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Abstract
We develop validated numerical methods for the computation of Floquet multipliers of
equilibria and periodic solutions of delay differential equations, as well as impulsive delay
differential equations. Using our methods, one can rigorously count the number of Floquet
multipliers outside a closed disc centered at zero or the number of multipliers contained in
a compact set bounded away from zero. We consider systems with a single delay where the
period is at most equal to the delay, and the latter two are commensurate. We first represent
the monodromy operator (period map) as an operator acting on a product of sequence spaces
that represent the Chebyshev coefficients of the state-space vectors. Truncation of the num-
ber of modes yields the numerical method, and by carefully bounding the truncation error
in addition to some other technical operator norms, this leads to the method being suitable
to computer-assisted proofs of Floquet multiplier location. We demonstrate the computer-
assisted proofs on two example problems. We also test our discretization scheme in floating
point arithmetic on a gamut of randomly-generated high-dimensional examples with both
periodic and constant coefficients to inspect the precision of the spectral radius estimation of
the monodromy operator (i.e. stability/instability check for periodic systems) for increasing
numbers of Chebyshev modes.

Keywords Impulsive delay differential equations · Floquet multipliers · Chebyshev series ·
Rigorous numerics · Computer-assisted proofs

1 Introduction

Linearized growth and decay rates near steady states and invariant manifolds play a central
role in the analysis of dynamical systems. When these manifolds have simple descriptions
such as fixed points or periodic orbits, the computation of these growth rates is equivalent to an
eigenvalue problem. For delay differential equations (or more generally, retarded functional
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differential equations), several authors have proposed solutions to the “delay eigenvalue
problem”. For autonomous linear equations, these includemethods based on discretization of
the associated infinitesimal generator [3,4,18,33] and the solution operator [15]. In the scope
of equations with periodic coefficients, there are several results concerning discretization and
characteristic matrices [15,16,26,29,30].

Discretization schemes can provide strong convergence properties, but these still may not
be able to provide mathematical proof concerning one or more approximate eigenvalues.
For example, the spectral accuracy of the infinitesimal generator method with Chebyshev
collocation [5] guarantees that each eigenvalue of the delay differential equation (DDE) is
well-approximated by some eigenvalue of the discretized problem. Such convergence results
exist also for methods based on the solution operator [16] and they can be summarized by
the statement: every eigenvalue of the DDE is the limit of some eigenvalue of the discretized
problem. However, one is often interested in a situation dual to this. That is, one wants to
know when one or more eigenvalues of the discretized problem are close (or have the same
relative location in the complex plane) as a pairing of eigenvalues of the DDE.

There has been progress recently on methods that can automatically prove (with the assis-
tance of a computer and interval arithmetic) results concerning the location of eigenvalues
of DDEs based on the eigenvalues of some discretization. We highlight the 2017 paper by
Miyajima [23] on verified error bounds for particular eigenvalues, and the 2020 paper by
Lessard and Mireles James [21] on validation of generalized Morse indices. These papers
both concern autonomous problems, so one motivation of the present paper is to build on the
results of Lessard and Mireles James to accomodate DDEs with periodic coefficients. Since
we get a numerical discretization scheme for the monodromy operator (i.e. the period map)
for free out of our analysis, we simultaneously get an alternative to the method of Gilsinn and
Potra [16] for the computation of Floquet multipliers (the linearized stability-determining
quantities) of DDEs with periodic coefficients.

In the case of autonmous DDEs, if the explicit location of an eigenvalue is required to
high accuracy then there are several ways this can be accomplished [7,21,23]. Of mention
is that in this case, the eigenvalues are precisely the zeroes λ of the characteristic equation
det(�(λ)) = 0, where �(λ) is the characteristic matrix of the DDE. The characteristic
equation is transcedental in λ, but the result is still a scalar (complex) zero-finding problem
(�(λ) is a d ×d matrix with d equal to the dimension of the DDE), so a given eigenvalue can
be verified to a provable level of accuracy using the radii polynomial method; see Theorem
2.2 of [21] for a direct application of the method to the present situation. While characteristic
matrices for periodic DDEs can be constructed [26,30] and the eigenvalues of these matrices
are related to the Floquet multipliers, a discretization step must still be performed. Even if the
characteristic matrix is explicitly available, such as when the delay is a multiple of the period
[32], the computation of the matrix generally requires at least computing the Cauchy matrix
of a time-periodic ordinary differential equation and computing weighted integrals involving
this and the periodic coefficients. We have been unable to find publications concerning error
estimates between the approximate eigenvalues of discretized characteristic matrices for
periodic DDEs and the Floquet multipliers. As such, another goal of the present paper is to
devise a strategy to validate the location of specific Floquet multipliers of DDEswith periodic
coefficients.

Some physical systems are characterized by smooth evolution in addition to brief bursts
of activity. This might be due to exogenous forcing or it might be an intrinsic property of the
system. If these bursts of activity incur relatively large distrubances to the state and do not
occur too frequently, it can be beneficial to model them as discontinuities. One mathematical
formalism for such a construction is impulsive dynamical systems, which include impulsive
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differential equations [2,20,25], impulsive evolution equations [13] and impulsive functional
differential equations [8,28]. One of the simplest classes of impulsive dynamical system is
one in which these discontinuities (hereafter called impulses) occur at fixed times. Even
for more complicated classes of problems where impulses are triggered according to mixed
spatio-temporal relations, the case of fixed (in time) impulses is still relevant since linear sys-
tems of this type arise linearization at bounded or periodic trajectories [2].When the sequence
of impulses has periodic structure and this is compatible with the continuous dynamics, the
result is a periodic system. The Floquet theory has been developed for linear periodic impul-
sive retarded functional differential equations [10] and characteristic equations/matrices for
special cases of periodic linear impulsive DDE [17,27] have been developed, but at present
there is no rigorous numerical method to compute Floquet multipliers for a general class of
such equations. Our approach in this paper will simultaneously address the approximation of
Floquet multipliers for impulsive delay differential equations by way of a Chebyshev spec-
tral method, computer-assisted proof of Floquet multiplier location, and computer-assisted
proof of the count of the number of unstable Floquet multipliers (or generally, the number of
Floquet multipliers having absolute value greater than some prescribed value). Formally, the
most broad class of systems for which our numerical method applies is systems of the form

ẋ = A(t)x(t) + B(t)x(t − q), t /∈ pZ

�x = C1x(t−) + C2x(t − q), t ∈ pZ,

for (sufficiently regular) real matrix-valued functions A(t) and B(t), real matrices C1 and
C2, and natural numbers p (period) and q (delay). Necessary background on these systems
appears in Sect. 2. More generally, we can treat systems with commensurate period and delay
by way of a time scaling.

With the previous paragraph in mind, we will state and prove all results in the context
of periodic impulsive delay differential equations. This class of equations includes delay
differential equations with periodic coefficients by taking C1 = C2 = 0 in the displayed
equation above, so our results can be applied to those equations as well. Finally, although this
is an extreme level of reduction, the results also apply to ordinary and impulsive differential
equations without delays. To give the reader a taste of the kinds of results that can be proven
using our validated numerics framework, we still state two theorems that are consequences
of results that appear in (and are proven in) Sect. 8.

Theorem Let β = 0.1, ρ = 1, K = 1, d1 = 0.02, d2 = 0.03 in the following time-delay
predator-prey model with impulsive harvesting

ẋ = r x(t) (1 − x(t)/K ) − βx(t)y(t)

ẏ = ρβe−d1τ x(t − τ)y(t − τ) − d2y(t), t /∈ Z

�y = −hy(t−), t ∈ Z.

The equilibrium (K , 0) = (1, 0) enjoys the following properties for any r > 0:

• its unstable manifold is one-dimensional if h = 0.060 and τ ∈ {1, 2, 3};
• it is locally asymptotically stable if h = 0.075 and τ ∈ {1, 2, 3};
• its unstable manifold is one-dimensional for all h ∈ [0, 0.060] if τ = 1;
• with τ = 1, one of its Floquet multipliers crosses the unit circle at some h ∈

[0.065, 0.066], and over this entire range of h there is exactly one eigenvalue whose
absolute value is greater than 0.8.
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Theorem Consider the following two-dimensional delay equation modeled on the normal
form of the Hopf bifurcation:

ẋ = βx(t) − π y(t) − x(t)(x2(t − τ) + y2(t))

ẏ = πx(t) + β y(t) − y(t)(x2(t) + y2(t − τ)).

For τ ∈ N, there is a nontrivial (i.e. nonzero) branch of periodic solutions parameterized by
β. At parameter β = 3

2 and τ = 1, the unstable manifold of this periodic solution is at least
two-dimensional.

1.1 Overview of the paper

The scope of this paper is fairly broad. It is therefore expected that many readers will only
be interested in the numerical method and its applications to stability. Others, however, will
want to see all the technical details concerning computer-assisted proofs. The difficulty is
that the theory is intrinsically tied to the numerical method and its machine implementation.
To ensure a sufficiently wide range of researchers are able to appreciate the content, we will
overview the paper here with these points in mind.

The core of the numerical method is derived in Sects. 3 and 4 with the help of the back-
ground from Sect. 2. The first, Sect. 3, concerns an explicit representation of the monodromy
operator. In Sect. 4.1 we review Chebyshev expansion and convolution, and in Sect. 4.2
we represent the monodromy operator on a sequence space by way of correspondence with
Chebyshev series. The representation of the operator is on an infinite-dimensional space,
and the explicit numerical method is obtained by projecting to a finite-dimensional subspace
by mode truncation and projection. These mechanisms are described at the beginning of
Sect. 4.3, in Sect. 4.4 and in Remark 6.3.1. The last remark involves some technical machin-
ery, and a simplified implementation that would function only in the case of equal period
p and delay q could be obtained by following Remark 6.1.1 from Sect. 6.1 instead. Once
these details are ironed out, implementing the method for general period and delay amounts
to simple matrix algebra and this is covered in Sect. 7.2, where some convergence guaran-
tees are also discussed. Several examples featuring the double arithmetic implementation are
provided in Sect. 9 to show how the implementation scales with respect to the dimension of
the problem and the order of the method.

