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Abstract
This paper is concerned with the nonlocal dispersal problem in inhomogeneous media. Our
goal is to show the limiting behavior of perturbation equation with parameters. By analyzing
the asymptotic behavior of solutions when the parameter is small, we find that convection
appears in inhomogeneous media. Moreover, if the effect of inhomogeneous media changes,
thenwe prove a convergence result that convection disappears in nonlocal dispersal problems.
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1 Introduction

Let K : RN → R be a nonnegative function such that
∫
RN K (x) dx = 1. Nonlocal dispersal

equation

ut (x, t) = K ∗ u(x, t) − u(x, t) =
∫

RN
K (x − y)u(y, t) dy − u(x, t), (1.1)

and variations of it have been widely used to model diffusion process (see e.g. [3,16]). As
stated in [1,12], ifu(x, t) is thought as a density at position x at time t and the probability distri-
bution that individuals jump from y to x is given by K (x − y), then

∫
RN K (x − y)u(y, t) dy

denotes the rate at which individuals are arriving to position x from all other places and
u(x, t) = ∫

RN K (y − x)u(x, t) dy is the rate at which they are leaving position x to all other
places. This consideration, in the absence of external sources, leads immediately to that u
satisfies (1.1). For recent references on nonlocal dispersal equations, see [2,5,9,15,27–30]
and references therein.

Since the natural environments are generally heterogeneous and the habitat fragmentation
makes a basic change on the spreading and diffusion of species [4,19,31]. In this case, the
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inhomogeneous media plays a great role in the study of evolution problems. We study the
nonlocal dispersal problems in inhomogeneous media and consider the following nonlocal
dispersal equation

ut =
∫

RN
k1(x, y)u(y, t) dy −

∫

RN
k2(x, y)u(x, t) dy, (1.2)

here k1, k2 are nonnegative dispersal kernel functions. In the present paper, we shall investi-
gate the effect of spatial fragmentation on the solutions of (1.2). By employing a parameter
in (1.2) and analyzing its limiting behavior of solutions, we provide an implicit understand-
ing on the effect of heterogeneous environment. At this respect, we refer the reader to the
seminal works of Cortazar et al. [7,8], Molino and Rossi [18], Shen and Xie [26] on the study
of approximation problems for nonlocal dispersal problems.

In this paper, we study two forms of kernel functions k1, k2. We first assume that

k1(x, y) = g(x)J (x − y) and k2(x, y) = g(y)J (x − y),

here J is a nonnegative kernel function and g is a nonnegative weight function. Then we
have the nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN J (x − y)[g(x)u(y, t) − g(y)u(x, t)] dy in �̄ × (0,∞),

u(x, t) = 0 in R
N\�̄ × (0,∞),

u(x, 0) = u0(x) in �̄,

(1.3)

where � a bounded smooth domain of RN and u0(x) is the given initial value. In (1.3), let
u(x, t) be the density of population at position x and time t , and the probability distribution
that individual jump from position y to x be given by J (x − y). We assume the rate that
individuals arrive at x is affected by the inhomogeneous media with weight function g(x).
Then the rate that individuals arrive at x is given by

∫

RN
g(x)J (x − y)u(y, t) dy

and the rate that individuals are leaving position x is given by
∫

RN
g(y)J (y − x)u(x, t) dy.

In fact, here we assume that the probability of population is affected by the inhomogeneous
media with weight function at the location where they are going. Hence there has a nonsym-
metric effect of inhomogeneous media. The case of symmetric effect is investigated in the
second part below. Also in (1.3), the individuals live in � and there is no individual outside
�̄. This is called nonlocal Dirichlet boundary condition, see [6,14]. Throughout this paper,
we make the following assumptions.

(A1) J : RN → R is nonnegative, radial, continuous with unit integral, J is strictly positive
in B(0, 1) and vanishes in RN\B(0, 1).

(A2) The functions g(x), u0(x) are smooth in �̄ and g(x) > 0 for x ∈ �̄.

The existence and uniqueness of solutions to (1.3) will be stated in Sect. 2. We show that
there exists a unique solution u(x, t) to (1.3) such that

u ∈ C([0,∞);C(�̄)) ∩ C1((0,∞);C(�̄)).

Our aim is to investigate the effect of inhomogeneous media on the the nonlocal evolution
problem (1.3). Then we study the role of heterogeneous weight function g(x) by employing
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a parameter and investigate the limiting behavior of solutions when the parameter is small.
So we consider the nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

uε
t (x, t) = 1

ε2

∫
RN J ε(x − y)[g(x)uε(y, t) − g(y)uε(x, t)] dy in �̄ × (0,∞),

uε(x, t) = 0 in R
N\�̄ × (0,∞),

uε(x, 0) = u0(x) in �̄,

(1.4)

where ε > 0 is a small parameter and the kernel function J ε(·) is given by

J ε(ξ) = 1

dεN g(x)
J

(
ξ

ε

)

(1.5)

with the constant

d = 1

2N

∫

RN
J (y)|y|2dy. (1.6)

In this paper we obtain that the solution of (1.4) converges to the solution of the classical
reaction–diffusion equation

⎧
⎪⎨

⎪⎩

ut = �u + p(x)u in � × (0,∞),

u(x, t) = 0 in ∂� × (0,∞),

u(x, 0) = u0(x) in �,

(1.7)

as ε → 0, here the coefficient p(x) is given by

p(x) = 1

dg(x)

N∑

i=1

∂2g(x)

∂xi∂xi
. (1.8)

Note that the regularity of solution u(x, t) to (1.7) is related to the initial value u0(x) and the
coefficient p(x), see [10,11]. Let u(x, t) be the unique solution to (1.7) such that

u ∈ C2+α,1+α/2(�̄ × [0, T ])
for some 0 < α < 1. We are ready to state the main result.

