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Abstract
The dynamics of a general reaction–diffusion–advection two species model with nonlocal
delay effect and Dirichlet boundary condition is investigated in this paper. The existence and
stability of the positive spatially nonhomogeneous steady state solution are studied. Then by
regarding the time delay τ as the bifurcation parameter, we show that Hopf bifurcation occurs
near the steady state solution at the critical values τn(n = 0, 1, 2, . . .). Moreover, the Hopf
bifurcation is forward and the bifurcated periodic solutions are stable on the center manifold.
The general results are applied to a Lotka–Volterra competition–diffusion–advection model
with nonlocal delay.

Keywords Reaction–diffusion–advection two species model · Nonlocal delay · Stability ·
Hopf bifurcation
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1 Introduction

In the past few decades, the dynamical models in the form of reaction-diffusion equations
have been frequently used to solve problems related to spatial ecology and evolution, see
[5,22,23,25,27]. In the real world, due to reproductivematurity or other time lags in biological
processes, historical informationmay have a significant impact on the dynamics of population
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systems, so many delayed reaction-diffusion equations are used to describe the evolution of
population distribution [1,4,6,15,30].

The dispersal by random diffusion is one of the most basic dispersal strategies. In reality,
the movements of species may be a combination of both random and biased ones. Since
species are intelligent, many organisms can sense their environment and pay attention to
moving in a direction that is favorable to them. Based on this observation, Belgacem and
Cosner [2] assumed that the population can exhibit a taxis in the direction of increasing
environmental favorability, and studied the reaction–diffusion–advection logistic model{

ut = ∇ · [d∇u − au∇m] + m(x)u − cu2, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(1.1)

where u(x, t) denotes the species density at location x and time t . In model (1.1), the term
−d∇u accounts for random diffusion, au∇m(x) represents the migration of species along
the gradient direction of resource function m(x). The results of Belgacem and Cosner [2]
and the subsequent literature [9] show that for single species, migration along the gradient
direction of the food distribution of the species will generally contribute to the survival of
the species.

We would like to know what spatiotemporal patterns can be indeced by the joint effect of
time delays, spatial diffusion, advection, heterogeneous environment and population interac-
tion. In a reaction–diffusion–advection model with time delay effect, the effects of dispersal
and time delays are not independent of each other, and an individual that was previously at
location x may now not be at the same point in space [3,6,12]. Therefore, it is more reasonable
to consider the model with nonlocal time delay. Recently, Jin and Yuan [19] investigated the
following general delayed reaction–diffusion–advection equation

⎧⎨
⎩ut = ∇ · [d∇u − au∇m] + u(x, t) f

(
x, u(x, t),

∫
Ω

k(x, y)u(y, t − τ)dy

)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

where f (x, 0, 0) = m(x) and the term
∫
Ω
k(x, y)u(y, t−τ)dy is called the nonlocal delayed

term,which represents the spatialweighted timedelays according to distance from theoriginal
position. In [19], Jin and Yuan showed the existence of spatially nonhomogeneous steady-
state solutions of (1.2) and investigated whether time delay τ can induce Hopf bifurcation
near the steady-state solution. They also showed the influence of the advection rate a on Hopf
bifurcation.

The dynamics of the two-species model has been extensively studied, including the global
stability of (non-)constant steady states [7,10,17,20,24,26] or Hopf bifurcations induced by
time delays at the (non-)constant steady states [13,18,29,31,33]. For instance, in [14,15], the
authors considered the diffusive two-species model with nonlocal delay effect and investi-
gated the stability of spatially nonhomogeneous positive steady state and the corresponding
Hopf bifurcation problem. Recently, Li and Dai [21] have studied the following Lotka–
Volterra competition–diffusion–advection model with time delay effect:

⎧⎪⎨
⎪⎩
ut = ∇ · [d∇u − au∇m] + u [m(x) − a11u(x, t − τ) − a12v(x, t − τ)] , x ∈ Ω, t > 0,

vt = ∇ · [d∇v − av∇m] + v [m(x) − a21u(x, t − τ) − a22v(x, t − τ)] , x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.3)
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They obtained the existence of spatially nonhomogeneous positive steady state and showed
that this positive steady state loses its stability for a large delay τ and a Hopf bifurcation
occurs such that system (1.3) exhibits oscillatory pattern.

Motivated by [6,14,19], we can assume that in a two-species model, the per-capita growth
rates of two species do not depend on its density at the current positions and time but on all
positions in regionΩ and previous time τ . Hence, the localized density-dependent per capita
growth ratesm(x)−a11u(x, t−τ)−a12v(x, t−τ) andm(x)−a21u(x, t−τ)−a22v(x, t−τ)

in (1.3) are not realistic. Instead, it is more reasonable to consider the following general
reaction–diffusion–advection two species model with nonlocal delay effect as follows:⎧⎪⎨

⎪⎩
ut = ∇ · [d∇u − au∇m] + u(x, t) f1

(
x, (k11 ∗ u)(x, t − τ), (k12 ∗ v)(x, t − τ)

)
, x ∈ Ω, t > 0,

vt = ∇ · [d∇v − av∇m] + v(x, t) f2
(
x, (k21 ∗ u)(x, t − τ), (k22 ∗ v)(x, t − τ)

)
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.4)

Here u(x, t) and v(x, t) denote the species densities at time t and location x , respectively;
the two species have the same diffusion rate d > 0 and the same advection rate a > 0; Ω

is a bounded domain in R
n(1 ≤ n ≤ 3) with smooth boundary ∂Ω; τ is the time delay

representing the maturation time; ki j (i, j = 1, 2) are continuous kernel functions on Ω ×Ω

which describe the dispersal behavior of the populations and

(ki1 ∗ u)(x, t) =
∫

Ω

ki1(x, y)u(y, t)dy, (ki2 ∗ v)(x, t) =
∫

Ω

ki1(x, y)v(y, t)dy, i = 1, 2;

the nonlinear smooth functions fi (x, s1, s2)(i = 1, 2) : Ω × R × R → R are called the
general per capita growth rates and satisfy the condition

(H1) f1(x, 0, 0) = f2(x, 0, 0) = m(x), where m(x) ∈ C2(Ω) and maxΩ m(x) > 0.

The Dirichlet boundary conditions imply that the exterior environment is hostile and the two
species cannot move across the boundary of environment. We consider model (1.4) with the
following initial condition:

u(x, s) = ϕ1(x, s), v(x, 0) = ϕ2(x, s), x ∈ Ω, s ∈ [−τ, 0],
where the initial data ϕ1, ϕ2 ∈ C � C([−τ, 0],Y) with Y = L2(Ω).

For the convenience of analysis, we first make a variable transformation. Letting ũ =
e(−a/d)m(x)u, ṽ = e(−a/d)m(x)v, t = t̃/d , denoting λ = 1/d, α = a/d, τ = τ̃ /d , and
dropping the tilde sign, model (1.4) can be transformed as follows:⎧⎪⎨
⎪⎩
ut = e−αm(x)∇ · [eαm(x)∇u

] + λu(x, t) f1
(
x, (K11 ∗ u)(x, t − τ), (K12 ∗ v)(x, t − τ)

)
, x ∈ Ω, t > 0,

vt = e−αm(x)∇ · [eαm(x)∇v
] + λv(x, t) f2

(
x, (K21 ∗ u)(x, t − τ), (K22 ∗ v)(x, t − τ)

)
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.5)

where

(Ki j ∗ g)(x, t) =
∫

Ω

Ki j (x, y)g(y, t)dy,

with Ki j (x, y) = ki j (x, y)eαm(y) for i, j = 1, 2.
For the simplification of calculation, denote

r i1(x) = ∂ fi
∂s1

(x, 0, 0), r i2(x) = ∂ fi
∂s2

(x, 0, 0),

123



2456 Journal of Dynamics and Differential Equations (2023) 35:2453–2486

and

κi j =
∫

Ω

∫
Ω

eαm(x)r ij (x)Ki j (x, y)φ
2(x)φ(y)dydx �= 0

for i, j = 1, 2. Suppose further the following two assumptions hold:

(H2) (κ21 − κ11)(κ11κ22 − κ12κ21) > 0 and (κ12 − κ22)(κ11κ22 − κ12κ21) > 0;
(H3) κ11κ22 ≥ 0 and κ12κ21 ≥ 0.

It follows from [2,5,23] that, under the assumption (H1), the following eigenvalue problem{
−e−αm(x)∇ · [eαm(x)∇u] = λm(x)u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.6)

has a positive principal eigenvalue λ∗ and the corresponding eigenfunction φ ∈ C1+δ(Ω)

can be chosen strictly positive in Ω , where δ ∈ (0, 1). In this paper our main results are in
the spirit of [21] for the local growth rate case: under the assumptions (H1) − (H3), there
exists a λ∗ with 0 < λ∗ − λ∗ 	 1, such that for any λ ∈ (λ∗, λ∗], system (1.5) admits
a spatially nonhomogeneous positive steady state (uλ, vλ) and there exists a sequence of
values {τn(λ)}∞n=0 such that (uλ, vλ) is locally asymptotically stable when τ ∈ [0, τ0(λ)),
unstable when τ ∈ (τ0(λ),∞), and for system (1.5), a forward Hopf bifurcation occurs at
τn(λ) from the positive steady state (uλ, vλ). Moreover, Hopf bifurcation is more likely to
occur when adding a term describing advection along the environmental gradients for the
diffusive Lotka–Volterra competition model with nonlocal delay. Here, the assumption (H2)

is used to guarantee the existence of positive steady-state solutions. (H3) is imposed to make
sure the simplicity of pure imaginary eigenvalue and is actually satisfied by many population
biological models.

The rest part of this paper is organized as follows. In Sect. 2, we establish the existence
of the positive steady state of model (1.5). Sections 3 and 4 are devoted to the stability and
Hopf bifurcation of the positive steady state through analyzing the corresponding eigenvalue
problem. Then the normal form of Hopf bifurcation is derived in Sect. 5 to determine the
bifurcation direction and stability of the bifurcating periodic solutions. In Sect. 6, the general
results are applied to a competition–diffusion–advection model with nonlocal delay effect.

Notice that the elliptic operator in (1.6) is not self-adjoint because of advection term,
which causes some technical difficulties. In view of these difficulties we introduce some
weighted spaces. The weighted space plays a vital role in the Hopf bifurcation analysis of
system (1.5). Throughout the paper, we use the following notations. Denote by L2

w(Ω) the
weighted L2 space with a weighted norm

‖u‖L2
w(Ω) =

(∫
Ω

eαm(x)|u(x)|2dx
)1/2

.

Let Hk
w(Ω)(k ≥ 0) be the weighted Sobolev space of the L2

w-function u(x) defined on Ω ,
and the norm of space Hk

w(Ω)(k ≥ 0) is defined by

‖u‖Hk
w(Ω) =

⎛
⎝∑

| j |≤k

∫
Ω

eαm(x)|∂ j u|2dx
⎞
⎠

1/2

.

Define the space X = H2
w(Ω) ∩ H1

0,w(Ω) and Y = L2
w(Ω), where

H1
0,w(Ω) = {

u ∈ H1
w(Ω)|u(x) = 0,∀x ∈ ∂Ω

}
.
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For a space Z , we also define the complexification of Z to be ZC := Z ⊕ iZ = {x1 +
ix2|x1, x2 ∈ Z}. Let C = C([−τ, 0],Y) be the Banach space of continuous mapping from
[−τ, 0] into Y, and 〈·, ·〉w be the L2

w inner product on complex-valued Hilbert space YC or
Y
2
C
, defined as

〈u, v〉w =
∫

Ω

eαm(x)u(x)T v(x)dx . (1.7)

2 Existence of Positive Steady State

This section is devoted to the the existence of the positive steady state of model (1.5), which
satisfies the following boundary value equation:⎧⎪⎨
⎪⎩
e−αm(x)∇ · [eαm(x)∇u

] + λu(x) f1
(
x, (K11 ∗ u)(x), (K12 ∗ v)(x)

) = 0, x ∈ Ω,

e−αm(x)∇ · [eαm(x)∇v
] + λv(x) f2

(
x, (K21 ∗ u)(x), (K22 ∗ v)(x)

) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(2.1)

To solve problem (2.1), define F : X2 × R+ → Y
2 as

F(U , λ) =
[
e−αm∇ · [eαm∇u

] + λu f1
(
x, K11 ∗ u, K12 ∗ v

)
e−αm∇ · [eαm∇v

] + λv f2
(
x, K21 ∗ u, K22 ∗ v

) ]

for all U = (u, v)T . At first, for any fixed λ ∈ R
+, F(U , λ) always has a trivial steady state

(0, 0). Denote

L :=
(
e−αm(x)∇ · [eαm(x)∇] + λ∗m(x) 0

0 e−αm(x)∇ · [eαm(x)∇] + λ∗m(x)

)
, (2.2)

which is the Frechét derivative of F with respect to U at (0, λ∗). It is easy to check that L
is a self-adjoint operator in the sense of weighted inner product, andN (L) = span{q1, q2},
where q1 = (φ, 0)T and q2 = (0, φ)T . Then operator L : X

2 → Y
2 is Fredholm with

index zero. Clearly, the Crandall-Rabinowitz bifurcation theorem cannot be applied here to
show the existence of positive solution of (2.1) since dimN (L) = 2. Now, we deal with
this situation by implicit function theorem. For later discussion, we decompose the spaces
X
2,Y2:

X
2 = N (L) ⊕ X2

1, Y
2 = N (L) ⊕ Y 2

1 ,

where

X1 = {y ∈ X : 〈φ, y〉w = 0} , Y1 = {y ∈ Y : 〈φ, y〉w = 0} .

Then we have the following result on the existence of positive steady states for system (1.5).

