fashion: K (t − s) = K (t)K (−s). In the case of a kernel which does not
have this property, the general form of (28) is

u̇n(t) = f (un−1(t)) +
∫ t

0
K (t − S)un−1(S) dS +

∫ τ

t
K (t + τ − S)uold(S) dS (29)

and now the kernel’sMaclaurin expansion needs to accommodate the shifted argument−s+t ,
which can be dealt with several different ways. One option is to calculate the integration
formula for terms of the form si (−s + τ) j with arbitrary positive i and j and convolve the
polynomials normally.

Another possibility is to consider Fourier series, so that an arbitrary kernel could be
decomposed into complex exponentials. Yet another possibility is if K is known, then the
expansion of K (t + τ − S) into a polynomial in standard form wrt t could be performed at
the beginning and would only need to be done once.

6 Numerical Experiments

The purpose of these experiments is to show that sufficient accuracy can be gained for feasible
values of the parameters involved. The experiments were run in Octave with a processor
speed of 2.4GHz and 8 Gb of RAM available. The experiments below had their numerical
parameters, n1 = number of Picard iterations and n2 = number of subdivisions, initially
chosen as n1 = 5, and n2 = 1 and the resulting errors were then computed.

If the resulting errors were not satisfactory, then two additional runs were performed,
one with n1 increased only, and one with n2 increased only. If these resulting errors were
not satisfactory, then the decision to increase n1, n2 (or both) was made by looking at the
difference in errors and CPU time from the original run. The final choices for n1 and n2 are
presented.

A detailed description of each experiment is given in the upcoming subsections. The
names for the experiments are

1. Paul—a linear DDE with state dependent delay (comparison)
2. Modified Bellman—state dependent delay
3. Distributed Delay
4. Delayed Kuramoto—parameter dependent asymptotic behavior
5. Circuit problem—a stiff, neutral DDE
6. Blood, Spleen and Tumor model—nonanalytic vector field
7. Castleton and Grimm (CG)—vanishing lags and intervals of decreasing delay

Before these results are presented, a subsection discussing an a posteriori error calculation
is introduced. These errors supplement the graphs of the approximations when the correct
solution is not known, which is all the experiments except the last, and part of the first.
Throughout this final section, the delayed argument will be represented by an asterisk, e.g.
u(Δ(t)) = u∗(t).

6.1 Operator Error

Consider representing a DDE as a vector valued nonlinear operator acting on the solution:
N U = 0. Change k∗ from Sect. 5.1 to k and let Vk be the PSMd approximation using k

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1071

Picard iterations. It follows that N Vk = N (U + ek) where ek ≡ Vk − U. Note that N Vk

can be computed once Vk has been computed over Im ∈ IΔ. In particular, it is the vector
field without the (Δ−1

m)′ multiplier subtracted from the approximation’s derivative, but the
derivative is over a time interval that reflects global time, not the local time t .

Since the solution is unique, it follows thatN Vk �= 0 unless the PSMd approximation is
exact. Assuming not, this difference from zero can be used to investigate the magnitude of
ek. To distinguish ek from this error in the vector field,N Vk shall subsequently be referred
to as the operator error.

It is easy to show that if Vk
u→ V∗ for some V∗ and N Vk

u→ 0, then Vk
u→ U. Both

uniform convergence of Vk to some limit V∗ along with the operator error to 0 can be
investigated using PSMd computations for various values of k.

In particular, denoting components of Vk as (Vi)k , with i = 0, . . . , N , bundle together
the norms of the operator error for each component into a vector and define

||N Vk ||∞ ≡ {∣
∣
∣
∣(Vi)

′
k − fi ((Vi)k, (Vi)k∗)

