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Abstract
We investigate the n-body problem on a sphere with a general interaction potential that
depends on the mutual distances. We focus on the equilibrium configurations, especially on
the Dziobek equilibrium configurations, which is an analogy of Dziobek central configura-
tions of the classical n-body problem. We obtain a criterion and then reduce it to two sets of
equations. Then we apply these equations to the curved n-body problem in S

3. In the end,
we find the derivative of the Cayley-Menger determinant.

Keywords Curved n-body problem · Dziobek configurations · Equilibrium configurations ·
Stability · Cayley-Menger determinant

1 Introduction

The classical n-body problem has been generalized in many ways, for example, under the
potential

∑ mim j
rα
i j

, or in higher dimensional Euclidean space. In particular, the curved n-body

problem, which generalizes the classical n-body problem to surfaces of constant curvature
has received lot of attentions in the last decade (cf [2,6,10,13] and the references therein ).

Motivated by those work, we study the generalization of the n-body problem to unit
sphere of the Euclidean space. We assume that the potential depends on the shortest geodesic
distance. We also assume that the potential is attractive (repulsive) in most cases. We only
specify the potential in the last section.

One major distinction between the generalization and the classical n-body problem is the
existence of equilibrium configurations, due to the compactness of spheres. This paper is
devoted to the study of equilibrium configurations on spheres.

In particular, we consider the equilibrium configurations formed by N bodies on some
(N − 2)-dimensional sphere. We call them the Dziobek equilibrium configurations. In the
classical n-body problem,OttoDziobek [9] first introduced a set of equations for non collinear
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four-body central configurations onR2, an approach proved fruitful in the study of four-body
central configurations (cf [1,11] and the references therein).

We obtain a criterion similar to that of Otto Dziobek for the Dziobek equilibrium con-
figurations in the n-body problem on a sphere. If the potential is attractive (repulsive), there
is an obstacle for the equilibrium configurations, namely, the particles could not lie on one
hemisphere. By this property, we can further separate the criterion into two sets of equations.
One set of the equations can be used to determine the manifold in the configuration space that
admits equilibrium configurations, then the other set of equations can be used to determine
the corresponding masses.

The paper is organized as follows. In Sect. 2, we discuss the basic setting of the n-body
problem on a sphere and the equilibrium configurations. In Sect. 3, we define the Dziobek
equilibrium configurations and obtain a criterion. Thenwe separate the criterion into two sets.
In Sect. 4, we turn to the curved n-body problem in S3. We apply the criterion to equilibrium
configurations of three- four- and five-body in S

3 and discuss the stability of associated
equilibria. We discuss the derivative of the Cayley-Menger determinant in the “Appendix“.

2 The Equilibrium Configurations for Mechanical System on a Sphere

Let Sn be the unit sphere of the Euclidean space Rn+1. Let us consider N points of positive
mass mi on S

n that interacting mutually by a potential depending on the shortest geodesic
distance between the points. The position vector of the i-th point is qi = (xi1, ..., xi,n+1)

T

with x2i1 + ... + x2i,n+1 = 1, i = 1, ..., N . Denote the configuration by q = (q1, ...,qN ). The
configuration space is

Q = (Sn)N \ {collisions and configurations where the vector field is undefined}.
The mechanical system is given by the Lagrangian L : T Q → R

L(q, q̇) = Tq(q̇) − V (q) (1)

where T is a Riemannian metric on the configuration space and V (q) is the interaction
potential. Denote the distance between two points qi ,q j by di j . Then cos di j = qi · q j .
Assume that the potential V is

V (q) =
∑

1≤i< j≤N

mim jG(di j ), (2)

where G : (0, π) → R is some given smooth function.

Definition 1 ([13]) A potential V as given by (2) is called attractive (repulsive) if the binary
potential G, is such that G ′(x) > 0(G ′(x) < 0) for all x ∈ (0, π).

