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Abstract
The tea green leafhopper Empoasca onukii is one kind of insect pest threatening the tea
production, and the mite Anystis baccarum has been used as an agent for pest control. In this
paper, we introduce a generalist predator-prey model to study the dynamics for informing
biological control. There have been some bifurcation studies of the generalist predator-prey
model in the last few years. Except for the bifurcations include saddle-node bifurcation of
codimension 1 and 2, Hopf bifurcations, and Bogdanov-Takens bifurcation of codimension
2 and 3, we also present the bifurcations of nilpotent singularities of elliptic and focus type
of codimension 3. We find that the nilpotent singularities are associated with a cubic Liénard
system, and the nilpotent bifurcations are three-parameter bifurcations of a codimension 4
nilpotent focus. Furthermore, we show that the nilpotent focus serves as an organizing center
to connect all the codimension 3 bifurcations in the system. We also present the bifurcation
diagrams to unfold the nilpotent singularities of codimension 3. One interesting observation
is that we show numerically the existence of three limit cycles in the system .

Keywords Generalist predatory mite · Pest leafhopper · Hopf bifurcation ·
Bogdanov-Takens bifurcation · Nilpotent singularity of codimension 3 · Nilpotent focus of
codimension 4 · limit cycles

1 Introduction

Tea is a popular drink around the world with an estimation of 25000 cups consumed every
second, about 2.16 billion cups per day worldwide. Tea consumption is seeing an annual
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growth of 2.8 percent and is expected to becoming higher in the future [1]. Hence, tea has
been an important commercial crop which has been planted in more than 48 countries and
regions, and by 2018 the global gross production value reached 16.75 billion US dollars [2].
However, the tea production has been damaged by insects and mite pests, causing on average
a 5–55% yield loss (approximately U.S. $500 million and $1 billion) [3] .

To mitigate the damage of tea pests, various pest control techniques have been developed
and applied, including cultural (like pruning and plucking, trap crop, resistance breeding)
[4,5], mechanical and physical (hand destruction, barriers, light traps, sticky traps) [5],
chemical pesticide [5] and biological control (natural enemies, bio-pesticides, and botan-
ical pesticides) [3,4]. Cultural and physical method is simple and safe but requires lots of
manpower. Commonly used pesticides are effective, however it will cause the pest resistance,
pest resurgence, and the undesirable pesticide residues on brewed tea [6]. The use of natural
enemies for pest control is effective, safe, and economical. Therefore, the biological control
methods have received much attention in recent years [4,7], especially by improving the
influence of natural enemies on pest population via conservation biological control method
[8]. Understanding the basis of interactions of tea pests and natural enemies is essential not
only for an eco-friendly tea production system [3,7], but help to control the tea pests while
reduce or even eliminate the use of pesticide.

Mathematical models have been made to understand the population dynamics in ecology
for many years since the pioneering work of Lotka and Volterra [9]. However, there are less
modeling studies on the dynamics of tea garden ecosystems which can be more complicated
with thousands of different species, providing a relatively steady microclimate and food
supply of insect and mite communities [3]. Among many species, the E. onukii is one of
the most important pests threatening the tea production in China and other countries in Asia
[5]. The total loss of tender tea shoots caused by Empoasca onukii may account for 15-50%
[5,11]. Some tea plants may cease to grow due to the severe damages.

Amongmany of the natural enemies ofE. onukii, theAnystis baccarum is a predatorymite
which is beneficial to the tea plantations [12,13]. It is a whirligig mite causing no damage to
fruit, and it can move rapidly over the branches and foliage of the trees [13]. Also, it shows
a level of compatibility with several chemical fungicides [13]. Hence, it may be used for
pest suppression, however, unlike specialist predators, A. baccarum is a generalist predator
that can feed on a range of invertebrate prey [4,13], buffering the fluctuation of population
from the absence of any one of preys [15]. The role of generalist predators in controlling
pests has also been explored in some cropping systems through field experiments [16,17].
Therefore, we will explore the interaction between generalist predator and its preys to find
ways to optimize the beneficial synergies of pest control [16]. In particularly, we will study
the dynamics ofE. onukii andA. baccarum for seeking a sustainable way for pest suppression
in tea plantations.

To understand the interaction of E. onukii and A. baccarum, Chen et al. [18,19] carried out
field studies in theWuyimountain area, the north of Fujian province of China. The abundance
data for the two species were collected over a two-year period and presented in Figure 1. One
can see from the figure that in the first year, there is a negative correlation between the two
species. However, it did not show the same trend in the second year. A significant decrease in
the population of E. onukii was not detectable despite the greater abundance of A. baccarum
in the second year [19]. One can also observe that when E. onukii is abundant, ideally the A.
baccarum mainly feed on E. onukii or may feed on other preys as well, so that the number
of E. onukii is reduced to only a certain extent. Therefore, the control of the target pest E.
onukii using A. baccarum is much more complicated as A. baccarum is a generalist predator.
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Fig. 1 Average abundance (standard error) of E. onukii and A. baccarum per 1 m2 in tea canopies in the tea
plantations in the Wuyi mountain area from May 2006 until April 2008

It is not difficult to directly make up a predator-prey type of model for the pest and
predator mite. However, to understand the population dynamics between these two species
and to promote the use of A. baccarum to control E. onukii, we will use the results of field
studies [18,19] and build a simpler dynamical model to study the interaction of the adults
population,whichwill allowus to explore the factors and reason leading to complex dynamics
using bifurcation theory, and to find threshold conditions for controlling E. onukii using its
generalist natural enemy.

Let us consider a tea plantation with fixed area where tea trees grow. We are interested
in the fresh tender leaves which can be measured by the weight or equivalently transformed
single-side surface area of leaves. Let K be the total tea leaves surface area (m2) and E(t)
denote the adult population of E. onukii, the number of E. onukii per unit tea leaves surface
area (m2) at time t . We assume that the average number of E. onukii that per unit tea leaves
surface area can carry is ne. Hence, it is plausible to assume that E. onukii satisfy a logistic
growth with an intrinsic reproduction rate r1 > 0 and the carrying capacity K1 = Kne > 0
in the absence of A. baccarum.

Let M(t) denote the adult population of A. baccarum, the number of A. baccarum per unit
tea leaves surface area (m2) at time t and the average number of A. baccarum per unit tea
leaves surface area is nm . As a generalist predator, A. baccarum can prey on other pests and
maintain its populationwithoutE. onukii. Hence, we assume that theA. baccarum reproduces
also following a logistic growth with a constant intrinsic growth rate r2 > 0 and a carrying
capacity K2 = Knm > 0 in the absence ofE. onukii. In fact, the generalist predators aremore
common in ecosystems than the specialist predator. We observe that the euryphagous nature
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of A. baccarum is conducive to maintaining its population to suppress the E. onukii when the
outbreak occurs even when the density of E. onukii is relatively low. If the A. baccarum are
monophagous, there may not be enough to control the E. onukii due to the decreasing of E.
onukii population. Hence, we will develop a predator prey model considering A. baccarum
as a generalist predator.

In order to describe the predator-prey relationship between the E. onukii and the A. bac-
carum, we look at it from a micro perspective. Since each species of insect will be active
for certain amount of time per day, we assume that E. onukii and A. baccarum spend Te and
Tm hours foraging per day (0 < Tm, Te < 24h) [12,20]. During the period of Tm , each A.
baccarum can attack NE number of E. onukii. The factors affecting NE are: the area and
time needed to search E. onukii, the successful search rate of A. baccarum, attack rate of
A. baccarum and the number of E. onukii. If searching is successful, A. baccarum needs Th
time on average to handle the prey (pursue, capture, kill and eat) [12]. Hence, the number of
E. onukii attacked by one A. baccarum equals NE = spTs K E , where s is the successfully
searching rate of A. baccarum per unit area per unit of time. p is the capture probability of
A. baccarum after search. Ts is the time per day that A. baccarum spend for searching, K is
the total tea leaves surface area, and E is the number of E. onukii per unit tea leaves surface
area (m2). Note that we have Ts = Tm − ThNE . Then, we have

NE = P(E) = spTmK E

1 + spThK E
=

Tm
Th

E
1

spTh K
+ E

= mE

a + E

where m = Tm
Th
, which is the maximum number of E. onukii that A. baccarum can handle

in the time period Tm for foraging. Another important parameter a = 1
spTh K

, describes the
number of E. onukii handled by A. baccarum in the average time period that A. baccarum
successfully search and capture one E. onukii. Each A. baccarum on average preys NE

number of E. onukii. And P(E) is the widely used functional response, Holling type II, in
the predator prey model. We derive the process to determine the meaning of the parameters
in our model, which will help the model analysis incorporating our field experimental data
in future work. Hence we have the following model

⎧
⎪⎨

⎪⎩

dE

dt
= r1E(1 − E

K1
) − mEM

a + E
,

dM

dt
= r2M(1 − M

K2
) + cmEM

a + E
,

(1.1)

where all the parameters r1, r2, K1, K2, a,m are positive constants as defined above, and c
is the conversion rate.

For the model (1.1), we can rewrite as
⎧
⎪⎨

⎪⎩

dE

dt
= E(r1 − r1

K1
E − m

a + E
M),

dM

dt
= M(r2 − r2

K2
M + cm

a + E
E).

