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Abstract
The theory of bounded, distributive lattices provides the appropriate language for describing
directionality and asymptotics in dynamical systems. For bounded, distributive lattices the
general notion of ‘set-difference’ taking values in a semilattice is introduced, and is called
the Conley form. The Conley form is used to build concrete, set-theoretic models of spectral
spaces, or Priestley spaces, of bounded, distributive lattices and their finite coarsenings.
Such representations formulate and compute order-theoretic models of dynamical systems
such as Morse decompositions and Morse representations, which may be regarded as global
characteristics of a dynamical system.

Keywords Booleanization · Conley Form ·Morse Decomposition · Distributive Lattice ·
Birkhoff-Stone Representation Theorem
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1 Prelude

Perhaps the simplest characterization of global dynamics is in terms of recurrent and non-
recurrent dynamics. A systematic approach to this decomposition began with Smale [37]
in the context of Axiom A diffeomorphisms. For general dynamical systems, Conley [10]
established the concept of a Morse decomposition that uses the nonrecurrent dynamics to
define a partial order on a finite collection of invariant sets that contain the recurrent dynam-
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ics. Aside from its generality, Morse decompositions have the advantage that they can be
defined without a priori assumptions or understanding of detailed structures of the dynamics.
In fact, as we demonstrate in this paper, it can be defined without fixing a dynamical system.
Consequently, it is an extremely general tool, but this generality has led to subtle variances in
its definition and how it is has been employed. A goal of this paper is to clarify (and rectify)
this subtlety and give a proper order theoretic formulation of Morse decomposition.

Within the framework of Conley’s approach to dynamical systems a global understanding
of the dynamics is codified in the form of a chain complexwith a boundary operator called the
connectionmatrix [16,21,33,35]. Two fundamental facts associated with connectionmatrices
are as follows. First, they respect the partial order associated with a Morse decomposition.
Second, their computation depends on identifying an index filtration, which, as observed
by Robbin and Salamon [35], is a finite lattice of attracting blocks. This duality between
posets that capture the gradient-like nature of the dynamics and lattices that provide insight
into the global organization of the dynamics is explored in a series of papers [23–26] that
develop an algebraic representation of the nonrecurrent structure of nonlinear dynamics. This
paper builds on these earlier works, however for the convenience of the reader we include an
appendix in which essential concepts, results, and notation are recalled.

Nevertheless, we expect that the formal algebra of lattice theory employed in this paper
is foreign to typical practitioners of dynamics and thus in an attempt to provide context for
the results presented here we begin with four concrete examples: the first two, are indicative
of how Conley theory is used in the classical analysis of dynamical systems, the third, is
representative of these techniques in the computational analysis of dynamical systems; and
the fourth is indicative of how these ideas may play a role in the analysis of data-driven
dynamics.

Example 1 Consider the special form of the Cahn-Hilliard equation

ut = (−ε2uxx + u3 − u)xx , (x, t) ∈ [−1, 1] × R

with boundary conditions ux (±1, t) = uxxx (±1, t) = 0. We recall a few relevant facts
about the associated dynamics, cf. [31] for details and references therein. This equation has a
global compact attractor X on which the dynamics is given by a flow ϕ : R× X → X . There
is an energy functional which is strictly decreasing along solutions that are not equilibria.
As a function of the parameter ε, the complete set of equilibria are known. In particular,
given a positive integer N there is a range of ε for which there are 2N + 1 equilibria,
M:= {Mn± | n = 0, . . . , N − 1} ∪ MN , where MN is the solution u ≡ 0. Furthermore, for
any u ∈ X \M there exist 0 n < m N such that limt→∞ ϕ(t, u) is either Mn+ or Mn− ,
and limt→−∞ ϕ(t, u) is either Mm+ or Mm− (or 0 if m = N ). Notice that the partial order

Mn± < MN , and Mn± < Mm± , for all 0 n < m N

is compatible with the description of the possible heteroclinic orbits (Fig. 1).
This use of a partially ordered set (poset) to organize global dynamical information about

the equilibria (recurrent dynamics) is extremely useful, if for no other reason that it allows
one (as was done in [31]) to address the next natural question: what is the structure of the
heteroclinic orbits between equilibria?

We capture the above mentioned global information via the following definition.

Definition 1 Let ϕ : T
+ × X → X be a dynamical system on a compact metric space X .

A Morse representation of ϕ is a finite poset (M,�) where M consists of mutually disjoint,
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Fig. 1 The poset structure of M
reveals that the equilibrium
points are not linearly ordered

nonempty, compact invariant sets, called Morse sets, with the property that for each x ∈ X
there exists M ∈ M such that ω(x) ⊂ M , and for each complete orbit γx with x /∈ ⋃

M∈M M
there exist M < M ′ such that ω(x) ⊂ M and αo(γ

−
x ) ⊂ M ′.1

For a fixed ε > 0 the set of equilibria M in Example 1 provides a Morse representation
for the Cahn-Hilliard flow on X . To indicate why we have introduced this new terminology
of Morse representation we turn to the next example.

Example 2 In [27] J. Mallet-Paret considers a class of scalar delay-differential equations of
the form

ẋ(t) = − f (x(t), x(t − 1)) (1)

where f satisfies appropriate conditions. Relevant facts for this system are that there exists
a global compact attractor X , an induced flow ϕ : R × X → X , and associated with this
flow is a discrete valued Lyapunov function V : X � {0} → {1, 3, . . . , 2n + 1, . . .}, i.e.
V (ϕ(t, x)) V (x) for all t > 0. Define the invariant subsets

Mn :=
{
x ∈ X � {0} ∣

∣ V (ϕ(t, x)) = n, ∀t ∈ R, and 0 /∈ α(x) ∪ ω(x)
}
.

It follows from [27, Thm.B] that there is a positive integer N∗ (determined by the linearization
of the solution x ≡ 0) and another odd integer N (N∗ N ) such that if x ∈ X , then either
x ∈ Mn for some n � N , or there exists j < k � N such that ω(x) ⊂ Mj and α(x) ⊂ Mk ,
cf. [27] for the definition of MN∗ .2 Thus, the poset structure induced by the dynamics is the
usual ordering on the integers.

Similar to Example 1 this result reduces the study of the global dynamics of (1) to identi-
fying the dynamics of each invariant setMn and the connecting orbits between these invariant
sets. For example, in [27] it is shown that for n < N∗ each Mn contains a periodic orbit, and
in [14,28] existence and structure of connecting orbits for the set of orbits for which V N∗
is demonstrated. Observe that these results do not extend to orbits associated with V > N∗
as such results will depend on more detailed assumptions concerning f . In particular, if
n > N∗, then it is possible that Mn = ∅ for multiple indices and therefore

M1, M3, . . . , MN∗ , . . . , MN

does not have the structure of a partially ordered set in general.

In both examples an appropriate partial order structure provides a framework in which to
try to understand the global dynamics, cf. [28,31]. This leads us to the following definition
where it is not longer necessary to focus on nonempty invariant sets.

1 The set αo(γ
−
x ) indicates the orbital alpha limit set for γ−

x , cf. [25, Prop. 2.13]. An overview of the most
important topological and algebraic notions used here is given in Appendix 1.
2 The set MN∗ = {0} whenever the origin is hyperbolic. In that case N∗ is an even integer.
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Definition 2 A Morse decomposition is an order-embedding π : M ↪→ P, where (M,�) is a
Morse representation of ϕ and (P,�) is a finite poset.

This definition implies that if π : M ↪→ P is a Morse decomposition then for each x ∈ X
there exists p ∈ P such that ω(x) ⊂ π−1(p), and for each complete orbit γx with x /∈⋃

M∈M M there exist p < p′ such that ω(x) ⊂ π−1(p) and αo(γ
−
x ) ⊂ π−1(p′).

The definition of Morse decomposition is the same in spirit as the definition in [10]. The
main difference is that we do not ‘label’ the Morse sets by P but instead allow only the
nonempty Morse sets for the poset M and keep track of a poset P to account for a global
order structure of the flow, cf. Remark 1. A Morse decomposition is de facto the poset P. In
Example 2 we define P = {1, 3, . . . , N∗, . . . , N } equipped with the linear order induced by
the integers and define the poset (Morse representation) M:={

Mn �= ∅ | n ∈ P
}
and

Mn � Mm ⇐⇒ n � m.

Note thatM is awell-defined poset since all elements are necessarily distinct.Wewill return to
Definition 2 and discuss it in a proper mathematical context in Sect. 9. In upcoming examples
we show that this formulation of Morse decomposition is convenient in many ways and is
the correct order-theoretic formulation of Conley’s concept of Morse decomposition.

Example 3 The third example arises from a study of the dynamics of a nonlinear population
model, fθ : R

2 → R
2 given by

(
x1
x2

)

→
(

(θ1x1 + θ2x2)e−0.1(x1+x2)

0.7x1

)

(2)

where the parameter θ = (θ1, θ2) ∈ [8, 37]×[3, 50]. Because this is an ecological model it is
unreasonable to assume precise knowledge of parameters, thus it is of interest to understand
what happens over large ranges of parameters. However, this system is known to exhibit
extremely complicated dynamics and bifurcations, cf. [38]. Therefore, from the perspective
of applications a classical analytic analysis at a given parameter value is of limited value and
any detailed analysis is dependent upon numerical computations.

The strategy adopted in [2] is to decompose parameter space into a uniform grid of 50×50
rectangles indexed by Z. The portion of phase space on which computations are performed
is a rectangle X that is divided uniformly into 224 subrectangles that are indexed by X . We
use the notation |·| to pass from the indexing set to the topological region, i.e. given ζ ∈ Z,
|ζ | ⊂ [8, 37] × [3, 50] and given ξ ∈ X , |ξ | ⊂ X . For a fixed ζ ∈ Z rigorous bounds
on fθ are used to construct a combinatorial multivalued map Fζ : X −→→X that satisfies
fθ (|ξ |) ⊂ ∣

∣Fζ (ξ)
∣
∣ for all θ ∈ |ζ |. The result of computations using Fζ produces a poset(

SC(Fζ ),�ζ

)
which is defined as follows. The set SC(Fζ ) is the poset of strongly connected

components of Fζ regarded as a digraph.
The above mentioned rigorous bounds imply the following result. For any fixed θ ∈ |ζ |

define Mθ :=
{
Mθ = Inv(|S|, fθ ) �= ∅ | S ∈ SC(Fζ )

}
, where Inv(|S|, fθ ) is defined to be

the maximal invariant set in |S| under the dynamics fθ , and

Mθ � M ′
θ ⇐⇒ S � S ′.

Consequently, the application Mθ �→ S defines theMorse decomposition π : Mθ ↪→ SC(Fζ )

of the maximal invariant set in X under fθ . As in Example 2 there are no a priori guaran-
tees that Mθ is isomorphic to SC(Fζ ). The set SC(Fζ ) provides the organization of global
dynamic information. Again, this suggests that the object of fundamental interest is the poset(
SC(Fζ ),�ζ

)
that codifies the dynamics between regions

{|S| | S ∈ SC(Fζ

}
. The latter
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is called a Morse tessellation, cf. Sect. 9.1 and π : Mθ ↪→ SC(Fζ ) is a tessellated Morse
decomposition, cf. Defn. 8.

The down-sets in the poset SC(Fζ ) yield the finite distributive lattice O(SC) which is
isomorphic to the lattice of forward invariant sets Invset+(Fζ ) for Fζ , i.e. subsets U ⊂ X
such that Fζ (U) ⊂ U , cf. App. 2 and [23]. The realization of a down-set gives an isolating
block for fθ , i.e. fθ (|U |) ⊂ int |U | for all θ ∈ |ζ |. These blocks form a finite lattice Nζ

of attracting blocks which is also referred to as an index lattice, cf. [15]. From this lattice
it is possible to extract index pairs, and thus, for θ ∈ |ζ | the Conley index of |S| can be
determined for every S ∈ SC(Fζ ). To be more specific, every S ∈ SC(Fζ ) is uniquely

determined by S = U �
←−U , where U is a join-irreducible element in Invset+(Fζ ) and

←−U
its unique predecessor, cf. Sect. 8.1. Since |S| is an isolating neighborhood for all θ ∈ |ζ |,
standard continuation arguments guarantee that the associated Conley index is independent
of θ ∈ |ζ |, cf. [10]. The importance of this is that the Conley index provides information
about the structure of the dynamics of Inv(|S|, fθ ), e.g. existence of fixed points, periodic
orbits, chaotic dynamics, etc. cf. [32]. In particular, if the Conley index of |S| is nontrivial,
then Inv(|S|, fθ ) �= ∅ for all θ ∈ |ζ |. However, a trivial Conley index allows for the
possibility that for some values of θ ∈ ζ , Inv(|S|, fθ ) = ∅, and for other values of θ ∈ ζ ,
Inv(|S|, fθ ) �= ∅. This indicates why using this framework rigorous global computations
can be performed over large regions of parameter space without directly addressing the issue
of bifurcations. This also suggests that in the setting of computational analysis of dynamics
just considering Morse representations is too restrictive, but Morse decompositions have the
required flexibility.

As in the case of Examples 1 and 2 , the poset structure of Definition 2 provides a language
in which to understand the global dynamics of Example 3. In this example, the more detailed
understanding of the dynamics makes use of an associated lattice of attracting blocks. But
Definition 2 is necessarily more general and does not require any insight into this lattice
structure. In fact, it is precisely because the explicit structure of the lattice of attracting
blocks is unknown, that it is difficult to determine the global structure of connecting orbits
for differential equations such as those of Examples 1 and 2 . We resolve this with the
introduction of the concept of a tesselated Morse decomposition in Sect. 9 (see discussion
below).We point out that in this setting theMorse representation always allows an associated
lattice of attracting blocks and therefore a tessellated Morse decomposition,cf. [15,25,26].

Example 4 For the final example consider the interval [−2, 2] ⊂ R which is meant to repre-
sent a portion of phase space for some unknown process on which we can make experimental
observations. We make two assumptions.