Theorem 1 Suppose that (H1) − (H3) hold. Then there exist λ∗ > λ∗ and a continuously
differential mapping λ �→ (ξλ, ηλ, βλ, cλ) from [λ∗, λ∗] to X2

1 × R
+ × R

+ such that, for
λ ∈ (λ∗, λ∗], system (1.5) has a positive steady state (uλ(x), vλ(x)), where{

uλ = βλ(λ − λ∗)[φ + (λ − λ∗)ξλ],
vλ = cλ(λ − λ∗)[φ + (λ − λ∗)ηλ]. (2.3)
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Moreover, for λ = λ∗,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βλ∗ = (κ12 − κ22)
∫
Ω
m(x)eαm(x)φ2(x)dx

λ∗(κ11κ22 − κ12κ21)
,

cλ∗ = (κ21 − κ11)
∫
Ω
m(x)eαm(x)φ2(x)dx

λ∗(κ11κ22 − κ12κ21)
,

(2.4)

and (ξλ∗ , ηλ∗)
T ∈ X2

1 is the unique solution of the following equation

L
(

ξ

η

)
+
(
m(x) + λ∗βλ∗r

1
1 (x)

∫
Ω
K11(x, y)φ(y)dy + λ∗cλ∗r

1
2 (x)

∫
Ω
K12(x, y)φ(y)dy

m(x) + λ∗βλ∗r
2
1 (x)

∫
Ω
K21(x, y)φ(y)dy + λ∗cλ∗r

2
2 (x)

∫
Ω
K22(x, y)φ(y)dy

)
φ

= 0. (2.5)

Proof One can easily have

λ∗
∫

Ω

m(x)eαm(x)φ2(x)dx =
∫

Ω

eαm(x)|∇φ(x)|2dx > 0,

and then βλ∗ and cλ∗ are well defined and positive. From (2.4), we see that{〈
φ,

(
m(x) + λ∗βλ∗r

1
1 (x)

∫
Ω
K11(x, y)φ(y)dy + λ∗cλ∗r

1
2 (x)

∫
Ω
K12(x, y)φ(y)dy

)
φ
〉
w

= 0,〈
φ,

(
m(x) + λ∗βλ∗r

2
1 (x)

∫
Ω
K21(x, y)φ(y)dy + λ∗cλ∗r

2
2 (x)

∫
Ω
K22(x, y)φ(y)dy

)
φ
〉
w

= 0,

and hence ξλ∗ and ηλ∗ are also well defined. Now, setting u = β(λ − λ∗)[φ + (λ − λ∗)ξ ]
and v = c(λ − λ∗)[φ + (λ − λ∗)η] into F(U , λ) = 0, we obtain that (β, c, ξ, η) satisfies

F(ξ, η, β, c, λ) = L
(

ξ

η

)
+ m(x)

(
φ + (λ − λ∗)ξ
φ + (λ − λ∗)η

)
+ λ

([φ + (λ − λ∗)ξ ]h1(ξ, η, β, c, λ)

[φ + (λ − λ∗)η]h2(ξ, η, β, c, λ)

)
= 0,

where

hi (ξ, η, β, c, λ) =
⎧⎨
⎩

fi (x, Ki1 ∗ u, Ki2 ∗ v) − m(x)

λ − λ∗
, λ �= λ∗,

βr i1(x )̃ki1(x) + cr i2(x )̃ki2(x), λ = λ∗
(2.6)

with

k̃i j (x) =
∫

Ω

Ki j (x, y)φ(y)dy for i, j = 1, 2. (2.7)

That is, the existence problem of positive solution of (2.1) is reduced to solving
F(ξ, η, β, c, λ) = 0. Seeing that Ω is a bounded domain in R

n(1 ≤ n ≤ 3)
with smooth boundary, we can deduce that X2

1 is compactly imbedded into Cδ(Ω) ×
Cδ(Ω) for some δ ∈ (0, 1). Then F(ξ, η, β, c, λ) is a function from X2

1 × R
3 to Y

2.
From the definition of ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , it holds that F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗) = 0. Let
D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗)[χ, κ, ρ, ς] be the Fréchet derivative of F with respect to
(ξ, η, β, c) evaluated at (ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗). Then a calculation gives that

D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗)[χ, κ, ρ, ς]
= L

(
χ

κ

)
+ λ∗φ

(
ρr11 (x )̃k11(x) + ςr12 (x )̃k12(x)
ρr21 (x )̃k21(x) + ςr22 (x )̃k22(x)

)
.

For applying the implitic function theorem, wewill verify that D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ ,
λ∗) is a bijection from X2

1 × R
2 to Y

2. Since κ11κ22 − κ12κ21 �= 0 due to assumption (H2),
one can deduce that

(ξ, η, β, c) = (0, 0, 0, 0) if D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗)[χ, κ, ρ, ς] = 0.
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That is, D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗) is injective. Next, we show that it is a surjection.

For any (û, v̂)T ∈ Y
2, we have the following decomposition(

û
v̂

)
=
(
u1
v1

)
+
(
u2
v2

)
, where

(
u1
v1

)
∈ N (L),

(
u2
v2

)
∈ Y 2

1 .

By choosing

ρ0 = κ22 〈φ, u1〉w − κ12 〈φ, v1〉w
λ∗(κ11κ22 − κ12κ21)

and ς0 = κ11 〈φ, u1〉w − κ21 〈φ, v1〉w
λ∗(κ11κ22 − κ12κ21)

,

there holds that

−λ∗φ
(

ρ0r11 (x )̃k11(x) + ς0r12 (x )̃k12(x)

ρ0r21 (x )̃k21(x) + ς0r22 (x )̃k22(x)

)
+
(
u1
v1

)
∈ R(L).

Notice that (u2, v2)T ∈ Y 2
1 = R(L) and L : X2

1 → Y 2
1 is a bijection, then there is (χ0, κ0) ∈

X2
1 such that

D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗)[χ0, κ0, ρ0, ς0] = (û, v̂)T .

Consequently, D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗) is bijective from X2
1 × R

2 to Y
2. Then

from implicit function theorem, there exist λ∗ > λ∗ and a continuously differential mapping
λ �→ (ξλ, ηλ, βλ, cλ) from [λ∗, λ∗] to X2

1 × R
+ × R

+ such that

F(ξλ, ηλ, βλ, cλ, λ) = 0, λ ∈ [λ∗, λ∗].
Therefore, (uλ, vλ) is a positive solution of Eq. (2.1). The proof is completed. ��

3 Eigenvalue Problems

In this section, we will study the eigenvalue problem associated with the positive steady state
Uλ = (uλ, vλ)

T defined in Theorem 1. Unless otherwise specified, we always assume that
λ ∈ [λ∗, λ∗] with 0 < λ∗ − λ∗ 	 1, and (H1) − (H3) hold. Linearizing system (1.5) at Uλ,
we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= e−αm(x)∇ · [eαm(x)∇u

] + λ f1
(
x, K11 ∗ uλ, K12 ∗ vλ

)
u(x, t)

+λuλ

[
r1λ1 (x)K11 ∗ u(x, t − τ) + r1λ2 (x)K12 ∗ v(x, t − τ)

]
, x ∈ Ω, t > 0,

∂v

∂t
= e−αm(x)∇ · [eαm(x)∇v

] + λ f2
(
x, K21 ∗ uλ, K22 ∗ vλ

)
v(x, t)

+λvλ

[
r2λ1 (x)K21 ∗ u(x, t − τ) + r2λ2 (x)K22 ∗ v(x, t − τ)

]
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0 x ∈ ∂Ω, t > 0,

(3.1)

where

r iλ1 (x) = ∂ fi
∂s1

(
x, Ki1 ∗ uλ, Ki2 ∗ vλ

)
, r iλ2 (x) = ∂ fi

∂s2

(
x, Ki1 ∗ uλ, Ki2 ∗ vλ

)
are the Fréchet derivative of fi (i = 1, 2) about the second termand the third term respectively.
Define two linear operators Aλ : X2

C
→ Y

2
C
and Bλ : Y2

C
→ Y

2
C
by

Aλ :=

⎛
⎜⎜⎝
e−αm(x)∇ · [eαm(x)∇]
+λ f1

(
x, K11 ∗ uλ, K12 ∗ vλ

) 0

0
e−αm(x)∇ · [eαm(x)∇]
+λ f2

(
x, K21 ∗ uλ, K22 ∗ vλ

)
⎞
⎟⎟⎠
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and

Bλψ :=
(

λuλ(r1λ1 (x)K11 ∗ ψ1 + r1λ2 (x)K12 ∗ ψ2)

λvλ(r2λ1 (x)K21 ∗ ψ1 + r2λ2 (x)K22 ∗ ψ2)

)

for ψ = (ψ1, ψ2)
T ∈ Y

2
C
. Then Aλ is an infinitesimal generator of a compact C0 semigroup

[28]. From [32], the solution semigroup of Eq. (3.1) has an infinitesimal generator Aτ,λ

defined by

Aτ,λψ = ψ̇ (3.2)

with the domain

D(Aτ,λ) = {
ψ ∈ CC ∩ C1

C
: ψ(0) ∈ X

2
C
, ψ̇(0) = Aλψ(0) + Bλψ(−τ)

}
,

where C1
C

= C1([−τ, 0],X2
C
). Now the stability of (uλ, vλ) is determined by the point

spectrum of Aτ,λ, which is

σp(Aτ,λ) = {
μ ∈ C : Λ(λ,μ, τ)ψ = 0 for some ψ ∈ X

2
C

\ {(0, 0)}} ,

with

Λ(λ,μ, τ)ψ = Aλψ + Bλψe−μτ − μψ. (3.3)

As in [14], we also need to consider the adjoint operator A∗
τ,λ of Aτ,λ in the sense of

weighted inner product, which is defined as

A∗
τ,λψ = −ψ̇ (3.4)

with the domain

D(A∗
τ,λ) =

{
ψ = (ψ1, ψ2)

T ∈ C1([0, τ ],X2
C
) : ψ(0) ∈ X

2
C
,−ψ̇(0) = Aλψ(0) + B∗

λψ(τ)
}

,

where B∗
λ : Y2 → Y

2 is given by

B∗
λψ = λ

(∫
Ω
r1λ1 (x)K̃11(x, ·)ψ1(x)uλ(x)dx + ∫

Ω
r2λ1 (x)K̃21(x, ·)ψ2(x)vλ(x)dx∫

Ω
r1λ2 (x)K̃12(x, ·)ψ1(x)uλ(x)dx + ∫

Ω
r2λ2 (x)K̃22(x, ·)ψ2(x)vλ(x)dx

)

for ψ = (ψ1, ψ2)
T ∈ Y

2 with K̃i j (x, ·) = ki j (x, ·)eαm(x) for i, j = 1, 2. The spectral set of
A∗

τ,λ is

σ(A∗
τ,λ) =

{
μ ∈ C : Λ̃(λ, μ, τ)ψ = 0 for some ψ ∈ X

2
C

\ {(0, 0)}
}

,

with

Λ̃(λ, μ, τ)ψ = Aλψ + B∗
λψe−μτ − μψ. (3.5)

One can easily check that〈
ψ̃,Λ(λ, μ, τ)ψ

〉
w

=
〈
Λ̃(λ, μ̄, τ )ψ̃, ψ

〉
w

. (3.6)

In the sense of weighted inner product, Λ̃(λ, μ̄, τ ) is the adjoint operator of Λ(λ,μ, τ)

and they has the same point spectrum, i.e.

σ(Λ(λ,μ, τ)) = σ(Λ̃(λ, μ̄, τ )),

which means μ ∈ σ(Aτ,λ) if and only if μ̄ ∈ σ(A∗
τ,λ).
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Theorem 2 Under assumptions (H1) − (H3), for λ ∈ [λ∗, λ∗] and τ ≥ 0, 0 is not an
eigenvalue of Aτ,λ.

Proof Suppose to the contrary that 0 is an eigenvalue of Aτ,λ, then there exists ψ ∈ X
2
C

\
{(0, 0)} such that

Λ(λ, 0, τ )ψ = 0. (3.7)

By the decomposition X
2 = N (Lλ∗) ⊕ X2

1, ψ takes the following form

ψ(x) = ã(λ)φ(x) + (λ − λ∗)b(λ, x) (3.8)

where ã(λ) ∈ R
2 and b(λ, ·) ∈ X2

1. Then substituting (3.8) to (3.7) gives

Λ(λ, 0, τ )ã(λ)φ + (λ − λ∗)Λ(λ, 0, τ )b(λ, ·) = 0. (3.9)

Since (uλ, vλ) → (0, 0) as λ → λ∗, then r iλj (x) → r ij (x) uniformly in Ω as λ → λ∗. A
straightforward calculation yields

lim
λ→λ∗

Λ(λ, 0, τ )ã(λ)φ

λ − λ∗
= m(x)φã(λ∗) + λ∗φKã(λ∗) + λ∗φ�K̃ã(λ∗),

where

K =
(

βλ∗r
1
1 k̃11 + cλ∗r

1
2 k̃12 0

0 βλ∗r
2
1 k̃21 + cλ∗r

2
2 k̃22

)
, � =

(
βλ∗ 0
0 cλ∗

)
, K̃ =

(
r11 k̃11 r12 k̃12

r21 k̃21 r22 k̃22

)
,

in which k̃i j is defined as in (2.7). By expanding ã(λ) and b(λ, x) near λ∗, we obtain

ã(λ) =
∞∑
i=0

ãi (λ − λ∗)i , b(λ, x) =
∞∑
i=0

bi (x)(λ − λ∗)i . (3.10)

Note that Λ(λ∗, 0, τ ) = L, where L is defined as (2.2). Then from (3.9) and (3.10) we see
that

Lb0(·) = −m(x)φã0 − λ∗φKã0 − λ∗φ�K̃ã0.

Calculating the weighted inner product of above equation with φ, we have �K̃ã0 = 0. Due
to the positivity of βλ∗ , cλ∗ and the assumption (H2), we can deduce that ã0 = 0. Since
Lλ∗ |X2

1
: X2

1 → Y 2
1 is invertible, then b0(x) = 0 for all x . Likewise, considering the term of

(λ − λ∗)i (i ≥ 1), we still have that ãi = 0 and bi (x) = 0 for all x . Consequently, ψ = 0 is
the unique solution of Λ(λ, 0, τ )ψ = 0, a contradiction with ψ ∈ X

2
C

\ {(0, 0)}. The proof
is completed. ��

In the following, we show the situation when Aτ,λ has a pair of purely imaginary eigen-
values μ = ±iω(ω > 0) for some τ > 0. From previous argument, μ = iω ∈ σp(Aτ,λ) for
some τ > 0 if and only if

Aλψ + Bλψe−iθ − iωψ = 0 (3.11)

is solvable for some value of ω > 0, θ ∈ [0, 2π) and ψ ∈ X
2
C

\ {(0, 0)}, where θ := ωτ . We
first show the following lemma for further discussion.

