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Abstract

The dynamics of a general reaction—diffusion—advection two species model with nonlocal
delay effect and Dirichlet boundary condition is investigated in this paper. The existence and
stability of the positive spatially nonhomogeneous steady state solution are studied. Then by
regarding the time delay t as the bifurcation parameter, we show that Hopf bifurcation occurs
near the steady state solution at the critical values t,(n = 0, 1, 2, ...). Moreover, the Hopf
bifurcation is forward and the bifurcated periodic solutions are stable on the center manifold.
The general results are applied to a Lotka—Volterra competition—diffusion—advection model
with nonlocal delay.

Keywords Reaction—diffusion—advection two species model - Nonlocal delay - Stability -
Hopf bifurcation
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1 Introduction

In the past few decades, the dynamical models in the form of reaction-diffusion equations
have been frequently used to solve problems related to spatial ecology and evolution, see
[5,22,23,25,27]. In the real world, due to reproductive maturity or other time lags in biological
processes, historical information may have a significant impact on the dynamics of population
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systems, so many delayed reaction-diffusion equations are used to describe the evolution of
population distribution [1,4,6,15,30].

The dispersal by random diffusion is one of the most basic dispersal strategies. In reality,
the movements of species may be a combination of both random and biased ones. Since
species are intelligent, many organisms can sense their environment and pay attention to
moving in a direction that is favorable to them. Based on this observation, Belgacem and
Cosner [2] assumed that the population can exhibit a taxis in the direction of increasing
environmental favorability, and studied the reaction—diffusion—advection logistic model

u, =V -[dVu —auVml +mx)u —cu®, x € 2,t >0, (1)
u(x,t) =0, Xx€dR, t>0, '

where u(x, t) denotes the species density at location x and time z. In model (1.1), the term
—dVu accounts for random diffusion, auVm(x) represents the migration of species along
the gradient direction of resource function m(x). The results of Belgacem and Cosner [2]
and the subsequent literature [9] show that for single species, migration along the gradient
direction of the food distribution of the species will generally contribute to the survival of
the species.

We would like to know what spatiotemporal patterns can be indeced by the joint effect of
time delays, spatial diffusion, advection, heterogeneous environment and population interac-
tion. In a reaction—diffusion—advection model with time delay effect, the effects of dispersal
and time delays are not independent of each other, and an individual that was previously at
location x may now not be at the same point in space [3,6,12]. Therefore, it is more reasonable
to consider the model with nonlocal time delay. Recently, Jin and Yuan [19] investigated the
following general delayed reaction—diffusion—advection equation

uy =V - [dVu —auVm] +u(x,t)f (x, u(x, t),/ k(x, yu(y,t — ‘L')dy) , xe€2,t>0,
Q
u(x,t) =0, x €082,t>0,
(1.2)

where f(x, 0, 0) = m(x) and the term f_Q k(x, y)u(y, t—rt)dy is called the nonlocal delayed
term, which represents the spatial weighted time delays according to distance from the original
position. In [19], Jin and Yuan showed the existence of spatially nonhomogeneous steady-
state solutions of (1.2) and investigated whether time delay t can induce Hopf bifurcation
near the steady-state solution. They also showed the influence of the advection rate @ on Hopf
bifurcation.

The dynamics of the two-species model has been extensively studied, including the global
stability of (non-)constant steady states [7,10,17,20,24,26] or Hopf bifurcations induced by
time delays at the (non-)constant steady states [13,18,29,31,33]. For instance, in [14,15], the
authors considered the diffusive two-species model with nonlocal delay effect and investi-
gated the stability of spatially nonhomogeneous positive steady state and the corresponding
Hopf bifurcation problem. Recently, Li and Dai [21] have studied the following Lotka—
Volterra competition—diffusion—advection model with time delay effect:

uy =V -[dVu —auVm]+u[mx) —ayulx,t —t) —apvx,t —1)], x € 2,t>0,

vy =V . [dVv—avVm]+v[mx) —ayqu(x,t — 1) —apv(x,t —1)], x€82,t>0,

u(x,t) =v(x,t) =0, x €082,t>0.
(1.3)
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They obtained the existence of spatially nonhomogeneous positive steady state and showed
that this positive steady state loses its stability for a large delay v and a Hopf bifurcation
occurs such that system (1.3) exhibits oscillatory pattern.

Motivated by [6,14,19], we can assume that in a two-species model, the per-capita growth
rates of two species do not depend on its density at the current positions and time but on all
positions in region £2 and previous time 7. Hence, the localized density-dependent per capita
growthrates m(x) —aju(x, t—t)—apv(x,t—t) andm(x) —axu(x, t —tv) —anv(x,t—1)
in (1.3) are not realistic. Instead, it is more reasonable to consider the following general
reaction—diffusion—advection two species model with nonlocal delay effect as follows:

v, =V -[dVv—avVm]+ v(x, t)fz(x, (kpy xu)(x,t — 1), (kpp xv)(x,t — r)), xe N, t>0,
u(x,t) =v(x,t) =0, xe€d82,t>0.

(1.4)

‘u, =V . [dVu —auVm]+u(x,t)fi (x, (k1p *u)(x,t — 1), (kjp *xv)(x,t — r)), xe R, t>0,

Here u(x, t) and v(x, t) denote the species densities at time # and location x, respectively;
the two species have the same diffusion rate d > 0 and the same advection rate a > 0; £2
is a bounded domain in R"(1 < n < 3) with smooth boundary 9£2; 7 is the time delay
representing the maturation time; k;; (i, j = 1, 2) are continuous kernel functions on §2 x £2
which describe the dispersal behavior of the populations and

(/m*u)(x,z)=Lki1<x,y)u<y,r>dy, (kn*v)(x,r)=/Qk,-1<x,y)v<y,z>dy, =12

the nonlinear smooth functions f;(x, sy, s2)( = 1,2) : 2 x R x R — R are called the
general per capita growth rates and satisfy the condition

(Hy) f1(x,0,0) = fo(x,0,0) = m(x), where m(x) € C*(£2) and maxg m(x) > 0.

The Dirichlet boundary conditions imply that the exterior environment is hostile and the two
species cannot move across the boundary of environment. We consider model (1.4) with the
following initial condition:

u(x,s) = @1(x,s), v(x,0) =g2(x,s), x € 82,5 e€[-1,0],

where the initial data ¢1, ¢ € € 2 C([—7,0],Y) withY = Lz(.Q).

For the convenience of analysis, we first make a variable transformation. Letting & =
ea/dmx)y 5 — o(ma/dmx)y ¢t — F/q, denoting A = 1/d, a0 = a/d,t = T/d, and
dropping the tilde sign, model (1.4) can be transformed as follows:

U, = e~ MOV [ OV ]+ au(x, 1) fi (x, (K #w)(x, t — 1), (Kip ¥ 0)(x, 1 — 1)), x€2,t>0,
v = e MOV [ VY] 4 wv(x, 1) fox, (Kop xu)(x, 1 — 1), (Ko % 0)(x, 1 — 7)), x €£2,1>0,
u(x,t) =v(x,1) =0, x €082,t>0,

(1.5)

where
(Kij * @)(x, 1) = /Q Kij(x, y)g(y, ndy,

with K;j (x, y) = kij(x, y)e®™ ) fori, j = 1,2.
For the simplification of calculation, denote

dfi

as1

dfi

rx) = = (x,0,0), r§(x)=a—sz(x,o,0),
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and
Kij = / / Ot () Kij(x, )¢ ()¢ (y)dydx # 0
2Je
fori, j = 1, 2. Suppose further the following two assumptions hold:

(H) (k21 — k11)(K11k22 — K12K21) > 0 and (k12 — k22) (K11K22 — K12k21) > 0;
(H3) «11622 > 0 and k12621 > 0.

It follows from [2,5,23] that, under the assumption (Hj), the following eigenvalue problem

(1.6)

—e~ MOV [Ny = am(X)u, x € £2,
ulx) =0, x € 052,

has a positive principal eigenvalue A, and the corresponding eigenfunction ¢ € C'+%(2)
can be chosen strictly positive in §2, where § € (0, 1). In this paper our main results are in
the spirit of [21] for the local growth rate case: under the assumptions (Hy) — (H3), there
exists a A* with 0 < A" — A, < 1, such that for any A € (A, A*], system (1.5) admits
a spatially nonhomogeneous positive steady state (u,, v;) and there exists a sequence of
values {1, (k)}?f:o such that (u,, v,) is locally asymptotically stable when t € [0, 79(4)),
unstable when 7 € (7p()), 00), and for system (1.5), a forward Hopf bifurcation occurs at
7,(}) from the positive steady state (u, vy). Moreover, Hopf bifurcation is more likely to
occur when adding a term describing advection along the environmental gradients for the
diffusive Lotka—Volterra competition model with nonlocal delay. Here, the assumption (Hj)
is used to guarantee the existence of positive steady-state solutions. (H3) is imposed to make
sure the simplicity of pure imaginary eigenvalue and is actually satisfied by many population
biological models.

The rest part of this paper is organized as follows. In Sect. 2, we establish the existence
of the positive steady state of model (1.5). Sections 3 and 4 are devoted to the stability and
Hopf bifurcation of the positive steady state through analyzing the corresponding eigenvalue
problem. Then the normal form of Hopf bifurcation is derived in Sect. 5 to determine the
bifurcation direction and stability of the bifurcating periodic solutions. In Sect. 6, the general
results are applied to a competition—diffusion—advection model with nonlocal delay effect.

Notice that the elliptic operator in (1.6) is not self-adjoint because of advection term,
which causes some technical difficulties. In view of these difficulties we introduce some
weighted spaces. The weighted space plays a vital role in the Hopf bifurcation analysis of
system (1.5). Throughout the paper, we use the following notations. Denote by L2 (£2) the
weighted L? space with a weighted norm

12
”u”ern(Q) = (L eotm(x)|u(x)|2dx> .