(1.2)

It turns out that system (1.2) is a model on the bookshelf. One can see that system (1.2)
can be regarded as a generalized Lotka-Volterra model with a fractional response function.
Recall that for a quadratic Lotka-Volterra system, it is well-known that it has relative simple
dynamics, and in particular the system does not even have a limit cycle [21]. As far as we
can tell that Alexeev (1973) [22] and Bazykin (1974) [23] are among the first researchers
considered the predator competition for resources other than prey and studied the following

123



Journal of Dynamics and Differential Equations (2023) 35:2833–2871 2837

model,
⎧
⎪⎨

⎪⎩

dx

dt
= ax − bxy

1 + Ax
− ex2,

dy

dt
= −cy + dxy

1 + Ax
− hy2,

(1.3)

where a is the reproduction rate of prey population in the absence of the predator. b is the per
capita rate of the consumption of prey by the predators. The parameter c > 0 is the natural
mortality rate of the predator, d

b reflects the fraction of prey biomass that is converted into
predator biomass. 1

A is the prey population density at which the predator’s consumption is
half the maximum value or half saturation level. e is the coefficient of competition among
prey. h is the coefficient of competition for resources other than prey [10]. The system (1.3)
depends on four parameters after rescaling and the related dynamics are well discussed in
Bazykin (1998) [10]. But the predator in this model is a specialist predator that only relies
on the prey population. When c < 0, that the predator also has the reproduction rate, the
system (1.3) is consistent with the model (1.1). It is worth mentioning that Magal et al.
[24] also used the model to explore the spatial dynamics of host and generalist parasitoids
with logistic growth, and investigated the biological control of the leaf miner population.
Their non-spatial model is the same as (1.1). Recently, Seo and Wolkowicz [25] identified
some cases missed in the non-spatial model analysis of Magal et al. [24], and they gave a
more detailed bifurcation analysis and presented a bifurcation diagram using K1 and K2 as
bifurcation parameters, they analyzed the impact of different K1 and K2 on pest control and
proposed possible pest reduction strategies. More recently, Xiang et al. [26] also studied the
nilpotent singularity of the model and presented the bifurcations associated with the nilpotent
singularity of elliptic and focus type. Here we suggest and use the terms and classification
given by Dumortier et al. [27] and in Zhu and Rousseau [28] in classifying the non-cusp type
of nilpotent singularities.

The dynamics of generalist predator-prey model (1.2) are much more complicated then
most of the specialist predator-preymodels. Themodel can undergo Hopf bifurcation, degen-
erate Hopf bifurcation, and Bogdanov-Takens (BT) bifurcations of codimension 2 and 3,
bifurcations of nilpotent focus and elliptic point. The three types of codimension 3 bifurca-
tions of nilpotent singularities were presented in the study of Xiang et al. [26], but how these
codimension 3 bifurcations are organized in the system are not discussed. From the available
studies, the system can have two limit cycles [25,26,29], just like the specialist predator-prey
model with other Holling types of response function studied in [30]. Currently, the available
bifurcation studies are only partial unfolding of the complex dynamics from the degenerate
nilpotent singularity, the understanding of the local dynamics still remains incomplete, not
to say the global dynamics of the system.

The model exhibits three boundary equilibria and up to three coexistence equilibria, and
the complicated dynamics involves Bogdanov-Takens bifurcation of codimension 2 and 3,
and bifurcations of nilpotent singularity of focus and elliptic type of codimension 3 or 4.
As described by Xiao and Zhu [35], the predator-prey system of the form (1.2) can be
locally transformed into a generalized Liénard-type system. There have been extensive global
analysis of Liénard system involving the nilpotent singularities. For the related bifurcation
studies, we only refer to Dangelmayr and Guckenheimer [36], Khibnik et al. [37] and a
recent work of Chen and Zhu [38] and references therein. In this paper, we will present
a full bifurcation analysis of the system (1.2). Using normal form theory we will show
that it is the nilpotent focus of codimension 4 that serves as an organizing center of the
codimension 3 nilpotent bifurcations. We will also present the bifurcation diagrams near the
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nilpotent singularities of focus and elliptic type of codimension 3 using r1, r2, K1 and K2 as
bifurcation parameters. For system (1.2), one interesting observation is that we numerically
show the existence of three limit cycles in the generalist predator-prey systems.

The paper is organized as the following.We present the existence and number of equilibria
and local stability in Sect. 2. In Sect. 3, we study the bifurcation and complex dynamics of
the system. We prove the existence of saddle-node bifurcation of codimension 1 and 2,
Hopf bifurcation, BT bifurcation and nilpotent singularity of codimension 3 and 4. We also
provide the one and two-parameter bifurcation diagrams and the bifurcation diagram near
the nilpotent singularity of codimension 3. Section 4 contains the phase portraits of system
(1.1) with different parameters. We present an example numerically to show the existence of
three limit cycles. Our numerical simulation illustrates the different types of coexistence of
A. baccarum and E. onukii and the large amplitude oscillation of this two species population
is possible. Finally, in Sect. 5, we summarize our results and discuss the implications for pest
control based on our dynamical findings. Some of the calculations were assisted by the use
of Maple [39]. The phase portraits and one and two-parameter bifurcation diagrams were
produced by the Matlab [40].

2 Equilibrium States and Local Stability

2.1 Existence and Number of Equilibria

Our model (1.1) always has three boundary equilibria, S00(0, 0), S10(K1, 0) and S01(0, K2),
which represent three trivial equilibrium states respectively. For co-existence equilibrium
state, one can verify that any positive equilibrium S̄(Ē, M̄), if it exists, is the intersection of
the two curves

U1(E) = r1(K1 − E)(a + E)

K1m
= r1E

P(E)
(1 − E

K1
),

U2(E) = K2

[
mcE

r2(a + E)
+ 1

]

= K2[ cr2 P(E) + 1],
(2.1)

and its E coordinate satisfies

U (E) = E3 − (K1 − 2a)E2 +
[

a2 − 2aK1 + K1K2cm
2

r1r2
+ mK1K2

r1

]

E − a2K1 + maK1K2

r1
= 0.

(2.2)

The cubic equation (2.2) has at most 3 positive solutions. We are only interested in the
non-negative solutions of equation (2.2).

We first use K1 and K2 as parameters to discuss the number of positive equilibria. The
equation (2.2) has at least one positive solution when K2 < r1a

m . For the case of K2 > r1a
m ,

some calculations and results can be found in [25,26]. Using the formula of Fan in [31], we
can compute the discriminant of (2.2) to get

� = B2 − 4AC, (2.3)

where

A = (K1 + a)2 − 3mK1K2δ

r1r2
,

B = 2a(K1 + a)2 − 3mK1K2[K1δ + a(7r2 − cm)]
r1r2

,
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Fig. 2 Existence of positive equilibria (number and position) of system (1.1) with K1 and K2 as parameters.
The light blue curve is U1(E); the orange curve is U2(E) (Color figure online)

C =
[

a2 − 2aK1 + K1K2cm2

r1r2
+ mK1K2

r1

]2

+ 3(K1 − 2a)(−a2K1 + maK1K2

r1
),

and δ = r2 + cm. Collecting in terms of r1, � becomes

� = Ãr21 + B̃r1 + C̃, (2.4)

where C̃ = 4mδ3 and

Ã = 4ac(K1 + a)3r22
K 2
1K

2
2

,

B̃ = − (K1 + a)2r32 + 2K2cm(K1 + a)(K1 + 10a)r22 + c2m2(K 2
1 + 20K1a − 8a2)r2

K1K2
.

The sign of � decides the number of real roots of (2.2). The equation � = 0 may have two
real roots if �r > 0 which are denoted as r1i = r1i (K1, K2)(i = 1, 2):

r11(K1, K2) = −B + √
�r

2A
, r12(K1, K2) = −B − √

�r

2A
,

where �r = r22 [K1δ+ar2][K1δ+a(r2−8cm)]3
K 2
1 K

2
2

.

For r2 < 8cm, K2 < r1a
m and K1 > a

8 (8cm − r2), r1i = r1i (K1, K2)(i = 1, 2) defines
two curves C1 and C2 in (K1, K2) plane

C1 =
{
(K1, K2)

∣
∣
∣r1 = r11(K1, K2), K1 >

a

δ
(8cm − r2), K2 <

r1a

m

}
,

C2 =
{
(K1, K2)

∣
∣
∣r1 = r12(K1, K2), K1 >

a

δ
(8cm − r2), K2 <

r1a

m

}
,
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and they subdivide the nonnegative cone of (K1, K2 plane into three open regions (see Fig. 2):

V1 = {(K1, K2),� > 0} ,

V2 = {(K1, K2),C1 ∪ C2} ,

V3 = {(K1, K2),� < 0} .

In V1, V2 and V3, system (1.1) has one, two (except for the intersection point) and three
positive equilibria respectively.

2.2 Local Stability of Equilibria

The equilibrium S00 has two positive eigenvalues r1 and r2 > 0, it is a unstable node.
S10(K1, 0) is always a saddle which means that as a generalist predator, the A. baccarum
will never go extinction.

For the pest free equilibrium point S01(0, K2), it has two eigenvalues, one is −r2 < 0,
the other is r1 − mK2

a . Hence it is locally asymptotically stable if K2 > r1a
m , is a saddle if

r1a
m > K2, and it will be a saddle-node when K2 = r1a

m . In later section, we will see that S01
can be a saddle-node of codimension 2.

Now, we discuss the local stability of the coexistence or positive equilibria. Using the
expressions of U1(E) and U2(E), we can rewrite the system (1.1) as

⎧
⎪⎨

⎪⎩

dE

dt
= P(E)[U1(E) − M],

dM

dt
= r2

K2
M[U2(E) − M].

(2.5)

The Jacobian matrix of system (2.5) is

J (E) =
(
P(E)U ′

1(E) + P ′(E)[U1(E) − M] −P(E)
r2
K2

MU ′
2(E) − r2

K2
M + r2

K2
[U2(E) − M]

)

. (2.6)

For any positive equilibrium, if exists, the characteristic equation at the equilibrium S(E, M)

is of the form

λ2 −
[

P(E)U ′
1(E) − r2

K2
M

]

λ + P(E)
r2
K2

M
[
U ′
2(E) −U ′

1(E)
] = 0. (2.7)

If λ1 and λ2 are the two eigenvalues, then we have the trace and determinant of J (E) are

T (J (S)) = λ1 + λ2 = P(E)U ′
1(E) − r2

K2
M,

D(J (S)) = λ1λ2 = P(E) r2
K2

M
[
U ′
2(E) −U ′

1(E)
]
,

(2.8)

where

U ′
1(E) = r1(−a − 2E + K1)

K1m
, U ′

2(E) = K2acm

r2(a + E)2
.

For any S, sign of the D(E) is determined by the slope difference of the two curves M =
U1(E) and M = U2(E) at the intersection. As shown in Fig. 3, if we denote ki = U ′

i (E)

(i = 1, 2) then when k1 > k2, D(J (S)) < 0, the equilibrium point is a saddle. If k1 < k2,
then D(J (S)) > 0, and the real part of the eigenvalues will be both positive or negative
depending on the sign of T (J (S)).
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Fig. 3 The existence and stability of the three positive equilibria S1, S2 and S3 for (K1, K2) ∈ V3

It follows from (2.8) that a Hopf bifurcation may occur at S if T (J (S)) = 0. Also, if
k1 = k2, D(J (S)) = 0, a saddle-node bifurcation may occur. Furthermore, the equilibrium
will be nilpotent if T (J (S)) = D(J (S)) = 0.