(i) The dynamics can be modeled by a continuous evolution equation.
(ii) Repeated experiments indicate that at x = −2 and x = 1 the vector field is positive, and

at x = −1 and x = 2 the vector field is negative.

Observe that the finite distributive lattice N shown in Fig. 2(left) can be interpreted as a
lattice of attracting blocks. This lattice contains considerable information about the dynam-
ics, but as follows naturally from Birkhoff’s theorem [12] is best organized by focusing
on the poset of join irreducible elements

{[−2,−1], [1, 2], [−2, 2]} where the partial
order is given by inclusion. Observe that this partial order is isomorphic to that shown
in Fig. 2(right) wherein it is easily seen that the dynamics exhibits bistability. Furthermore,
the regions T (p0):=[−2,−1] = cl ([−2,−1] � ∅), T (p+):=[1, 2] = cl ([1, 2] � ∅), and
T (p−):=[−1, 1] = cl ([−2, 2] � ([−2,−1] ∪ [1, 1])) defined in terms of the difference
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Fig. 2 a Lattice of attracting
blocks for Example 4. b Partial
order structure for join
irreducible elements of lattice of
attracting blocks

(a) (b)

between join irreducible elements and their immediate predecessors forms a tessellation of
phase space. This tessellation can in turn be used to compute Conley indices.

It is worth noting that this example is extremely general as the family of evolution equa-
tions to which these arguments may be applied include autonomous and nonautonomous
differential equation, continuous random dynamical systems, and multivalued dynamical
systems. But, essential to these arguments is the ability to pass between lattice and poset
information.

In contrast to thefirst three examples, inExample 4 the starting point is a lattice of attracting
blocks from which the poset structure that characterizes nonrecurrent dynamics is recovered.
However, what all four examples have in common is the use of poset information as a tool
for organizing global dynamics and the need (explicit or implicit) for lattice information to
derive finer structures of dynamics.

Definition 2 captures the essential poset information for all these examples. Our goal is to
demonstrate that this definition arises naturally from our perspective that lattices provide an
appropriate framework for organizing and characterizing global dynamics. However, we do
not claim that this is obvious. To motivate why this is a challenge consider Example 4. Here
there is no choice, but to start with the lattice of attracting blocks. However, the definition
of the set {T (p)} that provides a tessellation of phase space made use of set difference
which is not an operation with the algebraic setting of lattice theory. Recall that in a Boolean
algebra (B,∨,∧, �, 0, 1) the derived operation set-difference on B is given by a�b:=a∧b�.
A major portion of this paper is dedicated to the construction and characterization of the
natural analogue for bounded, distributive lattices.

In particular, in Sect. 3, given a bounded, distributive lattice L we define a notion of
set-difference, called the canonical Conley form on L via B(L), where B(L) denotes the
Booleanization of L, cf. Sect. 2. There is a natural embedding j : L → B(L), and since
B(L) is a Boolean algebra, we define the canonical Conley form, CL : L× L → B(L), by

CL(a, b):= j(a) � j(b).

An important observation is that the range B�(L):=CL(L× L) is a meet semilattice.
However, abstract knowledge of the existence ofCL and B�(L) is of limited value. In Sect. 4

we introduce Conley forms on L in I. These are semilattice morphisms C : L× L → I where I
is an explicit meet semilattice consisting of structures of interest, and C = γ ◦ CL for some
injective semilattice homomorphism γ . Any Conley form on L is isomorphic to CL and is
remarkably characterized by the following three properties:

(Absorption) C(a ∨ b, a) = C(b, a) and C(a, a ∧ b) = C(a, b) for all a, b ∈ L.
(Distributivity) C(a ∧ c, b ∨ d) = C(a, b) ∧ C(c, d) for all a, b, c, d ∈ L;
(Monotonicity) C(a, b) = C(0, 1) implies a � b for a, b ∈ L.
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This leads to the following result, cf. Theorem 2.

Theorem 1 Let C : L × L → I and C′ : L × L → I′ be Conley forms. Then, there exists a
meet semilattice isomorphism g : C(L × L) → C′(L × L) such that C′ = g ◦ C.

Lattices of primary interest, such as the lattice of closed attracting blocks ABlockC (ϕ)

and the lattice of attractors Att(ϕ), are may be infinite. Thus, the proof of Theorem 1 relies
on the compactness of the spectrum Σ(L) in the Priestley topology, cf. Sect. 2.

As is demonstrated in Sect. 5, with the Conley form we are able to identify Morse sets
(see Definition 1) from the lattice structures of attractors and repellers. In particular, in
Example 7 we use the Conley form on Att(ϕ) in Invset(ϕ), the lattice of invariant sets, to
defineMorse(ϕ), the semilattice of Morse sets of ϕ. More precisely, the range of the Conley
form on Att(ϕ) defines the semilattice of Morse sets

Morse(ϕ):=CAtt(Att(ϕ) × Att(ϕ)) (3)

where CAtt(A, A′):=A∩ A′∗ and A′∗ is the dual repeller to the attractor A′, cf. [10, II.5.3.E].
Example 8 uses the same formalism to define Morse sets for the dynamics generated by a
combinatorial multivalued map or relation F .

As is shown in Sect. 6, homomorphisms between bounded distributive lattices lead to
homomorphisms between Conley forms. This provides us with a tool to analyze the global
structure of invariant sets. For example, if INbhd(ϕ) and Isol(ϕ) are the meet semilattices
of isolating neighborhoods and isolated invariant sets respectively, cf. Sect. 7.2, then the
following diagram shows how the Conley forms on ABlockC (ϕ) and Att(ϕ) define isolated
invariant sets

ABlockC (ϕ) × ABlockC (ϕ) INbhd(ϕ)

Att(ϕ) × Att(ϕ) Isol(ϕ)

C

ω×ω Inv

CAtt

(4)

where

C(U ,U ′) = U ∩U ′c = U � U ′for .U ,U ′ ∈ ABlockC (ϕ).

The remainder of the paper uses the tools developed in Sects. 2–4 and 6 to provide algebraic
representations of structures of global dynamics via appropriately chosen Conley forms. In
Sect. 7 we provide partitions of phase space, calledMorse tiles, in the context of continuous
and combinatorial dynamics. Furthermore, we discuss Morse tiles in the context of regular
closed sets as these provide a useful computational structure.

In Sects. 8 and 9 we turn to the goal mentioned earlier in this introduction: an explicit
description of the relationship between the order relations on Morse decompositions and
the lattice structures of attractors and repellers. As is discussed in Sect. 8.1, every Morse
representation can be generated from a finite sublattice of attractors A with the associated
Morse representation given by

M(A):=
{
CAtt(A,

←−
A ) | A ∈ J(A)

}

where J(A) denotes the set of join-irreducible elements of A, and
←−
A is the unique immediate

predecessor of A in A. Given a finite sublattice N of attracting blocks, and the surjective
homomorphism ω : N � A, we obtain a dual order-embedding π : M(A) ↪→ T(N) where

T(N):={Cb(N ,
←−
N ) = N �

←−
N | N ∈ J(N)}
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via the Conley form on N. The map π : M(A) ↪→ T(N)3 is dual to ω : N � A and is referred
to as a tesselated Morse decomposition, cf. Theorem 6 and Definition 2. In Corollary 4 we
give a definition of Morse tessellation and tessellated Morse decomposition independent of
a lattice of attracting blocks/neighborhoods.

Remark 1 A Morse decomposition is the multiple set analogue of an isolated invariant set
S and its (closed) isolating neighborhood N ⊂ X , i.e. a closed subset N ⊂ X such that
S = Inv(N ) ⊂ int N . Given a Morse tessellation (T,�) one is tempted to consider

{
Inv(T ) |

T ∈ T
}
as candidate Morse decomposition. However, the latter is not a poset in general since

the empty set may occur multiple times. Instead by considering M:={
Inv(T ) �= ∅ | T ∈ T

}

as the Morse representation realized by T we obtain the order embedding π : M ↪→ T by
setting Inv(T ) � Inv(T ′) if and only if T � T ′. This is the correct order theoretic notion of
Morse decomposition. The mapping T �→ Inv(T ) acts as left-inverse to π and as semilattice
homomorphism Inv : MTile(ϕ) → Morse(ϕ), cf. Sect. 7.2. In Example 2 we described the
notion of Morse decomposition π : M ↪→ Pwith respect to an abstract poset P used to define
invariant sets. If we employ the main result in [26] we find a Morse tessellations T ∼= P such
that the Morse decompositions may be regarded as tessellated Morse decompositions.

As is mentioned earlier, the ideas from Conley theory are being used in the context of
rigorous computations and data analysis, and thus a fundamental question is how does the
dynamics captured by a relation F compare to the dynamics of a continuous system ϕ?
We address this question in Sect. 9.2. Closed regular sets, e.g. triangulations or regular CW-
complexes, provide a wide variety of discretizations of phase space for continuous dynamical
systems, and as is shown in Sect. 7.3, is rich enough to capture the lattice of attractors of a
continuous system ϕ. This leads us to consider the span

R(X) ABlockR (ϕ) Att(ϕ),
⊃ ω

(5)

whereR(X) are the regular closed sets in X and ABlockR (ϕ) ⊂ ABlockC (ϕ) are the regular
closed attracting blocks for ϕ, cf. App. 3. LetR0 be a finite subalgebra ofR(X). LetX be an
indexing set for the atoms ofR0. We use | · | : X → R0 to denote the geometric realization,
i.e. |ξ | is the associated atom inR0. Observe that this extends to |·| : Set(X ) → R0 ⊂ R(X).
Finally, consider a binary relationF ⊂ X×X . Ideally, we have the existence of the following
commutative diagram, that we refer to as a commutative combinatorial model for ϕ:

R(X) ABlockR (ϕ) Att(ϕ)

Set(X ) Invset+(F) Att(F),

⊂ ω

|·| |·|
⊂ ω

ω(|·|) (6)

where Set(X ) denotes the lattice of subsets of X . Theorem 7 provides an exact characteri-
zation of the properties of F such that (6) commutes.

The above description takes the perspective that ϕ is the object of primary importance and
F is derived in order to study the dynamics of ϕ computationally. However, if one begins
with data, then there are a variety of methods by which one can derive a relation F . In this
setting Theorem 7 provides constraints on continuous models ϕ that are compatible with the
data. An open problem, but of increasing relevance in an age of data driven science, is to
derive techniques for choices of maps or differential equations that generate ϕ.

3 cf. Eqn. (44) for a precise definition of the map π .
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We conclude by noting that we have restricted our attention in this paper to single-valued,
continuous dynamical systems and to combinatorial dynamical systems. There are, of course,
other models for continuous dynamics, e.g. set-valued [1,3,4,29], and for combinatorial
dynamics, e.g. combinatorial vector fields [22,34]. It is our belief that the algebraic structures
developed in this paper can be applied equally well in these other settings.

2 Booleanization

In this section we describe two algebraic principles, Booleanization and duality. These tools
are fundamental to the description of the algebraic structures of global dynamics. Denote the
categories of bounded, distributive lattices and posets by BDLat and Poset respectively. A
bounded, distributive lattice has unique neutral elements 0 and 1, and in BDLat all lattice
homomorphisms preserve 0 and 1, and all sublattices contain 0 and 1.

There are two functors that relate BDLat and Poset. The down-set functor O : Poset ⇒
BDLat is a contravariant functor that assigns to a poset P the bounded, distributive lattice of
down-sets denoted by (O(P),∪,∩). Recall that a down-set I in a poset P is defined via the
property that p ∈ I and q � p implies q ∈ I . The spectral functor Σ : BDLat ⇒ Poset is a
contravariant functor that assigns to a bounded, distributive lattice L the poset

(
Σ(L),⊂)

of
the prime ideals in L called the spectrum of L. Recall that an ideal in a bounded, distributive
lattice is a down-set I that is closed under join, i.e. a, b ∈ I implies a∨b ∈ I . An ideal I is a
prime ideal if a ∧ b ∈ I implies a ∈ I or b ∈ I . The prime ideals are exactly the pre-images
I = f −1(0) where f : L → 2 is a lattice homomorphism and 2 is the lattice of two elements
{0, 1}. For a detailed treatment of basic lattice theory and the functors O and Σ, see [12,36].
A classical result due to Birkhoff states that a bounded, distributive lattice is isomorphic to a
sublattice of Set(Σ(L)), where Set(Σ(L)) denotes the algebra of subsets of Σ(L). The map

j : L → O(Σ(L))

a �→ j(a) = {I ∈ Σ(L) | a /∈ I }
defines such an embedding. Themap j is not surjective in general. However,when L is finite, it
is surjective, and this fact is called theBirkhoff Representation Theorem for finite, distributive
lattices [36, Theorem 6.6]. In the case that L is a Boolean algebra, Stone introduced a topology
on the spectrum in order to characterize the image of j , and this characterization is known
as the Stone Representation Theorem [36, Theorem 10.18]. The idea underlying the Stone
representation is that since the clopen sets in a topological space form a Boolean algebra,
one can topologize Σ(L) so that the image of j is the algebra of clopen sets, cf. [12,36].

For bounded, distributive lattices, Priestley introduced a topology on the spectrum that
determines the image of j . Priestley’s topology is induced by the basis

{ j(a) � j(b) | a, b ∈ L},
where j(a)� j(b):= j(a)∩ j(b)c is set-difference. Since j(a), j(b)c are basic open sets, by
choosing b as the zero element of the lattice L (respectively a as the unit element of L) we see
that for every a, b ∈ L both j(a) and the complement of j(b), as basic sets, are open. Hence,
every set of the form j(a) for a ∈ L is clopen. Note that each j(a) is a down-set so that the
image of j is a sublattice of the down-sets of Σ(L). The Priestley Representation Theorem
characterizes the image of j as the clopen down-sets of Σ(L) denoted by

Oclp(Σ(L)) = B↓(L):={ j(a) | a ∈ L},
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and L is isomorphic to B↓(L) via the map j : L → B↓(L), cf. [12,36]. Here Oclp may be
regarded a contravariant functor Oclp : Pries ⇒ BDLat from category of Priestley spaces,
Pries, to the category of bounded, distributive lattices, BDLat, cf. [12,36]. If L is a finite
lattice then so is Σ(L). Therefore the Priestley topology on Σ(L) is discrete in that case. As a
consequence, every subset of prime ideals is clopen, and the image of j consists of all down
sets of prime ideals.

