
Journal of Dynamics and Differential Equations (2022) 34:311–339
https://doi.org/10.1007/s10884-020-09922-8

Some Remarks Concerning the Scattering Theory for the
Sturm–Liouville Operator

Luca Zampogni1

Dedicated to the memory of Russell Johnson

Received: 29 June 2020 / Revised: 13 November 2020 / Accepted: 12 December 2020 /
Published online: 5 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
We start to discuss some aspects of the scattering theory for the Sturm–Liouville operator

L : 1

y

[−D2 + q
]
. In particular, we pose and solve the problem of reconstructing the function

q when y is fixed and when a set S of scattering data is given. In the meanwhile, several
relations concerning the spectral properties of L and the solutions of the related eigenvalue
equation are established.
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1 Introduction

In the 60’sGel’fand, Levitan,Marchenko and their collaborators drew an important procedure
to reconstruct and characterize Schrödinger potentials starting from the scattering data. They
discussed various aspects concerning spectral measures and characterized the Schrödinger
potentials bymeans of a sort of orthogonalizing process [25,26,28]. All thesematters are very
well-known to researchers working with both inverse spectral problems and also the K-dV
equation, and in fact in [10] the authors showed a beautiful procedure to build solutions of the
K-dV equation having as initial data potentials q0(x) which are of “scattering type”. These
facts gave rive to a large amount of papers concerning the relations between Schrödinger
potentials and the K-dV equation [1,8,24,25,27,29,30,33].
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On the other hand, the acoustic equation1

ϕ′′ + ϕ = λyϕ (1)

with weight function y is connected to the Camassa–Holm equation (briefly, CH) (see [3])

4ut = uxxt + 2uuxxx + 4uxuxx − 24uux

in the following way: starting from an initial data y0(x) = 4u(0, x)−uxx (0, x), it is possible
inmany cases to build a solution of (CH) bymaintaining unchanged certain spectral properties
of the associated equation (1). This has been done in many cases, such as Algebro-geometric
potentials [11,20,32], some of their limits [12,21–23] and so on. Constantin et al. [4–6]
constructed also solutions of (CH) via a scattering procedure, which, however, reflects the
general property of the inverse problem for theEq. (1) of being implicit in its nature.Moreover,
they make use of the Liouville transform to develop the scattering theory (see [4] for more
information). Recently new hierarchies of evolution equations, involving the more general
Sturm–Liouville operator

L = 1

y

[−pD2 + q
]
, D = d

dx

have been introduced [18,21–23]. These hierarchies produce evolution equations which nat-
urally include both the K-dV and the (CH) equations, and others which have applications in
the fields of magnetic fluids, quantum theory, hydro-thermal particles and others [21–23].

Motivated by these facts, and from the evidence, as far as we know, that a scattering theory
for the Sturm–Liouville operator has never been investigated in detail, in this paper we start
to discuss the scattering theory for the operator

L := 1

y

[−D2 + q
]
, D = d

dx
, (2)

depending on the parameters q, y ∈ C0(R) with strictly positive weight function y. We will
focus our attention to the reconstruction of the potentials in terms of the scattering data, and
vice-versa, leaving out the aspects concerning the characterization of the potentials by means
of the spectral measure (a matter which, however, will be considered in forthcoming papers
[34,35]).

In this paper, however, a special case of the above problem is studied: we begin our
investigation by considering the operator

L = 1

y

[−D2 + q
]
,

where y is fixed. We will first find a condition for which the associated spectral problem has
solution of scattering type, and indeed we will find a scattering hypothesis on the function
q . Then, we will focus our attention to the relation between the scattering coefficients and
the potential q , providing the necessary background for the inverse spectral problem to be
solved.

The case when q is fixed and y is, let us say, the unknown function, will be studied in a
forthcoming paper, since it uses some instruments which are in some sense different from
those used in this paper (see [34,35]). The paper is organized as follows. In Sect. 2, we review
some important spectral properties of the Sturm–Liouville operator: we will not spend too

1 The term acoustic is due to the fact that (1) appears in the separation of variables method for solving the
wave equation.
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much time in reviewing these facts, as the reader can find them in several papers [13–19].
We will mainly describe some of the properties of the so-called Weylm-function, which will
give us the hint to set the scattering problem consistently. Section 3 deals with the extension
of the Gel’fand–Levitan theory for the Sturm–Liouville operator. We will derive the basic
equations for relating the solutions of two different spectral problems via a kernel function
K (x, t). In Sect. 4 we will prove the existence of the kernel function K (x, t) and state some
relations which will be useful for the reconstruction of the function q once the scattering data
are given. Finally, in Sect. 5, we will start to study the scattering problem, by proving the
relations occurring between the transmission-reflection coefficients, and the relation between
these coefficients and the potential q .

The author wishes to finish this introductory part by remembering one of the most impor-
tant men in his life: Russell Johnson has been my guide in many occasions, he helped me
many times in thework, and in the life. Besides being one of themost brilliantmathematicians
I had the pleasure to meet, he was also a great, honest, kind man. We started our collabo-
ration (and our friendship) during my Ph.D. studies, since he was the advisor of my Ph.D.
thesis. After that, we started a long beautiful collaboration, and he never stopped teaching
me mathematics. It has been a privilege to work with him, and it was special to speak with
him. I and Russell Johnson started together to think at and to write down the ideas of this
paper some years ago. I only hope he has been sometimes proud of my work, I miss him a
lot.

2 Preliminaries

Let us denote by

E2 = {a = (q, y) : R → R
2 | a ∈ C1(R), a is uniformly continuous and δ < y < Δ},

equippedwith the topology of uniform convergence on compact subsets. For a ∈ E2, consider
the Sturm–Liouville operator

La : D → L2(R, dx) : ϕ �→ Lϕ = 1

y
(−ϕ′′ + qϕ),

where D = {ϕ : R → R | ϕ ∈ L2(R, ydx), ϕ is absolutely continuous and ϕ′′ ∈
L2(R, ydx)}. It is well-known that L admits a self-adjoint extension to all L2(R, ydx)
which we still denote by L . The associated eigenvalue equation can be written as

−ϕ′′ + qϕ = λyϕ.

In matrix form, it reads

⎛

⎝
ϕ1

ϕ2

⎞

⎠

′

=
⎛

⎝
0 1

q(t) − λy(t) 0

⎞

⎠

⎛

⎝
ϕ1

ϕ2

⎞

⎠ . (3)

Let a = (q, y) ∈ E2. Let us denote by {τs}s∈R the translation flow, i.e., if a is as above,
τs(a) = a(s + ·). If a0 = (q0, y0) is fixed, then we set

A = cls Hull(a0) = cls {τs(a0) | s ∈ R}.
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Then A is a compact invariant subset of E2. It now makes sense to write a(x, λ) =(
0 1

q(x) − λy(x) 0

)
, and study the family of equations

(
ϕ

ϕ′
)′

= τx (a)

(
ϕ

ϕ′
)

, a ∈ A. (4)

This dynamical approach has revealed to be very useful in studying the spectral properties
of the Sturm–Liouville operator, see [9,13,14,16–19]. One of the most important concepts
which are related to the family of equations above is that of the exponential dichotomy. Let
Φa(x) be the fundamental matrix solution of the family (4).

Definition 2.1 The family (4) is said to have an exponential dichotomy (briefly, E.D.) over
A if there are positive constants η, ρ, together with a continuous, projection valued function
P : A → M2(C) such that the following estimates holds:

(i) |Φa(x)P(a)Φa(s)−1| ≤ ηe−ρ(x−s), x ≥ s,
(ii) |Φa(x)(I − P(a))Φa(s)−1| ≤ ηeρ(x−s), x ≤ s.

Here, M2(C) denotes the set of 2 × 2 complex valued matrices. One has the following
fundamental result (see [9,13,15–17])

Theorem 2.2 LetA be obtained by the construction above. Consider the family (4). If a ∈ A
has dense orbit, then the spectrum Σa of the operator La equals the set

Σed := {λ ∈ C | the f amily (4) does not admit an E.D. over A}.
It is known that, if �λ 	= 0, then the family (4) admits an exponential dichotomy over
A, hence Σa ⊂ R [9]. Another consequence of the above theorem is that if a ∈ E2 and
A = cls Hull(a) then the spectrum of La and that of all the operators Lτx (a) coincide, i.e.,
Σa = Στx (a) = Σed for every x ∈ R [9].