Concerning the rigorous numerics, we prove a few necessary results concerning Floquet
theory in Sect. 2. Section 3 is devoted to an abstract functional-analytic representation of the
monodromy operator. In Sect. 4 we transition from the abstract representation to a concrete
representation of the monodromy operator in terms of Chebyshev series and establishes the
basis for computer-assisted proof of eigenvalue location. Section 5 contains several auxiliary
bounds of linear maps and operators that are needed later. Section 6 contains proofs of
(computable) upper bounds for various abstract operators that are needed for computer-
assisted proofs of eigenvalue location. We discuss MATLAB implementation in Sect. 7,
while Sect. 8 is devoted to examples of computer-assisted proof.

We wrap up the paper with a conclusion in Sect. 10.

2 Preliminaries

In this section we will state relevant background concerning impulsive delay differential
equations and Floquet multipliers. We will state some basic assumptions that will be needed
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throughout the paper, andwewill prove results concerning the regularity of the eigenfunctions
that will be needed later.

2.1 Impulsive delay differential equations

In this paper, a nonlinear periodic impulsive delay differential equation will consist of of a
delay differential equation together with a discrete-time update rule:

ẋ = f (t, x(t), x(t − τ)), t �= tk (1)

�x = g(k, x(t−), x(t − τ)), t = tk . (2)

The periodicity comes from the assumption that there exists some n > 0 and T > 0 such
that tk+n = tk + T for all integers k, while also g(k + n, ·, ·) = g(k, ·, ·) and f (t + T , ·, ·) =
f (t, ·, ·). Equation (2) should be interpreted as

x(tk) − x(t−k ) = g(k, x(t−k ), x(tk − τ)), (3)

where x(t−) denotes the limit from the left at time t . Systems with multiple and time-varying
delays can also be considered. More generally, impulsive retarded functional differential
equations can be considered without periodicity assumptions. We refer the reader to [1,2,
25,28] for background on impulsive differential equations. In future we will refer to (1)–(2)
simply as a nonlinear IDDE, and will drop the reference to periodicity. In what follows we
will assume that f is C1 in its second and third variables and continuous from the right and
bounded in its first, while g is C1 in its second and third variables.

The following definitions are adapted from [8]. A solution (unconditional on any initial
data) x : R → R

d of (1)–(2) is a function that is continuous from the right, possesses limits
on the left, and satisfies both equations (1) and (2), with the derivative being interpreted as
a right-hand derivative. These solutions are continuous from the right at times tk with finite
limits on the left. Any natural phase space for (1)–(2) with a vector space structure must
therefore contain functions that have many discontinuities. To see why, observe that at each
time tk , the solution in R

d will have a discontinuity, so the solution history θ �→ xt (θ) for
xt : [−τ, 0] → R

d and defined by xt (θ) = x(t + θ) will have a discontinuity at the lagged
argument θ whenever t + θ = tk . This observation leads naturally to the choice of phase
space

RCR([−τ, 0],Rd ) = {φ : [−τ, 0] → R
d : φ

is continuous from the right and has limits on the left}.
These are the right-continuous regulated functions. We will often write it simply as
RCR when there is no ambiguity. When equipped with the supremum norm ||φ|| =
supθ∈[−τ,0] |φ(θ)| for | · | some norm on R

d , RCR becomes a Banach space. One can then
define a solution satisfying the initial condition xs = φ for some (s, φ) ∈ R × RCR to be
a function x : [s − τ, s + β) → R

d such that x |(s,s+β) satisfies (1)–(2) and xs = φ. Under
the conditions described above, such a solution is guaranteed to exist and be unique for any
(s, φ) ∈ R×RCR, and defined on a maximal interval of existence. Following this, an IDDE
generates a (nonlinear) two-parameter semigroup on RCR through the solution map in the
usual way.

It is typical for nonlinear IDDE to possess no fixed points, and these will typically not
be robust under perturbations of the vector field f and jump map g. This can be seen by
observing that the problem of finding zeroes of the map F : Rd → R

d × R
d defined by
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F(x) = ( f (x), g(x)) is generally overdetermined. However, a generic periodic solution
(of period jT for j ∈ N) is robust under small T -periodic perturbations (this is a fairly
direct consequence of Theorem 5.1.1 from [10], the Floquet theory and the implicit function
theorem) of f and g, so in this regard periodic solutions are the simplest structurally stable
invariant sets one can study in IDDE.

2.2 Monodromy operator and Floquet multipliers

The local stability of a periodic solution γ is determined by the trivial solution y = 0 of the
linearization

ẏ = D2 f (t, γ (t), γ (t − τ))y(t) + D3 f (t, γ (t), γ (t − τ))y(t − τ), t �= tk (4)

�y = D2g(k, γ (t−), γ (t − τ))y(t−) + D3g(k, γ (t−), γ (t − τ))y(t − τ), t = tk . (5)

If γ has period jT for some j ∈ N, then (4)–(5) has period T̃ = jT .
Let t �→ y(t, s, φ) denote the unique solution of (4)–(5) satisfying the initial condition

ys(·, s, φ) = φ. Each (eventually compact) linear operator Mt : RCR → RCR defined by

Mtφ = yt+T̃ (·, t, φ) (6)

is called a monodromy operator. The spectrum of each monodromy operator is identical, so
by convention we will usually refer to M := M0 as the monodromy operator. γ is locally
asymptotically stable if all eigenvalues of M are in the open ball B1(0) = {z ∈ C : |z| < 1}.
When some eigenvalues have unit modulus but all others have modulus less than one, the
stability of γ depends on some more algebraic properties (eg. whether the restriction of M
to the direct sum of generalized eigenspaces associated to the eigenvalues of unit modulus
has a diagonalizable representation) and dynamical properties (i.e. the flow on its centre
manifold). If any eigenvalue has modulus greater than one, γ is unstable. The eigenvalues of
M are called Floquet multipliers.

The computation of Floquet multipliers is important for several reasons. Apart from
verifying stability or instability of a periodic solution, the number of Floquet multipliers
outside of the disc B1(0) together with the dimension of their generalized eigenspaces dic-
tates the dimension of the unstable manifold of γ . The classification of a bifurcation in a
parameter-dependent system depends on the structure of the centre fibre bundle in additional
to higher-order normal form data, all of which depends on the Floquet multipliers on the
unit circle and their associated eigenfunctions. For these reasons, we will now dispense with
the explicit dependence on γ and consider the more general linear periodic impulsive delay
differential equation

ẏ = A(t)y(t) + B(t)y(t − τ), t �= tk (7)

�y = C1(k)y(t−) + C2(k)y(t − τ), t = tk . (8)

We will refer to such a system as a linear periodic IDDE (impulsive delay differential equa-
tion). The periodicity heremeans that there exists T > 0 andn > 0 such that A(t+T ) = A(t),
B(t + T ) = B(t), C1(k + n) = C1(k), C2(k + n) = C2(k), and tk+n = tk + T .

2.3 Eigenfunctions are densely nonsmooth

Our approach to rigorous computation of Floquetmultiplierswill be based in part on a suitable
representation of the eigenfunctions of the monodromy operator as infinite series with good
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convergence properties. Unfortunately, the problem of computing the Floquet multipliers for
the fully general periodic system (7)–(8) seems not very amenable to this approach, even if
we assume A and B are analytic. The following proposition and its associated proof should
demonstrate the main problem.

Proposition 2.3.1 Let φ be an eigenfunction of the monodromy operator M associated to the
scalar impulsive delay differential equation

ẏ = αy(t − τ), t �= k ∈ Z,

�y = β y(t−), t = k ∈ Z,

for α �= 0, β �= −1 and τ ∈ R\Q irrational. Let (a, b) ⊂ [−τ, 0]. There exists q > 0 such
that φ|(a,b) is at most q times differentiable.

Proof t �→ y(t; 0, φ) is a solution that can be represented in the form etλ p(t) for p periodic
with period one and differentiable from the right. Substituting this ansatz into the IDDE and
simplifying, it follows that p is a 1-periodic solution of

ṗ = −λp(t) + αe−λτ p(t − τ), t �= k

�p = β p(t−), t = k.

We first prove that p is discontinuous at each integer k ∈ Z. Suppose not, then we must have
p(k) = 0 since β �= −1. p is therefore a 1-periodic solution of the DDE

ṗ = −λp(t) + αe−λτ p(t − τ)

with p(0) = 0. The phase space of the above DDE decomposes C = C([−τ, 0],R) as

C = R ⊕ S ⊕ N ⊕ U ,

where S, N andU are the stable, centre andunstable subspaces respectively,while R generates
those solutions that have superexponential decay: ψ ∈ R if and only if

lim
t→∞ p(t, 0, ψ)ert = 0, ∀r > 0.

Consequently, any periodic solution must be generated by an element of the centre subspace
and is therefore of the form

p(t) = c1eiωt + c2e−iωt

for someω > 0. Since p must be 1-periodic, we getω = 2π . The condition p(0) = 0 implies
p(t) = c sin(2π t) for a constant c, with c �= 0 because φ is an eigenfunction. Substituting
this ansatz into the delay differential equation, performing some algebraic simplifications
and recalling that α �= 0, we can derive the equation

(
eλτ (2π + λ)

α
− cos(2πτ)

)
sin(2π t) + sin(2πτ) cos(2π t) = 0.

From the linear independence of sine and cosine, τ must be rational, which contradicts our
assumption of τ being irrational. We conclude that p must be discontinuous at the integers.