The spectrum (Σ(L),⊆) is a poset and with the Priestley topology the spectrum is a
compact and totally order-separated topological space, called a Priestley space. Priestley
spaces are necessarily Hausdorff and 0-dimensional. The Priestley Representation Theorem
states that BDLat is dually equivalent to Pries. Birkhoff’s theorem motivates the question of
obtaining a smallest Boolean algebra in which the lattice embeds. Such a Boolean algebra is
called a Booleanization, and a general procedure to obtain a specific Booleanization is based
on the Priestley Representation Theorem [36, Theorem 10.15], cf. [5,30], [39, Defn. 9.5.5].

Let B(L) be the Boolean algebra of all clopen subsets of Σ(L). The above construction
yields the following Booleanization theorem.

Proposition 1 (Theorem 10.19 in [36]) For every bounded distributive lattice L, the map

j : L → B(L)

a �→ j(a) = {I ∈ Σ(L) | a /∈ I} (7)

is the unique latticemonomorphismwith the property that for every homomorphism h : L → E
to a Boolean algebra E there exists a unique lattice homomorphism B(h) : B(L) → E such that
B(h) ◦ j = h. The Boolean algebra B(L) is called the Booleanization of L and the mapping
B(h) : B(L) → E is Boolean.

Remark 2 In the case that L is a finite, distributive lattice then the Booleanization B(L) is the
Boolean algebra of all subsets of Σ(L).

Remark 3 Throughout the rest of this paper

j : L → B(L)

denotes the specific lattice monomorphism of Proposition 1. Furthermore, when we are
explicitly working with this monomorphism an element a ∈ L is denoted in lower case and
its image in B(L) by A in upper case so that A = j(a).

The Booleanization theorem above also applies to homomorphisms h : K → L. Proposi-
tion 1 yields the following commutative diagram

K L

B(K) B(L)

j

h

j

B(h)

(8)

In particular j
(
h(a)

) = B(h)(A) where A = j(a).
Booleanization is a (covariant) functor B : BDLat ⇒ Bool, left adjoint to the forgetful

functor and which is obtained via the composition Setclp ◦ Σ, where Setclp : Pries ⇒ Bool
is the clopen subset functor which gives the clopen subsets in a Priestley space and Σ is the
spectral functor, cf. [36, Thm. 10.19], [39, Sect. 9.5]. Moreover, due to the compactness of
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the Priestley topology, each element of B(L) can be written as a finite union of the clopen
convex sets

B�(L):={A � B | A, B ∈ B↓(L)},
cf. [36, Theorem 10.10] and [12, Lemma 11.22].

For finite, distributive lattices the spectrum Σ(L) is order-isomorphic to the poset of join-
irreducible elements J(L). A nonzero element a ∈ L is join-irreducible if a has a unique
predecessor in L which is denoted by ←−a . The order-isomorphism J(L) → Σ(L) is given by
the map a �→ (↑a)c. Every element in L can be written as a join of join-irreducible elements,
for example

a =
∨

a′�a
a′∈J(L)

a′.

Such join-representations are not unique, but each element has a unique irredundant join-
representation, cf. [36, Thm. 4.30].

3 Lattice Forms

In general, lattices do not allow complements. However, in this sectionwe define an operation
on bounded, distributive lattices with the properties of the set difference operation.

Given a lattice L the set L× L has a natural meet semilattice structure defined by (a, b)∧
(c, d):=(a ∧ c, b ∨ d), with neutral elements 0 = (0, 1) and 1 = (1, 0). It follows that

(a, b) � (c, d) if and only if a � c and b � d. (9)

Definition 3 Let L be a lattice, and let I be a meet semilattice. A lattice form on L represented
in I is a function ρ : L× L → I satisfying the property

(Absorption) ρ(a ∨ b, a) = ρ(b, a) and ρ(a, a ∧ b) = ρ(a, b) for all a, b ∈ L.

Example 5 If L is a Boolean algebra, then (a, b) �→ ρ(a, b) = a�b:=a∩bc defines a lattice
form represented in L. This lattice form also satisfies the following properties

(Distributivity) ρ(a ∧ c, b ∨ d) = ρ(a, b) ∧ ρ(c, d) for all a, b, c, d ∈ L;
(Monotonicity) ρ(a, b) = ρ(0, 1) implies a � b for a, b ∈ L,

which are called distributive and monotone lattice forms respectively. A concrete example is
the set difference operation in the Boolean algebra consisting of subsets of a set X denoted
by (Set(X),∪,∩, c, ∅, X).

Lemma 1 From the distributivity property the following exchange property follows

(Exchange) : ρ(a, b) ∧ ρ(c, d) = ρ(a, d) ∧ ρ(c, b) for all a, b, c, d ∈ L.

Proof From distributivity we have that

ρ(a, b) ∧ ρ(c, d) = ρ(a ∧ c, b ∨ d) = ρ(a, d) ∧ ρ(c, b),

which proves the lemma. ��
Proposition 2 If ρ : L × L → I is a distributive lattice form, then ρ is a meet semilattice
homomorphism.
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Proof By distributivity

ρ((a, b) ∧ (c, d)) = ρ(a ∧ c, b ∨ d) = ρ(a, b) ∧ ρ(c, d),

which proves that ρ preserves meet operations. ��
The following proposition lists a number of properties of distributive lattice forms.

Proposition 3 Let ρ : L× L → I be a distributive lattice form. Then,

(i) ρ(a, b) � ρ(c, d) for all a � c and b � d;
(ii) ρ(0, 1) � ρ(a, b) � ρ(1, 0) for all a, b ∈ L;
(iii) ρ(0, a) = ρ(0, 1) and ρ(a, 1) = ρ(0, 1) for all a ∈ L.

If in addition ρ is monotone, then

(iv) ρ(a, b) = ρ(0, 1) if and only if a � b.

Proof (i) From distributivity it follows that ρ is a meet semilattice homomorphism and
thus order-preserving. The order on L× L is given by (9).

(ii) Apply (i) to the inequalities 0 � a � 1 and 1 � b � 0.
(iii) From absorption we have that ρ(1, 1) = ρ(1∨0, 1) = ρ(0, 1). Then by (i) and (ii) and

absorption we have that

ρ(0, 1) � ρ(0, a) � ρ(a, a) = ρ(a, a ∧ 1) = ρ(a, 1) � ρ(1, 1) = ρ(0, 1).

(iv) By (i) and (ii), ρ(0, 1) � ρ(a, b) � ρ(a, a) = ρ(0, 1), which shows that ρ(a, b) =
ρ(0, 1). The other direction is monotonicity completing the proof. ��

By Property (ii) in Proposition 3 the elements 0:=ρ(0, 1) and 1:=ρ(1, 0) are the neutral
elements in the meet semilattice ρ(L× L) ⊂ I. However, in general the semilattice I need not
have neutral elements, and if there are neutral elements they need not coincide with (0, 1)
and (1, 0).

Proposition 4 Let ρ : L×L → I be a lattice form, and let K ⊂ L be a sublattice. Then, the form
ρ|K : K × K → I defined by restriction is a lattice form on K. The properties of distributivity
and monotonicity are also preserved under restriction.

Proof Absorption, distributivity, and monotonicity follow from the fact that K is a sublattice
L. ��
Definition 4 Let L be bounded, distributive lattice. The canonical Conley form on L is defined
by

Cσ : L× L � B�(L)

(a, b) �→ Cσ (a, b):=A � B,
(10)

where A = j(a) and B = j(b) and j : L → B(L) is as defined in Proposition 1.

Proposition 5 For a bounded, distributive lattice L the canonical Conley form is a monotone,
distributive lattice form.

Proof We first prove the absorption property. Observe that

Cσ (a ∨ b, a) = (A ∪ B) � A = B � A = Cσ (b, a)
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and

Cσ (a, a ∧ b) = A � (A ∩ B) = A � B = Cσ (a, b)

As for distributivity and monotonicity we have:

Cσ (a ∧ c, b ∨ d) = (A ∩ C) � (B ∪ D) = (A � B) ∩ (C � D)

= Cσ (a, b) ∩ Cσ (c, d)

so that distributivity is satisfied. Observe that Cσ (a, b) = A � B = ∅ implies that A ⊆ B.
Since j is a lattice monomorphism, we conclude that a b. Hence, monotonicity is satisfied.

��

4 The Conley form on Bounded, Distributive Lattices

The canonical Conley form on a bounded distributive lattice L takes values in B�(L), an
abstractly defined semilattice. For applications it is desirable to represent this form in partic-
ular meet semilattices. With this in mind let I be a meet semilattice, and γ : B�(L) � I be a
meet injective semilattice homomorphism. Define

C : L× L → I

(a, b) �→ C(a, b):=γ (A � B)
(11)

and set IC:=γ (B�(L)). Observe that since γ is injective, γ : B�(L) → IC is an isomorphism.

Lemma 2 C is a monotone, distributive lattice form.

Proof Since the canonical Conley form is distributive and monotone, the properties are
transferred to C under the injection γ as in the following diagram

B↓(L) × B↓(L) B�(L)

L× L IC I

B(Cσ )

γ ∼= γj× j ∼=
C

Cσ

(12)

where B(Cσ ) restricted to B↓(L) × B↓(L) is given by ( j(a), j(b)) �→ j(a) � j(b) and is the
Booleanization of Cσ via the composition L× L � B�(L) � B(L). ��
We now turn to the main result of this section that characterizes monotone, distributive lattice
forms as representations of the canonical Conley form in a given meet semilattice.

Theorem 2 Let L be a bounded, distributive lattice and let I be a meet semilattice. If
γ : B�(L) → I is a meet injective semilattice homomorphism, then C = γ ◦Cσ is a monotone,
distributive lattice form. Conversely, if C : L× L → I is a monotone, distributive lattice form,
then there exists an injective meet semilattice homomorphism γ : B�(L) → I defined by

γ (A � B):=C(a, b), (13)

such that C = γ ◦ Cσ .

Proof Combining Lemma 2 with Lemmas 3 and 4 below proves the theorem. ��
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Lemma 3 Let ρ : L× L → I be a lattice form. Then, γ : B�(L) → I given by

γ (A � B):=ρ(a, b)

is a well-defined function.

Proof We need to prove that if A � B = A′
� B ′, then ρ(a, b) = ρ(a′, b′). Observe that,

since ρ is a lattice form, we have ρ(a, b) = ρ(a, a ∧ b) and thus we may assume without
loss of generality, by possibly replacing b by a ∧ b, that b � a. The same holds for b′ � a′.
Since e:=A � B = A′

� B ′ we have
(A ∪ A′) � (B ∪ B ′) = (A ∪ A′) ∩ (Bc ∩ B ′c)

= (
(A � B) ∩ B ′c) ∪ (

(A′
� B ′) ∩ Bc)

= (e � B ′) ∪ (e � B) = e ∪ e = e.

Therefore assume without loss of generality that B ⊂ A ⊂ A′ and B ⊂ B ′ ⊂ A′. Since
A′ = e ∪ B ′ and A = e ∪ A, we have that A ∪ B ′ = e ∪ A ∪ B ′ = A′ ∪ A = A′. Similarly,
A = e ∪ B and thus A ∩ B ′ = (e ∪ B) ∩ B ′ = B. This implies

a′ = a ∨ b′ and b = a ∧ b′. (14)

Using the characterization in (14) and absorption, we have

ρ(a′, b′) = ρ(a ∨ b′, b′) = ρ(a, b′) = ρ(a, a ∧ b′) = ρ(a, b),

which completes the proof. ��
Lemma 4 Let C : L × L → I be a monotone, distributive lattice form. Then, the map
γ : B�(L) → I defined in (13) is an injective meet semilattice homomorphism.

Proof We start with showing that γ preserves the meet operation. By Proposition 2, both Cσ

and C induce meet semilattice homomorphisms L× L → I. Then,

γ
(
(A � B) ∩ (C � D)

) = γ
(
(A ∩ C) � (B ∪ D)

) = C(a ∧ c, b ∨ d)

= C(a, b) ∧ C(c, d) = γ (A � B) ∧ γ (C � D).

By Proposition 3(ii), the function γ satisfies γ (∅) = C(0, 1) = 0 and γ (Σ(L)) = C(1, 0) =
1, the neutral elements in the rangeγ (B�(L)).Moreover, Proposition 3(iv) impliesγ (A�B) =
C(a, b) = 0 if and only if a b if and only if A � B = Cσ (a, b) = ∅. Thus, γ−1(0) = ∅.

It remains to show that γ is injective. Suppose a, b, a′, b′ ∈ L such that

C(a, b) = γ (A � B) = γ (A′
� B ′) = C(a′, b′) for A � B �= A′

� B ′.

Since γ−1(0) = ∅, it follows that A � B �= ∅ �= A′
� B ′ and C(a, b) = C(a′, b′) �= 0. Let

C = A � B, D = A′
� B ′ ∈ B�(L), then γ (C) = γ (D) �= 0. Recall that B�(L) ⊂ B(L) and

thus

(C ∪ D) � (C ∩ D) = (C � D) ∪ (D � C) �= ∅,

since C �= D. Therefore, either C � D �= ∅ or D � C �= ∅, and we assume without
loss of generality the former holds. From the description of the Priestley topology in Sect. 2
every clopen subset of Σ(L) is a finite union of elements of B�(L). Therefore there exist sets
{Ei ∈ B�(L) | i = 1, . . . , n} such that C � D = ⋃

i Ei . This implies that for j ∈ {1, . . . , n}
∅ �= E j ⊂ C and E j ∩ D = ∅.
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Observe that, since γ is a semilattice homomorphism,

γ (E j ) = γ (E j ∩ C) = γ (E j ) ∩ γ (C) = γ (E j ) ∩ γ (D) = γ (E j ∩ D) = γ (∅) = 0,

which is a contradiction since γ−1(0) = ∅. ��
Corollary 1 Suppose I, I′ are meet semilattices, C,C′ : L×L → I, I′ are monotone, distributive
lattice forms. Let γ, γ ′ : B�(L) � I, I′ be the meet injective semilattice homomorphisms given
by Theorem 2. Then, C′ = g ◦ C where

g = γ ′ ◦ γ−1 : IC → I′C′ , (15)

is an isomorophism.