Lemma 1 Recall that λ∗ is the principal eigenvalue of problem (1.6), the following results
hold:
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(i) if z ∈ XC and 〈φ, z〉w = 0, then |〈Lz, z〉w| ≥ λ2‖z‖2YC
, where the operator L : X → Y

is defined by

L = e−αm(x)∇ · [eαm(x)∇] + λ∗m(x)

and λ2 is the second eigenvalue of operator −L;
(ii) if (ω, θ, ψ) is a solution of Eq. (3.11) with ω > 0, θ ∈ [0, 2π) and ψ ∈ X

2
C

\ {(0, 0)},
then

ω

λ − λ∗
is bounded for λ ∈ (λ∗, λ∗].

Proof Part (i) can be proved as in [8, Lemma 2.3]. We only discuss part (i i). By calculating
the weighted inner product of Eq. (3.11) with ψ , one can obtain

〈
ψ, Aλψ + Bλψe−iθ − iωψ

〉
w

= 0. (3.12)

Choose some θ0 ∈ [0, 2π) such that

〈
ψ, Bλψe−iθ

〉
w

=
∣∣∣〈ψ, Bλψ

〉
w

∣∣∣ ei(θ0−θ).

Note that Aλ is self-adjoint in the sense of weighted inner product, then
〈
ψ, Aλψ

〉
w
is real.

Separating the real and imaginary parts of (3.12) gives that

ω
〈
ψ,ψ

〉
w

= ∣∣〈ψ, Bλψ
〉
w

∣∣ sin(θ0 − θ).

Therefore,

∣∣∣∣ ω

λ − λ∗

∣∣∣∣ =

∣∣∣∣∣λ sin(θ0 − θ)

〈
ψ,

(
βλ[φ + (λ − λ∗)ξλ](r1λ1 (x)K11 ∗ ψ1 + r1λ2 (x)K12 ∗ ψ2)

cλ[φ + (λ − λ∗)ηλ](r2λ1 (x)K21 ∗ ψ1 + r2λ2 (x)K22 ∗ ψ2)

)〉
w

∣∣∣∣∣
〈ψ,ψ〉w

≤ 2λM1M2e
maxΩ(αm(x)){|K11|, |K12|, |K21|, |K22|}|Ω|,

where

M1 = max{βλ [‖φ‖∞ + (λ − λ∗)‖ξλ‖∞] , cλ [‖φ‖∞ + (λ − λ∗)‖ηλ‖∞]},
M2 = max{‖r1λ1 (x)‖∞, ‖r1λ2 (x)‖∞, ‖r2λ1 (x)‖∞, ‖r2λ2 (x)‖∞}.

Since (uλ, vλ) is bounded for λ ∈ (λ∗, λ∗], then there is a constant M > 0 such that

‖r iλj ‖∞ < M(i, j = 1, 2). Now, the boundedness of
ω

λ − λ∗
for λ ∈ (λ∗, λ∗] can be

obtained from the continuity of λ �→ (βλ, cλ, ‖ξλ‖∞, ‖ηλ‖∞). The proof is finished. ��

By the decomposition X2 = N (Lλ∗) ⊕ X2
1, for λ ∈ (λ∗, λ∗], ignoring a scalar factor, we

can rewrite ψ = (ψ1, ψ2)
T in (3.11) as the form

ψ1 = φ + (λ − λ∗)z1, 〈φ, z1〉w = 0,

ψ2 = (p1 + i p2)φ + (λ − λ∗)z2, 〈φ, z2〉w = 0, p1 > 0. (3.13)
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Setting h := ω/(λ − λ∗), and substituting (2.3), (3.13) and ω = (λ − λ∗)h into Eq. (3.11),
then Eq. (3.11) can be transformed as the following equivalent system:

g1(z1, z2, p1, p2, h, θ, λ) := Lz1 +
{
m(x) − ih + λh1(ξλ, ηλ, βλ, cλ, λ)

}
· [φ + (λ − λ∗)z1

]
+
{
r1λ1 (x)K11 ∗ [φ + (λ − λ∗)z1

]
+r1λ2 (x)K12 ∗ [(p1 + i p2)φ + (λ − λ∗)z2

]}
·λβλ[φ + (λ − λ∗)ξλ]e−iθ = 0,

g2(z1, z2, p1, p2, h, θ, λ) := Lz2 +
{
m(x) − ih + λh2(ξλ, ηλ, βλ, cλ, λ)

}
·[(p1 + i p2)φ + (λ − λ∗)z2

]
+
{
r2λ1 (x)K21 ∗ [φ + (λ − λ∗)z1

]
+r2λ2 (x)K22 ∗ [(p1 + i p2)φ + (λ − λ∗)z2

]}
·λcλ

[
φ + (λ − λ∗)ηλ

]
e−iθ = 0, (3.14)

where hi (ξλ, ηλ, βλ, cλ, λ) is defined in (2.6), and the operator L is defined as in Lemma 1.
Define G : X2

1 × R
4 × R → Y

2
C
by

G(z1, z2, p1, p2, h, θ, λ) := (g1, g2).

Now, we show that G(z1, z2, p1, p2, h, θ, λ) = 0 is uniquely solvable when λ = λ∗.
Lemma 2 Under assumptions (H1) − (H3), the equation{

G(z1, z2, p1, p2, h, θ, λ∗) = 0,

z1, z2 ∈ X1C, h ≥ 0, p1 ≥ 0, θ ∈ [0, 2π)

has a unique solution (z1λ∗ , z2λ∗ , p1λ∗ , p2λ∗ , hλ∗ , θλ∗) satisfying that p2λ∗ = 0, θλ∗ = π

2
,

p1λ∗ is the positive root of the following equation

κ12(κ12 − κ22)p
2 + (κ11κ12 − κ22κ21)p − κ21(κ21 − κ11) = 0,

and

hλ∗ =
(κ22 − κ12)(κ11 + κ12 p1λ∗)

∫
Ω

m(x)eαm(x)φ2dx

(κ11κ22 − κ12κ21)

∫
Ω

eαm(x)φ2dx

=
(κ11 − κ21)(κ21 + κ22 p1λ∗)

∫
Ω

m(x)eαm(x)φ2dx

p1λ∗(κ11κ22 − κ12κ21)

∫
Ω

eαm(x)φ2dx
,

and (z1λ∗ , z2λ∗)
T ∈ X2

1C is the unique solution of

L
(
z1λ∗
z2λ∗

)
= −m(x)φ

(
1

p1λ∗

)
− λ∗φ

(
βλ∗r

1
1 (x )̃k11(x) + r12 (x )̃k12(x)

p1λ∗
(
βλ∗r

2
1 (x )̃k21(x) + r22 (x )̃k22(x)

)
)

+ iλ∗φ
(

βλ∗
(
r11 (x )̃k11(x) + p1λ∗r

1
2 (x )̃k12(x)

)
cλ∗

(
r21 (x )̃k21(x) + p1λ∗r

2
2 (x )̃k22(x)

)
)

+ ihλ∗φ

(
1

p1λ∗

)
,
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where L is defined as (2.2)

Proof When λ = λ∗, we have

g1(z1, z2, p1, p2, h, θ, λ∗) := Lz1 +
{
m(x) − ih + λ∗

(
βλ∗r

1
1 (x )̃k11(x) + r12 (x )̃k12(x)

)} · φ

+
{
r11 (x )̃k11(x) + (p1 + i p2)r

1
2 (x )̃k12(x)

}
· λ∗βλ∗φe

−iθ = 0,

g2(z1, z2, p1, p2, h, θ, λ∗) := Lz2 +
{
m(x) − ih + λ∗

(
βλ∗r

2
1 (x )̃k21(x) + r22 (x )̃k22(x)

)} · (p1 + i p2)φ

+
{
r21 (x )̃k21(x) + (p1 + i p2)r

2
2 (x )̃k22(x)

}
· λ∗cλ∗φe

−iθ = 0.

Then {
G(z1, z2, p1, p2, h, θ, λ∗) = 0,

z1, z2 ∈ X1C, h ≥ 0, p1 ≥ 0, θ ∈ [0, 2π)

is solvable if and only if〈
φ,

{
m(x) − ih + λ∗

(
βλ∗r

1
1 (x )̃k11(x) + r12 (x )̃k12(x)

)} · φ

+
{
r11 (x )̃k11(x) + (p1 + i p2)r

1
2 (x )̃k12(x)

}
· λ∗βλ∗φe

−iθ
〉
w

= 0,〈
φ,

{
m(x) − ih + λ∗

(
βλ∗r

2
1 (x )̃k21(x) + r22 (x )̃k22(x)

)} · (p1 + i p2)φ

+
{
r21 (x )̃k21(x) + (p1 + i p2)r

2
2 (x )̃k22(x)

}
· λ∗cλ∗φe

−iθ
〉
w

= 0.

That is,

ih
∫

Ω

eαm(x)φ2dx = (cos θ − i sin θ)λ∗βλ∗
(
κ11 + κ12(p1 + i p2)

)
,

ih(p1 + i p2)
∫

Ω

eαm(x)φ2dx = (cos θ − i sin θ)λ∗cλ∗
(
κ21 + κ22(p1 + i p2)

)
.

(3.15)

From (3.15), we see that p1 + i p2 is a root of

κ12(κ12 − κ22)p
2 + (κ11κ12 − κ22κ21)p − κ21(κ21 − κ11) = 0.

Due to assumptions (H2), (H3) and p1 ≥ 0, there holds that p2 = p2λ∗ = 0 and p1 = p1λ∗
is the unique positive root of above quadratic equation. Now, it can be derived from (3.15)
that θ = θλ∗ = π

2 and

h = hλ∗ =
(κ22 − κ12)(κ11 + κ12 p1λ∗)

∫
Ω

m(x)eαm(x)φ2dx

(κ11κ22 − κ12κ21)

∫
Ω

eαm(x)φ2dx

=
(κ11 − κ21)(κ21 + κ22 p1λ∗)

∫
Ω

m(x)eαm(x)φ2dx

p1λ∗(κ11κ22 − κ12κ21)

∫
Ω

eαm(x)φ2dx
.

The proof is finished. ��
In what follows, we will provide the solvability result of the equation G = 0 for λ near

λ∗ by applying the implicit function theorem.
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Theorem 3 Assume that the assumptions (H1) − (H3) hold, then the following statements
are true:

(i) there exist λ̃∗ > λ∗ and a continuously differentiable mapping λ �→ (z1λ, z2λ, p1λ, p2λ,
hλ, θλ) from [λ∗, λ̃∗] to X2

1C × R
4 such that G(z1λ, z2λ, p1λ, p2λ, hλ, θλ, λ) = 0;

(ii) if (zλ1, z
λ
2, r

λ
1 , rλ

2 , hλ, θλ) with hλ > 0, θλ > 0 solves G(·, λ) = 0 for λ ∈ [λ∗, λ̃∗], then
(zλ1, z

λ
2, r

λ
1 , rλ

2 , hλ, θλ) = (z1λ, z2λ, r1λ, r2λ, hλ, θλ).

Proof Denote by T = (T1, T2) : X2
1C×R

4 → Y
2
C
the Fréchet derivative ofG with respect to

(z1, z2, p1, p2, h, θ) evaluated at (z1λ∗ , z2λ∗ , p1λ∗ , p2λ∗ , hλ∗ , θλ∗ , λ∗). A direct calculation
gives

T1(χ1, χ2, ν1, ν2, ε, ϑ) = Lχ1 − iεφ − ϑλ∗βλ∗φ
[
r11 (x )̃k11(x) + p1λ∗r

1
2 (x )̃k12(x)

]
− (iν1 − ν2)λ∗βλ∗φr

1
2 (x )̃k12(x),

T2(χ1, χ2, ν1, ν2, ε, ϑ) = Lχ2 − iε p1λ∗φ − ϑλ∗cλ∗φ
[
r21 (x )̃k21(x) + p1λ∗r

2
2 (x )̃k22(x)

]
+ (ν1 + iν2)φ

[
m(x) − ihλ∗ + λ∗

(
βλ∗r

2
1 (x )̃k21(x)

+cλ∗r
2
2 (x )̃k22(x)

) − iλ∗cλ∗r
2
2 (x )̃k22(x)

]
.

Next, we show that T is a bijection from X2
1C × R

4 to Y
2
C
. We first prove T is injective. If

T (χ1, χ2, ν1, ν2, ε, ϑ) = 0, then

−iε
∫

Ω

eαm(x)φ2dx − ϑλ∗βλ∗(κ11 + p1λ∗κ12) = (iν1 − ν2)λ∗βλ∗κ12,

−iε p1λ∗

∫
Ω

eαm(x)φ2dx − ϑλ∗cλ∗(κ21 + p1λ∗κ22)

= (iν1 − ν2)(hλ∗

∫
Ω

eαm(x)φ2dx + λ∗cλ∗κ22). (3.16)

It can be seen from (3.15) that

− p1λ∗hλ∗

∫
Ω

eαm(x)φ2dx = p1λ∗λ∗βλ∗(κ11 + p1λ∗κ12) = λ∗cλ∗(κ21 + p1λ∗κ22).

(3.17)

This result combined with (3.16) leads to that

(iν1 − ν2)

[
hλ∗

∫
Ω

eαm(x)φ2dx + λ∗cλ∗κ22 − p1λ∗λ∗βλ∗κ12

]
= 0.

Then from assumption (H2), (H3), (3.17) and the definitions of βλ∗ , cλ∗ and hλ∗ , we obtain
that

hλ∗

∫
Ω

eαm(x)φ2dx + λ∗cλ∗κ22 − p1λ∗λ∗βλ∗κ12

= κ12(κ22 − κ12)p21λ∗ + κ21(κ11 − κ21)

p1λ∗(κ11κ22 − κ12κ21)

∫
Ω

m(x)eαm(x)φ2dx �= 0,

which implies that iν1 − ν2 = 0, i.e. ν1 = ν2 = 0. Substituting iν1 − ν2 = 0 into (3.16), we
must have ε = 0 and ϑ = 0. Consequently, χ1 = χ2 = 0. So, T is injective from X2

1C ×R
4

to Y2
C
. By a similar manner to the proof of D(ξ,η,β,c)F(ξλ∗ , ηλ∗ , βλ∗ , cλ∗ , λ∗) in Theorem 1,
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we can also prove T is surjective. Now, we have prove T is bijective. Therefore, part (i) can
be obtained from the implicit function theorem immediately.

