
Journal of Dynamics and Differential Equations (2021) 33:235–274
https://doi.org/10.1007/s10884-020-09910-y

Causal Holography of Traversing Flows

Gabriel Katz1

Received: 4 January 2017 / Revised: 23 September 2020 / Accepted: 14 October 2020 /
Published online: 18 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study smooth traversing vector fields v on compact manifolds X with boundary. A
traversing v admits a Lyapunov function f : X → R such that d f (v) > 0. We show that
the trajectory spaces T (v) of traversally generic v-flows are Whitney stratified spaces,
and thus admit triangulations amenable to their natural stratifications. Despite being spaces
with singularities, T (v) retain some residual smooth structure of X . Let F(v) denote the
oriented 1-dimensional foliation on X , produced by a traversing v-flow. With the help of a
boundary generic v, we divide the boundary ∂ X of X into two complementary compact
manifolds, ∂+X(v) and ∂−X(v). Then, for a traversing v, we introduce the causality map
Cv : ∂+X(v) → ∂−X(v). Our main result claims that, for boundary generic traversing
vector fields v, the causality map Cv allows for a reconstruction of the pair (X ,F(v)), up
to a homeomorphism � : X → X such that �|∂ X = id∂ X . In other words, for a massive
class of ODEs, we show that the topology of their solutions, satisfying a given boundary
value problem, is rigid. We call these results “holographic” since the (n +1)-dimensional X
and the un-parameterized dynamics of the v-flow are captured by a single map Cv between
two n-dimensional screens, ∂+X(v) and ∂−X(v). This holography of traversing flows has
numerous applications to the dynamics of general flows. Some of them are described in the
paper. Others, are just outlined.

Keywords Traversing vector flows · Manifolds with boundary · Causality maps · Boundary
data · Holography

1 Introduction

This paper is an extension of the sequence [12–15], which studies non-vanishing gradient-like
flowson smooth compactmanifoldswith boundary.Our approach emphasizes the interactions
of the flow trajectories with the boundary.

Let X be a compact connected smooth (n + 1)-dimensional manifold with boundary. A
smooth vector field v on X is called traversing if each v-trajectory is homeomorphic either
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to a closed interval, or to a singleton. An equivalent definition of a traversing v is based on
the existence of a Lyapunov function f : X → R such that d f (v) > 0 in X . In particular,
the gradient flow of a Bott-Morse function f is traversing in the compliment to any open
neighborhood of its critical set.

The paper consists of five sections, including the Introduction.
In Sect. 2, we introduce various classes of vector fields on manifolds with boundary

and summarize their properties, needed for the rest of the paper. They include traversing,
boundary generic, and traversally generic vector fields.

In Sect. 3, we employ the semi-local algebraicmodels for boundary generic and traversally
generic vector fields v on X to get a better understanding of the trajectory space T (v) of the
v-flow and its intricate stratification by the combinatorial types of v-trajectories. These types
ω belong to an universal poset �•, introduced in [14]. They describe the tangency patterns
of trajectories to the boundary ∂ X and resemble the real divisors of real polynomials.

For traversing flows, T (v), despite being singular spaces, retain some surrogate smooth
structure (see Definition 3.2), which they inherit from X . In fact, T (v) also shares with X all
stable characteristic classes of its surrogate “tangent bundle” τ(T (v)).

Theorem 3.2 is themain result of this section. It claims that, for a traversally generic vector
field v, the trajectory space T (v) can be given the structure ofWhitney stratified space (see
Definition 3.3). As a result, for a traversally generic v, the trajectory space T (v) admits a
triangulation, amenable to its v-flow-induced�•-stratification (Corollary 3.4). Therefore, for
such a v, the trajectory space T (v) is a n-dimensional compact �•-stratified CW -complex,
homotopy equivalent to X (Corollary 3.4). Unfortunately, the proof of Theorem3.2 is lengthy.
The reader, interested only in the main result of the paper, may choose to proceed directly to
Sect. 4. In Sect. 4, we are preoccupied with the following central to our program question:

“For a traversing vector field v on a compact connected manifold X ,what kind of residual
structure on its boundary ∂ X allows for a reconstruction of the pair (X , v), say, up to a
homeomorphism or a diffeomorphism?”

If such a structure on the boundary is available, it deserves to be called holographic,
since the information about the (n + 1)-dimensional v-dynamics is recorded on a pair of
n-dimensional records, residing in ∂ X .

For a traversing field v, with the dream of holography in mind, we introduce the causality
map Cv : ∂+

1 X(v) → ∂−
1 X(v) that takes any point x ∈ ∂ X , where the field is directed

inward of X , to the “next” along the trajectory γx point Cv(x) ∈ ∂ X ; at Cv(x) the vector
field v is directed outwards.

In general, the causality map Cv is a discontinuous map, with a very particular types of
discontinuity. It is this discontinuity that captures the essential topology of X !

Cv plays a role somewhat similar to the one played by the classical Poincaré return map:
continuous flow dynamics is reduced to a single map of a lower-dimensional slice [24].

Let v1 be a traversing and boundary generic (see Definition 2.2) field on a manifold X1,
and let v2 be a traversing and boundary generic field on a manifold X2, where dim(X1) =
dim(X2). We denote by F(vi ) the oriented 1-dimensional foliation on the manifold Xi ,
produced by the traversing vector field vi (i = 1, 2).

Theorem 4.1—the main result of this paper—claims that any smooth diffeomorphism
�∂ : ∂1X1 → ∂1X2 which commutes with the causality maps Cv1 and Cv2 , extends to a
homeomorphism (often a smooth diffeomorphism) � : X1 → X2. Moreover, � takes each
v1-trajectory to a v2-trajectory, thus mapping the v1-oriented 1-dimensional foliation F(v1)

to the v2-oriented foliation F(v2).
In other words, for a traversing and boundary generic v, the causality map Cv allows

for a reconstruction of the pair (X ,F(v)), up to a homeomorphism (Corollary 4.3). So the
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topology of X and the unparametrized v-flow dynamics are topologically rigid for the given
“boundary conditions” Cv : ∂+

1 X(v) → ∂−
1 X(v). In many cases (perhaps, allways), the

reconstruction of (X ,F(v)) is possible up to a smooth diffeomorphism.
Theorem 4.1 leads to a novel representation, described in Theorem 4.2, of smooth (n+1)-

manifolds X with spherical boundary. The representation is based on a map Cv : Dn+ → Dn−
from one n-dimensional ball to another, n ≥ 2, and captures the topological type of X .
This topological rigidity has a number of implications for general dynamical systems (which
are not necessarily of the gradient type). We summarize them in Theorem 4.3, The Causal
Holography Principle. Vaguely, it states that the causality relation on a generic event horizon
H in the space-time space of a given dynamical system determines the compact portion X of
the event space, bounded by H , and the evolution of the system in X , up to a homeomorphism
of X which is the identity on H .

In Sect. 5, we sketch some applications of the Holographic Causality Theorem 4.1 to
geodesic flows on compact Riemannian manifolds with boundary (Theorem 5.1). They
revolve around some classical inverse scattering problems and geodesic billiards, as described
in [17] and [20].

Let us conclude this Introductionwith one remarkwhich describes a paradoxical tension in
our results. On the one hand, the causality maps are typically discontinuous, and that property
is their nature. On the other hand, our techniques require a high degree of differentiability of
the structures on the boundary, the structures that make the Holography Theorems valid and
meaningful. We would love to understand better the paradox.

2 Trivia: Traversing, Boundary Generic, and Traversally Generic Vector
Fields

For the reader convenience, we start with a review of some properties of vector fields on
manifoldswith boundary thatwill be essential for the rest of the paper. The relevant definitions
and facts are borrowed from [12–15,18]. See [16] for a more relaxed description of our
approach to flows on surfaces.

Let X be a compact connected smooth (n + 1)-dimensional manifold with boundary.

Definition 2.1 A vector field v on X is called traversing if each v-trajectory is ether a closed
interval, or a singleton. ��

In particular, a traversing vector field does not vanish and is of the gradient type, i.e.,
there exists a smooth Lyapunov function f : X → R such that d f (v) > 0 in X . Moreover,
the converse is true: any non-vanishing gradient-type vector field is traversing [12].

We denote by Vtrav(X) the space of all traversing fields on X .
For a vector field v ∈ Vtrav(X), its trajectory space T (v) is homology equivalent to X

(Theorem 5.1, [14]). Moreover, for a traversing field v, the trajectory space T (v) has an
interesting feature: it comes equipped with a vector n-bundle τ(T (v)) which plays the role
of “surrogate tangent bundle”.

Any smooth vector field v on X , which does not vanish along the boundary ∂ X , gives
rise to a partition ∂+

1 X(v) ∪ ∂−
1 X(v) of the boundary ∂ X into two sets: the locus ∂+

1 X(v),
where the field is directed inward of X or is tangent to ∂ X , and ∂−

1 X(v), where it is directed
outward of X or is tangent to ∂ X .

We assume that v|∂ X , viewed as a section of the quotient line bundle T (X)/T (∂ X) over
∂ X , is transversal to its zero section. This assumption implies that both sets ∂+

1 X(v) and
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∂−
1 X(v) are compactmanifoldswhich share a common boundary ∂2X(v) =def ∂(∂+

1 X(v)) =
∂(∂−

1 X(v)). Evidently, ∂2X(v) is the locus where v is tangent to the boundary ∂ X .
Morse has noticed [22] that, for a generic vector field v, the tangent locus ∂2X(v) inherits

a similar structure in connection to ∂+
1 X(v), as ∂ X has in connection to X . That is, v gives

rise to a partition ∂+
2 X(v) ∪ ∂−

2 X(v) of ∂2X(v) into two sets: the locus ∂+
2 X(v), where the

field is directed inward of ∂+
1 X(v) or is tangent to ∂2X(v), and ∂−

2 X(v), where it is directed
outward of ∂+

1 X(v) or is tangent to ∂2X(v). Again, we assume that v|∂2X(v), viewed as a
section of the quotient line bundle T (∂ X)/T (∂2X(v)) over ∂2X(v), is transversal to its zero
section.

For generic fields, this structure replicates itself: the cuspidal locus ∂3X(v) is defined as
the locus where v is tangent to ∂2X(v); ∂3X(v) is divided into two manifolds, ∂+

3 X(v) and
∂−
3 X(v). In ∂+

3 X(v), the field is directed inward of ∂+
2 X(v) or is tangent to its boundary, in

∂−
3 X(v), outward of ∂+

2 X(v) or is tangent to its boundary. We can repeat this construction
until we reach the zero-dimensional stratum ∂n+1X(v) = ∂+

n+1X(v) ∪ ∂−
n+1X(v).

To achieve some uniformity in the notations, put ∂+
0 X =def X and ∂1X =def ∂ X .

Thus a generic vector field v on X should give rise to two stratifications:

∂ X =def ∂1X ⊃ ∂2X(v) ⊃ · · · ⊃ ∂n+1X(v),

X =def ∂+
0 X ⊃ ∂+

1 X(v) ⊃ ∂+
2 X(v) ⊃ · · · ⊃ ∂+

n+1X(v), (2.1)

the first one by closed submanifolds, the second one—by compact ones.Here dim(∂ j X(v)) =
dim(∂+

j X(v)) = n + 1 − j .

We will use often the notation “∂±
j X” instead of “∂±

j X(v)” when the vector field v is fixed
or its choice is obvious. These considerations motivate a more formal

Definition 2.2 Let X be a compact smooth (n + 1)-dimensional manifold with boundary
∂ X 	= ∅, and v a smooth vector field on X .

We say that v is boundary generic if the vector field v|∂ X does not vanish and produces
a filtrations of X as in (2.1). Its strata {∂+

j X ⊂ ∂ j X}1≤ j≤n+1 are defined inductively in j as
follows:

• ∂0X =def ∂ X , ∂1X =def ∂ X ,1

• v, viewed as a section of the tangent bundle T (X), is transversal to its zero section,
• for each k ∈ [1, j], the v-generated stratum ∂k X is a closed smooth submanifold of

∂k−1X ,
• the field v, viewed as section of the quotient 1-bundle

T ν
k =def T (∂k−1X)/T (∂k X) → ∂k X ,

is transversal to the zero section of T ν
k → ∂k X for all k ≤ j .

• the stratum ∂ j+1X is the zero set of the section v ∈ T ν
j .

• the stratum ∂+
j+1X ⊂ ∂ j+1X is the locus where v points inside of ∂+

j X .

We denote the space of boundary generic vector fields on X by the symbol B†(X). ��
By Theorem 3.4 from [13] (see also the second bullet of Theorem 6.6 from [18]), the

smooth topological type of the stratification {∂ j X(v)} j is stable under perturbations of v

within the spaceB†(X) of boundary generic fields. The same argument shows that {∂+
j X(v)} j

is stable as well.

1 So ∂0X and ∂1X—the base of induction—do not depend on v.
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Definition 2.3 We say that a boundary generic vector field v is convex if ∂+
2 X(v) = ∅. When

∂−
2 X(v) = ∅, we say that the vector field v concave. ��

Note that convexity or concavity of v implies that the locus ∂3X(v) = ∅.
For the rest of the paper, we assume that the field v on X extends to a non-vanishing field

v̂ on some open manifold X̂ which properly contains X (see Fig. 6). We treat the extension
(X̂ , v̂) as a germ that contains (X , v). One may think of X̂ as being obtained from X by
attaching an external collar to X along ∂1X . In fact, the treatment of (X , v) will not depend
on the germ of extension (X̂ , v̂), but many constructions are simplified by introducing an
extension.

The trajectories γ of a boundary generic vector field v on X interact with the boundary
∂ X so that each point a ∈ γ ∩ ∂ X acquires a multiplicity m(a) ∈ N, the order of tangency
of γ to ∂ X at a. We associate a divisor

Dγ =
∑

a∈γ∩∂ X

m(a) · a

with each v-trajectory γ . In fact, for any boundary generic v,m(a) ≤ dim(X) and the support
of Dγ is finite [13].

So we associate also a finite ordered sequence ω(γ ) = (ω1, ω2, . . . , ωq) ofmultiplicities
with each v-trajectory γ . The multiplicity ωi is the order of tangency between the curve γ

and the hypersurface ∂ X at the i th point of the finite set γ ∩ ∂ X . The linear order in γ ∩ ∂ X
is determined by v.

Such sequences form a poset (�,�), the partial order “�” in� is defined in terms of two
types of elementary operations: merges {Mi }i and inserts {Ii }i The operation Mi merges a
pair of adjacent entries ωi , ωi+1 of ω = (ω1, . . . , ωi , ωi+1, . . . , ωq) into a single component
ω̃i = ωi + ωi+1, thus forming a new shorter sequence Mi (ω) = (ω1, . . . , ω̃i , . . . , ωq). The
operation Ii either insert 2 in-between ωi and ωi+1, thus forming a new longer sequence
Ii (ω) = (. . . , ωi , 2, ωi+1, . . . ), or, in the case of I0, appends 2 before the sequence ω, or, in
the case Iq , appends 2 after the sequence ω.

So themerge operation M j : � → � sends ω = (ω1, . . . , ω�) to the composition

M j (ω) = (M j (ω)1, . . . , M j (ω)�−1),

where, for any j ≥ �, one has M j (ω) = ω, and for 1 ≤ j < �, one has

M j (ω)i = ωi if i < j,

M j (ω) j = ω j + ω j+1,

M j (ω)i = ωi+1 if i + 1 < j ≤ � − 1. (2.2)

Similarly, we introduce the insert operation I j : � → � that sends ω = (ω1, . . . , ω�)

to the composition I j (ω) = (I j (ω)1, . . . , I j (ω)�+1), where for any j > � + 1, one has
I j (ω) = ω, and for 1 ≤ j ≤ � + 1, one has

I j (ω)i = ωi if i < j,

I j (ω) j = 2,

I j (ω)i = ωi−1 if j ≤ i ≤ � + 1. (2.3)

Wedefineω � ω′ if one can produceω′ fromω by applying a sequence of these elementary
operations.
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For each trajectory γ of a boundary generic and traversing v, we introduce two important
quantities:

m(γ ) =def

∑

a∈γ∩∂1X

m(a), and m′(γ ) =def

∑

a∈γ∩∂1X

(m(a) − 1), (2.4)

the multiplicity and the reduced multiplicity.
Similarly, for a sequenceω = (ω1, ω2, . . . , ωq), we introduce the norm and the reduced

norm of ω by the formulas:

|ω| =def

∑

i

ωi and |ω|′ =def

∑

i

(ωi − 1). (2.5)

Note that q , the cardinality of the support of ω, is equal to |ω| − |ω|′.
For boundary generic and traversing vector fields v, the trajectory space T (v) is stratified

by subspaces, labeled by the elements ω = (ω1, . . . , ωq) of an universal poset �•. Its
elements form a subset of �, but not a sub-poset (see [14] for the accurate definition of the
partial order �• in �•). For q > 1, the first and the last entries of ω ∈ �• are odd positive
integers, the rest are even. When q = 1, ω = (ωq) must be even. For a boundary generic v,
each ωi ≤ dim(X).