There exits only one monotone, distributive lattice form up to isomorphisms which yields
the equivalence class of monotone, distributive lattice forms and leads to the following defi-
nition.

Definition 5 Let L be a bounded, distributive lattice, and let γ : B�(L) → I be a injective meet
semilattice homomorphism. The Conley form on L via γ is

C:=γ ◦ Cσ : L× L → γ (Cσ (L× L)) = IC.

We refer to IC as the convexity semilattice. Often it is the meet semilattice I that is important,
and the specific map γ is implicitly defined from Theorem 2, in which case we refer to a
representation of the Conley form in I. If there is no ambiguity about the semilattice I or
homomorphism γ we simply write a − b:=C(a, b) to denote the Conley form for ease of
notation.

Remark 4 Observe that if L is embedded in a Boolean algebra E, then there is a natural
representation of the Conley form in E itself with Cb : L× L → E given by

Cb(a, b) = a � b

as in Example 5. The Conley form Cb also implies a natural decomposition of elements in
L which have a finite join-representation of the form a = ∨

a′�a
a′∈J(L)

a′. For such elements

a = ∨
a′�a
a′∈J(L)

(a′ �
←−a ′)

The decomposition given in Remark 4 can be extended to lattices embedded into another
lattice where the Boolean structure is replaced by a lattice form. Let L and K be bounded
distributive lattices with L ⊂ K and let ρ : L × L → K be a lattice form with the following
additivity property

(Additivity) ρ(a, b) ∨ b = a, for all b � a.

This yields the following extension of the decomposition statement in Remark 4.

Proposition 6 If a = ∨
a′�a
a′∈J(L)

a′ is finite join-representation, then

a =
∨

a′�a
a′∈J(L)

ρ(a′,←−a ′) =
∨

a′�a
a′∈J(L)

γ (a′ −←−a ′), (16)

where a− b is the Conley form on L in a semilattice I and γ : I → K is given in Lemma 3 and
Corollary 1.
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Proof Let a′′ be a maximal element in {a′ ∈ J(L) | a′ � a}, then ←−a ′′ �
∨{a′ ∈ J(L) | a′ �

a, a′ �= a′′}. The additivity property of ρ and induction on a′ give

a = a′′ ∨
∨

{a′ ∈ J(L) | a′ � a, a′ �= a′′}
= ρ(a′′,←−a ′′) ∨

∨
{a′ ∈ J(L) | a′ � a, a′ �= a′′} =

∨

a′�a
a′∈J(L)

ρ(a′,←−a ′).

The latter statement in (16) follows from Lemma 3 and Corollary 1. ��
Remark 5 IfC is aConley formon L represented in a semilattice I, then L is naturally embedded
in the convexity semilattice IC, it has a natural dual lattice in IC and the notion of ‘complement’
or ‘dual’ is well-defined. The embedding of L into I is given by a �→ C(a, 0) and the dual of
a is defined as a∗:=C(1, a). The dual lattice is given as L∗ = {a∗ | a ∈ L}. As a consequence,
L and L∗ may be regarded as lattices in the same ‘universe’ I. Note that from distributivity we
have that

C(a, b) = C(a ∧ 1, 0 ∨ b) = C(a, 0) ∧ C(1, b) = a ∧ b∗,

which proves that every Conley form can be characterized this way. For a homomorphism
h : K → L there exists an induced dual anti-homomorphism h∗ : K∗ → L∗ given by h∗(a∗) =
h(a)∗ and

K K∗

L L∗
h

∗

h∗
∗

(17)

5 Examples of Conley Forms

In this paper we are interested in representations of the Conley form in the context of lattices
of attractors and repellers, and we now provide some examples.

Example 6 In the context of invertible dynamical systems, attractors, repellers, and invariant
sets all have lattice structures induced by intersection and union in the Boolean algebra
Set(X). Indeed, Invset(ϕ) is a complete (atomic) Boolean subalgebra of Set(X), and it
contains all attractors and repellers, cf. App. 1. Therefore, the Booleanizations of these
lattices are isomorphic to a subalgebra of Invset(ϕ) by Proposition 1. In particular, in light
of Remark 4

Cb : Invset(ϕ) × Invset(ϕ) → Invset(ϕ)

(S, S′) �→ Cb(S, S′) = S � S′.
(18)

By Proposition 4 the restrictions of Cb toAtt(ϕ) and Rep(ϕ) are representations of the Conley
forms of these lattices in Invset(ϕ).

Example 7 Let ϕ : T × X → X be an invertible dynamical system on a compact
metric space. Let S ⊂ X be a compact invariant set and define the unstable set:
Wu(S):= {x ∈ X | α(x) ⊂ S}, cf. App. 1. For compact invariant sets S, S′ we have

Wu(S ∩ S′) = Wu(S) ∩Wu(S′),

123



Journal of Dynamics and Differential Equations (2022) 34:1729–1768 1745

cf. App. 1[Lemma 18] and App. 1[Remark 17]. By Example 6, Cb : Att(ϕ) × Att(ϕ) →
Invset(ϕ) given in (18) is a representation of the Conley form on Att(ϕ) in Invset(ϕ). To
obtain an explict formula forCb in terms ofWu , observe that if A ∈ Att(ϕ), thenWu(A) = A,
and furthermore, by [25, Theorem 3.19] Ac = Wu(A∗) where A∗ is the dual repeller of A.
Therefore,

Cb(A, A′) = A � A′ = A ∩ A′c

= Wu(A) ∩Wu (
A′∗)

= Wu(A ∩ A′∗).

Clearly, A ∩ A′∗ ∈ Morse(ϕ) = {A ∩ R | A ∈ Att(ϕ), R ∈ Rep(ϕ)}, where Morse(ϕ) is the
semilattice of Morse sets defined in (3). SinceMorse(ϕ) is a subsemilattice of Invset(ϕ) and
Wu : Morse(ϕ) → Invset(ϕ) is injective, cf. App. 1[Lemma 21],

CAtt(A, A′) = A − A′:=A ∩ A′∗ (19)

is another (isomorphic) representation of the Conley form of Att(ϕ) in Invset(ϕ), cf. Theo-
rem 2 and Corollary 1. Since the dual operator ∗ : Att(ϕ) → Rep(ϕ) is an anti-isomorphism,
c.f. [25, Proposition 4.7],

Morse(ϕ) = CAtt(Att(ϕ) × Att(ϕ)).

Example 8 Consider a binary relation F ⊂ X × X on a finite set X , see App. 2. Theorem 3
establishes that the lattice form CAtt(A,A′):=A∩A′∗ is a representation of the Conley form
on Att(F) in Invset(F). By [26, Diagram (5)] the dual operator ∗ : Att(F) → Rep(F) is an
anti-isomorphism, therefore, as in Example 7

CAtt(Att(F) × Att(F)) = Morse(F):={A ∩R | A ∈ Att(F),R ∈ Rep(F)},
where sets of the form M = A ∩R are called Morse sets.

Lemma 5 Morse sets in Morse(F) are invariant.

Proof Suppose ξ ∈ A ∩ R. Since A ∈ Att(F), we have F(A) = A. Therefore, there
exists η ∈ A such that ξ ∈ F(η). Similarly, R ∈ Rep(F) and hence F−1(R) = R. Thus,
η ∈ F−1(ξ) ⊂ F−1(R) = R, and hence η ∈ A ∩ R and ξ ∈ F(A ∩ R). Therefore
A ∩ R ⊂ F(A ∩ R). The same argument applied to F−1 gives A ∩ R ⊂ F−1(A ∩ R),
which implies that A ∩R ∈ Invset(F) by [24, Proposition 3.4]. ��
Lemma 6 Let U ∈ Invset+(F) and V ∈ Invset−(F). Then, Inv(U ∩ V) = ω(U) ∩ α(V).

Proof Since ω(U) ∩ α(V) ⊂ U ∩ V , Lemma 5 implies that ω(U) ∩ α(V) ⊂ Inv(U ∩ V). Let
S ⊂ U ∩ V be an invariant set. Since Inv(U) ⊂ ω(U) ⊂ U when U is forward invariant,
S ⊂ Inv(U) ⊂ ω(U). Similarly, S ⊂ α(V) and therefore S ⊂ ω(U) ∩ α(V). ��
Theorem 3 The lattice form

CAtt(A,A′):=A ∩A′∗ (20)

is a representation of the Conley form in Invset(F).

Proof For attractors A,A′ there exist U,U ′ ∈ Invset+(F) such that A = ω(U) ⊂ U and
A′ = ω(U ′) ⊂ U ′. For the dual repellers A∗,A′∗ we have A∗ = α(Uc) ⊂ Uc and A′∗ =
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α(U ′c) ⊂ U ′c. In particular we can choose U = A and U ′ = A′. Observe that A ∩A∗ = ∅.
Indeed,

A ∩A∗ = ω(U) ∩ α(Uc) ⊂ U ∩ Uc = ∅.

Let A,B, C,D ∈ Att(F). Absorption is established by

CAtt(A ∨ B,A) = (A ∪ B) ∩ A∗ = (A ∩A∗) ∪ (B ∩ A∗) = CAtt(B,A),

and similarly

CAtt(A,A ∧ B) = A ∩ (A ∧ B)∗ = A ∩ (A∗ ∪ B∗)
= (A ∩A∗) ∪ (A ∩ B∗) = CAtt(A,B).

Since A ∩ C ∈ Invset+(F) and B∗ ∩D∗ ∈ Invset−(F) we have, using Lemma 6,

CAtt(A,B) ∧ CAtt(C,D) = Inv
(
(A ∩ B∗) ∩ (C ∩D∗)

)

= Inv
(
(A ∩ C) ∩ (B∗ ∩D∗)

)

= ω(A ∩ C) ∩ α(B∗ ∩D∗) = (A ∧ C) ∩ (B∗ ∧D∗)
= (A ∧ C) ∩ (B ∪D)∗ = CAtt(A ∧ C,B ∪D),

which proves distributivity. It remains to show that the lattice form is monotone. Assume
A,A′ ∈ Att(F) satisfy CAtt(A,A′) = A ∩ A′∗ = ∅. Observe that A′∗ ∈ Invset−(F) and
U ′:=(A′∗)c ∈ Invset+(F). Since α(U ′c) = A′∗ we have that ω(U ′) = A′. Then,

∅ = A ∩A′∗ = A � (A′∗)c,

which implies that A ⊂ (A′∗)c and therefore A = ω(A) ⊂ ω((A′∗)c) = A′ which estab-
lishes monotonicity and completes the proof. ��

6 Maps between Conley Forms

We now discuss the effect of a lattice homomorphism on lattice forms and the Conley form
in particular. Theorems 2 and 4 (below) imply that the Conley form behaves as a Boolean
homomorphism under a homomorphism between lattices. This confirms that the Conley form
is a generalization of the set difference operator for bounded, distributive lattices.

Theorem 4 Let L and K be bounded, distributive lattices and let h : K → L be a lattice
homomorphism. For every representation of Conley forms on L and K if a − b = a′ − b′,
then

h(a) − h(b) = h(a′) − h(b′).

Proof WeuseDiagram (8) for the Booleanization of h. By construction of the Conley form on
K we have a−b = a′ −b′ if and only if A�B = A′

�B ′. Similarly, for the Conley form on L
we have h(a)−h(b) = h(a′)−h(b′) if and only if j(h(a))� j(h(b)) = j(h(a′))� j(h(b′)).
By Diagram (8) the latter is equivalent to

B(h)(A) � B(h)(B) = B(h)(A′) � B(h)(B ′).

Since B(h) is Boolean it holds that B(h)(A) � B(h)(B) = B(h)(A� B) which completes the
proof. ��
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Remark 6 The canonical Conley forms on K and L are represented in Boolean algebras B(K)

and B(L). The key idea in the above proof can be expressed as the fact that the Boolean map
B(h) commutes with the canonical Conley forms, i.e.

Cσ ◦ (B(h) × B(h)) = B(h) ◦ Cσ .

Corollary 2 Under the hypotheses of Theorem 4, h induces a map θ : IC → JC given by

θ(a − b):=h(a) − h(b),

and θ is a meet semilattice homomorphism preserving both neutral elements as expressed in
the commutative diagram

K × K IC I

L× L JC J

h×h
θ

θ (21)

Proof For the homomorphism property we argue as follows. Using the distributivity of the
Conley forms on K and L we have

θ
(
(a − b) ∧ (c − d)

) = θ
(
(a ∧ c) − (b ∨ d)

) = h(a ∧ c) − h(b ∨ d)

= (
h(a) ∧ h(c)

) − (
h(b) ∨ h(d)

)

= (
h(a) − h(b)

) ∧ (
h(c) − h(d)

)

= θ(a − b) ∧ θ(c − d).

For the neutral elements we have

θ(0− 1) = h(0) − h(1) = 0− 1,

and similarly θ(1− 0) = 1− 0 which shows that θ preserves the neutral elements in IC and
JC. ��
Remark 7 In Theorem 4 we can relax the Conley form on L by a lattice form ρ and the map θ

is still well-defined since only the absorption property is. As for Corollary 2 we still obtain a
semilattice homomorphism θ if the Conley form on L is relaxed to a distributive lattice form.