To show part (i i), we will check that if G(zλ1, z
λ
2, p

λ
1 , p

λ
2 , h

λ, θλ, λ) = 0 for hλ > 0, θλ ∈
[0, 2π), then

(zλ1, z
λ
2, p

λ
1 , p

λ
2 , h

λ, θλ) → (z1λ∗ , z2λ∗ , p1λ∗ , p2λ∗ , hλ∗ , θλ∗)

as λ → λ∗ in the norm of X2
1C×R

4. First, it follows from Lemma 1 (i i) that {hλ} is bounded.
As in Theorem 2.4 of [4], due to the boundedness of {hλ}, {θλ}, {βλ}, {cλ}, {ξλ}, {ηλ}, there
are M1, M2, M3 > 0 such that

λ2‖zλ1‖2YC
≤ ∣∣〈Lzλ1, zλ1〉w∣∣
≤ M1‖φ‖YC

‖zλ1‖YC
+ [

M2(|pλ
1 | + |pλ

2 |)
+M3(λ − λ∗)(‖zλ1‖YC

+ ‖zλ2‖YC
)
] ‖zλ1‖YC

,

λ2‖zλ2‖2YC
≤ ∣∣〈Lzλ2, zλ2〉w∣∣
≤ M1‖φ‖YC

‖zλ2‖YC
+ [

M2(|pλ
1 | + |pλ

2 |)
+M3(λ − λ∗)(‖zλ1‖YC

+ ‖zλ2‖YC
)
] ‖zλ2‖YC

,

(3.18)

where λ2 is defined in Lemma 1 (i). By setting 0 < λ̃∗ − λ 	 1, we see that

‖zλ1‖YC
+ ‖zλ2‖YC

≤ M4‖φ‖YC
+ M5(|pλ

1 | + |pλ
2 |) (3.19)

for some constants M4, M5 > 0. On the other hand, note that 〈φ, Lzλ1〉w = 0, then it follows
from the first equation of (3.14) that〈

φ,
[
φ + (λ − λ∗)z1

] ·
{
m(x) − ih + λh1(ξλ, ηλ, βλ, cλ, λ)

}
+ λβλ[φ + (λ − λ∗)ξλ]e−iθ

·
{
r1λ1 (x)K11 ∗ [φ + (λ − λ∗)z1

] + r1λ2 (x)K12 ∗ [(p1 + i p2)φ + (λ − λ∗)z2
]}〉

w

= 0.

By separating the real and imaginary parts of the above identity, we have

|pλ
1 | ≤ M6‖φ‖YC

+ M7(λ − λ∗)(‖zλ1‖YC
+ ‖zλ2‖YC

),

|pλ
2 | ≤ M6‖φ‖YC

+ M7(λ − λ∗)(‖zλ1‖YC
+ ‖zλ2‖YC

)
(3.20)

for some constants M6, M7 > 0. Since 0 < λ̃∗ − λ∗ 	 1, then from (3.19) and
(3.20) we get the boundedness of {zλ1}, {zλ2}, {pλ

1 }, {pλ
2 }. Recall that the operator L has a

bounded inverse from X1C to Y1C. By acting L−1 on g1
(
zλ1, z

λ
2, p

λ
1 , p

λ
2 , h

λ, θλ, λ
) = 0

and g2
(
zλ1, z

λ
2, p

λ
1 , p

λ
2 , h

λ, θλ, λ
) = 0, we obtain that {zλ1}, {zλ2} are also bounded in X1C

and hence
{(
zλ1, z

λ
2, p

λ
1 , p

λ
2 , h

λ, θλ
) : λ ∈ (λ∗, λ̃∗]

}
is precompact in Y

2
C

× R
4 due to the

embedding theorem. Let
{(

zλ
n

1 , zλ
n

2 , pλn

1 , pλn

2 , hλn , θλn
)}

be any convergent subsequence

satisfying(
zλ

n

1 , zλ
n

2 , pλn

1 , pλn

2 , hλn , θλn
)

→
(
zλ∗
1 , zλ∗

2 , pλ∗
1 , pλ∗

2 , hλ∗ , θλ∗
)
in Y

2
C

× R
4,

λn → λ∗ as n → ∞.

By taking the limit of equations

L−1g1
(
zλ

n

1 , zλ
n

2 , rλn

1 , rλn

2 , hλn , θλn , λn
)

= 0
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and

L−1g2
(
zλ

n

1 , zλ
n

2 , rλn

1 , rλn

2 , hλn , θλn , λn
)

= 0

as n → ∞, there holds that

(
zλ

n

1 , zλ
n

2 , pλn

1 , pλn

2 , hλn , θλn
)

→
(
zλ∗
1 , zλ∗

2 , pλ∗
1 , pλ∗

2 , hλ∗ , θλ∗
)
in X2

1C × R
4,

λn → λ∗ as n → ∞,

and G(zλ∗
1 , zλ∗

2 , pλ∗
1 , pλ∗

2 , hλ∗ , θλ∗ , λ∗) = 0. Now we can oatain from the unique solvability
of G(·, λ∗) = 0 in Lemma 2 that

(zλ∗
1 , zλ∗

2 , pλ∗
1 , pλ∗

2 , hλ∗ , θλ∗) = (z1λ∗ , z2λ∗ , p1λ∗ , p2λ∗ , hλ∗ , θλ∗).

This completes part (i i). ��

Now, Theorem 3 implies the following theorem immediately.

Theorem 4 Under assumptions (H1) − (H3), for λ ∈ (λ∗, λ̃∗], the eigenvalue problem

Λ(λ, iω, τ)ψ = 0, ω > 0, τ ≥ 0, ψ ∈ X
2
C

\ {(0, 0)}

has a solution (ω, τ, ψ), or equivalently, iω ∈ σ(Aτ,λ) if and only if

ω = ωλ = (λ − λ∗)hλ, τ = τn = θλ + 2nπ

ωλ

, n = 0, 1, 2, . . . ,

ψ = eψλ = e

(
φ + (λ − λ∗)z1λ

(p1λ + i p2λ)φ + (λ − λ∗)z2λ

)
,

(3.21)

where e is a nonzero constant and (z1λ, z2λ, p1λ, p2λ, hλ, θλ) is defined as in Theorem 3.

From Theorem 4, we know that iωλ ∈ σ(Aτn ,λ)with the associated eigenvectorψλeiωλ(·),
which implies that −iωλ ∈ σ(A∗

τn ,λ
) and the corresponding adjoint equation

Λ̃(λ,−iωλ, τn)ψ̃ = 0,

or equivalently,

Aλψ̃ + B∗
λψ̃eiθλ + iωλψ̃ = 0 (3.22)

is solvable for ψ̃ ∈ X
2
C

\ {(0, 0)}. Similarly, ignoring a scalar factor, ψ̃ = (ψ̃1, ψ̃2)
T can

also be taken as the form

ψ̃1 = φ + (λ − λ∗)z̃1, 〈φ, z̃1〉w = 0,

ψ̃2 = ( p̃1 + i p̃2)φ + (λ − λ∗)z̃2, 〈φ, z̃2〉w = 0, p̃1 > 0. (3.23)
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Substituting (2.3), (3.23) and ωλ = (λ − λ∗)hλ into Eq. (3.22), we have the following
equivalent system to Eq. (3.22):

g̃1(z̃1, z̃2, p̃1, p̃2, λ) := Lz̃1 +
{
m(x) + ihλ + λh1(ξλ, ηλ, βλ, cλ, λ)

}
· [φ + (λ − λ∗)z̃1

]
+ λβλe

iθλ

∫
Ω

r1λ1 (x)K̃11(x, ·)
[
φ(x) + (λ − λ∗)z̃1(x)

]
[
φ(x) + (λ − λ∗)ξλ(x)

]
dx

+ λcλe
iθλ

∫
Ω

r2λ1 (x)K̃21(x, ·)
[
( p̃1 + i p̃2)φ(x) + (λ − λ∗)z̃2(x)

]
× [

φ(x) + (λ − λ∗)ηλ(x)
]
dx = 0,

g̃2(z̃1, z̃2, p̃1, p̃2, λ) := Lz̃2 +
{
m(x) + ihλ + λh2(ξλ, ηλ, βλ, cλ, λ)

}
· [( p̃1 + i p̃2)φ + (λ − λ∗)z̃2

]
+ λβλe

iθλ

∫
Ω

r1λ2 (x)K̃12(x, ·)
[
φ(x) + (λ − λ∗)z̃1(x)

]
[
φ(x) + (λ − λ∗)ξλ(x)

]
dx

+ λcλe
iθλ

∫
Ω

r2λ2 (x)K̃22(x, ·)
[
( p̃1 + i p̃2)φ(x) + (λ − λ∗)z̃2(x)

]
× [

φ(x) + (λ − λ∗)ηλ(x)
]
dx = 0. (3.24)

Define G̃ : X2
C

× R
2 × R → Y

2
C
as

G̃(z̃1, z̃2, p̃1, p̃2, λ) := (g̃1, g̃2, g̃3, g̃4, g̃5, g̃6).

By a similar argument as in Theorem 3 and 4 , we can prove the following conclusions.

Theorem 5 Assume that (H1) − (H3) hold. Then the following statements are true:

(i) there exists a continuously differentiablemappingλ �→ (z̃1λ, z̃2λ, p̃1λ, p̃2λ) from [λ∗, λ̃∗]
to X2

1C × R
2 such that G̃(z̃1λ, z̃2λ, p̃1λ, p̃2λ, λ) = 0 with p̃2λ∗ = 0, p̃1λ∗ is the positive

root of the following equation

κ21(κ21 − κ11)p
2 + (κ11κ12 − κ22κ21)p − κ12(κ12 − κ22) = 0,

and (z̃1λ∗ , z̃2λ∗)
T ∈ X2

1C is the unique solution of

L
(
z̃1λ∗
z̃2λ∗

)
= −(m(x) + ihλ∗)φ

(
1

p̃1λ∗

)
− λ∗φ

(
βλ∗r

1
1 (x )̃k11(x) + r12 (x )̃k12(x)

p̃1λ∗
(
βλ∗r

2
1 (x )̃k21(x) + r22 (x )̃k22(x)

)
)

− iλ∗

(
βλ∗

∫
Ω
r11 (x)K̃11(x, ·)φ2(x)dx + p̃1λ∗cλ∗

∫
Ω
r21 (x)K̃21(x, ·)φ2(x)dx

βλ∗
∫
Ω
r12 (x)K̃12(x, ·)φ2(x)dx + p̃1λ∗cλ∗

∫
Ω
r22 (x)K̃22(x, ·)φ2(x)dx

)
,

where L is defined as (2.2). Moreover, if there is (z̃λ1, z̃
λ
2, p̃

λ
1 , p̃

λ
2 ) such that G̃(z̃λ1, z̃

λ
2, p̃

λ
1 ,

p̃λ
2 , λ) = 0, then (z̃λ1, z̃

λ
2, p̃

λ
1 , p̃

λ
2 ) = (z̃1λ, z̃2λ, p̃1λ, p̃2λ).

(ii) for λ ∈ (λ∗, λ̃∗], the eigenvalue problem
Λ̃(λ,−iω, τ)ψ̃ = 0, ω > 0, τ ≥ 0, ψ̃ ∈ X

2
C

\ {(0, 0)}
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has a solution (ω, τ, ψ), or equivalently, −iω ∈ σ(A∗
τ,λ) if and only if

ω = ωλ = (λ − λ∗)hλ, τ = τn = θλ + 2nπ

ωλ

, n = 0, 1, 2, . . . ,

ψ̃ = ẽψ̃λ = ẽ

(
φ + (λ − λ∗)z̃1λ

( p̃1λ + i p̃2λ)φ + (λ − λ∗)z̃2λ

)
,

(3.25)

where ẽ is a nonzero constant and (z̃1λ, z̃2λ, p̃1λ, p̃2λ) is defined in part (i), (hλ, θλ) is
defined in Theorem 3.

Remark 1 Theorem 5 shows that −iωλ ∈ σ(A∗
τn ,λ

) with the associated eigenvector

ψ̃λe−iωλ(·).

4 Stability and Hopf Bifurcation

Notice that system (1.5) always has the steady state (0, 0). Then we first consider the stability
of (0, 0). Linearizing system (1.5) at (0, 0), we obtain the linear eigenvalue problem⎧⎪⎨

⎪⎩
Lu + (λ − λ∗)m(x)u = σu, x ∈ Ω,

Lv + (λ − λ∗)m(x)v = σv, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(4.1)

It follows from [5] that σ < 0 if and only if λ < λ∗. Therefore, the stability result of the
trivial steady state (0, 0) is as follows.

Lemma 3 Assume that (H1) holds. Then the trivial solution (0, 0) of system (1.2) is locally
asymptotically stable when λ < λ∗ and unstable when λ > λ∗.

In the following, we pay attention to the stability and associated Hopf bifurcation of
the positive steady state Uλ = (uλ, vλ)

T of Eq. (1.5) by regarding the parameter τ as the
bifurcation parameter. Firstly, we show the stability of Uλ for τ = 0.

Theorem 6 Assume that assumptions (H1) − (H3) hold, then for each λ ∈ (λ∗, λ̃∗], all the
eigenvalues of Aτ,λ have negative real parts when τ = 0. That is, the positive steady state
(uλ, vλ) of Eq. (1.5) is locally asymptotically stable when τ = 0.

