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Abstract
We consider the semi-linear beam equation on the d dimensional irrational torus with smooth
nonlinearity of order n − 1 with n ≥ 3 and d ≥ 2. If ε � 1 is the size of the initial datum,
we prove that the lifespan Tε of solutions is O(ε−A(n−2)−) where A ≡ A(d, n) = 1 + 3

d−1

when n is even and A = 1+ 3
d−1 +max( 4−d

d−1 , 0) when n is odd. For instance for d = 2 and

n = 3 (quadratic nonlinearity) we obtain Tε = O(ε−6−
), much better than O(ε−1), the time

given by the local existence theory. The irrationality of the torus makes the set of differences
between two eigenvalues of

√
�2 + 1 accumulate to zero, facilitating the exchange between

the high Fourier modes and complicating the control of the solutions over long times. Our
result is obtained by combining a Birkhoff normal form step and a modified energy step.

Keywords Lifespan for semi-linear PDEs · Birkhoff normal forms · Modified energy ·
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1 Introduction

In this article we consider the beam equation on an irrational torus
⎧
⎪⎨

⎪⎩

∂t tψ + �2ψ + ψ + f (ψ) = 0,

ψ(0, y) = ψ0,

∂tψ(0, y) = ψ1,

(1.1)

where f ∈ C∞(R,R), ψ = ψ(t, y), y ∈ T
d
ν , with ν = (ν1, . . . , νd) ∈ [1, 2]d and

T
d
ν := (R/2πν1Z) × · · · × (R/2πνdZ). (1.2)

The initial data (ψ0, ψ1) have small size ε in the standard Sobolev space Hs+1(Td
ν ) ×

Hs−1(Td
ν ) for some s � 1. The nonlinearity f (ψ) has the form

f (ψ) := (∂ψ F)(ψ) (1.3)

for some smooth function F ∈ C∞(R,R) having a zero of order at least n ≥ 3 at the origin.
Local existence theory implies that (1.1) admits, for small ε > 0, a unique smooth solution
defined on an interval of length O(ε−n+2). Our goal is to prove that, generically with respect
to the irrationality of the torus (i.e. generically with respect to the parameter ν), the solution
actually extends to a larger interval.

Our main theorem is the following.

Theorem 1 Let d ≥ 2. There exists s0 ≡ s0(n, d) ∈ R such that for almost all ν ∈ [1, 2]d ,
for any δ > 0 and for any s ≥ s0 there exists ε0 > 0 such that for any 0 < ε ≤ ε0 we have
the following. For any initial data (ψ0, ψ1) ∈ Hs+1(Td

ν ) × Hs−1(Td
ν ) such that

‖ψ0‖Hs+1 + ‖ψ1‖Hs−1 ≤ ε, (1.4)

there exists a unique solution of the Cauchy problem (1.1) such that

ψ(t, x) ∈ C0([0, Tε); Hs+1(Td
ν )
)⋂

C1([0, Tε); Hs−1(Td
ν )
)
,

sup
t∈[0,Tε)

(
‖ψ(t, ·)‖Hs+1 + ‖∂tψ(t, ·)‖Hs−1

)
≤ 2ε, Tε ≥ ε−a+δ,

(1.5)

where a = a(d, n) has the form

a(d, n) :=
⎧
⎨

⎩

(n − 2)
(
1 + 3

d−1

)
, n even

(n − 2)
(
1 + 3

d−1

)
+ max{4−d,0}

d−1 , n odd.
(1.6)

Originally, the beam equation has been introduced in physics to model the oscillations of a
uniform beam, so in a one dimensional context. In dimension 2, similar equations can be used
to model the motion of a clamped plate (see for instance the introduction of [28]). In larger
dimension (d ≥ 3) we do not claim that the beam Eq. (1.1) has a physical interpretation
but nevertheless remains an interesting mathematical model of dispersive PDE. We note that
when the equation is posed on a torus, there is no physical reason to assume the torus to be
rational.

This problem of extending solutions of semi-linear PDEs beyond the time given by local
existence theory has been considered many times in the past, starting with Bourgain [11],
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Bambusi [1] and Bambusi–Grébert [2] in which the authors prove the almost global existence
for the Klein Gordon equation:

⎧
⎪⎨

⎪⎩

∂t tψ − �ψ + mψ + f (ψ) = 0,

ψ(0, x) = ψ0,

∂tψ(0, x) = ψ1,

(1.7)

on a one dimensional torus. Precisely, they proved that, given N ≥ 1, if the initial datum has a
size ε small enough in Hs(T)×Hs−1(T), and if the mass stays outside an exceptional subset
of zero measure, the solution of (1.7) exists at least on an interval of length O(ε−N ). This
result has been extended to Eq. (1.7) on Zoll manifolds (in particular spheres) by Bambusi–
Delort–Grébert–Szeftel [3] but also for the nonlinear Schrödinger equation posed on Td (the
square torus of dimension d) [2,19] or on Rd with a harmonic potential [24]. What all these
examples have in common is that the spectrum of the linear part of the equation can be divided
into clusters that are well separated from each other. Actually if you considered (1.1) with a
generic massm on the square torusTd then the spectrum of

√
�2 + m (the square root comes

from the fact that the equation is of order two in time) is given by {√| j |4 + m | j ∈ Z
d}

which can be divided in clusters around each integers n whose diameter decreases with |n|.
Thus for n large enough these clusters are separated by 1/2. So in this case also we could
easily prove, following [2], the almost global existence of the solution.

On the contrarywhen the equation is posed on an irrational torus, the nature of the spectrum
drastically changes: the differences between couples of eigenvalues accumulate to zero. Even
for theKleinGordonEq. (1.7) posed onTd for d ≥ 2 the linear spectrum is notwell separated.
In both cases we could expect exchange of energy between high Fourier modes and thus the
almost global existence in the sense described above is not reachable (at least up to now!).
Nevertheless it is possible to go beyond the time given by the local existence theory. In the
case of (1.7) on T

d for d ≥ 2, this local time has been extended by Delort [13] and then
improved in different ways by Fang and Zhang [18], Zhang [29] and Feola et al. [20] (in this
last case a quasi linear Klein Gordon equation is considered). We quote also the remarkable
work on multidimensional periodic water wave by Ionescu and Pusateri [26].

The beam equation has already been considered on irrational torus in dimension 2 by
Imekraz [25]. In the case he considered, the irrationality parameter ν was diophantine and
fixed, but a mass m was added in the game (for us m is fixed and for convenience we chose

m = 1). For almost all mass, Imekraz obtained a lifespan Tε = O(ε− 5
4 (n−2)+) while we

obtain, for almost all ν, Tε = O(ε−4(n−2)+) when n is even and Tε = O(ε−4(n−2)−2+
) when

n is odd.
We notice that applying the Theorem 3 of [6] (and its Corollary 1) we obtain the almost

global existence for (1.1) on irrational tori up to a large but finite loss of derivatives.
Let us also mention some recent results about the longtime existence for periodic water

waves [7–10]. In the same spirit we quote the long time existence for a general class of quasi-
linear Hamiltonian equations [21] and quasi-linear reversible Schrödinger equations [22] on
the circle. The main theorem in [21] applies also for quasi-linear perturbations of the beam
equation. We mention also [16], here the authors study the lifespan of small solutions of the
semi-linear Klein–Gordon equation posed on a general compact boundary-less Riemannian
manifold.

All previous results [13,18,20,25,29] have been obtained by a modified energy procedure.
Such procedure partially destroys the algebraic structure of the equation and, thus, it makes
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more involved to iterate the procedure.1 On the contrary, in this paper, we begin by a Birkhoff
normal form procedure (when d = 2, 3) before applying a modified energy step. Further in
dimension 2 we can iterate two steps of Birkhoff normal form and therefore we get a much
better time. The other key tool that allows us to go further in time is an estimate of small
divisors that we have tried to optimize to the maximum: essentially small divisors make us
lose (d − 1) derivatives (see Proposition 2.2) which explains the strong dependence of our
result on the dimension d of the torus and also explains why we obtain a better result than
[25]. In Sect. 1.2 we detail the scheme of the proof of Theorem 1.

1.1 Hamiltonian Formalism

We denote by Hs(Td ;C) the usual Sobolev space of functions Td � x �→ u(x) ∈ C. We
expand a function u(x), x ∈ T

d , in Fourier series as

u(x) = 1

(2π)d/2

∑

n∈Zd

une
in·x , un := 1

(2π)d/2

∫

Td
u(x)e−in·x dx . (1.8)

We also use the notation

u+1
n := un and u−1

n := un . (1.9)

We set 〈 j〉 := √
1 + | j |2 for j ∈ Z

d . We endow Hs(Td ;C) with the norm

‖u(·)‖2Hs :=
∑

j∈Zd

〈 j〉2s |u j |2. (1.10)

Moreover, for r ∈ R
+, we denote by Br (Hs(Td ;C)) the ball of Hs(Td ;C))with radius r

centered at the origin. We shall also write the norm in (1.10) as ‖u‖2Hs = (〈D〉su, 〈D〉su)L2 ,
where 〈D〉ei j ·x = 〈 j〉ei j ·x , for any j ∈ Z

d .
In the following it will be more convenient to rescale the Eq. (1.1) and work on squared

tori Td . For any y ∈ T
d
ν we write ψ(y) = φ(x) with y = (x1ν1, . . . , xdνd) and x =

(x1, . . . , xd) ∈ T
d . The beam equation in (1.1) reads

∂t tφ + 
2φ + f (φ) = 0 (1.11)

where 
 is the Fourier multiplier defined by linearity as


ei j ·x = ω j e
i j ·x , ω j :=

√

| j |4a + 1, | j |2a :=
d∑

i=1

ai | ji |2, ai := ν2i , ∀ j ∈ Z
d .

(1.12)
Introducing the variable v = φ̇ = ∂tφ we can rewrite Eq. (1.11) as

φ̇ = −v, v̇ = 
2φ + f (φ). (1.13)

By (1.3) we note that (1.13) can be written in the Hamiltonian form

∂t
[

φ
v

] = XHR
(φ, v) = J

(
∂φHR(φ, v)

∂vHR(φ, v)

)

, J = [
0 1−1 0

]

1 Actually there are papers in which such procedure is iterated. We quote for instance [15] and reference
therein.
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where ∂ denotes the L2-gradient of the Hamiltonian function

HR(φ, v) =
∫

Td

(
1

2
v2 + 1

2
(
2φ)φ + F(φ)

)

dx, (1.14)

on the phase space H2(Td ;R) × L2(Td ;R). Indeed we have

dHR(φ, v)
[

φ̂

v̂

] = −λR(XHR
(φ, v),

[
φ̂

v̂

]
) (1.15)

for any (φ, v), (φ̂, v̂) in H2(Td ;R)×L2(Td ;R), where λR is the non-degenerate symplectic
form

λR(W1,W2) :=
∫

Td
(φ1v2 − v1φ2)dx, W1 := [

φ1
v1

]
,W2 := [

φ2
v2

]
.