By Corollary 2 and Remark 7 we can define the pullback of a lattice form. Let h : K → L
be a lattice homomorphism and ρ be a lattice form on L. Then,

(h•ρ)(a, b):=ρ
(
h(a), h(b)

)
,

defines a lattice form on K.

Corollary 3 Let h : K → L be a lattice isomorphism, and let C be a representation of the
Conley form on L in I, then h•C is a representation of the Conley form on K in I.

Proof Distributivity follows from the proof of Corollary 2. By definition (h•C)(a, b) =
h(a) − h(b). By Theorem 2 to check that h•C is a representation of the Conley form on
K we need to show monotonicity. Consider (h•)(a, b) = (h•)(0, 1) which is equivalent to
h(a)− h(b) = h(0)− h(1) = 0− 1 in I. This implies that h(a) � h(b) and thus a � b since
h is an isomorphism. ��
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Remark 8 If K ⊂ L, then h may be regarded as a lattice embedding in which case h•C is the
restriction of C to K, cf. Proposition 4.

When h : K → L is an anti-homomorphism, we define a pullback of a lattice form by

(h•ρ)(a, b):=ρ(h(b), h(a)), (22)

which is justified by the following proposition.

Proposition 7 Let h : K → L be a lattice anti-isomorphism and let C be a representation of
the Conley form on L in I, then h•C is a representation of the Conley form on K in I.

Proof To show that h•C is a Conley form we verify absorption, distributivity, and mono-
tonicity. Consider

(h•C)(a ∨ b, a) = C(h(a), h(a ∨ b)) = C(h(a), h(a) ∧ h(b))

= C(h(a), h(b)) = (h•C)(b, a),

and

(h•C)(a, a ∧ b) = C(h(a ∧ b), h(a)) = C(h(a) ∨ h(b), h(a))

= C(h(b), h(a)) = (h•C)(a, b)

which establishes absorption and

(h•C)(a ∧ c, b ∨ d) = C(h(b ∨ d), h(a ∧ c)) = C(h(b) ∧ h(d), h(a) ∨ h(c))

= C(h(b), h(a)) ∧ C(h(d), h(c)) = (h•C)(a, b) ∧ (h•C)(c, d)

establishes distributivity. As for monotonicity we argue as follows. Suppose (h•C)(a, b) =
h•C(0, 1), then h(b)− h(a) = h(1)− h(0) = 0− 1. Therefore, h(b) � h(a) which implies
a � b since lattice anti-isomorphisms are order-reversing. ��
Example 9 Let ϕ : T

+ × X → X be a dynamical system that is not necessarily invertible.
The arguments in Example 7 make use of the fact that Invset(ϕ) is a subalgebra of Set(X).
For noninvertible dynamical systems, the meet lattice operation is not intersection, and hence
Invset(ϕ) is not generally a sublattice of Set(X). Therefore, we need an alternative repre-
sentation of a Conley form. By App. 1[Lemma 21]

Ws : Morse(ϕ) → Invset±(ϕ)

S �→ Ws(S):= {x ∈ X | ω(x) ⊂ S}
is an injective semilattice homomorphism. Since Invset±(ϕ) is a Boolean algebra, following
the same arguments as in Example 7, using Ws and App. 1[Lemma 18] instead, we obtain a
representation of Conley form on Rep(ϕ) represented in Invset(ϕ) as

CRep(R, R′) = R − R′:=R ∩ R′∗

with range Morse(ϕ) = CRep(Rep(ϕ) × Rep(ϕ)).
Since the dual operator ∗ : Att(ϕ) → Rep(ϕ) is an anti-isomorphism, c.f. [25, Proposition

4.7], Proposition 7 and Equation (22) imply that the pullback

(h•CRep)(A, A′) = CRep(A
′∗, A∗) = A′∗ ∩ (A∗)∗ = A ∩ A′∗

gives the following representation of the Conley form on Att(ϕ) in Invset(ϕ)

CAtt : Att(ϕ) × Att(ϕ) → Morse(ϕ)

(A, A′) �→ CAtt(A, A′) = A − A′:=A ∩ A′∗,
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and Morse(ϕ) = CAtt(Att(ϕ) × Att(ϕ)).

Remark 9 In the remainder of the paper we will adopt the notation CAtt(A, A′) = A − A′
and CRep(R, R′) = R − R′ indicated by the distinguished Conley forms CAtt and CRep.

7 Conley forms and Convexity Semilattices for Dynamical Systems

We refine Corollary 2 in the context of various forms of dynamics.

7.1 Combinatorial Systems

Define the meet semilattice ofMorse tiles to be

MTile(F):=Cb(Invset+(F) × Invset+(F))

with Cb(U,V) = U � V . Then Diagram (21) yields

.

Invset+(F) × Invset+(F) MTile(F) Set(X )

Att(F) × Att(F) Morse(F) Invset(F)

Cb

ω×ω
θ

θ

⊂

C ⊂
(23)

The semilattice homomorphism θ : MTile(F) � Morse(F) is defined by θ(U � U ′) =
ω(U) − ω(U ′) = A − A′ where A = ω(U) and A′ = ω(U ′). Since we have an explicit
characterization of attractors via ω, we can further characterize θ .

Lemma 7 θ(U � U ′) = Inv(U � U ′).

Proof By Lemma 6, A−A′ = Inv(U � U ′). ��
Lemma 7 in combination with Diagram (23) gives the following commutative diagram

Invset+(F) × Invset+(F) MTile(F) Set(X )

Att(F) × Att(F) Morse(F) Invset(F)

Cb

ω×ω Inv

⊂

Inv

C ⊂
(24)

7.2 Dynamical Systems

Example 9 establishes a nontrivial representation of theConley formonAtt(ϕ) intoMorse(ϕ).
In this setting, Diagram (21) applied to the lattice of closed attracting blocks, ABlockC (ϕ),
yields

ABlockC (ϕ) × ABlockC (ϕ) MTile(ϕ) Set(X)

Att(ϕ) × Att(ϕ) Morse(ϕ) Invset(ϕ)

Cb

ω×ω θ
θ

⊂

CAtt ⊂
(25)
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where Cb(U ,U ′) = U � U ′ is a Conley form in Set(X) by Rmk. 4. The range is

MTile(ϕ):=Cb (ABlockC (ϕ) × ABlockC (ϕ))

which is called the meet semilattice of Morse tiles. Recall that a set U ⊂ X is an isolating
neighborhood if Inv(clU ) ⊂ intU and the associated isolated invariant set is S = Inv(clU ).
The set of isolating neighborhoods INbhd(ϕ) is a subsemilattice of Set(X) and the set of
isolated invariant sets Isol(ϕ) is a subsemilattice of Invset(ϕ).

The meet semilattice homomorphism θ : MTile(ϕ) � Morse(ϕ) can be explicitly charac-
terized.

Lemma 8 For all U ,U ′ ∈ ABlockC (ϕ)

A − A′ = θ(U � U ′) = Inv(U � U ′) = Inv
(
cl (U � U ′)

) ⊂ int (U � U ′).

Furthermore,MTile(ϕ) ⊂ INbhd(ϕ) is a subsemilattice. In particular,Morse sets are isolated
invariant sets.

Proof Let S ⊂ U � intU ′ = U ∩ cl (U ′c) be an invariant set. Then S ⊂ U , and thus
A ∪ S ⊂ U . Since A = Inv(U ) it follows that S ⊂ A. Similarly, S ⊂ cl (U ′c) and thus
A∗ ∪ S ⊂ cl (U ′c). Since A∗ = Inv+

(
cl (U ′c)

)
it follows that S ⊂ A′∗. Consequently,

A − A′ = Inv(U � intU ′). Since cl (U � U ′) ⊂ U ∩ cl (U ′c) = U � intU ′ it follows that

Inv
(
cl (U � U ′)

) ⊂ Inv(U � intU ′) = A − A′ ⊂ int (U ∩U ′c) = int (U � U ′),

which proves that U � U ′ is an isolating neighborhood. Because A − A′ ⊂ U � U ′ ⊂
cl (U �U ′) it follows that A− A′ = Inv(U �U ′) = Inv

(
cl (U �U ′). The fact thatMTile(ϕ)

is a subsemilattice of Set(X) implies it is a subsemilattice of INbhd(ϕ). ��

Refining Diagram (25) based on Lemma 8 gives

ABlockC (ϕ) × ABlockC (ϕ) MTile(ϕ) INbhd(ϕ)

Att(ϕ) × Att(ϕ) Morse(ϕ) Isol(ϕ).

Cb

ω×ω Inv

⊂

Inv

CAtt ⊂
(26)

The fact that Inv : INbhd(ϕ) � Isol(ϕ) is a semilattice homomorphism follows from [25,
Lemma 2.7].

Remark 10 In the above commutative diagramwe could also have chosen to use the lattice of
attracting neighborhoods in place of attracting blocks. In this case, the image of the Conley
form is a larger subsemilattice of the isolating neighborhoods. In the next section we present
Morse tiles in the setting of regular closed sets which arise naturally in computations, [23,26].

7.3 Regular Closed Sets

As indicated in [26], for computational purposes it is useful to define Conley forms in the
setting of regular closed setsR(X), cf. App. 3. The set of closed regular sets that are attracting
blocks is denoted by ABlockR (ϕ). The goal of this section is to prove that the following is a
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commutative diagram of lattice homomorphisms

ABlockC (ϕ) × ABlockC (ϕ) MTile(ϕ) IBlock(ϕ)

ABlockR (ϕ) × ABlockR (ϕ) MTileR (ϕ) IBlockR (ϕ)

Att(ϕ) × Att(ϕ) Morse(ϕ) Isol(ϕ)

Cb

##×##
θ##

θ##

⊂

Cb

ω×ω Inv

⊂

Inv

CAtt ⊂

(27)

where U ##:=cl intU .

Remark 11 Observe that since the top and bottom rows are as in (26) and the vertical maps
are surjective, there is no information lost by working with regular closed sets.

Lemma 9 If U ∈ ABlockC (ϕ), then U ## ∈ ABlockR (ϕ).

Proof By assumption ϕ(t,U ##) ⊂ ϕ(t,U ) ⊂ intU = intU ## for all positive t ∈ T, where
the latter follows the fact that intU = U⊥⊥ = U⊥⊥⊥⊥ = int cl intU = intU ## and
U⊥ = (clU )c. ��

The map ## : ABlockC (ϕ) → ABlockR (ϕ) is a lattice homomorphism by Lemma 22 and
ω : ABlockR (ϕ) → Att(ϕ) is a lattice homomorphism by [26, Theorem 3.15]. As a con-
sequence, we obtain the following three commutative diagrams of lattice homomorphisms.
First,

ABlockC (ϕ) ABlockR (ϕ)

Att(ϕ)

##

ω ω
(28)

where the surjectivity of ## follows from ABlockR (ϕ) ⊂ ABlockC (ϕ). Furthermore, by
Diagram (21)

ABlockC (ϕ) × ABlockC (ϕ) MTile(ϕ) IBlock(ϕ)

ABlockR (ϕ) × ABlockR (ϕ) MTileR (ϕ) IBlockR (ϕ)

Cb

##×##
θ##

θ##

⊂

Cb ⊂
(29)

and

ABlockR (ϕ) × ABlockR (ϕ) MTileR (ϕ) IBlockR (ϕ)

Att(ϕ) × Att(ϕ) Morse(ϕ) Isol(ϕ).

Cb

ω×ω
θR

θR

⊂

CAtt ⊂
(30)

The Conley form on ABlockC (ϕ) is given by Cb(U ,U ′) = U � U ′ for U ,U ′ ∈
ABlockC (ϕ). The Conley form on ABlockR (ϕ) is given by

Cb(N , N ′) = N ∧ N ′# = cl (N � N ′) for N , N ′ ∈ ABlockR (ϕ), (31)
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where the latter follows from Lemma 23.
Consider the homomorphism ## : ABlockC (ϕ) → ABlockR (ϕ). Via Corollary 2 and Eqn.

(53) the induced meet semilattice homomorphism θ : MTile(ϕ) → MTileR (ϕ) is given by

θ##(U � U ′) = U ## −U ′##:=U ## ∧U ′### = cl (N � N ′)

where N :=U ##. From Lemma 8, Corollary 2 and Lemma 23 we derive that

θR (N − N ′) = ω(N ) − ω(N ′) = Inv(N � N ′) = Inv(cl (N � N ′)) = Inv(N − N ′),

which proves the following lemma.

Lemma 10 A − A′ = θR (N − N ′) = Inv(N − N ′).

Lemma 10 together with (30) yields the bottom half of (27). The duality between regular
closed attracting and repelling blocks is given by the following lemmawhich explains regular
closed Morse tiles as regular intersections of attracting blocks and repelling blocks and
characterizes the duality in Diagram (17) in this case.

Lemma 11 ABlockR (ϕ)
#←→ RBlockR (ϕ).

Proof From [25, Lemma 3.17] we derive that if U ∈ RBlockR (X , ϕ), then U # satisfies

ϕ(−t,U #) ⊂ intUc = Uc = int clUc = intU #, t < 0.

The latter follows from the fact that Uc is a regular open set. From [25, Lemma 3.17] we
also derive that if U ∈ ABlockR (X , ϕ), then

ϕ(−t,U #) ⊂ Uc = intU #, t > 0,

which proves that U # ∈ RBlockR (X , ϕ). ��

8 Representations of Lattices

We have shown that attractors in a dynamical system have the structure of a bounded, dis-
tributive lattice, which codifies algebraically the global structure of the dynamical system.
From a dynamics point of view, this global structure has been alternatively described in terms
of a poset of distinguished invariant sets, the order of which encodes the global structure.
From an algebraic point of view, a bounded, distributive lattice is dually equivalent to a poset
via Priestley duality as described in Section 2. Hence, the order on the Priestley space is
dynamically defined, and the central issue is the representation of the Priestley space as a
poset of invariant sets.

