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Abstract
Whereas the positive equilibrium of a planar mass-action system with deficiency zero is
always globally stable, for deficiency-one networks there aremanydifferent scenarios,mainly
involving oscillatory behaviour. We present several examples, with centers or multiple limit
cycles.

Keywords Limit cycles · Centers · Liénard systems · Reversible systems · Mass-action
kinetics · Deficiency one

1 Introduction

In this paper we study mass-action systems in dimension two with a unique positive equilib-
rium and deficiency one. The deficiency is a non-negative integer associated to any chemical
reaction network, and is explained in Sect. 2. If the deficiency is zero, the Deficiency-Zero
Theorem gives a rather complete picture: existence and uniqueness of a positive equilibrium
is nicely characterized through the underlying directed graph of the chemical network. And
if it exists, it is globally asymptotically stable (at least in dimension two). In contrast, the
Deficiency-One Theorem is a purely static statement: there is at most one positive equilib-
rium, and if it exists, it is regular. However, nothing is said about the dynamic behaviour. In
the present paper we take a step towards filling this gap, at least in dimension two.

We show thatAndronov–Hopf bifurcationsmayoccur, even generalized ones, that produce
more than one limit cycle near the equilibrium, and also degenerate ones that produce centers.
Note that the uniqueness and regularity of the positive equilibrium rules out the classical fixed
point bifurcations such as saddle–node and pitchfork bifurcations.

We start with a brief summary of reaction network theory in Sect. 2. Then in Sect. 3
we study the simplest weakly reversible network with deficiency one, an irreversible cycle
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along a quadrangle. This is always permanent, but we present examples with up to three limit
cycles. On the other hand, we also give a sufficient condition that guarantees global stability
of the positive equilibrium for all rate constants.

In Sect. 4 we consider irreversible chains of three reactions. Even though this is not
weakly reversible, a positive equilibrium may exist, and could be globally stable, or may be
surrounded by up to three limit cycles. Furthermore, the equilibrium may be surrounded by
a continuum of closed orbits and a homoclinic orbit.

In Sect. 5 we study three separate reactions, and produce two types of centers, and an
example with four limit cycles.

Finally, in Sect. 6 we give a simple example where existence of the positive equilibrium
depends on the rate constants.

2 Planar Mass-Action Systems

In this sectionwe briefly introducemass-action systems and related notions that are necessary
for our exposition. We restrict to the case of two species. For more details about mass-action
systems, consult e.g. [9,11]. The symbol R+ denotes the set of positive real numbers.

Definition 1 A planar Euclidean embedded graph (or a planar reaction network) is a directed
graph (V , E), where V is a nonempty finite subset of R2.

Denote by (a1, b1), (a2, b2), . . . , (am, bm) the elements of V , and by X and Y the two
species. Accordingly, we often refer to (ai , bi ) as aiX+ biY. We assume throughout that the
reaction vectors (a j − ai , b j − bi ) ∈ R

2 ((i, j) ∈ E) span R
2. The concentrations of the

species X and Y at time τ are denoted by x(τ ) and y(τ ), respectively.

Definition 2 A planar mass-action system is a triple (V , E, κ), where (V , E) is a planar
reaction network and κ : E → R+ is the collection of the rate constants. Its associated
differential equation on R

2+ is

ẋ =
∑

(i, j)∈E
(a j − ai )κi j x

ai ybi ,

ẏ =
∑

(i, j)∈E
(b j − bi )κi j x

ai ybi .
(1)

We remark that the translation of a network by (α, β) ∈ R
2 (i.e., taking (ai + α, bi + β)

instead of (ai , bi ) for i = 1, 2, . . . ,m) amounts to multiplying the differential equation (1)
by the monomial xα yβ , an operation that does not have any effect on the main qualitative
properties. Thus, any behaviour shown in this paper can also be realized with ai , bi ≥ 0 for
all i = 1, 2, . . . ,m, a setting that is more standard in the literature.

In some cases, a network property alone has consequences on the qualitative behaviour of
the differential equation (1). For instance,weak reversibility implies permanence [6, Theorem
4.6]. We now define these terms.

Definition 3 A planar reaction network (V , E) or a planar mass-action system (V , E, κ) is
weakly reversible if every edge in E is part of a directed cycle.

Definition 4 Aplanar mass-action system is permanent if there exists a compact set K ⊆ R
2+

with the property that for each solution τ �→ (x(τ ), y(τ ))with (x(0), y(0)) ∈ R
2+ there exists

a τ0 ≥ 0 such that (x(τ ), y(τ )) ∈ K holds for all τ ≥ τ0.
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Theorem 1 ([6]) Weakly reversible planar mass-action systems are permanent.

We now recall two classical theorems on the number of positive equilibria for mass-action
systems with low deficiency. The deficiency of a planar reaction network (V , E) is the non-
negative integer δ = m−�−2, wherem = |V | and � is the number of connected components
of the directed graph (V , E).

Theorem 2 (Deficiency-Zero Theorem [8,13,14]) Assume that the deficiency of a planar
mass-action system is zero. Then the following statements hold.

(i) There is no periodic solution that lies entirely in R2+.
(ii) If the underlying network is weakly reversible then there exists a unique positive equi-

librium. Furthermore, it is asymptotically stable.
(iii) If the underlying network is not weakly reversible then there is no positive equilibrium.

Notice that the combination of Theorems 1 and 2 yields that the unique positive equi-
librium of a weakly reversible deficiency-zero planar mass-action system is in fact globally
asymptotically stable.

For stating the second classical result, we need onemore term. For a directed graph (V , E),
denote by t the number of its absorbing strong components.

Theorem 3 (Deficiency-One Theorem [10]) Assume that the deficiency of a planar mass-
action system is one. Further, assume that � = t = 1. Then the following statements hold.

(i) If the underlying network is weakly reversible then there exists a unique positive equi-
librium.

(ii) If the underlying network is not weakly reversible then the number of positive equilibria
is either 0 or 1.

(iii) The determinant of the Jacobian matrix at a positive equilibrium is nonzero.