Next, we prove that if p is infinitely many-times differentiable at some t ∈ R, then
t − kτ /∈ Z for all integers k ≥ 0. We prove this by strong induction on k. We already know
that p is discontinuous on the integers, so we must have t /∈ Z for p to be differentiable
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at t . Suppose now that p is infinitely many-times differentiable and that t − jτ /∈ Z for
j = 0, . . . , k for some k ≥ 0. We have

p(k+1)(t) = −λp(k)(t) + αe−λτ p(k)(t − τ). (9)

If p is indeed infinitely many-times differentiable at t , then the right-hand side must be
continuous at t . A straightforward inductive proof shows that each of p(k) and p(k)(t − τ)

can be written as a finite linear combination of the terms p(t − jτ) for j = 0, . . . , k + 1,
and in particular the right-hand side of (9) written in terms of these has a nonzero coefficient
on p(t − (k + 1)τ ). By the strong induction hypothesis, t − jτ /∈ Z for j = 0, . . . , k. If the
right-hand side of (9) is indeed continuous at t , then we must also have t − (k + 1)τ /∈ Z.
This completes the inductive proof, and it follows that t − jτ /∈ Z for all j ≥ 0.

Finally, let (a, b) ⊂ [−τ, 0]. The restriction φ|(a,b) is C∞ if and only if p|(a,b) is also
C∞. Consider the sequences

pn = nτ, cn = [pn]1,
where [x]1 = x − �x�. cn is dense in [0, 1], from which it follows that there exist integers
k, j ≥ 0 such that pk ∈ (a + j, b + j). Define c = kτ − j ∈ (a, b). From previous analysis,
p is not infinitely many-times differentiable at c since c − kτ = − j ∈ Z. �

When the delay and the period are non-commensurate, it should be expected that the
eigenfunctions of a linear periodic IDDE will have a lower order of smoothness in any
subinterval of their domain. In particular, the set of points where an eigenfunction fails to be
infinitely many times differentiable is dense in in its domain.

2.4 Regularity of the eigenfunctions under commensurate delay and period

With the observations of the previous section in mind, we will need to make the following
additional assumption on the structure of (7)–(8) in order to have a chance of eigenfunctions
with appropriate series representations. The following definition will be used fairly often.

Definition 2.4.1 Let X be a complex Banach space and let (ak, bk) be a (finite, infinite or
bi-infinite) sequence of nondegenerate open intervals with bk = ak+1. A function f : I ⊂
R → X (possibly real-valued) for an interval I is piecewise-analytic with respect to (ak, bk)

if:

• f is continuous from the right and locally bounded,
• for each k, there exists an open neighbourhoodUk of [ak, bk] inC such that f |(ak ,bk )∩I =

f̃k |(ak ,bk )∩I for some analytic function f̃k : Uk → X .

Given such a function f , the sequence f̃k will denote the analytic extensions from (ak, bk).

Assumption 0 The following conditions are satisfied.

A0.1 The sequence tk satisfies tk+1 = tk + T and, additionally, C1(k) and C2(k) are constant.
A0.2 There exist p, q ∈ N such that qT − pτ = 0.
A0.3 The T -periodic functions t �→ A(t) and t �→ B(t) are piecewise-analytic with respect

to the open intervals Ik :=
(

t0 + kT

p
, t0 + (k + 1)T

p

)
for k ∈ Z.
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We refer to the above asAssumption 0 because we will shortly perform a change of variables
that will make its characterization a bit nicer. Under this assumption, we make the change of
variables

t − t0 = τ

q
s

for s a new rescaled time. Defining z(s) = y(t(s)) and observing that τ
q = T

p , we get the
IDDE

dz

ds
= T

p
A

(
t0 + T

p
s

)
z(s) + T

p
B

(
t0 + T

p
s

)
z(s − q), s /∈ pZ

�z = C1z(s−) + C2z(s − q), s ∈ pZ.

Observe that the matrix-valued functions s �→ Ã(s) = T
p A(t0 + T

p s) and s �→ B̃(s) =
T
p B(t0 + T

p s) are now periodic functions with period p and are analytic on the intervals
(k, k + 1) for k ∈ Z, while the restriction to each such interval is the itself the restriction
of some analytic function. Dropping the tildes and relabeling the variables, we can therefore
consider without loss of generality IDDEs of the form

ẏ = A(t)y(t) + B(t)y(t − q), t /∈ pZ (10)

�y = C1y(t−) + C2y(t − q), t ∈ pZ, (11)

with p, q ∈ N and p-periodic functions A and B that are piecewise-analytic with respect to
the open intervals (k, k + 1) for k ∈ Z.

Remark 2.4.1 If the linear system (7)–(8) is actually the linearization (4)–(5) at a periodic
solution from a nonlinear periodic IDDE such as (1)–(2), the piecewise-analytic condition
of A0.3 will be satisfied provided f is analytic, γ is piecewise-analytic with respect to the
intervals Ik , and both A0.1 and A0.2 are satisfied. The piecewise-analyticity of periodic solu-
tions γ w.r.t. these intervals is a technical detail, but it can be proven with similar arguments
as those used in proving Proposition 2.4.1. For our examples, however, we will be taking
γ to be a constant solution or an explicitly computable periodic solution, so this detail is
unimportant.

The following result will be of fundamental importance once we move onto the rep-
resentation of eigenfunctions. It states that the eigenfunctions of (10)–(11) with A and B
piecewise-analytic with respect to (k, k + 1) are also piecewise-analytic with respect to the
same intervals.

Proposition 2.4.1 Suppose the matrix-valued functions A and B in (10)–(11) are p-periodic
and piecewise-analytic with respect to (k, k + 1) for k ∈ Z. Every eigenfunction of the
monodromy operator M with nonzero eigenvalue is piecewise-analytic with respect to the
same intervals.

Proof From the Floquet theory of IDDE [11], φ is an eigenfunction of M with eigenvalue
μ �= 0 if and only if there exists a p-periodic function z : R → C

d and λ ∈ C such that
y(t, 0, φ) = eλt z(t) is a solution of (10)–(11), and μ = eλp . In particular, φ(θ) = eλθ z(θ).
It follows that z is a complex-valued p-periodic solution of the IDDE

ż = (A(t) − λI )z(t) + B(t)e−λq z(t − q), t /∈ pZ

�z = C1z(t−) + C2e−λq z(t − q), t ∈ pZ.
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Define the translates zi (t) = z(t −i) for i = 0, 1, . . . , q −1 and let [ j]p denote the remainder
of j modulo p—that is, [ j]p ∈ [0, . . . , p − 1) is the unique integer such that j = [ j]p + r p
for some r ∈ Z. It suffices to prove that the zi are piecewise-analytic with respect to (k, k+1),
and then to establish the analogous analytic continuation. By construction, (z1, . . . , zq−1) is
a p-periodic solution of

żi = (A(t − i) − λI )zi (t) + B(t − i)e−λq z[i−q]p (t), t /∈ i + pZ

�zi = C1zi (t
−) + C2e−λq z[i−q]p (t), t ∈ i + pZ.

Since each of t �→ A(t − i) and t �→ B(t − i) is piecewise-analytic with respect to (k, k +1)
for k ∈ Z, each zi is also piecewise-analytic w.r.t these intervals since it can be identified
with the solution of a Cauchy problem of a linear system of ordinary differential equations
with analytic coefficients on each interval [k, k + 1]. It follows that z is piecewise-analytic
with respect to the same intervals. �

The following proposition strengthens the analyticity of the solution by assuming a more
precise form of the domain of analytic extensions Ãk and B̃k of A|(k,k+1) and B|(k,k+1).
Its proof is a consequence of the monodromy theorem of complex analysis, which states
sufficient conditions under which analytic continuation can be accomplished. The proof is
omitted.

Proposition 2.4.2 Let Eν denote the Bernstein ν-ellipse in C; for background see [31]. Let
sk(ω) = k + 1

2 (s + 1) and suppose Ãk ◦ sk and B̃k ◦ sk are analytic on Eν . Then every

eigenfunction φ of M has φ̃k ◦ sk : Eν → C
d analytic.

With these propositions in mind, the following definition and corollary are appropriate.

Definition 2.4.2 The space of piecewise-analytic functions φ : [−q, 0] → C
d with respect

to (k, k + 1) for k ∈ Z will be denoted P([−q, 0],Cd). When no confusion arises, we will
write it simply as P .

Corollary 2.4.1 Let M̃ : P → RCR denote the restriction of M to P . Then σ(M̃) ⊆ σ(M)

and if Mφ = λφ for λ �= 0, then φ ∈ P . Moreover, M̃ has range in P .

Proof The properties of the spectrum are straightforward given Proposition 2.4.1. Given a
piecewise-analytic initial condition φ, the solution y(t) of (10)–(11) with y0 = φ is deter-
mined, on each interval [k, k + 1) with 0 ≤ k < min{p, q}, is the solution of an ordinary
differential equation (with analytic coefficients) via the method of steps. The resulting solu-
tion is therefore piecewise-analytic at least on [0,min{p, q}). Successively stepping forward,
y : [0, p] → C

d is piecewise-analytic with respect to [k, k + 1), from which it follows that
M̃ has range in P . �

Note that P is not complete (and hence not a Banach space) with respect to the supremum
norm inherited from RCR, but M̃ is still compact. In future, we will drop the tildes and
identify M with the restricted operator M̃ .

There is a natural isomorphism between P and a particular product space; see Fig. 1 for
a visual aid. This isomorphism will be useful later, and since we are currently discussing M
and the structure of P , it is worth defining it now.

Proposition 2.4.3 Introduce the spaces

A0 = { f : [−1, 0] → C
d : f = f̃ |[−1,0] for some f̃ analytic},
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Fig. 1 Top: a typical element of P([−2, 0],R). Hollow circles denote left limits, while filled circles denote
function value at the discontinuity. Bottom: the corresponding element ofS = R×A2 under the isomorphism
m in order from left to right

A = { f |[−1,0) : f ∈ A0}.
Let j : A0 → A be the restriction map: j( f ) = f |[−1,0). Let πx : [−1, 0) → [−1 + x, x)

be the translation defined by πx (y) = x + y. The following are true.