∣
∣
∣
∣∞

}N
i=0

where the || · ||∞ inside the brackets is the uniform norm for continuous functions.
This uniform norm is best suited to help indicate uniform convergence of N Vk to 0. On

the other hand, the one norm version of the operator error may be capable of representing the
magnitude of ek . To see this, denote t∗1 = min{t1, s1}, where t1 are s1 are the right boundaries
for the domains of U and Vk , respectively. Consider

||N Vk ||1 ≥
∣
∣
∣
∣
∣

∫ t∗1

0
V′
k(s) − f(Vk(s),Vk∗(s)) ds

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
Vk(t

∗
1) − Vk(0) −

∫ t∗1

0
f(Vk(s),Vk∗(s)) ds

∣
∣
∣
∣
∣

where the integrals, absolute values and inequalities are understood to be applied componen-
twise. Substituting Vk = U + ek yields

||N Vk ||1 ≥
∣
∣
∣
∣
∣
ek(t∗1) −

∫ t∗1

0
fU(U(s),U∗(s))ek(s) ds

−
∫ t∗1

0
fU∗(U(s),U∗(s))ek(Δ(s)) ds

∣
∣
∣
∣
∣

(30)

for any t > 0, where fU, fU∗ are matrices with a gradient for each component of the vector
field for its rows, the gradient with respect to non-delayed terms and delay terms, and U
indicates the Lagrange form of the remainder for the 1st order Maclaurin expansion of f .
Define I by taking ||N Vk ||1 ≥ ∣

∣ek(t∗1) − I
∣
∣ to be equivalent to (30).

If, for example, I < 0, then it would follow that |ek(t∗1)| ≤ ||N Vk ||1. Hence, a bound
for the solution error would be computable. However, if I > 0, then care must be taken
in interpreting the calculated value of ||N Vk ||1. It is possible that |||N Vk ||1 is small, but
|en(t∗1)| is large, which can occur when I is close in value to |ek(t∗1)|.

6.2 Paul

The DDE is u̇ = u(u(t)) for t > 2 with discontinuous initial history: u(t) = 1
2 if t < 2

and u(2) = 1. However, the breaking point from this jump in the initial history occurs at t0,

123

1072 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Table 1 Paul: uniform norm of operator error and breaking point errors

(τ0, τ1) (τ1, τ2) (τ2, τ3)

||u(t) − φ(t)||∞ <machine error 4.3997e–9 8.8165e–8

(τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4)

||N V||∞ <machine error <machine error <machine error 1.6734e–8

(τ4, τ5) (τ5, τ6) (τ6, τ7) (τ7, τ8)

8.3668e–8 8.0217e–8 2.7154e–8 5.3855e–9

τ1 τ2 τ3 τ4

eτm 2.2204e–16 2.8266e–8 6.1288e–8 7.9876e–8

τ5 τ6 τ7 τ8

8.5228e–8 8.6262e–8 8.6436e–8 8.6465e–8

the seed for TΔ, so that the breaking points are also the MoS endpoints. The exact solution
is known over the first three MoS subintervals. More information about the Paul problem is
included in the help file for RADAR5, which can be found at [16], and the relevant pages are
33,34 and 39,40.

For comparison, RADAR5 reports a CPU time of roughly 6.77e–2 seconds and an error of
roughly 0.129e–7 for the Paul problem when a numerical parameter has a particular value.
By decreasing this numerical parameter, RADAR5 can achieve an error as small as 8.8e–14
(but without computational times listed). The domain used for the RADAR5 version is (2,5.5)
or equivalently (τ0, τ3).

The problem is considered using PSMd over (τ0, τ8) and this required 0.1 sec of CPU
time. Each Im had 10 subdivisions, and 10 Picard iterations were performed. Since the exact
solution is known over (τ0, τ3), the sup norm of the error in the solution is computed. This
is supplemented by the operator error over (τ0, τ8), along with the errors in the computed
breaking points, in Table 1.

6.3 Modified Bellman: State Dependent Delay

This is problem (21) on page 22, with delay t −1− e−u(t) and DDE u̇ = −uu∗. The solution
decreases when it is positive. If u → 0 as t increases, then the lag would approach 2. This
experiment required 4 sec of CPU time.