Wenowhighlight themain differences between the conclusions of the above two theorems.
For a planar mass-action system that falls under the assumptions of the Deficiency-One
Theorem,

(A) in case the underlying network is not weakly reversible,

(a) a positive equilibrium can nevertheless exist,
(b) whether there exists a positive equilibrium might depend on the specific values of

the rate constants,
(c) even if there exists a unique positive equilibrium, there could be unbounded solutions

as well as solutions that approach the boundary of R2+,

(B) regardless of weak reversibility,

(a) the unique positive equilibrium could be unstable (however, the Jacobian matrix is
nonsingular),

(b) there is no information about the existence of periodic solutions.

Points (a) and (b) in (A) above are studied in detail in [1,2], respectively. In this paper, we
touch these questions only briefly: we show a network in Sect. 6 for which the existence of
a positive equilibrium depends on the specific choice of the rate constants.

Investigation of points (a) and (b) in (B) above is themainmotivation for the present paper.
The only (published) example so far of a reaction network that satisfies the Deficiency-One
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Theorem but with an unstable positive equilibrium (and presumably a limit cycle) seems to
be the three-species network

Y Z X 2X

X + Y

which is due to Feinberg [10, (4.12)]. In this paper we show that such examples are abundant
already for two species. Note that Feinberg’s example is a bimolecular one. It is shown in [16]
that the only bimolecular two species system with periodic solutions is the Lotka reaction
[15].

Sections 3 and 4 are devoted to studying the cycle of four irreversible reactions and the
chain of three irreversible reactions, respectively. These networks all satisfy the assumptions
of Theorem 3.

In Sect. 5 we examine the case of three irreversible reactions that do not necessarily
form a chain. Although these networks typically have deficiency one, they are not covered
by Theorem 3. Nevertheless, we show the uniqueness and the regularity of the positive
equilibrium for these systems.

For all these types of planar deficiency-one mass-action systems we study the existence
of periodic solutions.

3 Quadrangle

In this section we study the mass-action system

a1X + b1Y a2X + b2Y

a3X + b3Ya4X + b4Y

κ1

κ2

κ3

κ4 (2)

and its associated differential equation

ẋ = (a2 − a1)κ1x
a1 yb1 + (a3 − a2)κ2x

a2 yb2 + (a4 − a3)κ3x
a3 yb3 + (a1 − a4)κ4x

a4 yb4 ,

ẏ = (b2 − b1)κ1x
a1 yb1 + (b3 − b2)κ2x

a2 yb2 + (b4 − b3)κ3x
a3 yb3 + (b1 − b4)κ4x

a4 yb4

(3)

under the non-degeneracy assumption that (a1, b1), (a2, b2), (a3, b3), (a4, b4) are distinct
and do not lie on a line.

Note that the mass-action system (2) is weakly reversible and its deficiency is δ = 4 −
1−2 = 1. By the Deficiency-One Theorem [10, Theorem 4.2], there exists a unique positive
equilibrium for the differential equation (3). Moreover, the determinant of the Jacobian
matrix at the equilibrium does not vanish [10, Theorem 4.3]. Since additionally the system is
permanent [6, Theorem4.6], the indexof the equilibrium is+1 [12,Theorem19.3].Hence, the
determinant is positive, and consequently, the unique positive equilibrium is asymptotically
stable (respectively, unstable) if the trace is negative (respectively, positive). In case the trace
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is zero, the eigenvalues are purely imaginary and some further work is required to decide
stability of the equilibrium.

In Sect. 3.1, we present a system for which the unique positive equilibrium is unstable and
a stable limit cycle exists. In Sect. 3.2, we prove that even three limit cycles are possible for
the differential equation (3). Finally, in Sect. 3.3, we describe a subclass of the quadrangle
networks (2) that are globally stable for all rate constants.

3.1 Unstable Equilibrium and a Stable Limit Cycle

Let us consider the mass-action system (2) with

(a1, b1) = (0, 1), (a2, b2) = (1, 0), (a3, b3) = (1, 2), (a4, b4) = (0, 3).

Thus, the network and its associated differential equation take the form

•

•

•

•

Y

X

X + 2Y

3Y

κ1

κ2

κ3

κ4

and
ẋ = κ1y − κ3xy

2,

ẏ = −κ1y + 2κ2x + κ3xy
2 − 2κ4y

3.

A short calculation shows that the unique positive equilibrium is given by

(x, y) =
⎛

⎝
(

κ3
1κ4

κ3
3κ2

) 1
4

,

(
κ1κ2

κ3κ4

) 1
4

⎞

⎠

and the trace of the Jacobian matrix at the equilibrium is positive if and only if

√
κ1

κ2
>

√
κ3

κ4
+ 6

√
κ4

κ3
.

By picking rate constants that make the trace positive, one gets a system, where the posi-
tive equilibrium is repelling, and, by combining permanence and the Poincaré–Bendixson
Theorem, there must exist a stable limit cycle.

3.2 Three Limit Cycles

Let us consider the mass-action system (2) with

(a1, b1) = (0, 1), (a2, b2) = (0, 0), (a3, b3) = (1, 2), (a4, b4) = (1, 5).

Thus, the network and its associated differential equation take the form
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•

•

•

•

Y

0

X + 2Y

X + 5Y

κ1

κ2

κ3

κ4

and
ẋ = κ2 − κ4xy

5,

ẏ = −κ1y + 2κ2 + 3κ3xy
2 − 4κ4xy

5.

Our goal is to show that there exist rate constants κ1, κ2, κ3, κ4 such that the above differential
equation has three limit cycles.

Linear scaling of the differential equation by the equilibrium (x, y), followed by a multi-
plication by x yields

ẋ = κ2 − κ4xy
5,

ẏ = K [−κ1y + 2κ2 + 3κ3xy
2 − 4κ4xy

5], (4)

where

κ1 = κ1y, κ2 = κ2, κ3 = κ3x y
2, κ4 = κ4x y

5, and K = x

y
.

As a result of the scaling, the positive equilibrium is moved to (1, 1), and the focal value
computations become somewhat more convenient. Note that

0 = κ2 − κ4,

0 = −κ1 + 2κ2 + 3κ3 − 4κ4.

