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Abstract

We consider the semi-linear beam equation on the d dimensional irrational torus with smooth
nonlinearity of order n — 1 with n > 3 and d > 2. If ¢ < 1 is the size of the initial datum,
we prove that the lifespan 7, of solutions is O A0=27) where A = A(d,n) = 1 + d%l
whennisevenand A = 1+ % + max(z%‘li, 0) when 7 is odd. For instance for d = 2 and

n = 3 (quadratic nonlinearity) we obtain 7, = O (¢7%7), much better than O (e~1), the time
given by the local existence theory. The irrationality of the torus makes the set of differences
between two eigenvalues of v/ A2 + 1 accumulate to zero, facilitating the exchange between
the high Fourier modes and complicating the control of the solutions over long times. Our
result is obtained by combining a Birkhoff normal form step and a modified energy step.
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1 Introduction

In this article we consider the beam equation on an irrational torus

duy + Ay + ¢+ F(¥) =0,

¥ (0, y) = o, (1.1)
(0, y) =y,
where f € C®(R,R), ¥ = ¥(t,y),y € T¢, withv = (v, ..., vy) € [1,2]¢ and
T¢ .= (R/27v1Z) x --- x (R/27v47). (1.2)

The initial data (v, Y1) have small size ¢ in the standard Sobolev space HS"'](’]I"]f) X
Hs ! (’JI“Z) for some s >> 1. The nonlinearity f (i) has the form

F W) = @y F)(W¥) (1.3)

for some smooth function F € C*° (R, R) having a zero of order at least n > 3 at the origin.
Local existence theory implies that (1.1) admits, for small ¢ > 0, a unique smooth solution
defined on an interval of length O (¢~"+2). Our goal is to prove that, generically with respect
to the irrationality of the torus (i.e. generically with respect to the parameter v), the solution
actually extends to a larger interval.

Our main theorem is the following.

Theorem 1 Let d > 2. There exists so = so(n, d) € R such that for almost all v € [1, 219,
forany § > 0 and for any s > sg there exists ¢y > O such that for any 0 < ¢ < gy we have
the following. For any initial data (Yo, ¥1) € H”l(']l“]f) X HS’I(T;") such that

Vol s+t + Y1l gs—1 <&, (1.4)

there exists a unique solution of the Cauchy problem (1.1) such that

Y(t.x) € CO([0. To): H°H(T9) (M) €' (10. To): H~'(TY)),

_ (1.5)
sup (10 Mgt + 10 ) gt ) < 260 Tz 6725,
tel0,Te)
where a = a(d, n) has the form
(n—2) l—i—d%]), n even
a(d,n) = (1.6)

(=2 (14 727) + m20529 5 odd.

Originally, the beam equation has been introduced in physics to model the oscillations of a
uniform beam, so in a one dimensional context. In dimension 2, similar equations can be used
to model the motion of a clamped plate (see for instance the introduction of [28]). In larger
dimension (d > 3) we do not claim that the beam Eq. (1.1) has a physical interpretation
but nevertheless remains an interesting mathematical model of dispersive PDE. We note that
when the equation is posed on a torus, there is no physical reason to assume the torus to be
rational.

This problem of extending solutions of semi-linear PDEs beyond the time given by local
existence theory has been considered many times in the past, starting with Bourgain [11],
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Bambusi [1] and Bambusi—Grébert [2] in which the authors prove the almost global existence
for the Klein Gordon equation:

0y — Ay +my + f(¥) =0,
¥ (0, x) = o, (1.7)
0y (0,x) =,

on a one dimensional torus. Precisely, they proved that, given N > 1, if the initial datum has a
size & small enough in H*(T) x H*~!(T), and if the mass stays outside an exceptional subset
of zero measure, the solution of (1.7) exists at least on an interval of length O(¢~"). This
result has been extended to Eq. (1.7) on Zoll manifolds (in particular spheres) by Bambusi—
Delort—Grébert—Szeftel [3] but also for the nonlinear Schrodinger equation posed on T¢ (the
square torus of dimension d) [2,19] or on R4 with a harmonic potential [24]. What all these
examples have in common is that the spectrum of the linear part of the equation can be divided
into clusters that are well separated from each other. Actually if you considered (1.1) with a
generic mass m on the square torus T¢ then the spectrum of ~/A2 + m (the square root comes
from the fact that the equation is of order two in time) is given by {\/|j|* +m | j € Z9}
which can be divided in clusters around each integers n whose diameter decreases with |n|.
Thus for n large enough these clusters are separated by 1/2. So in this case also we could
easily prove, following [2], the almost global existence of the solution.

On the contrary when the equation is posed on an irrational torus, the nature of the spectrum
drastically changes: the differences between couples of eigenvalues accumulate to zero. Even
for the Klein Gordon Eq. (1.7) posed on T¢ ford > 2 the linear spectrum is not well separated.
In both cases we could expect exchange of energy between high Fourier modes and thus the
almost global existence in the sense described above is not reachable (at least up to now!).
Nevertheless it is possible to go beyond the time given by the local existence theory. In the
case of (1.7) on T¢ for d > 2, this local time has been extended by Delort [13] and then
improved in different ways by Fang and Zhang [18], Zhang [29] and Feola et al. [20] (in this
last case a quasi linear Klein Gordon equation is considered). We quote also the remarkable
work on multidimensional periodic water wave by Ionescu and Pusateri [26].

The beam equation has already been considered on irrational torus in dimension 2 by
Imekraz [25]. In the case he considered, the irrationality parameter v was diophantine and
fixed, but a mass m was added in the game (for us m is fixed and for convenience we chose
m = 1). For almost all mass, Imekraz obtained a lifespan 7, = 0(8’%(”’2)+) while we
obtain, for almost all v, T, = O(e _4(”_2)+) whennisevenand 7, = O(e _4(”_2)_2+) when
n is odd.

We notice that applying the Theorem 3 of [6] (and its Corollary 1) we obtain the almost
global existence for (1.1) on irrational tori up to a large but finite loss of derivatives.

Let us also mention some recent results about the longtime existence for periodic water
waves [7-10]. In the same spirit we quote the long time existence for a general class of quasi-
linear Hamiltonian equations [21] and quasi-linear reversible Schrodinger equations [22] on
the circle. The main theorem in [21] applies also for quasi-linear perturbations of the beam
equation. We mention also [16], here the authors study the lifespan of small solutions of the
semi-linear Klein—Gordon equation posed on a general compact boundary-less Riemannian
manifold.

All previous results [13,18,20,25,29] have been obtained by a modified energy procedure.
Such procedure partially destroys the algebraic structure of the equation and, thus, it makes
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more involved to iterate the procedure.! On the contrary, in this paper, we begin by a Birkhoff
normal form procedure (when d = 2, 3) before applying a modified energy step. Further in
dimension 2 we can iterate two steps of Birkhoff normal form and therefore we get a much
better time. The other key tool that allows us to go further in time is an estimate of small
divisors that we have tried to optimize to the maximum: essentially small divisors make us
lose (d — 1) derivatives (see Proposition 2.2) which explains the strong dependence of our
result on the dimension d of the torus and also explains why we obtain a better result than
[25]. In Sect. 1.2 we detail the scheme of the proof of Theorem 1.

1.1 Hamiltonian Formalism

We denote by H*® (T?; C) the usual Sobolev space of functions T¢ 5 x — u(x) € C. We
expand a function u(x), x € T9, in Fourier series as

_ 1 in-x ._ 1 —in-x
u(x) = Ge ijdune L= fwu(x)e dx. (1.8)
ne

We also use the notation

+1 1

u, =u, and u, =1Uu,. (1.9)

We set (j) := /14 |j|2 for j € Z¢. We endow H* (T¢; C) with the norm
N Fgs =Y () |1 (1.10)
jezd

Moreover, for r € Rt, we denote by B, (H*(T¢; C)) the ball of H*(T%; C)) with radius r
centered at the origin. We shall also write the norm in (1.10) as |ju II%IS = ((D)’u, (D)’u);2,
where (D)e'/™* = (j)el/*, forany j € Z9.