The equilibriummotion, or simply equilibrium, is solution in the form of q(t) = q(0). The
configuration q(0), called a equilibrium configuration, is a critical point of V . The derivative
of V is

∇qi V (q) =
N∑

j=1, j �=i

mim jG
′(di j )∇qi di j =

N∑

j=1, j �=i

mim jG
′(di j )∇qi cos

−1 qi · q j

=
N∑

j=1, j �=i

−mim jG ′(di j )
sin di j

∇qiqi · q j .
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By extending qi · q j into a homogeneous function of degree zero in R
2(n+1) \ {0}, i.e.,

qi√
qi ·qi · q j√q j ·q j

, we obtain

∇qi V (q) =
N∑

j=1, j �=i

−mim jG ′(di j )
sin di j

[q j − cos di jqi ] i = 1, ..., N .

Hence, a configuration q ∈ Q is an equilibrium configuration if q satisfies the following
system

N∑

j=1, j �=i

mim jG ′(di j )
sin di j

[q j − cos di jqi ] = 0, i = 1, ..., N . (3)

Remark 1 The Lyapunov stability of such equilibrium is related with the second variation
of V . In particular, the well-known Lagrange-Dirichlet Theorem says it is stable if the con-
figuration is an isolated minimum. The converses of this theorem is widely discussed (cf.
[12,14] and the references therein). If the potential is analytic, then it is unstable if it is not a
minimum. The equilibrium configurations also lead to relative equilibria of the system [16].

Proposition 1 The i-th equation of system (3) holds if and only if there is a constant θi such
that

N∑

j �=i, j=1

m jmiG ′(di j )q j

sin di j
+ θiqi = 0. (4)

Proof Assume that Eq. (4) holds. Multiply qi to the both sides of Eq. (4) . Since qi · q j =
cos di j and qi · qi = 1, we obtain θi = −∑N

j �=i, j=1
m jmiG ′(di j ) cos di j

sin di j
. Thus Eq. (4) is

equivalent to the i-th equation of (3). 	

The following result generalizes one result of Diacu [6] for the curved n-body problem,

see Sect. 4.

Theorem 1 Assume that the potential is attractive (repulsive). There is no equilibrium con-
figuration for any positive masses in any closed hemisphere of Sn (i.e. a hemisphere that
contains its boundary ), as long as at least one body does not lie on the boundary.

Proof Let q be a configuration that lies in a closed hemisphere of Sn and that there is at least
one body not on the boundary. Then there is some point v ∈ S

n such that v · qi ≥ 0 for all i
and at least one of them is strictly positive. Assume that v ·q1 is the smallest. Then∇q1V = 0
implies

N∑

j �=1

m jG ′(d1 j )
sin d1 j

[v · q j − cos d1 jv · q1] = 0.

Since we have assumed G ′(d1 j ) is of the same sign for all j , this is a contradiction. 	

We end this section by several examples of equilibrium configurations for equal masses.

The examples extend those constructed by Diacu in [6] for the curved n-body problem
(Sect. 4). Denote the standard bases of Rn+1 by e1, ..., en+1. Denote the unit sphere in
span{e1, ..., ek+1} by Sk . We assume that the configurations constructed below are not those
where G ′(di j ) is undefined.

123



1272 Journal of Dynamics and Differential Equations (2022) 34:1269–1283

Example 1 (regular simplex with equal masses) Consider a regular k-simplex. Place one unit
mass at each of the vertices. The configuration obtained is an equilibrium configuration. It is
enough to check that Eq. (4) holds for i = 1. Since di j = d12 for any pair of {i, j}, we find
that

k+1∑

i=2

miG ′(di1)qi
sin di1

= G ′(d21)
sin d21

(

k+1∑

i=2

qi ) = −G ′(d21)
sin d21

q1.

Example 2 (regular polygon with equal masses) Consider a regular 2k+1-gon located on the
unit circle of span{e1, e2}. Place one unit mass at each of the vertices. By complex number
notation, the position vectors are q j = eiφ j , j = 1, ..., 2k + 1, φ = 2π

2k+1 . let us check
equation (4) for j = 2k + 1. Since d2k+1, j = d2k+1,2k+1− j , we have

m jG ′(d2k+1, j )eiφ j

sin d2k+1, j
+ m2k+1− j G ′(d2k+1,2k+1− j )eiφ(2k+i− j)

sin d2k+1,2k+1− j

= 2
G ′(d2k+1, j )

sin d2k+1, j
cos jφeiφ(2k+1).

Then it follows that Eq. (4) holds for i = 2k + 1, then for all i by symmetry.
Similarly, the regular polygon of even vertices with equal masses is also an equilibrium

configuration.