From this, we obtain that

κ1 = κ4γ,

κ2 = κ4,

κ3 = κ4
γ + 2

3
for some γ > 0. After dividing by κ4, the differential equation (4) thus becomes

ẋ = 1 − xy5,

ẏ = K [−γ y + 2 + (γ + 2)xy2 − 4xy5], (5)

where K > 0 and γ > 0. One finds that the trace of the Jacobian matrix at the equilibrium
(1, 1) vanishes for γ = 16 + 1

K . In this case, the eigenvalues are purely imaginary and we
have to look at higher order terms for deciding stability. In particular, we compute the focal
values following the procedure described in [7, Chapter 4], see [3] for an implementation in
Mathematica. The first focal value is

L1 = π(3416K 3 + 1250K 2 − 29K − 5)

20
√
2(2 + 35K )3

,

123



Journal of Dynamics and Differential Equations (2024) 36:S175–S197 S181

which is zero for K = K0 ≈ 0.06862, negative for 0 < K < K0, and positive for K > K0.
Assuming K = K0, one finds that the second focal value, L2, is approximately 0.01293, a
positive number.

Take now K = K0 and γ = 16 + 1
K0

. Since the first nonzero focal value is positive, the
equilibrium (1, 1) is repelling. First, perturb K to a slightly smaller value, and simultaneously
perturb γ in order tomaintain the relation γ = 16+ 1

K . Then L1 < 0, and thus the equilibrium
(1, 1) becomes asymptotically stable, and an unstable limit cycle Γ1 is created. Next perturb
γ to a slightly larger value. Then the trace becomes positive, and thus the equilibrium (1, 1)
becomes unstable again, and a stable limit cycle Γ0 is created. Finally, by the permanence of
the system, the Poincaré–Bendixson Theorem guarantees that a stable limit cycle surrounds
Γ1. Therefore, we have shown that there exist K > 0 and γ > 0 such that the differential
equation (5) has at least three limit cycles.

We conclude this subsection by a remark. By keeping b4 > 2 a parameter (instead of
fixing its value to 5), one could find parameter values for which L1 = 0, L2 = 0, L3 < 0
holds (with b4 ≈ 4.757 and K ≈ 0.0909). Then one can bifurcate three small limit cycles
from the equilibrium.

3.3 Global Stability of the Equilibrium

As we have seen in Sects. 3.1 and 3.2, the unique positive equilibrium of the differential
equation (3) could be unstable for some rate constants. However, under a certain condition
on the relative position of the four points (a1, b1), (a2, b2), (a3, b3), (a4, b4), one can conclude
global asymptotic stability of the unique positive equilibrium for all rate constants.

The differential equation (3) is permanent and has a unique positive equilibrium.
Furthermore, the determinant of the Jacobianmatrix is positive there. Hence, by the Poincaré–
Bendixson Theorem, global asymptotic stability of the equilibrium is equivalent to the
non-existence of a periodic solution. One can preclude the existence of a periodic solu-
tion by the Bendixson–Dulac test [7, Theorem 7.12]: if there exists a function h : R2+ → R+
such that div(h f , hg) < 0 then the differential equation

ẋ = f (x, y),

ẏ = g(x, y)

cannot have a periodic solution that lies entirely in R2+.
With f (x, y) and g(x, y) denoting the r.h.s. of the equations for ẋ and ẏ in (3), respectively,

and taking h(x, y) = x−α y−β , one finds

div(h f , hg)

h
(x, y) =

4∑

i=1

(α − ai )(ai − ai+1)κi x
ai−1ybi

+
4∑

i=1

(β − bi )(bi − bi+1)κi x
ai ybi−1,

where a5 = a1 and b5 = b1 by convention. Ignoring the degenerate case a1 = a2 = a3 = a4,
one finds that (α − ai )(ai − ai+1) ≤ 0 for each i = 1, 2, 3, 4 and (α − ai )(ai − ai+1) < 0
for some i = 1, 2, 3, 4 if

a1 ≤ a2 ≤ a3 ≤ a4 and a3 ≤ α ≤ a4, or

a1 ≤ a2 ≤ a4 ≤ a3 and a2 ≤ α ≤ a4, or
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a1 ≤ a3 ≤ a2 ≤ a4 and a3 ≤ α ≤ a2, or

a1 ≤ a3 ≤ a4 ≤ a2 and a3 ≤ α ≤ a4, or

a1 ≤ a4 ≤ a3 ≤ a2 and a1 ≤ α ≤ a4, or

a1 = a4 ≤ a2 ≤ a3 and a2 ≤ α ≤ a3, or

a1 ≤ a4 ≤ a2 = a3 and a1 ≤ α ≤ a4, or

a1 ≤ a4 = a2 ≤ a3 and α = a2.

On the other hand, if a1 < a4 < a2 < a3 then no matter how one fixes α, at least one of (α −
a2)(a2−a3) and (α−a4)(a4−a1) is positive. Notice that we covered all configurations with
a1 = min(a1, a2, a3, a4). All the other cases are treated similarly. Also, it works analogously
with the b j ’s and β.

Proposition 1 Consider the differential equation (3) and let the indices i and j satisfy ai =
min(a1, a2, a3, a4)andb j = min(b1, b2, b3, b4), respectively. Assume that both ai < ai+3 <

ai+1 < ai+2 and b j < b j+3 < b j+1 < b j+2 are violated (where a5 = a1, a6 = a2, a7 = a3
and b5 = b1, b6 = b2, b7 = b3 by convention). Then there is no periodic solution and the
unique positive equilibrium is globally asymptotically stable.

Proof By the above discussion, one can find α and β such that after multiplying by h(x, y) =
x−α y−β , the r.h.s. of the differential equation (3) has negative divergence everywhere. Then,
by the Bendixson–Dulac test, there is no periodic solution and therefore the unique positive
equilibrium is globally asymptotically stable. 	


In other words, if there exists a periodic solution then at least one of ai < ai+3 < ai+1 <

ai+2 and b j < b j+3 < b j+1 < b j+2 in Proposition 1 holds. The index-free way to express
ai < ai+3 < ai+1 < ai+2 and b j < b j+3 < b j+1 < b j+2 is to say that the projection of the
quadrangle to a horizontal line and a vertical line, respectively, take the form

• • •• and

•

•

•

•
,

respectively, where some arrows are bent in order to avoid overlapping.
Finally, since the mass-action systems in Sects. 3.1 and 3.2 have a periodic solution for

some rate constants, at least one of ai < ai+3 < ai+1 < ai+2 and b j < b j+3 < b j+1 < b j+2

must hold. Indeed, in each subsection b j < b j+3 < b j+1 < b j+2 holds with j = 2.