Proof Suppose to the contrary that there exists a sequence {λn}∞n=1 such that λn > λ∗ for
n ≥ 1, lim

n→∞ λn = λ∗, and for every n, the eigenvalue equation

{
Aλnψ + Bλnψ = μψ, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω
(4.2)

admits an eigenvalueμλn with nonnegative real part, whose corresponding eigenfunctionψλn

satisfies ‖ψλn‖YC
= 1. We can take ψλn as ψλn = sλnUλn + Vλn for each n ≥ 1, where Un

λ

is the positive steady state of Eq. (1.5) with λ = λn , sλn ∈ C and Vλn = (V1λn , V2λn )T ∈ X
2
C

satisfy that

sλn = 〈Uλn , ψλn 〉w
〈Uλn ,Uλn 〉w , 〈Uλn , Vλn 〉w = 0.

Notice that 〈
Uλn , Aλn Vλn

〉
w

= 〈
AλnUλn , Vλn

〉
w

and AλnUλn = 0,
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then by substituting ψλn = sλnUλn + Vλn and μ = μλn into the first equation of Eq. (4.2),
and computing the weighted inner product with ψλn , there holds that〈

Vλn , Aλn Vλn
〉
w

+ 〈
ψλn , Bλnψλn

〉
w

= μλn .

Furthermore,

∣∣〈ψλn , Bλnψλn
〉
w

∣∣ ≤
∣∣∣∣∣λn

〈
ψλn ,

(
uλ(r1λ

n

1 (x)K11 ∗ ψ1λn + r1λ
n

2 (x)K12 ∗ ψ2λn )

vλ(r2λ
n

1 (x)K21 ∗ ψ1λn + r2λ
n

2 (x)K22 ∗ ψ2λn )

)〉
w

∣∣∣∣∣
≤ 2λn(λn − λ∗)M1M2e

maxΩ(αm(x)) max
Ω×Ω

{|K11|, |K12|, |K21|, |K22|}|Ω|
→ 0, as n → ∞,

(4.3)

where

M1 = max{βλn
[‖φ‖∞ + (λn − λ∗)‖ξλn‖∞

]
, cλn

[‖φ‖∞ + (λn − λ∗)‖ηλn‖∞
]},

M2 = max{‖r1λn1 (x)‖∞, ‖r1λn2 (x)‖∞, ‖r2λn1 (x)‖∞, ‖r2λn2 (x)‖∞}.
Define the operator Aiλ : XC → YC(i = 1, 2) by

Aiλϕ = e−αm(x)∇ ·
[
eαm(x)∇ϕ

]
+ λ fi

(
x, Ki1 ∗ uλ, Ki2 ∗ vλ

)
ϕ

for ϕ ∈ XC. Since 0 is the principal eigenvalue of A1λn (resp. A2λn ) with the corresponding
eigenfunction uλn (resp. vλn ), we get that〈

V1λn , A1λn V1λn
〉
w

≤ 0 and
〈
V2λn , A2λn V2λn

〉
w

≤ 0.

This result leads to

0 ≤ Re(μλn ), |Im(μλn )| ≤ ∣∣〈ψλn , Bλnψλn
〉
w

∣∣ ,
and hence

lim
n→∞Re(μλn ) = lim

j→∞ Im(μλn ) = 0.

From the fact that
∣∣〈Viλn , Aiλn Viλn

〉
w

∣∣ ≥ |λ(i)
2 (λn)| · ‖Viλn‖2YC

(the proof of this inequality is

similar to that of Lemma 1 (i)), where λ
(i)
2 (λn) is the second eigenvalue of Aiλn , we obtain∣∣−〈

ψλn , Bλnψλn
〉
w

∣∣ + |μλn | ≥ |γ n | · ‖Vλn‖2YC
, (4.4)

in which γ n = min
{
λ

(1)
2 (λn), λ

(2)
2 (λn)

}
. In view of (4.4), using the limit lim

n→∞∣∣〈ψλn , Bλnψλn
〉
w

∣∣ = lim
n→∞ |μλn | = 0, we see that lim

n→∞ ‖Vλn‖YC
= 0.

Since ψλn = sλnUλn + Vλn and ‖ψλn‖YC
= 1, we see that

lim
n→∞ |sλn |2(λn − λ∗)2 lim

n→∞

(∥∥∥∥ uλn

λn − λ∗

∥∥∥∥
2

YC

+
∥∥∥∥ vλn

λn − λ∗

∥∥∥∥
2

YC

)
= 1,
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whichmeans limn→∞ |sλn |(λn−λ∗) = 1√
β2

λ∗ + c2λ∗‖φ‖YC

> 0,whereφ is the eigenfunction

of eigenvalue problem (1.6) with the principal eigenvalue λ∗. We now calculate that〈
ψλn , Bλnψλn

〉
w

λn − λ∗

=
λn

〈
(sλnUλn + Vλn ),

(
uλ[r1λn1 (x)K11 ∗ (sλn uλn + V1λn ) + r1λ

n

2 (x)K12 ∗ (sλnvλn + V2λn )]
vλ[r2λn1 (x)K21 ∗ (sλn uλn + V1λn ) + r2λ

n

2 (x)K22 ∗ (sλnvλn + V2λn )]

)〉
w

λn − λ∗
= λn

(
|sλn |2(λn − λ∗)2 J1 + sλn (λ

n − λ∗)J2 + sλn (λ
n − λ∗)J3 + J4

)
,

where

J1 =
∫

Ω

∫
Ω

eαm(x)
[
r1λ

n

1 (x)K11(x, y)u2λn (x)uλn (y) + r1λ
n

2 (x)K12(x, y)u2λn (x)vλn (y)
]

(λn − λ∗)3
dydx

+
∫

Ω

∫
Ω

eαm(x)
[
r2λ

n

1 (x)K21(x, y)v2λn (x)uλn (y) + r2λ
n

2 (x)K22(x, y)v2λn (x)vλn (y)
]

(λn − λ∗)3
dydx,

J2 =
∫

Ω

∫
Ω

eαm(x)
[
r1λ

n

1 (x)K11(x, y)uλn (x)V1λn (x)uλn (y) + r1λ
n

2 (x)K12(x, y)uλn (x)V1λn (x)vλn (y)
]

(λ j − λ∗)2
dydx

+
∫

Ω

∫
Ω

eαm(x)
[
r2λ

n

1 (x)K21(x, y)vλn (x)V2λn (x)uλn (y) + r2λ
n

2 (x)K22(x, y)vλn (x)V2λn (x)vλn (y)
]

(λ j − λ∗)2
dydx,

J3 =
∫

Ω

∫
Ω

eαm(x)
[
r1λ

n

1 (x)K11(x, y)u2λn (x)V1λn (y) + r1λ
n

2 (x)K12(x, y)u2λn (x)V2λn (y)
]

(λn − λ∗)2
dydx

+
∫

Ω

∫
Ω

eαm(x)
[
r2λ

n

1 (x)K21(x, y)v2λn (x)V1λn (y) + r2λ
n

2 (x)K22(x, y)v2λn (x)V2λn (y)
]

(λn − λ∗)2
dydx,

J4 =
∫

Ω

∫
Ω

eαm(x)
[
r1λ

n

1 (x)K11(x, y)uλn (x)V1λn (x)V1λn (y) + r1λ
n

2 (x)K12(x, y)uλn (x)V1λn (x)V2λn (y)
]

λn − λ∗
dydx

+
∫

Ω

∫
Ω

eαm(x)
[
r2λ

n

1 (x)K21(x, y)vλn (x)V2λn (x)V1λn (y) + r2λ
n

2 (x)K22(x, y)vλn (x)V2λn (x)V2λn (y)
]

λn − λ∗
dydx .

It follows from Hölder inequality that

〈u, v〉w =
∫

Ω

e
αm(x)

2 u(x)e
αm(x)

2 v(x)dx

≤
(∫

Ω

eαm(x)u2(x)dx

)1/2 (∫
Ω

eαm(x)v2(x)dx

)1/2

= ‖u‖YC
‖v‖YC

.

Then by using the limit lim
n→∞ ‖Vλn‖YC

= 0, there holds that

lim
n→∞ J2 = lim

n→∞ J3 = lim
n→∞ J4 = 0.

We also have that

lim
n→∞ J1 = κ11β

3
λ∗ + κ12β

2
λ∗cλ∗ + κ21βλ∗c

2
λ∗ + κ22c

3
λ∗

= −β2
λ∗ + c2λ∗

λ∗

∫
Ω

m(x)eαm(x)φ2(x)dx < 0.
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The above argument implies that there exists N∗ ∈ N such that

Re
(〈
ψλn , Bλnψλn

〉
w

)
< 0 for each n ≥ N∗.

Consequently,

Re(μλn ) = 〈
Vλn , Aλn Vλn

〉
w

+ Re
(〈
ψλn , Bλnψλn

〉
w

)
< 0,

which is a contradiction with that Re(μλn ) ≥ 0 for n ≥ 1. That is to say, Aτ,λ has no
eigenvalue with nonnegative real parts when τ = 0. The proof is finished. ��
Lemma 4 Assume that (H1) − (H3) hold. Then for each λ ∈ (λ∗, λ̃∗], μ = iωλ is a simple
eigenvalue of Aτn ,λ for n = 0, 1, 2, . . ..

Proof From Theorem 4, we see thatN [Aτn ,λ − iωλ] = Span[eiωλsψλ], where s ∈ [−τn, 0]
and ψλ is defined as in Theorem 4. Suppose that μ = iωλ is not a simple eigenvalue, then
there exists φ̂ ∈ N [Aτn ,λ − iωλ]2, i.e.,

[Aτn ,λ − iωλ] ˆφ ∈N [Aτn ,λ − iωλ] = Span[eiωλsψλ].
Hence, we can pick a constant a such that [Aτn ,λ − iωλ]φ̂ = aeiωλsψλ. Then there holds that

φ̂′(s) = iωλφ̂ + aeiωλsψλ, s ∈ [−τn, 0],
φ̂′(0) = Aλφ̂(0) + Bλφ̂(−τn).

(4.5)

In view of the first equation of Eq. (4.5), we obtain that

φ̂(s) = φ̂(0)eiωλs + aseiωλsψλ,

φ̂′(0) = iωλφ̂(0) + aψλ.
(4.6)

It follows from the second equation of (4.5) and (4.6) that

Λ(λ, iωλ, τn)φ̂(0) =
[
Aλ + Bλe

−iθλ − iωλ

]
φ̂(0)

= a
(
ψλ + τne

−iθλ Bλψλ

)
,

where we have used the identity φ̂(−τn) = φ̂(0)e−iθλ − aτne−iθλψλ. From (3.6), we have

0 =
〈
Λ̃(λ,−iωλ, τn)ψ̃λ, φ̂(0)

〉
w

=
〈
ψ̃λ,Λ(λ, iωλ, τn)φ̂(0)

〉
w

= a
〈
ψ̃λ, ψλ + τne

−iθλ Bλψλ

〉
w

:= aSnλ. (4.7)

Let λ → λ∗, then it follows that

lim
λ→λ∗

Snλ = (1 + p̃1λ∗ p1λ∗)
∫

Ω

eαm(x)φ2dx

− iλ∗
βλ∗(κ11 + κ12 p1λ∗) + cλ∗ p̃1λ∗(κ21 + κ22 p1λ∗)

hλ∗
(
π

2
+ 2nπ)

=
[
1 + i(

π

2
+ 2nπ)

]
(1 + p̃1λ∗ p1λ∗)

∫
Ω

eαm(x)φ2dx,

which implies that Snλ �= 0 and hence a = 0. Therefore, ˆφ ∈N [Aτn ,λ − iωλ]. By induction
it can be derived that

N [Aτn ,λ − iωλ] j = N [Aτn ,λ − iωλ], j = 2, 3, . . . ,
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and μ = iωλ is a simple eigenvalue of Aτn ,λ for n = 0, 1, 2, . . .. ��
Now it can be inferred from the implicit function theorem that there is a neighborhood

On × Dn × H2
n ⊂ R × C × X

2
C
of (τn, iωλ,ψλ) and a continuous differential function

(μ,ψ) : On → Dn×H2
n satisfyingμ(τn) = iωλ andψ(τn) = ψλ such that, for each τ ∈ On ,

Aτn ,λ in Dn has the unique eigenvalue μ(τ) with its associated eigenvector ψ(τ)eμ(τ)(·) and
there holds that

Λ(λ,μ(τ), τ )ψ(τ) =
[
Aλ + Bλe

−μ(τ)τ − μ(τ)
]
ψ(τ) = 0. (4.8)

In the following, we verify the transversality condition for Hopf bifurcation.

Lemma 5 Under the assumptions (H1) − (H3), for λ ∈ (λ∗, λ̃∗],

Re

(
dμ

dτ
(τn)

)
> 0.

Proof Firstly, by differentiating Eq. (4.8) with respect to τ at τ = τn , we have

dμ

dτ
(τn)

(
ψλ + τne

−iθλ Bλψλ

)
= Λ(λ, iωλ, τn)

dψ

dτ
(τn) − iωλe

−iθλ Bλψλ.

Then calculating the weighted inner product of above equation with ψ̃λ gives that

dμ

dτ
(τn) = −

〈
ψ̃λ, iωλe−iθλ Bλψλ

〉
w

Snλ

= − I1 + I2
|Snλ|2 .

where Snλ is defined as in (4.7),

I1 =
〈
ψλ, ψ̃λ

〉
w

〈
ψ̃λ, iωλe

−iθλ Bλψλ

〉
w

,

I2 = iωλτn

∣∣∣〈ψ̃λ, Bλψλ

〉
w

∣∣∣2 .

Direct computation yields

lim
λ→λ∗

〈
ψλ, ψ̃λ

〉
w

= (1 + p̃1λ∗ p1λ∗)
∫

Ω

eαm(x)φ2dx,

lim
λ→λ∗

1

(λ − λ∗)2
〈
ψ̃λ, iωλe

−iθλ Bλψλ

〉
w

= −(1 + p̃1λ∗ p1λ∗)h
2
λ∗

∫
Ω

eαm(x)φ2dx,

which implies that

lim
λ→λ∗

1

(λ − λ∗)2
Re

(
dμ

dτ
(τn)

)
= (1 + p̃1λ∗ p1λ∗)

2h2λ∗
limλ→λ∗ |Snλ|2

(∫
Ω

eαm(x)φ2dx

)2

> 0.

The proof is finished. ��
From Theorems 4, 6 and Lemmas 4, 5, we can now conclude the stability result of the

positive steady state Uλ and the associated Hopf bifurcation of Eq. (1.5) as follows.