To summarize, as shown in Figs. 2 and 3, we have the following proposition on the number
and local stability of positive equilibria.

Proposition 2.1 Consider the system (1.1) with parameters K1 and K2 <
r1a

m
. For any r1,

r2, a, c, m > 0, we have

(1) If (K1, K2) ∈ V1 (� > 0), system has a unique positive equilibrium S1, it is a non-saddle.
(2) If (K1, K2) ∈ V2, (� = 0),

(2.1) If r2 < 8cm, K1 > 2a, �r = 0 and (K1, K2) = K ∗(K ∗
1 , K ∗

2 ) = C1 ∩ C2 with

K ∗
1 = a(8cm − r2)

δ
, K ∗

2 = 27r1r2c2ma

δ2(8cm − r2)
, (2.9)

then, system has a unique degenerate positive equilibrium which we denote it as
S123 = (E123, M123) with

E123 = K ∗
1 − 2a

3
, M123 = 2r1(K ∗

1 + a)2

9K ∗
1m

. (2.10)

(2.2) If�r > 0 orwhen (K1, K2) ∈ C1∪C2/(K ∗
1 , K ∗

2 ), system has two positive equilibria.
(i) When (K1, K2) ∈ C1/(K ∗

1 , K ∗
2 ), system has the two positive equilibria are

S1(E1, M1) and S23(E23, M23), and S23 is of multiplicity 2 and a saddle-node
if T (S23) �= 0.

(ii) When (K1, K2) ∈ C2/(K
,
1K

∗
2 ), the system has two positive equilibria

S12(E12, M12) and S3(E3, M3), and S12 is of multiplicity 2 and a saddle- node
if T (S12) �= 0.

(3) If (K1, K2) ∈ V3 (� < 0), system has three distinct positive equilibria. We denote these
three equilibria as Si (Ei , Mi ) with i = 1, 2, 3 and E1 < E2 < E3. The middle one S2
(E2, M2) is always a saddle.
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3 Bifurcation and Complex Dynamics

For system (1.1), when K1 and K2 change, it can have up to three positive equilibria which
will undergo various type of bifurcations. Among the rest of 5 model parameters r1, r2,
a, c,m, we will select to add the parameters r1 and r2 to study the bifurcations, hence we
will use K1, K2 and r1, r2 to present the bifurcations in the parameter space (K1, K2, r1, r2).

3.1 Saddle-Node Bifurcations

System may undergo saddle-node bifurcations at a positive equilibrium and boundary equi-
librium S01(0, K2).

It follows from the Prop. 2.1 that S1 and S2 coalesce at S12 if (K1, K2) ∈ C2. Note that
U ′
2(E) = acmK2

r2(a+E)2
> 0, hence when exists, S12 is always located to the left of the hump of

the parabola. From (2.8), we have D(J (S12)) = 0, and the associated eigenvalues, one is
zero, and the other

λ2 = T� = P(E12)U
′
1(E12) − r2

K2
M12

= −2r1E2
12 + [(δ − r1)K1 + r1a]E12 + K1ar2

K1(a + E12)
= − h(E12)

K1(a + E12)
,

here we define that

h(E) = 2r1E
2 + [δK1 + r1(a − K1)]E + K1r2a, (3.1)

with E = E12, 0 < E12 < K1−a
2 .

Note that dh(E12)
dr1

= E12(2E12 − K1 + a) < 0, therefore λ2 will change sign at most
once, and h(r11) < h(r12). Hence, we only need to find the nilpotent equilibria that T� = 0,
which separate the stable and unstable saddle-node bifurcation.

For the equilibrium S12, if T� = T (J (S12)) �= 0, we can linearize the system at S12 and
diagonalize the linear part to obtain

{
ẋ = A20x2 + xO(y) + O(|y|2, |x, y|3),
ẏ = T�y + O(|x, y|2), (3.2)

where

A20 = E12(δE12 + r2a)

r2(a + E12)3h(E12)
{r1r2(K1 + a)(a + E12)

2 + K1K2m[a(cm − 2r2) − 2δE12]},

E12 = mδK 2
1K2 + am(7r2 − 2cm)K1K2 − 2ar1r2(K1 + a)2

2r1r2(K1 + a)2 − 6mδK1K2
.

Obviously, A20 determines the codimension of the saddle-node bifurcation if T� �= 0. If
A20 �= 0, then it follows from (3.2) that S12 is a saddle-node (for S23, the calculation is
similar).

If A20 = 0, we have

r1r2δ2K 3
1K2 − 4mδ3K 2

1K
2
2 + 2ar1r2δ(10cm + r2)K 2

1K2

+a2r1r2(r22 + 20cmr2 − 8c2m2)K1K2 − 4acr21r
2
2 (K1 + a)3 = 0.

(3.3)

One can verify that for any positive model parameters, if K1 = K ∗
1 , K2 = K ∗

2 , then A20 = 0,
which corresponds to the case S12 = S23 = S123.
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Substituting the expressions (2.9) for K1 = K ∗
1 , K2 = K ∗

2 into T� = 0, we can solve to
get a unique solution

r1 = r∗
1 = 2δ(8cm − r2)

3(2cm − r2)
.

Therefore, T� changes sign at (K ∗
1 , K ∗

2 , r∗
1 ). When (K1, K2, r1) = (K ∗

1 , K ∗
2 , r∗

1 ), S123
becomes a nilpotent equilibrium which will be discussed further in Section 3.4.

Proposition 3.1 For the system (1.1) with (K1, K2) ∈ C1 ∪ C2/(K ∗
1 , K ∗

2 ) ( � = 0 and
T� �= 0), we have

(1) When exist, S12 and S23 are saddle-nodes of codimension 1 for (K1, K2) on C2 and C1

respectively.
(2) If K1 = K ∗

1 , K2 = K ∗
2 but r1 �= r∗

1 , the unique positive equilibrium S12 = S23 = S123
will be a saddle-node of codimension 2.

Now we study the bifurcation of the boundary equilibrium S01(0, K2). When K2 = r1a
m ,

one can calculate to verify that S01 has two eigenvalues 0 and −r2, hence it is a saddle-node.
Translate the S12(0, K2) into the origin by letting x = E, y = M − r1a

m , we obtain

⎧
⎪⎨

⎪⎩

ẋ = r1(K1 − a)

K1a
x2 − m

a
xy + m

a2
x2y − r1

a2
x3 + O(|x, y|4),

ẏ = cr1x − r2y − cr1
a

x2 + cm
a xy − r2m

r1a
y2 − cm

a2
x2y + cr1

a2
x3 + O(|x, y|4).

(3.4)

If we make a change of variables as u = x , v = cr1
r2
x + y, then system (3.4) becomes

{
u̇ = ã20u2 + ã11uv + ã30u3 + ã21u2v + O(|u, v|4),
v̇ = −r2v + b̃20u2 + b̃11uv + b̃02v2 + O(|u, v|3), (3.5)

where

ã20 = r1((r2 − cm)K1 − r2a)

ar2K1
, ã11 = −m

a
, ã30 = r1(cm − r2)

a2r2
, ã21 = m

a2
,

b̃20 = − ((r1(cm − r2) − r22 )K1 + r1r2a)r1c

aK1r22
, b̃11 = cm(r1 − r2)

ar2
, b̃02 = −r2m

r1a
.

Therefore, S01 is a saddle-node of codimension 1 when ã20 �= 0.
When S12 = S01, we have K1 = r2a

r2−cm (r2 > cm), and we can verify that ã20 = 0, ã30 �=
0. Also, when S123 = S01, we have K1 = 2a, r2 = 2cm, and ã20 = 0, ã30 �= 0. Unlike in
[26], this is a more degenerate case which may involve canard cycles and deserves further
investigation [32].

Summarizing the above discussion, we have the following proposition.

Proposition 3.2 For the pest free equilibrium S01(0, K2), if K2 = r1a
m ,

(1) it is a saddle-node of codimension 1.
(2) when K1 = r2a

r2−cm , and (r2 > cm), S01 is a saddle-node of codimension 2.

123



2844 Journal of Dynamics and Differential Equations (2023) 35:2833–2871

3.2 Hopf Bifurcations

Though the Hopf bifurcations were analyzed in Seo and Wolkowicz in details [25], but their
analysis did not capture all the possible cases, we will present the Hopf bifurcation analysis
and add the other two types of (K1, K2) plane bifurcation diagrams which were missing in
their analysis. From the Prop. 2.1, when exists, the equilibria S1 and S3 may undergo Hopf
bifurcation(s) if

T (J (S)) = k1P(E) − r2
K2

M = − h(E)

K1(a + E)
= 0, (3.6)

where h(E) is defined in (3.1).
Denote the discriminant of equation h(E) = 0 as �1, and collect in terms of parameter

K1,

�1 = (δ − r1)
2K 2

1 + 2r1a(cm − r1 − 3r2)K1 + a2r21 ,

with its discriminant denoted as �2 = −32a2r21r2(cm − r1 − r2). The equation h(E) = 0
may have two roots if �1 > 0 which we denote them respectively as

H1 = r1(K1 − a) − K1δ + √
�1

4r1
, H2 = r1(K1 − a) − K1δ − √

�1

4r1
.

For H1,2 to be real numbers, it also requires

K1 >
r1a

r1 − δ
(0 < r1 < δ).

When �2 < 0, then r1 < cm − r2, �1 is always greater than 0. When �2 ≥ 0, then
r1 ≥ cm − r2, �1 > 0 when K1 ≥ K+

1 or K1 ≤ K−
1 , with

K+
1 = 2r1a(r1 + 3r2 − cm) + √

�2

2(r1 − δ)2
, K−

1 = 2r1a(r1 + 3r2 − cm) − √
�2

2(r1 − δ)2
.

To ensure K±
1 are positive, it requires

r1 ≥ cm − r2 = max{cm − r2, cm − 3r2}.
Also, one can easily find that K+

1 > r1a
r1−δ

. Hence, we have the following condition to ensure
�1 > 0,

K1 >
r1a

r1 − δ
, 0 < r1 < cm − r2,

K1 ≥ K+
1 , cm − r2 ≤ r1 < δ.