Let H,’;(.Q)(k > 0) be the weighted Sobolev space of the L%U-function u(x) defined on 2,
and the norm of space Hl’f) (£2)(k = 0) is defined by

el i oy = /e“’"<X>|afu|2dx
w( ) Z Q

i<k

1/2

Define the space X = Hy (£2) N Hy , (£2) and Y = L2 (£2), where

Hj ,(82) = {u € Hy(2)lu(x) =0,Vx € 382} .
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For a space Z, we also define the complexification of Z to be Z¢ := Z ®iZ = {x| +
ix2|xy, xp € Z}. Let C = C([—7, 0], Y) be the Banach space of continuous mapping from
[—7,0]into Y, and (-, -),, be the sz inner product on complex-valued Hilbert space Y¢ or
Yé, defined as

(1, V) :/ MmO v(x)dx. 1.7
2

2 Existence of Positive Steady State

This section is devoted to the the existence of the positive steady state of model (1.5), which
satisfies the following boundary value equation:

e mOY . [@mOVy] 4+ dux) fi(x, (K11 *u)(x), (K2 % 0)(x)) =0, x € £,

e~ MmOV . [e2mOVy] + av(x) fo(x, (Ka1 xu)(x), (K22 ¥ v)(x)) =0, x € £2,

ulx) =v(x) =0, x € 052.
2.1)

To solve problem (2.1), define F : X2 x Rt — Y2 as

—amvyy [ ,am
F(UJ):[e v [e wrxufl(x,Ku*u,Kn*v)]

eTYMY L eV y +Avf2(x, K21*u,K22>kv)

forall U = (u, v)T. At first, for any fixed A € RY, F(U, 1) always has a trivial steady state
(0, 0). Denote

™M@y L [@M) ] 4 A m(x) 0
L= ( 0 e~ am)yy . [eam(x)v] +am@))’ 2.2)

which is the Frechét derivative of F with respect to U at (0, A,.). It is easy to check that £
is a self-adjoint operator in the sense of weighted inner product, and .4 (£) = span{q1, g2},
where g1 = (¢,0) and g2 = (0, ¢)”. Then operator £ : X> — Y? is Fredholm with
index zero. Clearly, the Crandall-Rabinowitz bifurcation theorem cannot be applied here to
show the existence of positive solution of (2.1) since dim.4/"(£) = 2. Now, we deal with
this situation by implicit function theorem. For later discussion, we decompose the spaces
X2, Y2

X=X, Y=, er
where
X1={yeX: (¢, y)w=0}, i={yeY: (¢, y)w=0}.
Then we have the following result on the existence of positive steady states for system (1.5).

Theorem 1 Suppose that (Hy) — (H3) hold. Then there exist A* > A, and a continuously
differential mapping » v+ (&, 01, Pa, €2) from [y, A¥] to X3 x R x RT such that, for
A € (A, A*), system (1.5) has a positive steady state (u; (x), vy (x)), where

. = Pr(h — 2o + (A — 281l

2.3)
v, =cn(A = A+ (A —A)ml
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Moreover, for A = Ay,

(k12 — k22) [ m(x)e*™ ™) % (x)dx
B, =
As(K11K22 — K12K21)
(k21— k1) fq m(x)e*™ 2 (x)dx

Cy, =
) As(K11K22 — K12K21)

3

2.4)

’

and (&, m.,)" € X% is the unique solution of the following equation

c(6)+ (nen Kb () [ K16 DBy + 1, rd () [ Ko, L
n m(x) + AP 17 () [ Ka1(x, )@ (0)dy + Aies, 13 (x) [ Kaa(x, y)$(y)dy
=0. (2.5)

Proof One can easily have

A / m(x)e® ¥ ¢2 (x)dx = / "0 |V (x))2dx > 0,
Q Q
and then g, and c;, are well defined and positive. From (2.4), we see that
(@, (mx) + Mo, r{ () [o K11 (x, )0y + Auca,ry (x) [ Kia(x, N (dy)¢), =0,
(@, (mx) + 1B, 17 () [ K1 (x, )0y + Aiea, 73 (x) [ Kna(x, y)$(y)dy)g), =0,
and hence &, and 7,, are also well defined. Now, setting u = B(A — L)[¢ + (A — A4)E]
andv =c(X — A)[p + (A — A )n] into F(U, A) = 0, we obtain that (8, ¢, &, n) satisfies
5) +m) (¢ + &= M)"E) T ([¢ + Q= 21081h1E,n, B.c, K))

-7-—(5’777/3767)‘):£<

n ¢+ O — 1)y [¢ + (h — 2nlha(§, n, B, c, 1) ’
where
filx, K,'l*u,Kiz*v)—m(x)7 A A,
hl(gv 1, ,B,C, )") = . » )\,—}\,* - (26)
Bri(x)ki1(x) + cry (x)kia(x), A=Ay
with
kij (x) = /Q Kij(x, y)¢p(y)dy for i, j=1,2. .7

That is, the existence problem of positive solution of (2.1) is reduced to solving
F&,n,B,c,A) = 0. Seeing that £ is a bounded domain in R*(1 < n < 3)
with smooth boundary, we can deduce that X% is compactly imbedded into C%(£2) x
C3(2) for some 8§ € (0,1). Then F(&, 1, B, ¢, A) is a function from X% x R? to Y2
From the definition of &, m;,, Ba,, cx,, it holds that F(&x,, na,, Ba,. ca,, A+) = 0. Let
D y.g.0)F oy Mass Boys Crs» )X, K, o, 6] be the Fréchet derivative of F with respect to
(&, n, B, c) evaluated at (&, mx,. Bxr,. Cx,» Ax). Then a calculation gives that

D y.g.0)F G Mass Brss Cris )X &, 0, 6]

1 7 1 g
A (x pri (ki (x) + §r2(x)/§12(x)>
=t <"> 0 (Prlz(x)kzl () + sy (kn(x))

For applying the implitic function theorem, we will verify that D¢ ;, g o) F (&5, M. Brs» Chss
Ay) 1s a bijection from X% x R2 to Y2. Since k&2 — K12Kk21 # 0 due to assumption (Hp),
one can deduce that

&.n,8,¢) =1(0,0,0,0) if D y.g.0)F Enys My Brys Cigr A X5 K6, 0, 61 = 0.
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That is, D . 8,¢6)F (€x,» Mss Prss Cauis As) 1s injective. Next, we show that it is a surjection.
For any (&, 0)T € Y2, we have the following decomposition

(”) - (”1> + (“2) where (”‘) e N (L), (“2> eyl
v (2] v V1] v2

By choosing

k22 (@, u1)y, — K12 (P, v1)y K11 @, u1)y, — k21 (@, V1)y
= and ¢y =
As(K11K22 — K12K21) Ax(K11K22 — K12K21)

there holds that
Lok 1Ok,
g (porl (X)k11(x) + gory (x) 12(x)> + (Z;) € Z(L).

porlz(x)Em (x) + §0r22(x)zzz(x)
Notice that (12, v2)7 € le =%(L)and L : X12 — le is a bijection, then there is (o, ko) €
X12 such that
Dy p.orFEns Mans Brws €aas M) X0, K05 P05 S0l = (@, D).

Consequently, D . g.c)F (En,s Miss Bass Cas 2) i bijective from X7 x R? to Y2, Then
from implicit function theorem, there exist A* > A, and a continuously differential mapping
A (&, nas B, €) from [he, A¥] to X7 x RT x R such that

FEnomus Brs e k) =0, & € [Ag, A7].

Therefore, (u;, v;) is a positive solution of Eq. (2.1). The proof is completed. ]

3 Eigenvalue Problems

In this section, we will study the eigenvalue problem associated with the positive steady state
U = (u;, v))T defined in Theorem 1. Unless otherwise specified, we always assume that
A € [Ay, A¥] with 0 < A* — A, < 1, and (Hy) — (H3) hold. Linearizing system (1.5) at U;,
we obtain

Z—Z[ = e MOV . [*mOVu] + A fi (x, K11 * up, K12 % vy )u(x, 1)
+rup [r Ky xulx, t — 1) + ) (0K *v(x, t —1)], x€R2,1>0,
2—: A v [e"""(x)Vv] + Afz(x, Koy % uy, Koy * v)‘)v(x, t) 3.1
A [rF ) Kok u(x, t — 1) + 1 (DK *v(x, t —1)], x € 2,t>0,
ulx,t) =v(x,1) =0 x €0d82,t >0,
where
r{)‘(x) = %(x, K1 xuy, Kip * v)\), r?(x) = %(x, K1 xuy, Kiz * v;h)

are the Fréchet derivative of f;(i = 1, 2) about the second term and the third term respectively.
Define two linear operators Ay : X% — Y% and B, : Yé — Y% by

efam(x)v . [eam(x)v]
+Af1(x, K11 s up, Kio % vy)

0

0

e*(xm(x)v . [eotm(x)v]
+rf2(x, Kot s up, Kog sk v;)

Ay =
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and
Bt : A (r (O Ky % Yy 4 1 (0K % ¥2)
W= 21 21
Ao (ri* () Kop * ¥y + ry" (x) Koo )

fory = (Y1, Y2)T € Y%C. Then A is an infinitesimal generator of a compact Cp semigroup
[28]. From [32], the solution semigroup of Eq. (3.1) has an infinitesimal generator A;
defined by

Acsy =¥ (3.2)
with the domain
P(Ary) = {¥ € CcNC:y(0) € X5, ¥ (0) = A, 9(0) + Buyr(—1)}

where C(g: = Cl([-7,0], Xé). Now the stability of (u,, v;) is determined by the point
spectrum of Ay ;, which is

op(Arp) = {1 € C: AG, pw, )¢ = 0 for some ¥ € X2\ {(0,0)}},
with
AQu 1, DY = AgYr + Bare ™ — . (3.3)

As in [14], we also need to consider the adjoint operator A’;, , of A¢; in the sense of
weighted inner product, which is defined as

AL, ¥ = — 34

with the domain
P(A%) =¥ = 9" € C10, 71 X2) 1 (0) € XE, —Y () = Ay O) + By (D)},
where B : Y? — Y? is given by

Jo r? GO K11 (e, )Y 0w ()dx + [ 7P () K1 (x, ) (x) v (x)dx
Jo r O K 12(x, Y91 (0us (x)dx + [ 73 (1) K (x, )2 (x) vy, (x)dx

for v = (Y1, ¥2)T € Y2 with Eij (x,) =kjj(x, e for i, j = 1, 2. The spectral set of
A* s
T,

B;H/;:A(

G(AL;) = {u €C: AGh, . 7)Y = 0 for some ¢ € X2 \ {(0,0)}} ,

with

AQ, Y = Ay + Biyre T — i, (3.5)
One can easily check that

(7. AG wow) =(AGuaov ) . (3.6)

In the sense of weighted inner product, A(k, [, T) is the adjoint operator of A(A, u, T)
and they has the same point spectrum, i.e.

o (AGh, 11, 7)) = 0 (A(A, 2, 7)),

which means u € 0 (A ;) if and only if /i € o (A7 ).
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Theorem 2 Under assumptions (Hy) — (H3), for A € [Ay, A*] and v > 0, 0 is not an
eigenvalue of Ar ;.