Example 3 (two regular polygonswith equalmasses on two complementary circles) Consider
one regular n1-polygon located on the unit circle of span{e1, e2} and another regular n2-
polygon located on the unit circle of span{e3, e4}. Place a unit mass at each of the vertices.
Note that the distance between the particles from different polygons is always π

2 since

cos di j = qi · q j = 0, 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n1 + n2.

Let us check that equation (4) holds for any 1 ≤ i ≤ n1 + n2, say i = 1.

n1+n2∑

i=2

miG ′(di1)qi
sin3 di1

=
n1∑

i=2

G ′(di1)
sin di1

qi + G ′(π
2

)

n1+n2∑

i=n1+1

qi .

The first part is collinear with q1 by the above example, and the second part is zero. Thus
this configuration is one equilibrium configuration.

3 Dziobek Equilibrium Configurations

In this section, we consider equilibrium configurations where N masses span an (N − 2)-
sphere. We obtain a criterion, then separate it into two sets of equations, the shape equations
and the mass equations. In the classical n-body problem, a central configuration of N bodies
that span an (N − 2)-dimensional affine plane are called Dziobek central configurations
[9,11]. For equilibrium configurations on sphere, equation (4) implies that the N position
vectors are always dependent, so 1 ≤ rank(q1, ...,qN ) ≤ N − 1.

Definition 2 ADziobek configuration of N bodies on sphere is one such that rank(q1, ...,qN )

= N − 1.
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Let {q1, · · · ,qN } be a collection of vectors inRN−1. Assume the rank of these N vectors
is N − 1. Consider the (N − 1) × N matrix:

X = [q1, · · · ,qN ].
Since the rank of X is N − 1, dim ker X = 1. The kernel can be found as follows. Let Xk

be the (N − 1) × (N − 1) matrix obtained from X by deleting the k-th column and let |Xk |
denote its determinant.

Lemma 1 Let

� = (�1, ...�N ) = (|X1|,−|X2|, ..., (−1)k+1|Xk |, ...). (5)

Then �T is the base of ker X. In other words, � �= 0 and �1q1 + · · · + �NqN = 0.

Proof Assume that �N = (−1)N+1|XN | �= 0. Consider the linear system in XNu = qN ,
u = (u1, ..., uN−1)

T . By Cramer’s rule, we obtain uk = −�k
�N

, k = 1, ..., N − 1.
Then it follows that �1q1 + · · · + �NqN = 0. 	


Proposition 2 Consider a Dziobek configuration of N bodies on SN−2. Then the configura-
tion is not on a hemisphere if and only if all �i are of the same sign.

Proof We only prove that if not all �i are of the same sign the Dziobek configuration lies on
a hemisphere. There are two cases.

If there is some �i = 0, say �1, then rank{q2, ...,qN } = N −2. Let � be the hyperplane
spanned by {q2, ...,qN } and �n be the normal of � in R

N−1 with the property �n · q1 > 0.
Then we have

�n · qi ≥ 0, i = 1, ..., N ,

which implies that the Dziobek configuration lies on a hemisphere.
If all �i are nonzero, there are two consecutive elements of � that are of different sign,

say �1 > 0,�2 < 0. Then

|X1| = det(q2,q3, ...,qN ) > 0, |X2| = det(q1,q3, ...,qN ) > 0.

Let �̃ be the (N − 2)-dimensional hyperplane spanned by {q3, ...,qN } and �m be the normal
of �̃ in R

N−1 with the property �m · q1 > 0. Assume that q2 = λ1q1 + ∑N
i=3 λiqi . Then

|X1| = det(λ1q1 +
N∑

i=3

λiqi ,q3, ...,qN ) = λ1|X2|.

Then λ1 > 0. Hence we have

�m · qi ≥ 0, i = 1, ..., N ,

which implies that the Dziobek configuration lies on a hemisphere. 	


