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Abstract
We study the problem of existence/nonexistence of limit cycles for a class of Liénard gener-
alized differential systems in which, differently from the most investigated case, the function
F depends not only on x but also on the y-variable. In this framework, some new results are
presented, starting from a case study which, actually, already exhibits the most significant
properties. In particular, the so-called “superlinear case” presents some new phenomena of
escaping orbits which will be discussed in detail.

Keywords Generalized Liénard equations · Limit cycles · Qualitative theory of planar
dynamical systems

Mathematics Subject Classification 34C05 · 34C25 · 34C26

1 Introduction

In this paper we study the qualitative behavior of the trajectories of a planar system of the
form {

ẋ = y − F(x, y)

ẏ = −g(x).
(S)

Work performed under the auspices of INDAM-GNAMPA.

B Fabio Zanolin
fabio.zanolin@uniud.it

Gabriele Villari
gabriele.villari@unifi.it

1 Dipartimento di Matematica e informatica “Ulisse Dini”, Università degli Studi di Firenze, viale
Morgagni, 67/A, 50137 Firenze, Italy

2 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, via delle
Scienze 206, 33100 Udine, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-021-09984-2&domain=pdf
http://orcid.org/0000-0001-9105-3084


180 Journal of Dynamics and Differential Equations (2022) 34:179–207

Such a system can be viewed as a generalization of the classical planar system{
ẋ = y − F(x)

ẏ = −x,
(1.1)

with F(x) := ∫ x
0 f (u) du, introduced by Liénard in the pioneering work [26] in 1928 for the

study of the equation

ẍ + f (x)ẋ + x = 0.

Although there is an enormous literature concerning (1.1) and its generalizations as{
ẋ = y − F(x)

ẏ = −g(x)
(1.2)

with
g(0) = 0, g(x)x > 0 for x �= 0,

(see the monographs [14,24,34,44,47], as well as the articles [8,15,16,25,27,29,36–40] and
the quotations therein) or {

ẋ = h(y) − F(x)

ẏ = −g(x)
(1.3)

with the additional assumption

h(0) = 0, h(y)y > 0 for y �= 0,

(see the monographs [44,47] as well as the articles [1,2,13,19–22,42,43,45,46] and the ref-
erences therein), as far as we know, no systematic study has been performed for (S). This
because the classical assumptions on F, g, h guarantee that the origin is the unique equi-
librium point and the trajectories move clockwise around it in the plane. For equation (S),
additional conditions on F(x, y) would be required in order to obtain a similar behavior.
Moreover, the problem of possible blow-up in finite forward time of the solutions should be
considered. On the other hand, the presence of a term of the form F(x, y) in the first equation
gives some more flexibility, if one looks for examples of rich dynamics, for instance, exhibit-
ing a prescribed number of limit cycles. Previous contributions on the study of system (S) can
be found in the work of Cartwright and Swinnerton-Dyer [6,7] concerning the boundedness
of the solutions of non-autonomous equations of the form

ẋ = g1(y) − εF(x, y, t), ẏ = −g2(x)

and, for the autonomous case, in [3,32], concerning the uniqueness of limit cycles (see also
[30], where a special case of (S), with peculiar assumptions, was considered) and in [31],
dealing with a φ-Laplacian Liénard equation which, studied in the phase-plane, leads to a
system of the form (S) with x and y inverted.

The plan of the paper is the following.
In Sect. 2 we discuss some basic facts of equation (S) related to the use of the energy

of the associated Duffing equations as a Lyapunov function. Moreover, we present a first
result of multiple limit cycles which shows the above mentioned flexibility in the use of the
function F(x, y).

The other sections are focused on the study of the case

F(x, y) = λB(y)A(x)
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where A(x) satisfies the standard assumptions on F(x) in the classical case.
In particular, In Sect. 3, a case study is analyzed for the choice

B(y) = |y|p, A(x) = x3 − x,

which already exhibits the mean features of this problem that, as far as we know, have not
been investigated before.

Section 4 presents the main results, namely a theorem of existence/nonexistence of limit
cycles for system (S) (see Theorem 6) as well as results about existence and uniqueness (see
Theorem 4 and Theorem 5).

2 Preliminary Results

Throughout the paper the following assumptions are made on system{
ẋ = y − F(x, y)

ẏ = −g(x).
(S)

We suppose that F : R×R → R and g : R → R are locally Lipschitz continuous functions,
in order to guarantee the uniqueness of the solutions for the associated initial value problems.
We also assume

g(0) = 0, g(x)x > 0 for x �= 0

and
F0(y) := y − F(0, y), vanishes only at y = 0,

therefore the origin is the only singular point of (S). When F ≡ 0, our system reduces to the
classical Duffing one, namely {

ẋ = y

ẏ = −g(x).
(D)

It is well known (cf. [14,24]) that system (D) has the Hamiltonian structure

ẋ = ∂H

∂ y
(x, y), ẋ = −∂H

∂x
(x, y)

with

H(x, y) = 1

2
y2 + G(x), for G(x) =

∫ x

0
g(u) du

and the origin is a global center if and only if G(x) → +∞ as |x | → +∞. Taking the
energy H as a Lyapunov function for system (S), we obtain, for its time-derivative along the
trajectories, the expression

Ḣ(x, y) = −g(x)F(x, y), (2.1)

which generalizes the classical one for system (1.2). Therefore, the orbits of (S) enter the
ones of (D) which are the level lines of H , when g(x)F(x, y) > 0, while they exit when
this product is negative. In view of this property and in the light of the classical Poincaré
example (see [29, §3.3]), a first result giving examples of a prescribed number of periodic
solutions is the following.
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Proposition 1 Assume G(x) → +∞ as |x | → +∞. Then, for

F(x, y) := x
n∏

k=1

( 1
2 y

2 + G(x) − k
)
,

system (S) has exactly n limit cycles which become arbitrarily large as n grows. Con-
versely, if G(x) �→ +∞ as |x | → +∞, given any energy level E with 0 < E <

min{G(−∞),G(+∞)}, then, for

F(x, y) := x
n∏

k=1

( 1
2 y

2 + G(x) − E
k

)
,

system (S) has exactly n limit cycles which become arbitrarily close to the origin as n grows.

Proof The proof is straightforward using the above mentioned properties of the orbits fol-
lowing from (2.1). ��
A similar construction has been recently proposed in [5] for the relativistic and the curvature
generalized Liénard equations

d

dt

ẋ√
1∓ẋ2

+ f (x, ẋ) + g(x) = 0.

Clearly, it is also possible to produce an arbitrarily large number of small limit cycles
approaching the origin even when G(x) → +∞ as |x | → +∞. In this case we can start
from any positive energy level E . As a side remark, we observe that this result shows the
flexibility of working with systems like (S), because analogous results of non-perturbative
nature (like those referring to small-amplitude limit cycles) are very hard to obtain for the
classical Liénard systems (see [44, §7]).

At this point, following again (2.1) we assume at first the following conditions.
There exist α < 0 < β such that

g(x)F(x, y) < 0, for x ∈ ]α, β[ and x �= 0 and for all y �= 0.

g(x)F(x, y) > 0, for x /∈ [α, β] and for all y �= 0.

These assumptions fit with with the classical conditions considered in the Liénard systems.
Moreover, we also assume

G(x) → +∞ as |x | → +∞.