Proof Suppose to the contrary that O is an eigenvalue of A; j, then there exists ¥ € X% \
{(0, 0)} such that

AL, 0,7)¢ =0. (3.7)
By the decomposition X% = 4(L;,) ® X 2 4 takes the following form
VU (x) = a()e(x) + (A — r)b(R, x) (3.8)
where @(1) € R? and b(1, -) € X?. Then substituting (3.8) to (3.7) gives
AL, 0, )a(M)g + (A — 1) AR, 0, T)b(A, -) = 0. (3.9)

Since (1), vy) — (0,0) as A — A, then r?‘(x) — rj (x) uniformly in £2 as A — A,. A
straightforward calculation yields
. AR, 0,7)a(M)e - = ~.
xhnxl U mxX)¢a(rs) + repla(hs) + rxpola(ry),
> Ax — Ax

where

o <ﬂx*r11zn +c;‘*r21512 .0 N ) _ (ﬁx* 0 ) B V}EII rQIZIZ
- 0 Biriko + e r3kan)’ ¢=1o o)’ T r%ZZ] r%?zz ’
in which E, is defined as in (2.7). By expanding a(}) and b(A, x) near 1., we obtain

o o0
am) =y a0 = r)'s b0, x) =Y b)) — i)', (3.10)
i=0 i=0
Note that A(A, 0, ) = L, where L is defined as (2.2). Then from (3.9) and (3.10) we see
that

Lbo(-) = —m(x)pdn — epKao — rdpoKao.

Calculating the weighted inner product of above equation with ¢, we have Q’E&() = 0. Due
to the positivity of By, ¢, and the assumption (Hz), we can deduce that ayp = 0. Since
Ly, X2 X % — le is invertible, then bo(x) = O for all x. Likewise, considering the term of
A — )L*)i(i > 1), we still have that @; = 0 and b; (x) = O for all x. Consequently, ¥ = 0 is
the unique solution of A(A, 0, t)y = 0, a contradiction with ¢ € Xé \ {(0, 0)}. The proof
is completed. o

In the following, we show the situation when A ; has a pair of purely imaginary eigen-
values 4 = Fiw(w > 0) for some 7 > 0. From previous argument, i = iw € 0, (A ) for
some t > 0 if and only if

A+ Bpre ' — iy =0 (3.11)

is solvable for some value of w > 0,6 € [0, 27) and ¢ € Xé \ {(0, 0)}, where 6 := wt. We
first show the following lemma for further discussion.

Lemma 1 Recall that A, is the principal eigenvalue of problem (1.6), the following results
hold:
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() ifze Xcand (¢, z)w =0, then |(Lz, 2)w| > k2||z||%{c, where the operator L : X — Y
is defined by

L =e 9OV . [e2"O V] 4 A,m(x)

and Ay is the second eigenvalue of operator —L;
(i) if (w, 0, V) is a solution of Eq. (3.11) with w > 0,0 € [0,27) and ¥ € X% \ {(0,0)},

is bounded for ) € (Ay, A¥].

w
then
}\. —

*

Proof Part (i) can be proved as in [8, Lemma 2.3]. We only discuss part (ii). By calculating
the weighted inner product of Eq. (3.11) with ¥, one can obtain

<w, A + Byyre™i? — iww> —0. (3.12)
w
Choose some 6y € [0, 27r) such that

100—0)

(v Bwe™) = (v Biv)

w w

Note that A, is self-adjoint in the sense of weighted inner product, then (W, A, w>w is real.
Separating the real and imaginary parts of (3.12) gives that

oly, ¥), = |(¥. Buy), | sin@ — 0).

Therefore,
. Bl + O — M)EI ) K11 Y1 + r}* () K1z # ¥2)
Asin(6y — 0) ( V¥, 2 7
‘ o | cilg + (= 2)mlC " () Kar * Yy + 13" (K2 x92) ) [
h—he| V. ¥y

< 20M Mpe™ 2@ K| K o), [Kai ], |K2n €21,
where

My = max{B; [lglloo + (r — L) Exlloo] s €5 B lloe + A — 2 lloo]s
My = max{[|r{*()llso, 72" )lloos 177 ) llos 1737 () Nl )-

Since (uy, vy) is bounded for A € (A4, A*], then there is a constant M > 0 such that
: 1)
||r}A loo < M(i,j = 1,2). Now, the boundedness of P for A € (A4, A*] can be

*
obtained from the continuity of A > (B, ¢, 1€xlloos 1112 ]l0o)- The proof is finished. o

By the decomposition X2 = N(L3,) D X2, for i € (As, A™], ignoring a scalar factor, we
can rewrite ¥ = (Y1, ¥»)7 in (3.11) as the form

Y1 =¢+ A —AJz1, (@,21)w =0,
Y2 = (p1+ip)¢ + (A —Adza, (¢, 22)w =0, p1 > 0. (3.13)
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Setting i := w/(A — Ay), and substituting (2.3), (3.13) and w = (A — A,)h into Eq. (3.11),
then Eq. (3.11) can be transformed as the following equivalent system:

g1(z1. 22, p1. p2, h,0,2) := Lz; + [m(x) —ih + A1, ma, Bos ca, )»)} o+ = ro)z]
oK« [9+ 0= hz]
K # [(p1 +ip2)d + O — A*)ZZ]]
ABiLg + (L — )Eile™ =0,
G122 p1, 20 0,0) = Laa + [mo) = ih 2o, B, 1))
[ +ip2)e + (0 — 10)22]
P Ka «[9 4+ 0= Az
+rP @K # [(p1 4+ ip2)g + (= 2]
aeno+ O —rom]e ™ =0, (3.14)

where h; (&5, ., B., ci, A) 1s defined in (2.6), and the operator L is defined as in Lemma 1.
Define G : X7 x R* x R — YZ by

G(z1,22, p1, p2, h, 0, 1) := (g1, &2)-
Now, we show that G(z1, 22, p1, p2, h, 0, 1) = 0 is uniquely solvable when A = A,.

Lemma 2 Under assumptions (Hy) — (H3), the equation

G(z1,22, p1, P2, h,0,04) =0,
21,22 € X1c, h >0, p1 >0, 6 €[0,2n)

has a unique solution (21, , 225, Pli.> P2rs» i, O1,) satisfying that pr, = 0,0,, =

T
. .. . . 2’
D1, IS the positive root of the following equation
2
K12(k12 — k22) p~ + (k11612 — K22K21) p — K21 (k21 — K11) = 0,
and

(k22 — k12) (K11 +K12P1/\*)/ m(x)e*™ ) p?dx
2

hy, =

*

(k11622 — KIZKZI)/ " g2 dx
2

(k11 — K21) (k21 + Kzzpu*)/ m(x)e™™ ™ ¢ dx
2

’

P, (K11k22 — K12K21)/ e p2dx
e

and (21, , z2,\*)T € XIZ(C is the unique solution of

¢ <z1,\*> — —m()$ ( 1 > b ,3)\*1’11();)zH~(X) +r21(3§)Eli(X)
220 P, P (B r? (0ka1 (x) + r3 (0)ka2(x))

. B (rl CO11 () + prord k(™)) ( 1 )
Fihy - - +ih ,
’ ‘p(cx*(r%(x)kﬂ(xw 2 @in) ) T
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where L is defined as (2.2)

Proof When A = A,, we have

9121 22 pr p2 b, 0 0) = Lzy o [m(o) = i+ (B! 01 )+ (0F12(0) - ¢
+{r @R + (o1 + ipDr R0} - 2B ge™ =0,

82021, 22, p1. p2. b, 0, 0) = Lza o+ [m(o) = i + (B 0R () + 20k (@) | - (91 + ip2)o
+ @R ) + (1 + i3 () | s pe ™ = 0.

Then

G(z1,22, p1, P2, h,0, ) =0,
21,22 € Xic, h >0, p1 >0, 6 €[0,27)

is solvable if and only if
(6. {00 = i + 5 (Brr] R @) + P} R @)} -0
+{r k10 + (1 + ipr @ER@ | - 2eprge ™) =0,
(o, {me) = i+ (Bt @R () + B0k @) | - (1 + 28
@R ) + (1 + P @20} - Aecipe™) =0,

w

That is,

ih / MW@ dx = (cosf — i sinO)ryBy, (k11 + k12(p1 +ip2)).

§2 (3.15)

ih(p1 + ipz)/ " prdx = (cosf — i sin@)hscy, (ka1 + ka2 (p1 +ip2)).
2

From (3.15), we see that p; + ip; is a root of

2
Kk12(K12 — K22) P~ 4 (K11K12 — K22K21) p — K21 (K21 — K11) = 0.

Due to assumptions (Hy), (H3) and p; > 0, there holds that po = p2;, = 0 and p; = py,,
is the unique positive root of above quadratic equation. Now, it can be derived from (3.15)
that 0 = 6, = 5 and

(k22 — K12) (K11 +K12P1A*)f m(x)e™" ™ ¢ dx
2

h=h, =
(k11622 — K12K21)/ e g2 dx
I?)
(k11 — K21) (k21 +K22P1/\*)/ m(x)e™" ™ ¢p*dx
_ 2
Pix, (K11K22 — K12K21)/ " g2 dx

I7)

The proof is finished. O

In what follows, we will provide the solvability result of the equation G = 0 for A near
A« by applying the implicit function theorem.
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Theorem 3 Assume that the assumptions (Hy) — (H3) hold, then the following statements
are true:

(i) there exist > )L~* and a continuously differentiable mapping A +— (215, 225, P1rs P2x»
hi. 62) from [Xy, X1 10 X3 x R* such that G (211, 220, p1a, P2is has 05, 1) = 0;

(i) if (}, 25, r}, v}, W, 0%) with h* > 0,0* > 0 solves G(-, 1) = 0 for A € [As, A*], then
(@4, 2, rforg kY 0%) = (zin, 2200 Fins 12, T, 62).