Theorem 1.1 Assume that u ∈ C2+α,1+α/2(� × [0, T ]) is the solution of (1.7) and uε(x, t)
is the solution of (1.4) for ε > 0, respectively. Then there exists C = C(T ) such that

max
t∈[0,T ] ‖u

ε(·, t) − u(·, t)‖C(�̄) ≤ Cεα → 0 as ε → 0.

From Theorem 1.1 we know that the inhomogeneous media may provide a linear increase
(or decrease) on the nonlocal dispersal system (1.3) provided p(x) is positive (or negative).

Now we consider the second case that

k1(x, y) = k2(x, y) = g(y)J (x − y)

in (1.2). In this case, we can see that the effect of inhomogenous media is related to the
same position and there appears a symmetric effect of heterogeneous environment. So we
may assume the rates that individuals arrive at x or departure form x are all affected by
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the inhomogeneous media with weight function g(y). We then have the following nonlocal
dispersal equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN g(y)J (x − y)[u(y, t) − u(x, t)] dy in �̄ × (0,∞),

u(x, t) = 0 in R
N\�̄ × (0,∞),

u(x, 0) = u0(x) in �̄.

(1.9)

In order to study the effect of heterogeneous environment on the problem (1.9), we consider
the following problem

⎧
⎪⎨

⎪⎩

uε
t (x, t) = 1

ε2

∫
RN g(y)J ε(x − y)[uε(y, t) − uε(x, t)] dy in �̄ × (0,∞),

uε(x, t) = 0 in R
N\�̄ × (0,∞),

uε(x, 0) = u0(x) in �̄,

(1.10)

here ε > 0 and the kernel function J ε is given by (1.5). We prove that the limiting behavior
of nonlocal dispersal Eq. (1.9) is similar to the convection–diffusion equation

⎧
⎪⎨

⎪⎩

ut = �u + q(x) · ∇u in � × (0,∞),

u(x, t) = 0 in ∂� × (0,∞),

u(x, 0) = u0(x) in �,

(1.11)

here

∇u =
(

∂u(x)

∂x1
,
∂u(x)

∂x2
, . . . ,

∂u(x)

∂xN

)

,

q(x) = 2∇g(x)

dg(x)
= 2

dg(x)

(
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂xN

)

, (1.12)

and d is given by (1.6).
We have the following result for nonlocal problem (1.10).

Theorem 1.2 Assume that u ∈ C2+α,1+α/2(� × [0, T ]) is the solution of (1.11) and uε(x, t)
is the solution of (1.10) for ε > 0, respectively. Then we have

max
t∈[0,T ] ‖u

ε(·, t) − u(·, t)‖C(�̄) → 0 as ε → 0.

The conclusion of Theorems 1.1–1.2 reveals different effects of inhomogeneous media on
the nonlocal dispersal systems. In the later case (1.9), we can see that the convection appears
in inhomogeneous media.

On the other hand, since the natural environment is typically periodic, it is interesting
to consider the periodic evolution problems, see [20,22–24]. This paper also deals with the
periodic nonlocal dispersal equation
⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN J (x − y)[g(x)u(y, t) − g(y)u(x, t)] dy + a(x)u(x, t) in R

N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(1.13)

and
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⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN g(y)J (x − y)[u(y, t) − u(x, t)] dy + a(x)u(x, t) in RN × (0,∞),

u(x, t) = u(x + p j e j , t) in RN × (0,∞),

u(x, 0) = u0(x) in RN ,

(1.14)

where e = (e1, e2, . . . , eN ) is the unit vector of RN and p j > 0 for j = 1, 2, . . . , N ,
g, a, u0 ∈ C(RN ) are periodic functions such that

g(x) = g(x + p je j ), a(x) = a(x + p je j ), u0(x) = u0(x + p je j ). (1.15)

It follows from [13,24,25] that (1.13) and (1.14) are related to the interesting problemwhether
the inhomogeneity speeds up the spreading speeds of

ut (x, t) =
∫

RN
J (x − y)[g(x)u(y, t) − g(y)u(x, t)] dy

+u(x, t)(a(x) − u(x, t)) in R
N × (0,∞),

and

ut (x, t) =
∫

RN
g(y)J (x − y)[u(y, t) − u(x, t)] dy

+u(x, t)(a(x) − u(x, t)) in R
N × (0,∞).