In this paper, we consider also an important subclass of traversing and boundary generic
fields, which we call traversally generic (see Definition 2.4 below or Definition 3.2 from
[13]). Such fields admit special flow-adjusted coordinate systems, in which the boundary
is given by quite special polynomial equations (see Formula (2.11)) and the trajectories are
parallel to the preferred coordinate axis (see [13], Lemma 3.4). Given a boundary generic
and traversing vector field v, for each trajectory γ , consider the finite set γ ∩ ∂1X = {ai }i

and the collection of tangent spaces {Tai (∂ ji X◦)}i to the pure strata {∂ ji X◦}i . Each space
Tai (∂ ji X◦) is transversal to the curve γ .

Let S be a local transversal section of the v̂-flow at a point a	 ∈ γ , and let T	 be the
space tangent to S at a	. Each space Tai (∂ j X◦), with the help of the v̂-flow, determines a
vector subspace Ti = Ti (γ ) of T	. It is the image of the tangent space Tai (∂ j X◦) under the
composition of two maps:

(1) the differential of the v-flow-generated diffeomorphism that maps ai to a	, and
(2) the linear projection Ta	 (X) → T	, whose kernel is generated by v(a	).
The configuration {Ti } of affine subspaces Ti ⊂ T	 is called generic (or stable) when all

themultiple intersections of spaces from the configuration have the least possible dimensions,
consistent with the dimensions of {Ti }. In other words,

codim

(
⋂

s

Tis , T	

)
=

∑

s

codim(Tis , T	)

for any subcollection {Tis } of spaces from the list {Ti }.
Consider the case when {Ti } are vector subspaces of T	. If we interpret each Ti as the

kernel of a linear epimorphism �i : T	 → R
ni , then the property of {Ti } being generic can

be reformulated as the property of the direct product map
∏

i �i : T	 → ∏
i R

ni being an
epimorphism. In particular, for a generic configuration of affine subspaces, if a point belongs
to several Ti ’s, then the sum of their codimensions ni does not exceed the dimension of the
ambient space T	.

The definition below resembles and is inspired by the “Condition NC” imposed on, so
called, Boardmanmaps between smooth manifolds (see [4], page 157, for the relevant defi-
nitions). In fact, for generic traversing vector fields v, the v-flow delivers germs of Boardman
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maps p(v, γ ) : ∂1X → R
n , available in the vicinity of each trajectory γ . HereRn is identified

with a transversal section of the flow in the vicinity of γ .

Definition 2.4 A traversing field v on X is called traversally generic if:

• the field is boundary generic in the sense of Definition 2.2,
• for each v-trajectory γ ⊂ X (not a singleton), the collection of subspaces {Ti (γ )}i is

generic in T	: that is, the obvious quotient map T	 → ∏
i

(
T	/Ti (γ )

)
is surjective.

We denote by V‡(X) the space of all traversally generic fields on X . ��
Remark 2.1 In particular, the second bullet in Definition 2.4 implies the inequality

∑

i

codim(Ti (γ ), T	) ≤ dim(T	) = n.

In other words, for traversally generic fields, the reduced multiplicity of each trajectory γ

satisfies the inequality

m′(γ ) =
∑

i

( ji − 1) ≤ n. (2.6)

Evidently, the property of the configuration {Ti (γ )}i being generic in T	 does not depend
on the choice of the point a	 ∈ γ and the smooth transversal flow section S at a	.

So all sufficiently close (in the C∞-topology) vector fields to a traversally generic field
will remain traversally generic. Moreover, by Theorem 3.5 from [13], the space V‡(X) is
open and dense in Vtrav(X). This property of V‡(X) will be of great importance for our
endeavor.

For traversally generic vector fields v, the trajectory space T (v) is stratified by subspaces,
labeled by the elementsω of another universal subposet �•′〈n] ⊂ �•, defined by the constraint
|ω|′ ≤ n. It depends only on dim(X) = n + 1 (see [14] for the definition and properties of
�•′〈n]).

Let us revisit the stratum ∂ j X =def ∂ j X(v), the locus of points a ∈ ∂1X such that the
multiplicity of the v-trajectory γa through a at a is greater than or equal to j . This locus has
an alternative description in terms of an auxiliary smooth function z : X̂ → R that satisfies
the following three properties:

• 0 is a regular value of z,

• z−1(0) = ∂ X , (2.7)

• z−1((−∞, 0]) = X .

In terms of z, the locus ∂ j X is defined by the equations:

{z = 0, Lvz = 0, . . . , L( j−1)
v z = 0},

where L(k)
v stands for the k-th iteration of the Lie derivative operator Lv in the direction of v

(see [13]).
The pure stratum ∂ j X◦ ⊂ ∂ j X is defined by the additional constraint L( j)

v z 	= 0. The
locus ∂ j X is the union of two loci:

(1) ∂+
j X , defined by the constraint L( j)

v z ≥ 0, and

(2) ∂−
j X , defined by the constraint L( j)

v z ≤ 0.

The two loci, ∂+
j X and ∂−

j X , share the common boundary ∂ j+1X .
The following lemma is on the level of definitions.
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Lemma 2.1 A vector field v on a smooth (n + 1)-manifold X with boundary is boundary
generic if and only if, for each j ∈ [1, n + 1], the differential j -form


 j (z, v) := dz ∧ Lv(dz) ∧ . . . (Lv)
j−1(dz) (2.8)

does not vanish along the locus ∂ j X(v). ��
The next lemma may be found in [21] or in [13].

Lemma 2.2 Let v be a boundary generic vector field on a (n + 1)-dimensional smooth
manifold X with boundary. Let a v-trajectory γ	 be tangent to ∂1X at a point b ∈ γ	 ∩ ∂1X
with the order of tangency j ∈ [1, n + 1].

In the vicinity of b in X, there exists a system of smooth coordinates {u, �x, �y} :=
{u, x0, . . . , x j−2, y1, . . . yn− j+1} such that:

• the boundary ∂1X is given by the equation

P(u, �x) := u j +
j−2∑

�=0

x� u� = 0, (2.9)

and X by the inequality P(u, �x) ≤ 0,
• each v-trajectory is given by freezing the coordinates {�x, �y}, subject to the constraint

P(u, �x) ≤ 0. ��
Lemma 2.2 implies the next lemma (see [13], Lemma 3.4, or [18], Lemma 6.4, for its

validation).

Lemma 2.3 Let X be a (n + 1)-dimensional compact connected smooth manifold X with
boundary and v a traversing boundary generic vector field on X. Let γ be a v-trajectory of
a combinatorial type ω. Then there is a v̂-adjusted neighborhood U ⊂ X̂ of γ and a system
of coordinates (u, �x) : U → R × R

n such that X is given by the inequalities P(u, �x) ≤ 0,
‖�x‖ < ε, where

P(u, �x) := u|ω| +
|ω|−1∑

�=0

φ�(�x) u�

and {φ�(�x)}� are smooth functions. The real divisor of P(u, 0) has the combinatorial type ω.
Each v̂-trajectory in X is given by freezing the coordinate �x ∈ R

n, subject to the constraint
P(u, �x) ≤ 0. ��

Let v be a traversing, boundary generic vector field. For each v-trajectory γ and each
point ai ∈ γ ∩ ∂ X of multiplicity ji := j(ai ), we consider the form 
 j (z, v)|ai ∈ ∧ ji T ∗

ai
X

(see (2.8)) and spread it via the v-flow along γ . We denote by 
̃ ji (z, γ ) the resulting section
( ji -form) of the bundle

∧ ji T ∗X |γ . Lemma 2.2 admits the following interpretation.

Lemma 2.4 A traversing and boundary generic vector field v on a smooth (n + 1)-manifold
X with boundary is traversally generic if and only if, for each trajectory γ , the m(γ )-
dimensional differential form


̃(z, γ ) =def

s∧

i=1


̃ ji (z, γ ) ∈
|ωγ |∧

T ∗X
∣∣
γ

(where s = #(γ ∩ ∂ X) and |ωγ | = ∑s
i=1 ji ) does not vanish along γ . ��
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For a traversally generic v (see Definition 2.4) on a (n + 1)-dimensional X , the vicinity
U ⊂ X̂ of each v-trajectory γ of a combinatorial typeω ∈ �• has a special coordinate system
(u, x, y) : U → R × R

|ω|′ × R
n−|ω|′ . By by Lemma 3.4 from [13] (see also Lemma 6.4 in

[18]), in these coordinates, the boundary ∂1X := ∂ X is given by the polynomial equation

P(u, x) :=
∏

i

[
(u − αi )

ωi +
ωi −2∑

�=0

xi,�(u − αi )
�
] = 0 (2.10)

of an even degree |ω| in u. Here x =def {xi,l}i,�, and the numbers {αi }i are all distinct real
roots of the polynomial P(u, 0), ordered so that αi < αi+1 for all i .

At the same time, X is given by the polynomial inequality {P(u, x) ≤ 0}. Each v-trajectory
inU is produced by freezing all the coordinates x, y, while letting u to be free. Formula (2.10)
should be compared with Formula (2.9).

In fact, by choosing αi = i , we may rewrite this equation for ∂ X in U as

℘ω(u, x) :=
∏

i

[
(u − i)ωi +

ωi −2∑

�=0

xi,�(u − i)�
] = 0 (2.11)

(where |ω|′ ≤ dim X − 1, |ω| ≤ 2 · dim X , and |ω| ≡ 0 mod 2). That equation may be
viewed as the working definition of a traversally generic vector field.

3 On the Trajectory Spaces for Traversally Generic Flows

Let v be a traversing vector field. By collapsing each v-trajectory to a singleton, we produce
the trajectory space T (v), equipped with the quotient topology. We denote by X(v, ω) the
union of v-trajectories whose patterns of tangency to ∂1X := ∂ X are of a given combinatorial
type ω ∈ �•. We use the notation X(v, ω�) for its closure ∪ω′�ω X(v, ω′).

For a traversally generic v, each pure stratumT (v, ω) ⊂ T (v) is an open smoothmanifold,
and as such has a “conventional” tangent bundle. In particular, the pure strata of maximal
dimension n have tangent bundles. It turns out that these “honest” tangent n-bundles extend
across the singularities of the space T (v) to form a n-bundle τ(T (v)) over T (v)! However, at
the singularities, no exponential map (that takes a vector from τ(T (v)) to a point in T (v)) is
available—the surrogate tangent bundle τ(T (v)) does not reflect faithfully the local geometry
of the trajectory space T (v).

In order to define the dual of the bundle τ(T (v)) intrinsically, we need to consider a
surrogate of smooth structure on the singular space T (v).

Definition 3.1 Let v be a smooth traversing vector field on a smooth compact and connected
manifold X . Let� : X → T (v) be the projection that takes each point x ∈ X to the trajectory
γx ∈ T (v) that contains x .

We say that a function h : T (v) → R is smooth, if the composition h ◦ � is smooth on
X .

We denote by C∞(T (v)) the algebra of all smooth functions on the space T (v). ��
Definition 3.2 Let v1, v2 be two traversing vector fields on manifolds X1, X2, respectively.

• A map � : T (v1) → T (v2) is called smooth, if for any function h from C∞(T (v2)),
its pull-back �∗(h) ∈ C∞(T (v1)).

• A bijective map � : T (v1) → T (v2) is called a smooth diffeomorphism, is both � and
�−1 are smooth. ��
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For any traversing field v, the algebra C∞(T (v)) of smooth functions on the trajectory
space T (v) can be identifiedwith the subalgebra ofC∞(X), formed by functions f : X → R

with the property {Lv( f ) = d f (v) = 0}, where Lv stands for the v-directional derivative.2

Such functions are constant along each trajectory γ ⊂ X .
We denote by C∞

γ (T (v)) the algebra of germs of smooth functions from C∞(T (v)) at a
given point γ ∈ T (v). Letmγ (T (v)) � C∞

γ (T (v)) be the maximal ideal, formed by the the

germs that vanish at γ , and let m2
γ (T (v)) be the square of the idealmγ (T (v)).

Then the quotients mγ (T (v))/m2
γ (T (v)) are real n-dimensional vector spaces. Indeed,

since the pull-back of smooth functions on T (v) are the smooth functions on X that are
constants along each trajectory γ , the quotient mγ (T (v))/m2

γ (T (v)) can be canonically

identified with the quotientmx (S)/m2
x (S). Here S is a germ of a smooth transversal section

of the v̂-flow at x = γ ∩ S, and mx (S) denotes the maximal ideal in the algebra C∞(S),
an ideal comprised of functions that vanish at x . It is well-known that mx (S)/m2

x (S) can
be canonically identified with the cotangent space T ∗

x (S) via the correspondence f ⇒ d f ,
where the germ of f : S → R at x belongs to the ideal mx (S). Therefore the spaces

τ ∗
γ (T (v)) =def mγ (T (v))/m2

γ (T (v))

form a vector n-bundle τ ∗(T (v)) over T (v). It is dual to τ(T (v)) under the construction.
The pull-back �∗(τ ∗(T (v))

)
can be identified with the subbundle τ ∗(v) of the cotangent

bundle T ∗(X), formed by the “horizontal” 1-forms α such that α(v) = 0 and Lv(α) = 0.
The identification is via the correspondence �∗( f ) ⇒ d(�∗( f )), where f ∈ mγ (T (v)).

Now we define τ(T (v)) as the dual bundle of τ ∗(T (v)).
Let (11) ∈ �•′〈n] denote the unique maximal element of the poset; it labels the trajectories

that intersect the boundary ∂ X only at a pair of distinct points, where they are transversal to
the boundary.

Lemma 3.1 For any traversing field v, the tangent bundles to the components of the maximal
stratum T (v, (11)) extend to a n-dimensional vector bundle τ(T (v)) over the trajectory
space T (v).

Moreover, for a traversally generic field v and each element ω ∈ �•′〈n], the tangent bundle
of the pure stratum T (v, ω) embeds in τ(T (v))|T (v,ω) as a subbundle with a canonically
trivialized complement.

Proof We already have observed that the pull-back �∗(τ ∗(T (v))) of the cotangent bundle
τ ∗(T (v)) can be identified with the bundle τ ∗(v) of the flow-invariant 1-forms on X that
vanish on v.

The map � : X(v, (11)) → T (v, (11)) is a fibration with a closed segment for the
fiber. Therefore � admits a smooth section S(11) ⊂ X(v, (11)) which is transversal to
the v-trajectories. Consider a decomposition of the (n + 1)-bundle T (X)|S(11) into the tan-
gent n-bundle T (S(11)) and a line bundle L tangent to the v-trajectories. With the help of
this decomposition, the cotangent bundle T ∗(S(11)) can be identified with the restriction
τ ∗(v)|S(11) of τ ∗(v) to S(11). Using the isomorphism τ ∗(v)|S(11) ≈ �∗(τ ∗(T (v)))|S(11) , we
identify the cotangent bundle T ∗(S(11))with the bundle τ ∗(T (v))|S(11) , a bundle that evidently
is defined on the entire space T (v).

A similar conclusion holds for any traversally generic vector field v3 and each ω ∈ �•′〈n]:
by Lemma 3.4 from [13], the map � : X(v, ω) → T (v, ω) is a fibration with its base being

2 This property does not depend on an extension (X̂ , v̂) of (X , v).
3 Here perhaps a much weaker assumption about v will do.
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an open smooth (n − |ω|′)-manifold and with a closed segment for the fiber, the fiber being
consistently oriented by v. Therefore � admits a smooth section Sω. The cotangent bundle
τ ∗(Sω) can be identified with the cotangent bundle τ ∗(T (v, ω))|T (v,ω), a bundle that embeds
into the bundle τ ∗(T (v)).

So the only non-trivial statement of the lemma is the existence of a preferred trivializa-
tion in the quotient bundle τ(T (v))|T (v,ω) /τ (T (v, ω)). It follows from the last claim of
Theorem 3.1 below. Thus � : τ(T (v, ω)) ⊕ R

|ω|′ ≈ τ(T (v))|T (v,ω), where the bundle
isomorphism � is canonically defined by v. ��
Corollary 3.1 For a traversing vector field v on X, the stable characteristic classes of the
tangent bundles τ(T (v)) and τ(X) coincide via the cohomological isomorphism induced by
the projection � : X → T (v).

Proof Note that T (X) ≈ �∗(τ (T (v))) ⊕ R. Therefore, the cohomological isomorphism
induced by � (see Theorem 5.1, [14]) helps to identify the stable characteristic classes of
τ(T (v)) and T (X). ��

For a traversally generic v, the space T (v) comes equipped with two distinct intrinsically-
defined orientations of its pure strata {T (v, ω)}ω. These orientations depend only on v and
the preferred orientation of X .