Proof Denoteby T = (T, Tz) : X %(C xR* — Yé the Fréchet derivative of G with respect to
(z1, 22, P1, P2, h, 0) evaluated at (z1x,, 224, Plr,s P22ss Mo, Oh,s As). A direct calculation
gives

T, 2, 1, v2, € 9) = Ly — i€ — Db d[r] OF1 () + prrd 0F1() |
— (i — V)M, bry (DK12 (X),

T (x1, x2, v1, V2, €, 0) = Lo — i€p1), ¢ — l‘/’)»*CAM[rlz(x);ﬂ (x) + Pl)\*r%(x)zﬂ(x)]
+ (1 + i) [m(x) — ihy, + Ao (Br,ri (021 (x)
e, 13 (k2 (X)) = iscs, 13 (k2 ()]

Next, we show that T is a bijection from X 12(: x R* to Yé. We first prove T is injective. If
T(x1, X2, v1, v2, €, 9) = 0, then

—ie / e p2dx — 9 i, (k11 + Prak12) = (v — v2)heBi K12,
2
—iepi, / "D pdx — ¥ hscr, (K21 + Pra,k22)
2

= (ivi —v2)(hy, / e“m(x)¢2dx + AxCa,k22). (3.16)
Q
It can be seen from (3.15) that
- Pu*hx*/ I p2dx = piy, e, (K11 + Pragk12) = Aica, (k21 + Pia,k22).
Q
(3.17)
This result combined with (3.16) leads to that
(ivi — 1) [h,\* / " G2dx + Ay k2n — Plk*)\*lgk*Klz} =0.
Q

Then from assumption (Hz), (H3), (3.17) and the definitions of 8,,, c), and h,_, we obtain
that

hy, / "D GAx + hyCh k22 — PlahsBiK12
2

Kk12(k2o — K12) ply + k21 (k11 — K21)
- P / m(x)e® O 2dx £ 0,
Q

P, (K11k22 — K12K21)

which implies that iv; — vy = 0, i.e. vi = v, = 0. Substituting iv; — v, = 0 into (3.16), we
must have € = 0 and ¥ = 0. Consequently, x; = x2 = 0. So, T is injective from X12C x R*
to Yé By a similar manner to the proof of D¢y g.¢)F (&x,s My Biys Ciy» As) in Theorem 1,

@ Springer



2466 Journal of Dynamics and Differential Equations (2023) 35:2453-2486

we can also prove T is surjective. Now, we have prove T is bijective. Therefore, part (i) can
be obtained from the implicit function theorem immediately.
To show part (ii), we will check thatif G(z}, 25, pt, py. h*, 6%, 1) = Oforh* > 0,6* €
[0, 27), then
(Z}, 25, pty ph i, 0% — (zia,. 200, Plass P20y hiy s 62))

as A — Ay inthe norm of X 12(: x R*. First, it follows from Lemma 1 (i7) that {#*} is bounded.
As in Theorem 2.4 of [4], due to the boundedness of {#*}, {6}, {B,.}, {ci}, {€1}, {m}, there
are My, M,, M3 > 0 such that

Ml g, < (Lt 2|
< Millgllvellzt lve + [Ma(p}] + 1P5D
+M3(h — )12} Ive + 125 1ve)] I2) e

M5 %, < (L35, 25| G19
< Mil¢llvcllZ5llve + [Ma(pt]+ 1P5D)
+M3(0 — 1) (124 e + 15 1ve) ] 125 llve
where A is defined in Lemma 1 (7). By setting 0 < ¥ — A < 1, we see that
Izt lve + 123 lve < Maldllve + Ms(ptl+ 1p51) (3.19)

for some constants My, Ms > 0. On the other hand, note that (¢, Lz?)w = 0, then it follows
from the first equation of (3.14) that

<¢7 [¢+ (= r)z1] - {m(x) —ih+ A G, ms B cas )»)} +0Bld + (= h)E e

AP K [0+ 6= a] + @K £ [(pr + ip0g + 6.~ 2] }> =0.

w

By separating the real and imaginary parts of the above identity, we have

IPY] < Molldllye + M7 — 2zt lve + 125 1ve),

(3.20)
P51 < Molldllye + Mr(h — 2 (24 lve + 125 1ve)

for some constants Mg, M7 > 0. Since 0 < - Ay < 1, then from (3.19) and
(3.20) we get the boundedness of {z1}, {z3}, {p}}, {p}}. Recall that the operator L has a
bounded inverse from Xc to Yic. By acting L™" on g; (2}, 23, pt, pb, h*, 0%, 1) = 0
and g (2}, 25, p}, ph. h*, 6%, 1) = 0, we obtain that {z}}, {z}} are also bounded in X;¢
and hence {(z’}, z’2\, p]A, pé‘, h*, 0)‘) A€ (A, 5\*]] is precompact in Yé x R* due to the
embedding theorem. Let {(zi‘”, z;‘”, pln, p%‘", h)‘n, 9“)] be any convergent subsequence
satisfying

(21"722",171",192 Y 9”) (z1 L5 Py Py 9“) in Y& x R*,
A" — Ay asn — oo.

By taking the limit of equations

L 'g (zln,zzn r{vl,rz R0 A") =0
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and
L7 'g (zi\ eyt e A”) =0
as n — 00, there holds that
(z'l\"» lz\llvpln,Pél’,hM,Qm) — (zl L 25", Pyt Pyt 9“) in X7 x R,
AT — Ayasn — 00,

and G(z1 , Zz , pl*, pz*, h**, 0% 1) = 0. Now we can oatain from the unique solvability
of G(+, A«) = 0in Lemma 2 that

(@), 25, Yty Py h 0% = (2, 220,s Plas P2 oy 03)-

This completes part (ii). O

Now, Theorem 3 implies the following theorem immediately.

Theorem 4 Under assumptions (Hy) — (H3), for A € (A, ):*], the eigenvalue problem
A i, )Y =0, @ >0, =0, ¥ € Xz \ {(0,0)}
has a solution (w, T, ), or equivalently, iw € o (A< ) if and only if

0, + 2nm
wo=wy=MN—A)h), t=1,=——,1n=0,1,2,...,
),
¢+ (A — Az
(p1r +ip2)¢ + (A — Ay)zoa

(3.21)
Y =ey = (

where e is a nonzero constant and (z1,., 225, P1x» P2x, B, 05) is defined as in Theorem 3.

From Theorem 4, we know thatiw;, € o (A, ;) with the associated eigenvector Yy el O,
which implies that —iw; € o (A7 ;) and the corresponding adjoint equation

A, —iwy, T)¥ =0,
or equivalently,
AW+ Biye'% i =0 (3.22)

is solvable for ¥ € X% \ {(0, 0)}. Similarly, ignoring a scalar factor, ¥ = (¢, V)7 can
also be taken as the form

U1 =¢+ =171, (d, 71w =0,
Vo = (p1 +ip)d+ (A — A7, (P, 720w =0, p1 > 0. (3.23)
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Substituting (2.3), (3.23) and w;, = (A — A,)h, into Eq. (3.22), we have the following
equivalent system to Eq. (3.22):

§1G1 T, pr, a2 o= La o+ [mo + iy + 2 G B o D) - [0+ 6= 2071
+ 2B’ /9 r K1 (e, )[9(0) + (= 27 ()]
[¢(x) + (L = A& (x)]dx
T cael® fﬂ 0 Ro1 (6, ) [(Br + 5B 0) + (= 2B ()]
x [¢(0) + (= ) (0)]dx = 0,
82G1 2, pi, 20 1= Lo+ [m(o) + ihs + Aha(@ s B 1))
1 +ip+ (h—r0)7Z2]
+ ABe® /9 r (K@, o) + (= 2071 (x0)]
[6(x) + (A — A2)8(x)]dx
+ hcse'® /Q 3 () Ko (e, )1 +ip2)p (x) + (A — 252 ()]
x [p(x) + (A — A)ma(x)]dx = 0. (3.24)
Deﬁneé:Xé x R2 xR—)Yéas
G (1,72, pr. p2. M) == (31, 82, 83 84 &5- Z6)-
By a similar argument as in Theorem 3 and 4 , we can prove the following conclusions.
Theorem 5 Assume that (Hy) — (H3) hold. Then the following statements are true:

(i) there exists a continuously differentiable mapping A +— (Z1y, Zox, Pix» P2a) from [y, Pl
10 X3¢ x R? such that G (Z1x, Zan. 1. Por. 1) = O with pay, = 0, puy, is the positive
root of the following equation

2
k21(k21 — K1) p° + (K11K12 — k22k21) p — K12(K12 — K22) = 0,

and (Z1,, sz*)T IS X%(C is the unique solution of
7 Lok () + 7l (0K (x)
r gl,\*):_ +ih (~1 )—A* Br.ri 1 ] 2
(sz* O+ I 51, ) T i (B r20R () 4 2R ()
i (B Lo r @R G 08P @Idx + s, [ rf () Kan(x, 997 (1) dx
B [ A0 K 1n(x, V9> (0)dx + pra,ci, [o 30 Kn(x, )¢ (x)dx )

where L is defined as (2.2). Moreover, if there is (Zq‘, Z%, ﬁ{‘, ﬁ%) such that G(Zi‘, Z;‘, ﬁi\,
Py, 0 =0, then (z}.35. Bt P5) = Guns Zons Pins Pon)-
(ii) for A € (Mg, A™], the eigenvalue problem

A, —iw, ) =0, @ >0, T >0, ¥ € X2\ {(0,0)}
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has a solution (w, t, V), or equivalently, —iw € O’(At’)\) if and only if

%) 2nmw
W=y == Ay, T=1 = 2T 012,
Wy,

R &+ — 2 )
=e =e ~ .~ ~ 5
v =ew <(Pu +ipn)d+ (A — Az
where e is a nonzero constant and (Z1., Z2x., P1x., P25.) s defined in part (i), (h;y, 6,) is
defined in Theorem 3.