As a consequence, the origin is a source and outside the strip [α, β] × R, trajectories of
system (S) are guided by those of system (D). Hence, as in the classical case, the problem
is that of controlling the orbits in the strip. However, the phase-portrait in the strip is now
more complicated due to the possible presence of two phenomena, namely:

(a) the existence of several branches of the vertical isocline, that is the set y = F(x, y),
(b) the existence of blow-up solutions, given by possible superlinear terms in y.

In order to control the above defined situations, we focus our attention to the case of

F(x, y) = A(x)B(y),

with A such that
There exist α, β with α < 0 < β such that A(x) is strictly increasing for x ≤ α and x ≥ β

and, moreover, A(α) = A(β) = 0 with A(x)x < 0 for x ∈ ]α, β[, x �= 0.
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For the function B assume that

B(y) > 0, ∀ y �= 0.

Weobserve again that such choice seems natural, because, when B ≡ 1, the obtained Liénard
system presents a nonlinearity with a typical cubic-shaped curve, which is common in most
papers and is crucial in order to prove uniqueness of the limit cycle (see [14,17,18,24,32,39–
41] and the references quoted therein). On the other hand, the assumptions on B(y) allow to
consider power-like nonlinearities as B(y) = |y|p. This will be our starting point and will
be treated in the next section.

3 A Case Study

In this section we focus our attention on the equation{
ẋ = y − λ|y|p(x2 − 1)x

ẏ = −x,
(Hp,λ)

with λ > 0 and p > 0.
Here we are mainly interested in the case p ≥ 1. This, because for 0 < p < 1, |y|p is

sublinear and therefore the geometry is not very far from the classical one. Moreover, the
equation of the vertical isocline may be split in a simple way, namely the x-axis and a graph
of the function y = F̃(x), so that the situation is similar to the one of the classical case and
the problem can be treated in a similar way.

We shall discuss separately the two cases study p = 1 and p > 1.

3.1 The case p = 1.

We start with an analysis of the system for p = 1. In this case, for simplicity, we write
(Hλ) = (H1,λ). System (Hλ) can be split as two systems of the form{

ẋ = y(1 − λ(x2 − 1)x)

ẏ = −x,
for y ≥ 0 (H+

λ )

and {
ẋ = y(1 + λ(x2 − 1)x)

ẏ = −x,
for y ≤ 0. (H−

λ )

Both systems have an Hamiltonian structure, with Hamiltonians

E+
λ (x, y) := 1

2
y2 + Φ+

λ (x), on y ≥ 0, E−
λ (x, y) := 1

2
y2 + Φ−

λ (x), on y ≤ 0,

where

d

dx

(
Φ±

λ (x)
) = x

1∓λ(x2 − 1)x
.

Using the fact that max{(x2 − 1)x : −1 ≤ x ≤ 0} = 2/(3
√
3), we find that for λ > 0,

the equation λ(x2 − 1)x − 1 = 0 has a unique zero if and only if 0 < λ < λ∗ := 3
√
3/2.

In this case, we denote by x = aλ such unique solution, with aλ > 1. Hence we have that
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(a) (b)

Fig. 1 The functions Φ±
λ are the primitives of x

1∓λ(x2−1)x
with Φ±

λ (0) = 0. The graphs are produced using

[48]

Φ+
λ is well defined on (−∞, aλ[ and, without loss of generality, we can take, among all the

primitives of x
1−λ(x2−1)x

as Φ+
λ the one such that Φ+

λ (0) = 0. Figure 1a shows the typical

graph of Φ+
λ (x) on (−∞, aλ[ for 0 < λ < λ∗.

If we use for the function Φ−
λ the same convention that Φ−

λ (0) = 0, we find that

Φ−
λ (x) = Φ+

λ (−x), ∀ x > −aλ (3.1)

where −aλ < −1 is the unique real root of 1 + λ(x2 − 1)x . Figure 1b shows the above
symmetry.

With reference to the graph of Φ+
λ we can describe the dynamics of system (H+

λ ) for
0 < λ < λ∗. Let cλ := Φ+

λ (−∞). For every energy level c with 0 < c < cλ, the energy
level line

E+
λ (x, y) = 1

2
y2 + Φ+

λ (x) = c,

is a closed curve in the phase-plane (x, y) which is also a periodic orbit of the system (H+
λ ),

considered as a differential system defined on the whole plane. This orbit intersects the x-axis
on two points u±(λ, c) where

u−(λ, c) < 0 < u+(λ, c), with Φ+
λ (u±(λ, c)) = c.

On the other hand, for c ≥ cλ, the energy level line E+
λ (x, y) = c is an unbounded curve,

symmetric with respect to the x-axis which, restricted to y ≥ 0, is the graph of a functionwith
an asymptote at y = √

2(c − cλ), increasing on (−∞, 0] and decreasing on [0, u+(λ, c)],
where

0 < u+(λ, c) < aλ, with Φ+
λ (u+(λ, c)) = c.

Analogously, with reference to the graph of Φ−
λ we can describe the dynamics of system

(H−
λ ) for 0 < λ < λ+. Let dλ := Φ−

λ (+∞). By symmetry, we know that dλ = cλ. For every
energy level d with 0 < d < dλ, the energy level line

E−
λ (x, y) = 1

2
y2 + Φ−

λ (x) = d,

is a closed curve in the phase-plane (x, y) which is also a periodic orbit of the system (H−
λ ),

considered as a differential system defined on the whole plane. This orbit intersects the x-axis
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on two points v±(λ, d) where

v−(λ, d) < 0 < v−(λ, d), with Φ−
λ (v±(λ, d)) = d.

On the other hand, for d ≥ dλ, the energy level line E−
λ (x, y) = d is an unbounded curve,

symmetric with respect to the x-axis which, restricted to y ≤ 0, is the graph of a functionwith
an asymptote at y = √

2(d − dλ), increasing on [0,+∞) and decreasing on [v−(λ, d), 0],
where

−aλ < v−(λ, d) < 0, with Φ−
λ (v−(λ, d)) = d.

Now, to get the global dynamics of (Hλ), we can glue the orbits of (H+
λ ) on the upper

half-plane with those of (H−
λ ) on the lower half-plane.

Let us consider system (Hλ) for 0 < λ < λ∗.Without loss of generality, we can assume to
start from an initial point P0 := (x0, y0) with y0 > 0. First of all, we observe that if x0 = aλ

then ẋ = 0 and ẏ = constant = −x0 < 0, so that the trajectory hits the x-axis in finite time.
For convenience, we suppose now that y0 > 0 is sufficiently large and x0 �= aλ. It is easy
to check that in this situation, the trajectory moves fast close to the vertical line x = aλ and
then goes down to the x-axis almost parallel to the line x = aλ. Thus, we can suppose that
we enter in the lower half-plane from a point of the x-axis P1 := (x1, 0) with x1 close to aλ.