Our main goal is to examine the nonhomogeneous effects of g on the periodic nonlocal
systems (1.13) and (1.14). To do this we first consider the periodic problem

⎧
⎪⎨

⎪⎩

uε
t (x, t) = 1

ε2

∫
RN J ε(x − y)[g(x)uε(y, t) − g(y)uε(x, t)] dy in R

N × (0,∞),

uε(x, t) = uε(x + p je j , t) in R
N × (0,∞),

uε(x, 0) = u0(x) in R
N ,

(1.16)

where ε > 0 is a small parameter, j = 1, 2, . . . , N and the kernel function J ε(·) is given by
(1.5).

The main result of periodic nonlocal dispersal problem (1.16) is the next theorem.

Theorem 1.3 Assume that g(x), a(x), and u0(x) satisfy (1.15). Assume further that g(x) > 0
for x ∈ R

N . Let u ∈ C2+α,1+α/2(RN × [0,∞)) be the solution of
⎧
⎪⎨

⎪⎩

ut = �u + p(x)u in R
N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(1.17)

where p(x) is given by (1.8) and j = 1, 2, . . . , N. Then (1.16) admits a unique solution
uε(x, t) for ε > 0 and there exists C = C(T ) such that

max
t∈[0,T ] ‖u

ε(·, t) − u(·, t)‖C(RN ) ≤ Cεα → 0 as ε → 0

for any T > 0.

At last, we consider the periodic nonlocal dispersal equation
⎧
⎪⎨

⎪⎩

uε
t (x, t) = 1

ε2

∫
RN g(y)J ε(x − y)[uε(y, t) − uε(x, t)] dy in R

N × (0,∞),

uε(x, t) = uε(x + p je j , t) in R
N × (0,∞)

uε(x, 0) = u0(x) in R
N ,

(1.18)
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where ε > 0 is a small parameter, j = 1, 2, . . . , N and the kernel function J ε(·) is given by
(1.5). Then we have the following theorem.

Theorem 1.4 Assume that g(x), a(x), and u0(x) satisfy (1.15). Assume further that g(x) > 0
for x ∈ R

N . Let u ∈ C2+α,1+α/2(RN × [0,∞)) be the solution of
⎧
⎪⎨

⎪⎩

ut = �u + q(x) · ∇u in R
N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(1.19)

where q(x) is given by (1.12) and j = 1, 2, . . . , N. Then (1.18) admits a unique solution
uε(x, t) for ε > 0 and

max
t∈[0,T ] ‖u

ε(·, t) − u(·, t)‖C(RN ) → 0 as ε → 0

for any T > 0.

The rest of the paper is organized as follows. In Sect. 2 we prove existence, uniqueness and
comparison principle for general nonlocal dispersal equations. Themain results Theorems 1.1
and 1.2 are proved in Sect. 3. Section 4 is devoted to the periodic nonlocal problems.

2 Existence, Uniqueness and Comparison Principles

In this section, we first present some basic results on the existence and uniqueness of solutions
to nonlocal dispersal equations. To do this, we consider the following nonlocal dispersal
equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN k(x, y)u(y, t) dy + m(x)u(x, t) in �̄ × (0,∞),

u(x, t) = 0 in R
N\�̄ × (0,∞),

u(x, 0) = u0(x) in �̄,

(2.1)

where k ∈ C(�̄ × �̄) is nonnegative and m ∈ C(�̄). Thus our problems (1.3) and (1.9) are
special forms of (2.1).

Existence and uniqueness of solutions to (2.1) are followed from the classical semigroup
theory (e.g., see the book of Pazy [21]). Let X = C(�̄), and G : X → X be defined by

Gu(x) =
∫

�

k(x, y)u(y) dy + m(x)u(x).

Then G : X → X is a bounded linear operator. Hence for any u0 ∈ X , (2.1) has a unique
solution u(t, x; u0) with u(0, x; u0) = u0(x) (see Theorem 1.2 in chapter 1 of [21]). In fact,

u(t, ·; u0) = eGt u0(·).
Remark 2.1 We can see that u ∈ C([0,∞);C(�̄) is a solution to (2.1) with the initial value
u0 ∈ C(�̄) if and only if

u(x, t) = em(x)t u0(x) +
∫ t

0

∫

RN
k(x, y)em(x)(t−s)u(y, s) dyds, (x, t) ∈ �̄ × (0,∞),

and

u(x, t) = 0, (x, t) ∈ R
N\�̄ × (0,∞).
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We then have the following result on the existence and uniqueness of solutions to the
nonlocal problem (2.1).

Theorem 2.2 For every u0 ∈ C(�̄), there exists a unique solution u(x, t) to (2.1) and

u ∈ C([0,∞);C(�̄)) ∩ C1((0,∞);C(�̄)). (2.2)

Proof It follows from the semigroup theory that there exists a unique solution u(x, t) of (2.1)
defined in �̄ × [0,∞) and

u ∈ C([0,∞);C(�̄)). (2.3)

For any δ 
= 0 and t > 0, we have

u(x, t + δ) − u(x, t)

= [em(x)(t+δ) − em(x)t ]u0(x) +
∫ t+δ

t

∫

�

k(x, y)em(x)(t−s)u(y, s) dyds.