Theorem 7 Assume that (H1) − (H3) hold. For λ ∈ (λ∗, λ̃∗], the following statements are
ture:

(i) there exists an increasing sequence {τn}∞n=0 such that all the eigenvalues of Aτ,λ have
negative real parts when τ ∈ (0, τ0), Aτ,λ has a pair of purely imaginary eigenvalues
±iωλ (ωλ > 0) when τ = τn, and Aτ,λ has exactly 2(n + 1) eigenvalues with positive
real parts when τ ∈ (τn, τn+1], n = 0, 1, 2, . . .;
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(ii) the positive steady state Uλ of Eq. (1.5) is locally asymptotically stable when τ ∈ [0, τ0),
and unstable when τ ∈ (τ0,∞);

(iii) Hopf bifurcation occurs as the delay τ increasingly crosses through each τn(n =
0, 1, 2, . . .), and there exist ε0 > 0 and a continuous family of periodic orbits of (1.5) in
form of

{(τn(ε), un(x, t, ε), vn(x, t, ε), Tn(ε)) : ε ∈ (0, ε0)} ,

where (un(x, t, ε), vn(x, t, ε))T is a Tn(ε)-periodic solution of (1.5)with τ = τn(ε), and
τn(0) = τn, lim

ε→0+(un(x, t, ε), vn(x, t, ε))T = (uλ, vλ)
T and lim

ε→0+ Tn(ε) = 2π/ωλ.

5 The Properties of Hopf Bifurcation

In this section, we will compute the normal form of the Hopf bifurcation to determine the
direction and stability of bifurcating periodic solutions emerging from (Uλ, τn) by applying
the methods in Faria [11] and Hassard et al. [16]. At first, we let Ũ (t) = (U1(t),U2(t))T =
(u(·, t) − uλ, v(·, t) − vλ)

T , γ = τ − τn such that the steady state Uλ = (uλ, vλ)
T and

parameter τ is translated to the origin. Re-scale the time t̃ = t/τ and drop the tilde signs for
simplification of notations. Thus, γ = 0 is the Hopf bifurcation value. For the simplicity of
writing, we define

r iλkl (x) = ∂k+l fi
∂sk1s

l
2

(x, Ki1 ∗ uλ, Ki2 ∗ vλ), i = 1, 2, k, l = 1, 2, . . . .

Then we can rewrite Eq. (1.5) as the following abstract functional differential equation

dU (t)

dt
= τn L0(Ut ) + J (Ut , γ ), (5.1)

where Ut = U (t + s) ∈ C = C([−τ, 0],Y2), and

L0(Ut ) = AλU (t) + BλU (t − 1),

J (Ut , γ ) = γ L0(Ut ) + (γ + τn)λF(Ut ),

and F(Ut ) = (F1(Ut ), F2(Ut ))
T is defined by

F1(Ut ) = U1(t)
[
r1λ1 (x)K11 ∗U1(t − 1) + r1λ2 (x)K12 ∗U2(t − 1)

]
+ 1

2! (U1(t) + uλ)
[
r1λ20 (x)(K11 ∗U1(t − 1))2

+ 2r1λ11 (x)(K11 ∗U1(t − 1))(K12 ∗U2(t − 1))

+ r1λ02 (x)(K12 ∗U2(t − 1))2
]

+ 1

3!uλ

[
r1λ30 (x)(K11 ∗U1(t − 1))3

+ 3r1λ21 (x)(K11 ∗U1(t − 1))2(K12 ∗U2(t − 1))

+ 3r1λ12 (x)(K11 ∗U1(t − 1))(K12 ∗U2(t − 1))2

+ r1λ03 (x)(K12 ∗U2(t − 1))3
]

+ h.o.t,

F2(Ut ) = U2(t)
[
r2λ1 (x)K21 ∗U1(t − 1) + r2λ2 (x)K22 ∗U2(t − 1)

]
+ 1

2! (U2(t) + vλ)
[
r2λ20 (x)(K21 ∗U1(t − 1))2
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+ 2r2λ11 (x)(K21 ∗U1(t − 1))(K22 ∗U2(t − 1))

+ r2λ02 (x)(K22 ∗U2(t − 1))2
]

+ 1

3!vλ

[
r2λ30 (x)(K21 ∗U1(t − 1))3

+ 3r2λ21 (x)(K21 ∗U1(t − 1))2(K22 ∗U2(t − 1))

+ 3r2λ12 (x)(K21 ∗U1(t − 1))(K22 ∗U2(t − 1))2

+ r2λ03 (x)(K22 ∗U2(t − 1))3
]

+ h.o.t,

in which h.o.t stands for “high order terms”. Denote by Aτn the infinitesimal generator of
the linearized equation

dU (t)

dt
= τn L0(Ut ). (5.2)

Then from [32], we have

AτnΨ = Ψ̇ ,

with the domain

D(Aτ ) = {
Ψ ∈ CC ∩ C1

C
: Ψ (0) ∈ X

2
C
, Ψ̇ (0) = τn AλΨ (0) + τn BλΨ (−1)

}
,

where C1
C

= C1([−1, 0],Y2
C
). So, we can rewrite Eq. (5.1) in the abstract form:

dUt

dt
= AτnUt + X0 J (Ut , γ ), (5.3)

where

X0(s) =
{
0, s ∈ [−1, 0),

I , s = 0.

On the other hand, let

A∗
τn

Φ̃ = − ˙̃
Ψ ,

D(A∗
τn

) =
{
Ψ̃ ∈ C∗

C
∩ (C∗

C
)1 : Ψ̃ (0) ∈ X

2
C
,− ˙̃

Ψ (0) = τn AλΨ̃ (0) + τn B
∗
λΨ̃ (1)

}
,

where C∗
C

= C([0, 1],Y2
C
), (C∗

C
)1 = C1([0, 1],Y2

C
). Define a formal duality 〈〈·, ·〉〉 by

〈〈Ψ̃ , Ψ 〉〉 =
〈
Ψ̃ (0), Ψ (0)

〉
w

− τn

∫ 0

−1

〈
Ψ̃ (s + 1), BλΨ (s)

〉
w
ds. (5.4)

for Ψ̃ ∈ D(A∗
τn

) and Ψ ∈ D(Aτn ). Then A∗
τn

and Aτn satisfy

〈〈A∗
τn

Ψ̃ , Ψ 〉〉 = 〈〈Ψ̃ ,AτnΨ 〉〉
for Ψ̃ ∈ D(A∗

τn
) and Ψ ∈ D(Aτn ). The above equality means that A∗

τn
and Aτn are adjoint

operators under the bilinear form (5.4).
It can be seen from Theorem 4 thatAτn has a pair of simple purely imaginary eigenvalues

±iωλτn . Then the eigenfunction corresponding to iωλτn (resp.−iωλτn) is p(s) = ψλeiωλτns

(resp. p(s) = ψλe
−iωλτns) for s ∈ [−1, 0], where ψλ is defined as in (3.21). At the same

time, it follows from Theorem 5 and Remark 1 that ±iωλτn are also a pair of simple purely
imaginary eigenvalues of the operator A∗

τn
and the eigenfunction associated with −iωλτn

(resp. iωλτn) is q(s̃) = ψ̃λeiωλτn s̃ (resp. q(s̃) = ψ̃λe
−iωλτn s̃) for s̃ ∈ [0, 1], where ψ̃λ
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is defined in Theorem 5. Following from [32], the center subspace of Eq. (5.1) is P =
span{p(s), p(s)}, and the formal adjoint subspace of P with respect to the bilinear form

(5.4) is P∗ = span{q(s̃), q(s̃)}. Let Φ(s) = (p(s), p(s)), Ψ (s̃) =
(
q(s̃)

Snλ

,
q(s̃)

Snλ

)T

. It is

easy to verify that 〈〈Ψ , Φ〉〉 = I , where I ∈ R
2×2 is a identity matrix. Actually, we can

decompose CC as CC = P ⊕ Q, where

Q =
{
Ψ ∈ CC : 〈〈Ψ̃ , Ψ 〉〉 = 0 for Ψ̃ ∈ P∗} .

Following the idea ofHassard et al. [16], the formulas determining the bifurcation direction
and stability are all relative to γ = 0. In the remainder of this section, we take γ = 0 and
define

z(t) = 1

Snλ

〈〈q,Ut 〉〉, W (z(t), z(t)) = Ut − 2Re{z(t)p}. (5.5)

Then we obtain a center manifold C0:

W (z, z)(s) = W20(s)
z2

2
+ W11(s)zz + W02(s)

z2

2
+ · · · ,

where z and z are local coordinates for the center manifold C0 in the direction of q and q.
From (5.5), for γ = 0, we see that

ż(t) = 1

Snλ

· d

dt
〈〈q(s̃),Ut 〉〉 = 1

Snλ

〈〈q(s̃),AτnUt 〉〉 + 1

Snλ

〈〈q(s̃), X0 J (Ut , 0)〉〉

= iωλτnz(t) + 1

Snλ

〈q(0), J (2Re{z(t)p} + W (z(t), z(t)), 0)〉w
= iωλτnz(t) + g(z, z).

(5.6)

Then,

g(z, z) = 1

Snλ

〈q(0), J (2Re{z(t)p} + W (z(t), z(t)), 0)〉w

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ . . . .

(5.7)

We now calculate that

g20 = 2λτne−iωλτn

Snλ

〈
ψ̃λ, T1(ψλ, ψλ)

〉
w

+ λτne−2iωλτn

Snλ

〈
ψ̃λ, T2(ψλ, ψλ)

〉
w

,

g11 = λτneiωλτn

Snλ

〈
ψ̃λ, T1(ψλ, ψλ)

〉
w

+ λτne−iωλτn

Snλ

〈
ψ̃λ, T1(ψλ, ψλ)

〉
w

+ λτn

2Snλ

〈
ψ̃λ, T2(ψλ, ψλ) + T2(ψλ, ψλ)

〉
w

,

g02 = 2λτneiωλτn

Snλ

〈
ψ̃λ, T1(ψλ, ψλ)

〉
w

+ λτne2iωλτn

Snλ

〈
ψ̃λ, T2(ψλ, ψλ)

〉
w

,

g21 = 2λτn

Snλ

〈
ψ̃λ, T1(ψλ,W11(−1))

〉
w

+ λτn

Snλ

〈
ψ̃λ, T1(ψλ,W20(−1))

〉
w

+ λτneiωλτn

Snλ

〈
ψ̃λ, T1(W20(0), ψλ)

〉
w

+ 2λτne−iωλτn

Snλ

〈
ψ̃λ, T1(W11(0), ψλ)

〉
w

+ λτne−iωλτn

Snλ

〈
ψ̃λ, T2(ψλ,W11(−1)) + T2(W11(−1), ψλ)

〉
w
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+ λτneiωλτn

2Snλ

〈
ψ̃λ, T2(W20(−1), ψλ) + T2(ψλ,W20(−1))

〉
w

+ λτn

Snλ

〈
ψ̃λ, T3(ψλ, ψλ,ψλ) + T3(ψλ, ψλ,ψλ)

〉
w

+ λτne−2iωλτn

Snλ

〈
ψ̃λ, T3(ψλ, ψλ,ψλ)

〉
w

+ λτne−iωλτn

Snλ

〈
ψ̃λ, T4(ψλ, ψλ,ψλ) + T4(ψλ, ψλ,ψλ) + T4(ψλ, ψλ,ψλ)

〉
w

, (5.8)

where T1 is given by

T1(ϕ1, ϕ2) =
⎛
⎝ϕ

(1)
1

(
r1λ1 (x)K11 ∗ ϕ

(1)
2 + r1λ2 (x)K12 ∗ ϕ

(2)
2

)
ϕ

(2)
1

(
r2λ1 (x)K21 ∗ ϕ

(1)
2 + r2λ2 (x)K22 ∗ ϕ

(2)
2

)
⎞
⎠ ,

T2 = (T (1)
2 , T (2)

2 )T is given by

T (1)
2 (ϕ1, ϕ2) = uλ

(
r1λ20 (x)(K11 ∗ ϕ

(1)
1 )(K11 ∗ ϕ

(1)
2 ) + 2r1λ11 (x)(K11 ∗ ϕ

(1)
1 )(K12 ∗ ϕ

(2)
2 )

+ r1λ02 (x)(K12 ∗ ϕ
(2)
1 )(K12 ∗ ϕ

(2)
2 )

)
,

T (2)
2 (ϕ1, ϕ2) = vλ

(
r2λ20 (x)(K21 ∗ ϕ

(1)
1 )(K21 ∗ ϕ

(1)
2 ) + 2r2λ11 (x)(K21 ∗ ϕ

(1)
1 )(K22 ∗ ϕ

(2)
2 )

+ r2λ02 (x)(K22 ∗ ϕ
(2)
1 )(K22 ∗ ϕ

(2)
2 )

)
,

T3 = (T (1)
3 , T (2)

3 )T is given by

T (1)
3 (ϕ1, ϕ2, ϕ3) = ϕ

(1)
1

(
r1λ20 (x)(K11 ∗ ϕ

(1)
2 )(K11 ∗ ϕ

(1)
3 ) + 2r1λ11 (x)(K11 ∗ ϕ

(1)
2 )(K12 ∗ ϕ

(2)
3 )

+ r1λ02 (x)(K12 ∗ ϕ
(2)
2 )(K12 ∗ ϕ

(2)
3 )

)
,

T (2)
3 (ϕ1, ϕ2, ϕ3) = ϕ

(2)
1

(
r2λ20 (x)(K21 ∗ ϕ

(1)
2 )(K21 ∗ ϕ

(1)
3 ) + 2r2λ11 (x)(K21 ∗ ϕ

(1)
2 )(K22 ∗ ϕ

(2)
3 )

+ r2λ02 (x)(K22 ∗ ϕ
(2)
2 )(K22 ∗ ϕ

(2)
3 )

)
,

and T4 = (T (1)
4 , T (2)

4 )T is given by

T (1)
4 (ϕ1, ϕ2, ϕ3)

= uλ

(
r1λ30 (x)(K11 ∗ ϕ

(1)
1 )(K11 ∗ ϕ

(1)
2 )(K11 ∗ ϕ

(1)
3 ) + 3r1λ21 (x)(K11 ∗ ϕ

(1)
1 )(K11 ∗ ϕ

(1)
2 )(K12 ∗ ϕ

(2)
3 )

+ 3r1λ12 (x)(K11 ∗ ϕ
(1)
1 )(K12 ∗ ϕ

(2)
2 )(K12 ∗ ϕ

(2)
3 + r1λ03 (x)(K12 ∗ ϕ

(2)
1 )(K12 ∗ ϕ

(2)
2 )(K12 ∗ ϕ

(2)
3 )

)
,

T (2)
4 (ϕ1, ϕ2, ϕ3)

= vλ

(
r2λ30 (x)(K21 ∗ ϕ

(1)
1 )(K21 ∗ ϕ

(1)
2 )(K21 ∗ ϕ

(1)
3 ) + 3r2λ21 (x)(K21 ∗ ϕ

(1)
1 )(K21 ∗ ϕ

(1)
2 )(K22 ∗ ϕ

(2)
3 )

+ 3r2λ12 (x)(K21 ∗ ϕ
(1)
1 )(K22 ∗ ϕ

(2)
2 )(K22 ∗ ϕ

(2)
3 + r2λ03 (x)(K22 ∗ ϕ

(2)
1 )(K22 ∗ ϕ

(2)
2 )(K212 ∗ ϕ

(2)
3 )

)
,

for ϕi = (ϕ
(1)
i , ϕ

(2)
i )T ∈ Y

2, i = 1, 2, 3. From (5.8), we see that there are only W20(s) and
W11(s) in g21 left to calculate.