Computing 10 Picard iterations in each subdivision and 100 subdivisions in each Im , the
sup norm operator errors are listed in the Table 2. Note that the sup norm of the operator
error is roughly 10−18. The errors in breaking point calculations are absolute and their size
indicates accuracy of the locations of the breaking points. The initial width between breaking
points is roughly 1.37, then 1.86 and then always larger than 1.94 appearing to approach 2
as expected.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1073

Table 2 Modified Bellman: uniform norm of operator error and breaking point errors

(τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4)

||N V||∞ 0.000e–0 8.3267e–17 6.9389e–18 2.1684e–18

(τ4, τ5) (τ5, τ6) (τ6, τ7) (τ7, τ8)

1.7347e–18 1.3010e–18 1.0842e–18 1.0842e–18

τ1 τ2 τ3 τ4

eτm 5.5595e–4 7.3561e–3 8.0297e–3 8.3607e–3

τ5 τ6 τ7 τ8

8.6295e–3 8.8574e–3 9.0534e–3 9.2239e–3

Table 3 Distributed delay: uniform norm of operator error (no segments)

(τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4) (τ4, τ5) (τ5, τ6)

||N V||∞ 9.9834e–04 7.3530e–04 5.5316e–04 4.1559e–04 3.1244e–04 2.3485e–04

(τ6, τ7) (τ7, τ8) (τ8, τ9) (τ9, τ10) (τ10, τ11) (τ11, τ12)

1.7653e–04 1.3270e–04 9.9745e–05 7.4977e–05 5.6359e–05 4.2364e–05

6.4 Distributed Delay

Using a decaying exponential for the ODE part, the case of an exponential kernel with
parameters α, b and τ all set to unity yields

u̇(t) = −u(t) +
∫ 1

0
e−su(t − s) ds

and this was coupled with an initial history which was also constant with height set equal to
unity. Using 10 Picard iterations per Im , the problem was run until time t = 12. None of the
Im were segmented, and Table 3 contains the sup norm of the operator error in each Im . This
experiment required 1 sec of CPU time to compute the PSMd approximation. The numerical
integration to compute the error only used the trapezoidal rule with a mesh size of 0.01 and
required 3 sec of CPU time.

6.5 Delayed Kuramoto

This experiment combines an unfrustrated deterministic Kuramoto model with a constant
lag, see [17], whose notation is adopted here. In particular, the asymptotic behavior of the
system is parameter dependent. The results show that PSMd captures that behavior properly.

For N oscillators, the system has the i th oscillator’s phase θi as its states, with two
parameters: the coupling strength K and the inherent (constant) frequency of each oscillator

123

1074 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Table 4 Delayed Kuramoto: synchronization; Uniform norm of operator error

1 2 3 4 5 6

||N V||∞ 1.8178e–3 3.1565e–3 6.4722e–3 8.0360e–3 7.4618e–3 4.9601e–3

7 8 9 10 11 12

5.2274e–4 3.3401e–3 5.9040e–3 8.0801e–3 7.2293e–3 4.7355e–3

ωi . The delayed Kuramoto can be written

θ̇i (t) = ωi + K

N

N∑

1

sin(θi (t − τ) − θi (t))

for i = 1, . . . , N .
The vector field for the model is autonomous with t0 = 0, so to achieve a polynomial

vector field, define Θi j ≡ sin(θ j (t − τ) − θi (t)) and Ψi j ≡ cos(θ j (t − τ) − θi (t)) with
i, j = 1, . . . , N . The delayed Kuramoto model can now be rewritten as

⎧
⎨

⎩

θ̇i = Wi

Θ̇i j = Ψi j (θ̇ j∗ − Wi)

Ψ̇i j = −Θi j (θ̇ j∗ − Wi)

(31)

with Wi ≡ ω0 + K
N

∑N
j=1 Θi j and θ̇ j∗ ≡ θ̇ j (t − τ) where i , j = 1, . . . , N . In terms of

auxiliary variables, this becomes a 2N 2 + N = 300 component system when N = 12.
The oscillators were equally spaced around the circle and then perturbed slightly by a

random amount, while each were given an initial angular velocity of π
2 . When the coupling

strength K = 1 and the lag τ = 1, then synchronization should occur, i.e. all oscillators should
have equal phases mod 2π . When K = 1.25 and τ = 2, this should yield an incoherent state,
i.e. the oscillators’ phases are distinct.

For the incoherent case, 20 Picard iterations in each Im , which were not segmented, were
performed, i.e. the approximations were degree 20 Maclaurin polynomials, while only 10
iterations were needed for synchronization. The code for this problem took advantage of
the structure of the auxiliary variables and is actually one of the shortest codes used in this
section. These results required 23 sec of CPU time.

Table 4 contains the sup norm of the operator error at the final time for a particular set
of initial positions of the 12 oscillators in the synchronization case. The sup norm of the
operator errors are displayed over the interval (0, 50).