• When A0 and A are equipped with the supremum norm, j is an isometric isomorphism.
• The function m : P → C

d × Aq defined by

m(φ) = (φ(0), φ|[−1,0), φ|[−2,−1) ◦ π−1, . . . , φ|[−q,0) ◦ π1−q)

is an isomorphism.

Definition 2.4.3 The spaceS = C
d ×Aq will be referred to as the space of piecewise-analytic

segments of length q.

Corollary 2.4.2 The map MS : S → S with M S = m ◦ M ◦ m−1 is well-defined and
σ(M)\{0} = σ(MS)\{0}.
Corollary 2.4.3 Let Eν denote the Bernstein ν-ellipse in C and denote sk(ω) = k + 1

2 (s +1).
Suppose Ãk ◦ sk and B̃k ◦ sk are analytic on Eν . Define θ : [−1, 0] → [−1, 1] by θ(s) =
1
2 (s − 1). Let φ = (φ(0), φ0, . . . , φ1−p) ∈ σ(MS). Then, φ j ◦ θ : [−1, 1] → C

d has an
analytic continuation to Eν for j = 0, . . . , 1 − p.

MS : S → S is the representation of M on the space of piecewise-analytic segments
of length q . As we will see, it is very natural to work with the space of piecewise-analytic
segments as opposed to the full space P when attempting to represent the monodromy
operator.
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3 Segment decomposition and representation of themonodromy
operator

Following the analysis of Sect. 2.4 on the regularity of eigenfunctions, we will from this
point on restrict our attention to linear systems

ẏ = A(t)y(t) + B(t)y(t − q), t /∈ pZ (12)

�y = C1y(t−) + C2y(t − q), t ∈ pZ, (13)

with the following assumptions: The linear system (12)–(13) satisfies:

A1.1 p ≤ q (but see later Sect. 7.2).
A1.2 A and B are p-periodic and piecewise-analytic with respect to the intervals (k, k + 1)

for k ∈ Z.

For the purposes of developing a numericalmethodwith guaranteed convergence, assumption
A1.1 is not too strong (seeSect. 7.2).GivenProposition 2.4.1,weknow that the eigenfunctions
associated to the monodromy operator M of this linear system are in P—that is, piecewise-
analytic with respect to the intervals (k, k + 1). The identification of M with the operator on
piecewise-analytic segments of length q , MS : S → S, is designed to reflect this. Our goal
in this section will be to represent MS in terms of concrete integral operators.

Remark 3.0.1 In the following four sections, we will be defining some linear operators E
and W that will be used to represent MS . The definitions of these operators depend on the
relationship between p and q . This should not cause confusion.

3.1 Intuition and diagrams: the example of p = 1, q = 2

For arbitrary natural numbers p ≤ q , the representation of MS ends up being fairly cum-
bersome and does not provide good intuition. To simplify the exposition we will derive the
representation for one of the simplest cases—the pair (p, q) = (1, 2)—before presenting the
construction in full generality.

It is best to begin with M : P → P and then to construct MS using the isomorphism.
When p = 2, the monodromy operator is a map M : P([−2, 0],Cd ) → P([−2, 0],Cd).
Formally,

Mφ(θ) = y(1 + θ, φ)

where t �→ y(t, φ) is the solution of the IDDE (12)–(13) satisfying the initial condition
y0(·, φ) = φ. For t ∈ [0, 1], we can write

y(t, φ) =
{

(I + C1)
[
φ(0) + ∫ 1

0 A(s)y(s) + B(s)φ(s − 2)ds
]

+ C2φ(0), t = 1

φ(0) + ∫ t
0 A(s)y(s) + B(s)φ(s − 2)ds, 0 ≤ t < 1.

We can write this in a slightly more suggestive fashion. Define for θ ∈ [−1, 0) the functions

y1(θ) = y(1 + θ), φ0(θ) = φ(θ), φ−1(θ) = φ(−1 + θ).

Also define y1(0) = y(1). See Fig. 2 for a schematic diagram.
Performing a few changes of variables, we can write y1 as follows:

y1(0) = (I + C1)

[
φ(0) +

∫ 0

−1
A1(s)y1(s) + B1(s)φ−1(s)ds

]
+ C2φ(0), θ = 0
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Fig. 2 After translating onto the interval [−1, 0), the functions φ|[−2,−1) (red solid curve) and φ|[−1,0)
(blue dashed curve) together with φ(0) (magenta dot) are sufficient to specify the analytic initial con-
dition φ. Up to translation, MS acts on this data by MS : (magenta dot, blue curve, red curve) �→
(black dot, magenta curve, blue curve). Curves are for illustrative purposes only (e.g. the red solid curve
one does not appear to represent an analytic function since it has a pole approaching the right endpoint) (Color
figure online)

:= (I + C1 + C2)φ(0) + (I + C1)L1[y1](0−) + (I + C1)L2[φ−1](0−) (14)

y1(θ) = φ(0) +
∫ θ

−1
A1(s)y1(s) + B1(s)φ−1(s)ds, θ < 0

:= φ(0) + L1[y1] + L2[φ−1] (15)

where A1(s) = A(1 + s), B1(s) = B(1 + s), and L1[ f ](θ) = ∫ θ

−1 A1(s) f (s)ds and

L2[ f ](θ) = ∫ θ

−1 B1(s) f (s)ds are defined for θ ∈ [−1, 0). Note that L1 and L2 define
bounded linear operators onA and also onA0. From (14)–(15), it is clear that each of y1 and
y1(0) can be expressed implicitly in terms of y1 and φ−1. This will be helpful later.

We can now very suggestively write Mφ as follows:

Mφ(θ) = 1{0}(θ)y1(0) + 1[−1,0)(θ)y1(θ) + 1[−2,−1)(θ)φ0(1 + θ)

= 1{0}(θ)
[
(I + C1 + C2)φ(0) + (I + C1)(L1[y1](0−) + L2[φ−1](0−))

]
+ 1[−1,0)(θ)

[
φ(0) + L1[y1](θ) + L2[φ−1](θ)

]+ 1[−2,−1)(θ)φ0(1 + θ)

From here, we can make use of the isomorphism m : P → S = C
d × A2 so that we may

instead work with the piecewise-analytic segments of length 2. To do this, we first write

MS(φ) = MS(φ(0), φ0, φ−1) =
⎛
⎝ y(1)

y1
φ0

⎞
⎠

where we have abused notation and identified φ ∈ P with (φ(0), φ0, φ−1) ∈ S. By definition
of the monodromy operator, y1 = eᵀ

2 MS(φ) where eᵀ
2 denotes projection onto the second

factor. From our previous derivation, it follows that MS(φ) satisfies the implicit equation

MS(φ) =
⎛
⎜⎝

(I + C1 + C2)φ(0) + (I + C1)
(

L1[eᵀ
2 MS(φ)](0−) + L2[φ−1](0−)

)
φ(0) + L1[eᵀ

2 MS(φ)] + L2[φ−1]
φ0

⎞
⎟⎠ .
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This can be further factored as the sum of two linear maps: E : S → S that only involves
the initial condition, and the other one W : S → S taking MS(φ) as its input.

MS(φ) = E(φ) + W (MS(φ)), E(φ) =
⎛
⎝ (I + C1 + C2)φ(0) + (I + C1)L2[φ−1](0−)

φ(0) + L2[φ−1]
φ0

⎞
⎠

W (ψ) =
⎛
⎝ (I + C1)L1[eᵀ

2 ψ](0−)

L1[eᵀ
2 ψ]
0

⎞
⎠ .

In this sense, we can think of E as the explicit part of the monodromy operator, and W as
the implicit part. If (I − W ) : S → S is an isomorphism, we can write

MS = (I − W )−1E .

Indeed, it turns out that (I − W ) : S → S is an isomorphism and the inverse (I − W )−1

is bounded. We will not prove this now, since we will prove a more general result in the
following section.

3.2 Segment representation of monodromy operator: the case p < q

First, identify φ ∈ P with (φ(0), φ0, . . . , φ1−q) ∈ S through the isomorphism m. Let
t �→ y(t) denote the solution of (12)–(13) satisfying the initial condition y0(·) = φ. Define
a finite sequence in A as follows:

zk =
{

yk |[−1,0), 0 < k ≤ p
φk −q < k ≤ 0.

By definition, we can reconstruct y from the sequence zk for t ∈ [−q, p) via

y(t) =
p∑

k=1−q

1[k−1,k)(t)yk(t − k),

so, we may identify y|[−q,p) with this sequence. For t ∈ [k − 1, k) for k = 1, . . . , p, the
function y satisfies the integral equation

y(t) = y(k − 1) +
∫ t

k−1
A(s)y(s) + B(s)y(s − 1)ds.

We can make use of the sequence z and a change of variables to write this equivalently in the
form

zk(θ) =
{

φ(0) + ∫ θ

−1 Ak(s)zk(s) + Bk(s)zk−q(s)ds, k = 1

zk−1(0−) + ∫ θ

−1 Ak(s)zk(s) + Bk(s)zk−q(s)ds, k �= 1.
(16)

Remark that for 1 �= k ≤ p, we have

zk−1(0
−) = lim

t→(k−1)−
y(t) = y(k − 1)

because k − 1 /∈ pZ, so y is continuous at t = k − 1. This justifies the use of the left limit
above. Since p < q , each of the terms zk−q in (16) can be replaced with φk−q . The result is

zk(θ) =
{

φ(0) + ∫ θ

−1 Ak(s)zk(s) + Bk(s)φk−q(s)ds, k = 1

zk−1(0−) + ∫ θ

−1 Ak(s)zk(s) + Bk(s)φk−q(s)ds, k �= 1.
(17)
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Also, y(p) is given as follows:

y(p) =
⎧⎨
⎩

(I + C1)
[
z p−1(0−) + ∫ 0

−1 Ap(s)z p(s) + Bp(s)z p−q (s)ds
]

+ C2y(p − q), p �= 1

(I + C1)
[
φ(0) + ∫ 0

−1 Ap(s)z p(s) + Bp(s)z p−q (s)ds
]

+ C2y(p − q), p = 1.