Thus from (2.3) and Lebesgue theorem, we obtain

lim
δ→0

u(x, t + δ) − u(x, t)

δ

= m(x)em(x)t + em(x)t
∫

�

k(x, y)u(y, t) dy

and then (2.2) holds. ��
Now we give the definition of sub-super solutions to (2.1) and the corresponding compar-

ison principle.

Definition 2.3 A function u ∈ C1([0, T );C(�̄)) is a super-solution to (2.1) if
⎧
⎪⎨

⎪⎩

ut (x, t) ≥ ∫
RN k(x, y)u(y, t) dy + m(x)u(x, t) in �̄ × (0,∞),

u(x, t) ≥ 0 in R
N\�̄ × (0,∞),

u(x, 0) ≥ u0(x) in �̄,

The sub-solution is defined analogously by reversing the inequalities.

Lemma 2.4 Assume that u0(x) is nonnegative. Let u(x, t) be a super-solution to (2.1), then
u(x, t) ≥ 0 for (x, t) ∈ �̄ × (0,∞).

Proof We choose

θ > max
�̄

[

m(x) +
∫

�

k(x, y) dy

]

+ 1

and define

v(x, t) = e−θ t u(x, t).

A direct computation gives that

vt (x, t) ≥
∫

�

k(x, y)v(y, t) dy + [m(x) − θ ]v(x, t)

for x ∈ �̄, t > 0.
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We only need to show that v(x, t) ≥ 0 for (x, t) ∈ �̄ × (0,∞). Assume by contradiction
that v(x, t) is negative at some point in �̄ × (0,∞). Without loss of generality, let v(x0, t0)
be the negative minimum of v(x, t) for some (x0, t0) ∈ �̄ × (0,∞). We have vt (x0, t0) ≤ 0
and v(x0, t0) < 0. But

vt (x0, t0) ≥
∫

RN
k(x0, y)[v(y, t0) − v(x0, t0)] dy

+
[

m(x0) +
∫

�

k(x0, y) dy − θ

]

v(x0, t0)

≥
[

m(x0) +
∫

�

k(x0, y) dy − θ

]

v(x0, t0)

>0,

we get a contradiction. This completes the proof. ��
Theorem 2.5 Assume that u(x, t) and v(x, t) are a pair of super-sub solutions to (2.1). Then
u(x, t) ≥ v(x, t) for (x, t) ∈ �̄ × [0,∞).

Proof Denote ω(x, t) = u(x, t) − v(x, t), we have
{

ωt (x, t) ≥ ∫
�
k(x, y)ω(y, t) dy + m(x)ω(x, t), x ∈ �̄, t > 0,

ω(x, 0) ≥ 0, x ∈ �̄,

and the conclusion is followed by Lemma 2.4. ��
At the end of this section, we consider the periodic nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut (x, t) = l(x)
∫
RN k(x, y)u(y, t) dy + m(x)u(x, t) in R

N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(2.4)

where e = (e1, e2, . . . , eN ) is the unit vector of RN and p j > 0 for j = 1, 2, . . . , N ,
l,m, u0 ∈ C(RN ) are periodic functions such that

l(x) = l(x + p je j ), m(x) = m(x + p je j ), u0(x) = u0(x + p je j ) (2.5)

for j = 1, 2, . . . , N . We then have the following results, the proof is similar to Theorems 2.2
and 2.5 .

Theorem 2.6 Assume that l(x) ≥ 0 for x ∈ R
N . Then for every u0 ∈ C(�̄), there exists a

unique solution u(x, t) to (2.4) and

u ∈ C1((0,∞);C(RN ).

Theorem 2.7 Assume that u(x, t) and v(x, t) are a pair of super-sub solutions to (2.4). Then
u(x, t) ≥ v(x, t) for (x, t) ∈ R

N × [0,∞).

3 Heterogeneous Nonlocal Dispersal Equation

In this section, we consider the nonlocal dispersal problems (1.3) and (1.9). We first study the
case that the inhomogeneous media provides a linear increase (or decrease) on the nonlocal
dispersal system.
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Proof of Theorem 1.1 In (1.7), the functions p(x) and u0(x) are smooth, we then can extend
the solution u(x, t) to the whole space RN , still denoted by u(x, t), see [11,17]. Define

L1
ε(v) = 1

ε2

∫

RN
Jε(x − y)g(x)[v(y, t) − v(x, t)] dy

and

L2
ε(v) = 1

ε2

∫

RN
Jε(x − y)[g(x) − g(y)] dyv(x, t),

Then we know that u(x, t) satisfies
⎧
⎪⎨

⎪⎩

ut (x, t) = L1
ε(u)(x, t) + Fε(x, t), x ∈ �̄, t ∈ (0, T ],

u(x, t) = H(x, t), x ∈ R
N\�̄, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ �̄,

(3.1)

where

Fε(x, t) = −L1
ε(u)(x, t) + �u(x, t) + p(x)u(x, t),

the function H(x, t) is smooth and H(x, t) = 0 for x ∈ ∂�. Thus we can find M1 > 0, such
that

|H(x, t)| ≤ M1ε (3.2)

for x ∈ R
N\�̄, t ∈ (0, T ].