Since a ∈ A and detΦa(x) = 1 for every x ∈ R, both ker P(a) and Im P(a) are complex
lines in C

2, which can be parametrized by

Im P(a) = Span

(
1

m+(a, λ)

)
ker P(a) = Span

(
1

m−(a, λ)

)
.

The numbers m±(a, λ) are called the Weyl m-functions at ±∞. Acting by translation, we
can define the Weyl m-functions

m±(x, λ) = m±(τx (a), λ),

which satisfy the Riccati equation

m′ + m2 = q − λy.

We now make the following fundamental assumption.

Hypotheses 2.3 Let La = 1

y
(−D2 +q) be the self-adjoint operator defined on L2(R, ydx),

where a = (q, y) ∈ E2. We assume that a = (p, q) is chosen in such a way the spec-
trum Σa of La contains a (positive) half-line [λ∗,∞) in which the Weyl m-functions extend
holomorphically from C

+ to C
−.
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This assumption has an important consequence: namely, let z2 = −λ be a local parameter at
λ = ∞. Then it can be proved that (see [9,16])

m+(q, z) = √
yz − y′

4y
+

∞∑

n=1

α−nz
−n

and

m−(q, z) = −√
yz − y′

4y
+

∞∑

n=1

(−1)nα−nz
−n .

The coefficients α− j ( j ≥ 1) can be determined recursively by using the Riccati equation

m′ + m2 = q − λy

which bothm± satisfy when �λ 	= 0, and which however retains validity also in the half-line

[λ∗,∞) in view of Hypotheses 2.3 (see [9,15,16]). In particular, setting α0 = − y′

4y
, then

α−1 = 1

2

[
q − α′

0 − α2
0√

y

]

,

α′−1 + 2[α0α−1 − √
yα−2] = 0,

and so on.
From now on, we fix y : R → R and determine a particular function q̃ (and hence an

operator L̃ := Lq̃ ) whichwill play a crucial role in the following. This functionwill be simply
chosen in such a way that the corresponding operator L̃ has sine-cosine solution whenever
λ > 0.

Once y is fixed, let α0 = − y′

4y
, and set

q̃ = α′
0 + α2

0,

so that α−1 = 0 and all the coefficients α− j vanish as well. Writing down things explicitely,

q̃ := α′
0 + α2

0 = −
(
y′

4y

)′
+

(
y′

4y

)2

and

m±(q̃, z) = ±√
yz − y′

4y
(z2 = −λ).

The operator L̃ := 1

y
(−D2 + q̃) defined on L2(R, ydx) has general solutions

f (x, λ) = A exp

(∫ x

0

√−λ
√
y(s) − y′(s)

4y(s)

)
ds + B exp

(∫ x

0
−√−λ

√
y(s) − y′(s)

4y(s)

)

which, for λ ≥ 0 may be written simply as

f (x, λ) = y(x)−1/4
(
A1 sin

(∫ x

0

√
λy(s)ds

)
+ B1 cos

(∫ x

0

√
λy(s)ds

))
.
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We now use the notation

I(x) :=
∫ x

0

√
y(s)ds,

so that

f (x, λ) = y(x)−1/4
(
A1 sin

√
λI(x) + B1 cos

√
λI(x)

)
.

The operator L̃ has only absolutely continuous spectrum Σ̃ = [0,∞), and no isolated
(negative) eigenvalues: it is the analogous of the operator L0 = −D2 in the Schrödinger
case.

3 Transformation Operators

Let (q̃, y) ∈ E2, where

q̃ = −
(
y′

4y

)′
+

(
y′

4y

)2

.

We now discuss a procedure which allows to move from solutions of L̃ to solutions of certain
operators Lq . Consider the operator

L̃ := 1

y
(−D2 + q̃),

where q̃ is constructed as above. Then, choose another function q : R → R such that
(q, y) ∈ E2, and consider the corresponding operator

Lq := 1

y
(−D2 + q).

We move our attention to the half-line restricted operators: by L̃± and L±
q and define the

self-adjoint operators defined on L2(R±, ydx) respectively. They give rise to the eigenvalue
equations

−ψ ′′± + q̃ψ± = λyψ±

and

−ϕ′′± + qϕ± = λyϕ±.

Focus firstly on L̃+ and L+
q . For simplicity, let us write ψ, ϕ instead of ψ+, ϕ+. Let

ψ(x) = y(x)−1/4ei
√

λI(x).

Note that ψ(x) is a solution of L̃+. Let us impose the condition

ϕ(x, λ) ∼ y(x)−1/4ei
√

λI(x) as x → ∞.

We want to relate ϕ and ψ by means of

ϕ(x) = ψ(x) +
∫ ∞

x
K+(x, t)y(t)ψ(t)dt, (5)
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where K+(x, t) is defined on D and satisfies

lim
t+x→∞ K+(x, t) = lim

t+x→∞ K+,x (x, t) = 0.

It is at first sight clear that the existence of such K+(x, t) must depend on the choice of the
potential q . We abuse notation and write for the moment K instead of K+.

Now,

ϕ′(x) = ψ ′(x) − K (x, x)ψ(x)y(x) +
∫ ∞

x

[
∂

∂x
K (x, t)

]
y(t)ψ(t)dt,

and

ϕ′′(x) =ψ ′′(x) − d

dx
[K (x, x)ψ(x)y(x)] −

[
∂

∂x
K (x, x)

]
y(x)ψ(x)

+
∫ ∞

x

[
∂2

∂x2
K (x, t)

]
y(t)ψ(t)dt .

Thus

Lqϕ = 1

y
(−D2 + q)ϕ = − 1

y(x)
ψ ′′(x) + 1

y(x)

d

dx
[K (x, x)ψ(x)y(x)]

+ 1

y(x)

[
∂

∂x
K (x, x)

]
y(x)ψ(x) − 1

y(x)

∫ ∞

x

∂2

∂x2
K (x, t)y(t)ψ(t)dt

+ q(x)

y(x)
ψ(x) + q(x)

y(x)

∫ ∞

x
K (x, t)y(t)ψ(t)dt .

(6)

On the other hand, − 1

y
ψ ′′(x) + q(x)

y(x)
ψ(x) = L̃ψ , and solving L̃ψ = 0, substituting into

(6) and integrating twice, we obtain

1

y(x)

d

dx
[K (x, x)y(x)] + ∂

∂x
K (x, x) + q(x)

y(x)
= q̃(x)

y(x)
− ∂

∂x
K (x, x) (7)

and

− 1

y(x)

∫ ∞

x

[
∂2

∂x2
K (x, t)

]
y(t)ψ(t)dt + q(x)

y(x)

∫ ∞

x
K (x, t)y(t)ψ(t)dt

= −
∫ ∞

x

[
∂2

∂t2
K (x, t)

]
ψ(t)dt +

∫ ∞

x
K (x, t)q̃(t)ψ(t)dt .

(8)

From Eq. (8) we obtain (simplifying the notation)

1

y(x)
Kxx (x, t)y(t) + q(x)

y(x)
K (x, t)y(t) = −Ktt (x, t) + K (x, t)q̃(t), (9)

and finally

1

y(x)
Kxx (x, t) − 1

y(t)
Ktt (x, t) =

[
q(x)

y(x)
− q̃(t)

y(t)

]
K (x, t) (t ≥ x > 0). (10)

Condition (7) is an initial condition: indeed, we obtain

2y(x)
d

dx
K (x, x) + K (x, x)

d

dx
y(x) = q̃(x) − q(x), (11)
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or, equivalently,

d

dx

[√
y(x)K (x, x)

]
= q̃(x) − q(x)

2
√
y(x)

.