In the previous sections we have identified dynamically distinguished invariant sets,
namely the Morse sets, which can be characterized as the image of the specific Con-
ley form CAtt on the lattice of attractors represented in the invariant sets. In particular,
Morse(ϕ) ∼= B�(Att). The Conley form is designed to provide a representation of the semilat-
tice structure of B�(L) in a more meaningful semilattice I. However, since the Booleanization
functor B = Oclp ◦ F ◦ Σ forgets the order on Σ(L), a representation of Σ(L) as a poset in I
does not immediately follow. In this section, we show that in the case of finite lattices, the
Priestley space can indeed be represented as a poset consisting of elements in I, but the issue
is more subtle in the infinite case.
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8.1 Spectral Representations

Let L be a finite distributive lattice. Then the convexity semilattice B�(L) is the lattice of
all convex sets Co(Σ(L)) in the spectrum Σ(L). The lattice Co(Σ(L)) is a (complete) atomic
lattice, which is not distributive in general, cf. [7]. The anti-chain of atoms in Co(Σ(L))
contains exactly the sets {I } where I ∈ Σ(L) ignoring the order structure of Σ(L). Let
C : L × L → I be a Conley form on L, then B�(L) ∼= C(L × L) = IC, and C determines the
injective semilattice homomorphism γ : B�(L) → IC given by

γ (A � B) = C( j−1(A), j−1(B)) for A, B ∈ B↓(L).

Writing {I } as {I } =↓ I � (↓ I � {I }) gives
γ ({I }) = C( j−1(↓ I

)
, j−1(↓ I � {I })).

Since the join irreducible elements of B↓(L) are exactly those of the form ↓ I for I ∈ Σ(L),
the join irreducible elements of L are exactly a = j−1(↓ I ) for I ∈ Σ(L), since j is an
isomorphism, cf. Sect. 2. Consequently, {C(a,

←−a ) | a ∈ J(L)} = {γ ({I }) | I ∈ Σ(L)} is a
representation of Σ(L) in I. This motivates the following definition.

Definition 6 Let L be a finite, distributive lattice and let C : L × L → I be a representation
of the Conley form in a meet semilattice I and γ : B�(L) → I be the injective semilattice
homomorphism given by C. The spectral representation of Σ(L) in I is defined to be the
poset

(
M(L),�

)
where

M(L):= {
γ
({I }) | I ∈ Σ(L)

} = {
a −←−a | a ∈ J(L)

}

and

γ ({I }) � γ (
{
I ′

}
) ⇐⇒ I ⊂ I ′, or equivalently

a −←−a � a′ −←−a ′ ⇐⇒ a � a′.
(32)

Since γ is an isomorphism, it follows that

μ : (
Σ(L),⊂) → (

M(L),�
)

I �→ γ
({I }) = a −←−a for a = j−1(↓ I ) ∈ J(L),

is an order isomorphism.

Lemma 12 It holds that γ ({I }) �= 0 for all I ∈ Σ(L) and γ ({I })∧γ ({I ′}) = 0 for all I �= I ′.

Proof Since ←−a < a Proposition 3(iv) implies that a −←−a �= 0. Note that elements of M(L)
are pairwise disjoint since γ ({I }) ∧ γ ({I ′}) = γ ({I } ∩ {I ′}) = 0 and γ is an isomorphism
B�(L) → IC. ��

The above construction implies that in the finite case, the (clopen) singleton, convex sets
in B�(L) are in one-to-one correspondence with J(L) and thus P, cf. Fig. 3[left/middle] and
Σ(L) which is used to construct spectral representations. The semilattice of all convex sets
Co(Σ(L)) is isomorphic to the convex sets in P and is given in Fig. 3[right]. In general, when L
is infinite, B�(L) is only a subsemilattice of Co(Σ(L)), [7]. Indeed, there are infinite, bounded,
distributive lattices that possess clopen, singleton, convex sets that are not associated to a
join irreducible elements. In this case, representing the spectrum is more subtle and will not
be addressed in this paper, cf. [18]. For dynamics, the finite case is often sufficient as we are
interested in Morse representations which are finite.
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Fig. 3 A finite lattice L = O(P) [left], the poset P representing the spectrum [middle] and the convexity
semilattice [right]. The subset in red [right] gives an embedding of L into the convexity semilattice, cf.
Remark 5

SinceM(L) is order-isomorphic to Σ(L), Birkhoff’s Representation Theorem implies that
O(M) ∼= L. We denote this isomorphism by ν : O(M) → L. Let C denote the Conley form on
L represented in I. This gives the diagram:

O(M) × O(M) B�(O(M))

L× L IC

Cσ

ν×ν ∼= θ ∼=

C

(33)

where by commutativity the final isomorphism is given by

θ(α � β) = ν(α) − ν(β) for all α, β ∈ O(M),

and consequently θ({M}) = M for all M ∈ M(L). If we consider a lattice homomorphism
h : K → L have the following commutative diagrams:

K × K IC I

L× L JC J

h×h
θ

θ

Σ(L) Σ(K)

J(L) J(K)

h−1

∼= I �→min I c(↑ a)c ∼=
J(h)

which yields J(h)(a):=min h−1(↑a). This construction induces the map:

M(h) : M(L) → M(K), a −←−a �→ J(h)(a) −←−−−−
J(h)(a) (34)

When we apply the spectral representation in the dynamical setting using CAtt, we use the
terminology of a Morse representation in place of spectral representation. For example,
consider L = Att(ϕ) and the Conley form

CAtt(A, A′) = A − A′:=A ∩ A′∗.

Following Definition 6 theMorse representation subordinate to a finite sublattice A ⊂ Att(ϕ)

is defined to be

M(A):={A −←−
A | A ∈ J(A)}.

In the combinatorial setting, the Morse representation subordinate to a sublattice A of Att(F)

is

M(A):={A−←−A | A ∈ J(A)}.
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In both cases the Morse representation is a poset isomorphic to J(A) which is a partially
ordered set via set-inclusion.

8.2 Stable and Unstable Set Representations

Consider the maps Wu : Morse(ϕ) → Invset(ϕ) and Ws : Morse(ϕ) → Invset±(ϕ) where
the latter is an injective semilattice homomorphism, cf. App. 1[Lemma 21]. These maps
induce a lattice form ρu and a Conley form Cs given by

ρu :=Wu ◦ CAtt and Cs :=Ws ◦ CRep.
From the fundamental theorem of attractor-repeller pairs [25, Theorem 3.19] we have that

A �
←−
A ⊂ ρu(A,

←−
A ), and therefore ρu satisfies the additivity property in Proposition 6. Let

ν : O(M) → Att(ϕ) be the injective lattice homomorphism with range A from Birkhoff’s
Representation Theorem. Then, for α ∈ O(M), we have α = ⋃

α′⊂α
α′∈J(O(M))

α′ and consequently,
A = ⋃

A′⊂A
A′∈J(A)

A′ where A′ = ν(α′). Proposition 6 implies

ν(α) =
⋃

A′⊂A
A′∈J(A)

ρu(A′,←−A ′) =
⋃

M∈α

Wu(M), (35)

which provides an explicit expression for ν(α). Similarly, since also Cs satisfies the additivity
property in Proposition 6, a representation for repellers can be obtained via the homomor-
phism ν∗ : U(M) → Rep(ϕ) given by

ν∗(β) =
⋃

M∈β

Ws(M). (36)

From Remark 5 we have the following commutative diagram

O(M) U(M))

A A∗

c

ν ∼= ∼= ν∗

∗

(37)

where we have identified CAtt(ω(X), A) = ω(X) ∩ A∗ with A∗, since ω(X) ∩ A∗ �→
Ws

(
ω(X) ∩ A∗) = A∗ is injective, cf. Lemma 21. This yields the correspondence

A = ν(α) =
⋃

M∈α

Wu(M) ⇐⇒ A∗ = ν(α)∗ = ν∗(αc) =
⋃

M∈αc

W s(M). (38)

Remark 12 We leave it to the reader to verify that the homomorphisms θ and θ∗ induced by
ν and ν∗ respectively coincide, i.e. θ(α � β) = θ∗(α � β).

We can use the above decompositions to obtain a decomposition in terms of connecting
orbits. We now show that the decompositions in (35) and (36) can be utilized to relate the
partial order onM(A) to the dynamics ofϕ. Theorem5belowprovides a dynamical description
of this order, which serves as an extension of an attractor-repeller pair and can be used as a
dynamical definition of a Morse representation.
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Theorem 5 Let
(
M(A),�

)
4 be the Morse representation subordinate to a finite sublattice

A ⊂ Att(ϕ). Then, the sets M ∈ M(A) are compact, nonempty, pairwise disjoint, invariant
sets in X, and for every x ∈ X there exists M ∈ M such that ω(x) ⊂ M. Moreover, for
every complete orbit γx with x /∈ ⋃

M∈M M there exist M, M ′ ∈ M with M < M ′ such that
ω(x) ⊂ M and αo(γ

−
x ) ⊂ M ′.

Proof By definition M = A − ←−
A = A ∩ ←−

A ∗ ∈ M(A) ⊂ Invset(ϕ). Since M is the
intersection of an attractor and repeller, it is compact and isolated, cf. [25] and Lemma 8.
Finally, by Lemma 12Morse setsM are nonempty. Furthermore, by Lemma 12,M∧M ′ = ∅

for all M �= M ′. This implies that M ∩ M ′ = ∅ for all M �= M ′. Indeed, the intersection
M ∩ M ′ is compact and forward invariant and thus M ∧ M ′ = Inv(M ∩ M ′) = ω(M ∩ M ′)
is nonempty unless M ∩ M ′ = ∅.

The decompositions in (35) and (36) imply that

X =
⋃

M∈M
Ws(M) and ω(X) =

⋃

M∈M
Wu(M), (39)

so that for each x ∈ X there exists M such that x ∈ Ws(M) and thus ω(x) ⊂ M . Let γx be a
complete orbit with x ∈ X�

( ⋃
M∈M M

)
. Then, by the decompositions in (39) we have that

x ∈ Ws(M)∩Wu(M ′). By definition ω(x) ⊂ M and αo(γ
−
x ) ⊂ M ′. It remains to show that

M < M ′. Suppose M > M ′ or M‖M ′ and write the singleton convex set {M} in O(M) as
{M} = α �β with α =↓ M ∈ O(M) and β = (↑ M)c ∈ O(M), and likewise {M ′} = α′

�β ′
with α′ =↓ M ′ and β ′ = (↑ M ′)c. Then,

Ws(M) ∩Wu(M ′) = Cs
(
ν(α), ν(β)

) ∩ ρu(ν(α′), ν(β ′)
)

= Ws(ν(α) ∩ ν(β)∗
) ∩Wu(ν(α′) ∩ ν(β ′)∗

)

⊂ Ws(ν(β)∗) ∩Wu(ν(α′)) = ν(β)∗ ∩ ν(α′) = ν(α′) − ν(β)

By the mapping property of the Conley form we have

ν(α′) − ν(β) = θ(α′
� β) = ∅,

since α′
� β =↓ M ′∩ ↑ M = ∅ by the assumptions on M and M ′, which proves that

M < M ′. ��

8.3 Reconstruction of Attractor Lattices

Theorem 5 establishes dynamical properties of aMorse representation. The next result shows
that the characterization in Theorem 5 can be used as a dynamical definition of Morse
representations.

Theorem 6 Let
(
M,�

)
be a finite poset of nonempty, pairwise disjoint, compact, invariant

sets in X. ThenM is a Morse representation subordinate to a finite sublattice A(M) ⊂ Att(ϕ)

if and only if for every x ∈ X there exists M ∈ M such that ω(x) ⊂ M, and for each
complete orbit γx with x /∈ ⋃

M∈M M there exists M < M ′ such that ω(x) ⊂ M and
αo(γ

−
x ) ⊂ M ′.The associated latticeA(M) is the image of the injective lattice homomorphism

ν : O(M) → Invset(ϕ) given by

α �→ ν(α) =
⋃

M∈α

Wu(M) ⊂ Att(ϕ), (40)

4 The poset
(
M(A), �

)
is a lattice induced and is defined in Definition 6.
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and M = M
(
A(M)

)
.

The “only if” direction is Theorem 5, so the proof of Theorem 6 is divided into two lemmas
in which we assume the second set of conditions stated in the theorem.

Lemma 13 Let M0 ∈ M be a minimal element. Then, M0 is an attractor.

Proof The set X ′ = ω(X) is a compact metric space, and the restriction ϕ′ = ϕ|X ′ is a
surjective dynamical system on X ′. Due to the invariance of both X ′ and the sets M ∈ M
we have that for every x ∈ X ′

� (
⋃

M∈M M), there exists M < M ′ such that ω(x) ⊂ M
and αo(γ

−
x ) ⊂ M ′. By assumption we can choose a compact neighborhood N ⊃ M0 with

N∩M = ∅ for allM �= M0. For x ∈ N�M0 the assumptions imply thatαo(γ
−
x ) ⊂ M �= M0

for all backward orbits γ−
x . Consequently, there are no backward orbits γ−

x : T
− → N for

all x ∈ N � M0. By [25, Lemma 3.11] the set M0 is an attractor for ϕ′. By [25, Proposition
3.7], M0 is also an attractor for ϕ. ��
Lemma 14 Let M0 ∈ M be a minimal element. Then

R =
⋃

M �=M0

Ws(M)

is the repeller dual to A = M0.