Graphical results are included in Fig. 2. The top subplot indicates synchronization, while
the bottom indicates incoherence. The phase differences for oscillator i and oscillator i + 1,
i.e. θi+1 − θi , for i = 1, . . . , 11 are plotted, with all differences smaller than 10−3 (mod 2π)
in the top subplot.

6.6 Circuit Problem

This experiment, dubbed the circuit problem, can be found in [18]. This problem has a
linear, hence polynomial, autonomous vector field, and begins at t0 = 0 and thus requires no
auxiliary variables. This system is a three component system, which is both neutral as well
as moderately stiff (eigenvalue ratio is 3.1135 · 105).

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1075

Fig. 2 Delayed Kuramoto—synchronization and incoherence

The system of equations can be written in vector form

u̇ = Lu + Mu∗ + Nu̇∗

where u = [u1 u2 u3]T and u∗ denotes the deviating argument. The matrices L, M and N
are given by

L = 100

⎡

⎣
−7 1 2
3 −9 0
1 2 −6

⎤

⎦ M = 100

⎡

⎣
1 0 −3

−0.5 −0.5 −1
−0.5 −1.5 0

⎤

⎦ N = 1

72

⎡

⎣
−1 5 2
4 0 3

−2 4 1

⎤

⎦

The initial history is comprised of sines and cubic approximations to these are used in the
computation due to the small segment lengths. The lag τ = 1 for all experiments.

Stiffness required 50,000 segments and 30 Picard iterations to generate the table entries
in 4204 sec of CPU time, while only 2000 segments and 5 iterations were needed to achieve
plotting accuracy, requiring 71 sec. While not done here, it is possible to change the number
of segments in Im as m changes, for a small computational cost, which may reduce overall
CPU time.

Table 5 contains the operator errors. The operator error definitions were restricted to
elements of IΔ to gain information about where and for how long large operator errors
occur. The information around t = 1 shows where the stiffness of the problem is strongest.
While the one norm errors are 10−4, the sup norm errors are much larger. Investigation
showed that these large sup norm errors only occurred in the first segment after t = 1.

123

1076 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Table 5 Circuit: uniform and one norm of operator error

||N V||∞ (τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4) (τ4, τ5)

u1 1.8918e–2 8.6370e–1 2.8144e–2 2.8326e–2 1.0620e–2

u2 8.6678e–3 3.8240e–1 7.8971e–2 2.1371e–2 1.1100e–2

u3 6.3071e–3 1.9481e–1 4.6027e–2 1.7421e–2 1.0262e–2

||N V||1 (τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4) (τ4, τ5)

u1 5.556e–3 2.1180e–3 1.0049e–3 4.5843e–4 2.2150e–4

u2 2.4763e–3 1.9130e–3 8.9902e–4 4.3155e–4 2.0654e–4

u3 1.9791-3 1.6816e–3 7.9083e–4 3.8122e–4 1.8120e–4

Fig. 3 Circuit—includes closeups of t = 0 and t = 1

Note that u1’s slope difference of roughly one over a run of 1/50000 implies an error in
the dependent of roughly 2e–5. The one norm does not give any evidence that this large slope
error persists for a long time interval. The vector field components evaluated at τ+

1 are large
in magnitude, so that the relative sup norm operator errors are small by comparison. A plot
of each component’s approximation superimposed is shown in Fig. 3, with u1 in blue, u2 in
red and u3 in black.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1077

6.7 Blood Spleen and TumorModel

A model for the growth of a melanoma tumor in the face of a vaccine supported immune
response is considered for simulation.Numerical resultswere presented in [19] and the results
of PSMd’s replication are given here for comparison. See the appendix on page 41 for the
full system of equations, although two relevant equations will be displayed below.

The plot in Fig. 4 is two distinct stages in one problem. The CPU time required for one
parameter choice was 1880 sec (there are 4 in the plot). This was due to the large number of
segments needed for the equation stiffness, rather than the vaccine’s support along with the
sizable time interval, which is ≈ 20 days.