4 Chain of Three Reactions

In this section we study the mass-action system

a1X + b1Y
κ1−→ a2X + b2Y

κ2−→ a3X + b3Y
κ3−→ a4X + b4Y (6)
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and its associated differential equation

ẋ = (a2 − a1)κ1x
a1 yb1 + (a3 − a2)κ2x

a2 yb2 + (a4 − a3)κ3x
a3 yb3 ,

ẏ = (b2 − b1)κ1x
a1 yb1 + (b3 − b2)κ2x

a2 yb2 + (b4 − b3)κ3x
a3 yb3

(7)

under the non-degeneracy assumption that

(a1, b1), (a2, b2), (a3, b3) do not lie on a line. (8)

By the Deficiency-One Theorem, the number of positive equilibria for the differential
equation (7) is either 0 or 1. Our first goal is to understand when is it 0 and when is it 1.
Crucial for this is the relative position of the four points Pi = (ai , bi ) for i = 1, 2, 3, 4 in
the plane. Define the numbers h1, h2, h3, h4 by

h1 = Δ(243),

h2 = Δ(134),

h3 = Δ(142),

h4 = Δ(123),

where Δ(i jk) = det(Pj − Pi , Pk − Pi ) is twice the signed area of the triangle Pi Pj Pk . The
quantity Δ(i jk) is thus positive (respectively, negative) if the sequence Pi , Pj , Pk , Pi of
points are positively (respectively, negatively) oriented. The quantity Δ(i jk) is zero if the
three points Pi , Pj , Pk lie on a line. Note also that

Δ(i jk) = Δ( jki) = Δ(ki j) = −Δ( j ik) = −Δ(ik j) = −Δ(k ji)

and h1 + h2 + h3 + h4 = 0.
Denote by f (x, y) and g(x, y) the r.h.s. of the equations for ẋ and ẏ in (7), respectively.

By taking

(b3 − b2) f (x, y) − (a3 − a2)g(x, y) = 0,

(b4 − b3) f (x, y) − (a4 − a3)g(x, y) = 0,

one obtains after a short calculation that the equilibrium equations take the form

(h1 + h2 + h3)κ1x
a1 yb1 = h1κ3x

a3 yb3 ,

(h1 + h2)κ1x
a1 yb1 = h1κ2x

a2 yb2 .
(9)

Thus, if there exists a positive equilibrium, h1, h1 + h2, h1 + h2 + h3 must all have the same
sign. If all of them are zero then P1, P2, P3, P4 lie on a line, contradicting the non-degeneracy
assumption (8). If the common sign is nonzero then in particular h4 = −(h1 +h2 +h3) �= 0,
so P1, P2, P3 do not lie on a line, and thus the obtained binomial equation (9) has exactly
one positive solution for each choice of the rate constants. Let us stress that the existence of
a positive equilibrium does not depend on the specific choice of the rate constants.

Next, we discuss the geometric meaning of

sgn(h1) = sgn(h1 + h2) = sgn(h1 + h2 + h3) �= 0.

Assume that

h1 < 0, h1 + h2 < 0, h1 + h2 + h3 < 0.

Since Δ(234) = −Δ(243) = −h1 > 0, the sequence P2, P3, P4, P2 is oriented counter-
clockwise. Similarly, since Δ(231) = Δ(123) = h4 = −(h1 + h2 + h3) > 0, the sequence
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Fig. 1 For a positive equilibrium to exist, the point P4 is located in the sector that is the intersection of the
green and red open half-spaces (left panel). Equivalently, the sum of the two angles indicated is less than 180◦
(right panel)

P2, P3, P1, P2 is oriented counterclockwise, too. Thus, P1 and P4 lie on the same side of the
line through P2 and P3 (the green open half-plane in the left panel in Fig. 1 shows where P4
can be located for h1 < 0 to hold). Since additionally h1 + h2 < 0 holds, P1 and P4 lie on
the same side of the line that is through P3 and is parallel to the line through P1 and P2 (the
red open half-plane in the left panel in Fig. 1 shows where P4 can be located for h1 + h2 < 0
to hold). The latter follows from the fact that h1 + h2 = det(P2 − P1, P4 − P3). In other
words, the sum of the angles �P1P2P3 and �P2P3P4 is smaller than 180◦ (see the two red
arcs in the right panel in Fig. 1). The case h1 > 0, h1 + h2 > 0, h1 + h2 + h3 > 0 is treated
similarly, and we obtain the following result.

Proposition 2 Consider the differential equation (7). Then the following four statements are
equivalent.

(a) There exists a positive equilibrium.
(b) There exists a unique positive equilibrium.
(c) sgn(h1) = sgn(h1 + h2) = sgn(h1 + h2 + h3) �= 0
(d) The points P1 and P4 lie on the same side of the line through P2 and P3, and additionally

�P1P2P3 + �P2P3P4 < 180◦.

In particular, the existence of a positive equilibrium is independent of the values of κ1, κ2,
κ3.

We remark that the equivalence of (a), (b), and (c) in Proposition 2 also follows from
[2, Corollaries 4.6 and 4.7], where the existence of a positive equilibrium is discussed for
general deficiency-one mass-action systems.

Now that we understand when the mass-action system (6) has a positive equilibrium, our
next goal is to find parameter values for which the equilibrium is surrounded by three limit
cycles (Sect. 4.1) or by a continuum of closed orbits (Sect. 4.2). We prepare for these by
moving the equilibrium to (1, 1).
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Linear scaling of the differential equation (7) by the equilibrium (x, y), followed by a
multiplication by x yields

ẋ = (a2 − a1)κ1x
a1 yb1 + (a3 − a2)κ2x

a2 yb2 + (a4 − a3)κ3x
a3 yb3 ,

ẏ = K [(b2 − b1)κ1x
a1 yb1 + (b3 − b2)κ2x

a2 yb2 + (b4 − b3)κ3x
a3 yb3 ], (10)

where

κ1 = κ1x
a1 yb1 , κ2 = κ2x

a2 yb2 , κ3 = κ3x
a3 yb3 , and K = x

y
.