Theorem 3.1 Let X be a smooth oriented compact (n + 1)-manifold, and v a traversally
generic vector field. Then

• each component of any pure stratum T (v, ω), where ω ∈ �•′〈n] and |ω|′ > 0, acquires
two distinct orientations, called preferred and versal. Switching the orientation of X
affects both orientations of T (v, ω) by the same factor (−1)|sup(ω)|.

• With the help of these two orientations, each component of T (v, ω) acquires one of the
two polarities “ ⊕” and “ �”. They do not depend on the orientation of X.

• Each manifold X(v, ω) comes equipped with a v-induced normal framing in X. Similarly,
the normal |ω|′-dimensional bundle

ν(T (v, ω)) =def τ(T (v))|T (v,ω)/τ (T (v, ω))

acquires a v-induced preferred framing.

Proof We extend the field v on X to a non-vanishing field v̂ on X̂ ⊃ X . Local transversal sec-
tions S of the v̂-flow have a well-defined orientation due to the global orientation of X and the
preferred orientation of the v-trajectories. For a traversally generic v on a (n+1)-dimensional
X , each v-trajectory γ of the combinatorial typeω has a flow adjusted neighborhoodU ⊂ X̂ ,
equipped with a special coordinate system (u, x, y) : U → R×R

|ω|′ ×R
n−|ω|′ . By Lemma

3.4 and formula (3.17) from [13], the boundary ∂ X is given in these coordinates by the poly-
nomial equation {P(u, x) = 0} in u of an even degree |ω| (see (2.10)). Here x =def {xi,�}i,�,
and the numbers {αi }i are the distinct real roots of the polynomial P(u, 0), ordered so that
αi < αi+1 for all i . At the same time, X is given by the polynomial inequality {P(u, x) ≤ 0}.
Each v-trajectory in U is produced by freezing all the coordinates x, y, while letting u to be
free.

We order the coordinates {xi,�}i,� lexicographically: first we order them by the increasing
i’s; then, for a fixed i , the ordering among {xi,�}� is defined by the increasing powers � of
the binomial (u − αi ) in the Formula (2.10). This ordering of {xi,�}i,�, together with the
orientation in the flow section S (induced with the help of v by the orientation of X ) gives
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rise to an orientation of the y-coordinates. They correspond to the space, tangent to the pure
stratum T (v, ω) at γ .

We still have to check that this ordering of {xi,�}� is determined by the geometry of
tangency and does not depend on a particular choice of the special coordinates {xi,�}�.

Consider a v-trajectory γ . Let γ ∩ ∂1X = ∐
i ai , a finite set of points. In the vicinity of

ai ∈ ∂ ji X◦, we write down the auxiliary function z from (2.7) in two ways:

as u j +
j−2∑

l=0

φ�(x)u�, and as
(
u j +

j−2∑

l=0

x�u�
)

Q(u, x).

Here, j =def ji = ωi , x =def {x� = {xi,�}i }�, φ�(0) = 0, and q =def Q(0, 0) 	= 0.
Consider the smooth map � : R j−1 → R

j−1, given by the functions φ0, . . . , φ j−2. We
aim to show that, at the origin (u, x) = (0, 0), the following two exterior ( j − 1)-forms are
equal:

dφ0 ∧ dφ1 ∧ · · · ∧ dφ j−2 |(0,0) = dx0 ∧ dx1 ∧ · · · ∧ dx j−2 |(0,0). (3.1)

Hence the Jacobian det(D�) > 0—the two orientations, induced by two coordinate systems
{φ�}� and {x�}� in the vicinity of ai , do agree. The argument validating (3.1) is similar to the
one we have used in [13], Lemma 3.3.

First note that q =def Q(0, 0) 	= 0 must be 1: just plug x = 0 in the identity

u j +
j−2∑

�=0

φ�(x)u� = (
u j +

j−2∑

�=0

x�u�
)
Q(u, x). (3.2)

Let a(u) be the row-vector (u j−2, . . . , u, 1) and dφ be the column-vector
(dφ j−2, . . . , dφ1, dφ0) of 1-forms. Then the differential of the identity (3.2), modulo the
ideal 〈u j−1, x〉, generated by the functions u j−1 and x0, . . . , x j−2, can be written as

a ∗ dφ = Qa ∗ dx mod 〈u j−1, x〉,
where “∗” stands for the matrix multiplication.

We apply partial derivatives ∂
∂u , . . . , ∂ j−2

∂u j−2 to the identity above to get a new system of
identities:

∂k

∂uk
(a) ∗ dφ = ∂k

∂uk
(Qa) ∗ dx mod 〈u j−1−k, x〉,

where k = 0, 1, . . . , j − 2. Now put u = 0 and use that q = 1 to get the following triangular
system of identities, modulo the ideal 〈x〉 generated by {x�}�:

dφ0 = dx0 mod 〈x〉
dφ1 = dx1 + b1,0 dx0 mod 〈x〉
dφ2 = dx2 + b2,0 dx0 + b2,1 dx1 mod 〈x〉
. . .

dφ j−2 = dx j−2 + b j−2,0 dx0 + b j−2,1 dx1 + · · · + b j−2, j−3 dx j−3 mod 〈x〉
Here bs,t denote some functional coefficients whose computation we leave to the reader. Now
(3.1) follows by taking exterior products of the 1-forms on the RHS and LHS of the system
above and letting x = 0. Let θi =def dxi,0 ∧· · ·∧dxi, ji −2 and let θ =def ∧i θi . Then du ∧ θ ,
together with the volume form in X , define the volume form in the y-coordinates. Therefore
the orientation of the space τγ (T (v, ω)), tangent to the pure stratum T (v, ω) at its typical
point γ (this space can be identified with the space spanned by the vectors ∂y1 , . . . , ∂yn−|ω|′ ),
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is determined intrinsically by the local geometry of the v-flow in the vicinity of γ ⊂ X̂ . Let
us call this orientation of τγ (T (v, ω)) versal. On the other hand, each manifold ∂ j X , j > 0,
comes equipped with its own preferred orientation, which depends only on the stratification
{∂+

k X(v)}k and on the preferred orientation of X . Here is the recipe for its construction:
the orientation of X , with the help of the inward normals, induces a preferred orientation
of ∂ X , and thus of ∂±

1 X . In turn, the inward normals to ∂2X = ∂(∂+
1 X) in ∂+

1 X produce
a preferred orientation of ∂2X , and thus of ∂±

2 X . And the process goes on: the preferred
orientation of ∂ j−1X , with the help of the inward normal to ∂ j X in ∂+

j−1X , determines a

preferred orientation of ∂ j X , and hence of ∂±
j X .

So, along each trajectoryγ , every spaceTi , tangent to ∂ ji X◦ and transversal toγ at the point
ai ∈ γ ∩ ∂1X , is preferably oriented. For a traversally generic v, the v̂-flow propagates these
spaces Ti ’s along γ in such a way that they form complementary vector bundles over γ . We
order themby the increasing values of i . This ordering, togetherwith the preferred orientations
of the Ti ’s (based on the orientations of ∂+

ji
X ), generates a new preferred orientation of the

tangent space τγ (T (v, ω)). This preferred orientation may agree or disagree with the versal
orientation of the same space, produced with the help of special coordinates in the vicinity of
γ ; recall that the versal orientation is based on the increasing powers of (z − αi )’s, a feature
of the special coordinates. In the first case, we attach the polarity “⊕” to γ , in the second
case, the polarity of γ is defined to be “�”.

Therefore not only the components of pure strata T (v, ω) are canonically oriented open
manifolds, but they also come in two flavors: “⊕” and “�”!

We will exhibit an ordered collection of |ω|′ linearly independent and globally defined
1-forms (as in [13], formula (3.30)) that produces a framing of the quotient bundle

ν∗(T (v, ω)) := τ ∗(T (v))|T (v,ω)/τ
∗(T (v, ω)),

the “normal cotangent bundle” of T (v, ω) in T (v). Let us outline their construction.
For any γ ∈ T (v, ω) and any two points a, x ∈ γ , denote by φa,x the germ (taken in the

vicinity of γ ⊂ X̂) of the unique v-flow-generated diffeomorphism that maps x to a.
Fix an auxiliary function z : X̂ → R as in (2.7). For each point ai ∈ γ ∩∂1X ofmultiplicity

ji > 1, let us consider the 1-forms {dz, Lv(dz), L2
v(dz), . . . , L ji −2

v (dz)}, taken at the point
ai (that is, view them as elements of T ∗

ai
(X)). Then, with the help of one-parameter family

of diffeomorphisms {φai ,x }x∈γ , we spread the forms

{dz|ai ,Lv(dz)|ai ,L2
v(dz)|ai , . . . ,L ji −2

v (dz)|ai }
along γ to get ji − 1 independent sections ηi,0, ηi,1, . . . η ji −2 of T ∗(X)|γ . By their very
construction, these sections are flow-invariant. Moreover, since at points of ∂2X the field v

is tangent to ∂ X = {z = 0}, we get dz(v)|∂2X = Lv(z) = 0. Thus ηi,0(v)|γ = 0 for all i .
Similarly, for each ai ∈ ∂3X (i.e., ji > 2), the field v is tangent to the manifold ∂2X =

{z = 0, Lv(z) = 0}. Therefore, using the identity
Lv(dz) = v ! d(dz) + d(v ! dz) = d(v ! dz),

we getLv(dz)(v)|∂3X = 0. As a result, ηi,1(v)|γ = 0 for all i with ji > 2. Similar considera-
tions show that for each i , all the sections {ηi,k}k< ji −1, have the property ηi,k(v)|γ = 0—they
are horizontal 1-forms. Therefore they can be viewed as independent sections of the subbun-
dle τ ∗(v) ⊂ T ∗(X). With the help of (�∗)−1, these sections produce independent sections
of the quotient bundle ν∗(T (v, ω)).
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Now we take all |ω|′ sections {ηi,0, ηi,1, . . . η ji −2}i of T ∗(X)|γ , ordered in groups by the
increasing values of i . For a traversally generic v, by Theorem 3.3 from [13], these sections
of τ ∗(v) ⊂ T ∗(X)|γ are linearly independent.

As long as the combinatorial type ω of γ is fixed, these sections depend smoothly on γ .
Since their construction relies only onω, z, and v, they are globally well-defined independent
sections of the conormal bundle ν∗(T (v, ω)), an intrinsically defined trivialization of this
bundle. Their duals define independent sections of the normal bundle ν(T (v, ω)).

The preferred orientation of each ∂ j X , j ≥ 1, depends only on v|∂1X and the orientation
of X . In particular, the preferred orientation of ∂1X depends on the orientation of X only. As
we flip the orientation of X , the preferred orientation of each ∂ j X flips as well. Therefore
the preferred orientation of the tangent bundle τ(T (v, ω)) changes, as a result of flipping
the orientation of X , only when the cardinality of the intersection γ ∩ ∂ X—the interger
| sup(ω)|—is odd.

The versal orientation of T (v, ω) behaves similarly under the change of an orientation of
X . As a result, the polarity “⊕” or “�” of each component of T (v, ω) is independent of the
orientation of X . ��
Corollary 3.2 For a traversally generic vector field v, the points of 0-dimensional strata
{T (v, ω)}ω come equipped with two sets of polarities: “ +,−” and “ ⊕,�”.

Proof When ω has the maximal possible reduced multiplicity |ω|′ = n, we can compare the
versal and preferred orientations at each point γ of the zero-dimensional set T (v, ω). When
the two agree, we attach the polarity “⊕” to γ ; otherwise, its polarity is defined to be “�”.
Of course, the preferred orientation of the normal bundle ν(γ, X) can be compared with the
preferred orientation of ∂ X at the “lowest” point in γ ∩ ∂ X . This comparison allows for
another pair (+,−) of polarities to be attached to γ . ��

Our next goal is to prove that the trajectory space T (v) of a traversally generic vector
field v is a Whitney stratified space (see Definition 3.3). Unfortunately, the proof of this
claim is rather technical, so some readers may choose to proceed to Sect. 4.

Prior to establishing, in Theorem 3.2 below, that T (v) is a Whitney stratified space, we
need to prove a few lemmas.

Recall that a function f on a closed subset Y of a smooth manifold X is called smooth
if it is the restriction of a smooth function, defined in an open neighborhood of Y .

Lemma 3.2 Let v be a traversing vector field on a compact smooth manifold X, and � :
X → T (v) the obvious map. Let F ⊂ T (v) be a closed subset and ψ : F → R a function
such that its pull-back �∗(ψ) is smooth on �−1(F) ⊂ X (it satisfies there the property
Lv(�

∗(ψ)) = 0).
Then ψ : F → R admits an extension � : T (v) → R such that �∗(�) is a smooth

function on X with the property Lv(�
∗(�)) = 0.

Proof Let h : X → R be a smooth function with the property dh(v) > 0. By Corollary 4.1
from [12], such a Lyapunov function h exists for any traversing v. Using h, we can find a
finite set S of closed smooth transversal sections {Sα ⊂ h−1(cα)}α of the v-flow, such that
each trajectory hits some section from the collection S. Moreover, we can assume that all
the heights {cα} are distinct and separated by some ε > 0. The set S can be given a poset
structure: β � α if there exists an ascending v-trajectory γ that first pierces Sα and then Sβ .
Evidently, this implies that cα < cβ .

For a given α, consider the set S�α =def {β � α} and put c⇑
α =def minβ�α{cβ}.
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Now the proof is an induction by the heights {cα}, guided by the partial order in S. It is
illustrated in Fig. 1. Assume that the desired extension

�̃�α : h−1([c⇑
α , +∞)) → R

of the function ψ ◦ �|�−1(F), subject to the property Lv(�̃�α) = 0, already has been con-

structed. The inductive step calls for an extension of �̃�α to a function on h−1([cα, +∞)),
while keeping it constant on the v-trajectories. Denote by X(v, A) the union of v-trajectories
through a closed subset A ⊂ X . Consider two sets: Fα =def �−1(F) ∩ Sα and Qα =def
X(v,

∐
β�α Sβ) ∩ Sα . Since �̃�α is constant along each trajectory and Sα is smooth and

transversal to the flow, �̃�α produces a well-defined smooth function �̂�α : Qα → R. On
the other hand, the function ψ̃ =def ψ ◦ � : �−1(F) → R is smooth and constant along
trajectories by the lemma hypothesis. In particular, it is a smooth function on the closed set
Fα . Moreover, since �̃�α is an extension of ψ̃ to h−1([c⇑

α , +∞)) ⊂ X , both functions, �̂�α

and ψ̃ , agree on Fα ∩ Qα . Therefore we have produced a function�
�
α : Fα ∪ Qα → Rwhich

extends to a smooth function �̃α on Sα . In turn, �̃α : Sα → R defines a smooth function
�̂α : X(v, Sα) → R which is constant on each trajectory through Sα . By their construction,
�̂α and �̃�α agree on the set X(v, Sα) ∩ h−1([c⇑

α , +∞)). Together, they produce a smooth
function on h−1([cα,+∞)) which is constant along the trajectories through

∐
β�α Sβ and

extends ψ̃ . This completes the induction step. ��

Definition 3.3 [26] Let Z be a closed subset of a smooth manifold M . Consider its partition
Z = ∐

α∈S Zα , where S a finite poset. We say that Z is a Whitney space if the following
properties hold:

(1) each stratum Zα locally is a smooth submanifold of M ,
(2) take any pair Zα ⊂ Z̄β and any two of sequences {xi ∈ Zβ}i , {yi ∈ Zα}i , both converging

to the same point y ∈ Zα . In a local coordinate system on M , centered on y, form the
secant lines {li =def [xi , yi ]}i so that that {li }i converge to a limiting line l ⊂ Ty M .
Also consider a sequence of tangent spaces {Txi (Zβ)}i that converge to a limiting space
τ ⊂ Ty M . Then we require that l ⊂ τ . ��
If Z ⊂ M is a Whitney space, then one can prove that Ty(Zα) ⊂ τ (see [6]).
Now we are going to verify that the standard models of traversally generic flows lead to

spaces of trajectories which are Whitney spaces.

Lemma 3.3 Let ω ∈ �•′〈n]. Consider the semi-algebraic set Zω = {Pω(u, x) ≤ 0,
‖x‖ ≤ ε}, where the polynomial Pω of an even degree |ω| is as in (2.10) (its real divisor has
the combinatorial type ω), and ε > 0 is sufficiently small. Let Tω denote the (ω�)-stratified
trajectory space of the constant vector field v =def ∂u in Zω. Then there exists an embedding
Kω : Tω → R

2|ω|′ , given by some smooth functions on Zω which are constant along each
∂u-trajectory that resides in Zω.