It can be deduced from (5.3) and (5.5) that

Ẇ =
{
AτnW − gp(s) − g p(s), s ∈ [−1, 0),

AτnW − gp(0) − g p(0) + J (2Re{z(t)p} + W (z(t), z(t)), 0), s = 0.
(5.9)
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Meanwhile, W also satisfies that

Ẇ = Wzż + Wz̄ ż

= [W20(s)z + W11(s)z] ż + [W11(s)z + W02(s)z] ż + · · ·
= [W20(s)z + W11(s)z] (iθnλz + g(z, z))

+ [W11(s)z + W02(s)z] (−iθnλz + g(z, z)) + · · · ,

on the center manifold C0 near the origin. Combining the above equation with Eq. (5.9), we
have

(2iθnλ I − Aτn )W20(s) =

⎧⎪⎨
⎪⎩

−g20 p(s) − g02 p(s), s ∈ [−1, 0),

−g20 p(0) − g02 p(0) + 2λτne−iωλτnT1(ψλ, ψλ)

+λτne−2iωλτnT2(ψλ, ψλ), s = 0,

(5.10)

and

− AτnW11(s) =

⎧⎪⎨
⎪⎩

−g11 p(s) − g11 p(s), s ∈ [−1, 0),

−g11 p(0) − g11 p(0) + λτne−iωλτnT1(ψλ, ψλ)

+λτneiωλτnT1(ψλ, ψλ) + λτn
2

(
T2(ψλ, ψλ) + T2(ψλ, ψλ)

)
, s = 0.

(5.11)

To compute W20, from (5.10), we have

W ′
20(s) = 2iθnλW20(s) + g20 p(s) + g02 p(s), s ∈ [−1, 0).

Note that p(s) = ψλeiωλτns , then there holds that

W20(s) = ig20
ωλτn

p(s) + i g02
3ωλτn

p(s) + Ee2iωλτns . (5.12)

Especially, Eqs. (5.10) and (5.12) imply that

(2iωλτn I − Aτn )Ee
2iθnλs

∣∣∣∣
s=0

= 2λτne
−iωλτnT1(ψλ, ψλ) + λτne

−2iωλτnT2(ψλ, ψλ),

or equivalently,

Λ(λ, 2iωλ, τn)E = −2λe−iωλτnT1(ψλ, ψλ) − λe−2iωλτnT2(ψλ, ψλ). (5.13)

Notice that 2iωλ is not the eigenvalue of Aτn ,λ for λ ∈ (λ∗, λ̃∗]. Then
E = −2λe−iωλτnΛ(λ, 2iωλ, τn)

−1T1(ψλ, ψλ) − λe−2iωλτnΛ(λ, 2iωλ, τn)
−1T2(ψλ, ψλ).

Similarly, we can derive from (5.11) that, for s ∈ [−1, 0),

W11(s) = − ig11
ωλτn

p(s) + i g11
ωλτn

p(s) + F, (5.14)

and when s = 0, F satisfies

−Aτ F = λτne
−iωλτnT1(ψλ, ψλ) + λτne

iωλτnT1(ψλ, ψλ) + λτn

2

(
T2(ψλ, ψλ) + T2(ψλ, ψλ)

)
.

Thus, we obtain

F = −λΛ(λ, 0, τnλ)
−1

[
e−iωλτnT1(ψλ, ψλ)

+eiωλτnT1(ψλ, ψλ) + 1

2

(
T2(ψλ, ψλ) + T2(ψλ, ψλ)

)]
. (5.15)
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Lemma 6 Let E and F be defined in (5.13) and (5.15), respectively. Assume that (H1)−(H3)

hold, then for λ ∈ (λ∗, λ̃∗],

E = 1

λ − λ∗
(ρλUλ + ϕλ), F = ϕ̃λ

λ − λ∗
, (5.16)

where Uλ = (uλ, vλ)
T is defined in (2.3), ϕλ and ϕ̃λ satisfy

〈Uλ, ϕλ〉 = 0, lim
λ→λ∗

‖ϕλ‖YC
= 0, lim

λ→λ∗
‖ϕ̃λ‖YC

= 0,

and the constant ρλ satisfies

lim
λ→λ∗

(λ − λ∗)ρλ = 2i(1 + p21λ∗)(κ22 − κ12)(κ11 + κ12 p1λ∗)

(β2
λ∗ + c2λ∗)

[
2i(κ22 − κ12)(κ11 + κ12 p1λ∗) − (κ11κ22 − κ12κ21)

] .
Proof We only show the estimate for E , and that for F can be proved in a similar manner.
Since AλUλ = 0, by substituting E , defined as in (5.16), into Eq. (5.13), we obtain

Aλϕλ + Bλ(ρλUλ + ϕλ)e
−2iωλτn − 2iωλ(ρλUλ + ϕλ)

= −2λ(λ − λ∗)e−iωλτnT1(ψλ, ψλ) − λ(λ − λ∗)e−2iωλτnT2(ψλ, ψλ).
(5.17)

Calculating the weighted inner product of Eq. (5.17) with Uλ gives that

ρλ

[
e−2iωλτn 〈Uλ, BλUλ〉w − 2iωλ 〈Uλ,Uλ〉w

]
= −e−2iωλτn 〈Uλ, Bλϕλ〉w + 2iωλ 〈Uλ, ϕλ〉w

− 2λ(λ − λ∗)e−iωλτn 〈Uλ, T1(ψλ, ψλ)〉w
− λ(λ − λ∗)e−2iωλτn 〈Uλ, T2(ψλ, ψλ)〉w .

(5.18)

By calculating the weighted inner product of Eq. (5.17) with ϕλ, we see

〈ϕλ, Aλϕλ〉w + ρλe
−2iωλτn 〈ϕλ, BλUλ〉w − 2iωλρλ 〈ϕλ,Uλ〉w

= −e−2iωλτn 〈ϕλ, Bλϕλ〉w + 2iωλ 〈ϕλ, ϕλ〉w
− 2λ(λ − λ∗)e−iωλτn 〈ϕλ, T1(ψλ, ψλ)〉w
− λ(λ − λ∗)e−2iωλτn 〈ϕλ, T2(ψλ, ψλ)〉w .

(5.19)

Recall that

ψλ →
(

φ

p1λ∗φ

)
, Uλ/(λ − λ∗) →

(
βλ∗φ
cλ∗φ

)
in C(Ω) × C(Ω),

ωλ/(λ − λ∗) → hλ∗ , ωλτn → π

2
+ 2nπ(n = 0, 1, 2, . . .), as λ → λ∗.

(5.20)

Then we have

lim
λ→λ∗

〈Uλ, BλUλ〉w
(λ − λ∗)3

= −(β2
λ∗ + c2λ∗)

∫
Ω

m(x)eαm(x)φ2dx,

lim
λ→λ∗

λ 〈Uλ, T1(ψλ, ψλ)〉w
λ − λ∗

= −(1 + p21λ∗)hλ∗

∫
Ω

eαm(x)φ2dx,

lim
λ→λ∗

λ 〈Uλ, T2(ψλ, ψλ)〉w
λ − λ∗

= 0,

lim
λ→λ∗

ωλ 〈Uλ,Uλ〉w
(λ − λ∗)3

= hλ∗(β
2
λ∗ + c2λ∗)

∫
Ω

eαm(x)φ2dx .
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Hence from Eq. (5.18), there exist constants λ̃∗ > λ∗ and M1, M2 > 0 so that for any
λ ∈ (λ∗, λ̃∗),

|(λ − λ∗)ρλ| ≤ M1‖ϕλ‖Y2
C

+ M2. (5.21)

Similar to the proof of Lemma 2.3 of [4], we have

|〈ϕλ, Aλϕλ〉w| ≥ |λ2(λ)|‖ϕλ‖2
Y
2
C

,

where λ2(λ) is the second eigenvalue of −A(λ). On the other hand, we can also obtain from
(5.19), (5.20) and (5.21) that there exist constants M3, M4 > 0 such that for any λ ∈ (λ∗, λ̃),

|λ2(λ)| · ‖ϕλ‖2
Y
2
C

≤ (λ − λ∗)M3‖ϕλ‖2
Y
2
C

+ (λ − λ∗)M4‖ϕλ‖Y2
C

.

Note that lim
λ→λ∗

λ2(λ) = λ2 > 0,whereλ2, defined as inLemma1 (i), is the second eigenvalue

of −L , then lim
λ→λ∗

‖ϕλ‖Y2
C

= 0. Now, we can derive from (5.18) that

lim
λ→λ∗

(λ − λ∗)ρλ = 2i(1 + p21λ∗)(κ22 − κ12)(κ11 + κ12 p1λ∗)

(β2
λ∗ + c2λ∗)

[
2i(κ22 − κ12)(κ11 + κ12 p1λ∗) − (κ11κ22 − κ12κ21)

] .
The proof is finished. ��

From (5.8), we see that each gkl is determined by the parameters of original system (1.5).
Notice that

lim
λ→λ∗

Snλ = (1 + p̃1λ∗ p1λ∗ )
[
1 + i(

π

2
+ 2nπ)

] ∫
Ω

eαm(x)φ2dx,

lim
λ→λ∗

(λ − λ∗)τn =
π
2 + 2nπ

hλ∗
, lim

λ→λ∗
(λ − λ∗)F =

(
0
0

)
,

lim
λ→λ∗

(λ − λ∗)E = 2i(1 + p21λ∗ )(κ22 − κ12)(κ11 + κ12 p1λ∗ )

(β2
λ∗ + c2λ∗ )

[
2i(κ22 − κ12)(κ11 + κ12 p1λ∗ ) − (κ11κ22 − κ12κ21)

] (βλ∗φ
cλ∗φ

)
.

Then we can compute that

lim
λ→λ∗

(λ − λ∗)g20 = 2i(cλ∗ + βλ∗ p̃1λ∗ p
2
1λ∗)(π + 4nπ)

βλ∗cλ∗(1 + p̃1λ∗ p1λ∗)(2 + i(π + 4nπ))
,

lim
λ→λ∗

(λ − λ∗)g11 = 0,

lim
λ→λ∗

(λ − λ∗)g02 = − 2i(cλ∗ + βλ∗ p̃1λ∗ p
2
1λ∗)(π + 4nπ)

βλ∗cλ∗(1 + p̃1λ∗ p1λ∗)(2 + i(π + 4nπ))
,

(5.22)

which combined with (5.12) and (5.14) yields

lim
λ→λ∗

(λ − λ∗)2g21 = 8i(π + 4nπ)

3(1 + p̃1λ∗ p1λ∗)2|2 + i(π + 4nπ)|2
[

1

βλ∗
+ p̃1λ∗ p

2
1λ∗

cλ∗

]2

+ 2(1 + i)(1 + p21λ∗)(κ11κ22 − κ12κ21)

(β2
λ∗ + c2λ∗)

[
2i(κ22 − κ12)(κ11 + κ12 p1λ∗) − (κ11κ22 − κ12κ21)

]
× π + 4nπ

2 + i(π + 4nπ)
. (5.23)
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Consequently, we have obtained the normal form (5.6) restricted on the center manifold C0

by computing the coefficients g20, g11, g02 and g21. Denote

C1(0) = i

2θnλ

[
g11g20 − 2|g11|2 − |g02|2

3

]
+ g21

2
.

Then, we have

μ2 = − Re(C1(0))

Re(μ′(τn))
,

β2 = 2Re(C1(0)),

T2 = − Im(C1(0)) + μ2Im(μ′(τn))
τn

,

which determine the properties of bifurcating periodic solutions at critical value τn , that is,

(i) μ2 determines the direction of the Hopf bifurcation: if μ2 > 0(< 0), then the direction
of the Hopf bifurcation is forward (backward) and the bifurcating periodic solutions
exist for τ > τn(τ < τn);

(ii) β2 determines the stability of the bifurcating periodic solutions: if β2 < 0(> 0), then
the bifurcating periodic solutions are orbitally asymptotically stable (unstable) on the
center manifold;

(iii) T2 determines the period of bifurcating periodic solutions: if T2 > 0(< 0), then the
period of the bifurcating periodic solutions increases (decreases).

Under assumptions (H2) and (H3), there holds that

lim
λ→λ∗

Re((λ − λ∗)2g21) < 0, lim
λ→λ∗

Re((λ − λ∗)2C1(0)) < 0.

Now, the following result is obtained.