(3.7)

Substituting H1 and H2 into U (E) yields the set of Hopf bifurcation which is defined by
a curve H(K1, K2, r1) = 0 given by

K2 = p3 ± p2
√

�1

4(p1 ∓ δ
√

�1)mr1K1
(3.8)

where

p1 = δ(δ − r1)K1 + r1a(δ − 4r2),

p2 = −r2[(r21 − δ2)K 2
1 + 2ar1(δ + 2r1 + r2)K1 − a2r21 ],
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p3 = −r2[(δ + r1)(δ − r1)
2K 3

1 − ar1[−3r21 + 2(δ + r2)r1 + δ(δ + 6r2)]K 2
1

− a2r21 (δ − 11r1 − 10r2)K1 + a3r31 ].
On the other hand, for Hopf bifurcation to occur, we need D(J (S)) > 0 (k1 < k2), which is
equivalent to

2r1r2E
3 − r1r2(K1 − 5a)E

2 − 2ar1r2(K1 − 2a)E + a(K1K2cm
2 − K1ar1r2 + a2r1r2) > 0

(3.9)

Substituting H1,2 into the (3.9) and we obtain

K2 >
r2( p̂1 − p̂2

√
�1)

8K1acm2r21
(for H1), K2 >

r2( p̂1 + p̂2
√

�1)

8K1acm2r21
(for H2), (3.10)

where

p̂1 =δ(δ − r1)
2K 3

1 − 2r1a[(−cm − 2r2)r1 − δ(cm + 4r2)]K 2
1 + r21a

2(cm + 4r1 + 15r2)K1

− 4a3r31 ,

p̂2 =δ(δ − r1)K
2
1 − r1a(3cm + 5r2)K1 + 4a2r21 .

Therefore, under condition of (3.7) and (3.10), a Hopf bifurcation may occur at E = H1,
E = H2 or at E = H1 = H2 when �1 = 0, except when E = E12 or E = E23 or
E = E12 = E23 = E123 where the degenerate equilibrium point occurs and the Hopf
bifurcation curve is given by (3.8).

Next, we verify the transversality condition. Let γ be the real part of the eigenvalue of S1
or S3, then

γ = 1

2
T (E) = −2r1E

2 + [δK1 + r1(a − K1)]E + K1r2a

2K1(a + E)
.

A straightforward calculation gives

∂γ

∂K2
= ∂γ

∂E

∂E

∂K2
= −2r1E

2 − 4r1aE − r1a2 + K1(r1 − cm)a

2K1(a + E)2

∂E

∂K2
,

where

∂E

∂K2
= −K1m[(cm + r2)E + r2a]

(K1K2cm2 + K1K2mr2 − 2K1ar1r2 − 2K1r1r2E + a2r1r2 + 4ar1r2E + 3r1r2E
2
)
.

Since E , K1, r2, c,m, a are all positive, ∂E
∂K2

�= 0. Also, we find ∂γ

∂E
= 0 only when

E = Ê = −2r1a+√
2r1a[K1(r1−cm)+r1a]

2r1
and the coordinate Ê does not satisfy U (Ê) = 0. For

the positive equilibrium S(E, M), ∂γ

∂E
�= 0. Hence, ∂γ

∂K2
�= 0, the transversality condition is

satisfied.
Moreover, we can find the point that D(J (S)) = 0, which is the intersection of Hopf

and saddle-node bifurcation curves. It separates the Hopf bifurcation and neutral saddle
curves. We now plot the curves � = 0 and H(K1, K2, r1) = 0 in (K1, K2) plane when
r1 = r∗

1 for different r2. A numerical generated partial bifurcation diagram contains both
Hopf and saddle-node bifurcations is presented in (K1, K2) plane in Fig. 4. This is the slices
of the bifurcation diagram near the degenerate equilibrium point when r1 is fixed. Also, the
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K2

K1

NFP

SN−

SN+

H

NS

(a) r2 = 0.5, a = 1, c = 1,m = 1

K2

K1

NEP

NS

SN−

SN+ H

(b) r2 = 1.6, a = 1, c = 1,m = 1

K2

K1

BT

SN−

SN+
H

NS

BT
NS

CP

SN−SN+

(c) r2 = 8
7 , a = 1, c = 1,m = 1

Fig. 4 The diagram of Hopf and saddle-node bifurcations in (K1, K2) plane when r1 = r∗
1 with different r2.

SN± is the unstable (blue dot line) and stable (blue solid line) saddle node bifurcation curve respectively; NS
is the neutral saddle curve (red dot line); H is the Hopf bifurcation curve (red solid line); NFP is the nilpotent
focus point of codimension 3; NEP is the nilpotent elliptic point of codimension 3; CP is the cusp point; BT
is the Bogdanov-Takens point (Color figure online)

bifurcation diagramwith r1 varying are presented in Figs. 8 and 9. In this paper, we discussed
the bifurcation diagram involving four parameters through the slices.

Different cases can happen with the two curves are tangent at different positions (Fig. 4a,
b, c) which corresponds to different type of nilpotent singularities. The curve in blue is for
saddle-node bifurcation, � = 0, which has two parts of stable and unstable saddle-node
bifurcation separated by a point associated with nilpotent equilibrium point (Fig. 4a, b) or
Bogdanov-Takens point (Fig. 4c; while the curve in red, H = 0 is composed of curves
segment of Hopf bifurcation curve and neutral saddle curve which are separated by the point
corresponding to the nilpotent equilibrium (Fig. 4a, b) or Bogdanov-Takens point (Fig. 4c).

3.3 Bogdanov-Takens Bifurcation

Theanalysis ofBogdanov-Takens bifurcationof codimension2wasnot included in the studies
of Seo and Wolkowicz [25] and Xiang et al. [26], we will briefly present the bifurcation for
the purpose of completeness.
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Theorem 3.3 Suppose

K2 = K̃2 = r2(a + E)2(r2a + Eδ)

m2acE
, r1 = r̃1 = K1(r2a + δE)

E(−a − 2E + K1)
,

K1 > a + 2E and m̂20 �= 0, m̂11 �= 0, system (1.1) localized at S is topologically equivalent
to

{
ẋ = y,
ẏ = sgn(m̂20)x2 + sgn(m̂11)xy + O(|x, y|3). (3.11)

Proof Firstly, we bring the co-existence equilibrium point S to the origin by the translation
[33,34] X = E − E, Y = M − M and we obtain
(
Ẋ
Ẏ

)

= J (S)

(
X
Y

)

+
(

l20X
2 + l11XY + l21X

2Y + l30X
3

m20X
2 + m11XY + m02Y

2 + m21X
2Y + m30X

3

)

+ O(|X , Y |4),
(3.12)

where

J (S) =
(
l10 l01
l10 l01

)

, l10 = r̃1E(K1 − a − 2E)

K1(a + E)
, l01 = − mE

a + E
,

m10 = K̃2acm(r2a + δE)

r2(a + E)3
,m01 = − r2a + δE

a + E
, l11 = − mE

(a + E)2
,

l20 = − r̃1(E
2 + 3aE + a2 − K1a)

K1(a + E)2
, l21 = am

(a + E)3
, l30 = r̃1a(E − K1)

K1(a + E)3
, m11 = acm

(a + E)2
,

m20 = − K̃2acm(r2a + δE)

r2(a + E)4
, m02 = − r2

K̃2
,m21 = − acm

(a + E)3
, m30 = K̃2acm(r2a + δE)

r2(a + E)5
.

Then under following transformation
(
X
Y

)

= P̃

(
x
y

)

, P̃ = (Ṽ1, Ṽ2),

where

Ṽ1 =
(
1
k1

)

, Ṽ2 =
(

1
P(E)k1
0

)

,

and |P̃| �= 0, then we have
{
ẋ = y + l20x2 + l11xy + l02y2 + O(|x, y|3),
ẏ = m20x2 + m11xy + m02y2 + O(|x, y|3), (3.13)

where

l20 = −r2a + δE

(a + E)2
, l11 = acm − 2r2a − 2δE

(r2a + δE)(a + E)
, l02 = − 1

r2a + δE
,

m20 = (K1 − 2a − 3E)(r2a + δE)2

(a + E)3(K1 − a − 2E)
, m02 = (K1 − a − 3E)

E(K1 − a − 2E)
,

m11 = −6δE
3 + [2K1δ − 4a(3r2 + cm)]E2 + r2a(3K1 − 7a)E + r2a2(K1 − a)

E(−a − 2E + K1)(a + E)2
.
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Then we use the following near-identity transformation

u = x, v = y + l20x
2 + l11xy + l02y

2 + O(|x, y|3),
and if we change u, v into x, y, we obtain

{
ẋ = y,
ẏ = m̂20x2 + m̂11xy + O(|x, y|3), (3.14)

where

m̂20 = m20 = (K1 − 2a − 3E)(r2a + δE)2

(a + E)3(K1 − a − 2E)
,

m̂11 = m11 + 2l20 = −2δE
2 − 4r2aE − r2a(K1 − a)

E(a + E)(K1 − a − 2E)
.

If m̂20 �= 0 (K1 �= K1−2a
3 ) and m̂11 �= 0, and we make a rescaling of coordinates and time

by

X = m̂20

m̂2
11

x, Y = m̂2
20

m̂3
11

y, τ = m̂11

m̂20
t,

and rewrite X , Y , τ into x, y, t , the system (3.14) is topologically equivalent to system (3.11).
Also, we can verify that m̂20 = 0 when S = S123. We will discuss it in details in the Sect.
3.4. �
And if T

′
(J (S)) = 0, we have

K1 = 2δE
2 + r2a(4E + a)

r2a
. (3.15)

When K1, K2, r1 satisfy the condition in theorem 3.3 and 3.15, we can verify that

m̂11 = 0, m̂20 = (r2a + δE)(2δE
2 + r2aE − r2a2)

2E(a + E)3
�= 0.

Hence, S is a cusp point at least codimension 3. To determine its codimension, we need to
calculate the coefficient of x3y term in the normal form 3.11. We will not do the computation
here as Xiang et al. [26] showed that the existence of cusp type Bogdanov-Takens bifurcation
of codimension 3.