In the following it will be more convenient to rescale the Eq. (1.1) and work on squared

tori T¢. For any y € T‘j we write ¥ (y) = ¢(x) with y = (xqvy,...,x4vg) and x =
X1,...,Xq) € T<. The beam equation in (1.1) reads
dip+ QL+ f($) =0 (1.11)

where 2 is the Fourier multiplier defined by linearity as

d
. . 212 . 12 . 2 . d
Qe = wie, wp=\[ljlE+ 1 1= ailjil’ a=vi Vjezd
i=1

(1.12)

Introducing the variable v = ¢ = 9;¢ we can rewrite Eq. (1.11) as
d=—v, 1=02¢+ f(9). (1.13)

By (1.3) we note that (1.13) can be written in the Hamiltonian form

H
081 =X = (0 ) s[5

1 Actually there are papers in which such procedure is iterated. We quote for instance [15] and reference
therein.
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where 9 denotes the L2-gradient of the Hamiltonian function
1 1
Hg(¢,v) = / ~v> + ~(QP)p + F() ) dx, (1.14)
Td 2 2
on the phase space H 2(T9; R) x L3(T9; R). Indeed we have
dHg (¢, [ 2] = —Ar (X (9, 0), [2]) (1.15)

for any (¢, v), (¢3, D) in H2(T9; R) x L2(T9; R), where A is the non-degenerate symplectic
form

AR(W1, Wa) = .[E"(¢lv2 —vign)dx, Wi:=[%]. Wy :=[%]

The Poisson bracket between two Hamiltonian Hg, Gr : H*(T?; R) x L%(T?; R) — R are
defined as

{Hgr, Gr} = A\r(X Ay, XGg)- (1.16)
We define the complex variables
[4]:=c[¢]. C:=1<Q% ‘Q_) (1.17)
V2 \ Q2 -2
where € is the Fourier multiplier defined in (1.12). Then the system (1.13) reads
0=iQu + %Q_l/zf (Q—W (%)) . (1.18)

Notice that (1.18) can be written in the Hamiltonian form

u . auH( .aﬁH
W] =Xuw) =iJ <aﬁH(Z;> = <l—i8ul(;()u)>’ J=[5%{] (1.19)

with Hamiltonian function (see (1.14))

_ _ Q V2 (u + i)
— Iruly — e
Hu)=Hp(C™'[4]) = /Tduszu dx +/W F( 5 ) dx (1.20)

and where 9; = (g, + 103y)/2, 0y = (I, — 10x,)/2. Notice that
Xy =CoXpyoC! (1.21)
and that (using (1.17))

an @[] = @@ v [ [H]] R A (Xew. [1]) a22)

forany i € H?(T?; C) and where the two form A is given by the push-forward A = AgoC~'.
In complex variables the Poisson bracket in (1.16) reads

{H, G} := A(XH,XG):i/ 0,GozH — 9;Go, Hdx, (1.23)
Td
where we set H = Hgp 0o C~!, G = Gg o C!. Let us introduce an additional notation:

Definition 1.1 If j € (Z4)" for some r > k then jux (j) denotes the k*' largest number among
[j1l, - - - |jr| (multiplicities being taken into account). If there is no ambiguity we denote it
only with .
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Letr € N, r > n. A Taylor expansion of the Hamiltonian H in (1.20) leads to

r—1

H=2Z+) H+R: (1.24)
k=n
where
Z :=/ iu dx 124? 3" wjlujl? (1.25)
Td
jezd
and Hy, k =n,...,r — 1, is an homogeneous polynomial of order k of the form
H = Z (Hk)a,jM711 . ”7: (1.26)
oe{—1,1)k, je@hk
i 0iji=0

with (noticing that the zero momentum condition Zf:] oi ji = 0 implies w1 (j) < u2(j))

|(Hoo, i Sk Vo e {—1, 1}, je @ (1.27)

1
wi(H?
and

X g, @) gs2 Ss IIMIIH» , Vue Bi(H (T C)). (1.28)

The estimate above follows by Moser’s composition theorem in [27], section 2. Estimates
(1.27) and (1.28) express the regularizing effect of the semi-linear nonlinearity in the Hamil-
tonian writing of (1.11).

1.2 Scheme of the Proof of Theorem 1

As usual Theorem 1 will be proved by a bootstrap argument and thus we want to control,
Nsy(u(t)) := ||u(t)||HS, for t — u(t, ) a small solution (whose local existence is given by
the standard theory for semi-linear PDEs) of the Hamiltonian system generated by H given
by (1.24) for the longest time possible (and at least longer than the existence time given by
the local theory). So we want to control its derivative with respect to . We have

d r—1

TN @) = (No, H} =3 SNy, Hi} + {Ny, Ry ). (129)
k=n

By (1.28) we have {Ny, R, } < ||u|| -1 and thus we can neglect this term choosing r large

enough. Then we define H> A N the truncation of Hj at order N:

<N _ Ok
H" = Z (Hk)a]u sl
oe{—1,1}, je@dk
Y 01ji=0. pa()<N

and we set H>N = H; — HkSN As a consequence of (1.27) we have {Nj, Hk>N}
“2lu || ! and thus we can neglect these terms choosing N large enough. So it remains to
take care of Z;zi {Ns, kaN}_
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The natural idea to eliminate HkSN consists in using a Birkhoff normal form procedure
(see [2,23]). In order to do that, we have first to solve the homological equation

(X6, Z2) + HEN = 7.

This is achieved in Lemma 3.6 and, thanks to the control of the small divisors given by
Proposition 2.2, we get that there exists « = a(d, k) > 0 such that for any § > 0

|O)o 1 So 1 (N3P us (), Yo e (=1, 135, j e @ (1.30)

From [2] we learn that the positive power of p3(j) appearing in the right hand side of
(1.30) is not dangerous? (taking s large enough) but the positive power of w1(j) implies a
loss of derivatives. So this step can be achieved only assuming d < 3 and in that case the
corresponding flow is well defined in H* (with s large enough) and is controlled by N? (see
Lemma 3.7). In other words, this step is performed only when d = 2, 3, when d > 4 we
directly go to the modified energy step.

Ford = 2, 3, let us focus on n = 3. After this Birkhoff normal form step, we are left with

H o ®,, = Z + Z3 + Q4 + negligible terms

where Q4 is a Hamiltonian of order 4 whose coefficients are bounded by 11 ( 7)473%0 (see
Lemma 3.5, estimate (3.15)) and Z3 is a Hamiltonian of order 3 which is resonant: {Z>, Z3} =
0. Actually, as consequence Proposition 2.2, Z3 = 0 and thus we have eliminated all the
terms of order 3 in (1.29).

Inthecased =2, Q fN is still (1 — §)-regularizing and we can perform a second Birkhoff
normal form. Actually, since in eliminating QfN we create terms of order at least 6, we can
eliminate both QfN and stN_ So, for d = 2, we are left with

H=Ho®,,0®,, . =2+ Z4 + Q¢ + negligible terms

where Z is Hamiltonian of order 4 which is resonant,’ {Z>, Z4} = 0,and Qg is a Hamiltonian
of order 6 whose coefficients are bounded by N?. Since resonant Hamiltonians commute
with Ny, the first contribution in (1.29) is {Ny, Q¢}. This is essentially the statement of
Theorem 2 (which will be stated in Sect. 3) in the case d = 2 and n = 3 and this achieves
the Birkhoff normal forms step.

Let us describe the modified energy step only in the case d = 2 and n = 3 and let us focus
on the worst term in { Ny, I:I}, i.e. {Ny, Qg}. Let us write

Q6 = > (Q6)ojult e ut
oel—1,1}5, je@d)*
lj1]=-=]Jel
X1 0iji=0

2 When you have a control of the small divisors involving only ©3(j) then you can solve the homological
equation at any order and you obtain an almost global existence result in the spirit of [2]. This would be the
case if we consider the semi-linear beam equation on the squared torus T¢.

3 Notice that there is no resonant term of odd order by Proposition 2.2, in other words Z3 = Z5 = 0.
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From Proposition 2.2 we learn that if oj05 = 1 then the small divisor associated with (j, o)
is controlled by ©3(j) and thus we can eliminate the corresponding monomial by one more
Birkhoff normal forms step.4 Now if we assume o707 = —1 we have

6
D o)
i=l1
< (G0 = () +40a) ) - u%)
< (U2 = GG + 403X u|
<o (P03 + 403) ) - u|

—1 6
Ssomy lullys

ol o6y _ o1 06
[{Ns, Uj - 'ujﬁ}l - |uj1 Ujs |

where we used the zero momentum condition, Z?:l o; ji = 0, to obtain | j1 — jo| < 4|J3].
This gain of one derivative, also known as the commutator trick, is central in a lot of results
about modified energy [6,13] or growth of Sobolev norms [4,5,12,14].

So if Q¢ denotes the restriction of Q¢ to monomials satisfying 0100 = —1 we have
essentially proved that

(N5, Q5 7N S Nl
Then we can consider the modified energy Ny + Eg with Eg solving
(Es, Z2} = —(N;, 5 =)
in such a way that
{Ny + Eg, H} = {Ny, Qg "~ "'} + (Ny, H7} + {E6, Za} + negligible terms.

Since this modified energy will not produce new terms of order 7, we can in the same time
eliminate Q- »=N1_Thus we obtain a new energy, Ny + E¢ + E7, which is equivalent to N;
in a neighborhood of the origin, and such that, by neglecting all the powers of N® and N {3
which appear when we work carefully (see (4.6) for a precise estimate),

Ny + Eo + E7, H}| <o Nyl + ulldys + N7 uldye.

Then, a suitable choice of N and N and a standard bootstrap argument lead to, 7 = O )
by using this rough estimate, and 7, = O(¢~®") by using the precise estimate (see Sect. 5).

Remark 1.2 In principle a Birkhoff normal form procedure gives more than just the control of
H* norm of the solutions, it gives an equivalent Hamiltonian system and therefore potentially
more information about the dynamics of the solutions. However, if one wants to control only
the solution in H® norm, the modified energy method is sufficient and simpler. One could
therefore imagine applying this last method from the beginning. However, when we iterate
it, the modified energy method brings up terms that, when we apply a Birkhoff procedure,
turn out to be zero. Unfortunately we have not been able to prove the cancellation of these
terms directly by the modified energy method, that is why we use successively a Birkhoff
normal form procedure and a modified energy procedure.

Notation We shall use the notation A < B to denote A < C B where C is a positive constant
depending on parameters fixed once for all, for instance d, n. We will emphasize by writing
<S¢ when the constant C' depends on some other parameter g .

4 In fact in Sect. 4, for the sake of simplicity, we prefer to apply a modified energy strategy to all the terms of
Q¢ (see also Remark 1.2).
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2 Small Divisors

As already remarked in the introduction, the proof of Theorem 1 is based on a normal
form approach. In particular we have to deal with a small divisors problem involving linear
combination of linear frequencies w; in (1.12).