The Poisson bracket between two Hamiltonian HR,GR : H2(Td ;R)× L2(Td ;R) → R are
defined as

{HR,GR} = λR(XHR
, XGR

). (1.16)

We define the complex variables

[ u
ū

] := C[ φ
v

]
, C := 1√

2

(



1
2 i
− 1

2



1
2 −i
− 1

2

)

, (1.17)

where 
 is the Fourier multiplier defined in (1.12). Then the system (1.13) reads

u̇ = i
u + i√
2

−1/2 f

(


−1/2
(
u + ū√

2

))

. (1.18)

Notice that (1.18) can be written in the Hamiltonian form

∂t
[ u
ū

] = XH (u) = iJ

(
∂u H(u)

∂ū H(u)

)

=
(
i∂ū H(u)

−i∂u H(u)

)

, J = [
0 1−1 0

]
(1.19)

with Hamiltonian function (see (1.14))

H(u) = HR(C−1[ u
ū

]
) =

∫

Td
ū
u dx +

∫

Td
F

(

−1/2(u + ū)√

2

)

dx (1.20)

and where ∂ū = (∂�u + i∂�u)/2, ∂u = (∂�u − i∂�u)/2. Notice that

XH = C ◦ XHR
◦ C−1 (1.21)

and that (using (1.17))

dH(u)
[ h
h̄

] = (dHR)(φ, v)
[
C−1[ h

h̄

]] (1.15),(1.21)= −λ
(
XH (u),

[ h
h̄

])
(1.22)

for any h ∈ H2(Td ;C) and where the two form λ is given by the push-forward λ = λR ◦C−1.
In complex variables the Poisson bracket in (1.16) reads

{H ,G} := λ(XH , XG) = i
∫

Td
∂uG∂ū H − ∂ūG∂u Hdx, (1.23)

where we set H = HR ◦ C−1, G = GR ◦ C−1. Let us introduce an additional notation:

Definition 1.1 If j ∈ (Zd)r for some r ≥ k thenμk( j) denotes the kst largest number among
| j1|, . . . , | jr | (multiplicities being taken into account). If there is no ambiguity we denote it
only with μk .
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Let r ∈ N, r ≥ n. A Taylor expansion of the Hamiltonian H in (1.20) leads to

H = Z2 +
r−1∑

k=n

Hk + Rr (1.24)

where

Z2 :=
∫

Td
ū
u dx

(1.12)=
∑

j∈Zd

ω j |u j |2 (1.25)

and Hk , k = n, . . . , r − 1, is an homogeneous polynomial of order k of the form

Hk =
∑

σ∈{−1,1}k , j∈(Zd )k
∑k

i=1 σi ji=0

(Hk)σ, j u
σ1
j1

· · · uσk
jk

(1.26)

with (noticing that the zero momentum condition
∑k

i=1 σi ji = 0 implies μ1( j) � μ2( j))

|(Hk)σ, j | �k
1

μ1( j)2
, ∀σ ∈ {−1, 1}k, j ∈ (Zd)k (1.27)

and

‖XRr (u)‖Hs+2 �s ‖u‖r−1
Hs , ∀ u ∈ B1(H

s(Td ;C)). (1.28)

The estimate above follows by Moser’s composition theorem in [27], section 2. Estimates
(1.27) and (1.28) express the regularizing effect of the semi-linear nonlinearity in the Hamil-
tonian writing of (1.11).

1.2 Scheme of the Proof of Theorem 1

As usual Theorem 1 will be proved by a bootstrap argument and thus we want to control,
Ns(u(t)) := ‖u(t)‖2Hs , for t �→ u(t, ·) a small solution (whose local existence is given by
the standard theory for semi-linear PDEs) of the Hamiltonian system generated by H given
by (1.24) for the longest time possible (and at least longer than the existence time given by
the local theory). So we want to control its derivative with respect to t . We have

d

dt
Ns(u) = {Ns, H} =

r−1∑

k=n

{Ns, Hk} + {Ns, Rr }. (1.29)

By (1.28) we have {Ns, Rr } � ‖u‖r−1
Hs and thus we can neglect this term choosing r large

enough. Then we define H≤N
k the truncation of Hk at order N :

H≤N
k =

∑

σ∈{−1,1}k , j∈(Zd )k
∑k

i=1 σi ji=0, μ2( j)≤N

(Hk)σ, j u
σ1
j1

· · · uσk
jk

and we set H>N
k = Hk − H≤N

k . As a consequence of (1.27) we have {Ns, H>N
k } �

N−2‖u‖k−1
Hs and thus we can neglect these terms choosing N large enough. So it remains to

take care of
∑r−1

k=n{Ns, H
≤N
k }.
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The natural idea to eliminate H≤N
k consists in using a Birkhoff normal form procedure

(see [2,23]). In order to do that, we have first to solve the homological equation

{χk, Z2} + H≤N
k = Zk .

This is achieved in Lemma 3.6 and, thanks to the control of the small divisors given by
Proposition 2.2, we get that there exists α ≡ α(d, k) > 0 such that for any δ > 0

|(χk)σ, j | �δ μ1( j)
d−3+δμ3( j)

α, ∀σ ∈ {−1, 1}k, j ∈ (Zd)k . (1.30)

From [2] we learn that the positive power of μ3( j) appearing in the right hand side of
(1.30) is not dangerous2 (taking s large enough) but the positive power of μ1( j) implies a
loss of derivatives. So this step can be achieved only assuming d ≤ 3 and in that case the
corresponding flow is well defined in Hs (with s large enough) and is controlled by N δ (see
Lemma 3.7). In other words, this step is performed only when d = 2, 3, when d ≥ 4 we
directly go to the modified energy step.

For d = 2, 3, let us focus on n = 3. After this Birkhoff normal form step, we are left with

H ◦ �χ3 = Z2 + Z3 + Q4 + negligible terms

where Q4 is a Hamiltonian of order 4 whose coefficients are bounded by μ1( j)d−3+δ (see
Lemma 3.5, estimate (3.15)) and Z3 is aHamiltonian of order 3which is resonant: {Z2, Z3} =
0. Actually, as consequence Proposition 2.2, Z3 = 0 and thus we have eliminated all the
terms of order 3 in (1.29).

In the case d = 2, Q≤N
4 is still (1−δ)-regularizing and we can perform a second Birkhoff

normal form. Actually, since in eliminating Q≤N
4 we create terms of order at least 6, we can

eliminate both Q≤N
4 and Q≤N

5 . So, for d = 2, we are left with

H̃ = H ◦ �χ3 ◦ �χ4+χ5 = Z2 + Z4 + Q6 + negligible terms

where Z4 isHamiltonian of order 4which is resonant,3 {Z2, Z4} = 0, and Q6 is aHamiltonian
of order 6 whose coefficients are bounded by N 2δ . Since resonant Hamiltonians commute
with Ns , the first contribution in (1.29) is {Ns, Q6}. This is essentially the statement of
Theorem 2 (which will be stated in Sect. 3) in the case d = 2 and n = 3 and this achieves
the Birkhoff normal forms step.

Let us describe the modified energy step only in the case d = 2 and n = 3 and let us focus
on the worst term in {Ns, H̃}, i.e. {Ns, Q6}. Let us write

Q6 =
∑

σ∈{−1,1}6, j∈(Zd )k

| j1|≥···≥| j6|∑6
i=1 σi ji=0

(Q6)σ, j u
σ1
j1

· · · uσ6
j6

.

2 When you have a control of the small divisors involving only μ3( j) then you can solve the homological
equation at any order and you obtain an almost global existence result in the spirit of [2]. This would be the
case if we consider the semi-linear beam equation on the squared torus Td .
3 Notice that there is no resonant term of odd order by Proposition 2.2, in other words Z3 = Z5 = 0.
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From Proposition 2.2 we learn that if σ1σ2 = 1 then the small divisor associated with ( j, σ )

is controlled by μ3( j) and thus we can eliminate the corresponding monomial by one more
Birkhoff normal forms step.4 Now if we assume σ1σ2 = −1 we have

|{Ns, u
σ1
j1

· · · uσ6
j6

}| =
∣
∣
∣
∣
∣

6∑

i=1

σ ji 〈 ji 〉2s
∣
∣
∣
∣
∣
|uσ1

j1
· · · uσ6

j6
|

≤ (〈 j1〉2s − 〈 j2〉2s + 4〈 j3〉2s)|uσ1
j1

· · · uσ6
j6

|
≤ (

s(〈 j1〉2 − 〈 j2〉2)〈 j1〉2(s−1) + 4〈 j3〉2s
)|uσ1

j1
· · · uσ6

j6
|

�s (〈 j1〉2s−1〈 j3〉 + 4〈 j3〉2s)|uσ1
j1

· · · uσ6
j6

|
�s μ−1

1 ‖u‖6Hs

where we used the zero momentum condition,
∑6

i=1 σi ji = 0, to obtain | j1 − j2| ≤ 4| j3|.
This gain of one derivative, also known as the commutator trick, is central in a lot of results
about modified energy [6,13] or growth of Sobolev norms [4,5,12,14].

So if Q−
6 denotes the restriction of Q6 to monomials satisfying σ1σ2 = −1 we have

essentially proved that

|{Ns, Q
−,>N1
6 }| � N−1

1 ‖u‖6Hs .

Then we can consider the modified energy Ns + E6 with E6 solving

{E6, Z2} = −{Ns, Q
−,≤N1
6 }

in such a way that

{Ns + E6, H̃} = {Ns, Q
−,>N1
6 } + {Ns, H̃7} + {E6, Z4} + negligible terms.

Since this modified energy will not produce new terms of order 7, we can in the same time
eliminate Q−,≤N1

7 . Thus we obtain a new energy, Ns + E6 + E7, which is equivalent to Ns

in a neighborhood of the origin, and such that, by neglecting all the powers of N δ and N δ
1

which appear when we work carefully (see (4.6) for a precise estimate),

|{Ns + E6 + E7, H̃}| �s N−1
1 ‖u‖6Hs + ‖u‖8Hs + N−1‖u‖3Hs .

Then, a suitable choice of N and N1 and a standard bootstrap argument lead to, Tε = O(ε−6)

by using this rough estimate, and Tε = O(ε−6−
) by using the precise estimate (see Sect. 5).

Remark 1.2 In principle a Birkhoff normal form procedure gives more than just the control of
Hs norm of the solutions, it gives an equivalent Hamiltonian system and therefore potentially
more information about the dynamics of the solutions. However, if one wants to control only
the solution in Hs norm, the modified energy method is sufficient and simpler. One could
therefore imagine applying this last method from the beginning. However, when we iterate
it, the modified energy method brings up terms that, when we apply a Birkhoff procedure,
turn out to be zero. Unfortunately we have not been able to prove the cancellation of these
terms directly by the modified energy method, that is why we use successively a Birkhoff
normal form procedure and a modified energy procedure.

Notation We shall use the notation A � B to denote A ≤ CB where C is a positive constant
depending on parameters fixed once for all, for instance d , n. We will emphasize by writing
�q when the constant C depends on some other parameter q .

4 In fact in Sect. 4, for the sake of simplicity, we prefer to apply a modified energy strategy to all the terms of
Q6 (see also Remark 1.2).
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2 Small Divisors

As already remarked in the introduction, the proof of Theorem 1 is based on a normal
form approach. In particular we have to deal with a small divisors problem involving linear
combination of linear frequencies ω j in (1.12).

This section is devoted to establish suitable lower bounds for generic (in a probabilistic
way) choices of the parameters ν excepted for exceptional indices for which the small divisor
is identically zero. According to the following definition such indices are called resonant.

Definition 2.1 (Resonant indices) Being given r ≥ 3, j1, . . . , jr ∈ Z
d and σ1, . . . , σr ∈

{−1, 1}, the couple (σ, j) is resonant if r is even and there exists a permutation ρ ∈ Sr such
that

∀k ∈ �1, r/2�,

⎛

⎜
⎝

| jρ2k−1,1|
...

| jρ2k−1,d |

⎞

⎟
⎠ =

⎛

⎜
⎝

| jρ2k ,1|
...

| jρ2k ,d |

⎞

⎟
⎠ and σρ2k−1 = −σρ2k .

In this section we aim at proving the following proposition whose proof is postponed to
the end of this section (see Sect. 2.3). We recall that a is defined with respect to the length,
ν, of the torus by the relation ai = ν2i (see (1.12)).

Proposition 2.2 For almost all a ∈ (1, 4)d , there exists γ > 0 such that for all δ > 0, r ≥ 3,
σ1, . . . , σr ∈ {−1, 1}, j1, . . . , jr ∈ Z

d satisfying σ1 j1+· · ·+σr jr = 0 and | j1| ≥ · · · ≥ | jr |
at least one of the following assertion holds

(i) (σ, j) is resonant (see Definition 2.1)
(ii) σ1σ2 = 1 and

∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
�r γ (〈 j3〉 . . . 〈 jr 〉)−9dr2 ,

(iii) σ1σ2 = −1 and
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
�r ,δ γ 〈 j1〉−(d−1+δ)(〈 j3〉 . . . 〈 jr 〉)−44dr4 .

We refer the reader to Lemma 2.9 and its corollary to understand how we get this degeneracy
with respect to j1.

2.1 AWeak Non-resonance Estimate

In this subsection we aim at proving the following technical lemma.

Lemma 2.3 If r ≥ 1, ( j1, . . . , jr ) ∈ (Nd)r is injective,5 n ∈ (Z∗)r and κ ∈ R
d satisfies

κi� = 0 for some i� ∈ �1, d� then we have

∀γ > 0,

∣
∣
∣
∣
∣

{

a ∈ (1, 4)d : ∣∣κ · a +
r∑

k=1

nk
√

1 + | jk |4a
∣
∣ < γ

}∣
∣
∣
∣
∣
�r ,d γ

1
r(r+1) (〈 j1〉 . . . 〈 jr 〉) 12

r+1 .