3.4 Bifurcations for the Nilpotent Singularity

Though the relative bifurcations called focus and elliptic type of BT bifurcation of codi-
mension 3 were carried out in Xiang et al. [26], we present the analysis of bifurcations for
the nilpotent singularity followed the terms and classification given by Dumortier et al. [27]
and in Zhu and Rousseau [28], to find the organizing center for the system (1.1). Also, we
present the bifurcation diagram near the focus and elliptic type of nilpotent singularity of
codimension 3 based on the analysis of Dumortier et al. [27], which is not included in Seo
and Wolkowicz [25] and Xiang et al. [26].

It follows from the Prop. 2.1 and 3.1 and the discussion about Hopf bifurcations, a straight-
forward calculation can conclude that the system (1.1) has a unique positive equilibrium S123
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which can now be written and denoted as S∗ = (E∗, M∗) with

E∗ = a(2cm − r2)

δ
, M∗ = 12mc2a

2cm − r2
,

if

K1 = K ∗
1 = a(8cm − r2)

δ
, K2 = K ∗

2 = 18r2ac2m

(2cm − r2)δ
, r1 = r∗

1 = 2δ(8cm − r2)

3(2cm − r2)
.

(3.16)

Theorem 3.4 For system (1.1)with all positive parameters and (K1, K2, r1) satisfying (3.16),
the equilibrium S∗(E∗, M∗) is a nilpotent singularity of codimensionat least 3, and the system
(1.1) localized at S∗ is topologically equivalent to

{
ẋ = y,
ẏ = −x3 + bxy − x2y + y2Q12(x, y),

(3.17)

where b = 7r2−8cm
2(2cm−r2)

.
Furthermore, if we fix the parameters a, c,m, and depending on the value of r2, we have

(1) When 24
√
2−8

17 cm < r2 < 2cm, S∗ is a codimension 3 nilpotent sigularity of elliptic type.
(2) When 0 < r2 < 8

7cm, 8
7cm < r2 < 24

√
2−8

17 cm, S∗ is a nilpotent singularity of the focus
type of codimension 3.

(3) when r2 = 8
7cm or 24

√
2−8

17 cm, the equilibrium S∗ is nilpotent point of codimension ≥ 4.

Proof Firstly, we translate the degenerate equilibrium S∗ to the origin by X = E − E∗,
Y = M − M∗ and expand system (1.1) in the neighborhood of the new origin, we will have
(
Ẋ
Ẏ

)

= J (S∗)
(
X
Y

)

+
(

a20X2 + a11XY + a21X2Y + a30X3

b20X2 + b11XY + b02Y 2 + b21X2Y + b30X3

)

+ Q1(X , Y ),

(3.18)

where Q1(X , Y ) = O(|X , Y |4) and

J (S∗) =
(
a10 a01

b10 b01

)

, a10 = 2δ

3
, a01 = (−2cm + r2)

3c
, b10 = 4cδ2

3(2cm − r2)
, b01 = −2δ

3
,

a11 = − δ2

9amc2
, a20 = −2(cm − 2r2)δ2

9mca(2cm − r2)
, a21 = δ3

27a2m2c3
, a30 = − 4δ4

27a2c2m2(2cm − r2)
,

b11 = (δ2

9acm
, b20 = − 4δ3

9am(2cm − r2)
, b02 = − (2cm − r2)δ

18amc2
, b21 = − δ3

27a2c2m2 ,

b30 = 4δ4

27a2cm2(2cm − r2)
.

Next we transform the linear part of the system (3.18) to the Jordan canonical form and
find that J (S∗) is nilpotent. Note that the generalized eigenvectors associated with the zero
eigenvalues are V1 = ( 2cm−r2

2c , δ)′, V2 = (0,− 3
2 )

′ which satisfy J (S∗)V1 = 0, J (S∗)V2 =
V1. Let P = (V1, V2), then under the non-singular linear transformation

(
X
Y

)

= P

(
x
y

)

,
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with |P| = − 3(2cm−r2)
4c < 0, system (3.18) becomes

{
ẋ = y + ã20x2 + ã30x3 + y(̃a11x + ã21x2) + Q̃11(x, y),

ẏ = b̃30x3 + y(̃b11x + b̃21x2) + b̃02y2 + Q̃12(x, y),
(3.19)

where Q̃1i (x, y) = O(|x, y|4), (i = 1, 2), and

ã20 = −2c3m3 − 3c2m2r2 + r32
9ac2m

, ã30 = −δ4(2cm − r2)

54a2c4m2 , ã11 = δ2

6ac2m
,

ã21 = −δ3(2cm − r2)

36a2c4m2 , b̃30 = −δ4(4cm + r2)(2cm − r2)

162a2c4m2 ,

b̃11 = r2δ2

6ac2m
, b̃21 = −δ3(4cm + r2)(2cm − r2)

108a2c4m2 , b̃02 = δ(2cm − r2)

12ac2m
.

Thirdly, we use the following near-identity transformation

u = x, v = y + ã20x
2 + ã30x

3 + y(̃a11x + ã21x
2) + Q̃11(x, y)

and if we change u, v into x, y, we obtain
{
ẋ = y,
ẏ = −b̂30x3 + y(b̂11x − b̂21x2) + y2 Q̂12(x, y),

(3.20)

where

b̂30 = δ4(2cm−r2)2

81a2c4m2 , b̂11 = − δ2(8cm−7r2)
18ac2m

, b̂21 = δ3(2cm−r2)(4cm+7r2)
108a2c4m2 .

If we make a rescaling of coordinates and time by

X = b̂21√
b̂30

x, Y = b̂221

b̂
3
2
30

y, τ = b̂30
b̂21

t

and rewrite X , Y , τ into x, y, t , system (3.20) becomes
{
ẋ = y,
ẏ = −x3 + bxy − x2y + y2Q12(x, y),

(3.21)

where b = 7r2−8cm
2(2cm−r2)

.
It follows from the classification criteria for the nilpotent singularity in [27,28], we have

that if 24
√
2−8

17 cm < r2 < 2cm, then b > 2
√
2, S∗ is a nilpotent elliptic point of codimension

3. It is a nilpotent point of focus type of codimension 3 when 0 < b < 2
√
2 or ( 87cm

< r2 < 24
√
2−8

17 cm). If r2 = 8
7cm (b = 0) or r2 = 24

√
2−8

17 cm (b = 2
√
2), it is a nilpotent

singularity of codimension ≥ 4. �
In Fig. 5, we simulate and present the 3 types of nilpotent singularity classified in Theo-

rem 3.4 with parameters selected for each of the cases. Fig. 5a and b represent the two cases
of nilpotent focus, nilpotent elliptic point of codimension 3 is presented in Fig. 5c, and the
most degenerate case of nilpotent focus of codimension 4 is presented in Fig. 5d).

It is worth pointing out that the most degenerate case occurs when r2 = 8
7cm, and then

the system (1.1) localized at S∗ is topologically equivalent to
{
ẋ = y,
ẏ = −x3 − x2y.

(3.22)
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(a) Nilpotent focus (b < 0).
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(b) Nilpotent focus (0 < b < 2
√
2).
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(c) Nilpotent elliptic point (b > 2
√
2).
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(d) Nilpotent focus of codimension 4 (b = 0).

Fig. 5 The phase portrait of different type of nilpotent singularity when fixed a = 1, c = 1,m = 1. (a)
Nilpotent focus of codimension 3 (b < 0): r2 = 0.5, K1 = 5, K2 = 4, r1 = 5; (b) Nilpotent focus of
codimension 3 (0 < b < 2

√
2): r2 = 1.2, K1 = 3.0909, K2 = 12.2727, r1 = 12.4667; (c) Nilpotent elliptic

point of codimension 3 (b > 2
√
2): r2 = 1.6, K1 = 2.3333, K2 = 27.6923, r1 = 27.7334; (d) Nilpotent

focus of codimension 4 (b = 0), r2 = 8
7 ,K1 = 3.2, K2 = 11.2, r1 = 80

7 .

System (3.22) is the 3-jet of nilpotent focus of codimension 4. This is also the cubic Liénard
equations. In the work of Khibnik et al. [37], they called it doubly degenerate Bogdanov-
Takens point with no quadratic terms in the normal form. There are different type of unfolding
of this nilpotent singularity of codimension 4, which is analyzed by the Dangelmayr and
Guckenheimer (1987) [36] and Khibnik et al. (1998) [37]. From their analysis, we can obtain
that three different types of codimension 3 bifurcation, Cusp type Bogdanov-Takens bifurca-
tions of codimension 3, focus type and elliptic type of nilpotent singularity of codimension
3 can bifurcate from this nilpotent singularity of codimension 4. This nilpotent focus of
codimension 4 serves as an organizing center for the complex dynamics of the system (1.1).

We summary the above bifurcation analysis in the Table 1.
As in the available bifurcation studies [25,26,29] where K1 and K2 were commonly used

as bifurcation parameters, here we will add r1 as the third parameter, namely we will study
system (1.1) for parameters (K1, K2, r1) in a neighborhood of (K ∗

1 , K ∗
2 , r∗

1 ) to explore the
complex dynamics which can be bifurcated from the codimension 3 nilpotent singularity S∗.
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Table 1 The summary of different type of bifurcations

Conditions Types of bifurcation codimension

Pest free equilibrium S01(0, K1),

K2 = r1a
m ; Saddle-node 1

K2 = r1a
m , K1 = r2a

r2−cm (r2 > cm); Saddle-node 2

Coexistence equilibrium S(E, M),

U (E) = 0, k1 = k2, T (J (S))) �= 0; Saddle-node 1

U (E) = 0, k1 = k2, U
′′
(E) = 0, T (J (S)) �= 0; Saddle-node 2

U (E) = 0, T (J (S)) = 0, D(J (S)) > 0; Hopf ≥ 1

U (E) = 0, k1 = k2, T (J (S)) = 0; Bogdanov-Takens 2

U (E) = 0, k1 = k2, T (J (S)) = 0, T
′
(J (S)) = 0; Cusp type Bogdanov-Takens 3

U (E) = 0, k1 = k2, U
′′
(E) = 0, T (J (S)) = 0, Nilpotent singularity ≥ 3

r2 ∈ ( 24
√
2−8

17 cm, 2cm); Elliptic type 3

r2 ∈ (0, 8
7 cm) ∪ ( 87 cm, 24

√
2−8

17 cm); Focus type 3

r2 = 8
7 cm; Focus type 4

r2 = 24
√
2−8

17 cm; Elliptic type ≥ 4

Let

K1 = K ∗
1 + ε1, K2 = K ∗

2 + ε2, r1 = r∗
1 + ε3,

where ε = (ε1, ε2, ε3) and |ε| is sufficiently small. Then we will study the bifurcation of the
following unfolding system

⎧
⎪⎪⎨

⎪⎪⎩

dE

dt
= (

r∗
1 + ε3

)
E

(

1 − E

K ∗
1 + ε1

)

− mEM

a + E
,

dM

dt
= r2M

(

1 − M

K ∗
2 + ε2

)

+ cmEM

a + E
.