Proof By Proposition 3.16 in [25], since M0 is an attractor, cf. Lemma 13, the dual attractor
of M0 is characterized by M∗

0 = {x ∈ X | ω(x)∩M0 = ∅}. Suppose x ∈ R, then ω(x) ⊂ M
for some M �= M0, and therefore R ⊂ M∗

0 . Conversely, if x ∈ M∗
0 , then ω(x) ⊂ M with

M �= M0, which implies M∗
0 ⊂ R, and thus M∗

0 = R. ��
Proof of Theorem 6 Since the sets Ws(M) ∈ Invset±(ϕ) for M ∈ M are mutually disjoint
sets in I = Invset±(ϕ), the map

ν∗ : U(M) � Invset±(ϕ)

β �→
⋃

M∈β

Ws(M) (41)

defines a injective lattice homomorphism and the range is denoted by A∗(M), cf. Lemma 21.
Lemmas 13 and 14 show that R = ⋃

M �=M0
Ws(M) = ν∗

(
(↓ M0)

c
)
are repellers for

all minimal elements in M0 ∈ M. Let X ′ be the intersection of these repellers, which is
again a repeller, and letM′ be the poset obtained fromM by removing all minimal elements.
Then, M′ satisfies the conditions of Theorem 6 in X ′. Repeat the above lemmas in X ′. By
[25, Proposition 3.28] repellers in X ′ are repellers in X , and thus by exhausting the poset
M we establish that all elements of the form ν∗

(
(↓M)c

)
, M ∈ M, are repellers in X . Since

the elements ν∗
(
(↓ M)c

)
are meet-irreducible, all elements in A∗(M), except for ν∗(M),

are meets of meet-irreducible repellers. By (38) ν∗(M) = X , a repeller, which establishes
ν∗ : U(M) → Rep(ϕ) as a injective lattice homomorphism. Consequently, α �→ ν∗(αc)∗ ∈
Att(ϕ) is a injective lattice homomorphism ν : O(M) → Att(ϕ) by Diagram (37).

Moreover, for α � β = {M} we have
ν(α) − ν(β) = ν∗(αc)∗ − ν∗(βc)∗

= ν∗(αc)∗ ∩ ν∗(βc) = ν∗(βc) − ν∗(αc)

= θ∗(βc
� αc) = θ∗(α � β) = M,

which implies, by (38), that ν is given by (40) completing the proof. ��
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Given a finite attractor lattice A ⊂ Att(ϕ), then M(A) satisfies the hypotheses of Theo-
rem 6 and the associated attractor lattice A(M) in (40) is isomorphic to A due to Birkhoff’s
Representation Theorem and the attractors coincide, which shows that A(M(A)) = A. We
conclude

A ◦M = id and M ◦ A = id . (42)

Remark 13 The above characterization and construction ofMorse representations can also be
implemented for finite binary relationsF ⊂ X ×X . In [24, Defn. 3.9] a dynamical definition
of Morse representation is given. The results in Theorem 5 and Theorem 6 also hold in this
setting.

9 Morse Decompositions

Let P be a finite poset. A lattice homomorphism O(P) → L can be factored through its range
A ⊂ L, i.e. O(P) � A � L. This yields the factorization Σ(L) � Σ(A) ↪→ Σ(O(P)).
Given a spectral representationM(A) via a Conley form on A and Birkhoff’s Representation
Theorem, we obtain

Σ(L) � M(A) ↪→ P.

In the context of dynamics, we make the following definition.

Definition 7 Let P be a finite poset and A be the image of a lattice homomorphism O(P) →
Att. The order-embedding π : M(A) ↪→ P is called the Morse decomposition dual to the
lattice epimorphism O(P) � A.

The termMorse decomposition was first defined in Conley theory in the setting of contin-
uous time dynamical systems via labelings of collections of invariant sets by a poset whose
order is consistent with the dynamics, cf. [10]. By reformulating this concept in terms of
embeddings of posets we obtain a formulation of Morse decomposition consistent with the
algebraic theory developed in this paper. Here we emphasize the algebraic nature of a Morse
decomposition as an order-embedding from a Morse representation into a poset. The impor-
tance of the role of the poset P and the information it provides about the dynamical system
becomes most apparent in computations where the poset P is the computable object, cf.
Sect. 9.2. Generally, we refer to a Morse decomposition without mentioning the dual lattice
homomorphism.

9.1 TessellatedMorse Decompositions

In this section we present a dynamically meaningful choice of poset P in a Morse decom-
position. Let N ⊂ ABlockR (ϕ) be a finite sublattice of regular closed attracting blocks,
and consider the Conley form given in Sect. 7.3 in the setting of regular closed attracting
neighborhoods. From 3 and Diagram (27) we derive the commutative diagrams

N N#

A A∗

#

ω α

∗

N× N MTileR (N)

A× A Morse(A)

ω×ω

Cb

Inv

CAtt

(43)
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whereMTileR (N) ⊂ MTile(ϕ) denotes the image of Cb restricted to N× N andMorse(A) ⊂
Morse(ϕ) denotes the image of CAtt restricted to A× A. As in Sect. 8.1, we obtain a spectral
representation inMTileR (N) that is called aMorse tessellation, see Example 3, and denoted
by

T(N) = {
T = N −←−

N | N ∈ J(N)
}

where N − ←−
N = cl (N �

←−
N ), and N − ←−

N � N ′ − ←−
N ′ if and only if N ⊂ N ′. Hence

T = T(N) is a poset, and the map J(N) → T(N) given by N �→ N − ←−
N is an order-

isomorphism. Moreover, the functoriality of Birkhoff’s Representation Theorem yields the
order-embedding π : M(A) ↪→ T(N) subordinate to the lattice surjection ω : N � A, where
π is explicitly given by (34):

M = A −←−
A �→ π(M) = N −←−

N

with N = J(ω)(A) = minω−1(↑ A) ∈ J(N).
(44)

Definition 8 Let T(N) be a Morse tessellation of regular closed sets subordinate to the sub-
lattice N ⊂ ABlockR (ϕ). Then, the homomorphism π : M(A) ↪→ T(N) is called a tessellated
Morse decomposition subordinate to ω : N � A.

For a given tessellated Morse decomposition π : M(A) ↪→ T(N), the Morse tessellation T(N)

plays the role of the poset P in the definition of Morse decomposition.

Remark 14 Observe that by Corollary 2, θ : Cb(O(T(N)) × O(T(N))
) → CAtt(A × A) is a

semilattice homomorphism. Furthermore, by Lemma 8, θ = Inv. The map π : M(A) ↪→
T(N) is a order-embedding. If we identify the elements of T(N) with the singleton sets in
Cb

(
O(T(N)) × O(T(N))

)
, then

Inv ◦ π = θ ◦ π = idM(A),

and θ = Inv acts as a left-inverse for π . Therefore, the Morse sets can be recovered as the
maximal invariant sets within the Morse tiles. Observe that since ∅ is in the range of θ , we
capture the possibility that the maximal invariant set in a Morse tile may be empty.

Remark 15 Onecan alsodefine tessellatedMorsedecompositionviaANbhd(ϕ)orANbhdR (ϕ).

9.2 Spans and Combinatorial Models

For a given dynamical system ϕ in this paper we have constructed the following span in the
category of bounded distributive lattices

R(X) ABlockR (ϕ) Att(ϕ)
⊃ ω

.

Spans can be used to define equivalence classes of dynamical systems based on their gradi-
ent behavior. Two dynamical systems (X , ϕ) and (Y , ψ) are span equivalent if there exist
isomorphisms such that following diagram commutes

R(X) ABlockR (ϕ) Att(ϕ)

R(Y ) ABlockR (ψ) Att(ψ).

⊃ ω

⊃ ω
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The analogue of a span in the category of finite distributive lattices is given by

Set(X ) O(P) O(Q),
ι h

(45)

whereX is a finite set and P andQ are finite posets from Birkhoff’s Representation Theorem.
Spans in the category of finite distributive lattices can be equivalently described through finite
binary relations F ⊂ X ×X . To be more precise the extension of Birkhoff’s Representation
Theorem in [23] yields the following representation of a finite span in terms of a binary
relation F , i.e. (45) can be equivalently described by

Set(X ) Invset+(F) Att(F),
⊃ ω

where ω is the omega limit set in the setting of binary relations, cf. Eqn. (50) and [26]. We
emphasize that the choice of F is not unique, cf. [23]. The next step is to consider diagrams
of the form

R(X) ABlockR (ϕ) Att(ϕ)

Set(X ) Invset+(F) Att(F),

⊃ ω

|·| |·|
⊃ ω

c (46)

where the second homomorphism is a restriction of the first. We show that if the third
homomorphism exists and the diagram commutes, then it is uniquely defined by c = ω(| · |).

Remark 16 Typically in applications, X is a labeling of the atoms of a subalgebra of regular
closed sets, ie. a grid cf. [26], and the map | · | is the evaluation map

|U | =
⋃

ξ∈U
|ξ |,

which is injective. Also, in the definition of span one may consider sublattices of R(X) and
Set(X ), which is useful in some applications.

We refer to the diagram in (46) as a commutative combinatorial model for ϕ, see [23].
Recall from [24–26] that a way to combinatorialize a dynamical system is to discretize both
time and space. In this section we explain combinatorialization from an algebraic point of
view. In order to do so we introduce two hypotheses. First, a finite binary relation F is called
a weak outer approximation if

(W) ϕ
(
t, |ξ |) ⊂ int |Γ +(ξ)| for all t > 0,

where Γ +(ξ) denotes the forward image of ξ under F . The commutativity of the first square
in (46) is equivalent to (W) by [23, Thm. 5.3]. In order to characterize commutativity of the
second square in (46) we use an additional criterion for F
(L) ω(|ξ |) ⊂ |ω(ξ)| for all ξ ∈ X .

Theorem 7 Let F ⊂ X ×X be a finite, binary relation. Diagram (46) commutes if and only
if F satisfies (W) and (L). In this case c = ω(| · |).
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Proof The commutativity of the first square in (46) is equivalent to F satisfying (W) and is
proved in [23, Thm. 5.3].

If the second square in (46) commutes, thenω(|U |) = c(ω(U)) for everyU ∈ Invset+(F).
In particular, each A ∈ Att(F) satisfies A = ω(A) and is an element of Invset+(F) so that
ω(|A|) = c(A), i.e. c = ω(| · |).

Let U = Γ +(ξ) be the complete forward image of some ξ ∈ X . Then,

ω(|ξ |) ⊂ ω(|U |) = c(ω(U)) = ω(|ω(U)|) ⊂ |ω(U)| = |ω(
Γ +(ξ)

)| = |ω(ξ)|,
which establishes property (L).

Conversely, suppose (L) is satisfied. For U ∈ Invset+(F) we have that ω(U) ⊂ U and
therefore ω(|ω(U)|) ⊂ ω(|U |). Moreover, since ω, ω, and | · | are homomorphisms,

ω(|U |) =
⋃

ξ∈U
ω(|ξ)|) ⊂

⋃

ξ∈U
|ω(ξ)| = |ω(U)|,

and thus ω(|U |) = ω
(
ω(|U |)) ⊂ ω(|ω(U |). Combining both inclusions, ω(|ω(U)|) =

ω(|U |). This establishes the commutativity of the second square in (46) when c = ω(| · |). ��
From this point on we assume that | · | is injective. If we consider the diagram in (46) by

denoting the ranges of the bottom span we obtain

R0 N A

Set(X ) Invset+(F) Att(F),

⊃ ω

|·| |·|
⊃ ω

ω(|·|) (47)

where R0 is the algebra of grid elements, N is a finite lattice of attracting blocks, and A is
a finite lattice of attractors. We now invoke the various Conley forms to dualize the above
diagrams which yields the following dual diagram

|X | T(N) M(A)

X SC(F) RC(F),

π

⊃

|·| |·| (48)

which provides a factorization of the tessellation |X | � T(N) and the tessellated Morse
decomposition M(A) ↪→ T(N). Together these define the co-span

|X | � T(N) ←↩ M(A).

The posets SC(F) and RC(F) are the spectral representations of Invset+(F) and Att(F)

respectively, cf. Sect. 8.1 and [23,26]. The dual diagram shows that binary relations F that
satisfy Hypotheses (W) and (L) give rise to tessellated Morse decompositions. This fact has
been used to computationally characterize and compare global dynamics in various contexts,
[2,6,8,9,11,13,17,19,23,24,26].

Given a tessellation T of X consisting of regular closed sets labeled by X . If we choose
F to be transitive and reflexive, then F is a partial order on X and induces a partial order on
T = |X |. By Theorem 7 we can then formulate the following equivalent characterization of
Morse tessellations in the spirit Theorem 6 for Morse representations.
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Corollary 4 A (finite) poset (T,�) consisting of a regular closed partition T of X is a Morse
tessellation subordinate to a (finite) sublattice of attracting blocks if and only if the partial
order is a weak outer approximation for ϕ.

Proof Let F be the partial order induced on X by the poset T. Assume that F is a weak outer
approximation. Since F is a partial order, ω(ξ) =↓ ξ for every ξ ∈ X . Then (W) implies
ω(|ξ |) ⊂ | ↓ξ | = |ω(ξ)| so that (L) is satisfied. The remainder follows from Theorem 7 and
fact that finite sublattices of ABlockR (ϕ) yield partially ordered partitions of regular closed
sets for which the down-sets give attracting blocks by construction. ��

We refer to [23] for a more detailed account of combinatorial models and applications.
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Appendix

In this section we review definitions from dynamical systems theory, from both continuous
and discrete time dynamical systems as well as the dynamics of finite relations. The proofs
are fairly elementary, but are included since we are unaware of any single reference for all
the results presented.

Topological Dynamics

In this paper we use the following definition of a continuous dynamical system, cf. [25,26].

Definition 9 Let T denote either Z or R. A dynamical system is a continuous map ϕ : T
+ ×

X → X that satisfies

(i) ϕ(0, x) = x for all x ∈ X , and
(ii) for all s, t ∈ T

+ and for all x ∈ X it holds that ϕ(t, ϕ(s, x)) = ϕ(t + s, x).

If ϕ : T × X → X satisfies (i) and (ii), then ϕ is called an invertible dynamical system.