Its proof (postponed to the end of this subsection) rely essentially on the following lemma.

5 i.e. ∀k, � ∈ �1, r�, k �= � ⇒ jk �= j�.
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Lemma 2.4 If I , J are two bounded intervals ofR∗+, r ≥ 1, ( j1, . . . , jr ) ∈ (Nd)r is injective,
n ∈ (Z∗)r and h : Jd−1 → R is measurable then for all γ > 0 we have

∣
∣
∣
∣
∣

{

(m, b) ∈ I × Jd−1 : ∣∣h(b) +
r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣ < γ

}∣
∣
∣
∣
∣

�r ,d,I ,J γ
1

r(r+1) (〈 j1〉 . . . 〈 jr 〉) 12
r+1

where (1, b) := (1, b1, . . . , bd−1) ∈ R
d .

Proof of Lemma 2.4 The proof of this lemma is classical and follows the lines of [1].
Without loss of generality, we assume that γ ∈ (0, 1). Let η ∈ (0, 1) be a positive number

which will be optimized later with respect to γ . If 1 ≤ i < k ≤ r then we have

| ji |21,b − | jk |21,b = ( j2i,1 − j2k,1) + b1( j
2
i,2 − j2k,2) + · · · + bd−1( j

2
i,d − j2k,d).

Since, by assumption, ( j1, . . . , jr ) is injective, either there exists � ∈ �2, d� such that ji,� �=
jk,� or ji,1 �= jk,1 and ji,� = jk,� for � = 2, . . . , d . Note that in this second case, we have
|| ji |21,b − | jk |21,b| ≥ 1. In any case, since the dependency with respect to b is affine the set

P(i,k)
η = {b ∈ Jd−1 | | ji |21,b − | jk |21,b| < η} satisfies |P(i,k)

η | < η(1 + |J |d−1).

Therefore, we have
∣
∣
∣
∣
∣

{

(m, b) ∈ I × Jd−1 :
∣
∣
∣
∣
∣
h(b) +

r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣
≤ r(r − 1)

2
|I | η (1 + |J |d−1)

+|J |d−1 sup
∀i<k, b/∈P(i,k)

η

∣
∣
∣
∣
∣

{

m ∈ I :
∣
∣
∣
∣
∣
h(b) +

r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣
. (2.1)

In order to estimate this last measure we fix b ∈ Jd−1\⋃i<k P(i,k)
η and we define g : I → R

by

g(m) = h(b) +
r∑

k=1

nk
√

m + | jk |4(1,b).

By a straightforward calculation, for � ≥ 1, we have

∂�
mg(m) = c�

r∑

k=1

nk(m + | jk |4(1,b))
1
2−� where c� =

�−1∏

i=0

1

2
− i . (2.2)

Therefore, we have

⎛

⎜
⎝

c−1
1 ∂1mg

...

c−1
r ∂rmg

⎞

⎟
⎠ =

⎛

⎜
⎝

(m + | j1|4(1,b))0 . . . (m + | jr |4(1,b))0
...

...

(m + | j1|4(1,b))−(r−1) . . . (m + | jr |4(1,b))−(r−1)

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

n1
√
m + | j1|4(1,b)

−1

...

nr
√
m + | jr |4(1,b)

−1

⎞

⎟
⎟
⎟
⎟
⎠

.

Denoting by V this Vandermonde matrix, by |x |∞ := max |xi | for x ∈ R
d and also by | · |∞

the associated matrix norm, we deduce that

r
max
i=1

c−1
i |∂ img(m)| ≥ |V−1|−1∞

r
max
i=1

|ni |
√

m + | ji |4(1,b)
−1

. (2.3)
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We recall that the inverse of V is given by

(V−1)i,� = (−1)r−�

Sr−�

((
1

m+| jk |4(1,b)

)

k �=i

)

∏

k �=i

1

m + | ji |4(1,b)
− 1

m + | jk |4(1,b)

(2.4)

(this formula can be easily derived using the Lagrange interpolation polynomials) where
S� : Rr−1 → R is the �st elementary symmetric function

S�(x) =
∑

1≤k1<···<k�≤r−1

xk1 . . . xk�
and S0(x) := 1.

Furthermore, we have

|V−1|∞ = r
max
i=1

r∑

�=1

|(V−1)i,�|. (2.5)

To estimate |V−1|∞ in (2.3), we use the estimates

Sr−�

⎛

⎝

(
1

m + | jk |4(1,b)

)

k �=i

⎞

⎠ �r ,J ,I 1 and

∣
∣
∣
∣
∣

1

m + | ji |4(1,b)
− 1

m + | jk |4(1,b)

∣
∣
∣
∣
∣
�J ,I

η

〈 jk〉6 .

Indeed, if || ji |4(1,b) − | jk |4(1,b)| ≥ 1
2 | ji |4(1,b) we have

∣
∣
∣
∣
∣

1

m + | ji |4(1,b)
− 1

m + | jk |4(1,b)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

| ji |4(1,b) − | jk |4(1,b)
(m + | ji |4(1,b))(m + | jk |4(1,b))

∣
∣
∣
∣
∣
�I ,J

1

〈 jk〉4

and conversely, if || ji |4(1,b) − | jk |4(1,b)| ≤ 1
2 | ji |4(1,b) then | ji |4(1,b) ≤ 2| jk |4(1,b) and so, since

b ∈ Jd−1\⋃i<k P(i,k)
η , we have

∣
∣
∣
∣
∣

1

m + | ji |4(1,b)
− 1

m + | jk |4(1,b)

∣
∣
∣
∣
∣
�I ,J

(| ji |2(1,b) + | jk |2(1,b))|| ji |2(1,b) − | jk |2(1,b)|
〈 jk〉8 �I ,J

η

〈 jk〉6 .

Therefore by (2.5) and (2.4), we have

|V−1|∞ �r ,I ,J η−(r−1)(〈 j1〉 . . . 〈 jr 〉)6
Consequently, we deduce from (2.3) that

r
max
i=1

|∂ img(m)| �r ,I ,J ηr−1(〈 j1〉 . . . 〈 jr 〉)−6|n|∞. (2.6)

Furthermore, considering (2.2), it is clear that

|∂�
mg(m)| ��,I ,J |n|∞.

As a consequence, being given ρ > 0 (that will be optimized later), applying Lemma B.1.
of [17], we get N sub-intervals of I , denoted �1, . . . , �N such that

N �I ,r (〈 j1〉 . . . 〈 jr 〉)6η−(r−1),
N

max
i=1

|�i | �I ,r

(
ρ(〈 j1〉 . . . 〈 jr 〉)6

ηr−1|n|∞
) 1

r−1

,

|∂mg(m)| ≥ ρ ∀m ∈ I\(�1 ∪ · · · ∪ �N ).
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Observing that I\(�1∪· · ·∪�N ) can bewritten as the union ofM intervals withM � 1+N ,
we deduce that

∣
∣
∣
∣
∣

{

m ∈ I :
∣
∣
∣
∣
∣
h(b) +

r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣
< Mρ−1γ + N

N
max
i=1

|�i |

�I ,r (〈 j1〉 . . . 〈 jr 〉)6η−(r−1)

⎡

⎣ρ−1γ +
(

ρ(〈 j1〉 . . . 〈 jr 〉)6
ηr−1|n|∞

) 1
r−1

⎤

⎦ .

We optimize ρ to equalize the two terms in this last sum:

ρ
r

r−1 = γ

(
ηr−1|n|∞

(〈 j1〉 . . . 〈 jr 〉)6
) 1

r−1

.

This provides the estimate
∣
∣
∣
∣
∣

{

m ∈ I :
∣
∣
∣
∣
∣
h(b) +

r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣

�I ,r γ
1
r (〈 j1〉 . . . 〈 jr 〉)6η−(r−1)

(
(〈 j1〉 . . . 〈 jr 〉)6

ηr−1|n|∞
) 1

r

�I ,r

(
γ

|n|∞
) 1

r

η−(r−1+ r−1
r )(〈 j1〉 . . . 〈 jr 〉)12.

Finally, we optimize (2.1) by choosing

η = γ
1
r η−(r−1+ r−1

r )(〈 j1〉 . . . 〈 jr 〉)12

and, recalling that |n|∞ ≥ 1, we get
∣
∣
∣
∣
∣

{

(m, b) ∈ I × Jd−1 :
∣
∣
∣
∣
∣
h(b) +

r∑

k=1

nk
√

m + | jk |4(1,b)
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣

�r ,d,I ,J

(
γ

1
r (〈 j1〉 . . . 〈 jr 〉)12

) 1
r+ r−1

r .

Since this measure is obviously bounded by |I ||J |d−1, the exponent r + r−1
r can be replaced

by r + 1 in the above expression which conclude this proof. ��
Now using Lemma 2.4, we prove Lemma 2.3.

Proof of Lemma 2.3 Without loss of generality we assume that i� = 1. First, since κ1 = 0,
we note that we have

G(a) := κ · a +
r∑

k=1

nk
√

1 + | jk |4a = 1√
m

(h(b) +
r∑

k=1

nk
√

m + | jk |4(1,b)) =: 1√
m
F(m, b)

where

m = 1

a21
, b =

(
a2
a1

, . . . ,
ad
a1

)

and h(b) =
d∑

k=2

κkbk .
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Let denote by � the map a �→ (m, b). It is clearly smooth and injective. Furthermore, we
have

det d�(a) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

−2a−3
1 −a2a

−2
1 . . . −ada

−2
1

a−1
1

. . .

a−1
1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2 (−1)a−d−2
1 .

Consequently, � is a smooth diffeomorphism onto its image �((1, 4)d) which is included

in the rectangle
( 1
16 , 1

)× ( 1
4 , 4

)d−1
. Therefore, by a change of variable, we have

|{a ∈ (1, 4)d : ∣∣G(a)
∣
∣ < γ }| =

∫

a∈(1,4)d
1|G(a)|<γ da

=
∫

(m,b)∈�((1,4)d )

1|F(m,b)|<√
mγ (2

√
m

−d−2
)d(m, b)

≤ 22d+5

∣
∣
∣
∣
∣

{

(m, b) ∈
(

1

16
, 1

)

×
(
1

4
, 4

)d−1

: |F(m, b)| < γ

}∣
∣
∣
∣
∣
.

Finally, by applying Lemma 2.4, we get the expected estimate. ��

2.2 Non-resonance Estimates for Two LargeModes

In this subsection we consider r ≥ 3, ( jk)k≥3 ∈ (Zd)r−2 and σ ∈ {−1, 1}r such that
σ1 = −σ2 as fixed. We define j≥3 ∈ Z

d by

j≥3 := σ3 j3 + · · · + σr jr . (2.7)

Being given j1 ∈ Z
d , we define implicitly j2 := j1 + σ1 j≥3 in order to satisfy the zero

momentum condition
r∑

k=1

σk jk = 0, (2.8)

and we define the function g j1 : (1, 4)d → R by

g j1(a) =
r∑

k=1

σk

√

1 + | jk |4a .

Finally, for γ > 0, we introduce the following sets6

I = {i : j≥3,i �= 0}, Ci =
⎧
⎨

⎩
j1 ∈ Z

d : | j1,i | ≥ 2

⎛

⎝1 +
∑

k≥3

| jk,i |2
⎞

⎠

⎫
⎬

⎭
,

S =
{

j1 ∈ Z
d\
⋃

i∈I
Ci : (σ, j) is non-resonant

}

,

and Rγ = { j1 ∈ S : | j1| ≥ γ −1/2(〈 j3〉 . . . 〈 jr 〉)2dr2}.

6 see Definition 2.1.
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First, we prove the following technical lemma whose Corollary 2.6 allows to deal with the
non-degenerated cases.

Lemma 2.5 If there exists i ∈ �1, d� such that

|( j1,i + j2,i ) j≥3,i | ≥ 2

(

1 +
r∑

k=3

j2k,i

)

(2.9)

then for all γ > 0
∣
∣
∣
∣
∣

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a < γ

∣
∣
∣
∣
∣

}∣
∣
∣
∣
∣
<

2 γ

| j1,i + j2,i | . (2.10)

Proof Without loss of generality we assume that σ1 = 1 and σ2 = −1. We compute the
derivative with respect to a1

∂a1

r∑

k=1

σk

√

1 + | jk |4a =
r∑

k=1

σk j
2
k,i

| jk |2a√
1 + | jk |4a

.