The system has 9 components which measure the number of cells at time t for several
agents: T , for tumor, dendritic cells in the blood, spleen and tumor, respectively DB , DS , and
DT . There are also two types of cytotoxic T lymphocytes (CTLs), activated and memory,
for blood and spleen, with activated CTLs only for tumor: Ea

S , E
m
S , E

a
B , E

m
B and Ea

T .
The polynomial vector field used for computation was quartic and has 17 components

after introducing some auxiliary variables, more info can be found in the Appendix. The
equations in the system are all ODEs except for Ėa

S which introduces a term with a constant
lag. In particular,

Ėa
S = aEa

B + b(DS)E
a
S + cDSE

m
S + e(d − Ea

S) + f Ea
S + g

DS∗Ea
S∗

h + DS∗

where a, c, d , . . ., h are constants and b(Ds) = A + B
1+CDS

for constants A, B and C .
This problem also has a few features which makes it challenging. One aspect is that the

parameters in the differential equations range from 9.42e–12 to 1e9. There is also a forcing
function, which represents vaccination, and it has support that happens to be much smaller
than the lag. These two issues require the use of segments.

There is a term in the vector field for T which is nonanalytic at t = 0:

Ṫ = rT

(

1 − T

k

)

− dT

(
Ea
T
T

) 2
3

s +
(
Ea
T
T

) 2
3

with Ea
T (0) = 0 and r , k, d and s are parameters.

Rather than using a different method to advance the problem forward, and then handing
that result off to PSMd to continue, the issue was circumvented by noting that the solution

to v̇ = v
2
3 , v(0) = ε with ε ≥ 0 is continuous wrt ε. Hence, for ε small enough, v ≈ u

where u solves u̇ = u
2
3 , u(0) = 0.

Further, the root can be Taylor expanded. Hence, the initial data of the auxiliary variable

for (Ea
T T

−1)
2
3 is ε. Values between 1e–4 and 1e–15 were used for ε, and essentially the same

results were obtained in each case. In particular, ε = 1/6e–5 was used for all experiments in
this paper.

The effect of CTL kill factor d was replicated in this experiment. The problem involves
vaccination (via bloodstream) on day 0 and day 7 prior to the tumor challenge with varying
d . It was assumed that the injection time was a half hour and the lag is half of a day.

The error is only determined after the tumor challenge and is given for one value of the
CTL kill factor: d = 1. In addition, Fig. 4 is a replication of the bottom panel of Fig. 9 found
in [19]. The support of the forcing term (vaccination) is divided into 300 segments and for a
3rd degree polynomial, the errors are given in Table 6.

123

1078 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Fig. 4 Blood spleen tumor model, τ = 1
2

Table 6 Blood, spleen and tumor: uniform and one norm operator error

T DS DB DT

||N V||∞ 6.1039e0 1.5273e–8 1.4725e–7 3.8142e–7

||N V||1 3.5317e–4 6.7808e–9 2.7670e–9 1.1073e–6

EaT EaB EmB EmS EaS

||N V||∞ 5.0350e–4 4.0322e–4 1.7735e–6 1.2408e–5 3.7590e–3

||N V||1 3.5115e–4 1.6651e–4 9.6685e–7 9.9594e–6 2.0436e–3

In Table 6, the value of Δt for the error calculation is roughly 1e–4. Like the circuit
problem, only one segment is responsible for the sup norm operator error for T . In particular,
it is the segment right after τ0. This is expected due to the use of ε to approximate the initial
data for the nonanalytic term of the vector field. This error is largest at t = τ0.

6.8 MoS Failure and CG

A turning point more than likely will not delay back to a member of TΔ thereby disrupting
MoS. In addition, a vanishing lag is a limit point but not a member of TΔ. Hence, the set of
turning points and set of vanishing lags should be included, and the union of all three sets is
relabeled TΔ.

Assume thatTΔ is made up of isolated points. Vanishing lags and delay turning points are
referred to as failure points of MoS. If a failure point occurs in TΔ, then surround that with a
local interval. MoS, and hence PSMd, by design, is successful outside these local intervals,
but inside, a modified or different approach is necessary. The intervals around the failure
points will be referred to as extrapolation zones.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1079

The left endpoint of the extrapolation zone for a vanishing lag can be chosen, with a trade
off between closeness to the vanishing lag and increasing CPU time. For a turning point
denoted t∗ that does not delay back to some τm ∈ T , the left endpoint for the extrapolation
zone needs to be max{τm ∈ TΔ|τm < t∗}.