Denote the quantity
G ′(di j )
sin di j

by Si j . Then equation (4) becomes

∑

j �=i

m j Si jq j + θiqi = 0, 1 ≤ i ≤ N .
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Theorem 2 Assume that the potential is attractive (repulsive) and that q = (q1, ...,qN ) is a
Dziobek configuration in S

N−2. Then the configuration q is an equilibrium configuration if
and only if there is a nonzero real number p such that

mim j Si j = p�i� j for any i �= j . (6)

Proof The proof of the sufficient conditions: Since q is an equilibrium configuration, Eq. (4)
holds. That is, there is some nonzero real number p j such that

(m1S1 j ,m2S2 j , ..., θ j , ...,mN SN j ) = p j (�1, ...,�N ) for all j = 1, ..., N . (7)

by Lemma 1. System (7) is equivalent to

S =

⎡

⎢
⎢
⎢
⎣

p1
p2
...

pN

⎤

⎥
⎥
⎥
⎦

(
�1

m1
, ...,

�N

mN
), where S =

⎡

⎢
⎢
⎢
⎣

θ1 S12 · · · S1N
S21 θ2 · · · S2N
...

...
. . .

...

SN1 SN2 · · · θN

⎤

⎥
⎥
⎥
⎦

Since the left matrix S is symmetric, we see that p j
�1
m1

= p1
� j
m j

, or, by Proposition 2,

(p1m1, ..., pNmN ) = p1m1

�1
(�1, ...,�N ).

Let M = diag{m1, ...,mN }. We have

MSM = p1m1

�1
(�1, ...,�N )T (�1, ...,�N ),

which gives (6).
The proof of the sufficient conditions: Let (p1m1, ..., pNmN ) = p�. The system (6)

implies system (7), so the condition is also sufficient. 	

The system (6) can be obtained in another way, see “Appendix“. It implies that all �i

(i ≥ 1) are of the same sign, which agrees with Proposition 2. Eliminating the constant p,
we get a system of N (N−1)

2 − 1 equations from (6). The system can be written in a form with
the property that most of the equations are just constraints on the shapes, or, independent of
the masses.

Proposition 3 Let A = (ai j ) be a symmetric matrix and b = (b1, ..., bn). Assume that

A = bT b and b1b2bn �= 0. Consider the system consisting of the n(n−1)
2 equations

ai j = bib j , i = 1, ..., n − 1, j = i + 1, ..., n.

The system of equations is equivalent to

a1n = b1bn, bk = bn
a1k
a1n

k = 2, ..., n − 1; (8)

b1 = bn
a12
a2n

, a2ka1n = a1ka2n, k = 3, ..., n − 1; (9)

a jna12 = a1 j a2n, a jka1n = a1ka jn, j = 3, ..., n − 2, k = j + 1, ..., n − 1; (10)

an−1,na12 = a1n−1a2n . (11)

Proof From the first system, we see ai j akl = bib j bkbl = aika jl holds for any 4-tuple
{i, j, k, l} of {1, ..., n}. Then we derive the second system from the first one.
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Let us derive the first system from the second one. For convenience, put the first system
in an upper triangular form

E =

⎡

⎢
⎢
⎢
⎣

a12 = b1b2 a13 = b1b3 · · · a1n = b1bn
a23 = b2b3 · · · a2n = b2bn

. . .
...

...

an−1,n = bn−1bn

⎤

⎥
⎥
⎥
⎦

By (8), we can recover the first row of E . By (9) and the first row of E , we see

a2n = a12
bn
b1

= b2bn, a2k = a1ka2n
a1n

= bkb2bn
bn

= b2bk, k = 3, ..., n − 1.

Hence the second row of E is recovered. Similarly, the j-th row can be obtained by

a jn = a1 j
bn
b1

= b jbn, a2k = a1ka jn

a1n
= bkb j bn

bn
= b jbk, k = j + 1, ..., n − 1.

Thus, we obtain all equations of E . This completes the proof. 	

Applying the above result to the system (6), where A = S and b = √

p�M−1, we get

Theorem 3 Assume that the potential is attractive (repulsive) and that q = (q1, ...,qN ) is a
Dziobek configuration in S

N−2 with masses m1, ...,mN . Then q is an equilibrium configu-
ration if and only if the following system of equations are satisfied

⎧
⎪⎨

⎪⎩

m2 = S1N�2
S12�N

mN , ...,mN−1 = S1N�N−1
S1,N−1�N

mN ,m1 = S2N�1
S12�N

mN ,

S1 j S2N = S12S jN , j = 3, ..., N − 1;
S jk S1N = S1k S j N , k = j + 1, ..., N − 1, j = 2, ..., N − 2.