This section is devoted to establish suitable lower bounds for generic (in a probabilistic
way) choices of the parameters v excepted for exceptional indices for which the small divisor
is identically zero. According to the following definition such indices are called resonant.

Definition 2.1 (Resonant indices) Being given r > 3, ji,..., j, € 74 and 01,...,0, €
{—1, 1}, the couple (o, j) is resonant if r is even and there exists a permutation p € G, such
that

|j,02k_1,1| |j,02k,1|
Vk e [1,r/2], = and 0y, | = —0py.
|j,02k71,d| |jp2k,d|

In this section we aim at proving the following proposition whose proof is postponed to
the end of this section (see Sect. 2.3). We recall that a is defined with respect to the length,
v, of the torus by the relation a; = uiz (see (1.12)).

Proposition 2.2 For almostall a € (1, 4)d, there exists y > 0 such that forall § > 0, r > 3,
o1, ...,00 €{=1,1}, j1, ..., jr € Z% satisfying o1 j1 +- - -+0, j, = 0and | j1| = --- = |j/|
at least one of the following assertion holds

(i) (o, j) is resonant (see Definition 2.1)

(i) ojop =1 and
-
> o1+ Ljkld
k=1

>y (). ()%,

>iii) o107 = —1 and

.
> o1+ Lield
k=1

We refer the reader to Lemma 2.9 and its corollary to understand how we get this degeneracy
with respect to jj.

>5 v GO () Ly

2.1 AWeak Non-resonance Estimate

In this subsection we aim at proving the following technical lemma.

Lemma23 Ifr > 1, (ji,...,jr) € (N?) is injective® n € (Z*)" and k € R? satisfies
ki, = 0 for some i, € [[1, d] then we have

.
{a e(1,4)? : ]/«a—i—znkm‘ <V}
k=1

Its proof (postponed to the end of this subsection) rely essentially on the following lemma.

12

_1l_ L2
Vy > 0, Sr,d yreED (1) .. () T

Sie vk, Lel,r], k#€= ji # jo
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Lemma 2.4 If1, J are two bounded intervals of R* , r > 1, (j1,..., jr) € (N9 s injective,
n € (Z* andh : J! — R is measurable then for all y > 0 we have

,
H(rmb) eI x JN L [hB) + ) meym 4 Ll | < y}

k=1

1 . [N
Sed. 1.0 YD) - () T
where (1,b) := (1,by,...,bg_1) € RY.
Proof of Lemma 2.4 The proof of this lemma is classical and follows the lines of [1].

Without loss of generality, we assume that y € (0, 1). Let € (0, 1) be a positive number
which will be optimized later with respect to y. If 1 <i < k < r then we have

.2 .2 ) .2 2 .2 2 .2
|ji|1,b - |Jk|1,b = (J,’,] - lk,l) +b1(],',2 - jk,z) +o bdfl(],',d - Jk,d)~
Since, by assumption, (ji, ..., j-) is injective, either there exists £ € [2, d] such that j; ; #

Jk,e OF ji1 7 Jik,1 and ji ¢ = jk,¢ for £ = 2,...,d. Note that in this second case, we have
i |% b= | jkl% »| = 1. In any case, since the dependency with respect to b is affine the set

PR = (b e J97V i1t — Lkl ) < n} satisfies [PUR] < n(1 471971,

Therefore, we have

,
. , rr=1 .
H(m,b)elxjd Lo R®) 4 ) e m A+ Lkl <y} = ———UIna+17147h
k=1
,
+|J|d71 sup {m el: h(b)+2nk,/m+|jk|‘(‘lyb) < y} . (2.1)
Vi<k, bgPih k=1

In order to estimate this last measure we fix b € J9=1\ | J; _, 73,(7"*1‘) and wedefineg : I — R

by
r
g(m) =h(®) + ) niyfm + Llf, 4
k=1

By a straightforward calculation, for £ > 1, we have

r -1
. 1_ 1 .
08 m) = ce Y niclm + Lixly ) 7™" where e =2 —i. 2.2)
k=1 i=0

Therefore, we have

—1
. . .14
Cl_la,}lg (m+|]1|?l,b))0 (m + |]r|?1,b))0 nl\/m+ |]1|(1,b)

1 4 \—(r=D) N : -1
c, Bmg (m+ |Jl|(1’b)) e (m+ |]r|(1,b)) n, Im + |jr|?l,b)

Denoting by V this Vandermonde matrix, by | x| := max |x;| for x € R and also by |- |oo
the associated matrix norm, we deduce that

—1
r — i —1,— r .
max ¢ 3, g 0m)| = |V max fnilyfm + Lilfy 23)
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S —
Sr—e ((m+|jk \?n,b) >k#i)

1 1
.4 - . 4
im+|]i|(1,b) m+|]k|(1,b)

We recall that the inverse of V is given by

V hie=D" 2.4)

K

(this formula can be easily derived using the Lagrange interpolation polynomials) where
S¢ : R"~! — Ris the ¢! elementary symmetric function

Se(x) = Z Xiy .. Xk, and Sp(x) :=1.

1<k)<--<ke<r—1

Furthermore, we have
,
-1, _ T —1y.
v |oo—rl,n=alxl_21|<v )il 25)

To estimate |V 1| in (2.3), we use the estimates

1 1 1 n
Sr—t ( .4 ) SF,J,I 1 and 4 - .4 SV Brrava
m+|]k|(1’b) ki m+|]i|(1,b) m+|]k|(1.b) (Ji)
Indeed, if |1jil{) ) = Likl{; )| = 31il{; ) we have
1 1 |ji|?1,b) - |jk|?1,b) > 1
4 - 4 = 4 4 ~I1J W
m + | ji I(l,b) m —+ |]k|(1,b) (m + 1ji |(1,h))(m + |]k|(1’b)) Jk

and conversely, if ||'j,~|‘(‘]yb) — |jk|‘(‘]’b)| < %|j,~|‘(‘]’b) then |j,~|‘(‘]’b) < 2|jk|‘(‘l’b) and so, since
be Ji-l\ Ui <k sz.k)’ we have

1 - 1 il ) + Lkl ) iy = Lkl o
mA itk mo Lilh o, |~ (e)® ~ e
Therefore by (2.5) and (2.4), we have
Voo Srra ™D - (G D)°
Consequently, we deduce from (2.3) that
max 8, g(m)| Zr.r.g 0" () - ()" Inloc. 2.6)

Furthermore, considering (2.2), it is clear that

195,8(m)| Se.1.0 1Moo

As a consequence, being given p > 0 (that will be optimized later), applying Lemma B.1.
of [17], we get N sub-intervals of 7, denoted Ay, ..., Ay such that

p<<j1>...<jr>)6>f'l

. . —(r— N
N Srr () - G 700 max A ] S —
i=1 N nleo

[Omg(m)| = p Vm € IN(A; U---UAy).
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Observing that 1\ (A1 U- - -UA ) can be written as the union of M intervals with M < 1+ N,

we deduce that
,
h(b) + Y " niy/m + Ll | < y}
k=1

{meI:

1
j AN

St (G- Gy p*‘y+<w>

N
<Mp~ 'y + N max | A|
1=

We optimize p to equalize the two terms in this last sum:

1
prrj _, < nr71|n|oo )r—l
(1) - D '
This provides the estimate

r
{mel: h(b)—f—an,/m—i-ljkI?l,b) <y]
k=1

1
. et
Sty () GOy (M)

nr71|n|oo

St (L) DG L G2

7] 00
Finally, we optimize (2.1) by choosing
L pqar=ly,, . .
n=yrn T L G
and, recalling that |n|s > 1, we get

,
h(b) + Y miyJm + el )

H(m,b) el xJil:
k=1

y

Since this measure is obviously bounded by |]|J|¢~!, the exponent r + % can be replaced
by r + 1 in the above expression which conclude this proof. O

Srars (7)o G'?) =

Now using Lemma 2.4, we prove Lemma 2.3.

Proof of Lemma 2.3 Without loss of generality we assume that i, = 1. First, since k1 = 0,
we note that we have

r 1 r
G@) =k -a+ Y nn/l+jilh = —=hb) + > neyfm+ ilf) ) = —=F(m. b)
P Vv i o f

where
Loy (“2 “d> d hb) Xd: b
m=—, =|—=,...,— ] an = Kby
- a a 2 i
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Let denote by W the map a +— (m, b). It is clearly smooth and injective. Furthermore, we
have
—2al_3 —azal_2 —adal_2
-1
4 —d-2
detdW¥(a) = ] =2(=Da; """

-1
a

Consequently, ¥ is a smooth diffeomorphism onto its image W((1, 4)4y which is included
in the rectangle (1%, 1) x (4. 4)d71. Therefore, by a change of variable, we have
Hae 1,9 |G@)| <y} :/ 16 (a)<yda

ae(l,4)d

—d-2
/<mqb)e\11<(1,4)d) |F (m.b)] </my

1 1 d—1
{(m,b)e(m,l>><<4,4> :|F(m,b)|<)/} .