(3.25)

Remark 1 Theorem 5 shows that —iw; € U(A“;n ;) with the associated eigenvector
Jre—ion0),

4 Stability and Hopf Bifurcation

Notice that system (1.5) always has the steady state (0, 0). Then we first consider the stability
of (0, 0). Linearizing system (1.5) at (0, 0), we obtain the linear eigenvalue problem

Lu+ (A —A)m(x)u =ou, x €S2,
Lv+ (A —Xomx)v=0v, x €S2, “4.1)
ulx) =v(x) =0, x € 052.

It follows from [5] that 0 < 0 if and only if A < A,. Therefore, the stability result of the
trivial steady state (0, 0) is as follows.

Lemma 3 Assume that (Hy) holds. Then the trivial solution (0, 0) of system (1.2) is locally
asymptotically stable when ). < A, and unstable when A > A,.

In the following, we pay attention to the stability and associated Hopf bifurcation of
the positive steady state Uy = (uy, v;)T of Eq. (1.5) by regarding the parameter t as the
bifurcation parameter. Firstly, we show the stability of U, for t = 0.

Theorem 6 Assume that assumptions (Hy) — (Hz3) hold, then for each A € (A, X*], all the
eigenvalues of Ar ;. have negative real parts when v = 0. That is, the positive steady state
(uy, vy) of Eq. (1.5) is locally asymptotically stable when T = 0.

Proof Suppose to the contrary that there exists a sequence {A"};° | such that A" > A, for
n>1, lim A" = A,, and for every n, the eigenvalue equation
n—oo

{A}an‘i‘BAnlﬂ:’ulﬂ, X € 82, (42)

v(x) =0, x €082
admits an eigenvalue u,» with nonnegative real part, whose corresponding eigenfunction v »
satisfies [|[Yan |y = 1. We can take yrun as Yrun = s3n Upn + Vin for each n > 1, where UJ!
is the positive steady state of Eq. (1.5) with A = A", s;» € Cand Vin = (Viyn, V)T e X%
satisfy that

(U, Yran)
Spn = # (Upn, Van )y = 0.
(Upn, Upn )

Notice that
<U)Ln, Ajyn V)Ln) = <A)Ln Ujn, V)Jx)w and A)Ln Un = 0,

w
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then by substituting Y;,» = s»Uypn + Vyn and = py» into the first equation of Eq. (4.2),
and computing the weighted inner product with ;», there holds that

(V}\n s A)\n an )w —|— (Ip‘)‘ln , B)»n Ip‘)“n )w = Upn.

Furthermore,

(Yo, Bunan), | <

v (rP (O Kap * Yriom + 13 (x) Koo % Yoan)

< 2AN(A" — A My Mpe™e (emx) max (| Ky, |Kial, [Kai |, K22} £2]

n w (r* (K11 # Y + i (0O K12 % Youn)
A Y,

— 0, asn — o0,
4.3)

where

My = max{Bn [[Blloc + A" = 2)lIEn lloo] s can [lplloo + A" = Xi) M oo ]}

Mo = max{[|r{*" ()lloos 172™ () llocs 1782 () lloos 173 ()] oo}
Define the operator A;) : X¢ — Yc(i =1, 2) by
Aipp = e "IV . [eam(x)v‘/’] + A fi(x, Kin xu, Kio % v2)9

for ¢ € Xc. Since 0 is the principal eigenvalue of Aqy» (resp. Az;») with the corresponding
eigenfunction u)» (resp. vy»), we get that

(Vian, Appn Vian),, < 0 and (Vasn, Agpn Vo), < 0.
This result leads to
0 < Re(uan), Im(psn)| < |(an, Bunpon), |
and hence
Jim Re(un) = Jll)ngo Im(ppn) = 0.

From the fact that |<V,-)\n, Ajyn Vipn )w| > |)Lg) M) - || Vi ”%fc (the proof of this inequality is

similar to that of Lemma 1 (i)), where )Lg) (A™) is the second eigenvalue of A;;», we obtain

|—=(Wan, Bantan), |+ lian | = 17" |- 1V 15 (4.4)
in which y" = mm{xgmnmgw)]. In view of (4.4), using the limit lim
n—0o0

|<1/fln, Bynifryn >w| = lim |u;»| = 0, we see that lim || Vj» ”Y[C =0.
. n—0oo n—oo
Since Y = s Upn 4+ Vin and ||Ypn ||y = 1, we see that

Upn
A —

2 Vo
A — Ay

lim |52 )>(A" — A)? lim <‘
n—oo n—oo

2
:1’
Yc

Yc
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1
JBE + N1 lve

of eigenvalue problem (1.6) with the principal eigenvalue A,. We now calculate that
(W, Banipan),
A — Ay
y < (0 Unn Vi) (m[n“” K11 (syupn + Vi) + 7} () K i # (s + Vw>]>>

whichmeans lim,,_ o [s32 |(A"—A4) = > 0, where ¢ is the eigenfunction

vl () Kot * (sanugn + Vi) + 12" (1) Koo * (sin 030 + Vazn)]
A — Ay
= 2 (I PO = 20201+ 530 0 = ) T2 + TEG! = A3+ )

where

, // “’”(” K, y)uM(X)uM(y)+rW(X)Klz(x,y)uil(X)vm(y)]
1

= e
emt ” P () K1 (e, Y)vZ (Dupn () + 12 (0) Koo (x, y)v2, (x) vz (y)]
// CISSWE dydz,

ﬂ'"(*) ) K11 (e, ) () Vi (0 (0) + r3*" (0 K12.(x, y)uzn (0) Vizn (x) v (y)]
S = // dydx

0T = h)?

amm P2 (X) K1 0, )0 () Vg ()it () + 12 () Kz (x, 3)van (1) Vg (X) vz (y)]
/ / - dydx,
()\] _)\*)2
e [ () Kt G, 9y (0 Vi () + 78 (60 K126, 302, () Vi ) |
J3 = / / W dydx
e [ () Kot (. )03 () Vian () + 1" () K (e, 9092 () Vi ()
/ / dydx,
( - )\*)2
e [ () Kt G, Yt (00 Vi () Vi () + 18 (0K 126, 3t (6) Vi () Vo ()]
Jy = / IV dydx

/ / W’W “”(x)szx,y)vm<x)vm<x>vm<y>+r§”’(x)1<zz(x,y)vm(x)vzm<x>vm<y)]d ;
ydx.

A — Ay

It follows from Holder inequality that

(u, v)y —/ ¢ u(0)e ™ v(x)dx
2

1/2 1/2
< ( / am(x) 2<x>dx) ( f om (x) 2<x>dx) = JlullvelIvllve.
2 2

Then by using the limit lim || Vj»|ly, = O, there holds that
n—00

lim J, = lim J3 = lim J4 =0.
n—00 n—00 n—00

We also have that

: 3 2 2 3
lim J; = K]]ﬂk* + I(]Qﬂ)\*C}L* +K2],BA*CA* +K22C)\*

n— 00
B+

= * */ m(x)e®" ™2 (x)dx < 0.
A 2
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The above argument implies that there exists N, € N such that
Re ((Yan, Binan), ) < O for eachn > N..
Consequently,
Re(upn) = (Van, Apn Vin), + Re (Y, Binan), ) < O,

which is a contradiction with that Re(uy») > 0 for n > 1. That is to say, A, has no
eigenvalue with nonnegative real parts when v = 0. The proof is finished. O

Lemma 4 Assume that (Hy) — (H3) hold. Then for each A € (A, 5\*], W = iw, is a simple
eigenvalue of A, » forn =0,1,2,....

Proof From Theorem 4, we see that A [A,  —iwy] = Span[ei“’” Y], where s € [—1,, 0]
and 1, is defined as in Theorem 4. Suppose that & = iw, is not a simple eigenvalue, then
there exists ¢ € A[Ag, 3 — iy %, ie.,

[Ar, — i1 €N [Axr, 5 — iw;] = Span[e ;.
Hence, we can pick a constant a such that [A,, 5 — iw;\]qg = ae"“"ﬂsl/f;h. Then there holds that

¢'(5) = iwpp + ae Yy, s € [~1, 0],

., . . 4.5)
#'(0) = Axp(0) + Brp(—1).
In view of the first equation of Eq. (4.5), we obtain that
N §) = "(0 eia);ts + aseia)xs ,
¢ (s) = ¢(0) Vi “6)

¢'(0) = iw,$(0) + ayp;.
It follows from the second equation of (4.5) and (4.6) that

A0, T)$O) = [ Ax + Bre™ — i, | $(0)
=a (llf,\ + 70 BM/&) ,
where we have used the identity ¢(—1,) = ¢(0)e™'% — at,e " ;. From (3.6), we have
0= (A, —iwn, @)V $O) = (V. A i0n, T)HO)
= (V. s+ Tae O Bs) = ain A7)
Let . — A, then it follows that
lli%n/%* Soa = (1 + pia, pin,) /ﬂ "M pdx

” Br. (k11 + K12P12,) +hCA*PU* (a1 + k221, ) (% + 2n7)
A

5

= [1+iG + 2] A+ pupi [ emgar,
2

which implies that S,,, # 0 and hence a = 0. Therefore, ¢)Ae(/1/ [A¢, » —iw;]. By induction
it can be derived that

NAgy s — il = N[Ag s —iw), j=2.3,...,
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and it = iw; is a simple eigenvalue of A, , forn =0,1,2,.... O

Now it can be inferred from the implicit function theorem that there is a neighborhood
0, x D, x an Cc RxC x X% of (t,,iwy, ¥;) and a continuous differential function
(u, ¥) : Oy — Dy x an satisfying (7)) = iw; and ¥ (t,) = ¥ suchthat, foreacht € O,,
A, . in D, has the unique eigenvalue p(t) with its associated eigenvector W(r)e“(f)(') and
there holds that

AGe 1@, DY) = [ A+ Bre O = (@) | w(x) = 0. (4.8)
In the following, we verify the transversality condition for Hopf bifurcation.