Let now d1 := Φ−
λ (x1).We have 0 < d1 < dλ and now we follow in the lower half-plane the

lower part of the closed orbit of energy d1 of system (H−
λ ) which intersects the x-axis at two

points (v±(λ, d1), 0) with v−(λ, d1) < 0 < v+(λ, d1) = x1. Thus, setting x2 := v−(λ, d1)
we get a new point P2 := (x2, 0) on the orbit of (Hλ) where the x-axis is hit again. From P2
we continue with the orbit path of (H+

λ ) which is the upper-half of a closed orbit which hits
again the x-axis at a point P3 := (x3, 0) with x3 = u+(λ, c) for c := Φ+

λ (x2). Continuing
in this manner, by induction, we obtain a sequence of points Pi = (xi , 0) on the x-axis with
x1 > x3 > x5, · · · > 0 and x2 < x4 < · · · < 0 which shows that the semi-orbit γ +(P0)
is winding. Since we already know that the orbits unwind from the origin, we conclude,
in virtue of the Poincaré-Bendixson theorem, that the orbit γ +(P0) tends to a limit cycle
Γ . The intersection of the limit cycle Γ with the x-axis is made by two symmetric points
P− = (−x̄, 0) and P+ := (x̄, 0)with P+ being the limit of the subsequence (Pk)k for k odd
and P− the limit of the subsequence (Pk)k for k even. The uniqueness of the limit cycle can
be deduced by the fact that the graphs of Φ+

λ and Φ−
λ intersect at a unique point for x > 0

(and a unique symmetric one for x < 0).
We observe that the above analytical argument works only in the case p = 1 because

only in this case we can exploit the symmetry and the Hamiltonian structure for the two
phase-portraits which are glued together. In order to overcome this difficulty, we present
now a different and more general argument to prove the existence and the uniqueness of a
limit cycle which can be extended to more general situations. This approach was actually
already present in the abovementioned work of Liénard [26] and then by Levinson and Smith
[25], and Sansone [33]. Such approach was also treated in [3,17,18,32,40,41]. The idea is to
observe that the integral of the time-derivative Ḣ (cf. (2.1)) along a closed trajectory must be
zero and then to show that this can happen only once. A detailed proof for F(x, y) = F(x)
may be found in [41].

Here we give a sketch of the proof, because the argument is similar.
At first we observe that, from (2.1), we have Ḣ = −λ|y|(x2 − 1)x2 and therefore the

energy function H is increasing inside the strip ]− 1, 1[×R and hence, due to the symmetry
property of system (Hλ), all the limit cycles must intersects the vertical lines x = −1
and x = 1. Assume (by contradiction) that there are two limit cycles Γ1 and Γ2 (with Γ1
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Fig. 2 From the phase-portrait of
(Hλ), the symmetry between
(H+

λ ) for y ≥ 0 and (H−
λ ) for

y ≤ 0 appears evident. The
simulation corresponds to the
case λ = 1. The graph is
produced using [49]

in the internal region of Γ2) and compute the line integrals
∮
Γi

−g(x(t))F(x(t), y(t)) dt for
i = 1, 2.Splitting these integrals along the orbit paths inside and outside the strip ]−1, 1[×R,

we observe the following:

(1) Inside the strip, the integral takes the form∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt =

∫ 1

−1

−λ(x2 − 1)x2

1 − λ(x2 − 1)x
dx, for y > 0

∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt =

∫ −1

1

λ(x2 − 1)x2

1 + λ(x2 − 1)x
dx, for y < 0.

Notice that the denominators in the above integrals do not vanish for 0 < λ < λ∗ =
3
√
3/2.

As y does not appear in the integrals, the variation of energy in the strip is the same for
both limit cycles.

(2) outside the strip, the integral takes the form∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt =

∫
F(x, y) dy =

∫
λ|y|(x2 − 1)x dy.

Now one must take into account the intervals of integration, in the y-variable, which are
different for the two limit cycles. However, we observe that, since the function x3 − x
is monotone increasing for |x | ≥ 1 (positive for x > 1 and negative for x < 1), we can
follows step by step the proof in [41, Section 2] and, in virtue of the clockwise orientation
of the limit cycles, we find that the contribution to the energy along the external limit
cycle is less than the contribution in the internal one.

As a final balance, we get that

0 =
∮

Γ2

−g(x(t))F(x(t)) dt <

∮
Γ1

−g(x(t))F(x(t)) dt = 0

which is a contradiction and shows also that the unique limit cycle is stable (Figs. 2 and 3).
Summarizing this discussion, we have obtained the following result.

Theorem 1 The system {
ẋ = y − λ|y|(x2 − 1)x

ẏ = −x,
(H1,λ)

has a unique limit cycle for 0 < λ < λ∗ = 3
√
3/2, while, for λ > λ∗ there are no limit

cycles.
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(a) (b)

Fig. 3 The figure represents the dynamics for system (H1), in the phase-plane (panel left) and for component
x(t) in the time variable (panel right). The graphs are produced using [48]

(a) (b)

Fig. 4 The figures represent the dynamics for system (H1,λ), for λ less than and λ greater than the critical
value λ∗. The graphs are produced using [49]

Remark 1 Following the dynamics for λ ↗ λ∗ we can say that, at this value, the limit cycle
collapses at ±∞ in a vertical strip. In this light we produce simulations for λ = 2 < λ∗ <

λ = 3 (see Fig. 4 below). Therefore, this result can be viewed as a bifurcation from infinity
in the strip ] − 1, 1[ and this clearly does not appear in the classical case of the Van der Pol
equation. ��

3.2 The Case p > 1.

We consider now system (Hp,λ) for p > 1. In order to understand the dynamical behavior
of such class of systems, we deal, at first, with the particular case{

ẋ = y − λy2(x2 − 1)x

ẏ = −x,
(H2,λ)
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Fig. 5 The infinite-isocline and the zero-isocline for system (H2,1), with the direction of the vector field. The
graph is produced using [48]

since the other systems exhibit the same dynamical features. Now, the vertical isocline will
play a crucial role. It is given by the union of the x-axis with the graph of

y = 1

λ(x3 − x)
.

Standard phase-plane arguments show that the trajectories, as before, are symmetric with
respect to the origin and the directions of the vector field are the following (see Fig. 5).

The symmetric regions

V1 :=
{
(x, y) : −1 < x < 0, y > 1

λ(x3−x)

}
V2 :=

{
(x, y) : 0 < x < 1, y < 1

λ(x3−x)

}
are positively invariant and play a crucial role because all the trajectories entering such regions
become unbounded in the y-component. Notice that, however, there is no blow-up in forward
time and the solutions entering V1 or V2 are defined on R+. Indeed, if (x(t), y(t)) ∈ Vi (for
i = 1, 2), for t ≥ 0, then |x(t)| ≤ 1 and hence, from the second equation in system (Hp,λ)

we have |y′(t)| ≤ 1.
Unboundedness in backward time occur also in the negatively invariant regions

W1 :=
{
(x, y) : x > 1, y > 1

λ(x3−x)

}
W2 :=

{
(x, y) : x < −1, y < 1

λ(x3−x)

}
(see Fig. 5), but this latter fact does not involve extra difficulties (and sometimes it may help)
in the search of the limit cycle.

An inspection of the vector field in a neighborhood of the origin and observing also that
Ḣ(x, y) = −λy2x2(x2−1) > 0 for 0 < |x | < 1 and y �= 0, shows that the origin is a source
and therefore small orbits are unwinding. However, for λ > 0 large, all these orbits will enter
the positively invariant regions V1 or V2 and ultimately will be unbounded, so that there are
no limit cycles (the precise details and estimates justifying our assertion on the nonexistence
of limit cycles are given in Step 1 of the proof of Theorem 2, below). On the other hand,
for λ small enough, the are trajectories exiting the negatively invariant region W1 that reach
the negative y-axis, without entering the “forbidden region” V1. Such trajectories eventually
intersect the x-axis at some x < 0. Due to the symmetry of the system, any such trajectory
is bounded above in the upper plane by a symmetric one and therefore is winding. As usual,
the Poincaré-Bendixson theorem guarantees the existence of at least a limit cycle. The fact
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Fig. 6 The movement of the
infinite-isocline when λ varies.
The graph represent (from the
external to the internal ones) three
different isoclines for λ = 1, 2, 3
and show the monotonicity. The
graphs are produced using [48]

that this behavior of the orbits is possible for λ is small, as well the fact that the trajectories
become unbounded for λ large, is granted by the fact that the infinite isoclines in the strip
] − 1, 1[×R monotonically move with respect to the parameter λ (see Fig. 6).