Finally, by applying Lemma 2.4, we get the expected estimate. O

< 22d+5

2.2 Non-resonance Estimates for Two Large Modes

In this subsection we consider r > 3, (jk)k>3 € (Z4 =2 and o € {—1, 1} such that

o1 = —oy as fixed. We define j>3 € 74 by
j23 =033+ o+ Orjr. @7

Being given j; € Z9, we define implicitly j, := j; + o J>3 in order to satisfy the zero
momentum condition

,
> owjk =0, (2.8)
k=1

and we define the function g;, : (1, 4Hd 5 R by

,
gjr(@) =Y or 1+ Lield.
k=1

Finally, for y > 0, we introduce the following sets®

T={i:je3;i #0}, Ci=qjeZ ljl=21+> il |t
k>3

S = {jl € Zd\ UC,- 2 (o, j)is non—resonant] ,
i€l

. _ . . r2
and R, = {j1 €S:jil =y V2((a)... G2 ).

6 see Definition 2.1.
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First, we prove the following technical lemma whose Corollary 2.6 allows to deal with the
non-degenerated cases.

Lemma 2.5 Ifthere exists i € [1, d] such that

;
|G + j2.i)jzsil =2 (1 - Zj,i,-) (2.9)
k=3
then forall y > 0
r 2 )/
ae @O D o1+ il <y|f] < ——. (2.10)
{ ]; ¢ ljti + joil
Proof Without loss of generality we assume that oy = 1 and o = —1. We compute the

derivative with respect to a;

Ljxla
0, Zak,/l + jeld = ZG ik
I+ ild

Consequently, we have

.
da, (Z o/ 1+ |jk|3)
k=1

Furthermore, we have

o il 2, 212

Z |Jii — 7 Jti
VIFHE TR =

i |
NAENY 202

Consequently, we get
> |ji _.]21|_1_Z]kz

Observing that by definition we have jlz’l. — Jy; = J=3i(Ui + jo,i), we deduce of the

assumption (2.9) that
,
Bay Yok 1+ Lkl

k=1
Since by (2.9) we know that j>3,; € Z\{0}, we deduce that

,
day Yo/ 1+ Lkl
k=1

Therefore a; > > ;_; oky/1 + |jk|? is a diffeomorphism (it is a smooth monotonic func-
tion). Consequently, applying this change of coordinate, we get directly (2.10) which conclude
this proof. O

L. ) .
> 5|]23,i(]1,i + 2,0l

[ )
> 5|(]1,i + 2,01

Corollary 2.6 Forall y > 0 we have
VieZ lfae (1,4 :3ji €Ci, lgj @] < ylil™ " Vog™ (i} Sa vy 2.11)
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Proof of Corollary 2.6 Let j; € C;. By definition of j,, we have
r
i + d2il = 20l = Y Ljkil-
k=3
Consequently, since j; € C;, we have
4 3
v + il = 2ljril = kZ_;uk,,»F > Sl

Therefore, since j>3,; 7 0, we have
eaiGni + 20l = 21l 2 3 L+ Likal?
>3.i N J)l = ) Jl = N
k>3
Applying Lemma 2.5, we deduce that for all y > 0

,
D on 1+ it <y

k=1

:ae(L4ﬂ:

4y
< —.
3171l

Ha e (1,97 :3j1 € Ci, lgj, @] < yl1ill™“"Dlog™4 (11}

Consequently, we have

= Jlae@. 9" 1g;, @] < ylji|"“ Vg (i)}

J1€C;
= > Jtae 47 gy @l < y1717 D log (i)
J1€Ci
1
< <
~Y ; ; o ~d Y-
JZC 1=Vl log (11 1)
o
In the following lemma, we deal with most of the degenerated cases.
Lemma 2.7 Forall y > 0, we have
1
Hae (1.4 :3j1 € Ry, 18 @] < ¥} Sra v (a) ... DX 212)

Proof Without loss of generality, we assume that y < min((2r)~2, (36d)~1). If Jjl € Ry
recalling that for x > 0, we have |+/1 + x — 1| < x/2, we deduce that

1
2112 20l

,
where £y (@) = 1jil} — 1723 + 01 ) oxy/ 1+ Likld.

k=3

1gji (@) = |hj (@)] —
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However, by definition of j, and R, , we have

.

. . . —_ . . 2

2l = Ll = Y Ll = v 2 (s) - G )
k=3

—12

. . \\2dr?
> (j3) - )™

—(r=2{j3) .- Ur)) =

Noting that, for a € (1,4)?, we have | - | < | - |4, we deduce that
. . _ 2
g1 (@] = |hj (@] =3y ((j3) ... )~
Consequently, it is enough to prove that
. . g2 1
a e (1,47 :3j1 € Ri, 1hj @] < y((j3) - G DTN S yTOED. (2.13)

To prove this estimate, we have to note the following result whose proof is postponed/to the
end of this proof. O

Lemma 2.8 If j| € R, then there exists kj, € 74 such that
ila = li2la = k) -a 1kjiloo < 10((j3) ... (jr))? and i, € [1.d], Ky, = 0.
Now we have to distinguish two cases.

o Case 1: (0, ji)k=3 is resonant. If ji € R, let Ki'l € Z¢ be given by Lemma 2.8. Note
that k j, # 0 because else we would have jlz’l. = Ja foralli € [1, d] and so (o, j) would
be resonant (which is excluded by definition of R, ). Furthermore, here 1, (a) = kj, - a
is a linear form. Consequently, for all y > 0, we have the following estimate which is
much stronger than (2.13):

Ha € (1,4 :3j; € Ry, |hj(a)| < v}

< U {ae(1,H? k- -a<y)
keZ\{0}
Iicloo <10({j3)...(jir))?
< > la e (1.4 k-a <y} <yQO(a) ... D!
keZ\ {0}

I |00 <10((j3)...(jir))?

o Case 2: (o, ji)k=>3 is non-resonant. If ji € R, hj, writes

:
hj(@ =xj -a+ Y ngyf 1+ |l

k=1

where &, is given by Lemma 2.8, 7 < r — 2, (71, e 77) € (Nd)? is injective, ny €
(Z\{0})? is defined by

ng = Z 010;.
i€[3,r]
Ve, |jiel=Jk.e
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Consequently, by Lemma 2.8, we have

Hae (1,4 :3j1 € Ry, |hj,(@)] <y}l

‘;
< U ae (L |k-a+ Y mfl+Gld| <y
xezd k=1
licloo <10({j3)..(jr))?
Ly Kiy=0
7
< 3 ae (4 |ka+ Yy mJ1+1jlE| <y
xezd k=1
Iicloo <10((j3)-.-(ir )’
Fis, Kiy=0

Finally, by applying Lemma 2.3 we get
lfa € (147 :3j € Ru. Ihjy @] <y} Sra v ™50 (). ()T,
which is also stronger than (2.13). O
Proof of Lemma 2.8 First let us note that
ltla = 1j2lg = Kjy -a where &)y = ji; = j3; = 02j=3.i(jni + jo.i)-

First we aim at controlling |«|eo. If i ¢ 7 then j>3; = 0 and so «;, ; = 0. Else, since
J1 € Z\ ;s Cio we have [jii] < 2(1 + Y -3 |jr.i|*). Consequently, we deduce that

jil < D2 Ll | {444 Lkl + D Lkl | < 100(Gs) - ()

k>3 k>3 k>3

Now we assume by contradiction that «j, ; # 0 for all i € [1, d]. Consequently, we have
Z=11,d] and so

oo <2 [ 14 Y 1il* | <6032 (i)™, (2.14)

k>3
However, since j; € R,, we have |j| > Yy V2(s) (j,))Zd’2 which is in contradiction
with (2.14) because we have assumed that y < (36d)~. ]

Finally in the following lemma we deal with the general degenerated cases.

Lemma 2.9 Forall y > 0, we have

Hae @, 4 :3j1 €8, lgj @] <y} Sra I () - e (2.15)

Proof Without loss of generality we assume that y € (0, 1). Letn € (0, 1) be a small number
that will be optimized with respect to y later. From the decomposition S = R, U (S\R;) we
get

llae @4 :3jieS, lgp@l <yl < Y Haed.dH?:lgj;@] <yl
jIES\Rn

+l{a e (1,473 € Ry, lgj (@] < n}l. (2.16)
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To estimate the sum, we apply Lemma 2.3 (with « = 0) and we get

> Hae (4 lgj @] <y} < > fa e (1,47 : 1gj @] < v}

JIES\Ry il <nV2((a). )2

(0, j) is non-resonant
12

1 S
< > Y (1) - ()T
L1 <n=12((a)... ) 2r?

Furthermore, by the zero momentum condition (2.8), since n € (0, 1), we also have

. —_ . . 2
L2l S 2 - e
Consequently, we have
1
3 Hae (L g @] <y} S y Ty 2TE () L ()2
JIES\Ry

A1 . . 2
Se 2T I) - e

Therefore, applying Lemma 2.7, we deduce of (2.16) that

1
Hae(1,H:3j1 €8, Ig; @] <y} Sran? (ja) .. )™

L . 2
+ Y2 I({(j3) . )

Finally, we get (2.15) by optimizing this last estimate choosing

1 15dr2—2d

n=yr2((j3). .. (jp) 2

2.3 Proof of Proposition 2.2

For r > 3 let M, and R, be the sets defined by

M, ={(o, j) € A=1, 1)) x (Z)" : ) oxjr =0} and
k=1

Ry ={(0, j) € ({—=1, 1) x (Z%)" : (o, j) is resonant}.