PSMd as developed so far needs to be coupledwith a decisionmaking process to determine
if the approximation is approaching a failure point, and if so, what kind. The process also
needs to determine what behavior occurs at breaking points as well. A claim to a decision
making process that is robust and complete is not made here.

In particular, PSMd could be supplemented with another method for the extrapolation
zone’s computation. PSMd could provide as history, either a formula (polynomial) or a
vector of outputs (polynomial evaluated at a vector of inputs). By design, PSMd only uses
history outside the extrapolation zone, so the method that supplements only needs to supply
just the height and time at the end of the extrapolation zone for PSMd to continue.

In the extrapolation zone, only the change of variable Δm is predicated on the MoS
structure, and has to be disregarded. The choice that is made is to approximate (11) with
polynomials and Picard’s, rather than approximate (19). The burden is then to replicate the
u(Δu(t)) information in a form that is compatible.

A problem introduced in Castleton and Grimm [13], dubbed CG in the instructions for the
code in [20], has a very simple solution u(t) = sin(t) so that direct errors may be computed.
Via appropriate trigonometric identities and trading some sin terms for u terms to form the
delay, one can get the equation for any c ∈ R, with φ(t) ≡ t sin2(t)

u̇(t) = cos(t)
(
1 + u

(
tu2(t)

) − sin (φ(t))
) + c

(
u(t)u̇

(
tu2(t)

) − sin(t) cos (φ(t))
)

with only an initial condition being needed, namely u(0) = 0. A polynomial form for this
DDE is possible by using auxiliary variables for cos t , sin t , φ, cosφ and sin φ.

This DDE can be a challenge to approximate, see also the delay in [21]. The problem
has (what ultimately will be) a delay without monotonicity. Note that since PSMd relies
on (Δ−1)′(t) → ∞ as Δ′(t) → 0, this can be used to signal that a turning point may be
approaching.

This problem is considered over the interval of [0, π]. The problembeginswith a vanishing
lag. There is also little room between the vanishing lag at t = 1

2π and the turning point of
Δu(t) occurring at t ≈ 1.8365968, but this needs to be detected by the implementation.

There is a removable discontinuity in the DDE concerning u̇(t). If c = 1, then when
t = π

2 = tv , the u̇(t) term cancels on both sides of the equal sign, so that u̇(tv) cannot be
computed using the DDE. IfΔu is to remain a delay, then any time the lag vanishes, u̇(t) = 0
if u(s) is increasing for s < t , hence u̇(tv) should be 0.

Over [0, π], there are 5 failure points surrounding 4MoS regions. The problem starts with
a vanishing lag, so a linear expansion was generated over an interval chosen by the user,
requiring only an evaluation of the vector field.

The first two MoS regions are dubbed Zone I and II, which occur over the increasing
section of the delay. The two regions during which the delay is decreasing are (in order)
Zone IId and Id. This is because Zone IId uses the approximation from Zone II for its history.
The failure points are labeled (in order) tv , between Zone I and II (vanishing lag), tM between
II and IId (turning point), t sv between IId and Id (delays to tv) and tm at the end (turning point).
The approximate values for these failure points are π

2 , 1.8365968, 2.0943951, π but are not
known a priori.

This simple version of PSMd was effective for c ∈ [−1, 0.9]. The results for c = 0.9
are displayed in Table 7 and Fig. 5. A better extrapolation zone strategy would improve the

123

1080 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

Table 7 CG: uniform norm and breaking point errors for c = 0.9

Zone I Zone II Zone IId Zone Id

||u − sin ||∞ 1.2175e–4 1.0494e–4 2.5274e–4 2.0966e–3

τ = tv τ = tM τ = tsv τ = tm

||τm − τ ||∞ 6.4335e–6 5.9910e–3 2.8834e–4 4.2641e–3

Fig. 5 CG with c = 0.9, exact solution in circles, extrapolation zones are yellow

overall errors. This experiment computed 11 Picard iterations, and used 400 segments per
Im , requiring 312 sec of CPU time. The case c = −1 only requires 104 sec of CPU time.