As a result of the scaling, the positive equilibrium is moved to (1, 1). Further, it follows by
(9) that

κ1 = λh1,

κ2 = λ(h1 + h2),

κ3 = λ(h1 + h2 + h3)

(11)

for some λ �= 0, which is positive (respectively, negative) if h1, h1 + h2, h1 + h2 + h3 are
all positive (respectively, negative).

Denote by J the Jacobian matrix of (10) at the equilibrium (1, 1). A short calculation
shows that

det J = h1 + h2 + h3
λ

Kκ1κ2κ3,

and thus, det J > 0.

4.1 Three Limit Cycles

Let us consider now the mass-action system (6) with

(a1, b1) = (0, 0), (a2, b2) = (0,−q), (a3, b3) =
(
1,

1

2

)
, (a4, b4) =

(
0,

1

2
+ r

)
,

where q > 0 and r > 0, i.e., take the mass-action system

•
•

•

•

0

−qY

X + 1
2Y

( 1
2 + r

)
Y

κ1 κ2

κ3

Then h1 = − (
q + r + 1

2

)
, h2 = r + 1

2 , h3 = 0, and therefore h1, h1 + h2, h1 + h2 + h3
are all negative. Thus, λ is negative by (11). Rescaling time, we can take λ = − 1

q and the
associated scaled differential equation (10) takes the form

ẋ = y−q − xy
1
2 ,

ẏ = K

[
−

(
q + r + 1

2

)
+

(
q + 1

2

)
y−q + r xy

1
2

]
.

(12)
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Next we prove that there exist q > 0, r > 0, K > 0 such that tr J = L1 = L2 = 0 and
L3 < 0, where Li is the i th focal value at the equilibrium (1, 1).

Proposition 3 Consider the differential equation (12). Then there exist q > 0, r > 0, K > 0
such that tr J = L1 = L2 = 0 and L3 < 0.

Proof Since tr J = −1 + r−q(2q+1)
2 K , the trace vanishes with K = 2

r−q(2q+1) for q > 0
and r > q(2q + 1). Under this, one obtains that

L1 = πr [3r(1 − 2q) − q(4q2 + 16q + 7)]
8(2q + 1)[r − q(2q + 1)] 3

2
√
2q(q + r + 1/2)

.

Taking also into account that q > 0 and r > q(2q + 1), one obtains that L1 = 0 if and only

if 0 < q < 1
2 and r = q(4q2+16q+7)

3(1−2q)
. Under this, one obtains that

L2 = π(2q + 7)2(3 − 2q)(4q − 1)
√
2q + 3

1536(2q + 1)4
.

Taking also into account that 0 < q < 1
2 , one obtains that L2 = 0 if and only if q = 1

4 . With

this, one computes L3 and gets L3 = − 625π
110592

√
7
2 .

The parameter value for which tr J = L1 = L2 = 0 and L3 < 0 hold are obtained by
substitution. This yields q = 1

4 , r = 15
8 , K = 4

3 . 	

Corollary 1 Consider the differential equation (12). Then there exist q > 0, r > 0, K > 0
such that (1, 1) is unstable and is surrounded by 3 limit cycles (2 stable and 1 unstable).

Proof Take q = 1
4 , r = 15

8 , K = 4
3 . As we saw in the proof of Proposition 3, then tr J =

L1 = L2 = 0 and L3 < 0. Since the first nonzero focal value is negative, the equilibrium
(1, 1) is asymptotically stable.

First, perturb q to a slightly larger value, and simultaneously perturb r and K in order to

maintain the relations r = q(4q2+16q+7)
3(1−2q)

and K = 2
r−q(2q+1) . Then L2 > 0, and thus the

equilibrium (1, 1) becomes unstable, and a stable limit cycle Γ2 is created.
Next, perturb r to a slightly smaller value, and simultaneously perturb K in order to

maintain the relation K = 2
r−q(2q+1) . Then L1 < 0, and thus the equilibrium (1, 1) becomes

asymptotically stable, and an unstable limit cycle Γ1 is created.
Finally, perturb K to a slightly larger value. Then tr J > 0, and thus the equilibrium (1, 1)

becomes unstable, and a stable limit cycle Γ0 is created. 	

Weremark (without proving) that themass-action systems of this subsection are permanent

for all q > 0 and r > 0. In particular, the ones with at least three limit cycles are permanent.

4.2 Reversible Center

Let us consider now the mass-action system (6) with

(a1, b1) = (0, 0), (a2, b2) = (p, q), (a3, b3) = (q, p), (a4, b4) =
(
q − p, p + q2

p

)
,

(13)

where pq < 0 and p + q �= 0. We will prove that the unique positive equilibrium of this
mass-action system is a center, provided the rate constants κ1, κ2, κ3 are set appropriately.
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By taking λ = − 1
p2−q2

in (11), we have κ1 = p−q
p , κ2 = − q

p−q , κ3 = 1, which are

indeed all positive under the assumptions on p and q . Setting K = − p
q , the associated scaled

differential equation (10) then takes the form

ẋ = (p − q) + qx p yq − pxq y p,

ẏ = (q − p) + px p yq − qxq y p.
(14)

Proposition 4 The equilibrium (1, 1) is a center of the differential equation (14), provided
pq < 0 and p + q �= 0 hold.

Proof Note that the Jacobian matrix at (1, 1) equals to (p2 − q2)

(
0 −1
1 0

)
. Thus, the eigen-

values are purely imaginary. Since the differential equation (14) is of the form

ẋ = f (x, y),

ẏ = − f (y, x),

the system is reversible w.r.t. the line x = y and (1, 1) is indeed a center. 	

We depicted the typical phase portraits in Fig. 2. The one for p + q > 0 suggests that the

closed orbits are surrounded by a homoclinic orbit at the origin. In Proposition 5 we show
that this is indeed the case.

Proposition 5 Consider the differential equation (14) with p > 0, q < 0, and p + q > 0.
Then the region consisting of closed orbits is bounded. Furthermore, all closed orbits lie
inside a homoclinic orbit, whose α– and ω–limit is the origin.