On the one hand, as a direct corollary of Lemma 2.9 and Corollary 2.6, for all y > 0 we have

Ha c(,4?:3r>3,30, j) e M\R,, 5100 = —1 and

,
> ouy/ T+ Ljeld

k=1

<V

< eray® G4 D log 4 (i) () - <jr>>—44f”4}

where ¢, 4 > 0is a constant depending only on r and d. Consequently, it is enough to prove
that for all y € (0, 1), we have

I = Ha e (1,4 :3r > 3,30, j) e M/\R,, 0102 =1 and

,
D ok T+ Likld

k=1

<y 2.17)

<kray () <jr>)9d’2}
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wherek, 4 € (0, 1) is another constant depending only on » and d (and that will be determined

later). Indeed, by additivity of the measure, we have
,
Y ony/ 1+ Ll
k=1

<y >

r=3 (0,j)eM\R,
oro2=1

{a e(1,4)?

. . — 2
< Ky VW) L G T

Note that if | ji| > 24/7(j3) ... (jr) and 0102 = 1 then

r r r
S o1+ Linld| = \/1 il = U Lt = 1 1 = Y01+ 16l
k=1 k=3 k=3
r r
> JUH =4 T+ Ll = 1P =4 A+ i) = 4(Ga) - G > 1
k=3 k=3

and so ‘{a e (1,47 : | Y k1 0k 1+ |jk|2| < kray O (j,))_9d’2}' vanishes.

Since the same holds if j; is replaced by j», consequently, we have that I, is bounded from

above by
) ) Zak\/l + ila
k=1

r=3  (0,j))eM\R;,
L1124/ (j3)- L)
[721=24/r (j3) (i)

Now denoting by ¢, 4 > 0 the constant given by Lemma 2.3, we get

y=2 a2 (e W) G )T (G G P

r>3 (0,))EMN\R,
[=24/7(j3) - Cr)
[21=23/r (f3) (i)

Consequently, we get an other constant ¢, ;4 > 0 such that

2
r(r . . —9d 36
L <y x| ”“ > W) ey T AT,

r=3 J3ejreZd

< seray T - G ] .

[a e (1,4

36
(r +l) -z 2d, we deduce that

< )/ZcrdKr(rJrl) Z<j>—2d

r=3 jeZd

Noting that 9d ——

r—2

Consequently, we deduce a natural choice for «, 4 such that I, < y which conclude this
proof.

3 The Birkhoff Normal form Step

In the rest of the paper we shall fix the parameter v, (see (1.2) and (1.12)) defining the
irrationality of the torus, in the full Lebesgue measure set given by Proposition 2.2. For
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d > 2 and n € N we define

n+2n—2)+1 if d=2 and n odd
n+2n—2) if d=2 and n even
n+@m-—2) if d=3
n if d>4.

My, = 3.1)

The main result of this section is the following.

Theorem2 Letd = 2,3 andletr € Nsuchthat Mg, <r < 4n.Thereexits § = B(d,r) >0
such that forany N > 1, any § > 0 and s > so = so(B), there exist &g Sg.5 N~ and rwo
canonical transformation 9 and TV making the following diagram to commute

HO) o) J
B,(0, £9) ——————— By(0, 2&0) H*(T%) (3.2)
idys
and close to the identity
Vo € {0,1}, llullps <20 = Nt @) —ullps Sos Noul%ys 3.3)

such that, on By (0, 2&0), H o TV writes

My n—1 r—1
HotW=2+ Y z7"+ Y Ki+KV+R, (34)
k=n k:Md,n

where My ,, is given in (3.1) and where

6] ZkSN,fork =n,..., Mg ,—1, are resonant Hamiltonians of order k given by the formula
ZSN _ Z§N ol o% ZgN 1< Na MS(j)ﬂ.
K = Z ( k )U’Jujl.“ujk’ I( k )J,]'Né T(j)y
oe(=L1, je@H, ma(H=N
Y1 01ji=0
i oiwj;=0
(3.5)
(1)) Kk, k =My, ...,r — 1, are homogeneous polynomials of order k
Ky = Yo Ko ul o uS 1Kol S5 Nous(DPs (3.6)
oel—1,1}F, je@hk
Y1 01ji=0

(i) K>V and R, are remainders satisfying

I1X gon @)l S5 N7yt (3.7)
IXg ()l Sos NPl (3.8)

It is convenient to introduce the following class.

Definition 3.1 (Formal Hamiltonians) Let N € R,k € Nwithk >3 and N > 1.
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(i) We denote by Ly the set of Hamiltonian having homogeneity k and such that they may
be written in the form

G (u) = }: G 1w (G eC. q::(?l,...,ffk)
k( ) ( k)a,] J1 i ( k)U,_] ji= (.117"'7jk)
oie{—1,1}, jiezd
Y5 0iji=0

(3.9)

with symmetric coefficients (G ), j,i.e. forany p € &y one has (Gr)o,j = (Gi)oop, jop-
(ii) If Gy € Ly then Gk>N denotes the element of £y defined by

(Gk)(T,j7 lf MZ(]) > Nv

0, else. (3.10)

(GM)oj = {

We set kaN =G — Gk>N.

Remark 3.2 Consider the Hamiltonian H in (1.20) and its Taylor expansion in (1.24). One can
note that the Hamiltonians Hy in (1.26) belong to the class L. This follows form the fact that,
without loss of generality, one can substitute the Hamiltonian Hjy with its symmetrization.

We also need the following definition.

Definition 3.3 Consider the Hamiltonian Z» in (1.25) and Gy € Ly.
e (Adjoint action). We define the adjoint action adz, G in Ly by

k
(adz,Gi)o,j = (i) 0105 ) (Gido - 3.11)
i=1

o (Resonant Hamiltonian). We define G;* € L; by

k

(Gio,j = (Gk)o,j, when Za,-wji =0
i=1

and (G**)s,j = 0 otherwise.
e We define G,({H) € Ly by

(G/((H))a,j = (Gi)o,j, when i,p=1,... kst
w1 () = 1jil, w2(j) =1jpl and ojop = +1.
We define G, " := G, — G\,

Remark 3.4 Notice that, in view of Proposition 2.2, the resonant Hamiltonians given in Defi-
nition 3.3 must be supported on indices o € {—1, 1}¥, j € Z*k¢ which are resonant according
to Definition 2.1. We remark that (G)™* = 0 if k is odd.

In the following lemma we collect some properties of the Hamiltonians in Definition 3.1.

Lemma35 Let N > 1,0 <§; < 1, gi € R, kj > 3, consider G};i (w) in Ly, fori =1,2.
Assume that the coefficients (G;q )o,j satisfy

(Gl )ojl < CiN% 3 (NP i (N4, Vo e (=1, +1}%, j e Z, (3.12)
for some B; > 0and C; > 0,i =1, 2.
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6)) (Estimates on Sobolev spaces) Set k = k;, § = 6;, q = qi, B = Bi, C = C; and
G}(i = Gy fori = 1,2. There is so = so(B, d) such that for s > 5o, Gy defines naturally
a smooth function from H* (T?) to R. In particular one has the following estimates:

1Gr(u)| s CNOJullb,s, (3.13)
I1X G, @)l grs+a S5 CNOJullbst, (3.14)
1Xg=n )l S N ulls! (3.15)

forany u € H*(T?).
(ii) (Poisson bracket) The Poisson bracket between G,il and G/%z is an element of Ly, +k,—2
and it verifies the estimate

(G, G2 Dol S5 CLCNOHO2 8142 1 ()= mintan.aa) (3.16)
forany o € {+1, —1}/"""‘2_l and j € 7dkitka=2)

Proof We prove item (i). Concerning the proof of (3.13) it is sufficient to give the proof in
the case ¢ = 0. For convenience, without loss of generality, we assume C; = 1,i = 1, 2.
We have

Gr(w)] < k! > Gkl |- - ]

e k€2
lit1=121= 131> =1 jk]

k
8 . 03 o ) k—1
SN Y 1A TT D0 1 Ske Nollullgarvsse lulgajosc
jaezd 3#i=1 je7d

for any € > 0, we proved the (3.13) withso = d/2 + € + B.
We now prove (3.14). Since the coefficients of G are symmetric, we have

0, Gr(w) =k Z (GK)(o,-1), (5, “7:::
o1 j1++0ok—1jk—1=n

Therefore, we have

()95, Gra)l < kU Y WG -1l S () 4

o1j1+A0k—1 jk-1=n
L= =] k-1l

(3.12)
§ . . — r— L
SN G Gy T S ()
o1 j1++0k—1 jk—1=n
[jil==]jk-1]
We note that in the last sum above, we have (n) < (j1), #1(j, n) > {j1)and u3(j, n) < {(jo).
As a consequence, we deduce that

() 195, G| S N° Y (G )P S e
o1 j1++0k—1 jk—1=n
[j11==]jk—1l

Se NS Y GO G g, -
Jitetji—1=n
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Consequently, applying the Young convolutional inequality, we get
I1XG, )l gs+a = 1) 19z, G () Dyezall 2
Ss Nollullgs | Y G P st | L D2 gl

jezd jezd

<5 N b5t

k-3

The proof of (3.15) follows the same lines. The proof of item (ii) of the lemma is a direct
consequence of the previous computations, definition (1.23) and the momentum condition.
]

We are in position to prove the main Birkhoff result.

Proof of Theorem 2 In the case d = 2 we perform two steps of Birkhoff normal form proce-
dure, see Lemmata 3.8, 3.12. The case d = 3 is slightly different. Indeed, due to the estimates
on the small divisors given in Proposition 2.2, we can note that the Hamiltonian in (3.24)
has already the form (3.4) since the coefficients of the Hamiltonians Ky (see (3.25)) do not
decay anymore in the largest index p1(j). The proof of Theorem 2 is then concluded after
just one step of Birkhoff normal form.