(12)

Note that the first N − 1 equations are involved with the masses, while the remaining
equations are not. Let us call the first N − 1 equations the mass equations, and the others
N (N−3)

2 equations the shape equations.
The shape equations alone can not determine the configurations. Indeed, there are con-

figurations that satisfies the shape equations, but the configuration lies on a hemisphere (see
Remark 4 in Sect. 4). Generally speaking, because of the N (N−3)

2 shape constraints and
the SO(N − 1) symmetry, the set of Dziobek equilibrium configurations forms a (N − 1)-
dimensionalmanifold.Denote byD the set of configurationswith the N (N−3)

2 shape equations
and the N inequality constraints �1 > 0, ...,�N > 0 satisfied. Assume mN = 1. Then the
mass equations define a map

M : D → (0,∞)N−1,q �→ (m1, ...,mN−1).

Remark 2 For Dziobek central configurations of the classical n-body problem [11], one can
only be certain that at least two elements of � are nonzero if N > 4. Hence, we can get a
system similar to (12) there, which is necessary but may not be sufficient. Furthermore, Si j is
involved with the multiplier λ. To get the constraints on configurations, we need to eliminate
the multiplier λ from the N (N−3)

2 equations. The resulting N (N−3)
2 −1 constraints looks more

complex, see Corbera et al. [5] for N = 4.

Remark 3 If we allow the masses to be negative, then the inequality constraints �1 >

0, ...,�N > 0 are not necessary.
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4 Example: The Curved N-body Problem in S
3

In this section we consider the problem in S3 with the gravitational interaction. The potential
is defined as spherical-symmetric solutions of the Laplace equation on S3. This is the curved
n-body problem in S3. For more on this problem, see [2,6,16]. For any two points qi and q j ,
the binary potential and the potential are

G(di j ) = −mim j cot di j , V (q) =
∑

1≤i< j≤N

−mim j cot di j

respectively. Since G(x) = − cot x , G ′(x) = 1
sin2 x

> 0, the potential is attractive and

Si j = G ′(di j )
sin di j

= 1
sin3 di j

.

Note that the potential is undefined at di j = π , so we must exclude those configurations
with points diametrically opposite in the examples considered in Sect. 2, for instance, the
regular polygons with even vertices. Moreover, there is no equilibrium configuration for two
masses. Otherwise, the Eq. (4) implies that d12 is 0 or π . The equilibrium configurations are
also called special central configurations in the curved n-body problem in S3 [16].

4.1 Criteria for Dziobek Equilibrium Configurations of Three, Four and Five Bodies

ByTheorem 3, we obtain the following criteria for Dziobek equilibrium configurations of 3, 4
and 5 bodies respectively. The regular 2, 3, and 4-simplex with equal masses (see Example 1)
satisfies the following criteria respectively.

Corollary 1 (N = 3, S1) Consider one configuration q = (q1,q2,q3) on S
1. Then q is a

Dziobek equilibrium configuration if and only if the configuration and the masses satisfy the
following equations

(m1,m2,m3) =
(
sin3 d12�1

sin3 d23�3
,
sin3 d12�2

sin3 d13�3
, 1

)

m3.

Corollary 2 (N = 4, S2) Consider one configuration q = (q1,q2,q3,q4) on S
2. Then q is

a Dziobek equilibrium configuration if and only if the configuration and the masses satisfy
the following equations

sin d12 sin d34 = sin d13 sin d24 = sin d14 sin d23

(m1,m2,m3,m4) =
(
sin3 d12�1

sin3 d24�4
,
sin3 d12�2

sin3 d14�4
,
sin3 d13�3

sin3 d14�4
, 1

)

m4.