Consequently, we have
∣
∣
∣
∣
∣
∂a1

(
r∑

k=1

σk

√

1 + | jk |4a
)∣
∣
∣
∣
∣
≥
∣
∣
∣
∣
∣
j21,i

| j1|2a√
1 + | j1|4a

− j22,i
| j2|2a√
1 + | j2|4a

∣
∣
∣
∣
∣
−

r∑

k=3

j2k,i .

Furthermore, we have
∣
∣
∣
∣
∣

| j1|2a√
1 + | j1|4a

− 1

∣
∣
∣
∣
∣
≤ 1

2| j1|2a
.

Consequently, we get
∣
∣
∣
∣
∣
∂a1

(
r∑

k=1

σk

√

1 + | jk |4a
)∣
∣
∣
∣
∣
≥ | j21,i − j22,i | − 1 −

r∑

k=3

j2k,i .

Observing that by definition we have j21,i − j22,i = j≥3,i ( j1,i + j2,i ), we deduce of the
assumption (2.9) that

∣
∣
∣
∣
∣
∂a1

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
≥ 1

2
| j≥3,i ( j1,i + j2,i )|

Since by (2.9) we know that j≥3,i ∈ Z\{0}, we deduce that
∣
∣
∣
∣
∣
∂a1

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
≥ 1

2
|( j1,i + j2,i )|.

Therefore a1 �→ ∑r
k=1 σk

√
1 + | jk |4a is a diffeomorphism (it is a smooth monotonic func-

tion).Consequently, applying this changeof coordinate,weget directly (2.10)which conclude
this proof. ��
Corollary 2.6 For all γ > 0 we have

∀i ∈ I, |{a ∈ (1, 4)d : ∃ j1 ∈ Ci , |g j1(a)| < γ | j1|−(d−1) log−2d(| j1|)}| �d γ (2.11)
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Proof of Corollary 2.6 Let j1 ∈ Ci . By definition of j2, we have

| j1,i + j2,i | ≥ 2| j1,i | −
r∑

k=3

| jk,i |.

Consequently, since j1 ∈ Ci , we have

| j1,i + j2,i | ≥ 2| j1,i | −
r∑

k=3

| jk,i |2 ≥ 3

2
| j1,i |.

Therefore, since j≥3,i �= 0, we have

| j≥3,i ( j1,i + j2,i )| ≥ 3

2
| j1,i | ≥ 3

⎛

⎝1 +
∑

k≥3

| jk,i |2
⎞

⎠ .

Applying Lemma 2.5, we deduce that for all γ > 0
∣
∣
∣
∣
∣

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a < γ

∣
∣
∣
∣
∣

}∣
∣
∣
∣
∣
<

4γ

3| j1,i | .

Consequently, we have

|{a ∈ (1, 4)d : ∃ j1 ∈ Ci , |g j1(a)| < γ | j1|−(d−1) log−2d(| j1|)}|

=
∣
∣
∣
∣
∣
∣

⋃

j1∈Ci

{a ∈ (1, 4)d : |g j1(a)| < γ | j1|−(d−1) log−2d(| j1|)}
∣
∣
∣
∣
∣
∣

≤
∑

j1∈C1

∣
∣
∣{a ∈ (1, 4)d : |g j1(a)| < γ | j1|−(d−1) log−2d(| j1|)}

∣
∣
∣

� γ
∑

j1∈Ci

1

| j1|(d−1)| j1,i | log2d(| j1|)
�d γ.

��

In the following lemma, we deal with most of the degenerated cases.

Lemma 2.7 For all γ > 0, we have

|{a ∈ (1, 4)d : ∃ j1 ∈ Rγ , |g j1(a)| < γ }| �r ,d γ
1
r2 (〈 j3〉 . . . 〈 jr 〉)2d . (2.12)

Proof Without loss of generality, we assume that γ < min((2r)−2, (36d)−1). If j1 ∈ Rγ

recalling that for x ≥ 0, we have |√1 + x − 1| ≤ x/2, we deduce that

|g j1(a)| ≥ |h j1(a)| − 1

2| j1|2a
− 1

2| j2|2a
where h j1(a) := | j1|2a − | j2|2a + σ1

r∑

k=3

σk

√

1 + | jk |4a .
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However, by definition of j2 and Rγ , we have

| j2| ≥ | j1| −
r∑

k=3

| jk | ≥ γ −1/2(〈 j3〉 . . . 〈 jr 〉)2dr2

−(r − 2)(〈 j3〉 . . . 〈 jr 〉) ≥ γ −1/2

2
(〈 j3〉 . . . 〈 jr 〉)2dr2 .

Noting that, for a ∈ (1, 4)d , we have | · | ≤ | · |a , we deduce that
|g j1(a)| ≥ |h j1(a)| − 3γ (〈 j3〉 . . . 〈 jr 〉)−4dr2 .

Consequently, it is enough to prove that

|{a ∈ (1, 4)d : ∃ j1 ∈ R1, |h j1(a)| < γ (〈 j3〉 . . . 〈 jr 〉)−4dr2}| �r ,d γ
1

(r−1)(r−2) . (2.13)

To prove this estimate, we have to note the following result whose proof is postponed/to the
end of this proof. ��
Lemma 2.8 If j1 ∈ Rγ then there exists κ j1 ∈ Z

d such that

| j1|2a − | j2|2a = κ j1 · a, |κ j1 |∞ ≤ 10(〈 j3〉 . . . 〈 jr 〉)3 and ∃i� ∈ �1, d�, κ j1,i� = 0.

Now we have to distinguish two cases.

• Case 1: (σk, jk)k≥3 is resonant. If j1 ∈ Rγ , let κ j1 ∈ Z
d be given by Lemma 2.8. Note

that κ j1 �= 0 because else we would have j21,i = j22,i for all i ∈ �1, d� and so (σ, j)would
be resonant (which is excluded by definition of Rγ ). Furthermore, here h j1(a) = κ j1 · a
is a linear form. Consequently, for all γ > 0, we have the following estimate which is
much stronger than (2.13):

|{a ∈ (1, 4)d : ∃ j1 ∈ R1, |h j1(a)| < γ }|

≤

∣
∣
∣
∣
∣
∣
∣
∣
∣

⋃

κ∈Zd\{0}
|κ|∞≤10(〈 j3〉...〈 jr 〉)3

{a ∈ (1, 4)d : κ · a < γ }

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
∑

κ∈Zd\{0}
|κ|∞≤10(〈 j3〉...〈 jr 〉)3

|{a ∈ (1, 4)d : κ · a < γ }| ≤ γ (20(〈 j3〉 . . . 〈 jr 〉)3)d

• Case 2: (σk, jk)k≥3 is non-resonant. If j1 ∈ Rγ , h j1 writes

h j1(a) = κ j1 · a +
r̃∑

k=1

nk

√

1 + | j̃k |4a

where κ j1 is given by Lemma 2.8, r̃ ≤ r − 2, ( j̃1, . . . , j̃̃r ) ∈ (Nd)r̃ is injective, nk ∈
(Z\{0})d is defined by

nk =
∑

i∈�3,r�
∀�, | ji,�|= j̃k,�

σ1σi .
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Consequently, by Lemma 2.8, we have

|{a ∈ (1, 4)d : ∃ j1 ∈ R1, |h j1(a)| < γ }|

≤

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⋃

κ∈Zd

|κ|∞≤10(〈 j3〉...〈 jr 〉)3∃i�, κi�=0

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣
κ · a +

r̃∑

k=1

nk

√

1 + | j̃k |4a
∣
∣
∣
∣
∣
< γ

}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
∑

κ∈Zd

|κ|∞≤10(〈 j3〉...〈 jr 〉)3∃i�, κi�=0

∣
∣
∣
∣
∣

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣
κ · a +

r̃∑

k=1

nk

√

1 + | j̃k |4a
∣
∣
∣
∣
∣
< γ

}∣
∣
∣
∣
∣
.

Finally, by applying Lemma 2.3 we get

|{a ∈ (1, 4)d : ∃ j1 ∈ R1, |h j1(a)| < γ }| �r ,d γ
1

(r−2)(r−1) (〈 j3〉 . . . 〈 jr 〉) 12
r−1+3d ,

which is also stronger than (2.13). ��
Proof of Lemma 2.8 First let us note that

| j1|2a − | j2|2a = κ j1 · a where κ j1,i = j21,i − j22,i = σ2 j≥3,i ( j1,i + j2,i ).

First we aim at controlling |κ|∞. If i /∈ I then j≥3,i = 0 and so κ j1,i = 0. Else, since
j1 ∈ Z

d\⋃i∈I Ci , we have | j1,i | ≤ 2(1 +∑
k≥3 | jk,i |2). Consequently, we deduce that

|κ j1,i | ≤
⎛

⎝
∑

k≥3

| jk,i |
⎞

⎠

⎛

⎝4 + 4
∑

k≥3

| jk,i |2 +
∑

k≥3

| jk,i |
⎞

⎠ ≤ 10(〈 j3〉 . . . 〈 jr 〉)3.

Now we assume by contradiction that κ j1,i �= 0 for all i ∈ �1, d�. Consequently, we have
I = �1, d� and so

| j1|∞ ≤ 2

⎛

⎝1 +
∑

k≥3

| jk |2
⎞

⎠ ≤ 6〈 j3〉2 . . . 〈 jr 〉2. (2.14)

However, since j1 ∈ Rγ , we have | j1| ≥ γ −1/2(〈 j3〉 . . . 〈 jr 〉)2dr2 which is in contradiction
with (2.14) because we have assumed that γ < (36d)−1. ��

Finally in the following lemma we deal with the general degenerated cases.

Lemma 2.9 For all γ > 0, we have

|{a ∈ (1, 4)d : ∃ j1 ∈ S, |g j1(a)| < γ }| �r ,d γ
1

8r4 (〈 j3〉 . . . 〈 jr 〉)5d . (2.15)

Proof Without loss of generality we assume that γ ∈ (0, 1). Let η ∈ (0, 1) be a small number
that will be optimized with respect to γ later. From the decomposition S = Rη ∪ (S\Rη) we
get

|{a ∈ (1, 4)d : ∃ j1 ∈ S, |g j1(a)| < γ }| ≤
∑

j1∈S\Rη

|{a ∈ (1, 4)d : |g j1(a)| < γ }|

+ |{a ∈ (1, 4)d : ∃ j1 ∈ Rη, |g j1(a)| < η}|. (2.16)
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To estimate the sum, we apply Lemma 2.3 (with κ = 0) and we get
∑

j1∈S\Rη

|{a ∈ (1, 4)d : |g j1(a)| < γ }| ≤
∑

| j1|<η−1/2(〈 j3〉...〈 jr 〉)2dr2
(σ, j) is non-resonant

|{a ∈ (1, 4)d : |g j1(a)| < γ }|

≤
∑

| j1|<η−1/2(〈 j3〉...〈 jr 〉)2dr2
γ

1
r(r+1) (〈 j1〉 . . . 〈 jr 〉) 12

r+1 .

Furthermore, by the zero momentum condition (2.8), since η ∈ (0, 1), we also have

| j2| �r η−1/2(〈 j3〉 . . . 〈 jr 〉)2dr2 .
Consequently, we have

∑

j1∈S\Rη

|{a ∈ (1, 4)d : |g j1(a)| < γ }| �r γ
1

r(r+1) η− 1
2− 12

r+1 (〈 j3〉 . . . 〈 jr 〉)2dr2+ 12
r+1+ 24

r+1 2dr
2

�r γ
1

2r2 η− 7
2 (〈 j3〉 . . . 〈 jr 〉)15dr2 .

Therefore, applying Lemma 2.7, we deduce of (2.16) that

|{a ∈ (1, 4)d : ∃ j1 ∈ S, |g j1(a)| < γ }| �r ,d η
1
r2 (〈 j3〉 . . . 〈 jr 〉)2d

+ γ
1

2r2 η− 7
2 (〈 j3〉 . . . 〈 jr 〉)15dr2 .

Finally, we get (2.15) by optimizing this last estimate choosing

η = γ
1

7r2+2 (〈 j3〉 . . . 〈 jr 〉)
15dr2−2d
7/2+1/r2 .