Lemma5 Under the assumptions (Hy) — (H3), for A € (L, 5»*],

Re (% (rn)> > 0.

Proof Firstly, by differentiating Eq. (4.8) with respect to T at T = t,,, we have

d —i . d . —i6,
w0 (v e Bt ) = A i, 1) T () — e By,

Then calculating the weighted inner product of above equation with ¥, gives that

.
I () = _<%”W l ‘B“% __h+h
dr " Sui, 1S l?

where S, is defined as in (4.7),
I = (1/0\, 1/7/\>w (1/7/\ iwxe_iekB,\%>w ,
2
12 = ithn ‘

<1l~f>u B/\1//A>w

Direct computation yields
lim (WA, &x) = +I51A*p1x*)/ "M pdx,
A= Ay w 7

, 1 T b - 2 () 42
)\ILH)}* WY (WA, iwpe™ ‘&Jﬁx)w ==+ pi.pin)hy, /Q " Vpdx,

which implies that
. 1 d (1+ pua,pin)?h3 2
lim ———Re (—M (rn)> = — 2)"* (/ eam(x)(bzdx) > 0.
Ao (A — Ay) dt lim;.— 5, [Syal 2

The proof is finished. O

From Theorems 4, 6 and Lemmas 4, 5, we can now conclude the stability result of the
positive steady state U, and the associated Hopf bifurcation of Eq. (1.5) as follows.

Theorem 7 Assume that (Hy) — (H3) hold. For A € (hy, A*), the following statements are
ture:

(i) there exists an increasing sequence {t, }Zo:o such that all the eigenvalues of Ar ) have
negative real parts when t € (0, 1), A, has a pair of purely imaginary eigenvalues
Fiw) (w) > 0) when © = t,, and A+ ) has exactly 2(n + 1) eigenvalues with positive
real parts when t € (1, ty4+11,n =0,1,2,...;
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(i) the positive steady state U, of Eq. (1.5) is locally asymptotically stable when t € [0, 19),
and unstable when T € (10, 00);

(iii) Hopf bifurcation occurs as the delay t increasingly crosses through each t,(n =
0,1,2,...), and there exist g > 0 and a continuous family of periodic orbits of (1.5) in

form of
{(tll(8)7 un(-xs tv 8)’ vﬂ('x3 t5 8)3 Tn(g)) NEES (05 80)} ’

where (i, (x, 1, €), vu(x, t, &) is a T, (&)-periodic solution of (1.5) with T = 1,,(¢), and
7 (0) = 7, lim (up(x, 1, &), va(x, 1, 8))T = (ux, UA)T and lim T,(¢) = 27 /w;.
e—07T e—07F

5 The Properties of Hopf Bifurcation

In this section, we will compute the normal form of the Hopf bifurcation to determine the
direction and stability of bifurcating periodic solutions emerging from (U,, t,) by applying
the methods in Faria [11] and Hassard et al. [16]. At first, we let U(z) = U t), Up()T =
(1) —un, v, 1) — )T,y = © — 1, such that the steady state U, = (u;, vy)! and
parameter t is translated to the origin. Re-scale the time 7 = ¢/t and drop the tilde signs for
simplification of notations. Thus, y = 0 is the Hopf bifurcation value. For the simplicity of
writing, we define
okl fi

r,’{?(x) = asfsé (x,Ki1*xu), Kip*xvy), i=1,2, k,1=1,2,....

Then we can rewrite Eq. (1.5) as the following abstract functional differential equation

dU(t)
dt

where U; = U(t +5) € C = C([—1, 0], Y?), and
Lo(Up) = A, U@) + B Ut = 1),
JWUs,y) = yLo(Uy) + (v + t)AF(Uy),
and F(U;) = (F1(U,), F2(U;))T is defined by

=TI1L0(UI)+J(UI’ y)! (51)

FuUn = Ui [ 0K+ Ui = 1) + K # Us( = 1) |
+ %(Ul @) + MA)["%‘(X)(K“ * Ut — 1))?
+ 27t ) (K11 % Uy (t — D) (K12 % Us(t — 1))
+ 705 () (Kia x Ualt - 1))2] + iM’\[VSI(%()C)(KM * Up(t — 1)°

3!
+3m1 ) (K11 * Ui (t — D)2 (K12 % Ua(t — 1))

+3r3 ) (K11 * Ur(t — D) (K12 % Ua(t — 1))?
+ () (K12 % Un(t — 1))3] +hodt,

F(U) = Uz(t)[r%*(xﬂ(ﬂ s« Up(t — 1) + 13" (x) K % Ua(t — 1)]

1
+ E(Uz(t) + U)\)I:}"%(})\(x)(l(zl * U1 (t _ 1))2
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+2r121\(x)(1<21 *U1(t — 1))(Kn * Us(t — 1))
1
+ 135 (0K # Unle = 1) + U [ Ko+ U1 = 1)?

+3r31 () (Ka1 * Ur (1 — D)* (K2 % Ua(t — 1))
+ 32 () (Kay % Uy (t — 1) (Kap % Us(t — 1))?
+ 1gh () (Ko % Un(t — 1))3] +ho.t,

in which h.o.t stands for “high order terms”. Denote by A., the infinitesimal generator of
the linearized equation

dU (t)
T TuLo(Ur). (5.2)
Then from [32], we have
Afnlll = lj/’

with the domain
P(A;) =W eCcnCl:w(0) e XA, ¥(0) =1, (0) + 7, B ¥ (-1},

where C((lj =C! ([-1,0], Y%)' So, we can rewrite Eq. (5.1) in the abstract form:

dU;
- A, U + XoJ Uy, y), (5.3)
where
0, se[-1,0),
X, =
0(s) {1, s =0.

On the other hand, let

A = —,

Tn

AL = ectn () 90 e X2, —F(0) = 1,48 0) + 5, B (D],

where C% = C([0, 11, Y2), (€)' = C'([0, 1], Y2). Define a formal duality ((-, -)) by
0

(W@ w) = (00.00) - [

(mﬁ(s 1), B;LlI/(s)> ds. (5.4)
71 w

ford e (A7) and ¥ € Z(Ay,). Then A7 and A, satisfy
((Atn‘iﬂ W) = (&, Ay, )

for¥ € 9 (A7) and ¥ € Z(Ay,). The above equality means that A7 and A, are adjoint
operators under the bilinear form (5.4).

It can be seen from Theorem 4 that .4, has a pair of simple purely imaginary eigenvalues
+iw; 7,. Then the eigenfunction corresponding to i w; 7, (resp. —iw, T,) is p(s) = Yy e/ @ ™S
(resp. p(s) = J,\e”’“’””‘y) for s € [—1, 0], where v, is defined as in (3.21). At the same
time, it follows from Theorem 5 and Remark 1 that =i, 7, are also a pair of simple purely
imaginary eigenvalues of the operator A7 and the eigenfunction associated with —iw; 1,

(resp. iw1,) is q(5) = Iﬂkeiwlr"g (resp. ¢(5) = J)\e_iwﬂng) for 5 € [0, 1], where Iﬂ,\
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is defined in Theorem 5. Following from [32], the center subspace of Eq. (5.1) is P =
span{p(s), p(s)}, and the formal adjoint subspace of P with respect to the bilinear form

N &
(5.4) is P* = span{g(5), 7). Let @(s) = (p(s), p(s)), W) = (‘;(s) qs(i)) i
ni n

Ctis
easy to verify that ((¥, @)) = I, where [ € R2%2 jg a identity matrix. Actually, we can
decompose Cc as Cc = P & Q, where

Q={Wec@:<<¢,w>)=0fori/ep*}.

Following the idea of Hassard et al. [ 16], the formulas determining the bifurcation direction
and stability are all relative to y = 0. In the remainder of this section, we take y = 0 and
define

1

z(1) = Sfx((q, Ur)), W(z(t),z(t)) = Uy — 2Re{z(2) p}. (5.5)
n

Then we obtain a center manifold Cy:

Z2 2

W@ D)) = W) 5+ Wi ()37 + Woz(S)% oo,

where z and 7 are local coordinates for the center manifold Cy in the direction of ¢ and g.
From (5.5), for y = 0, we see that

1 d 5 1 » 1 .
20 = 5 (@@, UD) = {a6). Ay U) + £ (a®), Xod U, 0)

1

= i012(0) + £ (g (0), J@Re(z(0)p) + W ). Z(0), O (5:6)

=iw;T2(t) + g(z,2).

Then,
1
8(2.9) = 5—(q(0), JQRe[z()p) + W (). 2(1)). O))
ni
2 - ) 5.7)
= g205 -l—guzZ—i—goz? +g217 +....