(3.23)

Theorem 3.5 For parameters |ε| sufficiently small and any other positive parameters a, c,m,
system (3.23) is a generic unfolding of the codimension 3 nilpotent singularity of elliptic type

when 24
√
2−8

17 cm < r2 < 2cm, of focus type when 0 < r2 < 8
7cm and 8

7cm < r2 <

24
√
2−8

17 cm.

Proof It has been shown by Dumortier et al. [27] that a generic unfolding with the parameters
(μ1, μ2, μ3), of codimension 3 nilpotent singularity is C∞ equivalent to

{
ẋ = y,
ẏ = μ1 + μ2x − x3 + y(μ3 + bx − x2 + O(x3)) + y2Q(x, y).

(3.24)

Wewill show that system (3.23), with parameters ε = (ε1, ε2, ε3), is also a generic unfolding
of codimension 3 singularity by showing that there exist smooth coordinate change which
take (3.23) into (3.24) with D(μ1,μ2,μ3)

D(ε1,ε2,ε3)
|ε=(0,0,0) �= 0.
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When ε = 0, the system (1.1) has a nilpotent equilibrium S∗(E∗, M∗). Let x = E − E∗,
y = M − M∗. When |ε| is sufficient small, the system (3.23) becomes

{
ẋ = L11(x) + yL12(x),
ẏ = L21(x) + yL22(x) + Q2y2,

(3.25)

where

L11(x) =a(2cm − r2)
(
2δ2ε1 + 18acmε3 + 3δε1ε3

)

3δ
(
ε1δ + a(8cm − r2)

)

+ 6δ2ε1 + 3a(4cm + r2)ε3 + 3δε1ε3 + 2aδ(8cm − r2)

3
(
ε1δ + a(8cm − r2)

) x

+ 4δ4ε1 − 9acm(2cm − r2)δε3 − 2aδ2(8cm − r2)(cm − 2r2)

9acm(2cm − r2)
(
ε1δ + a(8cm − r2)

) x2

− 4δ4

27a2c2m2(2cm − r2)
x3 + O(x4),

L12(x) = − 2cm − r2
3c

− δ2

9ac2m
x + δ3

27a2c3m2 x
2 − δ4

81a3c4m3 x
3 + O(x4),

L21(x) = 8ac2mδ2ε2

18ac2mr2 + (2cm − r2)δε2
+ 4cδ2

3(2cm − r2)
x − 4δ3

9am(2cm − r2)
x2

+ 4δ4

27a2cm2(2cm − r2)
x3 + O(x4),

L22(x) =−36ac2mr2δ + 2(2cm − r2)δ2ε2
54ac2mr2 + 3(2cm − r2)δε2

+ δ2

9acm
x + −δ3

27a2c2m2 x
2

+ δ4

81a3c4m3 x
3 + O(x4),

Q2 = −r2(2cm − r2)δ

18ac2mr2 + (2cm − r2)δε2
.

Then, we make the following transformation

x1 = x, y1 = L11(x) + yL12(x).

System (3.25) can be transformed into
{
ẋ1 = y1,
ẏ1 = L21(x1) + y1L21(x1) + y21Q2(x1),

(3.26)

where

L21(x1) =d00 + d10x1 + d20x
2
1 + d30x

3
1 + O(x41 ),

L22(x1) =d01 + d11x1 + d21x
2
1 + d31x

3
1 + O(x41 ),

with

d00 = 4(2cm − r2)δ
2

27cr2(8cm − r2)

[

3cr2ε1 − (8cm − r2)ε2 + 27ac2mr2
δ2

ε3 + O(|ε|2)
]

,

d10 = 2δ3

27acmr2(8cm − r2)

[

r2(14cm − r2)ε1−2m(8cm−r2)ε2+ 54ac2m2r2
δ2

ε3+O(|ε|2)
]

,

d20 = δ4(2cm − r2)
2

81a2c3m2r2(8cm − r2)(2cm − r2)

[2cr2(26c2m2 − 2cmr2 − r22 )

(2cm − r2)2
ε1 + (8cm − r2)ε2
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− 27ac2mr2
δ2

ε3 + O(|ε|2)
]
, d30 = − 4δ4

81a2c2m2 + O(|ε|),

d01 = (2cm − r2)
2δ2

27ac2mr2(8cm − r2)

[
18c2mr2
2cm − r2

ε1 + (8cm − r2)ε2 − 27ac2mr2
δ2

ε3 + O(|ε|2)
]

,

d11 = − (8cm − 7r2)δ2

9acm(2cm − r2)
+ O(|ε|),

d21 = − (4cm + 7r2)δ3

27a2c2m2(2cm − r2)
+ O(|ε|),

d31 = − (8cm + 11r2)δ4

81a3c3m3(2cm − r2)
+ O(|ε|).

Then, we reduce the L21(x1) to −x31 + u2x1 + u1 [30]. Note that for ε sufficiently small,

d30(ε) = ∂3L21
∂x31

(0) = − 4(cm+r2)4

81a2c2m2 + O(|ε|) �= 0, we make the translation

x2 = x1 + d20
3d30

, y2 = y1

which brings the system into
{
ẋ2 = y2,
ẏ2 = L̃21(x2) + y2 L̃22(x2) + y22 Q̃2(x2),

(3.27)

where

L̃21(x2) = d̃00 + d̃10x2 − d̃30x
3
2 + O(x42 ),

L̃22(x2) = d̃01 + d̃11x2 + d̃21x
2
2 + O(x32),

Then, if we rescale y2 and time t using

x3 = x2, y3 = y2
√
d̃30

, t̃ =
√

d̃30t

the coefficient of x33 becomes 1 + O(|ε2|). We have
{
ẋ3 = y3,

ẏ3 = ˜̃L21(x3) + y3
˜̃L22(x3) + y23

˜̃Q2(x3),
(3.28)

where

˜̃L21(x3) =˜̃d00 + ˜̃d10x3 − x33 + O(x43 ),

˜̃L22(x3) =˜̃d01 + ˜̃d11x3 − ˜̃d21x
2
3 + O(x33),

with

˜̃d00 = 3a2cm2(2cm − r2)

r2(8cm − r2)δ2

[

3cr2ε1 − (8cm − r2)ε2 + 27ac2mr2
δ2

ε3 + O(|ε|2)
]

,

˜̃d10 = 3acm

2r2(8cm − r2)δ

[

r2(14cm − r2)ε1 − 2m(8cm − r2)ε2 + 54ac2m2r2
δ2

ε3 + O(|ε|2)
]

,

˜̃d01 = 1

24cr2(8cm − r2)

[
− 2cr2(64c3m3 − 54c2m2r2 − 30cmr22 + 7r32 )

(2cm − r2)2
ε1 + (8cm − r2)

2ε2
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− 27ac2mr22
δ2

ε3 + O(|ε|2)
]
,

˜̃d11 = 7r2 − 8cm

2(2cm − r2)
+ O(|ε|), ˜̃d21 = (4cm + 7r2)δ

6acm(2cm − r2)
+ O(|ε|).

Using the Malgrange preparation theorem, we can reduce the ˜̃L21(x3) to ˜̃d00 + ˜̃d10x3 − x33 .

For system (3.28), ˜̃d21(0) = (4cm+7r2)δ
6acm(2cm−r2)

> 0. Thus, we reduce the ˜̃L22(x3) to u3 +
bx3 − x23 + O(x33) by rescaling the x3, y3, t̃ using x4 = ˜̃d21x3, y4 = ˜̃d

2
21y3, τ = 1

˜̃d21
t̃ .

Now if we rewrite x4 ,y4 ,τ into x , y, t , then the system becomes
{
ẋ = y,
ẏ = d̂00 + d̂10x − x3 + y[d̂01 + d̂11x − x2 + O(x3)] + y2 Q̂2(x),

(3.29)

where

d̂00= (4cm + 7r2)3δ

72ac2mr2(8cm − r2)(2cm−r2)2

[

3cr2ε1 − (8cm − r2)ε2 + 27ac2mr2
δ2

ε3+O(|ε|5)
]

,

d̂10 = (4cm + 7r2)2δ

36acmr2(8cm − r2)(2cm − r2)2

[
r2(14cm − r2)ε1 − 2m(8cm − r2)ε2 + 54ac2m2r2

(δ2
ε3

+ O(|ε|4)
]
,

d̂01 = (4cm + 7r2)δ

144ac2mr2(8cm − r2)(2cm − r2)

[
− 2cr2(64c3m3 − 54c2m2r2 − 30cmr22 + 7r32 )

(2cm − r2)2
ε1

+ (8cm − r2)
2ε2 − 27ac2mr22

δ2
ε3 + O(|ε|3)

]
, d̂11 = 7r2 − 8cm

2(2cm − r2)
+ O(|ε|).