(18)

Once again, z p−q = φp−q . Similarly, p < q implies z(p − q) = φp−q+1(−1). We can
therefore equivalently express (18) as

y(p) =
⎧⎨
⎩

(I + C1)
[
z p−1(0−) + ∫ 0

−1 Ap(s)z p(s) + Bp(s)φp−q (s)ds
]

+ C2φp−q+1(−1), p �= 1

(I + C1)
[
φ(0) + ∫ 0

−1 Ap(s)z p(s) + Bp(s)φp−q (s)ds
]

+ C2φp−q+1(−1), p = 1.

(19)

In the space S = C
d × Aq we have the representation

MS(φ) =
(

y(p), z p, z p−1, . . . , z1
)
. (20)

of the action of the monodromy operator on the element φ.
Let us define some linear maps to make the expressions (17) and (19) a bit more compact.

Define for k = 1, . . . , p the maps Ek : S → A, E0
p : S → C

d , Wk : S → A, W 0
p : S → C

d

as follows. For f = ( f (0), f0, . . . , f1−q) ∈ S,

Ek[ f ](θ) =
{

f (0) + ∫ θ

−1 Bk(s) fk−q(s)ds, k = 1∫ θ

−1 Bk(s) fk−q(s)ds, k �= 1
(21)

E0
p[ f ] =

⎧⎪⎪⎨
⎪⎪⎩

(I + C1)
∫ 0
−1 Bp(s) f p−q(s)ds + C2 f p−q+1(−1), p �= 1, q �= p

(I + C1)
[

f (0) + ∫ 0
−1 Bp(s) f p−q(s)ds

]
+ C2 f p−q+1(−1), p = 1, q �= p

(I + C1)
[

f (0) + ∫ 0
−1 Bp(s) f0(s)ds

]
+ C2 f (0), q = p

(22)

Wk[ f ](θ) =
{∫ θ

−1 Ak(s) fk−p(s)ds, k = 1

fk−p−1(0−) + ∫ θ

−1 Ak(s) fk−p(s)ds, k �= 1
(23)

W 0
p[ f ] =

{
(I + C1)

[
f−1(0−) + ∫ 0

−1 Ap(s) f0(s)ds
]
, p �= 1

(I + C1)
∫ 0
−1 Ap(s) f0(s)ds, p = 1.

(24)

Remark 3.2.1 Observe that if k = p = 1 then Wk[ f ](θ) is defined by the first line of (23),
so it is of no consequence that f = ( f (0), f0) does not contain the element fk−p−1 = f−1

needed to define the second line. We have also taken the liberty to define E0
p when q = p at

this time as well; the main difference is that when p = q , we have z(p − q) = z(0) = φ(0)
and the latter can not not be identified with φp−q+1(−1) = φ1(−1) since this is not part of
the initial condition vector (φ(0), φ0, . . . , φ1−q).

Remark 3.2.2 E0
p[ f ] and W 0

p[ f ] can be written more succinctly as

E0
p[ f ] = (I + C1)E p[ f ](0) + C2f

W 0
p[ f ] = (I + C1)Wp[ f ](0),

where f is one of f p−q+1(−1) or f (0), depending on whether or not p = q .
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With these maps defined, we can write

zk = Ek[φ] + Wk[(y(p), z p, z p−1, . . . , z p−q+1)],
z(p) = E0

p[φ] + W 0
p[(y(p), z p, z p−1, . . . , z p−q+1)] (25)

for k = 1, . . . , p. In view of (20), it makes sense to define a pair of operators E : S → S
and W : S → S as follows:

E f = (E0
p[ f ], E p[ f ], . . . , E1[ f ], f0, . . . , f1−(q−p)),

W f = (W 0
p[ f ], Wp[ f ], . . . , Wk[ f ], . . . , W1[ f ], 0, . . . , 0), (26)

where there are q − p zeroes at the end of W f . Finally, using (20), (25) and (26), we
can write the monodromy operator on the piecewise-analytic segments of length q in the
explicit-implicit form

MSφ = E(φ) + W (MSφ). (27)

Wewill now characterize the invertibility of the bounded linear operator (I −W ) : S → S
with the goal of providing a more explicit representation of MS . The main result is Theorem
3.2.1. It is preceded by three short lemmas, the first of which is straightforward and will not
be proven.

Lemma 3.2.1 Denote X = {φ : [−1, 0) → C
d continuous, such that limt→0− φ(t) exists},

and let S̃ = C
d × Xq. The operator W : S → S is the restriction of W̃ : S̃ → S̃ to S, with

W̃ ( f ) = (W 0
p[ f ], Wp[ f ], · · · , W1[ f ], 0, . . . , 0)

where each of Wk and W 0
p are defined as in (23) and (24). S̃ is a Banach space with norm

||( f (0), f0, . . . , f1−q)||S̃ = max{| f (0)|, || f0||, . . . , || f1−q ||, } and ||·|| either denotes some
norm on C

d or the induced supremum norm.

Lemma 3.2.2 (I − W̃ ) : S̃ → S̃ is injective. Also, (I − W ) : S → S is injective.

Proof Let f ∈ S̃ and suppose (I − W̃ ) f = 0. Since the trailing q − p elements of W̃ ( f )

are zero, It follows that ( f−p, . . . , f1−q) = 0. We will prove now that f−p+k = 0 for
k = 0, . . . , p by way of induction. The base case already proven, suppose f−p+k = 0 for
some k ∈ {0, . . . , p}. Then, h = f−p+k+1 satisfies

h(θ) = Wk+1[ f ](θ) =
∫ θ

−1
Ak+1(s)h(s)ds

for θ ∈ [−1, 0). By Gronwall’s inequality, h ≡ 0. By induction, we have f0 = f−1 = · · · =
f1−p = 0. Since f (0) = W 0

p[( f (0), 0, . . . , 0)] = 0, we conclude that f = 0, so (I − W̃ ) is
injective. The same argument proves that (I − W ) is injective. �
Lemma 3.2.3 (I − W̃ ) : S̃ → S̃ is surjective. Also, (I − W ) : S → S is surjective.

Proof Let ψ ∈ S̃. We will construct f ∈ S̃ such that (I − W̃ ) f = ψ . To begin, set
( f−p, . . . , f1−q) = (ψ−p, . . . , ψ1−q). Next, given f−p+k for k ∈ {0, . . . , p − 1}, let h =
f−p+k+1 ∈ X denote the solution of the Volterra integral equation

h(θ) = ψ−p+k+1(θ) +
{∫ θ

−1 Ak+1(s)h(s)ds, k = 0

ψ−p+k(0−) + ∫ θ

−1 Ak+1(s)g1(s)ds, k �= 0.
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A straightforward inductive argument demonstrates that each of f−p+1, . . . , f0 exists, is
unique and is an element of X . Finally, set f (0) = W 0

p[(0, f0, . . . , f1−q)] − ψ(0). By

construction, (I − W̃ ) f = ψ . If ψ ∈ S, a small modification of this proof shows that h ∈ A
and, consequently, f ∈ S, thereby proving (I − W ) is surjective. �
Theorem 3.2.1 With E and W defined by (26), (I − W ) : S → S is an isomorphism,
(I − W )−1 is bounded, and MS = (I − W )−1E. We refer to E as the explicit part and W
the implicit part of MS .

Proof By Lemmas 3.2.2 and 3.2.3, (I − W̃ ) : S̃ → S̃ is a bijection. (I − W̃ ) is clearly
bounded, and as S̃ is a Banach space the bounded inverse theorem guarantees (I − W̃ )−1

exists and is bounded. Similarly, (I − W )−1 exists, and by Lemma 3.2.1, W is the restriction
of W̃ , from which it follows that (I − W )−1 is also bounded. Solving for MS in (27), the
theorem is proven. �

3.3 Segment representation of monodromy operator: the boundary case p = q

First suppose p = q = 1; we will deal with the other case later. With the same notation as
the previous section, we have MS(φ) = (y(1), z1) with

z1(θ) = φ(0) +
∫ θ

−1
A1(s)z1(s) + B1(s)φ(s)ds, (28)

y(1) = (I + C1)

[
φ(0) +

∫ 0

−1
A1(s)z1(s) + B1(s)φ(s)ds

]
+ C2φ(0). (29)

We can perform an analogous decomposition. With the same definitions of E1, E0
1 , W1 and

W 0
1 from (21)–(24), we can write MS(φ) = E(φ) + W (MSφ) with

E f = (E0
1 [ f ], E1[ f ]), W f = (W 0

1 [ f ], W1[ f ]). (30)

Theorem 3.2.1 then holds verbatim with the appropriate definitions of E and W . The proof
is omitted.

Theorem 3.3.1 With E and W defined by (30), (I − W ) : S → S is an isomorphism,
(I − W )−1 is bounded, and MS = (I − W )−1E. We refer to E as the explicit part and W
the implicit part of MS .

Remark 3.3.1 If p = q �= 1, the changes in the definition of the operators E and W are not
dramatic. We get instead

E f = (E0
p[ f ], E p[ f ], . . . , E2[ f ], E1[ f ]),

W f = (W 0
p[ f ], Wp[ f ], Wp−1[ f ], . . . , W2[ f ], W1[ f ]).

4 Chebyshev series and validated numerics framework for the
monodromy operator

In Sect. 3 we represented the monodromy operator on the space S of piecewise-analytic
segments of length q in terms of integral operators that we referred to as the explicit and
implicit part(s) of MS . The next step is to replace the abstract space S with a concrete space
that is more amenable to numerical computation and determine how MS acts on this space.