The existence and uniqueness of solution uε(x, t) to (1.4) are followed by Theorem 2.2.
Denote ωε(x, t) = u(x, t) − uε(x, t), then we get

⎧
⎪⎨

⎪⎩

ωε
t (x, t) = L1

ε(ω
ε)(x, t) + F1

ε (x, t), x ∈ �̄, t ∈ (0, T ],
ωε(x, t) = H(x, t), x ∈ R

N\�̄, t ∈ (0, T ],
ωε(x, 0) = 0, x ∈ �̄,

where

F1
ε (x, t) = Fε(x, t) − L2

ε(u)(x, t).

Note that u ∈ C2+α,1+α/2(� × [0, T ]), we claim that there exists M2 > 0 such that

max
t∈[0,T ] ‖F

1
ε (·, t)‖C(�̄) ≤ M2ε

α. (3.3)

In fact, we know that

�u(x, t) − L1
ε(u)(x, t)

= �u(x, t) − 1

ε2

∫

RN
Jε(x − y)g(x)[u(y, t) − u(x, t)] dy

= �u(x, t) − 1

dεN+2

∫

RN
J

(
x − y

ε

)

[u(y, t) − u(x, t)] dy

= �u(x, t) − 1

dε2

∫

RN
J (y)[u(x − εy, t) − u(y, t)] dy.
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On the other hand, since u ∈ C2+α,1+α/2(� × [0, T ]), we get
�u(x, t) − L1

ε(u)(x, t)

= �v(x, t) + 1

εd

N∑

i=1

∂u(x, t)

∂xi

∫

RN
J (y)yi dy

− 1

2d

N∑

i, j=1

∂2u(x, t)

∂xi∂x j

∫

RN
J (y)yi y j dz + O(εα),

here y = (y1, y2, . . . , yN ). By the assumption (A1) we have
∫

RN
J (y)yi dz = 0

for i = 1, 2 . . . , N and
∫

RN
J (y)yi y j dz = 0

for i, j = 1, 2 . . . , N and i 
= j . Accordingly,

�u(x, t) − Lε(u)(x, t) = O(εα). (3.4)

Meanwhile, we have

p(x)u(x, t) − L2
ε(u)(x, t)

= p(x)u(x, t) − 1

ε2

∫

RN
Jε(x − y)[g(y) − g(x)] dyu(x, t)

= p(x)u(x, t) − 1

dεN+2g(x)

∫

RN
J

(
x − y

ε

)

[g(y) − g(x)] dyu(x, t)

= p(x)u(x, t) − 1

dε2g(x)

∫

RN
J (y)[g(x − εy, t) − g(y, t)] dyu(x, t)

= O(εα).

(3.5)

Using (3.4) and (3.5), we obtain (3.3).
Now denote

w(x, t) = M2ε
αt + M1ε,

we have

wt (x, t) − L1
ε(w)(x, t) = M2ε

α ≥ F1
ε (x, t) = wε

t (x, t) − L1
ε(w

ε)(x, t) (3.6)

for x ∈ �̄. Then from (3.2) we get

w(x, t) ≥ wε(x, t)

for x ∈ R
N\� and t ∈ [0, T ]. Moreover, it is clear that

w(x, 0) = K2ε ≥ wε(x, 0) = 0 (3.7)

Thanks to (3.6)–(3.7), from the comparison principle we know that

wε(x, t) ≤ w(x, t) = K1ε
αt + K2ε.

Hence we have that w(x, t) is a super-solution to (3.1).
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By a similar way, we can show that

w = −K1ε
αt − K2ε

is a sub-solution and

wε(x, t) ≥ w(x, t) = −K1ε
αt − K2ε.

Thus

max
t∈[0,T ] ‖u(·, t) − uε(·, t)‖C(�̄) ≤ Cεα → 0 as ε → 0

and we end the proof. ��
Now we analyze the nonlocal dispersal Eq. (1.9) and the parameter Eq. (1.10). Let us first

consider the second-order parabolic equation
⎧
⎪⎨

⎪⎩

ut (x, t) = ∑N
i, j=1 a

ε
i j (x)

∂2u(x,t)
∂xi ∂x j

+ ∑N
i=1 q

ε
i (x)

∂u(x,t)
∂xi

in � × (0,∞),

u(x, t) = 0 in ∂� × (0,∞),

u(x, 0) = u0(x) in �,

(3.8)

where

aε
i j (x) = 1

2dg(x)

∫

RN
g(x − εy)J (y)yi y j dy,

qε
i (x) = − 1

εdg(x)

∫

RN
g(x − εy)J (y)yi dz

for i, j = 1, 2 . . . , N and ε > 0. We know from [11,17] that (3.8) exists a unique solution

ûε ∈ C2+α,1+α/2(�̄ × [0, T ]).
We then have the following results.