All the reasoning above can be summarized as follows: if a kernel K (x, t), defined in the
domain D = {(x, t) ∈ R

2 | t ≥ x > 0}, exists and satisfies
(i) lim

x+t→∞max{K (x, t), Kx (x, t), Kt (x, t)} = 0,

(i i) K (x, ·), Kx (x, ·), Kt (x, ·), Kxx (x, ·), Ktt (x, ·) ∈ L1(R+),

then it is a solution of
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

y(x)
Kxx (x, t) − 1

y(t)
Ktt (x, t) =

[
q(x)

y(x)
− q̃(t)

y(t)

]
K (x, t)

2y(x)
d

dx
K (x, x) + K (x, x)

d

dx
y(x) = q̃(x) − q(x)

(12)

in the domain D = {(x, t) ∈ R
2 | t ≥ x > 0}. It is clear that the existence of a solution of

(12) depends on the potential q(x) (not on q̃(x), which is fixed once y(x) is chosen).
Before proving the existence of a solution K (x, t) of (12), we observe that the converse

of the above reasoning is true as well. In fact, suppose that we have fixed a function y(x)
such that, if

q̃(x) = −
(
y′

4y

)′
+

(
y′

4y

)2

,

then (q̃, y) ∈ E2 as above. Suppose that (q, y) ∈ E2 is such that (12) admits a solution
K (x, t) satisfying (i) and (ii) above. Let ψ(x) be a solution of the equation

−ψ ′′ + q̃ψ = λyψ.

Define

ϕ(x) = ψ(x) +
∫ ∞

x
K (x, t)ψ(t)y(t)dt .

Then ψ is a solution of the eigenvalue equation

−ϕ′′ + qϕ = λyϕ,

where q is defined via the second equation in (12).
As we already pointed out, the existence of a (unique) solution of (12) or, equivalently,

of a kernel of the transformation L̃ �→ Lq , depends on the choice of q , and in fact on its
behaviour compared to that of q̃. We discuss now this matter. There are various ways to prove
the existence of a unique solution of (12) and (i) and (ii). One is that of applying theRiemann’s
method (see [7]) (which however does not give further information on the properties of K ),
and another is based on successive approximation, by first transforming (12) into a more
convenient form. We will follow none of these two ways, but we will focus on a method
which uses basic properties of the Sturm–Liouville operators L̃± and L±

q , in particular the
behaviour of their solutions for complex values of the parameter λ when �λ > 0.

Before entering into the topic of the existence of a solution of (12), we find useful to make
some observations: (1) Although the spectral problem depends on the parameter λ ∈ C, the
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equation (12), and hence its solution, does not. The λ−dependence in the equation (5) lays
in the functions ϕ(x) and ψ(x);

(2) As we will see, however, K (x, t) depends on the spectrum of Lq . According to the
spectrum of Lq , the kernel K (x, t)may ormay not have exponential parts due to the (isolated)
eigenvalues of Lq . We will prove that indeed there exists an expression for K (x, t) which
contains two main parts: one is related to the absolutely continuous part of the spectrum (it
will be the half-line [0,∞), as we will prove shortly...) and not connected to the isolated
eigenvalues of Lq . The other part instead is only related to the eigenvalues of Lq .

(3) Note that the second equation in (12) allows to express q(x) by means of K (x, t) and
y(x). Indeed, one has

q(x) = q̃(x) − 2y(x)
d

dx
K (x, x) − K (x, x)

d

dx
y(x), (13)

or its more appealing form

d

dx

[√
y(x)K (x, x)

]
= q̃(x) − q(x)

2
√
y(x)

. (14)

We now move our attention to the operators L̃− and L−
q . To distinguish the cases in a

precise manner, we reformulate the fundamental relations (5) and (12) by using the correct
signs. If we consider the operators L̃+ and L+

q , defined on L2(R+, ydx), one introduces the
eigenvalue equations

L̃+ψ+ = λψ+

and

L+
q ϕ+ = λϕ+

together with the boundary condition

ϕ+(x, λ) ∼ y(x)−1/4ei
√

λI(x) as x → ∞.

In this case, one looks for a kernel K+(x, t), defined in D+ = {(x, t) ∈ R
2 | t > x ≥ 0},

such that

ϕ+(x, λ) = ψ+(x, λ) +
∫ ∞

x
K+(x, t)y(t)ψ+(t)dt .

The above procedure leads to the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

y(x)
K+,xx (x, t) − 1

y(t)
K+,t t (x, t) =

[
q(x)

y(x)
− q̃(t)

y(t)

]
K+(x, t)

2y(x)
d

dx
K+(x, x) + K+(x, x)

d

dx
y(x) = q̃(x) − q(x),

(15)

which are coupled with the conditions

(i) lim
x+t→∞max{K+(x, t), K+,x (x, t), K+,t (x, t)} = 0,

(ii) K+(x, ·), K+,x (x, ·), K+,t (x, ·), K+,xx (x, ·), K+,t t (x, ·) ∈ L1(R+).
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In a completely analogous way, we can consider the operators L̃− and L−
q defined on

L2(R−, ydx), introduce the eigenvalue equations

L̃−ψ− = λψ−
and

L−
q ϕ− = λϕ−,

together with the boundary condition

ϕ−(x, λ) ∼ y(x)−1/4e−i
√

λI(x) as x → −∞.

In this case, one looks for a kernel K−(x, t), defined on D− = {(x, t) ∈ R | 0 ≥ x > t},
such that

ϕ−(x, λ) = ψ−(x, λ) +
∫ x

−∞
K−(x, t)y(t)ψ−(λ, t)dt .

We can now repeat the argument used before, and conclude that K−(x, t) satisfies the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

y(x)
K−,xx (x, t) − 1

y(t)
K−,t t (x, t) =

[
q(x)

y(x)
− q̃(t)

y(t)

]
K−(x, t)

−2y(x)
d

dx
K−(x, x) − K−(x, x)

d

dx
y(x) = q̃(x) − q(x),

(16)

which are coupled with the conditions

(i) lim
x+t→−∞max{K−(x, t), K−,x (x, t), K−,t (x, t)} = 0,

(ii) K−(x, ·), K+,−(x, ·), K−,t (x, ·), K−,xx (x, ·), K−,t t (x, ·) ∈ L1(R−).

4 Existence of the Kernel Function

As we already pointed out, we choose to solve equation (12) with a procedure which makes
use of basic facts concerning the differential equation

−ϕ′′ + qϕ = λyϕ.

Let us thus consider the eigenvalue problem

− ϕ′′+(x) + q(x)ϕ+(x) = λy(x)ϕ+(x) (17)

on L2(R+, ydx). Recall the notation I(x) :=
∫ x

0

√
y(s)ds. It will be convenient from now

on to write λ = k2 (k ∈ C). A suitable decay condition will be fixed now: we require that

ϕ+(x) ∼ y−1/4(x)eikI(x) as x → ∞. (18)

For a fixed y ∈ C1(R) which is uniformly continuous and such that δ < y(x) < Δ, we

can define a potential q̃(x) = −
(
y′

4y

)′
+

(
y′

4y

)2

, in such a way that (q̃, y) ∈ E2 (see the
previous section). We can write the eigenvalue equation (17) as

− ϕ′′+(x) + [q̃(x) − k2y(x)]ϕ+(x) = [q̃(x) − q(x)]ϕ+(x). (19)
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By using the variation of constants formula, a solution of (19) which satisfies (18) can be
written as

f+(k, x) = y−1/4(x)
[
eikI(x) +

∫ ∞

x

sin k(I(t) − I(x))

k
·

· [q̃(t) − q(t)]y−1/4(t) f+(t)dt
]
.

(20)

The integral equation (20) is of Volterra-type, and can be solved by successive approxima-
tions, as follows:

f (0)
+ (x) = eikI(x)y−1/4(x),

...

f (n)
+ (x) = y−1/4(x)

∫ ∞

x

sin k(I(t) − I(x))

k
[q̃(t) − q(t)]y(t)−1/4 f (n−1)

+ (t)dt

...

If �k > 0, using the bound

∣∣∣∣
sin k

k

∣∣∣∣ ≤ e|�k|

1 + |k| , we have that the series
∞∑

n=0

| f (n)
+ | is bounded

by the series

Cy−1/4(x)e−|�k|I(x)
∞∑

n=0

1

n!
[∫ ∞

x

I(t)|q̃(t) − q(t)|
1 + |k|I(t)

dt

]n
�k > 0, (21)

where C is a constant. The series (21) converges absolutely if
∫ ∞

x
I(t)|q̃(t) − q(t)|dt < ∞, for every x > 0. (22)

The Eq. (22) is the scattering hypotheses for the problem in the half-line [0,∞). It expresses
a restriction on the potentials q(x) for which a solution of the orthogonalizing Eq. (5) [or,
equivalently, of the system (12)] exists.