Proof Evidently, the x-coordinates x : Zω → R
|ω|′ provide us with a map χ : Tω → R

|ω|′ ,
given by the algebraic functions which are constant on the ∂u-trajectories in Zω. Unfortu-
nately, χ does not separate some trajectories; that is, χ is not an embedding (just a finitely
ramified map). We will complement x with another smooth map x̃ : Zω → R

|ω|′ , also con-
stant on the trajectories in Zω and such that the pair of maps (x, x̃) will separate the points
of Tω.
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Fig. 1 The upper four diagrams show the flow sections Si and the sets X(v, Si ) for i = 1, 2, 3, 4. The lower
four diagrams show the growth of the domains of ψ-extensions, as they appear in the proof (to simplify the
picture, the original set �−1(F) is not shown)

To construct x̃ , we will use some facts from [14], Sect. 4. Recall that the ball Bε = {‖x‖ ≤
ε} has a special cone structure. With the help of the Vieté map, the cone structure is given
by the local linear contractions in C of each “near-by” divisor DC(P(∼, x	)) on the “core”
divisor DC(P(∼, 0)). This contraction produces a smooth algebraic curve
Ax	 : [0, 1] → Bε in the coefficient x-space (a generator of the “cone”), which connects the
given point x	 to the origin 0. In particular, the combinatorial type of the divisor DR(P(∼
, Ax	 (t))) is constant for all t ∈ (0, 1].

Let Sx	 =def R × Ax	 be the ruled (u, t)-parametric surface that projects along the u-
direction onto the curve Ax	 . Consider the intersection�x	 of Sx	 with the set Zω. As x	 ∈ ∂ Bε

varies, the surfaces {�x	} span Zω (the trajectory {x = 0} serves as the binder of an open
book whose pages are the �x	 ’s) (see Fig. 2).

We will define a new projection x̃ : �x	 → Ax	 as follows. Consider the u-directed line
Lx through x . For a typical point x ∈ Ax	 let �x =def Lx ∩ �x	 . The set �x is a disjointed
union of closed intervals {Ii (x) = [αi (x), ᾱi (x)]}i (where αi (x) < ᾱi (x) are two adjacent
roots of the polynomial P(u, x) in (2.10)) residing in the line Lx . We order them so that
I1(x) < I2(x) < · · · < Is(x) as sets (see Fig. 2, the left diagram).
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Fig. 2 The map x̃ : �x	 → Ax	 over some arc Ax	 (on the left) and the map x̃ : Zω → R
|ω|′ (the deformed

projection of the cylinder with indentations on its base)

Put

�∨
x =def (Lx\�x ) ∩ [αmin(x), αmax (x)],

where αmin(x), αmax (x) denote the minimal and the maximal real roots of the u-polynomial
Pω(u, x). Thus �∨

x is a finite disjoint union of closed intervals

{I∨
i (x) = [ᾱi (x), αi+1(x)]}i ,

residing in the line Lx . Note that Pω ≥ 0 in each interval I∨
i (x). We also order the intervals

so that, as sets,

I∨
1 (x) < I∨

2 (x) < · · · < I∨
s−1(x).

Let τi (x) denote the length of the interval I∨
i (x). We fix a smooth monotone function

χ : [0,+∞) → [0, 1) such that χ(0) = 0 and limτ→+∞ χ(τ) = 1 (say, χ = 2
π
tan−1).

Consider a smooth τ -parametric family (τ ∈ [0,+∞)) of smooth monotonically increasing
functions φτ : [0, 1] → R+ such that:
(1) 0 < φτ (t) < t for all t ∈ (0, 1], (2) the infinite order jet of φτ of at t = 0 coincides
with the jet of the identity function t : [0, 1] → [0, 1], (3) φτ (1) = χ(τ), and (4) φτ (t) is a
smooth function in t and τ .

For each i , we map the point
(
ᾱi

(
Ax	 (t)

)
, t

) ∈ ∂+
1 �x	 (∂u)

to the point
(
αi

(
Ax	 (φτi (x	)(t))

)
, φτi (x	)(t)

) ∈ ∂−
1 �x	 (∂u).

We denote by θx	,i this map. As a function in (u, t), the map θx	,i is smooth. We notice that,
φτi (x	)(t) 	= t for all t ∈ (0, 1] and x	 	= �0. We also observe that, if the interval I∨

i (x	)

shrinks to a singleton as we vary x	, then the map θx	,i approaches the identity.
Now we define x̃ : �x	 → Ax	 by the following formulas (see Fig. 2):

x̃ =def x for all points in I1(x),
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z∗
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π
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2| ω |’

Fig. 3 The space Eω(Zω) ⊂ R × R
2|ω|′ and its projections π and Q on Kω(Tω) ⊂ R

2|ω|′ and on Zω ⊂
R × R

|ω|′

=def θx	,1 for all points in I2(x),

=def θx	,2 ◦ θx	,1 for all points in I3(x),

=def θx	,3 ◦ θx	,2 ◦ θx	,1 for all points in I4(x),

=def . . . (3.3)

Since 0 < φτ (t) < t for all t ∈ (0, 1], the map x̃ : Zω → R
n separates the trajectories

that are not distinguished by the map x : Zω → R
n . Therefore the smooth map

Jω =def (x, x̃) : Zω → R
2|ω|′ ,

being constant on each trajectory, gives rise to a a smooth (in the sense of Definition 3.2)
embedding Kω : Tω → R

2|ω|′ . ��
Remark 2.1. It seems that the desired embedding Kω : Tω → R

2|ω|′ cannot be delivered by
analytic functions. ��
Corollary 3.3 The image Kω(Tω) ⊂ R

2|ω|′ is a Whitney (ω�)-stratified space.

Proof It is useful to consult with Fig. 3 that illustrates some key elements of the proof.
Let π : R×R

2|ω|′ → R
2|ω|′ denote the obvious projection. Put K =def Kω. Consider the

map

E =def Eω : Zω → R × R
2|ω|′ ,

given by the formula E(u, x) =def (u, J (u, x)). Since J =def Jω = (x, x̃), the map E is a
regular embedding, given by smooth functions on Zω. Consider the projection

Q : R × R
2|ω|′ → R × R

|ω|′ ,

given by the formula Q(u, x, x̃) =def (u, x). By the definition, Q(E(Zω)) = Zω. Let μ ≺ ν

be two elements in the poset ω� ⊂ �•, and Kμ,Kν the two pure strata of K (Tω) ⊂ R
2|ω|′ ,

indexed by μ, ν (thusKμ ⊂ K̄ν). Consider a sequence of points {ym ∈ Kν}m and a sequence
of points {zm ∈ Kμ}m , both converging to a point z	 ∈ Kμ. We need to verify that, if the
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tangent spaces {TymKν}m converge in R
2|ω|′ to an affine space T	 containing z	, and the

sequence of lines {lm ⊃ [zm, ym]}m converges to a line l	 ⊂ R
2|ω|′ , then l	 ⊂ T	.

Equivalently, we need to verify that if the spaces {Tm =def π−1(TymKν)}m converge in
R × R

2|ω|′ to an affine space T	 =def π−1(T	) ⊃ π−1(z	) (these spaces are depicted as
parallelograms in Fig. 3) and the sequence of 2-planes {Lm =def π−1(lm)}m converges to a
plane L	 =def π−1(l	) ⊂ R × R

2|ω|′ , then L	 ⊂ T	. We call this conjectured property “B̃”.
Note that all the affine spaces Tm, T	, Lm , and L	, are fibrations with the line fibers which

are parallel to the direction ofR in the productR×R
2|ω|′ .We can think of E(Zω) as a graph of

a smoothmap x̃ from Zω toR|ω|′ . Since Q : E(Zω) → Zω is a (ω�)-stratification-preserving
diffeomorphism which respects the ∂u-induced 1-foliations F on E(Zω) and G on Zω, the
tangent spaces to the ν-indexed pure stratum in E(Zω) are mapped by Q isomorphically onto
the tangent space to the ν-indexed pure stratum in Zω. So, with the help of the graph-manifold
E(Zω), any tangent space to the ν-indexed pure stratum in Zω determines the corresponding
tangent space to the ν-indexed pure stratum in E(Zω).

Let τ̃	 denote the tangent space to E(Zω) at a generic point z̃	 ∈ π−1(z	), and let τ	

denote the tangent space to Zω at the point Q(z	). By the very definitions of T	 and L	 as
limit objects and using that E(Zω) is a smooth manifold, carrying the foliation F (whose
leaves are parallel lines in R × R

2|ω|′ ), we get that T	 ⊂ τ̃	 and L	 ⊂ τ̃	.
Since Q : E(Zω) → Zω is a diffeomorphism, Q : τ̃	 → τ	 is an isomorphism of vector

spaces. Therefore there exist unique subspaces of τ̃	 that are mapped by Q onto Q(T	) or
onto Q(L	); these are exactly the spaces T	 and L	, respectively. Thus, Q(L	) ⊂ Q(T	) if and
only if L	 ⊂ T	.

Therefore property B̃ is equivalent to the following property B:
“If the spaces {Q(Tm)}m converge in R×R

|ω|′ to the affine space Q(T	), and the sequence
of planes {Q(Lm)}m converges to a plane Q(L	) ⊂ R × R

|ω|′ , then Q(L	) ⊂ Q(T	)”.
Note that the composition Q ◦ K : Tω → R

|ω|′ is delivered by employing the algebraic
map x : Zω → R

|ω|′ . The image Q(K (Tω)) ⊂ R
|ω|′ is stratified by the collection of real

discriminant varieties, their complements, and their multiple self-intersections, indexed by
various μ ∈ ω� (as described in [15]). In particular, these strata are semi-algebraic sets. By
the fundamental results of [8–10], the semi-analitic sets are Whitney stratified spaces. As a
result, the (ω�)-stratified space Q(K (Tω)) is a Whiney space. Thus property B is valid, since
all the affine spaces, relevant to B, are fibrations with the line π-fibers over the corresponding
spaces inR|ω|′ ⊃ Q(K (Tω)). Therefore, the (ω�)-stratified space K (Tω) is a Whitney (ω�)-
stratified space in R

2|ω|′ . ��
Theorem 3.2 For a traversally generic vector field v on a (n + 1)-dimensional X, the �•′〈n]-
stratified trajectory space T (v) can be given the structure of a Whitney space (residing in an
Euclidean space).

Proof Let U =def {Ur }r be a finite v-adjusted closed cover of X , such that each Ur ⊂
X̂ admits special coordinates (u, x, y) =def (u(r), x (r), y(r)) in which ∂ X is given by the
polynomial equation {Pr (u, x) = 0} as in (2.10). Recall that, for a traversally generic v, the
equation is determined by the combinatorial type ωr of the core trajectory γr ⊂ Ur .

Let us denote by Tr the space of trajectories of the ∂u-flow in the domain

Ur =def {Pr (u, x) ≤ 0, ‖x‖ ≤ ε, ‖y‖ ≤ ε′}.
It is a compact subset of T (v).

Consider the embeddings

Kr : Tr → R
2|ωr |′ × R

n−|ωr |′ and Er : Ur → R × R
2|ωr |′ × R

n−|ωr |′ ,
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given by the formulas

Kr
(
γ{u(r), x (r), y(r)}

) =def
(
x (r), x̃ (r)(u(r), x (r)), y(r)

)
,

Er
(
u(r), x (r), y(r)

) =def
(
u(r), x (r), x̃ (r)(u(r), x (r)), y(r)

)
.

Hereγ{u(r), x (r), y(r)} denotes the ∂u-trajectory inUr , passing through thepoint (u(r), x (r), y(r)),

and x̃ (r)(u(r), x (r)) is a function as in Corollary 3.3 (see Figs. 2 and 3). Smooth functions
ψ : Tr → R are exactly the smooth functions on Ur ∩ X that are constant along the trajec-
tories. By Lemma 3.2, each ψ extends to a smooth function on X which is constant on each
trajectory. We denote this extension ψ̂ .

Therefore, the local embeddings {Kr : Tr → R
2|ωr |′ ×R

n−|ωr |′ }r extend to some smooth
maps {K̂r : T (v) → R

2|ωr |′ × R
n−|ωr |′ }r . Together they produce a smooth embedding

K : T (v) → R
N , where K =def

∏
r K̂r and RN =def

∏
r

(
R
2|ωr |′ × R

n−|ωr |′).
Let G : X → R

N be the composition K ◦ �, where � : X → T (v) is the obvious map.
We choose again a function h : X̂ → R such that dh(v̂) > 0 in X̂ (see Lemma 4.1 from

[12]). With the help of h, we get a map E : X → R × R
N given by the formula E(z) :=

(h(z), G(z)). Since dh(v) > 0 and the Jacobian of each map Jωr =def (x (r), x̃ (r), y(r)) is of
the maximal rank in Ur , the map E is a regular smooth embedding.

Composing E with the obvious projection π : R × R
N → R

N , we get the smooth (see
Definition 3.2) embedding K : T (v) → R

N . Our next goal is to show that K (T (v)) is a
Whitney stratified space in R

N . Since Definition 3.3 of Whitney space is local, it suffices
to check its validity in each local chart Tr ⊂ T (v), that is, to verify that K (Tr ) ⊂ R

N

is a Whitney space. The arguments below are very similar to the ones used while proving
Corollary 3.3.

Consider the projection pr : RN → R
2|ωr |′ ×R

n−|ωr |′ , produced by omitting the product∏
s 	=r (R

2|ωs |′ × R
n−|ωs |′) from the product

∏
s(R

2|ωs |′ × R
n−|ωs |′). Let

Qr : R × R
N → R × R

2|ωr |′ × R
n−|ωr |′

denote the projection idR × pr . Note that the projection Qr generates a diffeomorphism
between the manifold E(Ur ) ⊂ R×R

N and the manifold Er (Ur ) ⊂ R×R
2|ωr |′ ×R

n−|ωr |′ ,
a diffeomorphism that respects the oriented 1-foliations, induced by the v-flow on X , as well
as the (ωr )�-stratifications of E(Ur ) and Er (Ur ) by combinatorial types of v-trajectories (or
rather of the π-fibers).

We denote these foliations by Fr and Gr , respectively. Let μ ≺ ν be two elements in the
poset (ωr )�, and letKμ,Kν be the two pure strata of K (Tr ) ⊂ R

N , indexed byμ, ν. Consider
a sequence of points {ym ∈ Kν}m and a sequence of points {zm ∈ Kμ}m , both converging to
a point z	 ∈ Kμ. We need to verify that, if the tangent spaces {TymKν}m converge in R

N to
an affine space T	 containing z	, and the sequence of lines {lm ⊃ [zm, ym]}m converges to a
line l	 ⊂ R

N , then l	 ⊂ T	.
Equivalently, we need to verify that, if the spaces {Tm =def π−1(TymKν)}m converge

in R × R
N to an affine space T	 =def π−1(T	) ⊃ π−1(z	), and the sequence of 2-planes

{Lm =def π−1(lm)}m converges to a plane L	 =def π−1(l	) ⊂ R × R
N , then L	 ⊂ T	.

Let us call this conjectured property “Ã”. Note that all the affine spaces Tm, T	, Lm , and
L	, are fibrations with the line fibers parallel to the direction of R in R × R

N . We can
think of E(Ur ) as a graph of a smooth map from Er (Ur ) to

∏
s 	=r R

2|ωs |′ × R
n−|ωs |′ . Since

Qr : E(Ur ) → Er (Ur ) is a stratification-preserving diffeomorphism which respects the
v-induced 1-foliations Fr and Gr , the tangent spaces to the ν-indexed pure stratum in E(Ur )

are mapped isomorphically by Qr onto the tangent space to the ν-indexed pure stratum in
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Er (Ur ). So, with the help of the graph-manifold E(Ur ), any tangent space to the ν-indexed
pure stratum in Er (Ur ) determines the corresponding tangent space to the ν-indexed pure
stratum in E(Ur ).