Proof At the rightmost point of a closed orbit of (14), ẋ = 0 and x > y > 0 hold. We show
that for L sufficiently large, ẋ < 0 holds on the vertical line segment {(x, y) | x = L, 0 <

y < L}. Indeed,

ẋ = p − q + qL p yq − pLq y p < p − q + qL p+q < 0 for L >

(
1 − p

q

) 1
p+q

,

where we used p > 0, q < 0, and p + q > 0. By symmetry/reversibility, all closed orbits
are contained in the square [0, L]2.

We next show that there is an invariant curve asymptotic to the toric ray x p yq = p−q
p at

the origin on which the flow goes away from the origin. Let z = x−p y−q and rewrite (or

“blow up”) the system (14) in terms of (x, z). Using y = x− p
q z−

1
q , we obtain

ẋ = p − q + qz−1 − px
q2−p2

q z−
p
q ,

ż = −pz
ẋ

x
− qz

ẏ

y
= −qx

p
q z

1
q [(q − p)z + p + · · · ],

where · · · stands for four more terms of higher order near x = 0, i.e., with x having a positive

exponent. After we multiply this transformed system (ẋ, ż) by x− p
q z−

1
q , we obtain a system

that is smooth on the non-negative quadrant R2≥0, with the z-axis being invariant. On the
z-axis we have

ż = −q[p + (q − p)z]
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0

pX+ qY

qX+ pY

(q − p)X+
(
p+ q2

p

)
Y

p > 0, q < 0
p+ q > 0

0

pX+ qY

qX+ pY

(q − p)X+
(
p+ q2

p

)
Y

p > 0, q < 0
p+ q < 0

Fig. 2 The mass-action systems (7) with the substitution (13) (left column), and the phase portraits of the
corresponding scaled differential equation (14) (right column). The top row is for p+q > 0, while the bottom
row is for p + q < 0. Notice that the union of closed orbits is bounded for p + q > 0, and unbounded for
p + q < 0

with an equilibrium at (̂x, ẑ) =
(
0, p

p−q

)
. Since − p

q > 1, q2−p2

q > 0, and

ẋ = x− p
q z−

1
q

(
p − q + qz−1 − px

q2−p2

q z−
p
q

)
,

the eigenvalue at (̂x, ẑ), transverse to the z-axis is zero. Near the equilibrium (̂x, ẑ),

ẋ ≈ x− p
q ẑ−

1
q [p − q + qẑ−1] = x− p

q ẑ−
1
q
p2 − q2

p
> 0.

Therefore, the flow on the center manifold goes in the positive x–direction. Transforming this
center manifold back produces the promised invariant curve along the toric ray x p yq = p−q

p .
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Since ẏ > 0 near the x–axis and ẋ < 0 on the vertical line segment (L, y) for large L ,
this invariant curve has to cross the line y = x . By symmetry/reversibility, the mirror image
connects back to the origin, following the toric ray xq y p = p−q

p when approaching the origin
as τ → +∞. Therefore, this curve is a homoclinic orbit. 	


5 Three Reactions

In this section we study the mass-action system

a1X + b1Y
κ1−→ (a1 + c1)X + (b1 + d1)Y

a2X + b2Y
κ2−→ (a2 + c2)X + (b2 + d2)Y

a3X + b3Y
κ3−→ (a3 + c3)X + (b3 + d3)Y

(15)

and its associated differential equation

ẋ = c1κ1x
a1 yb1 + c2κ2x

a2 yb2 + c3κ3x
a3 yb3 ,

ẏ = d1κ1x
a1 yb1 + d2κ2x

a2 yb2 + d3κ3x
a3 yb3

(16)

under the non-degeneracy assumptions that

(a1, b1), (a2, b2), (a3, b3) do not lie on a line,

none of (c1, d1), (c2, d2), (c3, d3) equals to (0, 0), and

(c1, d1), (c2, d2), (c3, d3) span R
2.

(17)

The deficiency of these networks is typically one.However, they are not covered byTheorem3
(or by its more general version [10, Theorem 4.2]).

Our first goal is to understand the number of positive equilibria. We find that (x, y) ∈ R
2+

is an equilibrium if and only if

(c1d2 − c2d1)κ1x
a1 yb1 = (c2d3 − c3d2)κ3x

a3 yb3 ,

(c3d1 − c1d3)κ1x
a1 yb1 = (c2d3 − c3d2)κ2x

a2 yb2 .
(18)

Notice that, by the non-degeneracy assumptions (17), the three numbers c2d3 − c3d2, c3d1 −
c1d3, c1d2 − c2d1 cannot all be zero. Thus, taking also into account that (a1, b1), (a2, b2),
(a3, b3) do not lie on a line, the existence of a positive equilibrium is equivalent to

sgn(c2d3 − c3d2) = sgn(c3d1 − c1d3) = sgn(c1d2 − c2d1) �= 0. (19)

Furthermore, once there exists a positive equilibrium, it is unique. Note also that whether
there exists a positive equilibrium is independent of the choice of the rate constants κ1, κ2,
κ3.

Now that we understand when the mass-action system (15) has a positive equilibrium, our
next goal is to find parameter values for which the equilibrium is surrounded by four limit
cycles (Sect. 5.1) or by a continuum of closed orbits (Sects. 5.2, 5.3). We remark that the
center problem is solved in the special case when one of the reactions is vertical and another
one is horizontal [4]. Further, the existence of two limit cycles is also discussed there.

We prepare for the rest of this section by moving the equilibrium to (1, 1). Linear scaling
of the differential equation (16) by the equilibrium (x, y), followed by a multiplication by x
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yields

ẋ = c1κ1x
a1 yb1 + c2κ2x

a2 yb2 + c3κ3x
a3 yb3 ,

ẏ = K (d1κ1x
a1 yb1 + d2κ2x

a2 yb2 + d3κ3x
a3 yb3),

(20)

where

κ1 = κ1x
a1 yb1 , κ2 = κ2x

a2 yb2 , κ3 = κ3x
a3 yb3 , and K = x

y
. (21)

As a result of the scaling, the positive equilibrium is moved to (1, 1). Further, it follows by
(18) that

κ1 = λ(c2d3 − c3d2),

κ2 = λ(c3d1 − c1d3),

κ3 = λ(c1d2 − c2d1)

(22)

for some λ �= 0, which is positive (respectively, negative) if the common sign in (19) is
positive (respectively, negative).