7 Conclusion

Working with a single smooth simple delay, a smooth vector field and smooth initial history, a
change of variable involving compositions of the delay successfully converts IVPs involving
retarded, neutral or advancedDDEs into equivalent ones now involvingODEswith a quadratic
vector field. These equivalent problems also have someODEs that are generated by the delay.
The delay may be nonlinear and/or state dependent.

Having this conversion in place, it is very easy to implement Picard iteration to generate the
Maclaurin expansion of the solution to the ODEs. This involves at each iteration a discrete
convolution of the coefficients of the polynomials representing the system’s components.
This is done for each quadratic term in the vector field, and appropriately summed together.
To integrate, the resulting vector of coefficients are shifted right and divided by the iteration
number plus one.

This method of approximation by Picard iteration with polynomials, known as PSMd,
can also handle delays which are not monotonic, or initial data that has a finite number of
jumps. The method can be used on stiff problems by subdividing the basic computing unit.

123

Journal of Dynamics and Differential Equations (2023) 35:1047–1082 1081

With obvious modifications, the method can also approximate problems involving explicit
distributed delays. Loosening the restrictions of smoothness for the vector field and delay
can be considered for future work, but more importantly, it would be great to lift the single
delay restriction for PSMd.

Acknowledgements The author would like to thank Dr. James Sochacki and Dr. Anthony Tongen for their
contributions which enabled this manuscript to be produced. The author would also like to thank Dr. Lisette de
Pillis, who made the author aware of the blood, spleen and tumor problem. This research did not receive any
specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The author would
also like to thank the (hard working) referees for their helpful suggestions, which ultimately made this a better
paper.

Declarations

Conflict of interest The author declares that they have no conflict of interest.

8 Appendix

For a full discussion of the BST model, see [19] and references therein. This is the list of
9 components from the full system of DEs in the BST problem, see page 35, which are all
functions of t

T , DB , DS, DT , Ea
S, E

m
S , Ea

B , Em
B , Ea

T

This is the list of parameters (all constant) from the same system:

μB , μT B , μBB ,max D, μBS, aD, bDE , μBSE , ba, aEa S, Enaive, ram, bp, θD, aEm ,

aEaT , c, r , k, q,m, d, s, l, α, μnormal
SB , μ∗

SB

The functions vblood(t) and vtumor (t) are nonhomogeneous (forcing) terms. This is a list of
known functions in the same system:

μSB(DS) ≡ μ∗
SB + μnormal

SB − μ∗
SB

1 + DS
θshut

DCon ≡
{
0 if DS(t) = 0
1 if DS(t) > 0

μBT E ≡ μBB

(
T

α + T

)

D ≡ d

(
Ea
T
T

)l

s +
(
Ea
T
T

)l

The full system of equations, using the above and prime for derivative, is
⎧
⎨

⎩

D′
B = −μBDB + μT B DT + vblood(t)

(Ea
B)′ = μSB(DS)Ea

S − μBB Ea
B

(Em
B)′ = μSB(DS)Em

S − μBB Em
B

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D′
S = max D

(
1 − e

−μBS DB
max D

)
− aDDS − bDE Ea

S DS

(Ea
S)

′ = μBSE Ea
B − μSB(DS)Ea

S + baDSEm
S + aEa S(DConEnaive − Ea

S)

−ram Ea
S + bp

DS(t−τD)Ea
S (t−τD)

θD+DS(t−τD)

(Em
S)′ = ram Ea

S − (aEm + baDS + μSB(DS))Em
S + μBSE Em

B

123

1082 Journal of Dynamics and Differential Equations (2023) 35:1047–1082

⎧
⎨

⎩

(Ea
T)′ = μBT E (T)Ea

B − aEaT E
a
T − cEa

T T
T ′ = rT (1 − T

k) − DT
D′
T = mT

q+T − (μT B + aD)DT + vtumor (t)

Auxiliary variableswere used forμSB ,μBT E , Ea
T T

−1,D , 1−e
−μBS DB
max D , (θD+DS(t−τD))−1,

(q + T)−1, and (·)l since l = 2/3, to polynomial ones.