Equation (21) together with the fact that 0 < δ ≤ y(x) ≤ Δ < ∞, tells us that

| f+(k, x)| ≤ De−|�k|I(x), (23)

where D is a constant. Using (23) in (20), we get

|y1/4(x) f+(k, x) − eikI(x)| ≤ D1e
−|�k|I(x)

∫ ∞

x
I(t)|q̃(t) − q(t)|dt �k > 0,

|y1/4(x) f+(k, x) − eikI(x)| ≤ D1
e−|�k|I(x)

|k|
∫ ∞

x
|q̃(t) − q(t)|dt, k 	= 0

and hence

|(y−1/4(x) f+(k, x))′ − ik
√
y(x)eikI(x)| ≤ D2e

−|�k|I(x)
∫ ∞

x
|q̃(t) − q(t)|dt,

when �k > 0. These estimates imply the following facts:

1. f+ is analytic for �k > 0 and is continuos and bounded for �k = 0, for every x ∈ R;
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2. one has

f+(k, x) = y−1/4(x)eikI(x) + e−|�k|I(x)o(1) as x → ∞
f ′+(k, x) =

[(
y−1/4(x)

)′ + ik
√
y(x)

]
eikI(x) + e−|�k|I(x)o(1) as x → ∞.

We thus can draw an important further fact concerning the solution f+(k, x), namely

Lemma 4.1 Let y and q̃ be defined as usual. Choose a continuous function q(x) such that the
scattering Hypotheses (22) holds. Then the solution f+(·, x) is square-integrable in every
horizontal line the upper k-plane, except for �k = 0, and

∫

R

|y1/4(x) f+(λ + iε, x) − eiI(x)(λ+iε)|2dλ = O(e−2|ε|(x)). (24)

The behavior of f+(k, x), expressed in the above Lemma, allows us to use a theorem of
Titchmarsh [31]:

Theorem 4.2 (Titchmarsh)A function f ∈ L2(R) is the limit as y → 0 of a function f (x+iy)
which is analytic in the upper half-plane and such that

∫

R

| f (x + iy)|2dx ≤ O(e2αy), α ∈ R

if and only if the Fourier transform F( f )(t) of f (x) vanishes for every t < −α, i.e.
∫

R

f (x)e−i t x dx = 0, for every t < −α.

We apply this Theorem to the function

h+(k, x) = y1/4(x) f+(k, x) − eiI(x)k .

So, for �k > 0, we have

B+(x, t) := 1

2π

∫

R

h+(k, x)e−i tkdk = 0, for all t < I(x). (25)

Inverting (25) we obtain

h+(k, x) = y1/4(x) f+(k, x) − eiI(x)k =
∫ ∞

I(x)
B+(x, t)eikt dt, (26)

or, equivalently,

f+(k, x) = y−1/4(x)

[
eikI(x) +

∫ ∞

I(x)
B+(x, t)eikt dt

]
. (27)

Equation (27) is valid for �k > 0, and moreover B+(x, t) is an L2-function of the variable
t , for every t > I(x). Equation (27) is very similar to the formula (5), when ψ(x) =
y−1/4(x)eikI(x). In particular, we now express (27) in such a way that it defines a kernel
K+(x, t) which solves the problem (12). To do this, we only have to make a change of
variables, obtaining

f+(k, x) = y−1/4(x)eikI(x) +
∫ ∞

x
y−1/4(x)B+(x, I(t))

√
y(t)eikI(t)dt . (28)

Now, we set

K+(x, t) := y−1/4(x)B+(x, I(t))y−1/4(t), (29)
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and finally

f+(k, x) = ψ(x) +
∫ ∞

x
K+(x, t)y(t)ψ(t)dt, ψ(x) = y−1/4(x)eikI(x)

i.e., exactly the formula in (5). Since B+(x, t) exists for every t > I(x), then K+(x, t) exists
for t > x , and solves the problem (12). The technique is then the following: one looks for
B+(x, t), defines K+(x, t) as in (29), then uses the second formula in (12) to retrieve q(x).

Another interesting relation can be found from (27). Write it in the form (28), and define
A+ by

B+(x, I(t)) = 1

2
A+

(
x,

I(t) − I(x)

2

)
. (30)

Then (28) becomes

f+(k, x) = eikI(x)
[
y−1/4(x) +

∫ ∞

0
A+(x, t)e2ikt dt

]
. (31)

Putting (31) into (20), and taking the inverse Fourier transform, we have

A+(x, t) = −
∫ ∞

x+t
[q̃(s) − q(s)]y−1/2(s)ds

−
∫ t

0
dy

∫

x+t−y
[q̃(s) − q(s)]y−1/2(s)A+(s, y)ds.

(32)

It follows that

A+(x, 0) = −
∫ ∞

x
[q̃(s) − q(s)]y−1/2(s)ds,

hence

d

dx
A+(x, 0) = [q̃(x) − q(x)]y−1/2(x),

which is another way to retrieve q(x). However, using (29), we have

K+(x, x) = y−1/2(x)B+(x, I(x)),

and since A+(x, 0) = B+(x, I(x)), we obtain

2y1/2(x)K+(x, x) = A+(x, 0),

and differentiating we have, again,

2y(x)
d

dx
K+(x, x) + K+(x, x)

d

dx
y(x) = q̃(x) − q(x),

i.e., the second formula in (12).
We nowmove our attention to the negative problem, i.e., to that of the operator L−

q defined
on L2(R−, ydx), together with the boundary condition

ϕ−(x, λ) ∼
[
y(x)

y(0)

]−1/4

e−i
√

λI(x) as x → −∞.
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The variation of constant formula gives us the expression

f−(k, t) = y−1/4(x)
[
e−ikI(x) +

∫ x

−∞
sin(k(I(x) − I(t))

k
·

· [q̃(t) − q(t)]y−1/4(t) f−(k, t)dt
]
,

(33)

which is valid for �k > 0. In this case, estimates similar to those used for the operator L+
q

lead us to the following condition on q(x):
∫ x

−∞
(1 + |I(t))|q̃(t) − q(t)|dt < ∞, for every x < 0. (34)

Equation (34) is the scattering hypotheses for the problem on the negative half-line. As soon
as one has to consider negative values of t , then (34) is needed. In fact, we now extend
f+(k, x) (resp. f−(k, x)) to negative (resp. positive) values of x . Actually both f±(k, x)
continue to be solutions of the equation Lqϕ = k2ϕ, which now are defined for every x ∈ R.
We write

f+(k, x) = y−1/4(x)
[
eikI(x) +

∫ ∞

x

sin k(I(t) − I(x))

k
·

· [q̃(t) − q(t)]y−1/4(t) f+(k, t)dt
]

and

f−(k, t) = y−1/4(x)
[
e−ikI(x) +

∫ x

−∞
sin(k(I(t) − I(x))

k
·

· [q̃(t) − q(t)]y−1/4(t) f−(k, t)dt
]
,

which are defined for every x ∈ R when (34) holds on all R, i.e., when
∫ ∞

−∞
(1 + |I(t))|q̃(t) − q(t)|dt < ∞. (35)

We finish this section by noting that the Titchmarsh Theorem 4.2 can be used also in the
case of the solution f−(k, x) and gives us a kernel

B−(x, t) = 1

2π

∫

R

h−(k, x)eitkdk, (36)

which vanishes for all values t > I(x): here h−(k, x) = y−1/4(x) f−(k, x) − e−iI(x)k .
Inverting the Fourier transform again, we have

f−(k, x) = y−1/4(x)

[

e−ikI(x) +
∫ I(x)

−∞
B−(x, t)e−ikt dt

]

, (37)

which in turn allows to recover K−(x, t) and hence q(x) as above.