Corollary 3 (N = 5, S1) Consider one configuration q = (q1,q2,q3,q4,q5) in S
1. Then q

is a Dziobek equilibrium configuration if and only if the configuration and the masses satisfy
the following equations

sin d13 sin d25 = sin d12 sin d35 = sin d23 sin d15,

sin d34 sin d15 = sin d14 sin d35,

sin d14 sin d25 = sin d12 sin d45 = sin d24 sin d15,

(m1, ...,m5) =
(
sin3 d12�1

sin3 d25�5
,
sin3 d12�2

sin3 d15�5
,
sin3 d13�3

sin3 d15�5
,
sin3 d14�4

sin3 d15�5
, 1

)

m5.
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Fig. 1 An acute triangle
configuration

For the case of N = 3, the constraint on the shape is only the positiveness of �1,�2, and
�3,which implies that the configuration is not in one semicircle, in otherwords,ϕi+1−ϕi < π

for i = 1, 2, 3 with qi = (cosϕi , sin ϕi ). Then all angles are acute, and the configuration
forms an acute triangle, see Fig. 1. Let d12 = α, d23 = β. Then d13 = 2π − (α + β) and

0 < α < π, 0 < β < π, π < α + β < 2π.

Note that �1 = |q2,q3| = sin d23 = sin β, �2 = −|q1,q3| = sin d13 = | sin(α + β)|,
�3 = |q1,q2| = sin d12 = sin α. Thus the masses satisfy

m2

sin2 α
= m3

sin2(α + β)
,

m1

sin2 α
= m3

sin2 β
,

m2

sin2 β
= m1

sin2(α + β)
.

The above system gives all Dziobek equilibrium configurations for three masses and it
has been obtained by direct computations in [7]. Generally, the map M defined in the
previous section is not onto, which is different from that of the classical case. For instance,
if m2 = m3 = 1, then 2α + β = 2π , which implies

m1 = sin2 α

sin2 β
= 1

4 cos2 α
>

1

4
.

The constraint of the masses is found explicitly as follows

m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3 − 2m1m2m3 < 0,

if we assume that
∑3

i=1 mi = 1. It is easy to see that all such configurations are local minima
of the potential V restricted on S1. These equilibria are stable on S1 (Remark 1), see [7] and
the generalization in [15].

For the case of N = 4, the system is not trivial and an equivalent system has been
obtained by direct computation in [3]. We do not know much besides the regular tetrahedron
equilibrium configuration on S

2 with four equal masses. Now we present a family of 4-
body Dziobek equilibrium configurations which contains the regular tetrahedron. Consider
a tetrahedron configuration of four masses with position vectors

q1 = (1, 0, 0)T q2 = (−c, r , 0)T

q3 = (−c,−1

2
r ,

√
3

2
r)T q4 = (−c,−1

2
r ,−

√
3

2
r)T

wherem2 = m3 = m4, and c ∈ (0, 1), r2+c2 = 1, see Fig. 2. Denote such a configuration
by qc.
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Fig. 2 Configuration qc on S2

Proposition 4 The configuration qc, c ∈ (0, 1) is a Dziobek equilibrium configuration if

m1

m4
= 8

√
3c

3(1 + 3c2)
3
2

(13)

.

By numerical study, all such equilibrium configurations are not minima of the potential
V restricted on S2. These equilibria are unstable on S2, see Remark 1.

Proof The tetrahedron is not on one hemisphere and the shape equations are satisfied
since d12 = d13 = d14, and d23 = d24 = d34. The last two of the mass equations
mi
m4

= sin3 d1i�i
sin3 d14�4

, i = 2, 3 are true since since �2 = �3 = �4. We only need to check
the first mass equation.

Direct computation leads to

cos d12 = −c, sin3 d12 = r3, cos d24 = c2 − 1

2
r2, sin3 d24 = 3

√
3r3(

1

4
+ 3

4
c2)

3
2 ,

and�4 =
√
3
2 r2,�1 = 3c�4. Thus the configuration is a Dziobek equilibrium configuration

if and only if

m1

m4
= sin3 d12�1

sin3 d24�4
= r33c�4

3
√
3r3( 14 + 3

4c
2)

3
2 �4

= 8
√
3c

3(1 + 3c2)
3
2

.

	


Remark 4 Consider the configuration with c = − 1
3 . Then sin d12 = sin d24, so the shape

equations are satisfied. However, the configuration is on the north hemisphere.