Then, if we denote d̂00 = μ1(ε1, ε2, ε3), d̂10 = μ2(ε1, ε2, ε3), d̂01 =
μ3(ε1, ε2, ε3), d̂11 = b(ε1, ε2, ε3), since r2 < 2cm, we can verify that

∣
∣
∣
∣
∂(μ1, μ2, μ3)

∂(ε1, ε2, ε3)

∣
∣
∣
∣
ε=0

= δ(4cm + 7r2)6

2304a2c3m2r2(8cm − r2)(2cm − r2)4
> 0. (3.30)

Thus, the transformation of parameters is nonsingular. The system (3.23) with parameters
ε = (ε1, ε2, ε3), is a generic family unfolding the codimension 3 nilpotent singularity. �

3.5 Bifurcation Diagram

Based on the bifurcation analysis of Dumortier et al. [27], we present the bifurcation diagrams
in the following two figures, Figs. 6 and 7. The bifurcation set is a topological cone with
vertex at 0 ∈ R

3, composed of surfaces and lines which are transversal to the spheres
S = {(μ1, μ2, μ3|μ2

1 + μ2
2 + μ2

3) = σ 2, 0 < σ � 1} by removing one point outside the
bifurcation set, on the hemisphere μ2 < 0. The vertical coordinate is μ3; the horizontal
coordinate is μ1 oriented to the left.

In the bifurcation diagrams shown in Figs. 6 and 7, there are three points labeled as Cusp
for cusp point, BT for Bogdanov-Takens point and DH for degenerate Hopf bifurcation point.
The bifurcation curves presented include the curves of saddle-node bifurcations (SN ), Hopf
bifurcations (H ), Homoclinic bifurcation (Hom) and saddle-node bifurcation of limit cycles
(SNlc).
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Fig. 6 The bifurcation diagram of focus type nilpotent singularity of codimension 3

In order to understand the dynamics for the interaction of the two species in different
sizes of tea garden, we will numerically investigate and present the bifurcation diagrams in
(K1, K2) plane with different value of r1 for both the focus and elliptic cases. (Tables 2 and
3)

3.5.1 Focus Type

From the Theorem 3.4, we know that the nilpotent singularity of codimension 3 is focus
type when we fix four parameters a = 1, c = 1,m = 1 and r2 = 0.5. Then, we plot the
bifurcation diagram in (K1, K2) plane with different r1 by choosing r2 = 0.5. From Fig. 8a –
e, we can see the changing trend of relative position between the Hopf bifurcation curve and
saddle-node bifurcation curve. When r1 decreases from 6 to 4, the Hopf curve moves toward
rightward from the outside of saddle-node bifurcation curve to the inside, without changing
the structure in Fig. 8a. When r1 keeps decreasing, the Hopf bifurcation curve changes the
shape as show in Fig. 8e.

The saddle-node bifurcation curve is composed of the upper part, the lower part and
the intersection point cusp point, while the Bogdanov-Takens point separates the saddle-
node bifurcation curve into two part with stable saddle-node bifurcation curve and unstable
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Fig. 7 The bifurcation diagram of elliptic type nilpotent singularity of codimension 3

Table 2 Collections of phase portraits for the system in the elliptic casewhen the parameters vary in subregions
, referring to Fig. 6
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Table 3 Collections of phase portraits for the system in the elliptic casewhen the parameters vary in subregions,
referring to Fig. 7

bifurcation curve. The Hopf bifurcation curve is tangent to the lower part of saddle-node
bifurcation curve in Fig. 8e (r1 = 3.5) and 8d (r1 = 4), while the Hopf bifurcation curve
is tangent to the upper part of saddle-node bifurcation curve in Fig. 8a and b (r1 = 6). In
Fig. 8c (r1 = 5), the parameters satisfy the condition (3.16) in Theorem 3.4 at which the
nilpotent point of codimension 3 occurs when cusp point and Bogdanov-Takens point of
codimension 2 coincide. In this case, the Hopf bifurcation curve is tangent to both stable
saddle-node bifurcation curve and unstable saddle-node bifurcation curve. Also, the number
of degenerate Hopf point is changed from 0 to 2 when r1 changes from 3.5 to 6 pass through
r1 = r∗

1 = 5. We simulate the bifurcation curve of saddle-node bifurcation of limit cycle
near the degenerate Hopf bifurcation point. In the region c between the bifurcation curve of
subcritical Hopf and saddle-node of limit cycle, the system (1.1) can have two limit cycle,
one stable and the other is unstable, which is verified by the numerical simulations as whow
in Fig. 12c.
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3.5.2 Elliptic Type

As the same with focus type, we fix four parameters a = 1, c = 1,m = 1 and r2 = 1.6, and
the nilpotent singularity of codimension 3 is of elliptic type according to the Theorem 3.4.
Then, we plot the bifurcation diagram in (K1, K2) plane with different r1. Compare to focus
type we can see the similar changing trend of relative position between the Hopf bifurcation
curve and saddle-node bifurcation curve and the number of degenerate Hopf point, from
Fig. 9a–e. The Hopf curve moves rightward with decreasing r1, and it finally changes the
shape. However, the most part of parameters are in the region K2 > r1a

m where S1 is in the
negative quadrant in Fig. 9d and e. In order to show the moving trend of Hopf curve, we still
present the bifurcation diagram which contains the parameters in the region K2 > r1a

m .
Another difference is that the Hopf bifurcation curve is tangent to the upper part of saddle-

node bifurcation curve when r1 < r∗
1 instead of the lower part of saddle-node bifurcation

curve in focus type. Whereas r1 > r∗
1 , the Hopf bifurcation curve is tangent to the lower

part of saddle-node bifurcation curve. We did not present it in Fig. 9 due to the redundancy.
Also, in elliptic type bifurcation diagram in (K1, K2) plane, there are two Bogdanov-Takens
points, we omit the one in the region of K2 > r1a

m .
Next, we plot the one-parameter bifurcation diagram to explain themodel dynamics. First,

we present bifurcation diagram in (E, K1) plane with different K2 as shown in Fig. 10 and
bifurcation diagram in (E, K2) plane with different K1 as shown in Fig. 11. In general,
reducing the carrying capacity of E. onukii population in the tea plantation to a certain
low level, the low level of E. onukii population state can be stable under different carrying
capacities of A. baccarum, and pest suppression is possible. With the decreasing of carrying
capacity of E. onukii, one can see that the system may go through a stable state of high E.
onukii to the gradual excitation of oscillations around the unique equilibrium, and a stable
state of low E. onukii (Fig. 10a). For an environment that is not suitable for E. onukii, the
pest E. onukii can be effectively controlled, yet this may not always work. For some level
of the capacity for A. baccarum, the E. onukii population can still outbreak even though
the capacity of E. onukii is reduced when the initial capacity of E. onukii is relatively high
(Fig. 10b–f). Also, the initial condition plays an important role. Different initial states can
lead to different equilibrium states, low level of E. onukii or the large-amplitude oscillation
of E. onukii population (Fig. 10f).

When we fixed the carrying capacity of E. onukii, increasing the capacity of A. baccarum
may be effective to control E. onukii (Fig. 11d, h). However, in other cases, increasing the
capacity of A. baccarum may not be effective from the beginning. On the contrary, it may
induce a large amplitude oscillation of E. onukii population. Small increases in the carrying
capacity of A. baccarum may lead to an opposite effect. The initial state of the E. onukii is
also important for the pest control (Fig. 11d).

4 Numerical Simulations and Existence of Three Limit Cycles

In this section, we will carry out numerical simulations and plot phase portraits by choosing
different parameter values in the subregion of bifurcation diagram to explain the complexity
of the dynamics.
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Fig. 8 Bifurcation diagram for the nilpotent focus of codimension 3 in (K1, K2) plane with different r1 when
a, c,m = 1 and r2 = 0.5. The green solid and dot lines are the stable and unstable saddle-node bifurcation
respectively; red solid and dot line represents the supercritical and subcritical Hopf bifurcation; cyan line
stands for the saddle-node of limit cycle; magenta line is neutral saddle curve not the bifurcation curve. DH
is the degenerate Hopf point; CP is the cusp point; BT is the Bogdanov-Takens point (Color figure online)

4.1 Focus Type

When the parameters (K1, K2) in region from a to j in Fig. 8, all the phase portraits are
presented in Fig. 12. It contains all the possible solutions of system (1.1) when the nilpotent
singularity of codimension 3 is of focus type.

In the case 12a–c , the system has one unique positive equilibrium, and it goes through
from a stable node to an unstable node through a Hopf bifurcation, then becomes a stable
node again. The system (1.1) has three equilibria in case 12d–12j which happens when the
parameter (K1, K2) are in the inside of saddle-node bifurcation curve. The S3 is always stable
while S1 changes from stable node to unstable node through a Hopf bifurcation as shown
in the case 12d–f. In the case 12h–j , S1 is always an unstable node while S3 goes through
stable node to unsatble node, and the system always has a large amplitude stable limit cycle
outside the three equilibrium points.

4.2 Elliptic Type

For system (1.1) with a nilpotent singularity of elliptic type, we present the phase portraits
when the parameters are in the corresponding regions from a to i in Fig. 9. In the case 13a–c,
the phase portrait of the system shows the same structure as in focus type.

The systemhas one unique positive equilibrium, and it has one stable limit cycle in Fig. 13b
and two limit cycles in Fig. 13c. The system (1.1) has three equilibria in the case 13d–i which
happens when the parameter (K1, K2) are in the inside of saddle-node bifurcation curve. The
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Fig. 9 Bifurcation diagram of the codimension 3 nilpotent elliptic point in (K1, K2) plane with different r1
and a = c = m = 1, r2 = 1.6. The line colors and points explanation are the same as in Fig.12 (Color figure
online)

S1 is always stable while S3 changes from a stable node to an unstable node through a Hopf
bifurcation, then to a stable node again in the case Fig. 13e–i. But we did not find the large
amplitude stable limit cycle outside the three equilibrium points in the elliptic type, which
also proved in the studies of Dumortier et al. [27].

4.3 Three Limit Cycles in the Systemwith Singularity of Elliptic Type

We want to point out is that we find a special case that for the system (1.1) with a nilpotent
elliptic equilibrium, the system can have three distinct limit cycles when K1 = 2.5868, K2 =
27.78, r1 = 27.78333334, r2 = 1.6, a = 1, c = 1,m = 1, a case corresponds to the region c
in Fig. 9c. The largest limit cycle shows that the slow-fast pattern. And the period is around
150 days which is close to the life span of the A. baccarum (81-114 days [14], varied with
local climate).