Denote by J the Jacobian matrix of (20) at the equilibrium (1, 1). A short calculation
shows that

det J = 1

λ
Kκ1κ2κ3[a1(b2 − b3) + a2(b3 − b1) + a3(b1 − b2)]. (23)

Note that the latter is nonzero, because (a1, b1), (a2, b2), (a3, b3) do not lie on a line.

5.1 Four Limit Cycles

In this subsection we discuss why we strongly conjecture that there exist parameter values
for which the differential equation (16) has at least 4 limit cycles.

Let us consider now the mass-action system (15) with

(a1, b1) = (0, 0),

(c1, d1) = (0,−1),

(a2, b2) = (0,−1),

(c2, d2) = (1,−1),

(a3, b3) = (a, b),

(c3, d3) = (−1, d)

for a > 0, b > −1, d > 0 with 1 + bd > 0, i.e., take the mass-action system

•

•

•

•

•

0

−Y

X − 2Y

aX + bY

(a − 1)X + (b + d)Y

κ1

κ2

κ3
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Then κ1 = λ(d − 1), κ2 = λ, κ3 = λ in (22), and hence, the existence of a positive
equilibrium is equivalent to d > 1. Take λ = 1. With these, the scaled differential equation
takes the form

ẋ = 1

y
− xa yb,

ẏ = K

(
−(d − 1) − 1

y
+ dxa yb

)
,

and, by (23), det J = K (d − 1)a, which is positive, because d > 1, a > 0.
Set K = a

1+bd to make tr J equal to zero. The first focal value, L1, is then

L1 = πa(2a2d + a(1 + bd) − (1 + bd)2)

8a
√

(d − 1)(1 + bd)3
,

which vanishes for b = −2+a(1+√
1+8d)

2d . After the elimination of b by this, one finds that the
second focal value, L2, vanishes along a curve in the (a, d)–plane. That curve contains the

points
(
1, 165

49

)
and

(
1+√

3961
60 , 3

)
, and it turns out the third focal value, L3, is negative at the

former point and positive at the latter one. Thus, there exist a, b, d such that L1 = L2 = L3 =
0 (namely, we numerically find that this happens at a = â ≈ 1.01282, b = b̂ ≈ 0.65463,
d = d̂ ≈ 3.28862). Since, again numerically, we see that L4 is negative for â, b̂, d̂ , we
conjecture that there exist parameter values for which the unique positive equilibrium of the
differential equation (16) is asymptotically stable, and is surrounded by four limit cycles Γ0,
Γ1, Γ2, Γ3, which are unstable, stable, unstable, stable, respectively. Since the formulas for
L2, L3, and L4 get complicated, we cannot handle them analytically. This is why we leave
the existence of four limit cycles a conjecture.

5.2 Reversible Center

Let us consider now the mass-action system (15) with

(a1, b1) = (0, 0), (a2, b2) = (p, q), (a3, b3) = (q, p), (24)

assuming |p| �= |q|. Its associated scaled differential equation is then

ẋ = c1κ1 + c2κ2x
p yq + c3κ3x

q y p,

ẏ = K (d1κ1 + d2κ2x
p yq + d3κ3x

q y p).
(25)

Proposition 6 Consider the differential equation (25)with (22). Assume that 1
λ
K (p2−q2) >

0 and

c1 = −Kd1,

c2κ2 = −Kd3κ3,

c3κ3 = −Kd2κ2

(26)

hold. Then the equilibrium (1, 1) is a center.

Proof The determinant and the trace of the Jacobian matrix at (1, 1) are

1

λ
Kκ1κ2κ3(p

2 − q2) and p(c2κ2 + Kd3κ3) + q(c3κ3 + Kd2κ2),
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respectively. By the assumptions, the former is positive, the latter is zero, and therefore, the
eigenvalues are purely imaginary. Since, by (26), the differential equation (25) is of the form

ẋ = f (x, y),

ẏ = − f (y, x),

the system is reversible w.r.t. the line x = y and (1, 1) is indeed a center. 	

Corollary 2 Consider the differential equation (25) with (22). Assume that

(i) p2 > q2,
(ii) sgn c1 = − sgn d1 = sgn d2 = − sgn c3 �= 0,
(iii) sgn c2 = − sgn d3,
(iv) K = − c1

d1

hold. In case sgn c2 = − sgn d3 �= 0, require additionally that

∣∣∣∣
d3
c3

∣∣∣∣ <

∣∣∣∣
d1
c1

∣∣∣∣ <

∣∣∣∣
d2
c2

∣∣∣∣ and

∣∣∣∣
d1
c1

∣∣∣∣ =
√∣∣∣∣

d2
c2

∣∣∣∣

∣∣∣∣
d3
c3

∣∣∣∣.

Then the equilibrium (1, 1) is a center.

Proof In case sgn c2 = − sgn d3 = 0, each of c2d3 − c3d2, c3d1 − c1d3, c1d2 − c2d1 is
positive (by (ii)), and hence λ > 0. Further, K > 0 (by (ii) and (iv)). Taking also into account
(i), it follows that 1

λ
K (p2 − q2) > 0. Verification of (26) is straightforward.

In case sgn c2 = − sgn d3 �= 0, either

sgn c1 = − sgn d1 = − sgn c2 = sgn d2 = − sgn c3 = sgn d3 and

d2
c2

<
d1
c1

<
d3
c3

< 0

or

sgn c1 = − sgn d1 = sgn c2 = sgn d2 = − sgn c3 = − sgn d3 and

d1
c1

< 0 <
d3
c3

<
d2
c2

.

In each of these cases, one again obtains λ > 0 and hence 1
λ
K (p2 − q2) > 0. By using the

fact that
∣∣∣ d1c1

∣∣∣ is the geometric mean of
∣∣∣ d2c2

∣∣∣ and
∣∣∣ d3c3

∣∣∣, one readily checks (26).