As c → 0, we have m1
m4

→ 0. This is intuitively clear. As c → 0, the three masses
m2,m3,m4 tend to form an equilibrium configuration of their own on the equator. Then
we may place an infinitesimal mass at ±(1, 0, 0) to form an equilibrium configuration of 4

bodies. The function f (c) = 8
√
3c

3(1+3c2)
3
2
, c ∈ (0, 1), is increasing on (0,

√
6
6 ) and decreasing

on (
√
6
6 , 1). The maximum is 16

9
√
3

> 1, limc→0 f (c) = 0 and limc→1 f (c) =
√
3
3 .
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Corollary 4 Consider four masses (m̄,m,m,m) on S2. If m̄
m ∈ (0, 16

9
√
3
], then there is at least

oneDziobek equilibrium configuration. If m̄m ∈ (
√
3
3 , 16

9
√
3
), then there are at least twoDziobek

equilibrium configurations. Especially, there are at least two equilibrium configurations for
four equal masses.

For the case of N = 5, the system is not trivial and an equivalent system has been obtained
by direct computation in [3].We do not knowmuch besides the regular pentatope equilibrium
configuration on S

1 with five equal masses. Nevertheless, it is easy to construct a family of
5-body Dziobek equilibrium configurations similar to the 4-body equilibrium configurations
constructed above and obtain conclusions similar to Proposition 4 and Corollary 4.

4.2 Another Example

ConsiderDziobek equilibriumconfigurations of N masseswith theproperty that
∑N

i=1 miqi =
0. By Lemma 1, the vector (m1, ...,mN ) is a multiple of (�1, ...,�N ). Then equations of
(6) implies that sin di j is a constant for all pairs of all {i, j}. Thus, there is some c ∈ (0, π)

such that di j = c, or π − c.
If all di j equal to c, thus the configuration is a regular simplex, which implies that �1 =

�2 = ... = �N and m1 = m2 = ...mN . For instance, on S
1, this is the only possibility.

However, this is not the only case if the sphere is of higher dimension. A similar phenomenon
happens in [8].

For example, consider the following Dziobek configuration on S2 with position vectors

q1 = (a, b, 0)T q2 = (−c, r , 0)T

q3 = (−c,−1

2
r ,

√
3

2
r)T q4 = (−c,−1

2
r ,−

√
3

2
r)T

Fig. 3 .
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wherea, b, c ∈ (0, 1), r2+c2 = 1, a2+b2 = 1.We show that there are values ofa, c such that
sin di j is a constant for all pairs of {i, j}. Since the configuration is not on one hemisphere, this
configuration leads to a Dziobek equilibrium configuration with the property

∑
miqi = 0

but not a regular simplex. Indeed, we only need to solve

q1 · q2 = q2 · q3, q1 · q2 = −q1 · q3.
In coordinates, the system is

4ac =
√

(1 − a2)(1 − c2), 3c2 − 1 = 6ac.

The two algebraic curves defined by the equations has one intersection in (0, 1) × (0, 1).
Thus, there is Dziobek equilibrium configuration on S1 that is not regular simplex but satisfies∑

miqi = 0.

Appendix: The Derivative of the Cayley–Menger Determinant

For a Dziobek configuration of n-body in Sn−2, recall the (n−1)×nmatrix X = [q1, ...,qn].
Since rankX = n − 1, the corresponding Gram matrix XT X has rank n − 1. Then the
determinant F = 0. We may call the quantity F the spherical Cayley-Menger determinant,
[4]. For instance, for n = 4,

F =

∣
∣
∣
∣
∣
∣
∣
∣

1 cos d12 cos d13 cos d14
cos d12 1 cos d23 cos d24
cos d13 cos d23 1 cos d34
cos d14 cos d24 cos d34 1

∣
∣
∣
∣
∣
∣
∣
∣

.

A by-product of equation (6) is the following. A Dziobek configuration on S
n−2 can be

parametrized by the C2
n quantities {cos d12, ..., cos dn−1,n} with the relation F = 0. Then

any equilibrium configuration of the system (1) is the critical point of V + λF . Then Eq. (6)
implies ∂F

∂ cos di j
= α�i� j for some α.

Proposition 5 Let q1, ...,qn be a Dziobek configuration in S
n−2. Let d12, ..., dn−1,n and F

be the corresponding mutual distances and the spherical Cayley–Menger determinant. Then
we have

∂F

∂ cos di j
= 2�i� j for any 1 ≤ i < j ≤ n.

where �i is the signed determinant defined in (5).