In view of the above discussion, now we are in position to establish the following result.

Theorem 2 There is λ∗
2 > 0 such that for every λ ∈ ]0, λ∗

2[ system (H2,λ) has a limit cycle,
while for λ > λ∗

2 all the nontrivial trajectories are ultimately unbounded.

Proof In the introductory part preceding the statement of the theorem, we have already
described the qualitative analysis leading to the strategy of the proof. We provide now the
technical estimates which justify our previous assertions. To this end, we split the proof in
three steps.
Step 1. Nonexistence of limit cycles for λ large. Considering the previously introduced energy
function H(x, y) = 1

2

(
y2 + x2) associated to the (linear) autonomous Duffing equation

ẋ = y, ẏ = −x, we find that

Ḣ(x, y) = −λy2(x2 − 1)x2.

Hence Ḣ(x, y) ≥ 0, with ∇H(x, y) �= 0 on all the points of the circumference H(x, y) =
1/2. This implies that the disc D := {(x, y) : H(x, y) ≤ 1/2} (the closed disc of center the
origin and radius one) is a negatively invariant region for the dynamical system associated
with (H2,λ) (for each λ > 0). Hence the Lyapunov–LaSalle theory (cf. [23]) guarantees
that for each initial point P0 ∈ D the negative semi-orbit γ −(P0) tends to the origin (for
t → −∞). In other words the disc D is contained in the region of repulsivity of the origin.
Now, it is sufficient to take λ > 0 sufficiently large so that at least one of the regions V1 or V2

(in our case both the regions, by the symmetry of the system) intersects the disc D (see Fig. 7
for an illustration of this fact). Clearly, if we take any initial point P0 ∈ D ∩V (with V = V1

or V = V2), we have that the orbit γ (P0) tends to the origin in the negative time, while
its positive semi-orbit enters V and is unbounded in the future. By construction, the orbit
γ (P0) prevents the possibility of the existence of a closed orbit (which should surround the
origin). At this point the Boincaré-Bendixson theory implies that all the nontrivial positive
trajectories must be unbounded. In this manner we have proved that there exists λ̌ > 0 such
that for each λ > λ̌ all the nontrivial trajectories are ultimately unbounded.
Step 2. Existence of limit cycles for λ small. Let

xm := − 1√
3
, ym := 3

√
3

2
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Fig. 7 Taking λ > 0 sufficiently
large we move down the
“forbidden” region V1 and up the
symmetric one V2 (in dark) until
they cross the disc D. The graph
is produced using [48]

be the coordinates of the minimum point of 1/(x3 − x) on the interval ] − 1, 0[ . Consider
also the line

y = 1

2λ(x3 − x)
, for − 1 < x < 0

which is below the region V1 and has ym/2λ as a minimum value. By construction, we have
that

ẋ = y − λy2(x3 − x) ≥ y/2, ∀ (x, y) : −1 < x < 0, 0 < y ≤ 1

2λ(x3 − x)
. (3.2)

Consider the initial point

P0 = (−1, y0), with y0 = ym
2λ

− 2.

Clearly y0 > 0 for λ small, namely, 0 < λ < ym/4.
The slope of the trajectory departing from P0 satisfies the relation

0 ≤ dy

dx
≤ −2x

y
, ∀ (x, y) ∈ R := [−1, 0] × [y0, y0 + 2],

hence, an elementary and standard estimate shows that the positive trajectory departing
from P0 remains in the region R and crosses the y-axis at some point P1 = (y1, 0) with
y0 < y1 < y0 + 2. Consider now the point P2 = (x1, y1) of intersection of the horizontal
line y = y1 with the boundary of the region W1 , given by the equation y = 1/(λ(x3 − x))
for x > 1 and observe that the segment P1P2 is crossed by the vector field from the exterior
to the interior, as ẋ ≥ 0 and ẏ < 0 (for x > 0).
Consider now the negative semi-orbit departing from P0 and let C(P0) be the circumference
of center the origin and passing through P0 of equation

x2 + y2 = 1 + y20 = 1 +
( ym
2λ

− 2
)2

.

Since Ḣ(x, y) ≤ 0 for all x ≤ −1, we have that the region outside the circumference C(P0)
in the half-plane x ≤ −1 is negatively invariant is for the dynamical system associated with
(H2,λ) (for each λ > 0), with respect to the open set x < −1. Now we are in position to
consider the following
Claim For λ > 0 sufficiently small the circumference C(P0) crosses the curve y = 1

λ(x3−x)
for x < −1.
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We observe that we look for an intersection point in the third quadrant, therefore we study
the system ⎧⎨

⎩y = −
√
1 + (

ym
2λ − 2)2 − x2

y = 1
λ(x3−x)

(3.3)

looking for a solution x in the domain

−
√
1 + ( ym

2λ
− 2

)2
< x < −1.

Clearly, from system (3.3) we get the equation

f (x, λ) = −1, for f (x, λ) := (x3 − x)

√( ym
2

− 2λ
)2 − λ2(x2 − 1).

Such equation has always solutions in the desired range for λ sufficiently small. It is enough
to observe that

lim
x→−1− f (x, λ) = 0 > −1

and then take a suitable (large in absolute value) x̃ < −1 such that η := (x̃3 − x̃)ym/2 < −1
and observe that

lim
λ→0+ f (x̃, λ) = η < −1

and therefore the claim is proved.
The claimwe have just proved guarantees that the negative semi-trajectory departing from

P0 crosses the line y = 1/(λ(x3 − x)) at some point with P−1 = (x−1, y−1) with x−1 < −1
and y−1 < 0.

To conclude the proof, we just repeat symmetrically the same construction starting from
the point Q0 = (1,−y0) and obtain the corresponding (and symmetric) points Q1 , Q2 and
Q−1 . In this manner, we have determine a piecewise smooth Jordan curve Υ defined as
follows: from P−1 to P0 and from P0 to P1 along an orbit-path of the trajectory through P0 ,

next, the segment P1P2 , then the arc of curve y = 1/(λ(x3 − 1)) for x > 1 from P2 to Q−1

and, finally, the symmetric orbit-path from Q−1 to Q1 (passing through Q0), the segment
Q1Q2 and the arc of curve y = 1/(λ(x3 − 1)) for x < −1 from Q2 to P−1 . The curve Υ is
the boundary of a positively invariant region containing the origin as the unique equilibrium
point, which is also a source. Therefore, the Poincaré-Bendixson theorem guarantees the
existence of at least a limit cycle bounded by Υ . In this manner we have proved that there
exists λ̂ > 0 such that, for each 0 < λ < λ̂, system (H2,λ) has at least a limit cycle. Figure 8
illustrates the geometry involved in the proof of Step 2.