In any of the above cases, Proposition 6 concludes the proof. 	

We depicted in Fig. 3 some reaction networks that all fall under Corollary 2.
Now fix p, q , c1, c2, c3, d1, d2, d3 such that all the assumptions of Corollary 2 are fulfilled,

and consider the mass-action system (16) with (24). How to choose κ1, κ2, κ3 in order that
the unique positive equilibrium is a center? First note that there exists an (x, y) ∈ R

2+ for
which (21) with (24) holds if and only if

κ1 = κ1 and
κ3

κ2
= κ3

κ2
K p−q .

By (26), κ1 is arbitrary and κ3
κ2
K p−q = − c2

d3

(
− c1

d1

)p−q−1
. Thus, the answer to the above

question is that one has to choose κ1, κ2, κ3 such that

κ1 is arbitrary and
κ3

κ2
= − c2

d3

(
− c1
d1

)p−q−1

.
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Fig. 3 Some reaction networks that all fall under Corollary 2, along with the differential equation (25). Among
the graphs, in the top row we have p > 0 and −p < q < p, while in the bottom row we have p < 0 and
p < q < −p

Finally, we remark that the condition
∣∣∣ d1c1

∣∣∣ =
√∣∣∣ d2c2

∣∣∣
∣∣∣ d3c3

∣∣∣ in Corollary 2 sheds light on why

we had to set (a4, b4) =
(
q − p, p + q2

p

)
in Sect. 4.2. With this choice, the absolute values

of the slopes of the three reactions are
∣∣∣ qp

∣∣∣, 1, q2

p2
, the first one being the geometric mean of

the latter two.

5.3 Liénard Center

Let us consider now the mass-action system (15) with

(a1, b1) = (1, 0), (a2, b2) =
(
0,−1

2

)
, (a3, b3) = (0,−2).
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Its associated scaled differential equation is then

ẋ = c1κ1x + c2κ2y
− 1

2 + c3κ3y
−2,

ẏ = K (d1κ1x + d2κ2y
− 1

2 + d3κ3y
−2).

(27)

Proposition 7 Consider the differential equation (27) with (22). Assume that K
λ

> 0 and

c1κ1 = Kd2κ2 = 4Kd3κ3 �= 0 (28)

hold. Then the equilibrium (1, 1) is a center.

Proof The determinant and the trace of the Jacobian matrix at (1, 1) are

3

2λ
Kκ1κ2κ3 and

c1κ1 − 1

2
Kd2κ2 − 2Kd3κ3,

respectively. By the assumptions, the former is positive, the latter is zero, and therefore, the
eigenvalues are purely imaginary.

Shifting the equilibrium to the origin yields

ẋ = c1κ1(x + 1) + c2κ2(y + 1)−
1
2 + c3κ3(y + 1)−2,

ẏ = K [d1κ1(x + 1) + d2κ2(y + 1)−
1
2 + d3κ3(y + 1)−2].

(29)

Differentiation of the second equation w.r.t. time and then application of each of the two
equations once yields that (29) is equivalent to the Liénard equation

ÿ + f (y)ẏ + g(y) = 0, (30)

where

f (y) = −c1κ1 + 1

2
Kd2κ2(y + 1)−

3
2 + 2Kd3κ3(y + 1)−3,

g(y) = 1

λ
Kκ1κ2κ3

[
(y + 1)−

1
2 − (y + 1)−2

]
.

By [5, Theorem 4.1], the origin is a center for (30) if and only if F = Φ ◦G for some analytic
function Φ with Φ(0) = 0, where F(x) = ∫ x

0 f (y)dy and G(x) = ∫ x
0 g(y)dy. Now

F(x) = −c1κ1x − Kd2κ2

[
(x + 1)−

1
2 − 1

]
− Kd3κ3

[
(x + 1)−2 − 1

]
,

G(x) = 1

λ
Kκ1κ2κ3

[
2(x + 1)

1
2 + (x + 1)−1 − 3

]
.

A short calculation shows that under the hypothesis (28), F = Φ ◦ G holds with Φ(z) =
αz2 + βz, where

α = −λ2

4

c1κ1

(Kκ1κ2κ3)2

and β = −3λ

2

c1κ1

Kκ1κ2κ3
.

This concludes the proof. 	
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Fig. 4 Some reaction networks that all fall under Corollary 3, along with the differential equation (27), and
the corresponding phase portraits

Corollary 3 Consider the differential equation (27) with (22). Assume that K > 0, sgn c1 =
− sgn d1 = sgn d2 = sgn d3 �= 0, and

c3
d3

<
c1
d1

<
c2
d2

and
c1
d1

= −4

5
K = 4

5

c2
d2

+ 1

5

c3
d3

hold. Then the equilibrium (1, 1) is a center.

Proof By the assumptions, each of c2d3 − c3d2, c3d1 − c1d3, c1d2 − c2d1 is positive, and
hence λ > 0. Thus, K

λ
is also positive. Further, under the assumptions of this corollary, it is

straightforward to verify the condition (28). Proposition 7 then concludes the proof. 	

We depicted in Fig. 4 some reaction networks that all fall under Corollary 3.

6 Zigzag

We conclude with an example of a reaction network, where the existence of a positive
equilibrium does depend on the choice of the rate constants, a phenomenon that appeared for
neither of the networks in Sects. 3–5.
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The mass-action system under investigation in this section, along with its associated
differential equation takes the form

•

•

•

•

3Y

X + 2Y

Y

X

1
2

1
1

κ

and
ẋ = y3 − 3xy2 + (1 + κ)y,

ẏ = −y3 + xy2 + (1 − κ)y.

There is a unique positive equilibrium at
(

1√
2−κ

,
√
2 − κ

)
for κ < 2 and no positive equilib-

rium for κ ≥ 2. The determinant of the Jacobian matrix at the equilibrium is positive, while
its trace is 5κ − 9, which becomes positive for κ > 9

5 . The Andronov–Hopf bifurcation at
κ = 9

5 is subcritical, since L1 = 5π
13 > 0.

The x–axis is invariant, consists of equilibria, and attracts nearby points fromR
2+ if κ > 1.

For κ > 9
5 it seems that all orbits except the positive equilibrium converge to the x–axis.
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