This case of three limit cyclesmay occur in parameters between the homoclinic bifurcation
and the limit point of limit cycle bifurcation, a case similar to Shan et. al (2016) [34], where
they numerically showed the existence of the three limit cycles when the system has three
positive equilibrium in the most degenerate case of nilpotent singularity. The existence of
three limit cycles also is presented in the global analysis of the cubic Liénard equation in
Khibnik et al. (1998) [37]. Also, the number of limit cycle in system (1.1) may be at least 4
when consider the bifurcation of the most degenerate case r2 = 8

7cm, the nilpotent focus of
codimension 4 [37]. As for the exact number of limit cycles which can be bifurcated from
the nilpotent focus of codimension 4 in the system, it still remains an open problem which
is associated with the bifurcation of a Liénard systems and even with the famous Hilbert
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Fig. 10 Bifurcation diagrams in (E, K1) plane shown different scenarios of changing K2. We fixed a =
1, c = 1,m = 1, and a–d r2 = 0.5, r1 = 6 (focus type), e–f r2 = 1.6, r1 = 26 (elliptic type). H is the Hopf
point; SN is the saddle node; NS is the neutral saddle point. The blue and red color represent the equilibrium
is stable and unstable, respectively (Color figure online)
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Fig. 11 Bifurcation diagram in (E, K2) plane with different K1. We fixed a = 1, c = 1,m = 1, and a–d
r2 = 0.5, r1 = 6 (focus type), e–h r2 = 1.6, r1 = 26 (elliptic type). H is the Hopf point; SN is the saddle
node; NS is the neutral saddle point. The blue and red color represent the equilibrium is stable and unstable,
respectively. Note that we did not present the cases of elliptic type which is similar to focus type due to
redundancy (Color figure online)

sixteenth problem for planar polynomial systems. This existence of three limit cycles also
manifests that the complexity of the dynamics of the generalist predator A. baccarum and
prey E. onukii in tea plantation can be much more complicated with bi-stability and even
tri-stability.

5 Conclusion and Discussion

In this paper, we established a predator-prey model for the tea green leafhopper pest E. onukii
and their predatory mite A. baccarum as a generalist predator. The euryphagous nature is
crucial for the predator to survival in nature, and it is a very important characteristic of the
species which leads to easier coexistence of the two species. The look-simple two dimension
model exhibits very complex dynamics. Through bifurcation analysis, we have shown that

123



2864 Journal of Dynamics and Differential Equations (2023) 35:2833–2871

(a) (b) (c)

(f)(e)(d)

(g) (h)

(i) (j)

Fig. 12 The phase portrait of system (1.1) with a nilpotent singularity of focus type. Here when fixed r2 =
0.5, r1 = 6 in the generic regions of parameters (K1, K2). The regions (a) − ( j) correspond to the regions of
bifurcation diagram in Fig. 8. The blue line represents that the solution is stable, while the red line stands for
unstable solution. Also, we use red dot line to clarify the situation that S1 is unstable and S3 is stable (Color
figure online)
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 13 The phase portrait of system (1.1) with a nilpotent elliptic singularity when fixed r2 = 1.6, r1 = 26 in
the generic regions of parameters (K1, K2). The regions (a)− ( j) are correspond to the regions of bifurcation
diagram in Fig. 9. The blue line represents that the solution is stable, while the red line stands for unstable
solution. Also, we use red dot line to clarify the situation that S1 is stable and S3 is unstable. In case e and i,
the S1 and S3 are stable (Color figure online)
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Table 4 The classification of the phase portraits of the system (1.1) with a nilpotent singularity

Equilibrium state Focus type Elliptic type

Single equilibrium Fig. 12a, f Fig. 13a, f

Monostablity Single limit cycle Fig. 12b, j(surrounding
3 singularity)

Fig. 13(b)

Two stable equilbria Fig. 12d Fig. 13d, i

Equilibrium
and 1 limit
cycle

Fig. 12e,g(surrounding
3 singularity)

Fig. 13e, g

Bistability Equilibrium
and 2 limit
cycles

Fig. 12c,h (2 surround-
ing 3 singularity),
Fig. 12i (1 surrounding
3 singularity)

Fig. 13c

Equilibrium
and 3 limit
cycles

Fig. 14

Tristability Two stable equi-
libria and 2 limit
cycles

Fig. 13h

there can be different equilibrium states (see Figs. 12 and 13) when the parameters vary in
tea plantations, and the associated bifurcations and dynamics of these equilibria reveal the
possible scenarios.

The eradication of the pest E. onukii is difficult. Even though when the carrying capacity
of the predatory mite A. baccarum is high enough (K2 > r1a

m ), the pest-free equilibrium is
locally stable. But it still exists the stable equilibrium state of high E. onukii population. The
pest eradication also depends on the initial condition of E. onukii population, as observed in
Seo andWolkowicz (2020) [25].Hence, it is plausible to suppress the pest rather than eradicate
it. The analysis of the coexistence equilibrium is also crucial for the pest suppression strategy.

It turns out that the co-existence of these two species is always possible. We can classify
the phase portraits of the system (1.1) when (K1, K2) is in different regions while r1 is varied.
By the local stability and bifurcation analysis of all the equilibrium states, we summarize
the different possible types equilibrium state in Table 4, varying from single equilibrium,
single limit cycle, two equilibria, two equilibria and limit cycle, equilibrium and limit cycle
with the number of 1 , 2, even 3. And it may have more types of coexistence state when the
growth rate of generalist predator (r2) varied. There are many different combinations and
types of coexistence of the two speciesE. onukii andA. baccarumwhen the external condition
changes. Also, it is possible to have a stable coexistence of E. onukii and A. baccarum in
different states for the same external conditions.

Mathematically there are several different types of multi-stability. When the parameters
are all fixed, the system can have two stable fixed points, a stable fixed point and a stable
limit cycle, two stable fixed point and a stable limit cycle, a stable fixed point and two stable
limit cycles. Also, biologically the behavior of the system is much different in the case of
two stable equilibria, equilibrium and a limit cycle. This result is different from the finding
of Colling et.al (1990) [41] due to the existence of a large amplitude periodic solution in
our model. Moreover, the phenomenon is much more complicated with the A. baccarum as
a generalist predator. The phenomenon of two different stable states has been well studied
[10,41], however, as far as we know that it is not common to see the existence of three

123



Journal of Dynamics and Differential Equations (2023) 35:2833–2871 2867

(a) Phase portrait of 3 limit cycles

(b) 2 limit cycles with small amplitude
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(c) 1 limit cycle with large amplitude

Fig. 14 The most special case that the system have three limit cycles when K1 = 2.5868, K2 = 27.78, r1 =
27.783333334, and r2 = 1.6, a = 1, c = 1,m = 1. The initial conditions for solution curves in black, red
and blue are (x0, y0) = (0.5316, 33.81); (0.5164, 33.69) and (x0, y0) = (0.2931, 31.01), respectively (Color
figure online)

different stable states, or triple-stability in a biological system. When the reproduction rate

r2 varies in the interval 24
√
2−8

17 cm < r2 < 2cm, the system can have three different stable
states for the same parameters, two stable fixed point and one stable limit cycle (Fig. 15).

As we described in the introduction, the different phenomena are observed in the field
study. Hence, it is possible that there are different coexistence states of A. baccarum and E.
onukii in different levels of population sizes. In addition to the growth and development rules
of A. baccarum itself, the extensive appetite of A. baccarum may generate that there are a
variety of possible coexistence phenomena between A. baccarum and E. onukii, which may
correspond to many stable states presented in the model.

We claim that S1 is the equilibrium with low E. onukii and low A. baccarum population,
while S3 is the equilibrium with high E. onukii and high A. baccarum population. The
multistability allows the system to model the E. onukii population outbreak in response to
population perturbations, like the increase in predator by artificially releasing or the deceasing
caused by the pesticide. If the populations are at a stable state with high E. onukii and high
A. baccarum population, the population perturbations will force the populations to move to
the state with low E. onukii and low A. baccarum population. The release of predator and the
application of pesticide can effectively take control of E. onukii population. However, it can
also cause the populations to jump to the oscillations that the A. baccarum can not effectively
control E. onukii. Even worse, the population perturbations may lead the populations to
move from low E. onukii and A. baccarum population to high E. onukii and A. baccarum
population, which make the problem worse. But the introduction of A. baccarum always
reduces the abundance of E. onukii below the carrying capacity and may have some effects
on pest suppression.

Referring to different tea plantations, where K1, K2 and r1 are all fixed, the system may
have different biological behaviors as different growth rates of A. baccarum (r2). Increasing
r2 may also be helpful to control E. onukii. Mathematically, different r2 manifests themselves
as different types of degenerate singularities, the focus type and the elliptic type and more
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Fig. 15 The different stable states under different initial condition with parameter fixed at K1 = 2.57, K2 =
25.996, r1 = 26, r2 = 1.6, a = 1, c = 1,m = 1. The black line: (x0, y0) = (0.2, 32); the red line:
(x0, y0) = (0.3, 30); the blue line: (x0, y0) = (0.45, 31). (Color figure online)
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Fig. 16 The type of nilpotent singularity when r2 varied (Color figure online)

degenerate focus case. With the increase of r2, the type of degenerate equilibrium changes

from the focus (0 < r2 < 8
7cm, 8

7cm < r2 < 24
√
2−8

17 cm) to elliptic ( 24
√
2−8

17 cm, 2cm),
and the large amplitude oscillation of E. onukii population may disappear. We may observe
the slow-fast oscillation of E. onukii population. When the growth rate of A. baccarum is
relatively high, the abundance of E. onukii may maintain a low level the most of time. Even
thoughwhen theE. onukii increase significantly in a short time, theA. baccarumwill increase
fast and then control the E. onukii (Fig. 14). This shows the possibility of pest suppression
by using the generalist predatory mite, A. baccarum. (Fig. 15)

Also, we notice that our analysis can extend to when the predator is a specialist predator
with intraspecific competition, the system (1.3) (r2 < 0, Fig. 16). All types of coexistence
states analyzed in our study can also occur between specialist predators and prey. Competition
within the predator may be more conducive to the coexistence of predator and prey.

We close by noting that the dynamical behavior of this generalist predator-prey system
is complicated. We analyze the change of dynamics using four different parameters. The
nilpotent focus of of codimension 4 serves as an organizing center for the complex dynamics
of the model.We find that it can have three limit cycles around one of the positive equilibrium
and even 4 limit cycles. Moreover, various coexistence phenomena can happen. Not only the
bistability, but also the tri-stability can happen too.
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