��

2.3 Proof of Proposition 2.2

For r ≥ 3 letMr and Rr be the sets defined by

Mr = {(σ, j) ∈ ({−1, 1})r × (Zd)r :
r∑

k=1

σk jk = 0} and

Rr = {(σ, j) ∈ ({−1, 1})r × (Zd)r : (σ, j) is resonant}.
On the one hand, as a direct corollary of Lemma 2.9 and Corollary 2.6, for all γ > 0 we have

∣
∣
∣

{
a ∈ (1, 4)d : ∃r ≥ 3, ∃(σ, j) ∈ Mr\Rr , σ1σ2 = −1 and
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
< cr ,dγ

8r4〈 j1〉−(d−1) log−2d(〈 j1〉)(〈 j3〉 . . . 〈 jr 〉)−44dr4
}∣
∣
∣
∣
∣
< γ

where cr ,d > 0 is a constant depending only on r and d . Consequently, it is enough to prove
that for all γ ∈ (0, 1), we have

Iγ :=
∣
∣
∣

{
a ∈ (1, 4)d : ∃r ≥ 3, ∃(σ, j) ∈ Mr\Rr , σ1σ2 = 1 and

∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
< κr ,dγ

r(r+1)(〈 j3〉 . . . 〈 jr 〉)−9dr2
}∣
∣
∣
∣
∣
< γ (2.17)
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where κr ,d ∈ (0, 1) is another constant depending only on r and d (and thatwill be determined
later). Indeed, by additivity of the measure, we have

Iγ ≤
∑

r≥3

∑

(σ, j)∈Mr \Rr
σ1σ2=1

∣
∣
∣
∣
∣

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣

< κr ,dγ
r(r+1)(〈 j3〉 . . . 〈 jr 〉)−9dr2

}∣
∣
∣ .

Note that if | j1| ≥ 2
√
r〈 j3〉 . . . 〈 jr 〉 and σ1σ2 = 1 then

∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
≥
√

1 + | j1|4a −
r∑

k=3

√

1 + | jk |4a ≥
√

1 + | j1|4 −
r∑

k=3

√

1 + 16| jk |4

≥
√

1 + | j1|4 − 4
r∑

k=3

√

1 + | jk |4 ≥ | j1|2 − 4
r∑

k=3

(1 + | jk |2) ≥ 4(〈 j3〉 . . . 〈 jr 〉)2 > 1

and so
∣
∣
∣{a ∈ (1, 4)d : ∣∣∑r

k=1 σk
√
1 + | jk |4a

∣
∣ < κr ,dγ

r(r+1)(〈 j3〉 . . . 〈 jr 〉)−9dr2}
∣
∣
∣ vanishes.

Since the same holds if j1 is replaced by j2, consequently, we have that Iγ is bounded from
above by

∑

r≥3

∑

(σ, j)∈Mr \Rr
| j1|≤2

√
r〈 j3〉...〈 jr 〉

| j2|≤2
√
r〈 j3〉...〈 jr 〉

∣
∣
∣
∣
∣

{

a ∈ (1, 4)d :
∣
∣
∣
∣
∣

r∑

k=1

σk

√

1 + | jk |4a
∣
∣
∣
∣
∣
< κr ,dγ

r(r+1)(〈 j3〉 . . . 〈 jr 〉)−9dr2
}∣
∣
∣
∣
∣
.

Now denoting by cr ,d > 0 the constant given by Lemma 2.3, we get

Iγ ≤
∑

r≥3

cr ,d
∑

(σ, j)∈Mr \Rr
| j1|≤2

√
r〈 j3〉...〈 jr 〉

| j2|≤2
√
r〈 j3〉...〈 jr 〉

(
κr ,dγ

r(r+1)(〈 j3〉 . . . 〈 jr 〉)−9dr2
) 1

r(r+1)
(〈 j1〉 . . . 〈 jr 〉) 12

r+1 .

Consequently, we get an other constant c̃r ,d > 0 such that

Iγ ≤ γ
∑

r≥3

c̃r ,dκ
1

r(r+1)
r ,d

∑

j3,..., jr∈Zd

(〈 j3〉 . . . 〈 jr 〉)−9d r2
r(r+1) + 36

r+1 .

Noting that 9d r2
r(r+1) − 36

r+1 ≥ 2d , we deduce that

Iγ ≤ γ
∑

r≥3

c̃r ,d κ
1

r(r+1)
r ,d

⎛

⎝
∑

j∈Zd

〈 j〉−2d

⎞

⎠

r−2

.

Consequently, we deduce a natural choice for κr ,d such that Iγ < γ which conclude this
proof.

3 The Birkhoff Normal form Step

In the rest of the paper we shall fix the parameter ν, (see (1.2) and (1.12)) defining the
irrationality of the torus, in the full Lebesgue measure set given by Proposition 2.2. For
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d ≥ 2 and n ∈ N we define

Md,n :=

⎧
⎪⎪⎨

⎪⎪⎩

n + 2(n − 2) + 1 if d = 2 and n odd
n + 2(n − 2) if d = 2 and n even
n + (n − 2) if d = 3
n if d ≥ 4.

(3.1)

The main result of this section is the following.

Theorem 2 Let d = 2, 3and let r ∈ N such that Md,n ≤ r ≤ 4n. There exitsβ = β(d, r) > 0
such that for any N ≥ 1, any δ > 0 and s ≥ s0 = s0(β), there exist ε0 �s,δ N−δ and two
canonical transformation τ (0) and τ (1) making the following diagram to commute

Bs(0, ε0)
τ (0)

idHs

Bs(0, 2ε0)
τ (1)

Hs(Td) (3.2)

and close to the identity

∀σ ∈ {0, 1}, ‖u‖Hs < 2σ ε0 ⇒ ‖τ (σ)(u) − u‖Hs �s,δ N δ‖u‖2Hs (3.3)

such that, on Bs(0, 2ε0), H ◦ τ (1) writes

H ◦ τ (1) = Z2 +
Md,n−1∑

k=n

Z≤N
k +

r−1∑

k=Md,n

Kk + K>N + R̃r (3.4)

where Md,n is given in (3.1) and where

(i) Z≤N
k , for k = n, . . . , Md,n−1, are resonantHamiltonians of order k given by the formula

Z≤N
k =

∑

σ∈{−1,1}k , j∈(Zd )k , μ2( j)≤N
∑k

i=1 σi ji=0
∑k

i=1 σiω ji =0

(Z≤N
k )σ, j u

σ1
j1

· · · uσk
jk

, |(Z≤N
k )σ, j | �δ N δ μ3( j)β

μ1( j)
;

(3.5)
(ii) Kk, k = Md,n, . . . , r − 1, are homogeneous polynomials of order k

Kk =
∑

σ∈{−1,1}k , j∈(Zd )k
∑k

i=1 σi ji=0

(Kk)σ, j u
σ1
j1

· · · uσk
jk

, |(Kk)σ, j | �δ N δμ3( j)
β; (3.6)

(iii) K>N and R̃r are remainders satisfying

‖XK>N (u)‖Hs �s,δ N−1+δ‖u‖n−1
Hs , (3.7)

‖X R̃r
(u)‖Hs �s,δ N δ‖u‖r−1

Hs . (3.8)

It is convenient to introduce the following class.

Definition 3.1 (Formal Hamiltonians) Let N ∈ R, k ∈ N with k ≥ 3 and N ≥ 1.
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(i) We denote by Lk the set of Hamiltonian having homogeneity k and such that they may
be written in the form

Gk(u) =
∑

σi∈{−1,1}, ji∈Zd
∑k

i=1 σi ji=0

(Gk)σ, j u
σ1
j1

· · · uσk
jk

, (Gk)σ, j ∈ C,
σ := (σ1, . . . , σk)

j := ( j1, . . . , jk)

(3.9)

with symmetric coefficients (Gk)σ, j , i.e. for any ρ ∈ Sk one has (Gk)σ, j = (Gk)σ◦ρ, j◦ρ .
(ii) If Gk ∈ Lk then G>N

k denotes the element of Lk defined by

(G>N
k )σ, j :=

{
(Gk)σ, j , if μ2( j) > N ,

0, else.
(3.10)

We set G≤N
k := Gk − G>N

k .

Remark 3.2 Consider theHamiltonian H in (1.20) and its Taylor expansion in (1.24). One can
note that the Hamiltonians Hk in (1.26) belong to the classLk . This follows form the fact that,
without loss of generality, one can substitute the Hamiltonian Hk with its symmetrization.

We also need the following definition.

Definition 3.3 Consider the Hamiltonian Z2 in (1.25) and Gk ∈ Lk .

• (Adjoint action). We define the adjoint action adZ2Gk in Lk by

(adZ2Gk)σ, j :=
(
i

k∑

i=1

σiω ji

)
(Gk)σ, j . (3.11)

• (Resonant Hamiltonian). We define Gres
k ∈ L j by

(Gres
k )σ, j := (Gk)σ, j , when

k∑

i=1

σiω ji = 0

and (Gres
k )σ, j = 0 otherwise.

• We define G(+1)
k ∈ Lk by

(G(+1)
k )σ, j := (Gk)σ, j , when ∃i, p = 1, . . . , k s.t.

μ1( j) = | ji |, μ2( j) = | jp| and σiσp = +1.

We define G(−1)
k := Gk − G(+1)

k .

Remark 3.4 Notice that, in view of Proposition 2.2, the resonant Hamiltonians given in Defi-
nition 3.3 must be supported on indices σ ∈ {−1, 1}k , j ∈ Z

kd which are resonant according
to Definition 2.1. We remark that (Gk)

res ≡ 0 if k is odd.

In the following lemma we collect some properties of the Hamiltonians in Definition 3.1.

Lemma 3.5 Let N ≥ 1, 0 ≤ δi < 1, qi ∈ R, ki ≥ 3, consider Gi
ki

(u) in Lki for i = 1, 2.

Assume that the coefficients (Gi
ki

)σ, j satisfy

|(Gi
ki )σ, j | ≤ Ci N

δi μ3( j)
βi μ1( j)

−qi , ∀σ ∈ {−1,+1}k, j ∈ Z
kd , (3.12)

for some βi > 0 and Ci > 0, i = 1, 2.
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(i) (Estimates on Sobolev spaces) Set k = ki , δ = δi , q = qi , β = βi , C = Ci and
Gi

ki
= Gk for i = 1, 2. There is s0 = s0(β, d) such that for s ≥ s0, Gk defines naturally

a smooth function from Hs(Td) to R. In particular one has the following estimates:

|Gk(u)| �s CN δ‖u‖kHs , (3.13)

‖XGk (u)‖Hs+q �s CN δ‖u‖k−1
Hs , (3.14)

‖XG>N
k

(u)‖Hs �s CN−q+δ‖u‖k−1
Hs , (3.15)

for any u ∈ Hs(Td).

(ii) (Poisson bracket) The Poisson bracket between G1
k1
and G2

k2
is an element of Lk1+k2−2

and it verifies the estimate

|({G1
k1 ,G

2
k2})σ, j | �s C1C2N

δ1+δ2μ
β1+β2
3 μ1( j)

−min{q1,q2}, (3.16)

for any σ ∈ {+1,−1}k1+k2−1 and j ∈ Z
d(k1+k2−2).

Proof We prove item (i). Concerning the proof of (3.13) it is sufficient to give the proof in
the case q = 0. For convenience, without loss of generality, we assume Ci = 1, i = 1, 2.
We have

|Gk(u)| ≤ k!
∑

j1,..., jk∈Zd

| j1|≥| j2|≥| j3|≥...≥| jk |

|(Gk)σ,k ||uσ1
j1

| · · · |uσk
jk

|

�k N δ
∑

j3∈Zd

| j3|β |uσ3
j3

|
k∏

3 �=i=1

∑

ji∈Zd

|uσi
ji
| �k,ε N δ‖u‖Hd/2+β+ε ‖u‖k−1

Hd/2+ε ,

for any ε > 0, we proved the (3.13) with s0 = d/2 + ε + β.
We now prove (3.14). Since the coefficients of Gk are symmetric, we have

∂ūn Gk(u) = k
∑

σ1 j1+···+σk−1 jk−1=n

(Gk)(σ,−1),( j,n)u
σ1
j1

. . . uσr−1
jr−1

Therefore, we have

〈n〉s+q |∂ūn Gk(u)| ≤ k!
∑

σ1 j1+···+σk−1 jk−1=n
| j1|≥···≥| jk−1|

|(Gk)(σ,−1),( j,n)||uσ1
j1

| . . . |uσr−1
jr−1

|〈n〉s+q

(3.12)
� N δ

∑

σ1 j1+···+σk−1 jk−1=n
| j1|≥···≥| jk−1|

μ3( j, n)βμ1( j, n)−q |uσ1
j1

| . . . |uσr−1
jr−1

|〈n〉s+q .