Step 3. The existence of λ∗
2. This last assertion follows by defining

λ∗
2 := sup{k > 0 : (H2,λ) has a bounded nontrivial orbit∀ λ : 0 < λ < k}

and observing that if for a certain λ1 all the solutions of (H2,λ) are unbounded, then the same
holds for any λ2 > λ1 . This because the unbounded solutions of (H2,λ) either eventually
enter in the regions V1 and V2 or they correspond to the separatrices contained, respectively
in ] − 1, 0[ and in ]0, 1[ and very close (below/above) to these regions. Now, increasing λ

has the effect of moving down the region V1 and up the region V2 (and the corresponding
separatrices). This in turn implies that all the obits which were escaping to infinity for λ1 are
also escaping to infinity for λ2 . This completes the proof of our result. ��
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(b)(a)

Fig. 8 Taking λ > 0 sufficiently small we move up the “forbidden” region V1 and down the symmetric one
V2 (in dark) and an invariant region bounded byW1 andW1 can be constructed. The graph is produced using
[48]

As a comment to this lengthy proof, we observe that we choose to describe in detail all the
steps, because the same argument will work in the general case and this will avoid tedious
computations in the proof of Theorem 6, where the geometry is exactly the same except for
the symmetry (Figs. 9 and 11.).

Remark 2 As before, we observe that for λ ↗ λ∗
2 the limit cycle collapses at ±∞ in the

vertical strip ] − 1, 1[×R. ��
Remark 3 The same argument, with minor changes, allows to extend the result of Theorem 2
to system (Hp,λ) for every p > 1. In this case, we find a constant λ∗

p such that the system
has a limit cycle if and only if 0 < λ < λ∗

p. The same result applies also to more general
functions A(x) (see also Theorem 6). Example 2, considered at the end of the article, shows
the applicability of our approach to other situations. ��

The problem of the uniqueness of the limit cycle
We conclude our analysis by discussing the problem of the uniqueness of the limit cycle

for p > 1. Although there is a numerical evidence of the uniqueness, unfortunately, the
previous proof does not work. It is interesting to point out the issues even because this will
give a proof for the case 0 < p < 1.

Let p > 1. As before, a computation of Ḣ = −λ|y|p(x2 − 1)x2 and the symmetry
property of system (Hp,λ), show that the origin is a source and all the limit cycles must
intersects the vertical lines x = −1 and x = 1. Again, assume (by contradiction) that there
are two limit cycles Γ1 and Γ2 (with Γ1 in the internal region of Γ2) and compute the line
integrals

∮
Γi

−g(x(t))F(x(t)) dt for i = 1, 2. Splitting these integrals along the orbit paths
inside and outside the strip ] − 1, 1[×R, we observe, in the same way, the following:
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Fig. 9 Planar dynamics for
system (H2,2). It is evident that
the trajectories are unwinding
from the origin and ultimately
become unbounded entering the
regions V1 or V2. The graph is
produced using [49]

(a) (b)

Fig. 10 The figures represent the dynamics for system (H2,λ). Numerical simulations suggest that the critical
value of the parameter λ∗

2 satisfies the bound 1.474 < λ∗ < 1.475. The graphs are produced using [48]

(a) (b)

Fig. 11 The figures represent the behavior of the components x(t) (left panel) and y(t) (right panel) for system
(H2,λ) with λ = 1.475 as in the right panel of Fig. 10. The graphs are produced using [48]
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� Outside the strip, the integral takes the form∫
Ḣdt = ∫ −g(x(t))F(x(t), y(t)) dt = ∫

F(x, y) dy
= ∫

λ|y|p(x2 − 1)x dy.
(3.4)

Arguing as before, we find that the contribution to the energy along the external limit
cycle is less than the contribution of the internal one. This is true not only for p > 1, but
for every p > 0.

� Inside the strip, the integral takes the form∫
Ḣdt = ∫ −g(x(t))F(x(t), y(t)) dt = ∫ 1

−1
−λ|y|p(x2−1)x2

y−λ|y|p(x2−1)x
dx

= ∫ 1
−1

−λy p−1(x2−1)x2

1−λy p−1(x2−1)x
dx, for y > 0

(3.5)

∫
Ḣdt = ∫ −g(x(t))F(x(t), y(t)) dt = ∫ −1

1
−λ|y|p(x2−1)x2

y−λ|y|p(x2−1)x
dx

= ∫ −1
1

λ|y|p−1(x2−1)x2

1+λ|y|p−1(x2−1)x
dx, for y < 0.

(3.6)

Clearly, a limit cycle cannot intersect the vertical isocline and enter in the “forbidden”
regions that before were indicated by V1 and V2 for p = 2. Hence, for 0 < λ < λ∗

p , the
denominators in the above integrals do not vanish. Let us consider the first of the above
integrals and write it as ∫ 1

−1

−λ(x2 − 1)x2

y1−p − λ(x2 − 1)x
dx (3.7)

(for the second integral the situation is symmetric and so we do not repeat the discussion).
However, now a problem appears, because, as one can see, for p > 1 the integrand is
increasing with respect to y. This means that in the strip ] − 1, 1[×R

+, the part of the
outer limit cycle gains more energy than the part of the inner limit cycle. This does not
allow to repeat the above proof and show that the complete integral along the outer limit
cycle is less than the integral along the inner one. This is also evident from the numerical
simulations, where we see that in the strip the limit cycles tend to have an arbitrary large
amplitude and the function H(x, y) is actually the square of the distance from the origin.

3.3 The case 0 < p < 1.

At first we notice that even if in this case B(y), and therefore F(x, y), is not locally Lipschitz
continuous at y = 0, nevertheless there is still uniqueness of the trajectories. Indeed, near
the origin (which could be the only point in which the uniqueness might fail) standard phase
inspection shows that trajectories are clockwise and the origin is a source.

Concerning the existence of limit cycles, we stress that the proof for the case p > 1 does
not work because a crucial point in that case was the fact there were trajectories coming from
the negatively invariant regions W1 and W2 and such regions are not present in this case. To
overcome this question, we use a different (still geometrical) approach.

From (Hp,λ) we consider the system{
ẋ = |y|p(|y|1−psign(y) − (x2 − 1)x)

|y|p ẏ = −|y|px (3.8)

which, via the change of variables

w = 1

p + 1
|y|p y, y = (p + 1)

1
p+1 w

1
p+1 sign(w), (3.9)
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takes the form {
ẋ = L(w)(h(w) − (x2 − 1)x)

ẇ = −L(w)x
(3.10)

where

L(w) := (p + 1)
p

p+1 |w| p
p+1 , and h(w) := (p + 1)

1−p
p+1 |w| 1−p

p+1 sign(w).

It is worth to note that this change of variables is not smooth at w = 0. However, being the
origin a source, this is not a problem and the uniqueness of the solutions is always granted (the
uniqueness also follows from more general results in [12] regarding differential equations
with even a discontinuous right-hand side, provided that the vector field presents a surface
of discontinuity which is crossed transversally, as is in our case). Finally, from (3.10), we
consider the associated system {

ẋ = h(w) − (x2 − 1)x

ẇ = −x
(3.11)

It is well known (see, for instance, [2]) that such a system has at least a limit cycle. As the
slopes for (3.10) and (3.11) are the same, due to the fact that the factor L(w) simplifies, the
two systems have the same phase-portrait. However, this argument fails at the x-line, where
L(w) = 0. Indeed, one may observe that (3.10) as w = 0 as a whole line of critical points.
But this is not a problem if we compare the two system for w > 0 (that is y > 0) and w < 0
(that is y < 0) respectively. More in detail, let Γ be a limit cycle of system (3.11). We split
Γ in two arcs, Γ + for w > 0 and Γ − for w < 0, ignoring the two points where Γ intersects
the x-axis. Clearly, the same arcs Γ ± are orbits of system (3.10). At this point we apply on
these arcs the transformation (x, w) → (x, y) considered in (3.9), obtaining two new arcs
Γ ±
1 which are orbits of system (3.8). Cancelling |y|p in the second equation of (3.8), we are

back to system (Hp,λ). Finally, we glue the closures of Γ +
1 and Γ −

1 (in a smooth way due
to the fact that the vector field on the x-axis is vertical), obtaining the desired limit cycle for
(Hp,λ).