We now calculate that

QAT e IO ATpe 2enTn
g0 = (V. Tiwa v) + (0. B )
SnA w SnA w
AT e O . ATpe T _
g ==t (V. T W)+ e (V. T )
ni w Sn)h w
Aty |~ _ _
2 (P B V) + B )
ni w
Zkfneiw)“r” N . )LneZiw,\‘r,l N .
g0z = (0. T@T0) + = (I B 7))
SnA w SnA w
20T, |~ ATy [~ _
g1 = T (U v Wi (=1) + S (0 T Wan(=1)
naA w Sna w
AT el _ QAT e i
e (I T W20 (0). 7)) + T (V. TV 0. 1)
ni w SnA_ w
ATpe 10T
+ 21— (I B, Wit (1) + (Wi (=1), )
S w
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)»‘L’nei”’”" _ o o
e (I BV (=1, 73) + T Wan(—1)
ni w

ATy |~ — — )\Ine—Ziw;\r,, ~ .
+ S (T T v W) + T W V) + = (V. (W Vi V)

ni w ni w
ATpe i _ _ _

T (I T . ) T T )+ T v ) (5:8)

where 7 is given by
€01(1)< () Ky * 90(1) + r () K2 * <P(2))
= o2 (170 Ko # 08 + 1370 K 5 07
T = (1", )T is given by
71 92) = w (K xof 0K x o)+ 2r ) (K o) (K iz % o)
+ 15 ) (K12 x o) (Kio % o))
T2 @1, 02) = v (13 (0 (Ka1 + ™) (Ko 5 0") + 23 (0 (Kt + 0™ (Kaz + 0)
+ 1300 (K22 0 ) (Kaz % 07 )
T = (1", 77T is given by
T @1 0299 = i (5 O K1+ oS K ™) + 200Ky x o) (K2 + 07
+ K+ o) (Kiz %0
T2 @1 02 99) = o (B 00 Kar # o) (Kot # 95™) + 20FH 000 (Kot .0 (Ko 5 67
+ 15 () (Koo % 087 (Koo % 07
and 7y = (72(1)’ 7;(2))T is given by
7,701, 92, 93)
= (g oK oK 08 ) K o) + 3r8 oK« ol (K g8 (K o)
+ 30K o) (Kiz 5 08 (K 0 + 1 0Kz 0) (K12 % o) (K1 65)),
7.2 (o1, 92, 93)
= UA(V%(X)(KM x o) (Ko % ) (Ko % 0$") 4 372 (0) (Ka1 % 0 0)(Kap % 0$) (Ko % 0P)
+ 30 (Kot # 9 (Kaz % 08 (K 5 97 + 1 00Kz ) (Kaz 5 0 ) (Karz % 07
for ¢; = (go(l), (pl2))T e Y2,i = 1,2, 3. From (5.8), we see that there are only Wao(s) and

Wi1(s) in go1 left to calculate.
It can be deduced from (5.3) and (5.5) that

(5.9)

i [AaW —sp() —2p0s). s €[-1,0),
Aq W = gp(0) — ZP(0) + J QRe{z(0) p} + W (2(0), Z(1)), 0), 5 =0.
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Meanwhile, W also satisfies that
W= W.z + Wg%
= [Wao(s)z + Wi1(9)Z1 2 + [Wi1 ()2 + Woa ($)Z1Z + - - -
= [Wao(s)z + Wi1(s)z] (i0n1z + g(2,2))
+ Wi ()z + Woa()z] (—=i0nz + 8@, 2) +-- -,

on the center manifold Cy near the origin. Combining the above equation with Eq. (5.9), we
have

—820p(s) — 82 P(s), s e€[—1,0),
(2i0n.1 — Ar, )Wa0(s) = 1 —g20p(0) — 802 P(0) + 2A7,e '™ T (Y3, ¥r0) (5.10)
FATae HAT T (Y, ), 5 =0,
and
—gnp(s) —gnpls), s €[~1,0),
— Ay, Wii(s) = { =g11p(0) — 31 P(0) + ATye ™ T (Y1, ) (5.1

T T (Y, V) + 1 (B V) + B, ¥) . s =0
To compute W»g, from (5.10), we have
W3o(s) = 2i6 Wao(s) + g20p(s) + 82 P(s), s € [—1,0).
Note that p(s) = ¥e/® ™5, then there holds that

Wao(s) = p(s) + EePorms, (5.12)
Especially, Egs. (5.10) and (5.12) 1mply that
Qiwptal — A )Ee* 5| = 201,e "I (Y, Y1) + ATae O T3 (Y, ),
s=0
or equivalently,
A 2iwy, T) E = =2 T (Y3, ) — he O (Y, vn). (5.13)

Notice that 2iw, is not the eigenvalue of A, , for A € (A, 3*]. Then
E = =24e” "™ AL, 2iwn, T) T Ti (W, ¥0) — he H AW, 2, ) T T (W, ¥).
Similarly, we can derive from (5.11) that, for s € [—1, 0),

igi1

Tn

Wii(s) =

ps) + “ﬁ(S)+F (5.14)
W) Ty
and when s = 0, F satisfies

. _ . _ AT _ _
—AF = Atpe” " MY, i) + ATe' P T (Yo, ¥5) + 7” (W, V) + Ty, ¥2)) -
Thus, we obtain

F = —3AG. 0, 75)"! [e"’w“"ﬁ(%, )

+S T (Y, Y5) + 5 (Tz(% V) + L, m))] (5.15)
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Lemma6 Let E and F lze definedin (5.13) and (5.15), respectively. Assume that (Hy) — (H3)
hold, then for ) € (Ay, A*],

(2N
A=Ay

(oA Un +¢3), F =

= 5.16
P (5.16)

where Uy, = (u;,, v;)7 is defined in (2.3), ¢, and §; satisfy
Uy, =0, I =0, 1l D =0,
(Un, 1) ALHL llosllve kgl;* @511y
and the constant p;, satisfies
2i(1 + Pﬁ*)(lczz —Kk12) (K11 + K12P12,)

lim (A — X)) = .
A A (,3,%* + Cf*) [2i (k22 — k12) (k11 + K12P12,) — (K11K22 — K12K21) ]

Proof We only show the estimate for E, and that for F can be proved in a similar manner.
Since A, U, = 0, by substituting E, defined as in (5.16), into Eq. (5.13), we obtain

A3 + Bi(paU + @p)e 2™ — 2iw, (05U + 1)
= =200 = M)e I T (Y, Yi) — MO = ha)e T (Y, ).
Calculating the weighted inner product of Eq. (5.17) with U, gives that

(5.17)

pu [0 (U, BuU3), — 20 U3, V), ]
= —e AT (U, Bygs)y, + 2iw; (U, ¢3)
— 20(A — A)e (UL T (Y, )
— Ak = A)e HOT (U T (Y, )y -
By calculating the weighted inner product of Eq. (5.17) with ¢;, we see

(5.18)

—2iw) T, <

(@r, Apga)y + Pre ©3., B .Us) y — 2 5. (@3, U )y

= —e 2T (g0 Brn)w + 2005 (01 03w
— 20k — ha)e O gy T (Y, Y

— 20— A)e O (g T (Y, U)oy -

(5.19)

Recall that

é _ Bru®\ .~ o
¥ — (pl,\*qﬁ)’ Up/(A — Ay) — (cx*¢> in C(£2) x C(£2), (5.20)

0./ O0 — As) — s, wm—>%+2nn(n=o,1,2,...), as A — Ay

Then we have
B
lim (Us, BoUj )y
=i (A — 23
. MU TiW, ) 2 / 2
1 =—(1 h am() p2d
Jim P (1 + pi5 ), Qe ¢~dx,
m MU, (Y, i)y _
A he A= Ay
;. (Uy, Up)y
m ——
r—he (A= Ay)3

= _(5§* + cﬁ*)/ m(x)e®® p2dx,
2

0,

= hk* (/3)%* =+ C%*)/ eOtm(X)(z)de'
2
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Hence frgm Eq. (5.18), there exist constants A* > Ay and M{, M> > 0 so that for any
A€ (Mg, A7),

[(A = X)pal < M1||§0A||Y2C+M2~ (5.21)
Similar to the proof of Lemma 2.3 of [4], we have
(@2 Argadul = P2 ()llleall3s»

where X, (1) is the second eigenvalue of —A(A). On the other hand, we can also obtain fr9m
(5.19), (5.20) and (5.21) that there exist constants M3, M4 > 0 such that forany A € (A, A),

P20l - lgalify < = A M3llgalids + (= 20 Mallgalyz.

Note that )\linkl A2(A) = Ay > 0, where X,, defined asin Lemma 1 (i), is the second eigenvalue
> Ax

of —L, then Alin; lloa ||Y% = 0. Now, we can derive from (5.18) that
—>Ax
2i(1+ plz,\*)(Kzz —k12) (k11 + K12p12,)

Iim (A — X)) = .
P (BF. + c3.) [2i (ka2 — k1) (k11 + K12p12,) — (k11622 — K12K21) |

The proof is finished. o

From (5.8), we see that each gy; is determined by the parameters of original system (1.5).
Notice that

lim Sy = (14 ppin) [1+i(F +20m) | [ MW G2y

2
T +2nm
lim (n— At = 2% lim (= A F = (0),
A=A h., A=A 0
2i(1 + p?, Vxx — k12) (k11 + & )
lim G — A)E = — ( P (k22 — k12) (K11 + K12p1a, (ﬂk*qj).
A (B7, +¢3.) [2i (ka2 = k) (k11 + k12p13,) — (k11622 = K12621) ] \ €2 @

Then we can compute that

2i(ca, + Br, Pia, Py, ) (T +4nm)

lim (A — Ay)g20 =

A d B.cr,(L+ pin,pio,)2+i(w +4nm))’
,\]_if&l*()‘ — )€1 =0, (5.22)

2i(cr, + B, Pro, Py, ) (T + 4nr)
Br.cr. (L4 i, pin)R+i(r +4nm))’
which combined with (5.12) and (5.14) yields

lim (. — A)go2 =
A—> Ay

8i( + 4nm) L burd, |
31+ pra, p12,)? 2+ i(w + 4nm)|? |:ﬂx* Cos :|
2(1 +i)(1 + pf,\*)(lﬂlkzz — K12K21)
(BE, +c3) [2i G2 — k12) (k11 + K12p12,) — (K11k22 — K12K21) ]
w +4nmw
“2¥iGr+dnm)

lim (A — A,)2g2 =
Ai)nf\l*( «)7g21

(5.23)
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Consequently, we have obtained the normal form (5.6) restricted on the center manifold Co
by computing the coefficients g20, g11, go2 and g21. Denote

i |g02|? 221
C1(0) = —2lgn > - = |+ 2=
1(0) 2%, [811g20 lg11l 3 ]—i— 5
Then, we have
__Re(Ci(0)
Re(u'(t0))’

B2 = 2Re(C1(0)),

~Im(C1(0)) + poIm (i (za)
T ’

T =

which determine the properties of bifurcating periodic solutions at critical value t,, that is,

(i) w2 determines the direction of the Hopf bifurcation: if > > 0(< 0), then the direction
of the Hopf bifurcation is forward (backward) and the bifurcating periodic solutions
exist for T > 1,(t < 1,);

(ii) B2 determines the stability of the bifurcating periodic solutions: if 8 < 0(> 0), then
the bifurcating periodic solutions are orbitally asymptotically stable (unstable) on the
center manifold;

(iii) T» determines the period of bifurcating periodic solutions: if 7> > 0(< 0), then the
period of the bifurcating periodic solutions increases (decreases).