123



2190 Journal of Dynamics and Differential Equations (2021) 33:2173–2252

4.1 Banach spaces of infinite sequences and Chebyshev series

Let || · || be a norm on C
d . Let ν > 1. For a sequence a = {an : n ∈ N} ⊂ C

d , define a
weighted norm || · ||ν by

||a||ν =
∞∑

n=0

νn ||an ||.

We then define the space �1ν by

�1ν = {a = {an : n ∈ N} ⊂ C
d : ||a||ν < ∞}.

Equipped with the norm || · ||ν , �1ν is a Banach space. Next, define Xν = C
d × (�1ν)

q and let
it be equipped with the norm || · || defined by

||( f (0), f0, . . . , f1−q)|| = max
{|| f (0)||, || f0||ν, . . . , || f1−q ||ν

}
.

Then, (Xν, || · ||) is a Banach space. Define also

�1ν(C
d×d) = {A = {An : n ∈ N} ⊂ C

d×d : ||A||ν < ∞},
where ||A||ν = ∑

n≥0 ||A||νn and the norm inside the summation is the operator norm on
C

d×d induced by || · ||. Finally, to the space B(Xν) of bounded linear operators on Xν , we
let || · ||B(Xν ) denote the induced operator norm.

The following result will be helpful later; its proof is simple and omitted.

Proposition 4.1.1 For x ∈ �1ν and Y ∈ �1ν(C
d×d), define the sequence {(Y ∗ x)n}n≥0 by

(Y ∗ x)n =
∞∑

k=−∞
Y|n−k|x|k|.

Then Y ∗ x ∈ �1ν and ||Y ∗ x ||ν ≤ (2||Y ||ν − ||Y0||) (2||x ||ν − ||x0||) ≤ 4||Y ||ν ||x ||ν .

The following lemma and corollary follow from Propositions 2.4.1, 2.4.2, Corollary 2.4.2,
and the linear scaling θ ∈ [−1, 0] → [−1, 1] via θ = 1

2 (ω − 1) . The proof is simple and
omitted.

Lemma 4.1.1 Letν > 1. For g j = {g j,n}n≥0, denoteEν(x, g0, . . . , g1−q) = (x, f0, . . . , f1−q)

with

f j (θ) = g j,0 + 2
∑
n≥1

g j,nTn (1 + 2θ) , θ ∈ [−1, 0),

and Tn the nth Chebyshev polynomial of the first kind. This expression induces a well-defined,
bounded linear map Eν : Xν → S. This map is one-to-one onto its range, and so denoting
Sν = E(Xν), the map Eν : Xν → Sν is an isomorphism.

Corollary 4.1.1 There exists some ν∗ > 1 such that if φ is an eigenvector of MS with nonzero
eigenvalue, then φ ∈ Sν for all ν ∈ (1, ν∗). More precisely, let θ(ω) = 1

2 (ω − 1) and write
ω �→ Yk(θ(ω)) for Y ∈ {A, B} as a Chebyshev series

Yk(ω) = Yk,0 + 2
∑
n≥1

Yk,nTn(ω),

for matrix sequences {Yk,n}n≥0 ⊂ R
d×d , where Yk(s) := Y (k + s) for s ∈ [−1, 0]. Then

ν∗ = sup{ν > 1 : ∀k ∈ Z, Yk ∈ �1ν(C
d×d), Y ∈ {A, B}, }.
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Remark 4.1.1 Under Assumption A1.2, the Chebyshev series of Ak have coefficients in
�1ν(R

d×d) for some ν = ν A
k > 1 for each k, and those of Bk are in �1ν(R

d×d) for some ν =
νB

k > 1.By theperiodicityAssumptionA.1,wehaveν∗ = min{ν A
0 , . . . , ν A

p−1, ν
B
0 , . . . , νB

p−1}.

From the above lemmaand corollary, itmakes sense to consider the (formal) linear operator
Mν : Xν → Xν defined by

Mν = E−1
ν ◦ MS ◦ Eν . (31)

If MS(Sν) ⊆ Sν , this expression is well-defined and, in particular, we will immediately have
from Corollaries 2.4.2, 2.4.3 and Corollary 4.1.1 the spectral equivalence σ(Mν)\{0} =
σ(MS)\{0}. Since Mν is an operator on sequence spaces, it is amenable to approximation,
truncation and other constructs. In the following section we will show that this operator is
indeed well-defined.

4.2 Representation ofM� on Chebyshev series in X� coefficients

To represent Mν on the space Xν , we will need to settle on a convention for the Chebyshev
series coefficients of the matrix-valued functions Ak and Bk needed to define the explicit
and implicit parts of MS—for example, in equations (21)–(24). A brief reminder: Ak(θ) =
A(k + θ) and Bk(θ) = B(k + θ). Recall that by Assumption 1, A and B are piecewise-
analytic with respect to (k, k + 1) for the integers k. This means for each integer k there
exists Ãk : U A

k → C
d×d and B̃k : U B

k → C
d×d analytic such that Ak = Ãk |[−1,0] and

Bk = B̃k |[−1,0], for some open neighbourhoods U A
k and U B

k of [−1, 0]. For ω ∈ [−1, 1],
define

Âk(ω) = Ãk

(
1

2
(ω − 1)

)
, B̂k(ω) = B̃k

(
1

2
(ω − 1)

)
.

We will write our (uniformly convergent) Chebyshev series for Âk and B̂k as follows:

Âk(ω) = Âk,0 + 2
∑
n≥1

Âk,nTn(ω), Âk,n ∈ R
d×d

B̂k(ω) = B̂k,0 + 2
∑
n≥1

B̂k,nTn(ω), B̂k,n ∈ R
d×d .

By construction, the entries of the matrix sequences { Âk,n}n≥0 and {B̂k,n}n≥0 are elements of
�1ν(C

d×d) for any ν ∈ (1, ν∗), where ν∗ is the constant guaranteed byCorollary 4.1.1 (ormore
concretely from Remark 4.1.1). Similarly, if f̂k(ω) = fk

( 1
2 (ω − 1)

)
for fk : [−1, 0] → C

d

and some k ∈ {1 − q, . . . ,−1, 0}, we will write

f̂k(ω) = f̂k,0 + 2
∑
n≥1

f̂k,nTm(ω), f̂k,n ∈ C
d . (32)

Remark 4.2.1 From this point onward, unless explicitly stated, it will be assumed that ν ∈
(1, ν∗).

Recall that if uk(t) = uk,0 + 2
∑

n≥1 uk,nTn(t) for k = 1, 2 are two Chebyshev series
such that the product u1(t)u2(t) is well-defined (i.e. u1 is a a × b matrix and u2 is a b × c
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matrix), then their product has the Chebyshev series

u1(t)u2(t) =
⎛
⎝ ∑

j1+ j2=0

u1, j1u2, j2

⎞
⎠+ 2

∑
n≥1

⎛
⎝ ∑

k1+k2=n

u1,k1u2,k2

⎞
⎠ Tn(t)

with uk,−m = uk,m . These can therefore be written in terms of the convolution:

u1(t)u2(t) = (u1 ∗ u2)0 + 2
∑
n≥1

(u1 ∗ u2)nTn(t),

where here the interpretation is we are identifying uk with its sequence of Chebyshev coffi-
cients. Using this property and the fact that T0 = 1, the equations

T1(t) = d

dt

(
T0(t) + T2(t)

4

)

2Tn(s) = d

dt

(
Tn+1(s)

n + 1
− Tn−1(s)

n − 1

)
, n ≥ 2,

in addition to Tn(−1) = (−1)n , we can derive formulas for the action of the explicit and
implicit parts of Mν in the space Xν , as follows. Let f = ( f (0), f0, . . . , f1−q) ∈ Sν , so we
canwrite each f̂k as in (32).This also ensures that f = Eν( f (0), { f̂0,n}n≥0, . . . , { f̂1−q,n}n≥0).
Then, for k �= 1,

Ek[ f ](θ) =
∫ θ

−1
Bk(s) fk−q(s)ds = 1

2

∫ ω

−1
B̂k(s) f̂k−q(s)ds

= 1

2

∫ ω

−1
(B̂k ∗ f̂k−q)0 + 2

∑
n≥1

(B̂k ∗ f̂k−q)nTn(s)ds

= 1

2
(B̂k ∗ f̂k−q)0(ω + 1) + (B̂k ∗ fk−q)1

(
T2(ω) + T0(ω)

4
− 1

2

)

+ 1

2

∑
n≥2

(B̂k ∗ f̂k−q)n

(
Tn+1(ω)

n + 1
− Tn−1(ω)

n − 1
− 2(−1)n

n2 − 1

)

= (B̂k ∗ f̂k−q)0

2
(T1(ω) + T0(ω)) + (B̂k ∗ f̂k−q)1

4
(T2(ω) − T0(ω))

−
∑
j≥2

(−1) j (B̂k ∗ f̂k−q) j

j2 − 1
T0(t)

+ 1

2

∑
n≥3

(B̂k ∗ f̂k−q)n−1

n
Tn(ω) − 1

2

∑
m≥1

(B̂k ∗ f̂k−q)m+1

m
Tm(ω)

=
⎛
⎝1

2
(B̂k ∗ f̂k−q)0 − 1

4
(B̂k ∗ f̂k−q)1 −

∑
j≥2

(−1) j

j2 − 1
(B̂k ∗ f̂k−q) j

⎞
⎠ T0(ω)

+ 2
∑
n≥1

1

4n

(
(B̂k ∗ f̂k−q)n−1 − (B̂k ∗ f̂k−q)n+1

)
Tn(ω),

where θ = 1
2 (ω − 1). When k = 1, we need to add f (0) to the right-hand side of the

above. Since f (0) = f (0)T0(ω), the modification is straightforward. The induced map
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Êk : Xν → �1ν obtained by applying E−1
ν to the above is then given in indexed form as

follows:

Êk [ f̂ ]n =

⎧⎪⎪⎨
⎪⎪⎩
10(k − 1) f (0) + 1

2
(B̂k ∗ f̂k−q )0 − 1

4
(B̂k ∗ f̂k−q )1 −

∑
j≥2

(−1) j

j2 − 1
(B̂k ∗ f̂k−q ) j , n = 0

1

4n

(
(B̂k ∗ f̂k−q )n−1 − (B̂k ∗ f̂k−q )n+1

)
, n > 0,

(33)

for f̂ = ( f (0), { f̂0,k}k≥0, . . . , { f̂1−q,k}k≥0) ∈ Xν . Notice that we have incorporated the
inclusion of f (0)T0(ω) when k = 1 by way of the indicator function: 10(t) = 1 if and only
if t = 0, otherwise it is zero. Making use of Proposition 4.1.1, we see that Êk is well-defined
as a map Êk : Xν → �1ν .