Let us consider now the problem of the uniqueness of the limit cycle. We just observe that
the previous computation, which was failing or the case p > 1, now works for 0 < p < 1.
Indeed, the integral (3.7) in decreasing in the strip [−1, 1] (and a symmetric argument works
for y < 0). Hence, the computations produced for (3.4)-(3.5)-(3.6) can be repeated and we
have the following result.

Theorem 3 For every λ > 0 and 0 < p < 1, system (Hp,λ) has exactly one limit cycle.

A comment to Theorem 3 is given by the following Fig. 12 concerning the case p = 1/2
and λ = 2.

4 The General Case

As in the previous section, we consider the case

F(x, y) = λA(x)B(y), λ > 0,

where A, B : R → R satisfy analogous assumptions to those of Sect. 2, namely:
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(a) (b)

Fig. 12 Uniqueness of the limit cycle for (Hp,λ) in the case p = 1/2 and λ = 2, as above proved

(A0) There exist α, β with α < 0 < β such that A(α) = A(β) = A(0) = 0 with A(x)x < 0
for x ∈ ]α, β[, x �= 0 and, moreover,

lim
x→−∞ A(x) = −∞, lim

x→+∞ A(x) = +∞
(B0) B(y) > 0, ∀ y �= 0.

System (S) takes the form {
ẋ = y − λB(y)A(x)

ẏ = −g(x)
(S1)

with

g(0) = 0, g(x)x > 0, for x �= 0, G(±∞) = +∞ (g0)

and A, B, g satisfying regularity conditions in order that the uniqueness of the solutions for
the initial value problems is guaranteed.

In the light of the previous section, we consider two cases for the function B(y), namely,
the sublinear case and the superlinear one.

The sublinear case: B(y)/y → 0 for y → ±∞
As already discussed, if B(y) is not locally Lipschitz continuous at y = 0, this is not a

problem because the origin is a source in virtue of the sign of A(x) in a neighborhood of
x = 0. As before, we replace system (S1) with{

ẋ = B(y)( y
B(y) − λA(x))

B(y)ẏ = −B(y)g(x)
(4.1)
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Next we introduce the function

B(y) :=
∫ y

0
B(s) ds

which is strictly monotone increasing and we assume that

lim
y→−∞B(y) = −∞, lim

y→−+∞B(y) = +∞. (B1)

Thus we can consider the change of variable

w := B(y), y := B−1(w)

and transform system (4.1) to {
ẋ = L(w)(h(w) − λA(x))

ẇ = −L(w)g(x)
(4.2)

with

L(w) := B(B−1)(w), h(w) := B−1(w)

L(w)
.

The orbit-paths of (4.2) for w �= 0 (that is y �= 0) are the same of those of{
ẋ = h(w) − λA(x)

ẇ = −g(x).
(4.3)

Observe that the sublinear condition implies that h(w) → ±∞ for w → ±∞. Hence, in
order to enter in the setting of the existence result in [19,42] (see also [46] for a survey on
this topic) for system (4.3), we just need to assume that

y

B(y)
is strictly monotone increasing with lim

y→0

y

B(y)
= 0. (B2)

At this point we can replicate the argument for (Hp,λ) with 0 < p < 1 and get the existence
of at least a limit cycle for the original system. Thus we have the following result.

Theorem 4 Assume (g10) as well as (A0), (B0), (B1), (B2). Then, for every λ > 0 system
(S1) has at least a limit cycle.

Example 1 provides an explicit application of Theorem 4, namely for

B(y) = 2
π
arctan(|y|1/2 + y2), A(x) = (x2 − x − 1)x

and g(x) = x3, so that (g0) holds. Observe that, in this case, all the assumptions (A0), (B0),
(B1), (B2) are satisfied.

Example 1 To show an example of applicability of Theorem 4 we consider the system{
ẋ = y − λ 2

π
arctan(|y|1/2 + y2)(x2 − x − 1)x

ẏ = −x3.

Figure 13 illustrates the associated dynamics for λ = 1. ��
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(a) (b)

Fig. 13 The figure represents the dynamics for system (S1), in the phase-plane (panel left) and for component
x(t) in the time variable (panel right). This example concerns the sublinear casewith B(y) = 2

π arctan(|y|1/2+
y2), A(x) = (x2 − x − 1)x and g(x) = x3. The simulation suggests the uniqueness of the limit cycle, but in
order to rigorously prove this fact, one should first check the validity of the property (S ) introduced below.
The graphs are produced using [48]

As discussed in [9,20,22,46] the topic concerning the uniqueness of the limit cycle is
more delicate. We show how our argument developed in Sect. 3 for system (Hp,λ) can be
affectively applied to our situation as well.We recall that the problem of the uniqueness of the
limit cycle for the classical Liénard equation (1.2) has been studied in [40,41], by considering
the following classical property:

All the possible limit cycles cross both the lines x = α and x = β, (S )

which we referred to R. Conti [10] in [41]. It is worth to note, and it is a pleasure, that
Professor Roberto Conti was the thesis advisor of the first author, and was a mentor and a
guide for both authorswhen theyweremoving their first steps in this fascinatingmathematical
field area.

As remarked in [46, p.1192], this crossing condition (implicitly used in the proof of the
result in [20], further corrected in [22] and [46]) is crucial also for the proof of the uniqueness
of the limit cycles for (4.3) or, equivalently, (1.3), otherwise some counterexamples can be
constructed. In this setting we present the following result.

Theorem 5 Assume (g10) and that there exist α, β with α < 0 < β such that A(α) =
A(β) = A(0) = 0 such that A(x)x < 0 for x ∈ ]α, β[, with A(x) is strictly increasing for
x ≤ α and x ≥ β. Assume that B(y) satisfies (B0) and (B2). Then system (S1) has at most
one limit cycle provided that (S ) holds.

Proof By property (S ) all the possible limit cycles cross the strip [α, β] × R.

Assume (by contradiction) that there are two limit cyclesΓ1 andΓ2 (withΓ1 in the internal
region of Γ2) and compute the line integrals∮

Γi

−g(x(t))F(x(t), y(t)) dt
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for i = 1, 2. Splitting these integrals along the orbit paths inside and outside the strip
[α, β] × R, we obtain:

Outside the strip, the integrals (3.4) take the form∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt =

∫
F(x, y) dy = λ

∫
B(y)A(x) dy.

Since the function A(x) is monotone increasing and is positive for x > β and negative for
x < α, we find that the contribution to the energy along the external limit cycle is less than
the contribution in the internal one.

Inside the strip the integrals (3.5) and (3.6), become, respectively∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt = −λ

∫ β

α

B(y)A(x)

y − λB(y)A(x)
dx

= −λ

∫ β

α

A(x)
y

B(y) − λA(x)
dx, for y > 0

and ∫
Ḣdt =

∫
−g(x(t))F(x(t), y(t)) dt = −λ

∫ α

β

B(y)A(x)

y − λB(y)A(x)
dx

= λ

∫ β

α

A(x)
y

B(y) − λA(x)
dx, for y < 0.