Under assumptions (Hz) and (H3), there holds that

Jim Re((h — A)2g21) <0, Jim Re((1 — 1)2C1(0)) < 0.

Now, the following result is obtained.

Theorem 8 Assume that (Hy) — (H3) hold, and . € (A, A*] with 0 < A* — A, < L.
Let 1,,(X) given as in (3.21) be the Hopf bifurcation points for Eq. (1.5) where spatially
nonhomogeneous periodic orbits of Eq. (1.5) emerge from (ty, u,., v;). Then forn € NU{0},
the direction of the Hopf bifurcation at T = 1, is forward and the bifurcating periodic
solutions are orbitally asymptotically stable on the center manifold. Especially, there exist
&0 > Osuch that (1.5) has a locally asymptotically stable spatially nonhomogeneous periodic
solution for T € (19, 19 + €0).

6 A Lotka-Volterra Competition-Diffusion-Advection Model with
Nonlocal Delay

In this section we choose the following Lotka—Volterra competitive system as examples

U = [dux — aumx]x +u(x,t)
x[m(x) —an [T ke, yuly, t — )dy —ana [ ke, y)o(y, £ — r)dy], xe(0,7),1>0,
v = [dvx —avmx]x + v(x, 1)
x[m(x) —ayy Jo kG, Yuly, t = )dy —an [q k(x, vy, £ — r)dy], x€(0,m),t>0,
u(x,t) =v(x,t) =0, x=0,m,1t>0,
6.1)

@ Springer



2482 Journal of Dynamics and Differential Equations (2023) 35:2453-2486

where a1, ax, aja, a1 > 0 and k(x, y) is a continuous nonnegative function on £2 x £2.
Then (6.1) is a competitive system. Similar to Eq. (1.5), we can also obtain an equivalent
model of Eq. (6.1) as follows:
u, = e MmOy . [e“’”(x)Vu] + Au(x, t)
X[m(x) —ay foﬂ K(x, y)u(y,t —t)dy —aj foﬂ K&, y)v(y, t — t)dy], x € 0,m),t>0,
v = e MmNy . [e”'"(")Vv] + Av(x, 1)
x[m(x) —ay1 fy KQe, yu(y,t —0)dy —an [ K(x, y)v(y,t — r)dy], xe€(0,m),t>0,
u(x,t) =v(x,t) =0, x=0,m,t>0,
(6.2)
where A = 1/d, a = a/d and K (x, y) = k(x, y)e®" ), Here m(x) satisfies the assumption
(Hy).
Suppose that (u, v) is a positive steady state of (6.2) satisfying
eIV [e#MOVU] 4 du(0)|m(x) —an 5 K, udy —an [ K@, »epdy| =0, x € (0,7),
e MmOV . [ Vy] + AU(X)[m(X) —ay [y K(x, Yu(y)dy —an [§ K(x, y)v(y)dyJ =0, xe(0,mn),
u(x) = v(x) =0, x=0,7.
(6.3)
Multiplying the first equation of (6.3) by ¢ ()¢ and integrating the result over §2, we have

. /ﬂ m(x)eam(x)¢udx — _ /ﬂ uVv - [eam(x)v¢]dx - _ /.ﬂ A [eam(x)vu]dx
0 0 0
=1 /ﬂ pe " [m(x) —an /n K (e, yu(y)
0 0
—mz/o K(x,y)v(y)] dx

b
< )»/ m(x)e?™ ™ pudx.
0

Therefore, the problem (6.2) has no positive steady state if A < A.
Let

T T
fl(X,Kn*u,Klz*U)=m(x)—6111/ K(x,y)udy—an/ K(x, y)vdy,
0 0

T o
f2(x, Ko1 % u, Ky *v) = m(x) —azlf K(x,y)udy—azz/ K(x, y)vdy.
0 0

ail

Suppose that o > 1> % Then one can easily check that (H;) and (Hzs) are satisfied.

According to Lemma 3, Theorems 1, 7 and 8 , we obtain the following conclusions for (6.2)
which is competitive:

(1) When 0 < A < Ay, the trivial steady state (0, 0) is the unique nonnegative steady state

of (6.2), which is locally asymptotically stable;

(ii) When A € (A4, A*] with 0 < A* — A, < 1, system (6.2) admits a spatially nonhomo-
geneous positive steady state (i, v;,);

@iii) For & € (X, A*1, there exists a critical point g such that the positive steady state
(u;, vy) is locally asymptotically stable if T € [0, 7p), and unstable if T € (7, 00);

(iv) System (6.2) undergoes a supercritical Hopf bifurcation at the positive steady state
(u;,vy) when T = 10, and there exists a locally stable spatially nonhomogeneous
time-periodic solution for t € (19, 79 + &), where gy > 0 is small.

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:2453-2486 2483

It follows from Lemma 2 and Theorem 4 that

(axy —arz)(arr + alZPlA*)/ m(x)e™" ™ ¢ dx
17

T
Op.u(a) () = 7 Ry (o) (@) =

3

(an1ax — apazn) / "2 dx
Q
where p1;, is the positive root of the equation

2
ap(ay —an)p” + (aj1a12 — axpaz)p — azi(az; —ay) =0,

and the first Hopf bifurcation value satisfies

05 (a)
oA, o)== ——F-——.
(A = As(@))hi ()
: ai. apn (a22—aiz)(@1+ai2pisy) Lo
Since o 1> o Ve have @i 1am—a12a3]) > 0. By the similar argument to [8,

Proposition 4.7], we can derive that /1 (o) (@) is strictly increasing with respecttoa € [0, 00).
Then we show how the advection rate affects the Hopf bifurcation value with respect to
sufficiently small ¢ > 0.

Proposition 1 Assume that % >1> % and the non-constant function m(x) satisfies (Hy)
and

m(x) >0 and Am <0 for x € £2.

Then there exist 81, 63 > 0 such that to(A, @) is strictly decreasing with respect to a € [0, §1)
Jor & € (A4(0), 14(0) + 82).

Remark 2 Proposition 1 implies that Hopf bifurcation is more likely to occur when adding a
term describing advection along the environmental gradients for the diffusive Lotka—Volterra
competition model with nonlocal delay. One can use an argument similar to [19, Theorem
5.1] to prove Proposition 1.

In the following we give some numerical simulations to verify our analysis results. In
order to maintain the real time scale, we will simulate the original competitive system (6.1),
then the critical value for stability switch is 7o/d. We take §2 = (0, ), the space step as
/50 and the time step as 0.001. In numerical simulations, different types of patterns are
observed and we have found that the distribution of species u and v is always of the same
type. For the sake of simplicity, only the patterns of the distribution of species u are given
here for instance. Choose the following parameter set:

(P) k(x,y)=1,a11 =04,a1p =0.1,a31 =0.1,a2p =04, m(x) =sinx, x € (0, 7)
and initial condition:
(IC) u(x,t) =v(x,t) =0.1sinx, x € 2,1 € [—7,0].

It follows from previous argument that system (6.1) admits no positive steady state if
d > 1/Xs. Then we choose d = 1 in Fig. 1, and observe that the solution of (6.1) converges
to trivial steady state (0, 0) both when 7 = 0 and t = 2.

The influence of the time delay t on the solution of (6.1) can be observed clearly in Fig. 2.
We first set d = 0.06, a = 0.01. According to our theoretical analysis, when t < tp/d, the
positive steady state (ug, vg) = (e4m™)/dy, eam@)/dg Y of (6.1) is locally asymptotically
stable, while if T > 7(/d a forward Hopf bifurcation occurs, the positive steady state (¢4, vg)
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u(x,t)

60

40
2
distance x 0 time t distance x 0710, time t

Fig. 1 Numerical simulations of (6.1) ford = 1, a = 0.01 with parameter set (P) and initial condition (/C).
Left: 7 = 0; Right: t =2

u(x,t)

60
40 40
20

distance x o0 time t distance x o0 time t

Fig. 2 Numerical simulations of (6.1) for d = 0.06, @ = 0.01 with parameter set (P) and initial condition
(IC). Left: t = 1.5; Rightt 7 =2

u(x,t)
u(x,b)

60
1 ~ 40

distance x 00 time t distance x 0 time t

Fig.3 Numerical simulations of (6.1) for d = 0.06, a = 1 with parameter set (P) and initial condition (/C).
Left: t = 0.2; Right: 7 = 1.5

loses its stability and the bifurcation periodic solution is stable. The left graph in Fig. 2 show
the existence of stable nonhomogeneous positive steady state and the right graph in Fig. 2
depicts the occurrence of stable periodic solutions with obvious oscillation. In Fig. 3, letting
a = 1, we see that the solution of (6.1) converges to a positive steady state when 7 = 0.2;
when 7 = 1.5, the solution of (6.1) converges to a time-periodic solution. Then Figs. 2, 3
show that, the critical Hopf bifurcation value for stability switch decreases as the advection
rate a increasing.
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u(x,t)

60

40

N N 20
distance x 00 time t distance x o0 time t

Fig. 4 Numerical simulations of (6.1) for discrete delay case with d = 0.06, parameter set (P) and initial
condition (/C). Here a = 0.01. Left: t = 1.5; Right: 7 =2

In Fig. 4, we show the simulation for the discrete delay case that k(x, y) = §(x — y) in
(6.1), which has been studied in [21]. By comparing Figs. 2 and 4, we see that the nonlocal
delay makes the positive steady state and time-periodic solution smaller. In biology, this
means that the nonlocal delay causes the intraspecific and interspecific competitions more
fiercely.
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