We can perform a similar derivation for the map E0
p : S → C

d . Since E0
p[ f ] = (I +

C1)E p[ f ](0) + C2f—see Remark 3.2.2—the observation that θ = 0 precisely when ω = 1
gives

Ê0
p[ f̂ ] = (I + C1)

(
10(p − 1) f (0) + 1

2
(B̂p ∗ f̂ p−q)0

−1

4
(B̂p ∗ f̂ p−q)1 −

∑
j≥2

(−1) j

j2 − 1
(B̂p ∗ f̂ p−q) j

+
∑
n≥1

1

2n

(
(B̂p ∗ f̂ p−q)n−1 − (B̂p ∗ f̂ p−q)n+1

)⎞⎠+ 10(p − q)C2 f̂ (0)

+ (1 − 10(p − q))C2

⎛
⎝ f p−q+1,0 + 2

∑
n≥1

(−1)n f̂ p−q+1,n

⎞
⎠ . (34)

for the (well-defined) linear map Ê0
p : Xν → C

d . Note that we have used the identities
Tn(−1) = (−1)n and Tn(1) = 1.

The differences between the implicit parts Wk and W 0
p and the explicit parts Ek and E0

p

are mostly symbolic (the main difference being the appearance of fk−p−1(0−) rather than
f (0), the former which is easily managed at the Chebyshev level), and the derivation of the
induced maps Ŵk : Xν → �1ν and Ŵ 0

p : Xν → C
d are nearly identical. They are well-defined

and can be expressed as

Ŵk[ f̂ ]n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 10(k − 1))

⎛
⎝ f̂k−p−1,0 + 2

∑
n≥1

f̂k−p−1,n

⎞
⎠+ 1

2
( Âk ∗ f̂k−p)0

−1

4
( Âk ∗ f̂k−p)1 −

∑
j≥2

(−1) j

j2 − 1
( Âk ∗ f̂k−p) j ,

n = 0

1

4n

(
( Âk ∗ f̂k−p)n−1 − ( Âk ∗ f̂k−p)n+1

)
, n > 0,

(35)

Ŵ 0
p[ f̂ ] = (I + C1)

⎛
⎝(1 − 10(p − 1))

⎛
⎝ f̂−1,0 + 2

∑
n≥1

f̂−1,n

⎞
⎠

+1

2
( Â p ∗ f̂0)0 − 1

4
( Â p ∗ f̂0)1 (36)
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−
∑
j≥2

(−1) j

j2 − 1
( Â p ∗ f̂0) j +

∑
n≥1

1

2n

(
( Â p ∗ f̂0)n−1 − ( Â p ∗ f̂0)n+1

)⎞⎠ . (37)

Next, we need to form the implicit and explicit part functions acting on Xν . This is
accomplished by replacing each of the relevant maps Ek , E0

p , Wk and W 0
p on S with their

associated “hat” counterparts on Xν . To spell this out explicitly, it is best to separate the two
relevant cases.

4.2.1 p < q

Define Ê : Xν → Xν and Ŵ : Xν → Xν by

Ê f̂ = (Ê0
p[ f̂ ], Ê p[ f̂ ], . . . , Ê1[ f̂ ], f̂0, . . . , f̂1−(q−p))

Ŵ f̂ = (Ŵ 0
p[ f̂ ], Ŵp[ f̂ ], . . . , Ŵ1[ f̂ ], 0, . . . , 0), (38)

where there are q − p zeroes at the end of Ŵ f̂ . Then (I − Ŵ ) : Xν → Xν is invertible and
Mν = (I − Ŵ )−1 Ê is the representation of the restriction of MS to Sν in the space Xν .

4.2.2 p = q

If p = q = 1, define Ê : Xν → Xν and Ŵ : Xν → Xν by

Ê f̂ = (Ê0
1 [ f̂ ], Ê1[ f̂ ]), Ŵ f̂ = (Ŵ 0

1 [ f̂ ], Ŵ1[ f̂ ]). (39)

(I − Ŵ ) : Xν → Xν is invertible and Mν = (I − Ŵ )−1 Ê is the representation of the
restriction of MS to Sν in the space Xν .

Remark 4.2.2 If p = q �= 1, Remark 3.3.1 extends analogously to the operator Ê and Ŵ .

4.3 The validated numerics setup

At this stage we will drop all of the hats and identify the maps Ek , Wk , E0
p and W 0

p with
their representations on Xν . The same thing will be done with the matrix-valued functions
Ak and Bk . Moreover, we will identify each of Ak and Bk with their associated sequence of
Chebyshev coefficients. This should not provide too much confusion. Finally, we will drop
the superscripts of ν on M .

In view of applications, we should always keep in mind that not all Chebyshev modes of
Ak and Bk might be known, and they may be subject to error. This could be the case if, for
example, they are the matrices associated to a linearization at a periodic solution, the latter
which is obtained by a computer-assisted proof. Additionally, any computations that are done
on a computer and make use of specific Chebyshev modes will need to take into account
some truncation even if the coefficients of every mode are available analytically. To this end,
given a matrix sequence Y ∈ �1ν(R

d×d), define the N1-mode truncation Y N1 as follows:

[Y N1 ]n =
{

Yn, 0 ≤ n ≤ N1

0 n ≥ N1 + 1

Then, define MN1 : Xν → Xν to be the operator Mν as defined in Sect. 4.2, except that Ak

and Bk for k = 1, . . . , p are replaced with the N1-mode truncations AN1
k and B N1

k .
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The next level of approximation comes from the need to represent MN1 as a finite matrix
operator.Aswewill see, the specificway this is donewill depend somewhat on the relationship
between p and q . In the simplest case (p = q = 1), we will truncate the domain and range
of each of the implicit and explicit parts at some prescribed number N2 of modes, and use
these to define a mode-truncated version of MN1 that can be represented by a matrix up to an
appropriate embedding. In all cases, the symbol MN1,N2 will be used to refer to the truncation
and this operator will always be compact (or eventually compact).

To state some technical requirements concerning the truncated operator MN1,N2 , we will
need to specify two subspaces of Xν . Define

X N2
ν = {(φ(0), φ0, . . . , φ1−q) ∈ Xν : φ j,k = 0, k > N2},

X∞
ν = {(φ(0), φ0, . . . , φ1−q) ∈ Xν : φ(0) = 0, φ j,k = 0, k ≤ N2}.

Xν can be expressed as the internal direct sum Xν = X N2
ν ⊕ X∞

ν for any N2 ≥ 0.
Our objective is to use information concerning the eigenvalues of MN1,N2 to infer proper-

ties of the eigenvalues of M : Xν → Xν , the representation of the monodromy operator on
Xν . With a view toward stability and so-called generalized Morse indices, we adapt a result
attributed to Lessard and Mireles-James [21]. The main idea is captured by the following
lemma.

Lemma 4.3.1 (Generalized Morse index validation) Let r > 0 and let MN1,N2 be a bounded
operator on Xν with with the following properties.

• MN1,N2 has only finitely many eigenvalues in the complement of the closed disc Dr in
the C.

• MN1,N2 has no eigenvalues on the circle of radius r in C.
• Each of X N2

ν and X∞
ν are invariant subspaces of MN1,N2 : that is, MN1,N2(X N2

ν ) ⊆ X N2
ν

and MN1,N2(X∞
ν ) ⊆ X∞

ν .

Suppose there are positive constants c1, c2 and c3 such that

max

(
sup

θ∈[0,2π ]
||(MN1,N2 − reiθ I )−1||

B(X
N2
ν )

, sup
θ∈[0,2π ]

||(MN1,N2 − reiθ I )−1||B(X∞
ν )

)
≤ c1

||(I − W )−1||B(Xν ) ≤ c2

||(I − W )MN1,N2 − E ||B(Xν ) ≤ c3,

and c1c2c3 < 1. Then, MN1,N2 and M have the same number of eigenvalues in the complement
of the open ball of radius r .

Proof By construction, MN1,N2 has only finitely many non-zero eigenvalues in the com-
plement of Dr . Since the monodromy operator is eventually compact, the representation
M ∈ B(Xν) has only finitely-many eigenvalues in the complement of Dr . Consider the
straight-line homotopy

H(s) = (1 − s)MN1,N2 + s M . (40)

Since H : [0, 1] → B(Xν) is continuous, M and MN1,N2 can only have a different number
of eigenvalues in the complement of Dr if there is some s ∈ [0, 1] and θ ∈ [0, 2π] such
that reiθ is an eigenvalue of H(s). This follows by the continuity of a finite eigensystem of
a continuous family of bounded linear operators [19]. It suffices to show H(s) − reiθ I is
boundedly invertible for all s ∈ [0, 1] and θ ∈ [0, 2π ].
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Define N (θ) = MN1,N2 − reiθ I . From the assumptions of the lemma, N (θ) satisfies the
estimate ||N (θ)−1||B(Xν ) ≤ c1.