Step 1 ifd =2 or d = 3. We have the following Lemma.

Lemma 3.6 (Homological equation 1) Let g4 = 3 —d ford = 2,3. For any N > 1 and

8 > O there exist multilinear Hamiltonians )(,51), k =n,...,2n — 3 in the class Ly with
coefficients (Xlgl))g,j satisfying
1 . —
106 e | S5 NP us ()P pa ()%, (3.17)

such that (recall Definition 3.3)
" Z) + Ho= Zk + HEV, k=n,....2n -3, (3.18)
where Zy, Hy are given in (1.25), (1.26) and Zj, is the resonant Hamiltonian defined as
Zi = (HZ")™, k=n,...,2n 3. (3.19)
Moreover Zy belongs to Ly and has coefficients satisfying (3.5).

Proof Consider the Hamiltonians Hy in (1.26) with coefficients satisfying (1.27). Recalling
Definition 3.1 we write

He=Zik+HEY = Zo+ HZY, k=n,....r—1,
with Z; as in (3.19). We define
1= @) [ HEY ~ Ze]o k=n 203, (3.20)

where adz, is given by Definition 3.3. In particular (recall formula (3.11)) their coefficients
have the form
-1

k
o = (Hi)oj (iZaiwj,-) (3.21)
i=1
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for indices o € {—1, +1}¥, j € (Z9)* such that

k k
Y 6iji=0. wa() <N and Y ojw; #0.

i=1 i=1

By (1.27) and Proposition 2.2 (with d = 2, 3) we deduce the bound (3.17) for some g > 0.
The resonant Hamiltonians Zj in (3.19) have the form (3.5). One can check by an explicit
computation that Eq. (3.18) is verified. O

We shall use the Hamiltonians le D given by Lemma 3.6 to generate a symplectic change of
coordinates.
Lemma 3.7 Let us define

2n—-3
x W= " (3.22)
k=n

There is so = so(d, r) such that for any § > 0, forany N > 1 and any s > so, ife0 Ss.5 N3,
then the problem

{afZ(r) =X, (Z(1)) (3.23)

Z0)=U=[4]. ue€ B0, &)

has a unique solution Z(t) = <I>;<1>(u) belonging to C*([—1, 1]; Hs(']I'd))for any k € N.
Moreover the map @;(,) . By (0, g0) — H*(T?) is symplectic. The flow map <I>;(,) and its
inverse CI>;(T1) satisfy
sup (| @75 () = ullgs Sos Nl
t€[0,1]
sup [|dT (0L lecas ) < 2.
1€[0,1]

Proof By estimate (3.17) and Lemma 3.5 we have that the vector field X Mo is a bounded
operator on H* (T%). Hence the flow @;(1) is well-posed by standard theory of Banach space

ODE. The estimates of the map and its differential follow by using the equation in (3.23), the
fact that x (1) is multilinear and the smallness condition on &g. Finally the map is symplectic
since it is generated by a Hamiltonian vector field. O

We now study how changes the Hamiltonian H in (1.24) under the map @;(1).

Lemma 3.8 (The new Hamiltonian 1) There is so = so(d, r) such that forany N > 1,§ > 0
and any s > so, if €0 Ss.s N3 then we have that

2n—-3 r—1
HOq)X(l) =72+ Z Zk+E>N+ Z I?k—i-Rr (3.24)
k=n k=2n-2
where
o O = (@;(,))h:] is the flow map given by Lemma 3.7;

e the resonant Hamiltonians Zy. are defined in (3.19);
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° Ek are in Ly with coefficients (I?k)(,,j satisfying
(Ko, i1 Ss Nopa(DP (D™, k=2n—2,...,r -1, (3.25)

withqq =3 — d.)fgrd =23
e the Hamiltonian K>V and the remainder R, satisfy

IXg-n@llas Ses N ulls' (3.26)
X%, @l ms Ss,s N8||M||Hs . Yu € B;(0, 2¢0). (3.27)

Proof Fix § > 0 and goN°® small enough. We apply Lemma 3.7 with § ~» 8 to be chosen
small enough with respect to § we have fixed (which ensures us that the smallness condition
goN ¥ Ss.o 1 of Lemma 3.7 is fulfilled). Let d>; «, be the flow at time 7 of the Hamiltonian

. We note that

(1.22),(1.23)

d0:H o d);m = dH(Z)[XX(l)(Z)]‘qu);“) {X(l)’ H}o @;m.

Then, for L > 2, we get the Lie series expansion
Ho®,m=H+{x", HY+ Z —ad 1) + / (11—t d“l[ ] 0 @7 dt

where ad;’ (1) 1s defined recursively as

ad,o[H]:= (xV, H), ad? [H]:= (xV ad?IH]), p=2.  (3.28)

Recalling the Taylor expansion of the Hamiltonian H in (1.24) we obtain

2n—-3 r—1
Ho®,n =2+ Z (Hk+{x,§1),22})+ Z H,
k=n k=2n—2
L r—1 L
Z (1) [Z2] + Z Z (1>[H] (3.29)
j=n p= 1
r—1
/ (1-1) adL(JT)l[Zz+ZH, Jo @ dr (3.30)
Jj=
+ R0y, (3.31)

We study each summand separately. First of all, by definition of X,EI) (see (3.18) in Lemma
3.6), we deduce that

2n-3 2n—3 - 2n-3
SN (H+ " 2) =Y z+ KN, K7V = Z HV. (3.32)
k=n k=n

One can check, using Lemma 3.5 (see (3.15)), that K>V satisfies (3.26). Consider now the
term in (3.29). By definition of %D (see (3.18) and (3.22)), we get,forp=2,..., L,

2n—3
—1 (3 32) 1
ad?  [Z2] = ad”, [{x“% Zz}] ad’ ) [Z (Zi — HEN)} :
k=n
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Therefore, by Lemma 3.5-(ii) and recalling (3.28), we get

Ln—3)+r—1-2L
(3.29) = Z Ky

k=2n-2

where K, r are k-homogeneous Hamiltonians in L. In particular, by (3.16), (3.17) and (1.27)
(with § ~ §'), we have

(K)o, j1 S NY s ()P ()4
for some B > 0 depending only on d, n. This implies the estimates (3.25) taking LS’ < §,
where L will be fixed later. Then formula (3.24) follows by setting

LQn—3)+r—1-2L
Ry = Z Ky + (3.30) + (3.31). (3.33)
k=r

The estimate (3.27) holds true for X,?k withk =r,...,L2n —3) +r — 1 — 2L, thanks
to (3.25) and Lemma 3.5. It remains to study the terms appearing in (3.30), (3.31). We start
with the remainder in (3.31). We note that

XRyo0(u) = (AP, 1) " (u) [XR, (@, (u))]~

We obtain the estimate (3.27) on the vector field X g ¢ by using (1.28) and Lemma 3.7. In
order to estimate the term in (3.30) we reason as follows. First notice that

2n—3
(3.32)
dLjf)‘ (Zy+ Hj] = adL(l) [Z(zk —HE } dL(",')l[Hj] = Q;
with j =n,...,r — 1. Using Lemma 3.5 we deduce that

18’ Ln+n—2L)—1
1Xo, @)llms Sy NEDY g 2071

We choose L = 9 which implies Ln +n — 2L > r since r < 4n. Notice also that all the
summand in (3.30) are of the form

1
fo (1-0kQjo ®? ,dr.

Then we can estimates their vector fields by reasoning as done for the Hamiltonian R0 @, ).
This concludes the proof. O

Remark 3.9 (Case d = 3) We remark that Theorem 2 for d = 3 follows by Lemmata 3.6,
3.7, 3.8, by setting = @, m and recalling that (see (3.1)) My, = 2n — 2 ford = 3.

Step 2 if d = 2. This step is performed only in the case d = 2. Consider the Hamiltonian in
(3.24). Our aim is to reduce in Birkhoff normal form all the Hamiltonians K r of homogeneity
k=2n-2..., M, —1where M> , is givenin (3.1). We follow the same strategy adopted
in the previous step.

Lemma 3.10 (Homological equation 2) Let N > 1, § > 0 and consider the Hamiltonian in
(3.24). There exist multilinear Hamiltonians X/Ez); k=2n-2,...,M>, — linthe class Lk,
with coefficients satisfying

o1 S Noua ()P, (3.34)
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for some B > 0, such that
P 2y + K= Ze + K7Y, k=2n—2,... My, —1, (3.35)
where I?k are given in Lemma 3.8 and Zj, is the resonant Hamiltonian defined as
Zp= (KZV)™, k=2n—2,..., My, — 1. (3.36)
Moreover Zy belongs to Ly and has coefficients satisfying (3.5).