Let τ̃	 denote the tangent space to E(Ur ) at a generic point z̃	 ∈ π−1(z	), and let τ	 denote
the tangent space to Er (Ur ) at the point Pr (z	). By the very definitions of T	 and L	 as limit
objects, and using that E(Ur ) is a smooth manifold carrying the foliation Fr (whose leaves
are parallel lines in R × R

N ), we get that T	 ⊂ τ̃	 and L	 ⊂ τ̃	.
Since Qr : E(Ur ) → Er (Ur ) is a diffeomorphism, Qr : τ̃	 → τ	 is an isomorphism of

vector spaces. Therefore there exist unique subspaces of τ̃	 that aremappedby Qr onto Qr (T	)

or onto Qr (L	); these are exactly the spaces T	 and L	, respectively. Thus, Qr (L	) ⊂ Qr (T	)

if and only if L	 ⊂ T	.
Hence property Ã is equivalent to the following property A:
If the spaces {Qr (Tm)}m converge in R × R

2|ωr |′ × R
n−|ωr |′ to the affine space Qr (T	),

and the sequence of planes {Qr (Lm)}m converges to a plane Qr (L	) ⊂ R × R
2|ωr |′ , then

Qr (L	) ⊂ Qr (T	).
By Corollary 3.3, Kr (Tr ) ⊂ R

2|ωr |′ × R
n−|ωr |′ is a Whitney space. Therefore, property

A is valid. So the property Ã has been validated as well. As a result, K (T (v)) is a Whitney
stratified space in R

N . ��
Remark 2.2. It is desirable to find a more direct proof of Theorem 3.2, the proof that will
validate Whitney’s property B̃ geometrically, without relying on the heavy general theorems
that claim: “semi-analytic sets areWhitney spaces”. In fact, the discriminant varieties inRd

coef
that correspond to various combinatorial patternsω for real divisors of real d-polynomials, do
have remarkable intersection patterns for their tangent spaces and cones (see [15]). Perhaps,
these properties of discriminant varieties should be in the basis of a “more geometrical”
proof. ��
Corollary 3.4 Let X be an (n +1)-dimensional compact smooth manifold, carrying a traver-
sally generic vector field v. Then the following claims are valid:

• The space of trajectories T (v) admits the structure of finite cell/simplicial complex.
• For each ω ∈ �•′〈n], the stratum T (v, ω�•) is a codimension |ω|′ subcomplex of T (v).
• With respect to an appropriate cellular/simplicial structure in X, the obvious map � :

X → T (v) is cellular/simplicial.
• Moreover, � : X → T (v) is a homotopy equivalence.

Proof By Theorem 3.2, the trajectory space T (v) of a traversally generic flow admits a
structure of a Whitney space embedded in some ambient Euclidean space.

The fundamental results of [5,11,25] claim that the Whiney spaces Y admit smooth trian-
gulations τ : T → Y , amenable to their stratifications. The adjective “smooth” here refers
to the homeomorphism τ being smooth on the interior of each simplex � (remember, for a
traversally generic v, the pure strata T (v, ω) are smooth manifolds!). With respect to such
triangulations, the strata are subcomplexes. Therefore T (v) admits a finite triangulation so
that each stratum T (v, ω�•) is a subcomplex.

For traversing vector fields v, over each open simplex�◦ ⊂ T (v), themap� : X → T (v)

is a trivial fibration whose fibers are either closed segments, or singletons. Thus each set
�−1(�◦) is homeomorphic either to the cylinder �◦ × [0, 1], or to �◦. This introduces a
cellular structure on X such that � becomes a cellular map. With a bit more work, one can
refine the cellular structures in X and T (v), so that � becomes a simplicial map.

Since, by Theorem 5.1 from [12], � : X → T (v) is a weak homotopy equivalence and
both spaces are CW -complexes, we conclude that � is a homotopy equivalence [27]. ��
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Fig. 4 The embedding α( f , v) of
X into the product T (v) × R

(v)

(v)   R X

Γ

Remark2.3.Most probably,T (v) is a compactCW -complex for any traversing andboundary
generic (and not necessary traversally generic) vector field v. However, for such vector fields,
we do not have the “open book” algebraic models (as in Fig. 2) for their interactions with
boundary ∂1X in the vicinity of a typical trajectory. So we do not know how to extend the
previous arguments to a larger class of traversing vector fields. ��

Next, we introduce one key construction from [19] which will turn out to be very useful
throughout our investigations, especially in proving the Holography Theorem 4.1.

Lemma 3.4 For any traversing vector field v on X, there is an embedding α : X ⊂ T (v)×R.
In fact, any pair ( f , v) such that d f (v) > 0 generates such an embedding α = α( f , v) in a
canonical fashion.

For any smooth map β : T (v) → R
N , the composite map

A(v, f ) : X
α( f ,v)−→ T (v) × R

β×id−→ RN × R

is smooth.
Any two embeddings α( f1, v) and α( f2, v) are isotopic through homeomorphisms, pro-

vided that d f1(v) > 0, d f2(v) > 0.

Proof Weknow that a traversingv admits aLyapunov function f . Since f is strictly increasing
along the v-trajectories, any point x ∈ X is determined by the v-trajectory γx through x and
the value f (x). Therefore, x is determined by the point γx × f (x) ∈ T (v) × R. By the
definition of topology in T (v), the correspondence α( f , v) : x → γx × f (x) is a continuous
map.

In fact, α( f , v) is a smooth map in the spirit of Definition 3.1: more accurately, for
any map β : T (v) → R

N , given by N smooth functions on T (v), the composite map
A(v, f ) : X → R

N ×R is smooth. The verification of this fact is on the level of definitions.
For a fixed v, the condition d f (v) > 0 defines an open convex cone C(v) in the space

C∞(X). Thus, f1 and f2 can be linked by a path within the space of nonsingular functions
on X , which results in α( f1, v) and α( f2, v) being homotopic through homeomorphisms. ��
Remark 2.4. By examining Fig. 4, we observe an interesting phenomenon: the embedding
α : X ⊂ T (v) × R does not extend to an embedding of a larger manifold X̂ ⊃ X , where
X̂\X ≈ ∂1X × [0, ε). In other words, α(∂1X) has no outward “normal field” in the ambient
T (v) × R; in that sense, α(∂1X) is rigid in T (v) × R! ��

4 The Causality-Based Holography Theorems

Now we are in position to formulate the question in the center of this paper:
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“Is it is possible to reconstruct a manifold X and a traversing v-flow on X from some
v-generated data, available on the boundary ∂ X?”

When such a reconstruction is possible (see Theorem 4.1 and Corollary 4.3), the corre-
sponding proposition deserves the adjective “holographic” in its name.4

Given a traversing field v on X , consider the map

Cv : ∂+
1 X(v) → ∂−

1 X(v)

that takes any point x ∈ ∂+
1 X to the next point y from the set γx ∩ ∂1X , the order on the

trajectory γx being defined by v. We call Cv the causality map of v (see Theorem 4.3 for a
justification of the name).

Of course the traversing fields have no closed trajectories. Nevertheless, in the world
of such fields on manifolds X with boundary, the causality map can be thought as a weak
substitute for the Poincaré return map (see [24] for the definition of the Poincaré return
map). The dynamics of Cv under (finitely many) iterations reflects the concavity of X with
respect to the v-flow (see [12]). The “iterations” of Cv are only partially-defined maps.
We are already familiar with the discontinuous nature of Cv . Implicitly, it animates the
investigations in [12–15]. The bright spot is that Cv is semi-continuous relative to any
nonsingular function f : X → R with the property d f (v) > 0. This semi-continuity has the
following manifestation: for any x ∈ ∂+

1 X and ε > 0, there is a neighborhood Uε(x) ⊂ ∂1X
such that

f (Cv(y)) − f (y) ≥ 0, and

f (Cv(y)) − f (y) > f (Cv(x)) − f (x) − ε for all y ∈ Uε(x). (4.1)

Note that Cv(x) = x exactly when x ∈ ∂−
2 X◦ ∪ ∂−

3 X◦ ∪ · · · ∪ ∂−
n+1X .

We may take alternative and more formal view of the map Cv .
Note that a traversing v-flow on X defines the structure of a partially ordered set on ∂ X :

we write x ≺ x ′, where x, x ′ ∈ ∂ X , if there is an ascending v-trajectory (not a singleton) that
connects x to x ′. Let us denote by C∂ (v) this poset (∂ X ,≺). Evidently, x � x ′ if and only if
x ′ is an image of x under a number of iterations of the causality map Cv , provided v being
boundary generic. Therefore, the poset C∂ (v) allows for a reconstruction of the causality map
Cv .
Remark 3.1.Note that Lemma 3.4 and formula (3.19) from [13] provide, among other things,
for local models of the causality maps Cv , generated by traversally generic fields v. In the
special coordinates (u, x, y), Cv amounts to taking each root of the u-polynomial P(u, x),
residing in a maximal interval I (x) where P(u, x) ≤ 0, either to the next root residing in
I (x), or to itself (when I (x) happens to be a singleton). By Theorem 2.2 from [13], this is
a map from the semi-algebraic set {P(u, x) = 0, ∂ P

∂u (u, x) ≥ 0, ‖x‖ ≤ ε} to the the semi-
algebraic set {P(u, x) = 0, ∂ P

∂u (u, x) ≤ 0, ‖x‖ ≤ ε}. These observations form a foundation
of the notion of holographic structure on ∂ X , a subject of future investigations. ��

For a traversing field v, the smooth functions on X that are constant along each v-trajectory
γ give rise to smooth functions on ∂1X . Such functions are constant along each Cv-trajectory
γ ∂ = γ ∩ ∂1X . Furthermore, any smooth function on ∂ X which is constant on each finite set
γ ∂ gives rise to a unique continuous function on X , which is constant along each trajectory
γ . However, such functions may not be automatically smooth on X !

For a traversing v, consider the algebra Ker(Lv) ≈ C∞(T (v)) of smooth functions on X
that are constants along each v-trajectory.

4 We own an apology to the fellow physisits: the name does not suggest a direct connection to the holography
principles in the quantum field theory and the dual theories of gravity.
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BA

Fig. 5 The PL and smooth canonical interpolating homeomorphisms φ�x,�y : R → R that map a given sequence
of 4 distinct numbers �x to a given sequence �y of 4 distinct numbers

Question 4.1 Given a boundary generic traversing vector field v on X, how to characterize
the image (trace) of the algebra Ker(Lv) in the algebra C∞(∂ X) in terms of the causality
map Cv? ��

Let L(k)
v be the k-th iteration of the Lie derivative in the direction of the field v. For a

boundary generic field v, we denote by m j (v) the algebra of smooth functions ψ on ∂ X

such that (L(k)
v ψ)

∣∣
∂k+1X = 0 for all k ∈ [1, j]. Let us denote by m j (v)Cv the subalgebra

of functions from m j (v) that are constants on each Cv-trajectory γ ∂ = γ ∩ ∂ X . It is easy
to check that Ker(Lv)|∂ X ⊂ mn(v)Cv ; however, the validity of the converse claim is not
obvious.

Temporarily we move away from the category smooth maps towards the category of
piecewise differentiable (“PD” for short) maps.

Definition 4.1 We say that a triangulation T∂ of ∂ X is invariant under the causality map
Cv : ∂+

1 X → ∂−
1 X , if the interior of each simplex from T∂ is mapped homeomorphically by

Cv onto the interior of a simplex.5 ��
Lemma 4.1 If v is a traversally generic field on X, then the boundary ∂1X admits a Cv-
invariant smooth triangulation.

Proof For boundary generic vector fields v, the map � : ∂1X → T (v) is finitely ramified
surjection. For a traversally genericv, the lemma follows fromCorollary 3.4: any triangulation
of the trajectory space T (v), consistent with its �•-stratification, with the help of �−1, lifts
to a triangulation T∂ of ∂1X . Indeed, for each ω, by Corollary 5.1 from [14], the map

� : �−1(T (v, ω)) ∩ ∂1X → T (v, ω)

is a trivial covering. By its very construction, the triangulation T∂ is Cv-invariant. ��
Remark 3.2. The existence of a triangulation on ∂1X by itself does not imply the existence
of a triangulation on T (v): there are smooth manifolds that can serve as finite covering
spaces over topological manifold bases that do not admit any triangulation! For example, the
standard sphere may cover a non-triangulable fake real projective space (see [3]). ��
5 Remember, Cv is typically a discontinuous map!

123



Journal of Dynamics and Differential Equations (2021) 33:235–274 259

Remark3.3.Recall that, byWhitehead’sTheorem [28], any smoothmanifold admits a unique
PD-structure (consistent with its differentiable structure). Therefore, different Cv-invariant
smooth triangulations {T∂ } of ∂1X all are PD-equivalent, but perhaps not as Cv-invariant
triangulations! In other words, a common refinement of two Cv-invariant differentiable trian-
gulations of ∂1X may be not Cv-invariant. We conjecture that any two smooth Cv-invariant
triangulations have a Cv-invariant smooth refinement. That is, the trajectory space T (v)

admits a unique PD-structure that is consistent with the preferred PD-structure on the smooth
manifold ∂1X . ��

Recall again that a function f on a closed subset Y of a smooth manifold X is called
smooth if it is the restriction of a smooth function, defined in an open neighborhood of Y .
Let v be a traversing field on a compact manifold X , and A ⊃ B two closed subsets of ∂1X .
We denote by X(v, A) and X(v, B) the sets of v-trajectories through A and B, respectively.
To prove Theorem 4.1 below, we need the following lemma.

Lemma 4.2 Let v be a traversing and boundary generic vector field on a compact manifold
X and A ⊂ B ⊂ ∂ X closed subsets. Consider a smooth function

f : B ∪ X(v, A) → R

such that f (x) < f (x ′) for any two points x 	= x ′ on the same trajectory, such that x ′ can
be reached from x by moving along the trajectory in the direction of v. Then f extends to a
smooth function F : X(v, B) → R such that Lv(F) > 0 on X(v, B).

Proof The argument is an induction by the increasing combinatorial types ω ∈ �• of the
v-trajectories that pass trough the points of the set B\A. With A being fixed, we intend to
increase gradually the locus B̃ ⊃ A to which the desired extension exists, until eventually
B̃ will coincide with the given B. In the proof, we put X(A) =def X(v, A) and X(B) =def
X(v, B). Since A and B are closed in ∂1X , both sets X(A) and X(B) are compact.

Thanks to the property of v to be boundary generic, the set of combinatorial types ω of
the v-trajectories in X is finite. So we may assume that, for some even d , all the elements
ω have the property |ω| ≤ d . Consider all the trajectories through the points of B\A and
their combinatorial types, which reside in the finite set �B . Among these types, we pick a
minimal element ω. Denote by Xω the subset of X(B) that is formed by the trajectories of
this minimal combinatorial type ω. Let X∂

ω =def Xω ∩ ∂1X . We denote by Tω the �-image
of Xω and by T (A) the �-image of X(A). By the choice of minimal ω, the trajectories that
are the limits of trajectories from Xω, but are not contained in Xω, have combinatorial types
residing in the sub-poset ω�• ∩ �B and thus are contained in X(A).

We are going to show that any given smooth function

f : X∂
ω ∪ X(A) → R,

with the properties as in the lemma, extends to smooth function

F : Xω ∪ X(A) → R

so that Lv(F) > 0 on Xω ∪ X(A). Since replacing f with f + const produces an equivalent
extension problem, we may assume without lost of generality that f > 0 . First we notice
that, for each trajectory γ ⊂ Xω, there is a smooth strictly monotone function Fγ : γ → R

that takes the given increasing values of the discrete function f |γ : γ ∩ X∂
ω → R. This

interpolating construction is based on a standard monotone block-function ϕa,b : [0, a] →
[0, b] that smoothly depends on the two non-negative parameters a, b. The infinite jet of
ϕa,b at 0 coincides with the jet of the function x , the infinite jet of ϕa,b at a coincides with
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the jet of the function x + b, and d
dx ϕa,b(x) > 0 in the interval [0, a]. Figure 5b shows the

four-points interpolation φ�x,�y that uses three block-functions of the type ϕa,b. Since we have
chosen f > 0, we get Fγ > 0 as well.

Let V (A) be an open regular neighborhood of T (A) in T (v). Put U (A) := �−1(V (A)).
Let f̃ A : U (A) → R be a smooth extension of f : X(A) ∪ B → R into a neighborhood

U (A) of X(A). We choose V (A) so small that, by continuity, d f̃ A(v) > δ > 0 and f̃ A > 0
in U (A). Also by the very construction of the extension f̃ A, its restriction to U (A) ∩ B
coincides with f . The two sets Tω and V (A) form an open cover of the space Tω ∪ V (A). Let
W =def Tω∩(V (A)\T (A)) and K =def �−1(W ). Then� : K → W is a v-oriented fibration
with fibers being closed segments or singletons. So it is a trivial fibration. At the same time,
� : K ∩ ∂1X → W is a finite cover with the fiber of cardinality sup(ω) = |ω| − |ω|′. The
triviality of � : K → W implies that the holonomy of the covering map � : K ∩ ∂1X → W
is trivial and thus K ∩ ∂1X is a product. So K ∩ ∂1X is homeomorphic to L × C , where C
is a set of cardinality sup(ω), L ⊂ ∂1X ∩ Xω, and � : L → W is a homeomorphism.

By the construction of K , its boundary consists of two disjoint compacts: ∂ ′K that resides
in X(A) and ∂ ′′K = X(ω) ∩ ∂U (A).