Now, using the assumption (B2) we find again that the contribution to the energy along the
external limit cycle is less than the contribution in the internal one. In conclusion we get that

0 =
∮

Γ2

−g(x(t))F(x(t)) dt <

∮
Γ1

−g(x(t))F(x(t)) dt = 0

which is a contradiction. ��

In our case, in order to fulfill the implicit assumption (S ), we need some symmetry properties
which, for example are satisfied if B(y) is even and A(x) and g(x) are odd. If these additional
assumptions hold, combining Theorem 4 and Theorem 5 we get that:

System (S1) has exactly one limit cycle which is asymptotically stable.

Remark 4 One may argue that assuming the above mentioned symmetry conditions one can
get directly the uniqueness of the limit cycle from the auxiliary system (4.3). This because the
results on the number of limit cycles for (4.3) transfer to our case via the change of variables
considered in the proof of Theorem 4. This argument is correct. However, we observe that
our uniqueness result can be applied to situations where the above quoted existence results
for (4.3) are not applicable. This occurs, for instance, when the growth conditions for F(x)
or G(x) at infinity are not satisfied. On the other hand, limit cycles may in principle exist
and Theorem 5 gives the uniqueness. A result related to Theorem 4 was previously obtained
in [32, Theorem 1], for the study of a system of the form (S1) in the sublinear case. This
also shows the effectiveness of the method of energy integration introduced in the pioneering
work of Liénard and developed by several authors since then. ��

The superlinear case: y/B(y) → 0 for y → ±∞
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This case is more intriguing, due to the presence of new branches of the infinite isocline
as it was shown in Figs. 5 and 6 and now the parameter λ > 0 will play a crucial role. As far
as we know, this interesting phenomenon has never been investigated in this context before.

From now on, besides (B0) and (g0), we suppose that (A0) holds with the function A(x)
having exactly three zeros α < 0 < β, so that we assume the following

(A1) There exist α, β with α < 0 < β such that A(α) = A(β) = A(0) = 0 with A(x)x < 0
for x ∈ ]α, β[, x �= 0 and A(x)x > 0 for x /∈ [α, β]. Moreover,

lim
x→−∞ A(x) = −∞, lim

x→+∞ A(x) = +∞.

Observe again that this assumption is common for the classical Liénard equation (1.2).
Moreover, assume that

B(y)

y
is strictly monotone increasing and

B(y)

y
→ 0 for y → 0. (B3)

Under the above assumption, the map η(y) := B(y)/y is an increasing bijection of the real
line with η(0) = 0 and therefore the vertical isocline is given by the union of the x-axis with
the graph of

y = κλ(x) := η−1
(

1

λA(x)

)
.

This graph, in view of the hypotheses on A(x), exhibits a behavior similar to the one of the
case study with p > 1, depicted in Fig. 5.

As in Sect. 3 (cf. Fig. 5), we can define the positively invariant regions

V1 = Vλ
1 := {(x, y) : α < x < 0, y > κλ(x)},

V2 = Vλ
2 := {(x, y) : 0 < x < β, y < κλ(x)}.

Analogously, we introduce the negatively invariant regions

W1 = Wλ
1 := {(x, y) : x > β, y > κλ(x)}

W2 = Wλ
2 := {(x, y) : x < α, y < κλ(x)}.

By the properties of A(x) and η−1 (which, in turns, depends on the behavior of B(y)/y in
(B3)), we have that κλ : R \ {α, 0, β} → R is a continuous function such that κλ(x) < 0 for
x < α and 0 < x < β, κλ(x) > 0 for α < x < 0 and x > β and η(x) → 0 for x → ±∞.

Moreover, κλ → ±∞ as x → α±, as x → 0∓ and x → β±.

Our next and final result is an extension of Theorem 2 which was proved for the “case
study” (H2,λ) to general systems of the form (S1). For the proof of our previous theorem
we used the fact that B(y) = |y|p , for p > 1 (even if only the case p = 2 was discussed in
detail). In Theorem 2 we considered a special form of odd A(x), namely A(x) = x3 − x and
g(x) = x . In the general superlinear case studied in this section we try to avoid as possible
any condition of symmetry. However, checking the proof of Step 2 in Theorem 2 one realizes
that the crucial fact in the proof of the intersection of the circumference C(P0) with the
curve which is the boundary of the region W2 involves a comparison between the 1/A(x)
on ] − 1, 0[ with A(x) on (−∞,−1[ . Now, there two terms are transformed through the
function η−1, hence a condition relating the behavior of η−1 at −∞ with η−1 at +∞ will be
required. Accordingly, we assume the following condition.

∃ q > 0 : ∀ σ > 0, lim
s→+∞

η−1(σ s)

|η−1(−s)| = σ q . (RV )
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Condition (RV ) is strongly related to the usual assumption considered in the theory of
Karamata’sRegularlyVaryingFunctions. Classical regularly varying function usually involve
a limit of the form f (σ s)/ f (s) and appear in different areas of interest such as real analysis,
probability theory and asymptotic theory for ODEs (see the books [28,35] and the references
therein).

In this framework the following main existence result holds.

Theorem 6 Assume (g0) as well as (A1), (B0), (B3) and (RV ). There is Λ∗ > 0 such
that for every λ ∈ ]0,Λ∗[ system (S2) has a limit cycle, while for λ > Λ∗ all the nontrivial
trajectories are ultimately unbounded.

Proof The proof follows the same argument already described in detail along the proof of
the “case study” Theorem 2. Therefore, we will concentrate only on the small modifications
which are needed in the present case.

Let xM ∈ ]α, 0[ be a point of maximum for A(x) in the interval ]α, 0[ and, respectively,
let xm ∈ ]0, β[ be a point of minimum for A(x) in the interval ]0, β[ . Having in mind the
graph of κλ we define

μλ := κλ(xM ) = η−1
(

1

λA(xM )

)
= min{κλ(x) : α < x < 0},

νλ := κλ(xm) = η−1
(

1

λA(xm)

)
= max{κλ(x) : 0 < x < β},

with μλ > 0 > νλ. Note that μλ,−νλ → +∞ as λ → 0+ and μλ, νλ → 0 as λ → +∞.

Step 1. Nonexistence of limit cycles for λ large. We consider the energy function H(x, y) =
1
2 y

2 + G(x) associated to the Duffing equation (D) and, according to (2.1) we have

Ḣ(x, y) = −λB(y)A(x)g(x).

Consider now the region

D := {(x, y) : H(x, y) ≤ c0}, with c0 = min{G(α),G(β)}.
The setD is negatively invariant and for each P0 ∈ D it holds that γ −(P0) tends to the origin.
Using the fact that μλ, νλ → 0 as λ → +∞, we can determine a value of λ such that for all
the larger values a region V (with V = V1 or V = V2) intersects D (a situation completely
similar to that depicted in Fig. 7). Taking P0 ∈ V ∩ D we find that the orbit γ (P0) tends to
the origin in negative time and is unbounded. This prevents the possibility of having limit
cycles. In this manner we have proved that there exists λ̌ > 0 such that for each λ > λ̌ all
the nontrivial trajectories are ultimately unbounded.
Step 2. Existence of limit cycles for λ small. First of all, we introduce the line

y = η−1
(

1

2λA(x)

)
, for α < x < 0

which is below the region V1 and has vM,λ := η−1
(

1

2λA(xM )

)
as a minimum value. By

construction, we have that

ẋ = y − λB(y)A(x) ≥ y/2, ∀ (x, y) : α < x < 0, 0 < y ≤ 1

2λA(x)
,

which is the analogue of (3.2).
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Consider the initial point

P0 = (α, y0), with y0 = vM,λ − K ,

with K >
√
2G(α) a fixed constant. Clearly y0 > 0 for λ small, as vM,λ ↗ +∞ as λ → 0+.