5 The Scattering Problem on theWhole Line

We now use the results of the previous section to discuss the scattering problem on the whole
line. So, we choose a function y(x)which is continous and such that δ < y(x) < Δ for every
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x ∈ R, define

q̃(x) = −
[
y′

4y

]′
+

[
y′

4y

]2
,

and consider the operator Lq := 1

y
[−Dq + q] defined on L2(R, ydx). The potential q(x) is

now chosen as to satisfy (35), i.e.,
∫ ∞

−∞
(1 + |I(t)|)|q̃(t) − q(t)|dt < ∞,

where

I(t) =
∫ t

0

√
y(s)ds.

For the moment, we restrict ourselves to non-zero real values of k, and look for solutions
ϕ±(k, x) of the equation

Lqϕ = k2ϕ

satisfying

ϕ+(k, x) ∼
{
y−1/4(x)

[
e+ikI(x) + a12(k)e−ikI(x)

]
, x → −∞

a11(k)y−1/4(x)eikI(x), x → +∞ (38)

and

ϕ−(k, x) ∼
{
a22(k)y−1/4(x)e−ikI(x), x → −∞
y−1/4(x)

[
e−ikI(x) + a21(k)eikI(x)

]
, x → +∞ (39)

In the usual terminology, the coefficients a12(k) and a21(k) are called the (left/right) reflection
coefficients, while a22(k) and a11(k) are the (left/right) transmission coefficients.

We have proved in the previous section that there are well-defined solutions f±(k, x)
defined via the integral equations

f+(k, x) = y−1/4(x)
[
eikI(x) +

∫ ∞

x

sin k(I(t) − I(x))

k
·

·[q̃(t) − q(t)]y−1/4(t) f+(k, t)dt
]

and

f−(k, t) = y−1/4(x)
[
e−ikI(x) +

∫ x

−∞
sin(k(I(x) − I(t))

k
·

·[q̃(t) − q(t)]y−1/4(t) f−(k, t)dt
]
.

These solutions satisfy the bounds

|y1/4(x) f+(k, x) − eikI(x)| ≤ D1
e−|�k|I(x)

1 + |k|
∫ ∞

x
(1 + |I(t)|)|q̃(t) − q(t)|dt, (40)

|y1/4(x) f−(k, x) − e−ikI(x)| ≤ D1
e|�k|I(x)

1 + |k|
∫ x

−∞
(1 + |I(t)|)|q̃(t) − q(t)|dt, (41)

where D1 is a constant.
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The function f+(k, x) is analytic in the upper k-plane, and moreover

|y1/4(x) f+(k, x) − eikI(x)| = O

(
1

|k|
)

as |k| → ∞.

Analoguosly, f−(k, x) is analytic in the upper k-plane and

|y1/4(x) f−(k, x) − e−ikI(x)| = O

(
1

|k|
)

as |k| → ∞.

Theorem 4.2 applies to both f±(k, x) and defines kernels B±(x, t) such that

f+(k, x) = y−1/4(x)

[
eikI(x) +

∫ ∞

I(x)
B+(x, t)eikt dt

]
,

and

f−(k, x) = y−1/4(x)

[

e−ikI(x) +
∫ I(x)

−∞
B−(x, t)e−ikt dt

]

.

These kernels B±(x, t) define in turn kernels K±(x, t) such that

f+(k, x) = y−1/4(x)eikI(x) +
∫ ∞

x
K+(x, t)y(t)y−1/4(t)eikI(t)dt (42)

and

f−(k, x) = y−1/4(x)e−ikI(x) +
∫ x

−∞
K−(x, t)y(t)y−1/4(t)e−ikI(t)dt . (43)

Our aim is to understand to what extent the coefficients ai j (k) (i, j = 1, 2) determine the
potential q(x). The potential q(x) determines uniquely the coefficients ai j (k), hence there
must be some relation between the coefficients ai j (k). However, even if it is true that the
potential q(x) determines all the ai j (k), we will see that it does only when connected to the
half-line operators L±

q , and the coefficients ai j (k) must have some intrinsic dependence.
We study some properties of the coefficients ai j (k) for non-zero real values of k. First of

all, the pairs f+(k, x), f+(−k, x) and f−(k, x), f−(−k, x) are linearly independent solutions
of the equation Lqϕ = k2ϕ, and in fact

W [ f+(k, x), f+(−k, x)] = −2ik

and

W [ f−(k, x), f−(−k, x)] = 2ik.

Thus, it is possible to write
⎧
⎪⎨

⎪⎩

f−(k, x) = b11(k) f+(k, x) + b12(k) f+(−k, x)

f+(k, x) = b22(k) f−(k, x) + b21(k) f−(−k, x).

(44)

These last two relations imply immediately that

b11(k)b22(k) + b12(−k)b21(k) = 1

b12(k)b22(k) + b21(k)b11(−k) = 0

b11(k)b22(k) + b12(k)b21(−k) = 1

123



Journal of Dynamics and Differential Equations (2022) 34:311–339 327

b11(k)b21(k) + b12(k)b22(−k) = 0.

Moreover, we have

W [ f+(k, x), f−(k, x)] = −2ikb12(k) = −2ikb21(k),

W [ f−(k, x), f+(−k, x)] = −2ib11(k)

and

W [ f−(−k, x), f+(k, x)] = −2ikb22(k).

All these relations imply that (if k 	= 0 is a real number)

1. b11(k) = −b22(−k)
2. b12(k) = b21(k)
3. |b12(k)|2 = 1 + |b11(k)|2 = 1 + |b22(k)|2
4. bi j (k) = bi j (−k).

Now, as x → +∞,

f−(k, x)

= y−1/4(x)

[
e−ikI(x) +

∫ ∞

−∞
sin k(I(x) − I(t))

k
y−1/4(t)[q̃(t) − q(t)] f−(k, t)dt

]

= y−1/4(x)

[

e−ikI(x) + eikI(x)

2ik

∫ ∞

−∞
e−ikI(t)y−1/4(t)[q̃(t) − q(t)] f−(k, t)dt

]

− y−1/4(x)
e−ikI(x)

2ik

∫ ∞

−∞
eikI(t)y−1/4(t)[q̃(t) − q(t)] f−(k, t)dt .

Now, since f−(k, x) = b11(k) f+(k, x) + b12(k) f+(−k, x), we obtain

b11(k) = 1

2ik

∫ ∞

−∞
e−ikI(t)y−1/4(x)[q̃(t) − q(t)] f−(k, t)dt

and

b12(k) = 1 − 1

2ik

∫ ∞

−∞
eikI(t)y−1/4(t)[q̃(t) − q(t)] f−(k, t)dt .

Analogously,

b21(k) = 1 − 1

2ik

∫ ∞

−∞
e−ikI(t)y−1/4(t)[q̃(t) − q(t)] f+(k, t)dt

ands

b22(k) = 1

2ik

∫ ∞

−∞
eikI(t)y−1/4(t)[q̃(t) − q(t)] f+(k, t)dt .

This facts, together with the asymptotic behaviour of f±(k, x), prove the following

Lemma 5.1 For nonzero real values of k, the coefficients bi j (k) satisfy the following asymp-
totics

b11(k), b22(k) ∼ o(1)

k
as |k| → ∞,
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and

b12(k) = b21(k) ∼ 1 + α

k
+ o(1)

k
as |k| → ∞,

where

α = − 1

2i

∫ ∞

−∞
y−1/2(t)[q̃(t) − q(t)]dt .

Moreover, b12(k) admits an analytic extension in the upper k-plane, and kb12(k) is bounded
and continuous on the real line.

We now obtain some results concerning the zeros of b12(k).

Lemma 5.2 Let b12(k) be the analytic extension in the upper half-plane of the coefficient
b12(k) defined in (44). Then the zeros of b12(k) are finite, simple and purely imaginary. Each
zero of b12(k) is an eigenvalue of the equation −ϕ′′ + qϕ = k2yϕ.