We claim that, for any ε > 0, there exists a smooth function ψ•
ε in the vicinity of K in

X̂ such that: 1) jet∞(ψ•
ε )|∂ ′K = jet∞(1)|∂ ′K , 2) jet∞(ψ•

ε )|∂ ′′K = jet∞(0)|∂ ′′K , and 3)
|Lv(ψ

•
ε )| < ε in K .6 Indeed, by Whiney’s version of the Urysohn lemma, there exists a

smooth ψ̃• : K → [0, 1] such that 1) and 2) are satisfied. Since the v-flow gives K a product
structure I×L ⊂ R×L , there exists a stretching diffeomorphismα : K → K̃ ≈ Ĩ×L (where
Ĩ ⊃ I ) along the v-directed component I so that the v-directional derivative of (α−1)∗(ψ̃•),
being restricted to K ⊂ K̃ , is ε-small. So ψ•

ε := (α−1)∗(ψ̃•)|K satisfies property 3) as well.
Let ψ A

ε : U (A) → [0, 1] be the function that equals 1 on X(A), equals ψ•
ε on K , and is

0 on Xω\(Xω ∩ U (A)). It is smooth thanks to the properties jet∞(ψ•
ε )|∂ ′K = jet∞(1)|∂ ′K

and jet∞(ψ•
ε )|∂ ′′K = jet∞(0)|∂ ′′K . Let ψω

ε := 1 − ψ A
ε . The pair {ψ A

ε , ψω
ε } is a smooth

partition of unity, subordinate to the open cover

{Xω\(X̄ω ∩ X(A)), X(A) ∪ K }
of the compact space Xω ∪ X(A).

Next, we form the smooth function Fω : Xω\(Xω ∩ X(A)) → R whose restriction
Fγ : γ → R to each v-trajectory γ ⊂ Xω is a monotone function, the canonical interpolation
(see Fig. 5b) of the given function f |γ : γ ∩ X∂

ω → R.
Consider the smooth function F̃ε : K → R, defined by the formula

F̃ε := ψω
ε · Fω + ψ A

ε · f̃ A.

It smoothly extends in the obvious way to a function Fε : X(A) ∪ Xω → R so that 1)
Fε = Fω on Xω\(Xω ∩ U (A)), 2) Fε = f on X(A) ∪ (Xω ∩ ∂1X).

By choosing an appropriate ε, we aim to insure that d Fε(v) > 0 in X(A)∪ Xω. Evidently
d Fε(v) > 0 in the complement to K . So we need to concentrate on d Fε(v)|K . Let K̄ be the
closure of K in X .

Put m =def min{minK̄ d Fω(v),minK̄ d f̃ A(v)}. By the properties of Fω and f̃ A, we have
m > 0. Then by the product rule,

Lv(F̃ε) = d Fε(v) ≥ m + dψω
ε (v) · Fω + dψ A

ε (v) · f̃ A.

6 We suspect that, in fact, there exists a smoothψ• that satisfies 1) and 2) andLv(ψ•) = 0 in K . Its existence
would simplify the following arguments.
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So it suffices to insure that RHS of this inequality is positive in order to guarantee that
Lv(Fε) > 0 in K̄ . Since dψ A

ε (v) = −dψω
ε (v) on K̄ , the last inequality may be written as

m + dψω
ε (v)(Fω − f̃ A) > 0.

Using that f̃ A > 0 and Fω > 0, the choice ε < inf K̄

{ m
|Fω− f̃ A |

}
validates that d Fε(v) > 0 in

X(A) ∪ Xω. For such a choice of ε > 0, the smooth function F =def Fε delivers the desired
extension.

Finally, we form the closed set A′ =def A ∪ X∂
ω ⊂ ∂1X and apply the previous arguments

to the new pair B ⊃ A′. This completes the inductive step A ⇒ A ∪ (Xω ∩ ∂1X). ��
By letting A = ∅ and B = ∂1X in Lemma 4.2, we get an instant implication:

Corollary 4.1 Let v be a traversing and boundary generic vector field on a compact smooth
manifold X. Consider a smooth function f : ∂ X → R such that f (x) < f (x ′) for any two
points x 	= x ′ on the same trajectory, such that x ′ can be reached from x by moving in the
direction of v.

Then f extends to a smooth function F : X → R such that Lv(F) > 0 on X. ��
If the following conjecture (linked toQuestion 4.1) is true, itwould strengthenTheorem4.1

below.

Conjecture 4.1 Let ∂1X ⊂ R×R
n be a smooth hypersurface, given by a polynomial equation

P(u, �x) =def ud +
d−1∑

i=0

xi u
i = 0

of an even degree d, and X be the domain, given by the polynomial inequality {P(u, �x) ≤ 0}.
We denote by γ (�x) ⊂ R × {�x} a segment/singleton with the following two properties:

• P(u, �x)|γ (�x) ≤ 0, and
• no larger segment γ̃ (�x) ⊃ γ (�x) has the property P(u, �x)|γ̃ (�x) ≤ 0

Consider a smooth diffeomorphism φ : ∂1X → ∂1X which maps each set γ (�x) ∩ ∂1X to
a similar set γ ′(�x ′) ∩ ∂1X, while preserving the multiplicity of the P-roots and their order
in the two sets.

Let F : X → R be a smooth function such that ∂ F
∂u = 0 in X. We denote by f the

restriction of F to ∂1X. Then the function φ∗( f ) extends to a smooth function G : X → R

such that ∂G
∂u = 0 in X. ��

Here is a special case of Conjecture 4.1 that we can validate. It is the case of a boundary
generic vector field in the vicinity of ∂−

2 X(v).
Let Q denote the hypersurface {u2+x0 = 0} inR1×R

1×R
n−1. The functions u : Q → R

and �y : Q → R
n−1 are smooth coordinates on Q. Let X ⊂ R

1 ×R
1 ×R

n−1 be the domain
defined by {u2 + x0 ≥ 0}.

The causality map α =def C∂u takes each point q = (u, x0, �y) ∈ Q to the point α(q) =
(−u, x0, �y).

We denote by K ⊂ Q the locus {u = 0} and by π : R × R
n → R

n the projection
(u, x0, �y) → (x0, �y).

Lemma 4.3 Let a function f : Q → R be of the class C2k(Q,R) and invariant under the
involution α : Q → Q. Then there exists a function g : (Rn)+ → R in the variables (x0, �y)

such that:
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• the restriction of π∗(g) to Q coincides with f ,
• g ∈ Ck((Rn)+,R).

Proof Put x = x0. We denote by | �w| the l1-norm of the vector �w.
Consider the Taylor expansion of f (u, �y) at a point a = (0, 0, �y) ∈ K . By the Taylor

formula, there exists a polynomial T 2k
f ,a(�u,��y) of degree ≤ 2k, an open neighborhood

U ( f , a) ⊂ Q of the point a ∈ Q, and a positive constant C = C(U ( f , a)) (depending on
the estimates of the order 2k + 1 partial derivatives of f in U ( f , a)) such that

| f (�u, �y + ��y) − T 2k
f ,a(�u,��y)| < C(|�u| + |��y|)2k+1 (4.2)

for all (�u, �y + ��y) ∈ U ( f , a).
Since f (α(u, �y)) = f ((u, �y)), there exists a function g : Rn+ → R such that π∗(g)|Q

coincides with f : just put g((π(u, �y)) =def f (u, �y).
Using that f (α(u, �y)) = f ((u, �y)) identically, T 2k

f ,a(�u,��y) has terms of even degrees

in �u only. We introduce the polynomial T̃ 2k
f ,a((�u)2,��y) in the variables (�u)2, �y by

the formula T̃ 2k
f ,a((�u)2,��y) =def T 2k

f ,a(�u,��y). Then we represent T̃ 2k
f ,a(�x,��y) as a

sum of a polynomial T̃ k
f ,a(�x,��y) of degree ≤ k in the variables x, �y and a polynomial

R̃>k
f ,a(�x,��y), comprised of monomials whose degrees exceed k.
Then there exists a positive constant C ′ such that

|R̃>k
f ,a(�x,��y)| < C ′(|�x | + |��y|)k+1

for all (�x, �y + ��y) in a sufficiently small open neighborhood V ( f , a) ⊂ R
n of π(a).

Therefore, in some open neighborhood W ( f , a) ⊂ R
n of π(a), the inequality (4.2) can

be rewritten as
∣∣g(�x, �y + ��y) − T̃ k

f ,a(�x) − T̃ >k
f ,a(�x)

∣∣

≤ ∣∣g(�x, �y + ��y) − T̃ k
f ,a(�x)

∣∣ + ∣∣T̃ >k
f ,a(�x)

∣∣

< C(
√|�x | + |��y|)2k+1 + C ′(|�x | + |��y|)k+1. (4.3)

Note that the positive function

ψ(|�x |, |��y|) =def (
√|�x | + |��y|)2k+1/(|�x | + |��y|)k+1

is bounded from above in an open neighborhood U = U(k) of (0, 0) in the plane.
Hence, in the vicinity of π(a) = (0, �y), the inequality (4.3) transforms into the desired

Taylor inequality
∣∣g(�x, �y + ��y) − T̃ k

f ,a(�x)
∣∣ < C̃(|�x | + |��y|)k+1,

where the constant C̃ =def C · supU ψ(|�x |, |��y|) + C ′ > 0. Therefore g ∈ Ck(Rn+,R). ��
Definition 4.2 (Property A)

Let v be a traversing boundary generic vector field on a compact connected smooth
manifold with boundary.

We say that v has property A if each v-trajectory is transversal to ∂1X at some point, or
has the combinatorial type ω = (2). This property A is equivalent to the requirement

X
(
v, (33)� ∪ (4)�

) = ∅. (4.4)
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In particular, if each connected component of ∂1X is concave or convex with respect to the
v-flow, then property A is satisfied. Equivalently, if ∂3X(v) = ∅, then all the combinatorial
types of v-trajectories are of the form (11), (1 2 . . . 2︸ ︷︷ ︸

k

1), (2), so property A is valid. ��

In particular, A is valid for any gradient vector field of a Morse function f on a closed
manifold M , being restricted to the compliment X to a disjoint union of sufficiently small
convex balls, centered on the f -critical points.

Now, we are in position to prove themain result of this paper, dealing with the topological
rigidity of boundary value problems for a rather general class of ODEs.

Theorem 4.1 (The Holography Theorem) Let X1, X2 be two smooth compact connected
(n + 1)-manifolds with boundary, equipped with traversing and boundary generic vector
fields v1, v2, respectively.

• Then any smooth diffeomorphism �∂ : ∂1X1 → ∂1X2 such that

�∂ ◦ Cv1 = Cv2 ◦ �∂

extends to a homeomorphism � : X1 → X2 which maps v1-trajectories to v2-trajectories
so that the field-induced orientations of trajectories are preserved. The restriction of �

to each trajectory is a smooth diffeomorphism.
• If v1 has the property A from Definition 4.2, then the homeomorphism � is a smooth

diffeomorphism. In particular, this is the case for any concave vector field v1.
• In general, the conjugating homeomorphism � : X1 → X2 is a smooth diffeomorphism

outside the closed subsets

X1
(
v1, (33)� ∪ (4)�

) ⊂ X1 and X2
(
v2, (33)� ∪ (4)�

) ⊂ X2.

If the fields are traversally generic, then the set Xi (vi , (33)�) is of codimension 4 and
the set Xi (vi , (4)�) is of codimension 3.

Proof We divide the proof into three steps.
(1) First, using that �∂ : ∂ X1 → ∂ X2 is a homeomorphism that commutes with the

causality maps Cvi , we see that �∂ gives rise to a well-defined homeomorphism �T :
T (v1) → T (v2) of the trajectory spaces.

We claim that �T is a homeomorphism of �•-stratified spaces. When the arguments
apply to both v1 and v2, in order to simplify the notations, we put v =def vi and X =def Xi ,
where i = 1, 2.

Let � : X → T (v) be the obvious surjective map. Since v is traversing, any trajectory
reaches the boundary; so the obvious map �∂ : ∂1X → T (v) is onto as well.

Evidently, the fiber of �∂ consists of the maximal chain of points x1 � x2 � · · · � xq

from ∂1X such that Cv(x j ) = x j+1 for all j ∈ [1, q − 1]. By the definition of Cv , such a
chain is exactly the ordered finite locus γx1 ∩ ∂1X .

We claim that the combinatorial type ω = ω(γ ) ∈ �• of each v-trajectory γ ⊂ X can be
recovered from the causality map Cv : ∂+

1 X → ∂−
1 X in the vicinity of γ ∩ ∂1X .

For each point y ∈ ∂1X , its multiplicity m(y) with respect to a boundary generic flow v

can be detected by the unique pure stratum ∂ j X◦ := ∂ j X◦(v), j = m(y), to which y belongs.
On the other hand, it can be also detected in terms of the causality map Cv and its iterations,
restricted to the vicinity of y.

Let us justify this observation. Recall that, for boundary generic vector fields, Lemma 2.2
provides uswith amodel for the divisors {Dγ̂ }γ̂ , localized to a sufficiently small neighborhood
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Uy of y (the set γ̂ ∩ ∂ X ∩ Uy is the support of Dγ̂ |Uy ). We choose the v̂-flow adjusted

neighborhood Uy with some care: first we chose a small smooth transversal section S ⊂ X̂
of the v̂-flow, which contains y, then we consider the union Vy of v̂-trajectories through the
points of S, and finally we let Uy = Vy ∩ X .

In the v̂-flow adjusted coordinates (u, x), ∂1X is given by an equation {F(u, x) = 0},
where a smooth function F has 0 for its regular value. Then the v̂-trajectory γ̂ is given by
the equation {x = 0} and the v-trajectory γ by {F(u, x) ≤ 0, x = 0}.

Since v is boundary generic, each point y = (u	, 0) ∈ γ ∩ ∂ X has multiplicity m(y) ≤
dim(X). So F(u, 0) has a zero at u	 of multiplicity m(y) ≤ dim(X). By the Taylor formula,
this implies that any smooth function g(u) that is C∞-close to F(u, 0) has finitely many
zeros of finite multiplicities, which are localized to the vicinity of the zero set {F(u, 0) = 0}.
Moreover, in the vicinity of u	, g(u) = P(u) · Q(u), where P(u) is a real polynomial of
degree m(y) and Q(u) > 0. Therefore any such function g(u) is of the form P̃(u) · Q̃(u),
where P̃(u) is a real polynomial of the degree |ω| = ∑

y∈γ∩∂ X m(y) and Q̃ > 0. Thus,
for any trajectory γ ′ = {x = x ′} in the vicinity of γ (for any x ′ sufficiently close to 0), the
intersection γ ′ ∩ ∂1X is given by the equation, {Fx ′(u) =def F(u, x ′) = 0}, and the zero
divisor Dγ ′ , associated with γ ′, coincides with the zero divisor DR(P̃) of a real polynomial
P̃ of degree |ω| (note that deg(DR(P̃)) ≡ |ω| mod 2).

Using these local models, the maximal length of a chain

z1 � z2 =def Cv(z1) � z3 =def Cv(z2) � . . .

in any sufficiently small v-adjusted neighborhood Uy ⊂ ∂ X of y is &m(y)/2', where &∼'
denotes the integral part of a positive number. Indeed, if m(y) is even, then the maximal
number of roots of even multiplicity for a polynomial of degree m(y) is m(y)/2, and by
Lemma 3.1 [13], such u-polynomials gx ′(u) of the form

∏m(y)/2
i=1 (u − u	 − εi )

2, where all
{εi }i are distinct, are present in an arbitrary small neighborhood of the polynomial (u−u	)

m(y)

in the coefficient space.
When m(y) is odd, then the maximal length of a chain z1 � z2 � . . . in the vicinity

of y in ∂1X is (m(y) − 1)/2 = &m(y)/2'. It corresponds either to the m(y)-polynomials
with one simple root, followed by the maximal number of multiplicity 2 roots, or to the
m(y)-polynomials with the maximal number of multiplicity 2 roots, followed by a simple
root.

Evidently, the order in which the points γ ∩ ∂1X appear along each trajectory γ is also
determined by Cv . So the combinatorial type ω(γ ) ∈ �• of each v-trajectory γ ⊂ X can
be recovered from the causality map Cv : ∂+

1 X → ∂−
1 X and its partially-defined iterations.

As a result, the information encoded in Cv is sufficient for reconstructing the �•-stratified
space T (v), the image of a finitely ramified map �∂ : ∂1X → T (v).

Recall that, for traversally generic vector fields v, the combinatorial type ω of any trajec-
tory γ determines the �•-stratified topology of the germ of T (v) at γ ([14], Theorem 5.2);
in contrast, for just traversing and boundary generic v, this determination by ω alone fails
miserably.