We note that in the last sum above, we have 〈n〉 � 〈 j1〉,μ1( j, n) ≥ 〈 j1〉 andμ3( j, n) ≤ 〈 j2〉.
As a consequence, we deduce that

〈n〉s+q |∂ūn Gk(u)| �s N δ
∑

σ1 j1+···+σk−1 jk−1=n
| j1|≥···≥| jk−1|

〈 j1〉s〈 j2〉β |uσ1
j1

| . . . |uσr−1
jr−1

|

�s N δ
∑

j1+···+ jk−1=n

〈 j1〉s〈 j2〉β |u j1 | . . . |u jr−1 |.
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Consequently, applying the Young convolutional inequality, we get

‖XGk (u)‖Hs+q = ‖(〈n〉s+q |∂ūn Gk(u)|)n∈Zd ‖�2

�s N δ‖u‖Hs

⎛

⎝
∑

j∈Zd

〈 j〉β |u j |
⎞

⎠

⎛

⎝
∑

j∈Zd

|u j |
⎞

⎠

k−3

�s N δ‖u‖k−1
Hs .

The proof of (3.15) follows the same lines. The proof of item (ii) of the lemma is a direct
consequence of the previous computations, definition (1.23) and the momentum condition.

��
We are in position to prove the main Birkhoff result.

Proof of Theorem 2 In the case d = 2 we perform two steps of Birkhoff normal form proce-
dure, see Lemmata 3.8, 3.12. The case d = 3 is slightly different. Indeed, due to the estimates
on the small divisors given in Proposition 2.2, we can note that the Hamiltonian in (3.24)
has already the form (3.4) since the coefficients of the Hamiltonians K̃k (see (3.25)) do not
decay anymore in the largest index μ1( j). The proof of Theorem 2 is then concluded after
just one step of Birkhoff normal form.

Step 1 if d = 2 or d = 3. We have the following Lemma.

Lemma 3.6 (Homological equation 1) Let qd = 3 − d for d = 2, 3. For any N ≥ 1 and
δ > 0 there exist multilinear Hamiltonians χ

(1)
k , k = n, . . . , 2n − 3 in the class Lk with

coefficients (χ
(1)
k )σ, j satisfying

|(χ(1)
k )σ, j | �δ N δμ3( j)

βμ1( j)
−qd , (3.17)

such that (recall Definition 3.3)

{χ(1)
k , Z2} + Hk = Zk + H>N

k , k = n, . . . , 2n − 3, (3.18)

where Z2, Hk are given in (1.25), (1.26) and Zk is the resonant Hamiltonian defined as

Zk := (H≤N
k )res, k = n, . . . , 2n − 3. (3.19)

Moreover Zk belongs to Lk and has coefficients satisfying (3.5).

Proof Consider the Hamiltonians Hk in (1.26) with coefficients satisfying (1.27). Recalling
Definition 3.1 we write

Hk = Zk + (H≤N
k − Zk) + H>N

k , k = n, . . . , r − 1,

with Zk as in (3.19). We define

χ
(1)
k := (adZ2)

−1
[
H≤N
k − Zk

]
, k = n, . . . , 2n − 3, (3.20)

where adZ2 is given by Definition 3.3. In particular (recall formula (3.11)) their coefficients
have the form

(χ
(1)
k )σ, j := (Hk)σ, j

(

i
k∑

i=1

σiω ji

)−1

(3.21)
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for indices σ ∈ {−1,+1}k , j ∈ (Zd)k such that

k∑

i=1

σi ji = 0, μ2( j) ≤ N and
k∑

i=1

σiω ji �= 0.

By (1.27) and Proposition 2.2 (with d = 2, 3) we deduce the bound (3.17) for some β > 0.
The resonant Hamiltonians Zk in (3.19) have the form (3.5). One can check by an explicit
computation that Eq. (3.18) is verified. ��

We shall use the Hamiltonians χ
(1)
k given by Lemma 3.6 to generate a symplectic change of

coordinates.

Lemma 3.7 Let us define

χ(1) :=
2n−3∑

k=n

χ
(1)
k . (3.22)

There is s0 = s0(d, r) such that for any δ > 0, for any N ≥ 1 and any s ≥ s0, if ε0 �s,δ N−δ ,
then the problem

{
∂τ Z(τ ) = Xχ(1) (Z(τ ))

Z(0) = U = [ u
ū

]
, u ∈ Bs(0, ε0)

(3.23)

has a unique solution Z(τ ) = �τ
χ(1) (u) belonging to Ck([−1, 1]; Hs(Td)) for any k ∈ N.

Moreover the map �τ
χ(1) : Bs(0, ε0) → Hs(Td) is symplectic. The flow map �τ

χ(1) and its

inverse �−τ

χ(1) satisfy

sup
τ∈[0,1]

‖�±τ

χ(1) (u) − u‖Hs �s,δ N δ‖u‖n−1
Hs ,

sup
τ∈[0,1]

‖d�±τ

χ(1) (u)[·]‖L(Hs ;Hs ) ≤ 2.

Proof By estimate (3.17) and Lemma 3.5 we have that the vector field Xχ(1) is a bounded
operator on Hs(Td). Hence the flow �τ

χ(1) is well-posed by standard theory of Banach space
ODE. The estimates of the map and its differential follow by using the equation in (3.23), the
fact that χ(1) is multilinear and the smallness condition on ε0. Finally the map is symplectic
since it is generated by a Hamiltonian vector field. ��

We now study how changes the Hamiltonian H in (1.24) under the map �τ
χ(1) .

Lemma 3.8 (The new Hamiltonian 1) There is s0 = s0(d, r) such that for any N ≥ 1, δ > 0
and any s ≥ s0, if ε0 �s,δ N−δ then we have that

H ◦ �χ(1) = Z2 +
2n−3∑

k=n

Zk + K̃>N +
r−1∑

k=2n−2

K̃k + Rr (3.24)

where

• �χ(1) := (�τ
χ(1) )|τ=1 is the flow map given by Lemma 3.7;

• the resonant Hamiltonians Zk are defined in (3.19);
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• K̃k are in Lk with coefficients (K̃k)σ, j satisfying

|(K̃k)σ, j | �δ N δμ3( j)
βμ1( j)

−qd , k = 2n − 2, . . . , r − 1, (3.25)

with qd = 3 − d for d = 2, 3;
• the Hamiltonian K̃>N and the remainderRr satisfy

‖XK̃>N (u)‖Hs �s,δ N−1‖u‖n−1
Hs , (3.26)

‖XRr (u)‖Hs �s,δ N δ‖u‖r−1
Hs , ∀u ∈ Bs(0, 2ε0). (3.27)

Proof Fix δ > 0 and ε0N δ small enough. We apply Lemma 3.7 with δ � δ′ to be chosen
small enough with respect to δ we have fixed (which ensures us that the smallness condition
ε0N δ′ �s,δ′ 1 of Lemma 3.7 is fulfilled). Let �τ

χ(1) be the flow at time τ of the Hamiltonian

χ(1). We note that

∂τ H ◦ �τ
χ(1) = dH(z)[Xχ(1) (z)]|z=�τ

χ(1)

(1.22),(1.23)= {χ(1), H} ◦ �τ
χ(1) .

Then, for L ≥ 2, we get the Lie series expansion

H ◦ �χ(1) = H + {χ(1), H} +
L∑

p=2

1

p!ad
p
χ(1)

[
H
]

+ 1

L!
∫ 1

0
(1 − τ)LadL+1

χ(1)

[
H
]

◦ �τ
χ(1)dτ

where adp
χ(1) is defined recursively as

adχ(1) [H ] := {χ(1), H}, adp
χ(1) [H ] := {

χ(1), adp−1
χ(1) [H ]}, p ≥ 2. (3.28)

Recalling the Taylor expansion of the Hamiltonian H in (1.24) we obtain

H ◦ �χ(1) = Z2 +
2n−3∑

k=n

(
Hk + {χ(1)

k , Z2}
)

+
r−1∑

k=2n−2

Hk

+
L∑

p=2

1

p!ad
p
χ(1) [Z2] +

r−1∑

j=n

L∑

p=1

1

p!ad
p
χ(1) [Hj ] (3.29)

+ 1

L!
∫ 1

0
(1 − τ)LadL+1

χ(1) [Z2 +
r−1∑

j=n

Hj ] ◦ �τ
χ(1)dτ (3.30)

+ Rr ◦ �χ(1) . (3.31)

We study each summand separately. First of all, by definition of χ
(1)
k (see (3.18) in Lemma

3.6), we deduce that

2n−3∑

k=n

(
Hk + {χ(1)

k , Z2}
) =

2n−3∑

k=n

Zk + K̃>N , K̃>N :=
2n−3∑

k=n

H>N
k . (3.32)

One can check, using Lemma 3.5 (see (3.15)), that K̃>N satisfies (3.26). Consider now the
term in (3.29). By definition of χ(1) (see (3.18) and (3.22)), we get, for p = 2, . . . , L ,

adp
χ(1) [Z2] = adp−1

χ(1)

[
{χ(1), Z2}

]
(3.32)= adp−1

χ(1)

[
2n−3∑

k=n

(Zk − H≤N
k )

]

.

123



1388 Journal of Dynamics and Differential Equations (2021) 33:1363–1398

Therefore, by Lemma 3.5-(ii) and recalling (3.28), we get

(3.29) =
L(2n−3)+r−1−2L∑

k=2n−2

K̃k

where K̃k are k-homogeneous Hamiltonians in Lk . In particular, by (3.16), (3.17) and (1.27)
(with δ � δ′), we have

|(K̃k)σ, j | �δ′ NLδ′
μ3( j)

βμ1( j)
−qd

for some β > 0 depending only on d, n. This implies the estimates (3.25) taking Lδ′ ≤ δ,
where L will be fixed later. Then formula (3.24) follows by setting

Rr :=
L(2n−3)+r−1−2L∑

k=r

K̃k + (3.30) + (3.31). (3.33)

The estimate (3.27) holds true for XK̃k
with k = r , . . . , L(2n − 3) + r − 1 − 2L , thanks

to (3.25) and Lemma 3.5. It remains to study the terms appearing in (3.30), (3.31). We start
with the remainder in (3.31). We note that

XRr◦�(u) = (d�χ(1) )
−1(u)

[
XRr (�χ(1) (u))

]
.

We obtain the estimate (3.27) on the vector field XRr◦� by using (1.28) and Lemma 3.7. In
order to estimate the term in (3.30) we reason as follows. First notice that

adL+1
χ(1) [Z2 + Hj ] (3.32)= adL

χ(1)

[
2n−3∑

k=n

(Zk − H≤N
k )

]

+ adL+1
χ(1) [Hj ] := Q j

with j = n, . . . , r − 1. Using Lemma 3.5 we deduce that

‖XQ j (u)‖Hs �δ′ N (L+1)δ′ ‖u‖(Ln+n−2L)−1
Hs .

We choose L = 9 which implies Ln + n − 2L ≥ r since r ≤ 4n. Notice also that all the
summand in (3.30) are of the form

∫ 1

0
(1 − τ)LQ j ◦ �τ

χ(1)dτ.

Thenwe can estimates their vector fields by reasoning as done for the Hamiltonian Rr ◦�χ(1) .
This concludes the proof. ��
Remark 3.9 (Case d = 3) We remark that Theorem 2 for d = 3 follows by Lemmata 3.6,
3.7, 3.8, by setting τ (1) := �χ(1) and recalling that (see (3.1)) Md,n = 2n − 2 for d = 3.

Step 2 if d = 2. This step is performed only in the case d = 2. Consider the Hamiltonian in
(3.24). Our aim is to reduce in Birkhoff normal form all the Hamiltonians K̃k of homogeneity
k = 2n−2 . . . , M2,n −1 where M2,n is given in (3.1). We follow the same strategy adopted
in the previous step.