Proof First of all, if k ∈ R, then b12(k) cannot vanish, since f+(k, x) and f−(k, x) are linearly
independent (or, by property 3. of the coefficients bi j (k)). Thus, the zeros of b12(k)must have
non-zero imaginary part. Let k0 be such a zero: b12(k0) = 0 and �k0 	= 0. Then f+(k0, x)
and f−(k0, x) are linearly dependent, that is, f+(k0, x) = c f−(k0, x) for some constant c.
But now f+(k0, x) decays exponentially as x → +∞, while f−(k0, x) decays exponentially
as x → ∞. This implies that f+(k0, x) (and hence f−(k0, x)) is a square integrable solution
of Lqϕ = k2ϕ on allR, hence k0 belongs to the (point) spectrum of Lq on the line. Since Lq is
self-adjoint, the spectrum of Lq is a subset of the real line, hence k20 is real and k0 has zero real
part.We have proved that the zeros of b12(k) are purely imaginary. Next, b12(k) cannot vanish
for large values of |k|, in view of its asymptotic behavior. Now, we show that these zeros are in
fact finite. It suffices to show that the solutions of the equation Lqϕ = 0 can have only a finite
number of zeros. For, it is clear that the function ρ(x) := y−1/4(x)+∫ ∞

x K+(x, t)y−1/4(t)dt
is a solution of Lqϕ = 0. Another solution is given by

η(x) = ρ(x)
∫ x

a

dt

ρ2(t)
,

where a > 0 is chosen in such a way that ρ(x) 	= 0 for x > a. Now, if x → +∞,
ρ(x) ≥ inf y−1/4(x) = δ1 > 0, hence

η(x) ≥ δ1x + o(x).

Since every solution ϕ of Lqϕ = 0 is a linear combination of ρ(x) and η(x), it follows that
ϕ itself can have only a finite number of zeros. Summarizing, the zeros (if any) of b12(k) are
finite and purely imaginary. If k0 is such a zero, then k20 is a (real) eigenvalue λ0 of Lqϕ = λϕ.
But then λ0 must be negative, hence k0 = iχ0, where χ0 = √|k0|. It remains to prove that
the zeros of b12(k) are simple. Assume for contradiction that k0 = iχ0 is a multiple zero fo
b12(k). Then −χ2

0 is a negative multiple eigenvalue of Lqϕ = k2ϕ on the whole line. This
implies that all the solutions of Lqϕ = λϕ are square integrable on all R for all λ. However
f+(iχ0, x) is a solution which decays exponentially at both ±∞, and another solution of
the same problem is given by

g(iχ0, x) = f+(iχ0, x)
∫ x

a

dt

f 2+(iχ0, t)
.
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It is then easy to show that g(iχ0, x) increases exponentially as |x | → ±∞, a contradiction,
hence iχ0 must be a simple zero of b12(k), i.e., −χ2

0 is a simple eigenvalue of Lqϕ = k2ϕ
on the whole line. ��

The relations occurring between the coefficients bi j (k) imply that actually the knowledge
of b11(k) and b12(k) determines also b22(k) and b21(k) uniquely, and vice-versa (actually,
we can say more, as we will see shortly). Now, we relate the coefficients bi j (k) to the
reflection/transmission coefficients ai j (k). This is, however, quite easy: indeed, it suffices to
look at the asymptotic behavior of ϕ±(k, x) and compare to that of f±(k, x). We have

f+(k, x) ∼ y−1/4(x)eikI(x) as x → +∞
while

f−(k, x) ∼ y−1/4(x)e−ikI(x) as x → −∞.

This implies that

ϕ+(k, x) ∼ f−(−k, x) + a12(k) f+(k, x) = a11(k)
[
b22(k) f−(k, x) + b21(k) f−(−k, x)

]

as x → ∞, hence

a11(k)b22(k) = a12(k)

and

a11(k)b21(k) = 1,

and so

a11(k) = 1

b21(k)
, a12(k) = b22(k)

b21(k)
.

We can repeat the same arguments for the function ϕ−(k, x), to the effect that

a22(k) = 1

b12(k)
, a21(k) = b11(k)

b12(k)
.

Summarizing, we have

(i)

a11(k) = a22(k) = 1

b12(k)

(ii)

a12(k) = b22(k)

b12(k)

(iii)

a21(k) = −b22(−k)

b12(k)
.

(iv)

a21(k) = −a12(−k)a11(k)

a11(−k)
.
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(v) Using the property 3. of the coefficients bi j (k), we have

|a11(k)| = [
1 − |a12(k)|2

]1/2
,

hence, in particular,

|a12(k)| < 1.

(vi)

ai j (−k) = ai j (k).

The last properties (v) and (vi) have a very important consequence. Since a11(k) is mero-
morphic in the upper half-plane, and ln a11(k) → 0 as |k| → ∞, it is possible to reconstruct
a11(k) is the upper half-plane by the values of its absolute value in the real line and its poles,
by means of the so-called Hilbert dispersion relations (see [7,31]). In this case, we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11(k) = exp

[
1

2π i

∫

R

ln(1 − |a12(t)|2)
t − k

dt

] n∏

i=1

k + iχ j

k − iχ j
, �k > 0

a11(k) = lim
ε→0

a11(k + iε), k ∈ R

(45)

The integral above has to be intended in the sense of Cauchy principal value. The relation
(45) allows to express in a similar manner the coefficient b11(k), once b12(k) is known.

Note further that a11(k) and a12(k) arewell-defined for real values of k, because b12(k) can
only have purely imaginary zeros. The above relations allow also to extend the coefficients
ai j (k) to complex values of k with �k > 0, and all these quantities have simple poles at the
zeros of b12(k), i.e., at those values which determine the negative eigenvalues of the equation
Lqϕ = λϕ on the whole line. Once the coefficients ai j (k) are defined for complex values
of k, also the functions ϕ±(k, x) are defined except at k = 0 and at the the points k j = iχ j

( j = 1, . . . , n) which are the zeros if b12(k). We also notice that an argument, similar to that
explained in the above lines to prove the finiteness of the eigenvalues, can be used to show
that λ = k2 = 0 is not an eigenvalue of Lqϕ = λϕ.

Notice that the properties (i)–(vi) of the coefficients ai j (k) together with (45) imply that
the coefficients ai j (k) are completely determined once one of then, say a12(k), is given. The
asymptotic properties expressed in Lemma 5.1 transfer to the coefficients ai j (k), with the
following effect:

Lemma 5.3 The coefficients ai j (k) possess the following properties:

(i) ai j (k) are continuous for k ∈ R, except at most at k = 0. However

lim
k→0

a12(k) = lim
k→0

a21(k) = −1

and

lim
k→0

a11(k) = lim
k→0

a22(k) = 0

(ii) The function ka12(k) is bounded and continuous on all R.
(iii) For large values of |k|,

a12(k) = O

(
1

k

)
, a12(k) = O

(
1

k

)
,
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and

a11(k) = a22(k) = 1 + O

(
1

k

)
.

We now move our attention to the basic integral equation of the inverse problem for the
scattering theory on the whole line for the operator Lq . We first recall Eqs. (42) and (43):

f+(k, x) = y−1/4(x)eikI(x) +
∫ ∞

x
K+(x, t)y3/4(t)eikI(t)dt

and

f−(k, x) = y−1/4(x)e−ikI(x) +
∫ x

−∞
K−(x, t)y3/4(t)e−ikI(t)dt .

We express these equations in the more convenient form given by (31) and its analogous for
K−, i.e.,

f+(k, x) = eikI(x)
(
y−1/4(x) +

∫ ∞

0
A+(x, s)e2iksds

)
.

In a completely analogous way, f−(k, x) can be represented by the formula

f−(k, x) = e−ikI(x)
(
y−1/4(x) +

∫ 0

−∞
A−(x, s)e−2iksds

)
.

Moreover,

d

dx
A+(x, 0) = − d

dx
A−(x, 0) = [q̃(x) − q(x)]y−1/2(x) (46)

Now, it is easily seen that

a11(k) f+(k, x) = a12(k) f−(k, x) + f−(−k, x)

and

a22 f−(k, x) = a21(k) f+(k, x) + f+(−k, x).

Write
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h+(k, x) = y1/4(x)e−ikI(x) f+(k, x),

h−(k, x) = y1/4(x)eikI(x) f−(k, x),

g+(k, x) = a22(k)y1/4(x)eikI(x) f−(k, x),

g−(k, x) = a11(k)y1/4(x)e−ikI(x) f+(k, x).