Proof Recalling Definitions 3.1, 3.3, we write
Ek=Zk+(EkSN—Zk)+Ek>N,
with Zj as in (3.36), and we define

22 = (adzz)—l[l?,fN _ zk], k=2n—2,..., Moy — 1. (3.37)

The Hamiltonians X,EZ) have the form (3.9) with coefficients

k -1
(X]EZ))a,j = (Ki)o, (izaiwjl) (3.38)
i=1
for indices o € {—1, +1}¥, j € (Z4)* such that

k k
Zm’ji =0, w2(j) <N and Z"iwji £ 0.
i=l i=1

Recalling that we are in the case d = 2, by (3.25) and Proposition 2.2 we deduce (3.34). The
resonant Hamiltonians Zj in (3.36) have the form (3.5). The (3.35) follows by an explicit
computation. m}
Lemma 3.11 Let us define

MZ,n_l

x@= Y 1P (3.39)
k=2n-2

There is so = so(d, r) such that for any § > 0, forany N > 1 and any s > so, ifeo Ss.s N8,
then the problem

3 Z(1) = X, 0 (Z(1))
Z0)=U=[4]. ue B0, e)

u
has a unique solution Z(t) = QD)T((Z) (u) belonging to ck(-1,1); Hs(Td))for any k € N.
Moreover the map @;(2) : By (0, g0) — H(TY) is symplectic. The flow map @;(2), and its
inverse <I>;(Tz), satisfy
up 1975 @) =l Sos NPllulls'
7€|0,

sup ||dq>):::(t2)(u)[']||£(HS;Hs) <2.
7€[0,1]

Proof 1t follows reasoning as in the proof of Lemma 3.7. O

@ Springer



1390 Journal of Dynamics and Differential Equations (2021) 33:1363-1398

We have the following.

Lemma 3.12 (The new Hamiltonian 2) There is so = so(d, r) such that forany N > 1,§ > 0
and any s > sg, if 80 Ss.5 N9 then we have that H o ® ) o q>x(2) has the form (3.4) and
satisfies items (i), (ii), (iii) of Theorem 2.

x

Proof We fix § > 0 and we apply Lemmata 3.8, 3.10 with § ~~ 8’ with 8’ to be chosen small
enough with respect to § fixed here.
Reasoning as in the previous step we have (recall (3.1), (3.28) and (3.24))

2n—3 My q—1 r—1
Ho (Dx(l) o (Dx(z) =7Z)+ Z Zi + Z <kvk + {XIEZ), Zz}) + Z fk (3.40)
k=n k=2n—-2 k=M> ;
+KNod 0 (3:41)
L 1 L 1 2n—3
- Z —ad? o [Z2] + Z —ad’ [Z Zi + Z Kk] (3.42)
= p' = p' k=2n-2
+Rro®, 0+ — / 1-1) adL(z) [Z2]0 @7 dt (3.43)
1 2n—3
+Ef0 1-1) ade§>l|:Z Zk+k;2Kk:|oq) odt, (3.44)
n

where <I>; T € [0, 1], is the flow at time 7 of the Hamiltonian x @ We study each summand
separately. First of all, thanks to (3.35), we deduce that

MZ,n_l MZn_l MZn_l
Yo Ke+ixPozl)= Y m+kN KiVNe= Y KV G4s)
k=2n-2 k=2n-2 k=2n-2

One can check, using Lemma 3.5, that K jN satisfies
— / n—
IX gl Ses N7l (3.46)

Consider now the terms in (3.42). First of all notice that we have

My, —1

(3.45) ¥ -1 ~y
adl (212 Y ad? Mz - REV] p=2.1
k=2n-2

The Hamiltonian above has a homogeneity at least of degree 4n — 6 which actually is larger or
equal to M» , (see (3.1)). The terms with lowest homogeneity in the sum (3.42) have degree

exactly M , and come from the term ad 4@ [ 2%53 Zk] recalling that (see Remark 3.4) if
n is odd then Z, = 0. Then, by (3.34), (3.25) and Lemma 3.5-(ii), we get

L(M3,—1)+r—1-2L

(3.42) = > K.

k=M,
where K ,j are k-homogeneous Hamiltonians of the form (3.6) with coefficients satisfying

(B il Sy NETD (P, (3.47)
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for some § > 0. By the discussion above, using formule (3.40)—(3.44), we obtain that the
Hamiltonian H o @, 1) o @, has the form (3.4) with (recall (3.19), (3.36), (3.41), (3.45))

ZkSN =2y, k=n,..., M ,—1, Ki:= Ek + E+, k= Myp,....,r—1, (3.48)
KN =K Nod o+ K7V (3.49)

and with remainder Ié, defined as

L(Ma,—1)+r—1-2L
R, = 3 K+ (3.43) + (3.44). (3.50)
k=r

Recalling (3.19), (3.36) and the estimates (1.27), (3.25) we have that Z,{EN in (3.48) satisfies
the condition of item (i) of Theorem 2. Similarly Ky in (3.48) satisfies (3.6) thanks to (3.25)
and (3.47) as long as & is sufficiently small. The remainder K> in (3.49) satisfies the
bound (3.7) using (3.46), (3.26) and Lemma 3.5-(i). It remains to show that the remainder
defined in (3.50) satisfies the estimate (3.8). The claim follows for the terms K k+ for k =
ry...,L(My, —1)4+r —1—2L by using (3.47) and Lemma 3.5. For the remainder in
(3.43), (3.44) one can reason following almost word by word the proof of the estimate of the
vector field of R, in (3.33) in the previous step. In this case we choose L + 1 = 8§ which
implies L +1 > (r +n)/(2n — 4). ]

Theorem 2 follows by Lemmata 3.8, 3.12 setting .= ¢'X(1) o d>x<z>. The bound (3.3)
follows by Lemmata 3.7 and 3.11.

4 The Modified Energy Step

In this section we construct a modified energy which is an approximate constant of motion
for the Hamiltonian system of H o V) in (3.4), when d = 2, 3, and for the Hamiltonian H
in (1.24) when d > 4. For compactness we shall write, for s € R,

Ny () = fluligs = Y () w1, (4.1)

jez?
for u € H¥(T?; C). Ford > 2 and n € N we define (recall (3.1))

Mgp+n—1 n odd

Mdn =
' Mg,+n—2 n even.

4.2)

Proposition 4.1 There exists B = B(d,n) > 0 such that for any § > 0, any N > Ny > 1
(N = Ny ifd > 4) and any s > 5y, ior some 5o = S0(B) > 0, if &9 Ss.s N8 there are
multilinear maps Ex, k = Mg p, ..., Mg, — 1, inthe class Ly such that the following holds:

o the coefficients (Ey)q,; satisfies
I(E)o,j| Ss.8 NONT s ()P i (H%, 4.3)
foro e (=1, 138 j e 24 k=Mg,, ..., Mg, — 1, where

kg :=0if d =2, kg :=1ifd =3, kg :=d—4if d > 4. 4.4)
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e foranyu € Bs(0, 2¢q) setting

Mg n—1
E@):= Y Exu). 4.5)
k=M.,
one has
[Ny + E, H ot} Sy5 NEONS(lul 3 4+ N~ gt 2) “o)
+ N g+ N e, '
where
sq:=1, for d=2,3, and s;:=3, for d > 4. 4.7

Remark 4.2 We remark that in the proposition above we introduced a second truncation
parameter Np. This is needed in order to optimize the time of existence that we shall deduce
by estimate (4.6) . In Sect. 5 we shall choose N, Ni (depending on ¢) is such a way that the
last two summands in the r.h.s. of (4.6) are negligible w.r.t. the first two summands. Since

. My, - .
for d = 3 the term |[lu|’};, is larger than ||u||Hf'” it would be convenient to choose N > N

to make the last summand small enough. This is possible since the factor N fd N?® grows very
slowly in N since § is arbitrary small. Note that in the case d > 4 we need just one truncation
since no preliminary Birkhoff normal form is performed. In the case d = 2 one could use
the same truncation N since kg = 0.

We need the following technical lemma.

Lemma4.3 (Energy estimate) Let N > 1,0 < § < 1, p € N, p > 3. Consider the
Hamiltonians Ny in (4.1), G, € L, and write G, = G;,—H) + GE,_I) (recall Definition 3.3).
Assume also that the coefficients of G, satisfy

(G j|l < CN°us(NP ()79, Vo e (=1, +1}7, jeZ ne{~1,+1}, (4.8)

for some B > 0, C > 0 and g > 0. We have that the Hamiltonian Q;n) = {Ng, GE,")},
n € {—1, 1}, belongs to the class L, and has coefficients satisfying

My 5, (Bl (025, —a— _ it p=-1
(@0l Ss CN s (D™ i (DT (D™, = {0 it =+,

Proof Using formula (4.1), (1.23), (3.9) and recalling Definition 3.3 we have that the Hamil-
tonian { Ny, Gg')} has coefficients

p
Q). = (G)o i (Z o <J'i>2‘?>

i=1

(4.9)

forany o € {—1,+1}7,j € (zyp satisfying

p
Y 0iji =0, oo =n. wi() =1l p2() =L,
i=1

for some i, k =1, ..., p. Then the bound (4.9) follows by the fact that

\2s—1 A
-\ 2 s < V(DT T () if = —1
1[G ™ 0007 Ss {m(j)zs if p = +1.
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and using the assumption (4.8). O

ProofofProgosition 4.1 Case d = 2,3. Consider the Hamiltonians Ky in (3.6) for k =
Mgn,...,M,q— 1 where M, 4 is defined in (4.2). Recalling Definition 3.3 we set Ej :=

E,EH) + E,Efl), where
1 — 1 —1 — —1,<N
E(FY = (adz) NG KTV ETY = (adzy) TN K YY) (4010)

fork =My,,..., 1\7,1,,, — 1. Notice that formulain (4.10) are well-defined since { Ny, KIEH)}

and {Ny, K ]E_] ’ENI)} are in the range of the adjoint action adz, thanks to Proposition 2.2. It
is easy to note that E; € L. Moreover, using the bounds on the coefficients (Ky)o, ; in (3.6)
and item (ii) of Proposition 2.2 (with § therein possibly smaller than the one fixed here), one
can check that the coefficients (£ EH))G, j satisfy the (4.3). By (3.6), Lemma 4.3 (in particular
formula (4.9) with n = —1) and item (iii) of Proposition 2.2, one gets that the coefficients
(E,E_l))g,j satisfy the (4.3) as well. Using (4.10) we notice that