Lemma 3.1 Let u(x, t) and ûε(x, t) be the solutions of (1.11) and (3.8), respectively. Then
we have

max
t∈[0,T ] ‖û

ε(·, t) − u(·, t)‖C(�̄) → 0 as ε → 0. (3.9)

Proof In fact, we can see that

lim
ε→0

∫

RN
g(x − εy)J (y)yi y j dy = g(x)

∫

RN
J (y)yi y j dy uniformly in �̄

for i, j = 1, 2, . . . , N and
∫

RN
J (y)yi y j dy = 0

for i 
= j . Thus we get

lim
ε→0

aε
i j (x) =

{
1 if i = j,

0 if i 
= j .

Meanwhile, since

lim
ε→0

∫

RN

1

ε
g(x − εy)J (y)yi dy = −

∫

RN

∂g(x)

∂xi
J (y)y2i dy,

123



1500 Journal of Dynamics and Differential Equations (2022) 34:1489–1504

we obtain

lim
ε→0

qε
i (x) = 1

dg(x)

∂g(x)

∂xi
uniformly in �̄.

Using (1.12) we have that (3.9) holds. ��
Lemma 3.2 Let uε(x, t) be the solution of (1.10) and ûε(x, t) be the solution of (3.8), respec-
tively. Then we have

max
t∈[0,T ] ‖u

ε(·, t) − ûε(·, t)‖C(�̄) → 0 as ε → 0.

Proof We can extend uε(x, t) to R
N × [0, T ]. Denote

Lε(v) = 1

ε2

∫

RN
g(y)J ε(x − y)[v(y, t) − v(x, t)] dy.

Then ûε(x, t) satisfies
⎧
⎪⎨

⎪⎩

ûε
t (x, t) = Lε(ûε)(x, t) + Fε(x, t), x ∈ �̄, t ∈ (0, T ],

ûε(x, t) = H(x, t), x ∈ R
N\�̄, t ∈ (0, T ],

ûε(x, 0) = u0(x), x ∈ �̄,

where

Fε(x, t) = −Lε(ûε)(x, t) +
N∑

i, j=1

aε
i j (x)

∂2ûε(x, t)

∂xi∂x j
+

N∑

i=1

qε
i (x)

∂ ûε(x, t)

∂xi
,

the function H(x, t) is smooth, H(x, t) = 0 for x ∈ ∂� and there exists M1 > 0 such that

|H(x, t)| ≤ M1ε

for x ∈ R
N\�̄, t ∈ (0, T ].

Set vε(x, t) = ûε(x, t) − uε(x, t), then we have
⎧
⎪⎨

⎪⎩

vε
t (x, t) = Lε(vε)(x, t) + Fε(x, t), x ∈ �̄, t ∈ (0, T ],

vε(x, t) = H(x, t), x ∈ R
N\�̄, t ∈ (0, T ],

vε(x, 0) = 0, x ∈ �̄.

But

1

εN+2

∫

RN
g(y)J

(
x − y

ε

)

[ûε(y, t) − ûε(x, t)] dy

= 1

ε2

∫

RN
g(x − εy)J (y)[ûε(x − εy, t) − ûε(x, t)] dy

= 1

ε2

∫

RN
g(x − εy)J (y)

⎡

⎣
N∑

i=1

∂ ûε(x, t)

∂xi
(−εyi ) + 1

2

N∑

i, j=1

∂2ûε(x, t)

∂xi∂x j
ε2yi y j + O(ε2+α)

⎤

⎦ dy

= −
∫

RN

N∑

i=1

1

ε
g(x − εy)J (y)yi

∂ ûε(x, t)

∂xi
dy

+ 1

2

∫

RN

N∑

i, j=1

g(x − εy)J (y)yi y j
∂2ûε(x, t)

∂xi∂x j
dz + O(εα),
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we have

N∑

i, j=1

aε
i j (x)

∂2ûε(x, t)

∂xi∂x j
+

N∑

i=1

qε
i (x)

∂ ûε(x, t)

∂xi
− Lε(ûε)(x, t)

=
N∑

i, j=1

aε
i j (x)

∂2ûε(x, t)

∂xi∂x j
+

N∑

i=1

qε
i (x)

∂ ûε(x, t)

∂xi

− 1

dεN+2g(x)

∫

RN
g(y)J

(
x − y

ε

)

[ûε(y, t) − ûε(x, t)] dy
= O(εα).

Thus for ε > 0 is small, there exists M2 > 0 such that

max
t∈[0,T ] ‖F

ε(·, t)‖C(�̄) ≤ M2ε
α. (3.10)

Denote

w(x, t) = M2ε
αt + M1ε.

It follows from (3.10) that

w(x, t) − Lε(w̄)(x, t) = M2ε
α ≥ Fε(x, t) = (wε)t (x, t) − Lε(wε)(x, t)

for x ∈ �̄. We also have

w(x, t) ≥ M1ε ≥ |H(x, t)|
for x ∈ R

N\�̄ such that dist(x, ∂�) ≤ ε and t ∈ [0, T ]. Moreover we have

w(x, 0) = M1ε > wε(x, 0) = 0.