References

1. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York
(1993)

2. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties of solutions to polynomial
systems of equations. Electron. J. Differ. Equ. 2005(40), 1–17 (2005)

3. Parker, G.E., Sochacki, J.S.: Implementing the Picard iteration. Neural Parallel Sci. Comput. 4(1), 97–112
(1996)

4. Sochacki, J.S.: Polynomial ODEs—examples, solutions and properties. Neural Parallel Sci. Comput. 18,
441–449 (2010)

5. Hu, Q.: A model of regulatory dynamics with threshold-type state-dependent delay. Math. Biosci. Eng.
15(4), 863–882 (2018)

6. Isaia, V.M.: Nonlinear differential equations with deviating arguments and their approximation via a
Parker–Sochacki approach. Electron. J. Differ. Equ. 2017(68), 1–23 (2017)

7. Baker, C.T.H., Paul, C.A.H.,Willé, D.R.: Issues in the numerical solution of evolutionary delay differential
equations. Adv. Comput. Math. 3, 171–196 (1995)

8. Fehlberg, E.: Numerical Integration of Differential Equations by Power Series Expansions, Illustrated by
Physical Examples. Technical Report NASA-TN-D-2356, NASA (1964)

9. Parker, G.E., Sochacki, J.S.: A Picard–Maclaurin theorem for initial value PDEs. Abstr. Appl. Anal. 5(1),
47–63 (2000)

10. Norkin, S.B.: Differential Equations of the Second Order with Retarded Argument. Translations of Math-
ematical Monographs (L. J. Grimm) vol. 31, AMS, Providence (1972)

11. Bellen, A., Guglielmi, N.: Solving neutral delay differential equations with state-dependent delays. J.
Comput. Appl. Math. 229, 350–362 (2009)

12. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press,
Oxford (2003)

13. Castleton,R.N.,Grimm,L.J.:Afirst ordermethod for differential equations of neutral type.Math.Comput.
27(123), 571–577 (1973)

14. Bellman, R.E., Buell, J.D., Kalaba, R.E.: Numerical integration of a differential-difference equation with
a decreasing time-lag. Commun. ACM 8(4), 227–228 (1965)

15. Warne, P.G., Warne, D.A.P., Sochacki, J.S., Parker, G.E., Carothers, D.C.: Explicit a-priori error bounds
and adaptive error control for approximation of nonlinear initial value differential systems. Comput.Math.
Appl. 52, 1695–1710 (2006)

16. http://www.unige.ch/~hairer/software.html
17. Yeung, M.K.S., Strogatz, S.H.: Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett.

82(3), 648–651 (1996)
18. Bellen, A., Guglielmi, N., Ruehli, A.E.: Methods for linear systems of circuit delay differential equations

of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(1), 212–215 (1999)
19. de Pillis, L., Gallegos, A., Radunskaya, A.: Amodel of dendritic cell therapy for melanoma. Front. Oncol.

3(56), 1–14 (2013)
20. Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Com-

put. Math. 29(3), 229–247 (2008)
21. Bellman,R.E.,Buell, J.D.,Kalaba,R.E.:Mathematical experimentation in time-lagmodulation.Commun.

ACM 9(10), 752–754 (1966)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.unige.ch/~hairer/software.html

	A Fixed Point Approach to Simulation of Functional Differential Equations with a Delayed Argument
	Abstract
	1 Introduction
	2 PSM for ODEs
	2.1 Computational Considerations
	2.2 Integration Algorithm

	3 DDEs and Successive Approximation
	3.1 Breaking Points
	3.2 Existence and Uniqueness Proof

	4 Polynomial Vector Fields for Delay Differential Equations
	4.1 Method of Steps and its Failure
	4.2 Vector Field Auxiliary Variables and Time Change
	4.3 Delay Auxiliary Variables: State Independent
	4.4 State Dependent Delays
	4.5 Summary

	5 PSMd
	5.1 Algorithm
	5.2 Error Analysis
	5.3 Segments
	5.4 Subdivisions
	5.5 Decreasing Delay
	5.6 Distributed Delays

	6 Numerical Experiments
	6.1 Operator Error
	6.2 Paul
	6.3 Modified Bellman: State Dependent Delay
	6.4 Distributed Delay
	6.5 Delayed Kuramoto
	6.6 Circuit Problem
	6.7 Blood Spleen and Tumor Model
	6.8 MoS Failure and CG

	7 Conclusion
	Acknowledgements
	8 Appendix
	References