We use ω and α to denote the omega and alpha limit sets under the dynamics, cf. [25, Prop.’s
2.11 and 2.13]. Recall that A ⊂ X is an attractor for ϕ if there exists an open neighborhood
U of A such that the ω(U ) = A, and dually, R ⊂ X is a repeller for ϕ if there exists an open
neighborhoodU of R such that α(U ) = R. The bounded, distributive lattice of attractors and
repellers is denoted by Att(ϕ) and Rep(ϕ), respectively. The binary relations on Att(ϕ) are
A∧ A′:=ω(A∩ A′) and A∨ A′:=A∪ A′, and on Rep(ϕ) the binary relations are intersection
and union. In [25], it is shown that there is a natural well-defined duality anti-isomorphism
∗ : Att(ϕ) → Rep(ϕ) via A = ω(U ) �→ α(Uc) = A∗ where c denotes complement. The
pair (A, A∗) is called an attractor-repeller pair.

A setU ⊂ X is an attracting neighborhood if ω(clU ) ⊂ intU and a repelling neighbor-
hood if α(clU ) ⊂ intU . The collection of all attracting and repelling neighborhoods form
bounded distributive lattices, ANbhd(ϕ) and RNbhd(ϕ), respectively, with binary operations
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intersection and union. As shown in [25], the map ω : ANbhd(ϕ) � Att(ϕ) is a surjective
lattice homomorphism. Similarly, α : RNbhd(ϕ) � Rep(ϕ) is a surjective lattice homomor-
phism. A subset U ⊂ X is an attracting block for ϕ if

ϕ(t, clU ) ⊂ intU ∀t > 0.

The set of closed attracting blocks of ϕ is denoted by ABlockC (ϕ). By [25, Lemma 3.3]
and the fact that intersection and union of closed sets are closed, ABlockC (ϕ) is a bounded
distributive lattice. Since the inclusion ABlockC (ϕ) � Set(X) is a lattice homomorphism,
we can define the dual lattice

RBlockO (ϕ):= {
Uc | U ∈ ABlockC (ϕ)

}
.

Furthermore, by [25, Lemma 3.17], we have that RBlockO (ϕ) � Set(X), and complement
acts as an anti-lattice isomorphism between RBlockO (ϕ) and ABlockC (ϕ). From the per-
spective of dynamics, V ∈ RBlockO (ϕ) if and only if ϕ(t, cl V ) ⊂ int V for all t < 0.

Lemma 15 Let ϕ : T
+ × X → X be a dynamical system on a compact metric space. Then,

Att(ϕ) = ω(ABlockC (ϕ)) and Rep(ϕ) = α(RBlockO (ϕ)).

Proof Let A ∈ Att(ϕ). Because Att(ϕ):=ω(ANbhd(ϕ)), there exist U ∈ ANbhd(ϕ) such
that ω(U ) = A. By [25, Prop. 3.5] there exists a trapping region Û ⊂ U such that ω(U ) =
ω(Û ) = A. By [24, Lemmas 6.5 and 7.7] there exists a Lyapunov function V : X → [0, 1]
such that V−1(0) = A, V−1(1) = A∗, and V (ϕ(t, x)) < V (x) for all t > 0 and x /∈ A∪ A∗,
where A∗ is the dual repeller to A. Due to compactness we can choose 0 < ε � 1 such
that N = {x ∈ X | V (x) � ε} ⊂ Û ⊂ U is a closed attracting block with ω(N ) = ω(Û ) =
ω(U ) = A. Therefore, A ∈ ω(ABlockC (ϕ)). The proof that Rep(ϕ) = α(RBlockO (ϕ)) is
similar. ��

The following result is a Corollary of [25, Proposition 3.16].

Lemma 16 Let ϕ : T
+ × X → X be a dynamical system on a compact metric space. Then,

the following diagram commutes:

ABlockC (ϕ) RBlockO (ϕ)

Att(ϕ) Rep(ϕ)

c

∼=
ω α

∗
∼=

(49)

The upper homomorphism follows from the proof of Lemma 3.17 in [25].

Definition 10 For a compact invariant set S ⊂ X define the sets

Ws(S) = {x ∈ X | ω(x) ⊂ S};
Wu(S) = {x ∈ X | ∃γ−

x ! αo(γ
−
x ) ⊂ S},

which are called the stable and unstable sets of S respectively.

Lemma 17 The stable set Ws(S) is forward-backward invariant, and the unstable set Wu(S)

is invariant.
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Proof Let x ∈ Ws(S). Then ω(ϕ(t, x)) ⊂ ω(x) ⊂ S for every t ∈ T. Therefore,
ω(ϕ(t, x)) ⊂ S for all x ∈ Ws(S), t ∈ T, which proves that Ws(S) is both forward and
backward invariant.

As for Wu(S), we argue as follows. Let x ∈ Wu(S). Then a complete orbit γx exists.
Therefore, every y ∈ γx has a backward orbit γ−

y , and αo(γ
−
y ) = αo(γ

−
x ) ⊂ S, which proves

that γx ⊂ Wu(S) for all x ∈ Wu(S) and establishes the invariance of Wu(S). ��

Lemma 18 Let S, S′ be compact invariant sets. Then, Ws(S ∧ S′) = Ws(S) ∩Ws(S′).

Proof We have Ws(S ∧ S′) ⊂ Ws(S) ∩ Ws(S′). Now let x ∈ Ws(S) ∩ Ws(S′). Then
ω(x) ⊂ S ∩ S′, and since ω(x) is invariant, ω(x) = ω(ω(x)) ⊂ ω(S ∩ S′) = S ∧ S′, and
thus Ws(S) ∩Ws(S′) ⊂ Ws(S ∧ S′). ��

Remark 17 The same property with respect to union is not clear unless the invariant sets are
attractors. The equivalent of Lemma 18 does not hold for Wu(S ∧ S′). If ϕ is an invertible
system, i.e. a dynamical system with time t ∈ Z, or t ∈ R, then then we can use the proof of
Lemma 18 to show that both Ws and Wu define lattice homomorphisms from the sublattice
of compact invariant sets to the invariant sets.

Lemma 19 Let A ∈ Att(ϕ). Then, the application Ws : Att(ϕ) → Invset±(ϕ), defined by
A �→ Ws(A), is a lattice embedding.

Proof By Theorem 3.19 in [25] we have that Ws(A) = {x ∈ X | ω(x) ⊂ A} = (A∗)c. This
implies

Ws(A) ∪Ws(A′) = (A∗)c ∪ (A′∗)c = (A∗ ∩ A′∗)c = (
(A ∪ A′)∗

)c = Ws(A ∪ A′).

Similarly,

Ws(A) ∩Ws(A′) = (A∗)c ∩ (A′∗)c = (A∗ ∪ A′∗)c = (
(A ∧ A′)∗

)c = Ws(A ∧ A′).

Toprove that the homomorphism is injectivewe argue as follows. SupposeWs(A) = Ws(A′),
then equivalently (A∗)c = (A′∗)c. Since both ∗ and c are involutions, we have that A = A′,
which completes the proof. ��

The following lemma is an extension of [25, Prop. 3.21].

Lemma 20 Let A ⊂ X be an attractor and let N be a compact set satisfying A ⊂ N ⊂
Ws(A). Then, ω(N ) = A.

Proof By definition (Ws(A))c = A∗ and thus N ∩ A∗ = ∅ by the assumptions on N . Since
compact metric spaces are normal, there exist open sets separating N and A∗, i.e. there exist
open sets U ⊃ N and V ⊃ A∗ such that cl (U ) ∩ V = ∅, and thus cl (U ) ∩ A∗ = ∅. By
[25, Prop. 3.21] we have that ω(U ) = A, and therefore

A = ω(A) ⊂ ω(N ) ⊂ ω(U ) = A,

which proves ω(N ) = A. ��

Lemma 21 The mapping A ∩ R �→ Ws(A ∩ R) for an attractor A and a repeller R is
injective.
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Proof Let U ∈ ABlockC (ϕ) be an attracting block for A so that Uc ∈ RBlockO (ϕ) is a
repelling block for A∗. Then, since R is forward-backward invariant, U ∩ R is an attracting
block in R, and Uc ∩ R is a repelling block in R. From the properties of limit sets, cf. [25,
Lemma 2.9 and Propositions 2.11, 2.13], since both U and R are forward invariant and Uc

and R are backward invariant, we have

ω(U ∩ R) = ω(U ) ∧ ω(R) = A ∩ R and α(Uc ∩ R) = α(Uc) ∩ α(R) = A∗ ∩ R.

Therefore (A ∩ R, A∗ ∩ R) is an attractor-repeller pair in R.
Let S = A ∩ R and S′ = A′ ∩ R′. Suppose Ws(S) = Ws(S′). Then Ws(S ∧ S′) =

Ws(S) = Ws(S′) by Lemma 18. Since S ⊂ Ws(S) and S′ ⊂ Ws(S′), we have

S ∧ S′ ⊂ S ∪ S′ ⊂ Ws(S ∧ S′),

and S ∪ S′ is compact. Applying Lemma 20 with N = S ∪ S′, we have that ω(S ∪ S′) =
S ∧ S′. Also ω(S ∪ S′) = ω(S) ∪ ω(S′) = S ∪ S′ by the invariance of S, S′. Therefore
S ∩ S′ ⊃ S ∧ S′ = S ∪ S′ so that S = S′, which proves the injectivity. ��

Combinatorial Dynamics

Before recalling constructions associatedwith combinatorial dynamicswewant to emphasize
that our focus is on dynamics as given by Definition 9, i.e. single valued dynamics (that
may not be invertible). The combinatorial structures discussed below are only used as a
computational tool in which to understand the above mentioned dynamics.

Let X be a finite set. A binary relation F on X is subset of the product space X ×X . We
make use of the following concepts and structures, see [25,26] for details. In what follows F
can be interpreted as operator acting on subsets of X via

F(U) =
⋃

ξ∈U
F(ξ), F(ξ):= {η ∈ X | (ξ, η) ∈ F} .

Let F−1:={(ξ, η) | (η, ξ) ∈ F}, which is called the opposite relation. By the same token we
define F−1(U). In term is F the latter is given by

F−1(U) =
⋃

ξ∈U
F−1(ξ), F−1(ξ):= {η ∈ X | (η, ξ) ∈ F} .

The forward invariant sets and backward invariant sets are given by

Invset+(F):={U ⊂ X | F(U) ⊂ U}andInvset−(F):={U ⊂ X | F−1(U) ⊂ U}.
These sets are sublattices of the Boolean algebra Set(X ), and the complement map U �→ Uc

is a lattice isomorphism from Invset+(F) to Invset−(F). A subset set S ⊂ X is an invariant
set if S ⊂ F(S) and S ⊂ F−1(S). The invariant sets are denoted by Invset(F), which is a
lattice (not necessarily distributive). As in the continuous case, Inv(U) denotes the maximal
invariant set in U .

The sets of all attractors and repellers of F are denoted by

Att(F):={A ⊂ X | F(A) = A}andRep(F):={R ⊂ X | F−1(R) = R},
respectively, and are finite distributive lattices. Note that attractors and repellers are not
necessarily invariant sets. IfX itself is invariant, i.e. the relationF is total, then both attractors
and repellers are invariant sets.
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The omega and alpha limit sets in this setting are defined as follows

ω(U):=
⋂

k�0

⋃

n�k

Fn(U); (50)

and

α(U):=
⋂

k�0

⋃

n�k

Fn(U), (51)

which are forward and backward invariant sets respectively.
By [26, Proposition 2.8], ω and α define surjective lattice homomorphisms onto Att(F)

and Rep(F) which yields the followinf commutative diagram

Invset+(F) Invset−(F)

Att(F) Rep(F)

c

ω α

∗

(52)

where A �→ A∗:=α(Ac), cf. [26, Diagram (5)].

Regular Closed Sets

For the purpose of relating combinatorial dynamics to topological dynamics it is useful to
restrict the collection of sets used to discretize phase space. Let (X ,T ) be a topological
space. Define U ##:=cl intU , then sets satisfying U ## = U are called the regular closed sets
in Set(X) which form a complete Boolean algebra R(X) under the operations

U #:=clUc, U ∨U ′:=U ∪U ′ and U ∧U ′:=(U ∩U ′)## = cl (intU ∩ intU ′)

cf. [40].

Lemma 22 ## : C (X) → R(X) given by U �→ U ## is a lattice homomorphism.

Proof By definition U �→ U ## is an idempotent, order-preserving operator from Set(X) →
R(X). A setU is closed if and only ifU = clU . Let C (X) be the lattice of closed subsets X
which is a sublattice of Set(X). Since intU ⊂ U , we have that U ## = cl intU ⊂ clU = U ,
which proves thatU �→ U ## is also a contractive operator. From the order-preserving property
we have that (U ∩U ′)## ⊂ U ## ∩U ′##. From all properties combined we have

(U ## ∩U ′##)## ⊂ (U ∩U ′)## = (U ∩U ′)#### ⊂ (U ## ∩U ′##)##

which proves

(U ∩U ′)## = (U ## ∩U ′##)## = U ## ∧U ′##.

For unions

(U ∪U ′)## = U ## ∪U ′##,

is proved in [20, Sect. 4, Lem. 4] for regular open sets. The same statement for regular closed
sets follows from duality U �→ Uc. ��
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For regular closed sets, the notion of ‘set-difference’ is defined by

U −U ′:=U ∧U ′# (53)

Set-difference in R(X) can be related to set-difference in Set(X).

Lemma 23 Let U ,U ′ ∈ R(X). Then U −U ′ = cl (U � U ′).

Proof By definition U ∧ U ′# = cl int (U ∩U ′#) = cl int (U ∩ clU ′c). Since U ′ is a regular
closed set, the complement U ′c is a regular open set, and therefore int (clU ′c) = U ′c. This
yields

cl int (U ∩ clU ′c) = cl (intU ∩ int clU ′c) = cl (intU ∩U ′c).

Finally, sinceU is a regular closed set, we have that cl intU = U and thus cl (intU ∩U ′c) =
cl (U ∩U ′c), cf. [40, pp. 35]. Combining this with the previous we obtain

cl int (U ∩U ′c) = cl (U ∩U ′c) = cl (U � U ′),

which proves the lemma. ��
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