So the diffeomorphism �∂ : ∂1X1 → ∂1X2, which commutes with the causality maps
Cv1 and Cv2 , must take any chain of points

z1 � z2 = Cv1(z1) � z3 = Cv1(z2) � . . .

in ∂1X1 to a similar chain in ∂1X2 with the same multiplicity pattern. Therefore, any smooth
diffeomorphism �∂ , which commutes with the causality maps, gives rise to a homeomor-
phism�T : T (v1) → T (v2)which preserves the�•-stratifications of the two spaces. Recall
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Fig. 6 Transversal foliations
F(v̂),G( f̂ ) in X̂ , F(v),G( f ) in
X , and various loci
L̂c, Lc, M̂c, Mc , X̂†, relevant to
the arguments below
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c
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that the topology in T (vi ) is defined to be the weakest topology for which the obvious map
Xi → T (vi ) is continuous.

Since the stratifications {∂ j Xi (vi )} j can be recovered from the causality maps Cvi , we get
�∂(∂ j X1(v1)) = ∂ j X2(v2) for all j > 0.

(2) Our next goal is to lift �T to a desired homeomorphism (diffeomorphism) � : X1 →
X2.

Since v2 is a traversing vector field, by Lemma 4.1 from [12] (or Lemma 5.6 from [18]),
there exists a smooth Lyapunov function f2 : X2 → R such that Lv2( f2) > 0 everywhere in
X2. We use f2 to form an auxiliary function

f ∂
1 =def (�∂)∗( f2) : ∂1X1 → R.

Since�∂ commutes with the causality maps Cv1 and Cv2 , we conclude that�
∂ maps each

v1-ordered finite set γ ∩∂1X1 to the v2-ordered set�T (γ )∩∂1X2. Therefore if f2(x) < f2(y)

for some x, y ∈ �T (γ ) ∩ ∂1X2, then f ∂
1 ((�∂)−1(x)) < f ∂

1 ((�∂)−1(y)). As a result, f ∂
1 :

∂1X1 → R satisfies the hypothesis of Corollary 4.1. Applying this corollary, we produce
a smooth function f1 : X1 → R which extends f ∂

1 and has the property d f1(v1) > 0
everywhere in X1.

With the Lyapunov function f1 : X1 → R for v1 in place, we are ready to define the
homeomorphism � : X1 → X2 that extends �∂ . It takes a typical v1-trajectory γ ⊂ X1 to
the v2-trajectory γ ′ ⊂ X2 that projects, with the help of �2, to the point �T (γ ) ∈ T (v2).
The restriction of � to each trajectory γ is given by the formula

φ12
γ (x) =def

(
f2|�−1

2 (�T (γ ))

)−1 ◦ ( f1|γ ). (4.5)

(4.5) makes sense since, thanks to the property f ∂
1 = (�∂)∗( f ∂

2 ), the ranges of f1 : γ →
R and f2 : �−1

2

(
�T (γ )

) → R coincide and the two functions deliver diffeomorphisms
between their domains and ranges. In (4.5), as usual, we abuse notations: “γ ” stands for
both a v-trajectory in X and for the corresponding point [γ ] := �(γ ) in the trajectory space
T (v). Now we introduce the desired 1-to-1 continuous map � : X1 → X2 by the formula
�(x) =def x ′, where x ′ belongs to the v2-trajectory over the point�T (γx ) ∈ T (v2) such that
φ12

γx
(x) = x ′. By the very construction of the function f1 : X1 → R, we get �|∂ X1 = �∂ .

Evidently, � is a homeomorphism since �T is a homeomorphism, distinct v1-trajectories
are mapped to distinct v2-trajectories, and the restriction of � to each v1-trajectory is a
homeomorphism. Moreover, the restriction of � to each trajectory is a smooth orientation
preserving diffeomorphism. Similarly, �−1 has these properties as well.
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(3) In fact, thanks to the smooth dependence of solutions of a non-singular ODE on its
initial values, in the cases described by the property A (perhaps, always, if Conjecture 4.1 is
true), � is a diffeomorphism.

To validate this claim, as usually, we embed Xi properly in a larger open manifold X̂i and
extend vi to vector field v̂i on X̂i so that d f̂i (v̂i ) > 0 for an appropriate smooth function
f̂i : X̂i → R which extends fi . We denote by F(v̂i ) the corresponding smooth oriented
1-dimensional foliation on X̂i . It is transversal to the smooth n-dimensional foliation G( f̂i ),
defined by the constant level hypersurfaces { f̂ −1

i (c)}c∈R. Let L̂c
i =def f̂ −1

i (c) ⊂ X̂i denote a

typical smooth leaf of G( f̂i ). Note that when c is a critical value of fi |∂1Xi , the locus f −1
i (c)

my not be a smooth hypersurface in Xi .
The open sets {M̂c

i =def
⋃

x∈L̂c γ̂x }c∈R cover Xi and thus {∂ M̂c
i =def M̂c

i ∩ ∂1Xi }c∈R is
an open cover of ∂1Xi . Put Mc

i =def
⋃

x∈Lc γ̂x .

Finally, we introduce the set X̂†
i as the union of all v̂i -trajectories through ∂1Xi . So X̂†

i is

a closed subset of X̂i and contains Xi . Figure 6 shows the relevant loci.
By a construction, similar to the one of�, the diffeomorphism�∂ extends to a homeomor-

phism�† : X̂†
1 → X̂†

2. Indeed, each trajectory γ̂ ⊂ X̂†
i is determined by a point z ∈ ∂ Xi . Let

γ̂ =def γ̂z . If a leaf L̂c
i hits γ̂z , then the intersection L̂c

i ∩ γ̂z is a singleton. So we may define

�† by the formula �†(x) =def γ̂�∂ (z) ∩ L̂c
2, where x ∈ X̂†

1, c = f̂1(x), and z ∈ γ̂x ∩ ∂1X1.
Since �∂ conjugates the two causality map, this definition does not depend on the choice of
z ∈ γ̂x ∩ ∂1X1.

If x ∈ X̂1 is such that there exists z ∈ γ̂x ∩ ∂1X1 with the multiplicity m(z) of tangency
between γ̂z and ∂ X1 being odd, then using the local models of boundary generic fields from
Lemma 2.4 and Formula (2.10), we see that any v̂1-trajectory in the vicinity of z hits ∂1X1

(since any real polynomial of an odd degree has a real root). Therefore, in the vicinity of
such x , the homeomorphism �† extends further to a homeomorhism �̂ : X̂1 → X̂2. Since
each v1-trajectory, but a singleton, is bounded by two points of an odd multiplicity, the only
exceptions are the cases when γ̂x ∩ ∂ X1 is a singleton of an even multiplicity m(x); in the
vicinity of such x , X̂1 and X†

1 differ. For these x’s, we need an additional reasoning for
the existence of an extension of �† to a germ-homeomorphism �̂ : X̂1 → X̂2 that maps
v̂1-trajectories to v̂2-trajectories. It is also based on the local models of boundary generic
vector fields from Lemma 2.4. In fact, Lemma 4.3 provides this reasoning for the points
z ∈ ∂−

2 X1(v1)\∂3X1(v1), where the field v1 is strictly convex.
By the construction of �̂, we get: (i) �̂∗( f̂2) = f̂1, and (ii) �̂(γ̂ ) is a leaf of F(v̂2) for

any v̂1-trajectory γ̂ . Thus �̂(L̂c
1) = L̂c

2 and �̂(M̂c
1) = M̂c

2 for any c ∈ R. Given two smooth
manifolds Y1 and Y2, a map � : Y1 → Y2 is smooth if and only if its composition with each
local coordinate in Y2 is a smooth function in the local coordinates on Y1.

The leaves of the smooth foliations F(v̂i ) and G( f̂i ) can be locally defined by freezing
complementary groups of the appropriate smooth local coordinates in X̂i . Recall that �̂

maps the smooth foliation F(v̂1) to the smooth foliation F(v̂2), the restriction of �̂ to the
leaves-trajectories being a smooth diffeomorphism. Since �̂ also maps the smooth foliation
G(v̂1) to the smooth foliation G(v̂2), if the restrictions {�̂ : L̂c

1 → L̂c
2}c∈R of �̂ to the leaves

of G(v̂1) are smooth maps, we may conclude that the homeomorphism � : X1 → X2 is
a smooth map. Since �∂ is a smooth diffeomorphism, the image �∂(z) ∈ ∂1X2 depends
smoothly on z ∈ ∂1X1. Therefore, the image point �(x) ∈ X2 depends smoothly on a point
z ∈ γx ∩ ∂ Mc

1 , where c = f1(x) (as long as γz ∩ Lc
1 	= ∅).

A priori, this does not imply that �(x) depends smoothly on x! For this assertion to be
valid, it would be sufficient to validate Conjecture 4.1.
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However, as we will see now, when the property A is available, we can overcome this
difficulty.When the v̂1-trajectory γ̂ through apoint x ∈ X1 is transversal to ∂1X1 at somepoint
z ∈ ∂1X1, then, in the vicinity of x , the v̂1-inducedmap p∂

1 : ∂ M̂c
1 → L̂c

1, c = f1(x), admits a
smooth local section σ1 : L̂c

1 → ∂ M̂c
1 which is transversal to the fibers of p1 : M̂c

1 → f̂ −1
1 (c).

That section is delivered by the boundary ∂1X1 in the vicinity of z. In such a case,� is smooth
in the vicinity of x , since the composition p∂

2 ◦ �∂ ◦ σ1 : L̂c
1 → L̂c

2 is a smooth map. This
conclusion applies to all v1-trajectories γ that are bounded by at least one point ofmultiplicity
1. The exceptions are the trajectories bounded by two points of odd multiplicities that exceed
1, that is, by the trajectorieswhose combinatorial type belongs to the poset (33)� ⊂ �•. Other
exceptions to the transversality case may occur for the trajectories whose combinatorial types
belong to the poset (4)� ⊂ �•. They include all the combinatorial types (2k), where k ≥ 2. In
the special case of trajectories of the combinatorial type (2) ∈ �•, the local differentiability
of � in the vicinity of z ∈ ∂−

2 X1(v1)\∂3X1(v1) follows from Lemma 4.3. Indeed, in the
special smooth coordinates (u, x0, �y), where �y = (y1, . . . , yn−1), in the vicinity of such
point z, the boundary ∂1X1 is given by an equation {u2+ x0 = 0}, while X1 by the inequality
{u2+x0 ≥ 0}. Each v̂1-trajectory is specified by freezing the coordinates (x0, �y). The smooth
hypersurfaces {L̂c

1} are transversal to the v̂1-trajectories. Since �̂∂ maps ∂2X1(v1)\∂3X1(v1)

to ∂2X2(v2)\∂3X2(v2), a similar system of smooth coordinates is available in the vicinity of
�∂(z). We use the symbol “ ’ ” to denote them.

By the previous transversality argument, the homeomorphism � may fail to be a local
diffeomorphism at the points of the locus ∂2X1(v1); so we need to investigate whether � is
differentiable in the vicinity of ∂−

2 X1(v1).
The following arguments are based on Lemma 4.3 and use its notations. In the appropriate

local coordinates (u, x0, �y) and (u′, x ′
0, �y′), the smooth diffeomorphism �∂ : Q → Q′ of

two quadratic hypersurfaces maps the p1-folding locus K to the p2-folding locus K ′ and
commutes with the two causality maps α : Q → Q and α′ : Q′ → Q′.

The local coordinate function x ′
0 : X2 → R pulls back to a smooth α′-invariant func-

tion p∗
2(x ′

0) : Q′ → R. Since �∂ is a smooth diffeomorphism, the further pull-back
φ = (�∂)∗(p∗

2(x ′
0)) : Q → R is a smooth function on Q. Because �∂ commutes with

α and α′, φ is α-invariant. Therefore, by Lemma 4.3, φ is a restriction to Q of a smooth
u-independent function χ in the variables x0, �y.

Similarly, using that �∂ commutes with α and α′, we conclude that ψ = (�∂ ◦ p2)∗(�y′) :
Q → R

n−1 is a smooth and α-invariant map. Therefore ψ is a restriction to Q of a smooth
map θ : X1 → R

n−1 that depends only on the coordinates (x0, �y).
At the same time, �̂∗( f̂2) = f̂1. The functions ( f̂2, x ′

0, �y′) form a smooth local system of
coordinates. By the arguments above, the pull-back under �̂ of these coordinates are smooth
on X̂1. Therefore, � is a smooth homeomorphism in the vicinity of K . By the same token,
exchanging the roles of X1 and X2, �−1 is smooth as well.

This concludes the proof of Theorem 4.1. ��
Remark 3.5. Let v be a traversing boundary generic vector field on X . Among other things,
Theorem 4.1 claims that any diffeomorphism of the boundary ∂1X , which commutes with
the (partially defined) causality map Cv , extends to a homeomorphism (when v1 satisfies A,
to a smooth diffeomorphism) of X ! ��
Corollary 4.2 Let X1, X2 be two smooth compact connected (n + 1)-manifolds with bound-
ary, equipped with traversing and boundary generic fields v1, v2, respectively. Then any
diffeomorphism �∂ : ∂ X1 → ∂ X2 such that

�∂ ◦ Cv1 = Cv2 ◦ �∂
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generates a stratification-preserving homeomorphism �T : T (v1) → T (v2) of the corre-
sponding �•-stratified trajectory spaces.

If v1 has property A from Definition 4.2, then �T induces an isomorphism

(�T )∗ : C∞(T (v2)) → C∞(T (v2))

of the algebras of smooth functions on the two trajectory spaces—the two spaces are “dif-
feomorphic”.

Proof By the proof of Theorem 4.1, there exists a diffeomorphism � : X1 → X2 which
takes v1-trajectories to v2-trajectories and extends �∂ , while preserving their combinatorial
tangency patterns. Therefore, � maps every smooth function f : X2 → R that is constant
on each v2-trajectory to a continuous function f ◦ � : X1 → R that is constant on each v1-
trajectory. When X1(v1, (33)� ∪ (4)�) = ∅, then � is a smooth diffeomorphism; so �∗( f )

is a smooth function also constant along the v1-trajectories.
Similar argument applies to the inverse homeomorphism/ diffeomorphism (�)−1 : X2 →

X1. ��
Theorem 4.1 has another “holographic” implication:

Corollary 4.3 For a boundary generic and traversing vector field v on X, the topological type
of the pair (X ,F(v)) can be recovered from each of the following structures on its boundary
∂1X:

1. the causality map Cv : ∂+
1 X(v) → ∂−

1 X(v),
2. the poset (C∂ (v),�) whose elements are the points of ∂1X,
3. the category Cat∂ (v), determined by the poset (C∂ (v),�).

• When v has property A from Definition 4.2, the above homeomorphism is a smooth
diffeomorphism.

• As a result, all the topological invariants of X (such as rational Pontryagin classes of X)
can be recovered from each of the three previous structures on ∂1X.

• When v has property A, all the invariants of the smooth structure on X (such as all the
characteristic classes of the tangent bundle τ(X)) can be recovered from each of the
three previous structures on ∂1X.

Proof Consider two manifolds X1 and X2 which carry traversing boundary generic vector
fields v1 and v2. Assume that the two manifolds share a common boundary: ∂1X1 = ∂1X2.
If the two fields induce identical causality maps, then, according to Theorem 4.1, the diffeo-
morphism �∂ := id∂1X , extends to a homeomorphism � : X1 → X2 so that the oriented
foliation F(v1) is mapped to the oriented foliation F(v2), the homeomorphism � being a
diffeomorphism on each leaf.

The equivalence of the three structures in the statement of the corollary has been estab-
lished in the discussion that has followed Formula (4.1).

When v1 has property A, the homeomorphism � may be assumed to be a smooth diffeo-
morphism. ��
Example 4.1. The statement of Corollary 4.3 is not obvious even for the nonsingular gradient
flows on 2-dimensional manifolds. Consider a compact surface X with a connected boundary
∂1X ≈ S1 and a traversally generic field v on X . Then ∂+

1 X is a disjoint union of q arcs in
S1. The set ∂−

1 X is a disjoint union of equal number of arcs.
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The causality map Cv : ∂+
1 X → ∂−

1 X can be represented by a graph Gv ⊂ ∂+
1 X × ∂−

1 X ,
drawn in a set of q × q of black unitary squares of the 2q × 2q checker board, the sums of
indexes of each square in the 2q × 2q table being odd. The graph Gv has a finite number of
discontinuity points with well-defined left and right limits for each arc of Gv . The interior
of each arc of Gv is smooth.