These functions are related as follows:

g+(k, x) = a21(k)e
2ikI(x)h+(k, x) + h+(−k, x), (47)

g−(k, x) = a12(k)e
−2ikI(x)(k)h−(k, x) + h−(−k, x). (48)

Now, write

a21(k) =
∫ ∞

−∞
C+(t)e−2ikt dt .
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For the equation defining h+(k, x), we have

h+(k, x) = 1 + y1/4(x)
∫ ∞

0
A+(x, s)22iksds = 1 + y1/4(x)

∫ ∞

−∞
A+(x, s)e2iksds,

where the last equality follows from the Paley–Weiner Theorem (A+(x, s) = 0 for s < 0
because h+(k, x) is analytic in the upper k-plane). Similarly, set

g+(k, x) = 1 +
∫ ∞

−∞
Ã+(x, s)e2iksds.

With these notation, the Fourier transform of (47) translates to

C+(I(x) + t) + y1/4(x)
∫ ∞

−∞
A+(x, s)C+(I(x) + s + t)ds

+ A+(x, t) = Ã+(x,−t).

(49)

Formula (49) is, however, a little bit implicit, in the sense that it does not show explicitely
how and where the scattering data determine the kernel A+(x, t). To understand this, let us

analyze first the residue of the functions a11(k) at one of its poles iχ j : since a11(k) = 1

b12(k)
,

then Res a11(iχ j ) = 1
˙b12(iχ j )

, where the symbol ˙denotes the complex derivative. Now,

b12(k) = − 1

2ik
W [ f+(k, x), f−(k, x)], so that (2ikb12(k))̇ = (W [ f+(k, x), f−(k, x)])̇ and

2ib12(k) + 2ikb12̇(k) = −W [ f+̇(k, x), f−(k, x)] − W [ f+(k, x), f−̇(k, x)].
At a zero k j = iχ j of b12(k) we have

− 2χ j b12̇(iχ j ) = −W [ f+̇(iχ j , x), f−(iχ j , x)] − W [ f+(iχ j , x), f−(iχ j , x )̇]. (50)

Now differentiating with respect to k the equation

(a) − f ′′± + q f± = k2y f±,

we have

(b) f ′′±̇ + q f+̇ = 2ky f± + k2y f±̇.

Multiplying (a) by f±̇, (b) by f± and subtracting the formulas, we obtain

− f±̇ f ′′± + f ′′±̇ f+ = −2ky f 2±.

The left-hand side of the above relation equals the quantity
d

dx
W [ f±̇, f±], hence

d

dx
W [ f±̇, f±] = −2ky f 2±.

Since f+(iχ j , x) = c j f−(iχ j , x) (c j are constants), the relation (50) together with the above
formula involving the Wronskian give

ib12̇(iχ j ) = −
∫ ∞

−∞
y(x) f+(iχ j , x) f−(iχ j , x)dx = −c j

∫ ∞

−∞
y(x) f 2−(iχ j , x)dx

= − 1

c j

∫ ∞

−∞
y(x) f 2+(iχ j , x)dx

(51)
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We can now compute the residue of a11(h) at iχ j :

Res a11(iχ j ) =
[
i
∫ ∞

−∞
f+(iχ j , x) f−(iχ j , x)y(x)dx

]−1

=: iγ j . (52)

Set

M±
j =

∫ ∞

−∞
f 2±(iχ j , x)y(x)dx .

Using (52) together with the fact that f+(iχ j , x) = β j f(iχ j , x), we have

γ 2
j = 1

M+
j M

−
j

, j = 1, . . . , n. (53)

Since g+(k, x) = a22(k)y1/4(x)eikI(x) f−(k, x), we have

Res g+(iχ j , x) = y1/4(x)e−χ jI(x) f−(iχ j , x)Res a11(iχ j ) = −i
e−2χ jI(x)h+(iχ j , x)

M+
j

.

Analogously,

Res g−(iχ j , x) = −i
e2χ jI(x)h−(iχ j , x)

M−
j

.

Now, the function g+(k, x) is meromorphic in the upper k-plane, having simple poles at
the values iχ j ( j = 1, . . . , n). It follows that, for s < 0,

Ã(x, s) = −i
n∑

j=1

Res g+(iχ j , x)e
2χ j s

= −
n∑

j=1

e−2χ j (I(x)−s)

M+
j

(
1 + y1/4(x)

∫ ∞

0
A+(x, s)e2iksds

)
.

(54)

Recalling that A+(x, s) = 0 for s < 0 the main equation (49) can be written as

Ω+(I(x) + t) + y1/4(x)
∫ ∞

0
A+(x, s)Ω+(I(x) + s + t)ds + A+(x, t) = 0, (t > 0)(55)

where

Ω+(τ ) = C+(τ ) +
n∑

j=1

e−2χ j τ

M+
j

.

We can now repeat the same arguments used above for the function in (48), and obtain

Ω−(I(x) + t) + y1/4(x)
∫ 0

−∞
A−(x, s)Ω−(I(x) + t + s)ds + A−(x, t) = 0, (t < 0),(56)

where

h−(k, x) = 1 + y1/4(x)
∫ ∞

−∞
A−(x, s)e−2iksds,

a12(k) =
∫ ∞

−∞
C−(t)e2ikt dt,
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and

Ω−(τ ) = C−(τ ) +
n∑

j=1

e2χ j τ

M−
j

.

Formulas (55) and (56) are the basic equation of the inverse scattering problem of the

operator Lq = 1

y
[−D2 + q] on the whole line. Once we find a solution of (55) and (56), we

can use the relation (46) to reconstruct q(x). We state this problem in a precise manner.
Let y(x) be a fixed function satisfying the usual hypotheses we used throughout this paper.

Wewant to determinewhich and howmany spectral parameters have to be assigned in order to
determine uniquely q(x) and the transformation operators K±(x, t). As we already observed
before, the coefficients ai j (k) are uniquely determined when one of them, say a12(k), is given
of the real line, together with a set of poles iχ1, . . . , iχn (χ1, . . . , χn > 0). Moreover, to
determine q(x), equations of the type (55) and (56) are necessary, which also depend on the
coefficients M+

j and M−
j . However, we showed that once the values M

+
j are given, then M−

j
can be recovered via the relation (53). These observations explain which is the suitable set
of parameters which has to be assigned in order to solve the inverse scattering problem. We
define the scattering set as

S = {a12(k), χ1, . . . , χn, M
+
j , . . . , M−

j }, (57)

and formulate the inverse problem in the following theorem

Theorem 5.4 Let a12(k) (−∞ < k < +∞) be a function satisfying

1. a12 ∈ L1(R).
2. The function ka12(k) is bounded and continuous on all R.

3. a12(k) = O

(
1

k

)
as |k| → +∞.

4. |a12(k)| < 1 for all k ∈ R and

lim
k→0

a12(k) = −1.

5. a12(−k) = a12(k) for all k ∈ R.

Choose positive numbers χ1, . . . , χn and M+
1 , . . . , M+

n . Define the scattering set

S = {a12(k), χ1, . . . , χn, M
+
1 , . . . , Mn−}.

Assume further that the Fourier transform of a12(k) and its derivative are in L1(R). Let
a11(k) be the meromorphic function, defined in the upper half-plane, as in (45) (the integral
has to be intended in the sense of Cauchy principal value):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11(k) = exp

[
1

2π i

∫

R

ln(1 − |a12(t)|2)
t − k

dt

] n∏

i=1

k + iχ j

k − iχ j
, �k > 0

a11(k) = lim
ε→0

a11(k + iε), k ∈ R

Let iγ1, . . . , iγn be the residues of a11(k) at the points iχ1, . . . , iχn, and let

M−
j = 1

γ 2
j M

+
j

, j = 1, . . . , n.
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Let

a21(k) = −a12(−k)a11(k)

a11(−k)
.

Then the Fourier transform of a21(k) is well defined and is in L1(R), together with its
derivative. Finally set a22(k) = a11(k). Let us define C±(t) via the relations

a21(k) =
∫ ∞

−∞
C+(t)e−2ikt dt

and

a12(k) =
∫ ∞

−∞
C−(t)e2ikt dt .

Let y(x) be a uniformly continuous functions such that −∞ < δ < y(x) < Δ < ∞, and
set

I(x) =
∫ x

0

√
y(s)ds, q̃(x) = −

(
y′(x)
4y(x)

)
+

(
y′(x)
4y(x)

)2

.