Then a simple argument form comparison principle gives that

max
t∈[0,T ]||u

ε(·, t) − v(·, t)||C(�̄) ≤ Cεα.

We end the proof. ��
At last, let u ∈ C2+α,1+α/2(� × [0, T ]) be the solution of (1.11). Then we have

max
t∈[0,T ] ‖u(·, t) − uε(·, t)‖C(�̄) ≤ max

t∈[0,T ] ‖û
ε(·, t) − u(·, t)‖C(�̄) + max

t∈[0,T ] ‖û
ε(·, t) − uε(·, t)‖C(�̄).

It follows from Lemmas 3.1–3.2 that

max
t∈[0,T ] ‖u(·, t) − uε(·, t)‖C(�̄) → 0 as ε → 0,

and we end the proof of Theorem 1.2.

4 The Periodic Nonlocal Boundary Problems

In this section, we consider the periodic nonlocal boundary problems (1.13) and (1.14). To
do this, we first investigate the effect of spatial homogeneity on the periodic problem (1.13)
and so we shall analyze the limiting behavior of solutions of (1.16).
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It follows from Theorem 2.6 that there exists a unique periodic solution uε(x, t) to (1.16).
Now let u ∈ C2+α,1+α/2(RN × [0,∞)) be the solution of

⎧
⎪⎨

⎪⎩

ut = �u + p(x)u in R
N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(4.1)

where j = 1, 2, . . . , N and p(x) is the periodic coefficient given by

p(x) = 1

dg(x)

N∑

i=1

∂2g(x)

∂xi∂xi
.

We are ready to prove the first result of periodic boundary problem.

Proof of Theorem 1.3 Set

L1
ε(v) = 1

ε2

∫

RN
J ε(x − y)g(x)[v(y, t) − v(x, t)] dy

and

L2
ε(v) = 1

ε2

∫

RN
J ε(x − y)[g(x) − g(y)] dyv(x, t),

Then we know that the unique solution u(x, t) of (4.1) satisfies
⎧
⎪⎨

⎪⎩

ut (x, t) = L1
ε(u)(x, t) + Fε(x, t), x ∈ R

N , t ∈ (0, T ],
u(x, t) = u(x + p je j , t), x ∈ R

N , t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ R

N ,

where j = 1, 2, . . . , N and

Fε(x, t) = −L1
ε(u)(x, t) + �u(x, t) + p(x)u(x, t).

Denote ωε(x, t) = u(x, t) − uε(x, t), then we get
⎧
⎪⎨

⎪⎩

ωε
t (x, t) = L1

ε(ω
ε)(x, t) + F1

ε (x, t), x ∈ R
N , t ∈ (0, T ],

ωε(x, t) = ωε(x + p je j , t), x ∈ R
N , t ∈ (0, T ],

ωε(x, 0) = 0, x ∈ R
N ,

where j = 1, 2, . . . , N and

F1
ε (x, t) = Fε(x, t) − L2

ε(u)(x, t).

Since u ∈ C2+α,1+α/2(RN × [0, T ]) is periodic, we can find M > 0 such that

max[0,T ] ‖F
1
ε (·, t)‖C(RN ) ≤ Mεα.

Let

ω(x, t) = Mεαt,

a similar argument as in the proof of Theorem 1.1 gives that

max[0,T ] ‖u(·, t) − uε(·, t)‖C(RN ) ≤ max[0,T ] |ω(x, t)| ≤ Cεα → 0 as ε → 0

and we end the proof. ��
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At the end of this section, we study the periodic nonlocal problem (1.18). So we consider
the periodic parabolic equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∑N
i, j=1 a

ε
i j (x)

∂2u(x,t)
∂xi ∂x j

+ ∑N
i=1 q

ε
i (x)

∂u(x,t)
∂xi

in R
N × (0,∞),

u(x, t) = u(x + p je j , t) in R
N × (0,∞),

u(x, 0) = u0(x) in R
N ,

(4.2)

where the coefficients

aε
i j (x) = 1

2dg(x)

∫

RN
g(x − εy)J (y)yi y j dy,

qε
i (x) = − 1

εdg(x)

∫

RN
g(x − εy)J (y)yi dz

for i, j = 1, 2 . . . , N and ε > 0.
Then we have the following results, we omit the proof here.

Lemma 4.1 Let u(x, t) and ûε(x, t) be the solutions of (1.19) and (4.2), respectively. Then
we have

max
t∈[0,T ] ‖û

ε(·, t) − u(·, t)‖C(RN ) → 0 as ε → 0.

Lemma 4.2 Let uε(x, t) be the solution of (1.18) and ûε(x, t) be the solution of (4.2), respec-
tively. Then we have

max
t∈[0,T ] ‖u

ε(·, t) − ûε(·, t)‖C(RN ) → 0 as ε → 0.

Theorem 1.4 is followed by Lemmas 4.1–4.2 and a similar argument as in the proof of
Theorem 1.2.

Acknowledgements The author thanks Professors Wan-Tong Li (Lanzhou University) and Wenxian Shen
(Auburn University) for encouragement and useful discussions. This work was partially supported by NSF of
China through the Grant 11731005.