Lemma 3.10 (Homological equation 2) Let N ≥ 1, δ > 0 and consider the Hamiltonian in
(3.24). There exist multilinear Hamiltonians χ

(2)
k , k = 2n− 2, . . . , M2,n − 1 in the class Lk ,

with coefficients satisfying

|(χ(2)
k )σ, j | �δ N δμ3( j)

β, (3.34)
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for some β > 0, such that

{χ(2)
k , Z2} + K̃k = Zk + K̃>N

k , k = 2n − 2, . . . , M2,n − 1, (3.35)

where K̃k are given in Lemma 3.8 and Zk is the resonant Hamiltonian defined as

Zk := (K̃≤N
k )res, k = 2n − 2, . . . , M2,n − 1. (3.36)

Moreover Zk belongs to Lk and has coefficients satisfying (3.5).

Proof Recalling Definitions 3.1, 3.3, we write

K̃k = Zk + (
K̃≤N
k − Zk

)+ K̃>N
k ,

with Zk as in (3.36), and we define

χ
(2)
k := (adZ2)

−1
[
K̃≤N
k − Zk

]
, k = 2n − 2, . . . , M2,n − 1. (3.37)

The Hamiltonians χ
(2)
k have the form (3.9) with coefficients

(χ
(2)
k )σ, j := (K̃k)σ, j

(

i
k∑

i=1

σiω ji

)−1

(3.38)

for indices σ ∈ {−1,+1}k , j ∈ (Zd)k such that

k∑

i=1

σi ji = 0, μ2( j) ≤ N and
k∑

i=1

σiω ji �= 0.

Recalling that we are in the case d = 2, by (3.25) and Proposition 2.2 we deduce (3.34). The
resonant Hamiltonians Zk in (3.36) have the form (3.5). The (3.35) follows by an explicit
computation. ��
Lemma 3.11 Let us define

χ(2) :=
M2,n−1∑

k=2n−2

χ
(2)
k . (3.39)

There is s0 = s0(d, r) such that for any δ > 0, for any N ≥ 1 and any s ≥ s0, if ε0 �s,δ N−δ ,
then the problem

{
∂τ Z(τ ) = Xχ(2) (Z(τ ))

Z(0) = U = [ u
ū

]
, u ∈ Bs(0, ε0)

has a unique solution Z(τ ) = �τ
χ(2) (u) belonging to Ck([−1, 1]; Hs(Td)) for any k ∈ N.

Moreover the map �τ
χ(2) : Bs(0, ε0) → Hs(Td) is symplectic. The flow map �τ

χ(2) , and its

inverse �−τ

χ(2) , satisfy

sup
τ∈[0,1]

‖�±τ

χ(2) (u) − u‖Hs �s,δ N δ‖u‖n−1
Hs ,

sup
τ∈[0,1]

‖d�±τ

χ(2) (u)[·]‖L(Hs ;Hs ) ≤ 2.

Proof It follows reasoning as in the proof of Lemma 3.7. ��
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We have the following.

Lemma 3.12 (The newHamiltonian 2) There is s0 = s0(d, r) such that for any N ≥ 1, δ > 0
and any s ≥ s0, if ε0 �s,δ N−δ then we have that H ◦ �χ(1) ◦ �χ(2) has the form (3.4) and
satisfies items (i), (i i), (i i i) of Theorem 2.

Proof We fix δ > 0 and we apply Lemmata 3.8, 3.10 with δ � δ′ with δ′ to be chosen small
enough with respect to δ fixed here.

Reasoning as in the previous step we have (recall (3.1), (3.28) and (3.24))

H ◦ �χ(1) ◦ �χ(2) = Z2 +
2n−3∑

k=n

Zk +
M2,d−1∑

k=2n−2

(
K̃k + {χ(2)

k , Z2}
)

+
r−1∑

k=M2,n

K̃k (3.40)

+ K̃>N ◦ �χ(2) (3.41)

+
L∑

p=2

1

p!ad
p
χ(2) [Z2] +

L∑

p=1

1

p!ad
p
χ(2)

[
2n−3∑

k=n

Zk +
r−1∑

k=2n−2

K̃k

]

(3.42)

+ Rr ◦ �χ(2) + 1

L!
∫ 1

0
(1 − τ)LadL+1

χ(2) [Z2] ◦ �τ
χ(2)dτ (3.43)

+ 1

L!
∫ 1

0
(1 − τ)LadL+1

χ(2)

[
2n−3∑

k=n

Zk +
r−1∑

k=2n−2

K̃k

]

◦ �τ
χ(2)dτ, (3.44)

where�τ
χ(2) , τ ∈ [0, 1], is the flow at time τ of theHamiltonianχ(2).We study each summand

separately. First of all, thanks to (3.35), we deduce that

M2,n−1∑

k=2n−2

(
K̃k + {χ(2)

k , Z2}
) =

M2,n−1∑

k=2n−2

Zk + K̃>N+ , K̃>N+ :=
M2,n−1∑

k=2n−2

K̃>N
k . (3.45)

One can check, using Lemma 3.5, that K̃>N+ satisfies

‖XK̃>N+ ‖Hs �s,δ N−1+δ′ ‖u‖2n−3
Hs . (3.46)

Consider now the terms in (3.42). First of all notice that we have

adp
χ(2) [Z2] (3.45)=

M2,n−1∑

k=2n−2

adp−1
χ(2)

[
Zk − K̃≤N

k

]
, p = 2, . . . , L.

TheHamiltonian above has a homogeneity at least of degree 4n−6which actually is larger or
equal to M2,n (see (3.1)). The terms with lowest homogeneity in the sum (3.42) have degree

exactly M2,n and come from the term adχ(2)

[∑2n−3
k=n Zk

]
recalling that (see Remark 3.4) if

n is odd then Zn ≡ 0. Then, by (3.34), (3.25) and Lemma 3.5-(ii), we get

(3.42) =
L(M2,n−1)+r−1−2L∑

k=M2,n

K̃+
k

where K̃+
k are k-homogeneous Hamiltonians of the form (3.6) with coefficients satisfying

|(K̃+
k )σ, j | �δ′ N (L+1)δ′

μ3( j)
β, (3.47)
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for some β > 0. By the discussion above, using formulæ (3.40)–(3.44), we obtain that the
Hamiltonian H ◦ �χ(1) ◦ �χ(2) has the form (3.4) with (recall (3.19), (3.36), (3.41), (3.45))

Z≤N
k := Zk, k = n, . . . , M2,n−1, Kk := K̃k + K̃+

k , k = M2,n, . . . , r − 1, (3.48)

K>N := K̃>N ◦ �χ(2) + K̃>N+ (3.49)

and with remainder R̃r defined as

R̃r :=
L(M2,n−1)+r−1−2L∑

k=r

K̃+
k + (3.43) + (3.44). (3.50)

Recalling (3.19), (3.36) and the estimates (1.27), (3.25) we have that Z≤N
k in (3.48) satisfies

the condition of item (i) of Theorem 2. Similarly Kk in (3.48) satisfies (3.6) thanks to (3.25)
and (3.47) as long as δ′ is sufficiently small. The remainder K>N in (3.49) satisfies the
bound (3.7) using (3.46), (3.26) and Lemma 3.5-(i). It remains to show that the remainder
defined in (3.50) satisfies the estimate (3.8). The claim follows for the terms K̃+

k for k =
r , . . . , L(M2,n − 1) + r − 1 − 2L by using (3.47) and Lemma 3.5. For the remainder in
(3.43), (3.44) one can reason following almost word by word the proof of the estimate of the
vector field of Rr in (3.33) in the previous step. In this case we choose L + 1 = 8 which
implies L + 1 ≥ (r + n)/(2n − 4). ��

Theorem 2 follows by Lemmata 3.8, 3.12 setting τ (1) := �χ(1) ◦ �χ(2) . The bound (3.3)
follows by Lemmata 3.7 and 3.11.

4 TheModified Energy Step

In this section we construct a modified energy which is an approximate constant of motion
for the Hamiltonian system of H ◦ τ (1) in (3.4), when d = 2, 3, and for the Hamiltonian H
in (1.24) when d ≥ 4. For compactness we shall write, for s ∈ R,

Ns(u) := ‖u‖2Hs =
∑

j∈Z2

〈 j〉2s |u j |2, (4.1)

for u ∈ Hs(T2;C). For d ≥ 2 and n ∈ N we define (recall (3.1))

M̃d,n :=
{
Md,n + n − 1 n odd

Md,n + n − 2 n even.
(4.2)

Proposition 4.1 There exists β = β(d, n) > 0 such that for any δ > 0, any N ≥ N1 > 1
(N = N1 if d ≥ 4) and any s ≥ s̃0, for some s̃0 = s̃0(β) > 0, if ε0 �s,δ N−δ , there are
multilinear maps Ek, k = Md,n, . . . , M̃d,n −1, in the classLk such that the following holds:

• the coefficients (Ek)σ, j satisfies

|(Ek)σ, j | �s,δ N δN κd
1 μ3( j)

βμ1( j)
2s, (4.3)

for σ ∈ {−1, 1}k , j ∈ (Zd)k , k = Md,n, . . . , M̃d,n − 1, where

κd := 0 if d = 2, κd := 1 if d = 3, κd := d − 4 if d ≥ 4. (4.4)
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• for any u ∈ Bs(0, 2ε0) setting

E(u) :=
M̃d,n−1∑

k=Md,n

Ek(u). (4.5)

one has

|{Ns + E, H ◦ τ (1)}| �s,δ N κd
1 N δ

(‖u‖M̃d,n
Hs + N−1‖u‖Md,n+n−2

Hs

)

+ N−sd+δ
1 ‖u‖Md,n

Hs + N−sd+δ‖u‖nHs ,

(4.6)

where

sd := 1, for d = 2, 3, and sd := 3, for d ≥ 4. (4.7)

Remark 4.2 We remark that in the proposition above we introduced a second truncation
parameter N1. This is needed in order to optimize the time of existence that we shall deduce
by estimate (4.6) . In Sect. 5 we shall choose N , N1 (depending on ε) is such a way that the
last two summands in the r.h.s. of (4.6) are negligible w.r.t. the first two summands. Since

for d = 3 the term ‖u‖nHs is larger than ‖u‖Md,n
Hs it would be convenient to choose N � N1

to make the last summand small enough. This is possible since the factor Nkd
1 N δ grows very

slowly in N since δ is arbitrary small. Note that in the case d ≥ 4 we need just one truncation
since no preliminary Birkhoff normal form is performed. In the case d = 2 one could use
the same truncation N since κd = 0.

We need the following technical lemma.

Lemma 4.3 (Energy estimate) Let N ≥ 1, 0 ≤ δ < 1, p ∈ N, p ≥ 3. Consider the
Hamiltonians Ns in (4.1), G p ∈ Lp and write G p = G(+1)

p + G(−1)
p (recall Definition 3.3).

Assume also that the coefficients of G p satisfy

|(G(η)
p )σ, j | ≤ CN δμ3( j)

βμ1( j)
−q , ∀σ ∈ {−1,+1}p, j ∈ Z

d , η ∈ {−1,+1}, (4.8)

for some β > 0, C > 0 and q ≥ 0. We have that the Hamiltonian Q(η)
p := {Ns,G

(η)
p },

η ∈ {−1, 1}, belongs to the class Lp and has coefficients satisfying

|(Q(η)
p )σ, j | �s CN δμ3( j)

β+1μ1( j)
2sμ1( j)

−q−α, α :=
{
1 if η = −1
0 if η = +1.