The slope of the trajectory departing from P0 satisfies the relation

0 ≤ dy

dx
≤ −2g(x)

y
, ∀ (x, y) ∈ R := [α, 0] × [y0, y0 + K ],

so that y(x)2 − y20 ≤ 2G(α) − 2G(x) ≤ 2G(α) and then

y(x) ≤ (
y20 + 2G(α)

)1/2 ≤ y0 + √
2G(α)

as long as (x, y(x)) remains in the rectangle. Hence, the above a priori estimate shows that
the positive trajectory departing from P0 remains in the region R and crosses the y-axis at
some point P1 = (y1, 0) with y0 < y1 < y0 + K . Consider now the point P2 = (x1, y1) of
intersection of the horizontal line y = y1 with the boundary of the region W1 , given by the
equation y = κλ(x) for x > β and observe that the segment P1P2 is crossed by the vector
field from the exterior to the interior, as ẋ ≥ 0 and ẏ < 0 (for x > 0).

Considering now the negative semi-orbit γ −(P0) departing from P0 we have that such a
trajectory remains in the region outside the level line

H(x, y) = 1

2
y2 + G(x) = 1

2
y20 + G(α)

as long as x < α.

We claim that γ −(P0) crosses the negatively invariant regionW2 for λ > 0 sufficiently small.
To this end, it is sufficient to show that the system

⎧⎨
⎩y = −

√
2(G(α) − G(x)) + (

η−1
( 1
2λA(xM )

) − K
)2

y = η−1
( 1

λA(x)

)
(which is the analogue of (3.3) to our situation) has solution x in the domain

G−1
l

(
G(α) + 1

2

(
η−1( 1

2λA(xM )

) − K
)2)

< x < α,

whereG−1
l is the inverse ofG restricted on the negative real numbers. From the above system

we get the equation

f (x, λ) = −1, for f (x, λ) :=
√
2(G(α) − G(x)) + (

η−1
( 1
2λA(xM )

) − K
)2

η−1
( 1

λA(x)

) .
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To prove that this equation has solutions in the desired range for λ sufficiently small, we
proceed as follows.

lim
x→−1− f (x, λ) = 0 > −1,

because κλ(x) = η−1
( 1

λA(x)

) → −∞ as x → α−. On the other hand, for any fixed x̃ < α

we have that

lim
λ→0+ f (x̃, λ) = lim

λ→0+

η−1
( 1
2λA(xM )

)
η−1

( 1
λA(x̃)

) .

Using condition (RV ) with s := 1/(λ|A(x̃)|) and σ := |A(x̃)|/2A(xM ), we obtain that

lim
λ→0+ f (x̃, λ) = η := −( |A(x̃)|/2A(xM )

)2
and observe that we can have η < −1 if we take x̃ < α sufficiently negative (using also the
fact that |A(x)| → +∞ for x → ±∞).
Therefore the existence of an intersection point P−1 of γ −(P0) with the boundary of W2

is guaranteed. From now on, we proceed in a complete symmetrical manner to determine
points Q−1, Q0, Q1 and Q2 starting from a point Q0 = (β, z0) above the region V2 and,
like in the proof of Theorem 2, we arrive at the construction of a Jordan curve Υ which is the
boundary of a positively invariant region surrounding the origin and bounding a limit cycle.
In this manner we have proved that there exists λ̂ > 0 such that, for each 0 < λ < λ̂, system
(S2) has a limit cycle.

We skip the discussion concerning Step 3 because the geometry of (S2) in the strip
α < x < β is the same as that of (H2,λ) in −1 < x < 1. This concludes the proof of our
theorem. ��

Example 2 provides an explicit application of Theorem 6, namely for

B(y) = (tanh(y2 + y + 1))y2, A(x) = (x2 − 2x − 3)x .

and g(x) = x, so that (g0) holds. Observe that, in this case, all the assumptions (A1), (B0),
(B3) are satisfied and also (RV ) holds.

Example 2 To show an example of applicability of Theorem 6 we consider the system{
ẋ = y − λ(tanh(y2 + y + 1))y2(x2 − 2x − 3)x

ẏ = −x .

Figures 14, 15, 16 illustrate, respectively, the associated dynamics for λ = 0.0522 (existence
of a limit cycle) and for λ = 0.0523 (escape of all the nontrivial orbits). Clearly, this is just
a numerical simulation which shows the above phenomenon which is proved analytically.
Precise estimates from above and below on Λ∗ are in any case obtained within the limits of
the numerical approximations. ��

The “escape effect” exhibited by a single orbit in Fig. 15 is even more dramatically
illustrated considering the whole set of trajectories in Fig. 16.

Another approach to prove the existence of limit cycles for λ ∈]0,Λ∗[ is based on a
classical bifurcation technique, dating back to Poincaré (according to Lefschetz [24, pp.
314–320]) and Liénard to prove the existence of limit cycles bifurcating form a periodic
orbit of a center when a parameter multiplying the nonlinear terms is small. This method
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(a) (b)

Fig. 14 The figure represents the dynamics for system (S1), in the phase-plane (panel left) and for component
x(t) in the time variable (panel right). This example concerns the superlinear case with B(y) = (tanh(y2 +
y + 1))y2, A(x) = (x2 − 2x − 3)x and g(x) = x . The simulation suggests that for these parameters the limit
cycle is unique. In the phase-plane we also have plotted part of the infinite-isocline near the trajectories. The
limit cycle is possible because “fortunately” the trajectories avoid (it is narrow escape !) the regions V1 and
V2. The graphs are produced using [48]

(a) (b)

Fig. 15 The figure represents the dynamics for system (S1), in the phase-plane (panel left) and for component
x(t) in the time variable (panel right). This example concerns the superlinear case with B(y) = (tanh(y2 +
y+ 1))y2, A(x) = (x2 − 2x − 3)x and g(x) = x . In this case there is no limit cycle because all the nontrivial
solutions enter eventually the regions the regions V1 and V2. In the phase-plane we also have plotted part of
the infinite-isocline near the trajectories. The graphs are produced using [48]
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Fig. 16 Planar dynamics for
system (S1). It is evident that the
trajectories are unwinding from
the origin and eventually become
unbounded entering the regions
V1 or V2. Our simulation shows
that a large region around the
origin (excluding (0, 0)) is
attracted to V2. The graph is
produced using [49] for the same
value of the parameter
λ = 0.0523 as in Fig. 15 and the
same functions B(y), A(x) and
g(x)

was successfully applied by Duff and Levinson [11] (see also [34]) to produce multiple
limit cycles bifurcating from circular orbits of the harmonic oscillator and represents a very
useful technique to construct specific examples ofmultiplicity results for Liénard or Rayleigh
equations. We refer also to [4, Remark 2.4] for another application of this method. Due to
space limitations, we do not enter into these details, however we think that it is interesting to
mention the fact that this averaging approach provides an independent proof for the existence
of limit cycles.
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