References

1. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems, Mathemat-
ical Surveys and Monographs, AMS, Providence, Rhode Island, (2010)

2. Bates, P.W., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions.
Arch. Ration. Mech. Anal. 138, 105–136 (1997)

3. Berestycki, H., Coulon, A., Roquejoffre, J.M., Rossi, L.: The effect of a line with nonlocal diffusion on
Fisher-KPP propagation. Math. Models Methods Appl. Sci. 25, 2519–2562 (2015)

4. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations, Wiley Ser. Math. Comput.
Biol. Wiley, Chichester (2003)

5. Chen, S., Shi, J.-P., Zhang, G.: Spatial pattern formation in activator-inhibitor models with nonlocal
dispersal. Discrete Contin. Dyn. Syst. Ser. B (2020). (in press)

6. Chasseigne, E., Chaves, M., Rossi, J.D.: Asympototic behavior for nonlocal diffusion equations. J. Math.
Pures Appl. 86, 271–291 (2006)

7. Cortazar, C., Elgueta, M., Rossi, J.D.: Nonlocal diffusion problems that approximate the heat equation
with Dirichlet boundary consitions. Israel J. Math. 170, 53–60 (2009)

8. Cortazar, C., Elgueta,M., Rossi, J.D.,Wolanski, N.: How to approximate the heat equation with Neumann
boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187, 137–156 (2008)

9. Coville, J.: On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators.
J. Differ. Equ. 249, 2921–2953 (2010)

123



1504 Journal of Dynamics and Differential Equations (2022) 34:1489–1504

10. Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Maximum
Principles and Applications, vol. 1. World Scientific, River Edge, NJ (2006)

11. Evans, L.: Partial differential equations. AMS, Providence, Rhode Island (1998)
12. Fife, P.: Some nonlocal trends in parabolic and parabolic-like evolutions. Trends Nonlinear Anal. 129,

153–191 (2003)
13. Hess, P.,Weinberger, H.: Convergence to spatial-temporal clines in the Fisher equation with time-periodic

fitnesses. J. Math. Biol. 28, 83–98 (1990)
14. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47,

483–517 (2003)
15. Ignat, L., Rossi, J.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 399–437 (2007)
16. Kao, C.-Y., Lou, Y., Shen, W.: Random dispersal versus non-local dispersal. Discrete Contin. Dyn. Syst.

26, 551–596 (2010)
17. Li, W.-T., Sun, Y.-J., Wang, Z.-C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal.

Nonlinear Anal. Real World Appl. 11, 2302–2313 (2010)
18. Molino, A., Rossi, J.D.: Nonlocal diffusion problems that approximate a parabolic equation with spatial

dependence. Z. Angew. Math. Phys. 67(3), Art 41 (2016)
19. Murray, J.D.: Mathematical Biology, Biomathematics, vol. 19. Springer-Verlag, Berlin (1989)
20. Nadin, G.: Existence and uniqueness of the solutions of a space-time periodic reaction–diffusion equation.

J. Differ. Equ. 249, 1288–1304 (2010)
21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math.

Sci., vol. 44. Springer-Verlag, New York (1983)
22. Rawal, N., Shen,W.: Criteria for the existence of principal eigenvalues of time periodic nonlocal dispersal

operators and applications. J. Dyn. Differ. Equ. 24, 927–954 (2012)
23. Rawal, N., Shen, W., Zhang, A.: Spreading speeds and traveling waves of nonlocal monostable equations

in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35, 1609–1640 (2015)
24. Shen,W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic

habitats. J. Differ. Equ. 249, 747–795 (2010)
25. Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations.

Commun. Appl. Nonlinear Anal. 19, 73–101 (2012)
26. Shen, W., Xie, X.: Approximations of random dispersal operators/equations by nonlocal dispersal oper-

ators/equations. J. Differ. Equ. 259, 7375–7405 (2015)
27. Sun, J.W., Li, W.T., Yang, F.Y.: Approximate the Fokker–Planck equation by a class of nonlocal dispersal

problems. Nonlinear Anal. 74, 3501–3509 (2011)
28. Sun, J.W.: Positive solutions for nonlocal dispersal equation with spatial degeneracy. Z. Angew. Math.

Phys. 69(1), Art 11 (2018)
29. Wang, J.-B., Wu, C.F.: Forced waves and gap formations for a Lotka–Volterra competition model with

nonlocal dispersal and shifting habitats. Nonlinear Anal. RWA 58, 103208 (2021)
30. Zhang, G.B.: Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with

degenerate nonlinearity. Nonlinear Anal. 74, 6518–6529 (2011)
31. Zlatoš, A.: Propagation of reactions in inhomogeneous media. Commun. Pure Appl. Math. 70, 884–949

(2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Limiting Solutions of Nonlocal Dispersal Problem  in Inhomogeneous Media
	Abstract
	1 Introduction
	2 Existence, Uniqueness and Comparison Principles
	3 Heterogeneous Nonlocal Dispersal Equation
	4 The Periodic Nonlocal Boundary Problems
	Acknowledgements
	References