(4.9)

Proof Using formulæ (4.1), (1.23), (3.9) and recalling Definition 3.3 we have that the Hamil-
tonian {Ns,G

(η)
p } has coefficients

(Q(η)
p )σ, j = (G(η)

p )σ, j i

( p∑

i=1

σi 〈 ji 〉2s
)

for any σ ∈ {−1,+1}p , j ∈ (Zd)p satisfying

p∑

i=1

σi ji = 0, σiσk = η, μ1( j) = | ji |, μ2( j) = | jk |,

for some i, k = 1, . . . , p. Then the bound (4.9) follows by the fact that

|〈 ji 〉2s + η〈 jk〉2s | �s

{
μ1( j)2s−1μ3( j) if η = −1
μ1( j)2s if η = +1.
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and using the assumption (4.8). ��

Proof of Proposition 4.1 Case d = 2, 3. Consider the Hamiltonians Kk in (3.6) for k =
Md,n, . . . , M̃n,d − 1 where M̃n,d is defined in (4.2). Recalling Definition 3.3 we set Ek :=
E (+1)
k + E (−1)

k , where

E (+1)
k := (adZ2)

−1{Ns, K
(+1)
k }, E (−1)

k := (adZ2)
−1{Ns, K

(−1,≤N1)
k }, (4.10)

for k = Md,n, . . . , M̃d,n−1. Notice that formulæin (4.10) are well-defined since {Ns, K
(+1)
k }

and {Ns, K
(−1,≤N1)
k } are in the range of the adjoint action adZ2 thanks to Proposition 2.2. It

is easy to note that Ek ∈ Lk . Moreover, using the bounds on the coefficients (Kk)σ, j in (3.6)
and item (ii) of Proposition 2.2 (with δ therein possibly smaller than the one fixed here), one
can check that the coefficients (E (+1)

k )σ, j satisfy the (4.3). By (3.6), Lemma 4.3 (in particular
formula (4.9) with η = −1) and item (iii) of Proposition 2.2, one gets that the coefficients
(E (−1)

k )σ, j satisfy the (4.3) as well. Using (4.10) we notice that

{Ns, Kk} + {Ek, Z2} = {Ns, K
(−1,>N1)
k }, k = Md,n, . . . , M̃d,n − 1. (4.11)

Combining Lemmata 3.5 and 4.3 we deduce

|{Ns, K
(−1,>N1)
k }(u)| �s,δ N−1+δ

1 ‖u‖kHs , (4.12)

for s large enough with respect to β. We define the energy E as in (4.5). We are now in
position to prove the estimate (4.6).
Using the expansions (3.4) and (4.5) we get

{Ns + E, H ◦ τ (1)} =
⎧
⎨

⎩
Ns, Z2 +

Md,n−1∑

k=n

Z≤N
k

⎫
⎬

⎭
(4.13)

+ {Ns, K
>N } + {Ns, R̃r } (4.14)

+
M̃d,n−1∑

k=Md,n

({Ns, Kk} + {Ek, Z2}
)

(4.15)

+
⎧
⎨

⎩
E,

Md,n−1∑

k=n

Z≤N
k

⎫
⎬

⎭
+
⎧
⎨

⎩
E,

r−1∑

k=Md,n

Kk + R̃r

⎫
⎬

⎭
(4.16)

+ {E, K>N }. (4.17)

We study each summand separately. First of all note that, by item (i) in Theorem 2 and
Proposition 2.2 we deduce that the right hand side of (4.13) vanishes. Consider now the
term in (4.14). Using the bounds (3.7), (3.8) and recalling (1.23) one can check that, for
ε0N δ �s,δ 1,

|(4.14)| �s,δ N−1+δ‖u‖nHs + N δ‖u‖rHs . (4.18)

By (4.11) and (4.12) we deduce that

|(4.15)| �s,δ N−1+δ
1 ‖u‖Md,n

Hs . (4.19)
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By (4.3), (3.4)–(3.8), Lemma 3.5 (recall also (4.2)) we get

|(4.16)| �s,δ N κd
1 N δ(‖u‖M̃d,n

Hs + ‖u‖rHs ),

|(4.17)| �s,δ N κd
1 N−1+δ‖u‖Md,n+n−2

Hs .

The discussion above implies the bound (4.6) using that r ≥ M̃d,n . This concludes the proof
in the case d = 2, 3.
Case d ≥ 4. In this case we consider the Hamiltonian H in (1.24). Recalling Definition 3.3
we set

Ek := E (+1)
k + E (−1)

k

where

E (+1)
k := (adZ2)

−1{Ns, Hk}(+1), E (−1)
k := (adZ2)

−1{Ns, H
(−1,≤N1)
k }, (4.20)

for k = Md,n, . . . , M̃d,n−1. Notice that the energies E (+1)
k , E (−1)

k are inLk with coefficients

(E (+1)
k )σ, j =

(
k∑

i=1

σi 〈 ji 〉2s
)(

k∑

i=1

σiω ji

)−1

(H (+1)
k )σ, j , σ ∈ {−1,+1}k, j ∈ (Zd)k,

and

(E (−1)
k )σ, j =

(
k∑

i=1

σi 〈 ji 〉2s
)(

k∑

i=1

σiω ji

)−1

(H (−1)
k )σ, j , μ2( j) ≤ N1,

with σ ∈ {−1,+1}k , j ∈ (Zd)k . Recall that in this case Md,n = n (see (3.1)). Using
Proposition 2.2 and reasoning as in the proof of Lemma 4.3 one can check that estimate (4.3)
on the coefficients of E (+1)

k and E (−1)
k holds true with κd as in (4.4). Equation (4.20) implies

{Ns, Hk} + {Ek, Z2} = {Ns, H
(−1,>N1)
k }, k = n, . . . , M̃d,n − 1, (4.21)

where M̃d,n − 1 = 2n − 1 if n odd and M̃d,n − 1 = 2n − 2 if n even (see (4.2)). Recall
that the coefficients of the Hamiltonian Hk satisfy the bound (1.27). Therefore, combining
Lemmata 4.3 and 3.5, we deduce

|{Ns, H
(−1,>N1)
k }(u)| �s,δ N−3

1 ‖u‖kHs , (4.22)

for s large enough with respect to β. Recalling (1.24) we have

{Ns + E, H} = {Ns, Z2} + {Ns, Rr } +
{

E,

r−1∑

k=n

Hk + Rr

}

+
M̃d,n−1∑

k=n

({Ns, Kk} + {Ek, Z2}
)
.

One can obtain the bound (4.6) by reasoning as in the case d = 2, 3, using (4.22), (1.28).
This concludes the proof. ��
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5 Proof of Theorem 1

In this section we show how to combine the results of Theorem 2 and Proposition 4.1 in order
to prove Theorem 1.

Consider ψ0 and ψ1 satisfying (1.4) and let ψ(t, y), y ∈ T
d
ν , be the unique solution of

(1.1) with initial conditions (ψ0, ψ1) defined for t ∈ [0, T ] for some T > 0. By rescaling
the space variable y and passing to the complex variable in (1.17) we consider the function
u(t, x), x ∈ T

d solving the Eq. (1.18).We recall that (1.18) can be written in the Hamiltonian
form

∂t u = i∂ū H(u), (5.1)

where H is the Hamiltonian function in (1.20) (see also (1.24)). We have that Theorem 1 is
a consequence of the following Lemma.

Lemma 5.1 (Main bootstrap) There exists s0 = s0(n, d) such that for any δ > 0, s ≥ s0,
there exists ε0 = ε0(δ, s) such that the following holds. Let u(t, x) be a solution of (5.1)with
t ∈ [0, T ), T > 0 and initial condition u(0, x) = u0(x) ∈ Hs(Td). For any ε ∈ (0, ε0) if

‖u0‖Hs ≤ ε, sup
t∈[0,T )

‖u(t)‖Hs ≤ 2ε, T ≤ ε−a+δ, (5.2)

with a = a(d, n) in (1.6), then we have the improved bound supt∈[0,T ) ‖u(t)‖Hs ≤ 3
2ε.

In order to prove Lemma 5.1 we first need a preliminary result.

Lemma 5.2 (Equivalence of the energy norm) Let δ > 0, N ≥ N1 ≥ 1. Let u(t, x) as in (5.2)
with s � 1 large enough. Then, for any 0 < c0 < 1, there exists C = C(δ, s, d, n, c0) > 0
such that, if we have the smallness condition

εCN δN κd
1 ≤ 1, (5.3)

the following holds true. Define

z := τ (0)(u), u = τ (1)(z), Es(z) := (Ns + E)(z) (5.4)

where τ (σ), σ = 0, 1, are the maps given by Theorem 2 and Ns is in (4.1), E is given by
Proposition 4.1. We have

1/(1 + c0)‖z‖Hs ≤ ‖u‖Hs ≤ (1 + c0)‖z‖Hs , ∀t ∈ [0, T ]; (5.5)

1/(1 + 12c0)Es(z) ≤ ‖u‖2Hs ≤ (1 + 12c0)Es(z), ∀t ∈ [0, T ]. (5.6)

Proof Thanks to (5.3) we have that Theorem 2 and Proposition 4.1 apply. Consider the
function z = τ (0)(u). By estimate (3.3) we have

‖z‖Hs ≤ ‖u‖Hs + C̃ N δ‖u‖2Hs

(5.3)≤ ‖u‖Hs (1 + c0),

where C̃ is some constant depending on s and δ. The latter inequality follows by taking C in
(5.3) large enough. Reasoning similarly and using the bound (3.3) on τ (1) one gets the (5.5).
Let us check the (5.6). First notice that, by (4.3), (4.5) and Lemma 3.5,

|E(z)| ≤ C̃‖z‖Md,n
Hs N δN κd

1 , (5.7)

for some C̃ > 0 depending on s and δ. Then, recalling (5.4), we get

|Es(z)| ≤ ‖z‖2Hs (1 + C̃‖z‖Md,n−2
Hs N δN κd

1 )
(5.5),(5.3)≤ ‖u‖2Hs (1 + c0)

3,
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where we used that Md,n − 2 ≥ 1. This implies the first inequality in (5.6). On the other
hand, using (5.5), (5.7) and (5.2), we have

‖u‖2Hs ≤ (1 + c0)
2Es(z) + (1 + c0)

Md,n+2C̃ N δN κd
1 εMd,n−2‖u‖2Hs .

Then, since Md,n > 2 (see (3.1)), taking C in (5.3) large enough we obtain the second
inequality in (5.6). ��

Proof of Lemma 5.1 Assume the (5.2). We study how the Sobolev norm ‖u(t)‖Hs evolves for
t ∈ [0, T ] by inspecting the equivalent energy norm Es(z) defined in (5.4). Notice that

∂tEs(z) = −{Es, H ◦ τ (1)}(z).
Therefore, for any t ∈ [0, T ], we have that

∣
∣
∣
∣

∫ T

0
∂tEs(z) dt

∣
∣
∣
∣

(4.6),(5.2)
�s,δ T N κd

1 N δ
(
εM̃d,n + N−1εMd,n+n−2)

+ T N−sd+δ
1 εMd,n + T N−sd+δεn .

We now fix

N1 := ε−α, N := ε−γ ,

with 0 < α ≤ γ to be chosen properly. Hence we have
∣
∣
∣
∣

∫ T

0
∂tEs(z) dt

∣
∣
∣
∣ �s,δ ε2T

(
εMd,n−2+αsd−δα + εM̃n,d−2−ακd−δγ

)
(5.8)

+ ε2T
(
εn−2+γ sd−δγ + εMn,d+n−4+γ−ακd−δγ

)
. (5.9)

We choose α > 0 such that

Md,n − 2 + αsd = M̃n,d − 2 − ακd , (5.10)

i.e.

α := M̃n,d − Md,n

sd + κd

(4.2),(4.7),(4.4)=
{ n−1

d−1 if n odd
n−2
d−1 if n even.

(5.11)

We shall choose γ > 0 is such a way the terms in (5.9) are negligible with respect to the
terms in (5.8). In particular we set (recall (5.11))

γ ≥ max
{ 1

sd
(Md,n − n + M̃d,n − Md,n

sd + κd
sd), 2 − n + M̃d,n − Md,n

}
. (5.12)

Therefore estimates (5.8)–(5.9) become
∣
∣
∣
∣

∫ T

0
∂tEs(z) dt

∣
∣
∣
∣ �s,δ ε2T εa(ε−δα + ε−δγ )

where a is defined in (1.6) and appears thanks to definitions (3.1), (4.2), (4.4), (4.7) and
(5.11). Moreover we define

δ′ := 2δmax{α, γ },
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with α, γ given in (5.11) and (5.12). Notice that, since δ > 0 is arbitrary small, then δ′ can
be chosen arbitrary small. Since ε can be chosen arbitrarily small with respect to s and δ,
with this choices we get

∣
∣
∣
∣

∫ T

0
∂tEs(z) dt

∣
∣
∣
∣ ≤ ε2/4

as long as T ≤ ε−a+δ′
. Then, using the equivalence of norms (5.6) and choosing c0 > 0

small enough, we have

‖u(t)‖2Hs ≤ (1 + 12c0)E0(z(t))

≤ (1 + 12c0)

[

Es(z(0)) +
∣
∣
∣
∣

∫ T

0
∂tEs(z) dt

∣
∣
∣
∣

]

≤ (1 + 12c0)
2ε2 + (1 + 12c0)ε

2/4 ≤ ε23/2,

for times T ≤ ε−a+δ′
. This implies the thesis. ��
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