Theorem 8 Assume that (H1) − (H3) hold, and λ ∈ (λ∗, λ∗] with 0 < λ∗ − λ∗ 	 1.
Let τn(λ) given as in (3.21) be the Hopf bifurcation points for Eq. (1.5) where spatially
nonhomogeneous periodic orbits of Eq. (1.5) emerge from (τn, uλ, vλ). Then for n ∈ N∪{0},
the direction of the Hopf bifurcation at τ = τn is forward and the bifurcating periodic
solutions are orbitally asymptotically stable on the center manifold. Especially, there exist
ε0 > 0 such that (1.5) has a locally asymptotically stable spatially nonhomogeneous periodic
solution for τ ∈ (τ0, τ0 + ε0).

6 A Lotka–Volterra Competition–Diffusion–AdvectionModel with
Nonlocal Delay

In this section we choose the following Lotka–Volterra competitive system as examples⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = [
dux − aumx

]
x + u(x, t)

×
[
m(x) − a11

∫ π

0 k(x, y)u(y, t − τ)dy − a12
∫ π

0 k(x, y)v(y, t − τ)dy
]
, x ∈ (0, π), t > 0,

vt = [
dvx − avmx

]
x + v(x, t)

×
[
m(x) − a21

∫ π

0 k(x, y)u(y, t − τ)dy − a22
∫ π

0 k(x, y)v(y, t − τ)dy
]
, x ∈ (0, π), t > 0,

u(x, t) = v(x, t) = 0, x = 0, π, t > 0,

(6.1)
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where a11, a22, a12, a21 > 0 and k(x, y) is a continuous nonnegative function on Ω × Ω .
Then (6.1) is a competitive system. Similar to Eq. (1.5), we can also obtain an equivalent
model of Eq. (6.1) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = e−αm(x)∇ · [eαm(x)∇u
] + λu(x, t)

×
[
m(x) − a11

∫ π

0 K (x, y)u(y, t − τ)dy − a12
∫ π

0 K (x, y)v(y, t − τ)dy
]
, x ∈ (0, π), t > 0,

vt = e−αm(x)∇ · [eαm(x)∇v
] + λv(x, t)

×
[
m(x) − a21

∫ π

0 K (x, y)u(y, t − τ)dy − a22
∫ π

0 K (x, y)v(y, t − τ)dy
]
, x ∈ (0, π), t > 0,

u(x, t) = v(x, t) = 0, x = 0, π, t > 0,

(6.2)

where λ = 1/d, α = a/d and K (x, y) = k(x, y)eαm(y). Here m(x) satisfies the assumption
(H1).

Suppose that (u, v) is a positive steady state of (6.2) satisfying⎧⎪⎪⎨
⎪⎪⎩
e−αm(x)∇ · [eαm(x)∇u

] + λu(x)
[
m(x) − a11

∫ π

0 K (x, y)u(y)dy − a12
∫ π

0 K (x, y)v(y)dy
]

= 0, x ∈ (0, π),

e−αm(x)∇ · [eαm(x)∇v
] + λv(x)

[
m(x) − a21

∫ π

0 K (x, y)u(y)dy − a22
∫ π

0 K (x, y)v(y)dy
]

= 0, x ∈ (0, π),

u(x) = v(x) = 0, x = 0, π.

(6.3)

Multiplying the first equation of (6.3) by eαm(x)φ and integrating the result over Ω , we have

λ∗
∫ π

0
m(x)eαm(x)φudx = −

∫ π

0
u∇ · [eαm(x)∇φ]dx = −

∫ π

0
φ∇ · [eαm(x)∇u]dx

= λ

∫ π

0
φeαm(x)u

[
m(x) − a11

∫ π

0
K (x, y)u(y)

−a12

∫ π

0
K (x, y)v(y)

]
dx

≤ λ

∫ π

0
m(x)eαm(x)φudx .

Therefore, the problem (6.2) has no positive steady state if λ < λ∗.
Let

f1(x, K11 ∗ u, K12 ∗ v) = m(x) − a11

∫ π

0
K (x, y)udy − a12

∫ π

0
K (x, y)vdy,

f2(x, K21 ∗ u, K22 ∗ v) = m(x) − a21

∫ π

0
K (x, y)udy − a22

∫ π

0
K (x, y)vdy.

Suppose that a11
a21

> 1 > a12
a22

. Then one can easily check that (H2) and (H3) are satisfied.
According to Lemma 3, Theorems 1, 7 and 8 , we obtain the following conclusions for (6.2)
which is competitive:

(i) When 0 < λ < λ∗, the trivial steady state (0, 0) is the unique nonnegative steady state
of (6.2), which is locally asymptotically stable;

(ii) When λ ∈ (λ∗, λ̃∗] with 0 < λ̃∗ − λ∗ 	 1, system (6.2) admits a spatially nonhomo-
geneous positive steady state (uλ, vλ);

(iii) For λ ∈ (λ∗, λ̃∗], there exists a critical point τ0 such that the positive steady state
(uλ, vλ) is locally asymptotically stable if τ ∈ [0, τ0), and unstable if τ ∈ (τ0,∞);

(iv) System (6.2) undergoes a supercritical Hopf bifurcation at the positive steady state
(uλ, vλ) when τ = τ0, and there exists a locally stable spatially nonhomogeneous
time-periodic solution for τ ∈ (τ0, τ0 + ε0), where ε0 > 0 is small.
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It follows from Lemma 2 and Theorem 4 that

θλ∗(α)(α) = π

2
, hλ∗(α)(α) =

(a22 − a12)(a11 + a12 p1λ∗)
∫

Ω

m(x)eαm(x)φ2dx

(a11a22 − a12a21)
∫

Ω

eαm(x)φ2dx
,

where p1λ∗ is the positive root of the equation

a12(a12 − a22)p
2 + (a11a12 − a22a21)p − a21(a21 − a11) = 0,

and the first Hopf bifurcation value satisfies

τ0(λ, α) = θλ(α)

(λ − λ∗(α))hλ(α)
.

Since a11
a21

> 1 > a12
a22

, we have (a22−a12)(a11+a12 p1λ∗ )

(a11a22−a12a21)
> 0. By the similar argument to [8,

Proposition 4.7], we can derive that hλ∗(α)(α) is strictly increasingwith respect toα ∈ [0,∞).
Then we show how the advection rate affects the Hopf bifurcation value with respect to
sufficiently small α > 0.

Proposition 1 Assume that a11
a21

> 1 > a12
a22

and the non-constant function m(x) satisfies (H1)

and

m(x) > 0 and Δm < 0 for x ∈ Ω.

Then there exist δ1, δ2 > 0 such that τ0(λ, α) is strictly decreasing with respect to α ∈ [0, δ1)
for λ ∈ (λ∗(0), λ∗(0) + δ2).

Remark 2 Proposition 1 implies that Hopf bifurcation is more likely to occur when adding a
term describing advection along the environmental gradients for the diffusive Lotka–Volterra
competition model with nonlocal delay. One can use an argument similar to [19, Theorem
5.1] to prove Proposition 1.

In the following we give some numerical simulations to verify our analysis results. In
order to maintain the real time scale, we will simulate the original competitive system (6.1),
then the critical value for stability switch is τ0/d . We take Ω = (0, π), the space step as
π/50 and the time step as 0.001. In numerical simulations, different types of patterns are
observed and we have found that the distribution of species u and v is always of the same
type. For the sake of simplicity, only the patterns of the distribution of species u are given
here for instance. Choose the following parameter set:

(P) k(x, y) ≡ 1, a11 = 0.4, a12 = 0.1, a21 = 0.1, a22 = 0.4,m(x) = sin x, x ∈ (0, π)

and initial condition:

(IC) u(x, t) = v(x, t) = 0.1 sin x, x ∈ Ω, t ∈ [−τ, 0].
It follows from previous argument that system (6.1) admits no positive steady state if

d > 1/λ∗. Then we choose d = 1 in Fig. 1, and observe that the solution of (6.1) converges
to trivial steady state (0, 0) both when τ = 0 and τ = 2.

The influence of the time delay τ on the solution of (6.1) can be observed clearly in Fig. 2.
We first set d = 0.06, a = 0.01. According to our theoretical analysis, when τ < τ0/d , the
positive steady state (ud , vd) = (eam(x)/d ũλ, eam(x)/d ṽλ) of (6.1) is locally asymptotically
stable, while if τ > τ0/d a forward Hopf bifurcation occurs, the positive steady state (ud , vd)
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Fig. 1 Numerical simulations of (6.1) for d = 1, a = 0.01 with parameter set (P) and initial condition (IC).
Left: τ = 0; Right: τ = 2

Fig. 2 Numerical simulations of (6.1) for d = 0.06, a = 0.01 with parameter set (P) and initial condition
(IC). Left: τ = 1.5; Right: τ = 2

Fig. 3 Numerical simulations of (6.1) for d = 0.06, a = 1 with parameter set (P) and initial condition (IC).
Left: τ = 0.2; Right: τ = 1.5

loses its stability and the bifurcation periodic solution is stable. The left graph in Fig. 2 show
the existence of stable nonhomogeneous positive steady state and the right graph in Fig. 2
depicts the occurrence of stable periodic solutions with obvious oscillation. In Fig. 3, letting
a = 1, we see that the solution of (6.1) converges to a positive steady state when τ = 0.2;
when τ = 1.5, the solution of (6.1) converges to a time-periodic solution. Then Figs. 2, 3
show that, the critical Hopf bifurcation value for stability switch decreases as the advection
rate a increasing.
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Fig. 4 Numerical simulations of (6.1) for discrete delay case with d = 0.06, parameter set (P) and initial
condition (IC). Here a = 0.01. Left: τ = 1.5; Right: τ = 2

In Fig. 4, we show the simulation for the discrete delay case that k(x, y) = δ(x − y) in
(6.1), which has been studied in [21]. By comparing Figs. 2 and 4, we see that the nonlocal
delay makes the positive steady state and time-periodic solution smaller. In biology, this
means that the nonlocal delay causes the intraspecific and interspecific competitions more
fiercely.

Acknowledgements Z. Li is supported by the Fundamental Research Funds for the Central Universities of
Central South University (No. 2020zzts040), B. Dai is supported by the National Natural Science Foundation
of China (No. 11871475) and R. Han is supported by the Youth Foundation of Zhejiang University of Science
and Technology (No.XJ2021003203).

References

1. Arino,O.,Hbid,M.L.,AitDads, E.:DelayDifferential Equations andApplications, pp. 477–517. Springer,
Berlin (2006)

2. Belgacem, F., Cosner, C.: The effects of dispersal along environmental gradients on the dynamics of
populations in heterogeneous environment. Can. Appl. Math. Q. 3(4), 379–397 (1995)

3. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reaction–diffusion
population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)

4. Busenberg, S., Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion
effects. J. Differ. Equ. 124(1), 80–107 (1996)

5. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, Chichester (2003)
6. Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal

delay effect. J. Differ. Equ. 253(12), 3440–3470 (2012)
7. Chen, S., Shi, J.: Global dynamics of the diffusive Lotka–Volterra competition model with stage structure.

Calculus Var. Partial Differ. Equ. 59, 33 (2020)
8. Chen, S., Lou, Y., Wei, J.: Hopf bifurcation in a delayed reaction–diffusion–advection population model.

J. Differ. Equ. 264(8), 5333–5359 (2018)
9. Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population? J. Math.

Anal. Appl. 277, 489–503 (2003)
10. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a

reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)
11. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am.

Math. Soc. 352(5), 2217–2238 (2000)
12. Gourley, S.A., So, J.W.-H.: Dynamics of a food-limited population model incorporating nonlocal delays

on a finite domain. J. Math. Biol. 44(1), 49–78 (2002)
13. Guo, S.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ.

259, 1409–1448 (2015)

123



2486 Journal of Dynamics and Differential Equations (2023) 35:2453–2486

14. Guo, S., Yan, S.: Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect.
J. Differ. Equ. 260, 781–817 (2016)

15. Han, R., Dai, B.: Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect
and general functional response. Chaos Soliton Fract. 96, 90–109 (2017)

16. Hassard, B.D., Kazarinoff, N.D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge
University Press, Cambridge (1981)

17. He, X., Ni, W.-M.: Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and
spatial heterogeneity I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

18. Hu, R., Yuan, Y.: Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed
delay. J. Differ. Equ. 250, 2779–2806 (2011)

19. Jin, Z., Yuan, R.: Hopf bifurcation in a reaction–diffusion–advection equation with nonlocal delay effect.
J. Differ. Equ. 271, 533–562 (2021)

20. Li, Z., Dai, B., Dong, X.: Global stability of nonhomogeneous steady-state solution in a Lotka–Volterra
competition–diffusion–advection model. Appl. Math. Lett. 107, 106480 (2020)

21. Li, Z., Dai, B.: Stability and Hopf bifurcation analysis in a Lotka–Volterra competition–diffusion–
advection model with time delay effect. Nonlinearity 34, 3271–3313 (2021)

22. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ.
Equ. 223, 400–426 (2006)

23. Lou, Y.: Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics,
pp. 171–205. Springer, Berlin (2007)

24. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary
conditions. J. Differ. Equ. 259, 141–171 (2015)

25. Murray, J.D.: Mathematical Biology, II: Spatial Models and Biomedical Applications. Springer, New
York (2003)

26. Ni, W., Shi, J., Wang, M.: Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra
competition model. J. Differ. Equ. 264, 6891–6932 (2018)

27. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Springer,
New York (2001)

28. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer,
New York (1983)

29. Song, Y., Han, M., Peng, Y.: Stability and Hopf bifurcations in a competitive Lotka–Volterra system with
two delays. Chaos Solitons Fract. 22, 1139–1148 (2004)

30. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences.
Springer, New York (2011)

31. Tang, Y., Zhou, L.: Hopf bifurcation and stability of a competitive diffusion systemwith distributed delay.
Publ. Res. Inst. Math. Sci. 41, 579–597 (2005)

32. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)
33. Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competition diffusion system.

Chaos Solitons Fract. 14, 1201–1225 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Hopf Bifurcation in a Reaction–Diffusion–Advection Two Species Model with Nonlocal Delay Effect
	Abstract
	1 Introduction
	2 Existence of Positive Steady State
	3 Eigenvalue Problems
	4 Stability and Hopf Bifurcation
	5 The Properties of Hopf Bifurcation
	6 A Lotka–Volterra Competition–Diffusion–Advection Model with Nonlocal Delay
	Acknowledgements
	References