Let A±(x, t) be the solutions of the integral equations

A+(x, t) + Ω+(I(x) + t) + y1/4(x)
∫ ∞

0
A+(x, s)Ω+(I(x) + t + s)ds = 0, (t > 0)

and

A−(x, t) + Ω−(I(x) + t) + y1/4(x)
∫ 0

−∞
A−(x, s)Ω−(I(x) + t + s)ds = 0, (t < 0).

Define

K+(x, t) = 1

2
y−1/4(t)A+

(
x,

I(t) − I(x)

2

)
y−1/4(x), (t > x)

and

K−(x, t) = 1

2
y−1/4(t)A−

(
x,

I(t) − I(x)

2

)
y−1/4(x), (t < x).

Let q+(x) be defined by

q̃(x) − q+(x) = 2y(x)
d

dx
K+(x, x) + K+(x, x)

d

dx
y(x)

and q−(x) be defined analogously by

q̃(x) − q−(x) = −2y(x)
d

dx
K−(x, x) − K−(x, x)

d

dx
y(x).

Then the functions

f±(x, k) = y−1/4(x)e±ikI(x) ±
∫ ±∞

x
K±(x, t)y3/4(t)e±ikI(t)dt (�k > 0)

are well defined and satisfy the differential equations

− f ′′±(x, k) + q±(x) f±(x, k) = k2y(x) f±(x, k).
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Moreover, q+(x) = q−(x) := q(x) on all R and
∫

R

(1 + |I(x)|)|q̃(x) − q(x)|dx < ∞.

Before proving the theorem, let us make an important observation concerning the last
statement of the theorem: the functions A±(x, t) define kernels K±(x, t), which in turn
are used to construct two functions q±(x). These functions are related to Sturm–Liouville
problems Lq+ and Lq− defined on L2(R+, ydx) and L2(R−, ydx) respectively. At a first
glance, although q+(x) and q−(x) are defined on all R, it is not obvious that they coincide.

Proof Let the scattering set S = {a12(k), χ1, . . . , iχn, M
+
1 , . . . , M−

n } be given. It is a
standard fact that the solutions A±(x, t) exist and are unique for all x ∈ R. Moreover,
C±,C ′± ∈ L1(R).

Let us first prove that, if q+(x) is constructed via the procedure explained in the statement
of the theorem, then it satisfies

∫

R

|I(x)||q̃(x) − q+(x)|dx < ∞.

Introduce the notation

α(x) =
∫ ∞

x
|Ω ′+(s)|ds.

Note that α(0) < ∞ and that |Ω+(x)| < α(x). It follows that also
∫ ∞

0
|A+(x, t)|dt ≤ ρ(x),

where ρ(x) is bounded, and

|A+(x, t)| ≤ α(I(x) + t) [1 + Cρ(x)] .

Now, observe that

A+(x, 0) = −
∫ ∞

x
[q̃(s) − q(x)]y−1/2(s)ds.

Differentiating with respect to x , we can write

|A′+(x, t)| ≤ |Ω ′+(I(x) + t)| + 1

4
y′y−3/4(x)

∫ ∞

0
|A+(x, s)||Ω+(I(x) + t + s)|ds

+ y1/4(x)
∫ ∞

0
|A′+(x, s)||Ω+(I(x) + t + s)|ds

+ y1/4(x)
∫ ∞

0
|A+(x, s)||Ω ′+(I(x) + t + s)|ds

Using the above estimates, we can show that

|A′+(x, t)| = |q̃(x) − q+(x)|y−1/2(x) ≤ C1

∫ ∞

x
|Ω ′+(I(x))|dx + C2α

2(I(x))[C3 + C4ρ(x)].

Multiplying by I(x)y1/2(x) and integrating, we have
∫ ∞

0
I(x)|q̃(x) − q+(x)|dx ≤ D

∫ ∞

0
I(x)|Ω ′+(I(x))|dx < ∞,
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where D is a constant. Since the integral in the right-hand side is finite, we obtain the
scattering condition for q in the positive half-line. Analogously, we can prove the condition
in the negative half line, hence the condition on the whole line.

The next step is to prove that K±(x, t) satisfy the differential equations

1

y(x)
K±,xx (x, t) − 1

y(t)
K±,t t (x, t) =

[
q(x)

y(x)
− q̃(t)

y(t)

]
K±(x, t)

which in turn implies the remaining statements of the theorem, except for the fact that
q+(x) = q−(x), which will be the last step of the proof.

We prove that the differential equation for K+(x, t) is satisfied. The proof for that of
K−(x, t) is completely equivalent. For, assume for the moment that C+(t) possesses deriva-
tives up to the second order. The case when it does not have this property can be studied by a
limit procedure, which we will sketch below. Rewrite the integral equation for A+ in terms
of K+, obtaining (we simplify the notation)

y1/4(x)y1/4(t)K (x, t) + 1

2
Ω

(I(x) + I(t)

2

)

+1

2

∫ ∞

x
K (x, s)y3/4(s)Ω

(I(t) + I(s)

2

)
ds = 0.

Differentiate this relation twice both with respect to x and t , then subtract. We obtain

1

y(x)
Kxx − 1

y(t)
Ktt −

[
q(x)

y(x)
− q̃(t)

y(t)

]
K

+
∫ ∞

x

[
1

y(x)
Kxx − 1

y(s)
Kss −

[
q(x)

y(x)
− q̃(s)

y(s)

]]
Ω

(I(t) + I(s)

2

)
ds = 0.

It follows that the function

t �→ 1

y(x)
Kxx (x, t) − 1

y(t)
Ktt (x, t) −

[
q(x)

y(x)
− q̃(t)

y(t)

]
K (x, t), (t ≥ x)

is a solution of the homogeneous equation, and belongs to L1(x,+∞). This implies that

1

y(x)
Kxx (x, t) − 1

y(t)
Ktt (x, t) −

[
q(x)

y(x)
− q̃(t)

y(t)

]
K (x, t) = 0, 0 ≤ x ≤ t < +∞.

If C+(t) has only first continuous derivative, we can argue as follows. Approximate
uniformly C+(t) by functions C+,n(t) which are twice continuously differentiable in every
finite interval in such a way that, for every N < +∞,

lim
n→+∞

∫ N

0
|C ′+(t) − C ′+,n(t)|dt = 0.

These functions C+,n(t) define integral equations for corresponding functions An(x, t),
which are solvable for sufficiently large n. The functions An(x, t) in turn define functions
Kn(x, t) and corresponding potentials qn(x), as in the above steps of the proof. Now, passing
to the limit again, one finds functions A(x, t), K (x, t) and q(x) for which the statement of
the theorem is still valid (see, in another context, [25]).

Now, we still have to prove that q+(x) = q−(x). Define

b12(k) = b21(k) = 1

a11(k)
, b22(k) = b12(k)a12(k), b11(k) = −b22(−k).
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Set

f∗(k, x) = b22(k) f−(k, x) + b21(k) f−(−k, x). (58)

We claim that

f∗(k, x) = f+(k, x).

This in turn will imply that q+(x) = q−(x), since

− f ′′∗ = −b22(k) f
′′−(k, x) − b21(k) f−(−k, x) = b22(k)[k2y(x) − q−(x)] f−(k, x)

+b21(k)[k2y(x) + q−(x)] f−(−k, x) = [k2y(x) + q−(x)] f∗(k, x),
and

− f ′′∗ (k, x) = [k2y(x) + q+(x)] f∗(k, x).
To prove that f∗(k, x) = f+(k, x), we first observe that from the properties of f− and b21(k)
and b22(k) we can write

a11(k) f∗(k, x) = a12(k) f−(k, x) + f−(−k, x).

Writing

f∗(k, x) = eikI(x)
(
y−1/4(x) +

∫ ∞

0
A∗(x, s)e2iksds

)
,

and reasoning as in the lines after (46), we conclude that A∗(x, t) satisfies

Ω+(I(x) + t) + y1/4(x)
∫ ∞

0
A∗(x, s)Ω+(I(x) + s + t)ds + A∗(x, t) = 0, (t > 0),

which is the same equation as that for A+(x, t). By uniqueness, it follows that A∗(x, t) =
A+(x, t), hence f∗(k, x) = f+(k, x). The proof is complete. ��
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