According to Corollary 4.3, this graph Gv “knows” everything about the topology of X
and the dynamics of the un-parametrized v-flow on it, up to a diffeomorphism of X ! Even
the claim about the topological type of X has some subtlety: according to the Morse formula
for vector fields [22], to calculate χ(X), and thus to determine the topological type of X , we
need to know not only χ(∂+

1 X) = q (which we obviously do), but also the integer χ(∂+
2 X),

which can be extracted by iterating the map Cv . This presumes that the polarity of each of
the 2q points from ∂2X can be recovered from Cv or Gv . We leave to the reader to discover
the recipe. ��
Example 4.2. For a transversally generic v on a smooth 4-dimensional X , the locus
X(v, (33)�) = ∅ for dimensional reasons. Since X(v, (4)�) is a finite set residing in ∂1X ,
we conclude that all the Gauge invariants of compact smooth 4-manifolds X with boundary
can be recovered from the causality map Cv : ∂+

1 X → ∂−
1 X . As a practical matter, this

recovery must be very challenging. ��
The next theorem suggests that traversing vector fields and their causality maps give rise

to a new representation of smooth manifolds with the spherical boundary.

Theorem 4.2 For n ≥ 3, any compact connected smooth (n+1)-dimensional manifold X with
the spherical boundary can be represented, up to a homeomorphism, by a semi-continuous
map C : Dn+ → Dn− between a pair of n-balls. The C-fibers are finite of cardinality n + 1 at
most, and a generic fiber is of cardinality 1. This map C captures the topological type of X.

For n = 3, C captures the smooth topological type of the 4-manifold X.

Proof Consider any compact connected smoothmanifold X with a spherical boundary ∂1X =
Sn . By Theorem 3.1 from [12] and Theorem 3.5 from [13], there is an open set D(X) of
traversally generic vector fields v, such that ∂+

1 X is diffeomorphic to a ball Dn+ ⊂ Sn .
Then ∂−

1 X is the complimentary ball Dn−. According to Corollary 4.3, for any v ∈ D(X),
the topological type of the manifold X is determined by the semi-continuous causality map
Cv : Dn+ → Dn− (equivalently, by its graph �(Cv) ⊂ Dn+ × Dn−).

For n ≤ 3, the locus X(v, (33)�) = ∅ and X(v, (4)�) is a finite set, residing in ∂1X . So
by Corollary 4.3, this map Cv captures the smooth topological type of X . ��

Compare this description of X as a map Cv : Dn+ → Dn− with the description of the
trajectory space T (v), given by the Origami Theorem 3.1 from [19]. For a specially designed
traversally generic v, the Origami Theorem presents the trajectory space as the continuous
image of a ball Dn , where n = dim(∂1X).
Example 4.3 Consider a liquid flow trough a given volume X with a smooth boundary. We
assume that the flow velocity v does not vanish in X . We think about ∂ X as the hypersurface,
where a multitude of measuring devices are positioned. The basic assumption is that their
presence and measuring activity does not alter the flow.

Any particle which enters the volume is registered, and its next appearance at a point of
∂1X is registered as well. According to the Holography Theorem 4.1, these data allow for a
reconstruction of the bulk X and of the un-parametrized dynamics of the flow in it, up to a
homeomorphism (a diffeomorphism) of X which is identity on its boundary. ��

Now consider any time-dependent vector field u(t), t ∈ R, on a n-dimensional manifold Y
without boundary. Then u(t) gives rise to a non-vanishing vector field v =def (u(t), 1) on the
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manifold Y × R. Note that v is a gradient-like field with respect to the function T (y, t) = t
on Y × R. We call a pair (y, t) an event since we think of T as time, and of Y as space.

Let X ⊂ Y ×R be a 0-dimensional compact submanifold with a smooth boundary. Since
dT (v) = 1, any v-trajectory γ (t) that passes through a point of X is contained in X for a
compact set of instances t ∈ R.

Assume that X ⊂ Y × R is such that v is boundary generic with respect to the boundary
∂1X . In view of Theorem 3.5 from [13], this assumption can be satisfied by a small pertur-
bation ṽ of v. In fact, such perturbation ṽ can be of the form (û(t, y), 1) since the property
of a field to be boundary generic depends only on its direction, and not on its magnitude. Let
us call X the “event manifold” and its boundary ∂1X the “event horizon”. Note that the
event manifold is chosen as independent set of data, not directly related to the time-dependent
dynamic system u(t) on the manifold Y . We call the events in X internal and in Y × R\X
external.

Thus u(t) defines the causalitymapCv : ∂+
1 X(v) → ∂−

1 X(v)which takes each “entrance”
point x0 = (y0, t0) on the event horizon ∂1X to the closest along the v-trajectory trough x0
“exit” point x1 = (y1, t1) on ∂1X .

We can think of the event x0 as the cause of the event x1, so that Cv indeed becomes the
causality map or the causality relation on the horizon ∂1X .

The Holography Theorem 4.1 and Corollary 4.3 have the following important interpreta-
tion which applies to time-dependent vector fields:

Theorem 4.3 (The Causal Holography Principle)
Let u(t), t ∈ R, be a time-dependent smooth vector field on a n-dimensional smooth manifold
Y without boundary.

For any compact (n + 1)-dimensional smooth event manifold X ⊂ Y × R such that the
field v = (u, 1) is boundary generic with respect to ∂1X, the causality relation on the event
horizon ∂1X determines the pair (X ,F(v)), up to a homeomorphism of X which is the identity
on the event horizon. When v has property A from Definition 4.2, then the causality relation
on the event horizon ∂1X determines the pair (X ,F(v)), up to a smooth diffeomorphism of
X which is the identity on the event horizon. ��
Remark 3.6. We do not claim that the reconstruction of the event manifold X from the
causality map also allows for the reconstruction of its slicing by the fixed-time frames! ��

In turn, Theorem 4.3 has has the following interpretation:

Corollary 4.4 (The topological rigidity of continuations for ODEs) Let Y be a smooth
n-manifold without boundary and X ⊂ Y ×R a compact smooth submanifold of dimension
n + 1. Let u1(t), u2(t), t ∈ R, be two time-dependent smooth vector fields on Y such that
u1(y, t) = u2(y, t) for all “external” events (y, t) ∈ (Y ×R)\X. Assume that v1 = (u1, 1)
and v2 = (u2, 1) are boundary generic fields on X. Suppose that the two causality maps,
Cv1 : ∂+

1 X → ∂−
1 X and Cv2 : ∂+

1 X → ∂−
1 X are identical. Then the two dynamical systems,

generated by v1 and v2 on Y ×R, are topologically equivalent via a homeomorphism which
is the identity on the event horizon. When v1 has property A (in particular, when the field v1
is concave or convex with respect to ∂1X), then the two dynamical systems are equivalent
via a smooth diffomorphism which is the identity on the event horizon. ��

In search for further applications of the Holography Theorem 4.1, let us let us pay a
brief visit to the Classical Hamiltonian/Lagrangian Mechanics. Let T M be a tangent bundle
of a n-dimensional smooth manifold M without boundary, and q1, . . . , qn, q̇1, . . . , q̇n local
coordinates in T M . In these coordinates (q, q̇), the Lagrange function L : T M×R → Rmay
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be written as L(q, q̇, t). The Euler–Lagrange equations
{ d

dt
∂L
∂q̇i

− ∂L
∂qi

= 0
}

I∈[1,n] describe
the curve γ = q(t) which minimizes the path integral

∫ t1
t0

L dt . The Hamiltonian function

H : T ∗M × R → R is defined by H(p, q, t) := p · q̇ − L(q, q̇, t) with p = ∂L
∂q̇ . In these

coordinates, the Euler–Lagrange equations transform into the Hamilton system of ODEs:

q̇ = ∂ H

∂ p
, ṗ = −∂ H

∂q
= ∂L

∂q
,

∂ H

∂t
= −∂L

∂t
. (4.6)

In the canonical coordinates (q, p, t), we consider the vector field

vH =def (q̇, ṗ, 1) =
(∂ H

∂ p
,−∂ H

∂q
, 1

)
, (4.7)

whose projection on T ∗M is the time-dependent Hamiltonian vector field.
Applying Theorem 4.3 to the Hamiltonian system (4.6), we get the following statement.

Corollary 4.5 For a smooth manifold M without boundary, consider the smooth Hamiltonian
system (4.6) on T ∗M. Assume that:

• a number c is a regular value of a smooth function F : T ∗M × R → R,
• the set

X =def {x ∈ T ∗M × R| F(x) ≤ c}
is compact in T ∗M × R,

• the vector field vH from (4.7) is boundary generic with respect to the event horizon

∂1X =def {x ∈ T ∗M × R| F(x) = c}.
Then the causality map/relation CvH on the event horizon ∂1X allows for a reconstruction

of the pair (X ,F(vH )), up to a homeomorphism of X which is the identity on ∂1X.
If ∂3X(vH ) = ∅, then the reconstruction is possible, up to a smooth diffeomorphism. ��

Question 4.2 The main unresolved issue here is: “How abundant are the Hamiltonian sys-
tems {vH }H that are traversing and boundary generic (alternatively, traversally generic)
with respect to a given event horizon ∂1X ⊂ T ∗M × R?” ��

It follows from [13] that if a Hamiltonian field vH has this property relative to a given
∂1X , then for any Hamiltonian function H̃ that is C∞-close to H , the vector field vH̃ also
will be traversing and boundary generic with respect to ∂1X .

We know that any non-vanishing gradient-like field v can be C∞-approximated by a
traversally generic field on X (Theorem 3.5 from [13]). So the open question is whether an
approximation is possible within the universe of Hamiltonian fields.

5 On Applications of Holography Theorems to Geodesic Flows

In [17], we apply the Holographic Causality Principle to the geodesic flows on the spaces
of unit tangent vectors of compact Riemannian manifolds with boundary. Such applications
include the inverse geodesic scatteringproblems and the geodesic billiards. Let us describe
briefly the flavor of these applications. Let M be a compact connected n-dimensional smooth
Riemannian manifold with boundary, and g a smooth Riemannian metric on M . Let SM →
M denote the tangent spherical bundle of M . Then the metric g induces a geodesic vector
field vg , a non-vanishing section in the tangent bundle T (SM) (for example, see [1] for the
definition and basic properties of geodesic flows).
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Definition 5.1 Let M be a compact connected n-dimensional smooth Riemannian manifold
with boundary. We say that a Riemannian metric g on M is non-trapping if the geodesic
vector field vg on T (SM) admits a smooth differentiable Lyapunov function F : SM → R

such that d F(vg) > 0. ��
For a non-trapping g, any geodesic curve γ ⊂ M is an image of a closed segment, or is a

singleton. The converse is true as well [17].
For non-trapping metrics g, and only for such metrics, the causality map

Cvg : ∂+
1 (SM)(vg) → ∂−

1 (SM)(vg)

is well-defined. In fact, its domain and range are diffeomorphic via the reflection map. We
call Cvg the scattering map since it takes any pair (m, v), where m ∈ ∂ M and a unitary
tangent vector v ∈ Tm(M) points inside M or is tangent to its boundary ∂ M , to the pair
(m′, v′), where m′ ∈ ∂ M and v′ ∈ Tm′(M) points outside M or is tangent to ∂ M . Here
m′ 	= m is the first point of ∂ M that lies on the unique geodesic curve γ ⊂ M that passes
trough m in the direction of v, and v′ is the velocity vector of γ at m′. If, in the vicinity of
m, γ ∩ M = m, then we put Cvg (m, v) =def (m, v).

Definition 5.2 We say that a metric g on M is boundary generic if the geodesic vector field
vg is boundary generic with respect to ∂1(SM) in the sense of Definition 2.2. ��

In the space of all Riemannian metrics on M , the non-trapping metrics and the boundary
generic metrics form open sets.

Definition 5.3 Given two compact smooth Riemannian n-manifolds, (M1, g1) and (M2, g2),
consider the geodesic fields vg1 on SX1 and vg2 on SX2, respectively. They generate the
oriented 1-dimensional geodesic foliations F(vg1) and F(vg2).

• We say that the metrics g1 and g2 are geodesically smoothly conjugated if there is a
smooth diffeomorphism � : SM1 → SM2 that maps each leaf of F(vg1) to a leaf of
F(vg2), the orientations of the leaves being preserved

• We say that the metrics g1 and g2 are geodesically topologically conjugated if there is
a homeomorphism � : SM1 → SM2 that maps each leaf of F(vg1) to a leaf of F(vg2),
the map � on every leaf being an orientation-preserving diffeomorphism. ��
Applying Theorem 4.1, we get the following theorem [17].

Theorem 5.1 (The topological rigidity of the geodesic flow for the inverse scattering
problem) Let (M1, g1) and (M2, g2) be two smooth compact connected Riemannian n-
manifolds with boundaries, and let the metrics g1, g2 be non-trapping and geodesically
boundary generic.

Assume that the scattering maps

Cvg1 : ∂+
1 (SM1) → ∂−

1 (SM1) and Cvg2 : ∂+
1 (SM2) → ∂−

1 (SM2)

are conjugated by a smooth diffeomorphism �∂ : ∂1(SM1) → ∂1(SM2). Then the metrics g1
and g2 are geodesically topologically conjugated. If each component of the boundary ∂ M1 is
either concave or convex with respect to g1, then the two metrics are geodesically smoothly
conjugated. ��
Corollary 5.1 Assume that a smooth compact connected Riemannian manifold M admits a
geodesically boundary generic non-trapping Riemannian metric g. Then the scattering map
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Cvg : ∂+
1 (SM) → ∂−

1 (SM) allows for a reconstruction of the �•-stratified topological type
of the space T (vg) of un-parametrized geodesics on M. If each component of the boundary
∂ M is either concave or convex with respect to a non-trapping g, then Cvg allows for a
reconstruction of the �•-stratified smooth topological type of T (vg), determined by the
algebra C∞(T (vg)) of smooth vg-invariant functions on SM (see Definition 3.1). ��

We say that manifolds M and M ′ share the same stable topological/smooth type, if
M × Sn−1 and M ′ × Sn−1 are homeomorphic/ smoothly diffeomorphic. Theorem 5.1 leads
to the following statement [17]:

Theorem 5.2 Assume that a compact connected n-manifold M with boundary admits a
boundary generic non-trapping Riemannian metric g. Then the geodesic scattering map
Cvg : ∂+

1 (SM) → ∂−
1 (SM) allows for a reconstruction of the cohomology rings H∗(M;Z)

and H∗(M, ∂ M;Z), as well as for a reconstruction of the homotopy groups {πi (M)}i<n.
Moreover, the Gromov simplicial semi-norms ‖ ∼ ‖� on H∗(M;R) and on H∗(M, ∂ M;R)

(see [7]) can be reconstructed form Cvg . In particular, the simplicial volume ‖[M, ∂ M]‖�

of the fundamental cycle [M, ∂ M] can be recovered form Cvg . If, in addition, M has a triv-
ial tangent bundle, then the stable topological type of M is also reconstructable from the
geodesic scattering map. ��

In the spirit of Theorem 1.3 from [2], by combining the Mostov Rigidity Theorem [23]
with Theorems 5.1 and 5.2, in [17] we get the following result. It is inspired by the image of
geodesic motion of a bouncing particle in the complement M to a number of disjoint balls,
placed in a closed hyperbolic manifold N , dim(N ) ≥ 3. The balls are placed so “dense”
in N that every geodesic curve hits some ball. Under these assumptions, the probe particle
collisions with the boundary ∂ M “feel the shape of N”.

Theorem 5.3 Let n ≥ 3. Consider two closed smooth locally symmetric Riemannian n-
manifolds, (N1, g1) and (N2, g2), with negative sectional curvatures. Let a connected
manifold Mi (i = 1, 2) be obtained from Ni by removing the interior of a smooth codimen-
sion zero submanifold Ui ⊂ Ni , such that the induced homomorphism π1(Mi ) → π1(Ni ) of
the fundamental groups is an isomorphism.7

Let the restriction of the metric gi to Mi be boundary generic and non-trapping. Assume
also that the two geodesic scattering maps

Cvg1 : ∂+
1 (SM1) → ∂−

1 (SM1), Cvg2 : ∂+
1 (SM2) → ∂−

1 (SM2)

are conjugated via a smooth diffeomorphism �∂ : ∂(SM1) → ∂(SM2).8 Then �∂ determines
a unique diffeomorphism φ : N1 → N2 such that φ∗(g2) = c · g1 for a constant c > 0. ��

For non-trapping geodesic flows on Riemmanian manifolds M with boundary, the scat-
tering map Cvg : ∂+

1 SM → ∂−
1 SM can be composed with the reflections with respect to ∂ M

(according the law “the angle of incidence is equal to the angle of reflection”) to produce
the billiard map Bvg : ∂+

1 SM → ∂+
1 SM . For Bvg , arbitrary iterations are available. The

dynamics of Bvg -iterations is the subject of flourishing research. In particular, in [20], we
analyze some “holographic” properties of the Bvg -dynamics.

7 By a general position argument, this the case when Ui has a spine of codimension 3 at least. In particular,
Ui may be a disjoint union of n-balls.
8 Thus the boundaries ∂U1 and ∂U2 are stably diffeomorphic.
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