Proof By the symmetry of XT X , we have ∂F
∂ cos di j

= 2Fi j , with Fi j being the (i, j) cofactor

of matrix XT X , i.e.,

∂F

∂ cos di j
= 2(−1)i (−1) j |Ai j |,

where Ai j is the (i, j) minor of matrix XT X . Let Xk be the square matrix of order n − 1
obtained from X by deleting the k-th column. Then XT

i X j = Ai j . Thus, we have ∂F
∂ cos di j

=
2�i� j . 	
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This derivative formula enables us to obtain Eq. (6) directly.
For a Dziobek configuration x = (x1, ..., xn) in Rn−2, the mutual distances satisfy a rela-

tion and its derivative formula is similar to the above one. Due to the translational symmetry,
the appropriate Gram matrix is X̃ T X̃ , with

X̃ = [x2 − x1, ..., xn − x1].

It is easy to see that |X̃ T X̃ | = 0. Note that the entries of XT X̃ are not in terms of the mutual
distances. By using the formula (xi −x1) ·(x j −x1) = 1

2 (d
2
1i +d21 j −d2i j ) and some bordering

technique, [4], we can obtain another determinant

� =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 · · · 1
1 0 d212 · · · d21n
1 d221 0 · · · d22n
...

...
...

. . .
...

1 d2n1 d2n2 · · · 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, and � = (−1)n2n−1|X̃ T X̃ |.

Usually, it is � instead of |X̃ T X̃ | that is called the Cayley–Menger determinant. Let

X =
[
1 1 · · · 1
x1 x2 · · · xn

]

(n−1)×n
,

and Xk be the square matrix of order n − 1 obtained from X by deleting the k-th column.
Let �k = (−1)k−1|Xk |. For n = 4, Dziobek [9] observed a formula that is equivalent to

∂�

∂d2i j
= −8�i� j for any 1 ≤ i < j ≤ 4.

With the technique used to relate � and |X̃ T X̃ |, we have

Proposition 6 Let x1, ..., xn be a Dziobek configuration in R
n−2. Let d12, ..., dn−1,n be the

corresponding mutual distances. Let � and �i be the determinants defined above. Then we
have

∂�

∂d2i j
= (−2)n−1�i� j for any 1 ≤ i < j ≤ n.

Proof By the symmetry, we have ∂�

∂d2i j
= 2(−1)i (−1) j |Bi j | where Bi j is the (i + 1, j + 1)

minor of �. On the other hand, note that

|Xi | =
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0
0 1 1 · · · 1
�0 x1 x2 · · · xn

∣
∣
∣
∣
∣
∣
= −

∣
∣
∣
∣
∣
∣

0 1 1 · · · 1
1 0 0 · · · 0
�0 x1 x2 · · · xn

∣
∣
∣
∣
∣
∣
.
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Bordering X j in the same way without exchanging the first two row, we obtain

|XT
i X j | = −

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 · · · 1 · · · 1 1 · · · 1
1 x1 · x1 · · · x1 · xi · · · x1 · x j−1 x1 · x j+1 · · · x1 · xn
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 xi−1 · x1 · · · xi−1 · xi · · · xi−1 · x j−1 xi−1 · x j+1 · · · xi−1 · xn
1 xi+1 · x1 · · · xi+1 · xi · · · xi+1 · x j−1 xi+1 · x j+1 · · · xi+1 · xn
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 x j · x1 · · · x j · xi · · · x j · x j−1 x j · x j+1 · · · x j · xn
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 xn · x1 · · · xn · xi · · · xn · x j−1 xn · x j+1 · · · xn · xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

We then replace xi ·x j be 1
2 (||xi ||2+||x j ||2−d2i j ), and eliminate all the ||xi ||2 by subtracting

the appropriate multiple of the first row and column from the others. We obtain

�i� j = (−1)i+ j |XT
i X j | = (−1)i+ j22−n(−1)n−1|Bi j |.

Hence follows the formula ∂�

∂d2i j
= (−2)n−1�i� j . 	


Central configuration in R
n of dimension n − 2 are considered in [11]. The equations of

them are derived by vectorial method there. Note that these equations follow easily from the
above derivative formula.
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