[N, Ki} + {Ex, Za) = (N, KM ko= My, oo, My — 1. &1
Combining Lemmata 3.5 and 4.3 we deduce

NG, KN a01 Ses N Dl (4.12)

for s large enough with respect to 8. We define the energy E as in (4.5). We are now in

position to prove the estimate (4.6).
Using the expansions (3.4) and (4.5) we get

Mg n—1
IN+E HotMy={N,. Zo+ Y z7" (4.13)
k=n
+ {Ny, K™V} + {Ny, R} (4.14)
My, —1
+ Y (N Ki} + (Ex. Z2)) (4.15)
k=M,
Mg ,—1 r—1
+3E > ZEV P+ 1E. Y K+ R (4.16)
k=n k=M ,
+{E,K™M). 4.17)

We study each summand separately. First of all note that, by item (i) in Theorem 2 and
Proposition 2.2 we deduce that the right hand side of (4.13) vanishes. Consider now the
term in (4.14). Using the bounds (3.7), (3.8) and recalling (1.23) one can check that, for
eoN® Ss5 1,

14 14)] Zo N7l + N2 flullys. (4.18)
By (4.11) and (4.12) we deduce that
Md,n

14.15)] Zo5 Ny ull (4.19)
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By (4.3), (3.4)—(3.8), Lemma 3.5 (recall also (4.2)) we get

W
1(4.16)] Ss.6 NYENC(llull 8" + llullys),

S oxr— My p4+n—2
[(4.17)] S0 NEEN T2 ) "0

The discussion above implies the bound (4.6) using that r > AA/id, - This concludes the proof
in the case d = 2, 3.

Case d > 4. In this case we consider the Hamiltonian H in (1.24). Recalling Definition 3.3
we set

Ec:=Ef) + BV
where
1 — —1 — —1,<N
E{TV = (adz) NNy, HYTD, ESV = (adz) U NG, HUPEYWY, 420

D gD

fork=My,, ..., A’/Vld, » — 1. Notice that the energies E ]E are in £ with coefficients

-1

k k
(B )ej = (Zm(j»”) (me;,) HI Yoy o e(=1L+1, je @,
i=1 i=1

and

-1

k k
<E,£‘“>a,./=<2‘”“">zs) (Zw) (H g ) = M,
i=1

i=1
with o € {—1, +1}*, j € (Z?)*. Recall that in this case My, = n (see (3.1)). Using

Proposition 2.2 and reasoning as in the proof of Lemma 4.3 one can check that estimate (4.3)

on the coefficients of £ ,EH) and E 271) holds true with «4 as in (4.4). Equation (4.20) implies

{Ny, Hi} + {Ex, Za) = {Ng, HT 7MY k=, Mgy — 1, 4.21)

where My, —1 = 2n — 1 if n odd and My, — 1 = 2n — 2 if n even (see (4.2)). Recall
that the coefficients of the Hamiltonian Hj satisfy the bound (1.27). Therefore, combining
Lemmata 4.3 and 3.5, we deduce

—1,>N _
UNs, H 7Y @) Sos N7l (4.22)

for s large enough with respect to 8. Recalling (1.24) we have

r—1
[Ny + E, H} = {Ny, Zo} + {Ns, R/} + {E > Hi+ Rr}

k=n
Md.n_l
+ Y (N, K} + (Ex, Z2}).
k=n

One can obtain the bound (4.6) by reasoning as in the case d = 2, 3, using (4.22), (1.28).
This concludes the proof. O
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5 Proof of Theorem 1

In this section we show how to combine the results of Theorem 2 and Proposition 4.1 in order
to prove Theorem 1.

Consider v and v satisfying (1.4) and let ¥ (¢, y), y € Tﬁf, be the unique solution of
(1.1) with initial conditions (v, ¥ ) defined for ¢ € [0, T] for some T > 0. By rescaling
the space variable y and passing to the complex variable in (1.17) we consider the function
u(t,x),x € T¢ solving the Eq. (1.18). We recall that (1.18) can be written in the Hamiltonian
form

o,u =10; H (u), (5.1)
where H is the Hamiltonian function in (1.20) (see also (1.24)). We have that Theorem 1 is
a consequence of the following Lemma.

Lemma 5.1 (Main bootstrap) There exists so = so(n, d) such that for any § > 0, s > s,
there exists g = €0(8, ) such that the following holds. Let u(t, x) be a solution of (5.1) with
t €[0,T), T > 0and initial condition u(0, x) = ug(x) € H* (T9). For any € € (0, &) if

luolles <& sup u(®)|ps <26, T <&, (5.2)
t€(0,7T)

with a = a(d, n) in (1.6), then we have the improved bound SUpP;e(0,7) lu@) | gs < %8.
In order to prove Lemma 5.1 we first need a preliminary result.

Lemma 5.2 (Equivalence of the energy norm) Let§ > 0, N > Ny > 1. Letu(t, x) as in (5.2)
with s > 1 large enough. Then, for any 0 < co < 1, there exists C = C(§,s,d,n,co) > 0
such that, if we have the smallness condition

eCNON < 1, (5.3)
the following holds true. Define
2:=1Qw), u=1D(@), &@) :=©W,+E)) (5.4)

where %), o = 0, 1, are the maps given by Theorem 2 and Ny is in (4.1), E is given by
Proposition 4.1. We have

1/(L+colllzllms < llullgs = (1 +co)llzllas, Ve €0, T (5.5)
1/(1+12¢0)&5 () < llullgys < (1+12¢0)&5(z), Ve €[0,T].  (5.6)

Proof Thanks to (5.3) we have that Theorem 2 and Proposition 4.1 apply. Consider the
function z = t© (u). By estimate (3.3) we have

- 5.3)
lzllms < llullps + CNPfulle < llullgs (14 co),

where C is some constant depending on s and 8. The latter inequality follows by taking C in
(5.3) large enough. Reasoning similarly and using the bound (3.3) on V) one gets the (5.5).
Let us check the (5.6). First notice that, by (4.3), (4.5) and Lemma 3.5,

~ M n y
|E(2)| < Clizll " N° Ny, (5.7)
for some C > 0 depending on s and 8. Then, recalling (5.4), we get

My, — (5.5),<(5.3

- 2 )
1€ @) < llzll3s (1 + Clizll e " NP Ny |35 (1 + co),
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where we used that M, , — 2 > 1. This implies the first inequality in (5.6). On the other
hand, using (5.5), (5.7) and (5.2), we have

lull3s < (14 €0)?E5(2) + (1 + co)Mant2C NI N gMan=2 |12,

Then, since My, > 2 (see (3.1)), taking C in (5.3) large enough we obtain the second
inequality in (5.6). O

Proof of Lemma 5.1 Assume the (5.2). We study how the Sobolev norm ||u(t)|| gs evolves for
t € [0, T] by inspecting the equivalent energy norm & (z) defined in (5.4). Notice that

3E(2) = —{&. HotV)(2).
Therefore, for any ¢ € [0, T], we have that

T
‘ / 8,6, (2) dr
0

(4.6),(5.2) ~
SS’(S TN{{II N(S (gMd,n + N—lgMd_n-H'l—z)

+ TNl_Sd-HSSMd'" + TN75d+58n'
We now fix
Nii=¢% N:=¢7,

with 0 < o < y to be chosen properly. Hence we have

‘/OT 0,6:(2) di| <5 82T(8M¢n—2+a5d—8a + Szﬁm—z—aw—ay) (5.8)
+ 82T(€n72+1/5d78y + gMn,d+n74+yfcucd76y). (5.9)

We choose o > 0 such that
My, —24asqg =M, 4 —2— akg, (5.10)

ie.

S

(5.11)

D=

if n even.

o = M (42),4.7),44) { =1 i 0 odd
. 54 + Kq _

Q|

—1

We shall choose y > 0 is such a way the terms in (5.9) are negligible with respect to the
terms in (5.8). In particular we set (recall (5.11))

1 Md,n - Md,n >
y =max{—Magn —n+ ——"—""57),2—n+ Mgy — Mg }. (5.12)
54 5q + K4

Therefore estimates (5.8)—(5.9) become

T
‘ / 0:&(2) dt
0

where a is defined in (1.6) and appears thanks to definitions (3.1), (4.2), (4.4), (4.7) and
(5.11). Moreover we define

,Ss,(s ngga(S—(SOt +8—6)/)

8 1= 28 max{a, v},
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with «, ¥ given in (5.11) and (5.12). Notice that, since § > 0 is arbitrary small, then 8’ can
be chosen arbitrary small. Since ¢ can be chosen arbitrarily small with respect to s and 4,

with this choices we get
T
| agca
0
. Then, using the equivalence of norms (5.6) and choosing ¢p > 0

]

< (14 12¢0)%e? + (1 + 12¢)e? /4 < £23)2,

<é&/4

/
as long as T < g—2+3

small enough, we have

@)1 < (14 12¢0)E(2(1))

T
< (14 12¢p) |:Ss(z(0)) + ’/ 0:&s(z) dt
0

for times T < =29, This implies the thesis. O
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