Next, observe that

H(s) − reiθ I = N (θ){I − s N (θ)−1(MN1,N2 − M)}. (41)

From the previous result, it remains to show that the term in curly braces boundedly is
invertible. To accomplish this, observe that

MN1,N2 − M = (I − W )−1(I − W )(MN1,N2 − M) = (I − W )−1[(I − W )MN1,N2 − E],
from which it follows that ||MN1,N2 − M ||B(Xν ) ≤ c2c3. Thus, ||s N (θ)−1(MN1,N2 −
M)||B(Xν ) ≤ c1c2c3 < 1, so by the Neumann series theorem, the term in the curly braces is
invertible. It follows that H(s) − reiθ I is invertible with inverse satisfying

||(H(s) − reiθ I )−1||B(Xν ) ≤ c1
1 − c1c2c3

.

Thiswould complete the proof ifwewere only interested in the eigenvalues in the complement
of the closed disc of radius r . To extend to the complement of the open ball of radius r , observe
that the inequality ||s N (θ)−1(MN1,N2 − M)||B(Xν ) ≤ c1c2c3 < 1 is strict, implying that the
conclusion is robust with respect to the radius. �

The previous lemma exploits the fact that each of M and (by assumption) MN1,N2 have
only finitely many eigenvalues in the complement of Dr for any finite r > 0. However, this
is not the only set in which the number of eigenvalues of M must be finite. In fact, this is
true for any set—open or closed—that is bounded away from zero, since M is compact (or
eventually compact). If the goal is to validate a specific eigenvalue of MN1,N2 rather than a
generalized Morse index, one can accomplish this using a very similar setup.

Lemma 4.3.2 (Compact eigenvalue validation) Let U ⊂ C be compact, bounded away from
zero, path-connected and have a continuous boundary. Let MN1,N2 be a bounded operator
on Xν with with the following properties.

• MN1,N2 has only finitely many eigenvalues in U.
• MN1,N2 has no eigenvalues on the boundary of U (denoted ∂U).
• Each of X N2

ν and X∞
ν are invariant subspaces of MN1,N2 .

Suppose there are positive constants c1, c2 and c3 such that

max

(
sup

z∈∂U
||(MN1,N2 − z I )−1||

B(X
N2
ν )

, sup
z∈∂U

||(MN1,N2 − z I )−1||B(X∞
ν )

)
≤ c1

||(I − W )−1||B(Xν ) ≤ c2

||(I − W )MN1,N2 − E ||B(Xν ) ≤ c3,

and c1c2c3 < 1. Then, MN1,N2 and M have the same number of eigenvalues in U.

Proof By assumption, MN1,N2 has only finitely-many eigenvalues in U , and the same is true
of M due to compactness (or eventual compactness) and the assumption U is bounded away
from zero. Let z : [0, 1] → ∂U be a parameterization of the boundary. If H is denotes the
straight-line homotopy (40), to prove the theorem it suffices to show that H(s) − z(t)I is
boundedly invertible for all (s, t) ∈ [0, 1] × [0, 1], for then no eigenvalue of H(s) crosses
the boundary ∂U and the continuity of a finite eigensystem of a family of bounded linear
operators implies that M and MN1,N2 must have the same number of eigenvalues inside U .
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Define N (t) = MN1,N2 − z(t)I . By assumption, ||N (t)−1||B(Xν ) ≤ c1. Also,

H(s) − z(t)I = N (t){I − s N (t)−1(MN1,N2 − M)}.
It remains to show that the term in the curly braces is boundedly invertible. By the same
argument as in the proof of Lemma 4.3.1, we know that ||MN1,N2 − M || ≤ c2c3, so
||s N (t)−1(MN1,N2 − M)||B(Xν ) ≤ c1c2c3 < 1 for all (s, t) ∈ [0, 1]2. It follows that the
term in curly braces is boundedly invertible. This completes the proof. �

4.3.1 Interpretation of the bounds c1, c2 and c3

c1 is an upper bound for supz∈∂U ||(MN1,N2 − z I )−1||B(Xν ). If MN1,N2 → M as (N1, N2) →
∞, it can be interpreted as an asymptotic proxy for the distance between the spectrum of
M and the boundary of the set U , whatever this happens to be. c3 is a proxy for numerical
defect: if �M := MN1,N2 − M satisfies ||�M ||B(Xν ) = ε, then

||(I − W )MN1,N2 − E ||B(Xν ) = ||(I − W )(M + �M) − E ||B(Xν )

= ||(I − W )�M ||B(Xν )

≤ ε||I − W ||B(Xν )

As for c2, it is a technical bound on the inverse (I − W )−1 and does not lend itself to
interpretation relative to the discretization MN1,N2 . The only connection it has is that we
always have the estimate

||MN1,N2 − M ||B(Xν ) ≤ c2c3, (42)

so c2 contributes to the upper bound of the discretization error ||�M ||B(Xν ).

4.3.2 Candidates sets for compact eigenvalue validation

There are two fairly natural candidates for compact sets on which one might want to vali-
date eigenvalues. The most obvious is simply a closed ball Dr (λ) := Br (λ) centered at an
approximate eigenvalue λ with radius r ∈ (0, |λ|). We have b(·, λ, r) : [0, 2π] → ∂ Dr (λ)

defined by

b(t, λ, r) = λ + reit (43)

is a continuous parameterization of the boundary. An alternative to such a closed ball is the
following.

Definition 4.3.1 (Radial sector) Let λ ∈ C. The radial sector centered at λ with width
r ∈ (0, |λ|) and sweep ω ∈ (0, π) is the set

Rλ(r , ω) = {z ∈ C : z = λ + μei(arg λ+θ), |μ| ≤ r , |θ | ≤ ω}.
We will refer to such a set without qualification as being a radial sector centered at λ.

A radial sector is simply a translated rectangle in polar coordinates, parameterized by its
half-width and half-length. Having two parameters (width and sweep, versus only a radius)
allows for a finer level of control. Additionally, as we will see later (see Remark 6.1.2),
the tail bounds (i.e. on B(X∞

ν )) for c1 are generally tighter for a radial sector (of width
r ) than they are for a closed ball (of radius r ) centered at a given λ. Also, though the
associated boundary parameterization is only piecewise continuous, it is smooth on each
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piece and this poses no problem for the c1 bound computation; see Sect. 7.1. The function
z(·, λ, r , ω) : [0, 4] → ∂ Rλ(r , ω) given by

z(t; λ, r , ω) =

⎧⎪⎪⎨
⎪⎪⎩

(|λ| − r)ei(arg λ+ω(1−2t)), 0 ≤ t < 1
(|λ| + (2t − 3)r)ei(arg λ−ω), 1 ≤ t < 2
(|λ| + r)ei(arg λ+(2t−5)ω), 2 ≤ t < 3
(|λ| + r(7 − 2t))ei(arg λ+ω), 3 ≤ t ≤ 4.

(44)

is a parameterization of the boundary. For the purposes of later validation and enclosure, the
following proposition concerning inclusions of balls inside radial sectors as well as inclusion
characterizations of two radial sectors will be of use. Its proof is a straightforward geometry
exercise.

Proposition 4.3.1 The ball Br (x) with r < |x | satisfies Br (x) ⊂ Rx

(
r , 2 arcsin

(
r

2|x |
))

.

Also, we have Rλ1(r1, ω) ⊆ Rλ2(r2, ω2) if and only if the following are satisfied:

|λ2| − r2 ≤ |λ1| − r1, |λ1| + r1 ≤ |λ2| + r2,

arg(λ2) − ω2 ≤ arg(λ1) − ω1, arg(λ1) + ω1 ≤ arg(λ2) + ω2.

4.4 Infinite matrix representation of implicit and explicit part maps

Each of the maps Ek , Wk , E0
p and W 0

p with their representations on Xν are linear with respect
to two pieces of datum: the input f = ( f (0), f0, . . . , f1−q) and a convolution termXk ∗ fm ,
where Xk is one of Âk or B̂k , and m ∈ {0, . . . , 1 − q} is some index. It will be beneficial
later to have these maps split into those parts that are linear in f and those that are linear in
Xk ∗ fm . One can verify by inspection that the following representations are valid:

Wk f = (1 − 10(k − 1))e0S fk−p−1 + H1(Ak ∗ fk−p) (45)

W 0
p f = (1 − 10(p − 1))(I + C1)S f−1 + (I + C1)H2(Ap ∗ f0) (46)

Ek f = 10(k − 1)e0 f (0) + H1(Bk ∗ fk−q) (47)

E0
p f = (10(p − 1)(I + C1) + 10(p − q)C2) f (0)

+ (1 − 10(p − q))C2S∗ f p−q+1 + (I + C1)H2(Bp ∗ f p−q), (48)

where H1 and H2 are infinite matrices defined inductively by

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 Id − 1

4 Id − 1
3 Id

1
8 Id − 1

15 Id · · · − (−1)n

n2−1
Id · · · . . .

. . .
1
4 Id 0 − 1

4 Id 0 0 · · · 0 · · · · · · · · ·
0 1

8 Id 0 − 1
8 Id 0 · · · 0 · · · · · · · · ·

0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 · · · 0 1
4n Id 0 − 1

4n Id 0
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

H2 =
[

Id 0 − 2
3 Id 0 · · · − (−1)n+1

n2−1
Id · · ·

]
, (50)
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and the remaining terms are

S f· = f·,0 + 2
∑
m≥1

f·,m ∈ C
d (51)

S∗ f· = f·,0 + 2
∑
m≥1

(−1)m f·,m ∈ C
d (52)

e0y = (y, 0, . . . ) ∈ �1ν, y ∈ C
d . (53)

Note that in (49), the final (rightmost) displayed column has index nth, the final (bottom)
displayed row is index nth as well, and similarly in (50) the final displayed entry has index
nth entry, where indexing is from zero so that the first rows and columns have index zero.

For convenience, we will write H1 as the sum

H1 = H0
1 + DT , (54)

where (H0
1 x)0 = (H1x)0 and (H0

1 x) j = 0 for j > 0 (i.e. H0
1 is the first row of H1

continuously embedded as an operator on �1ν), T is Toeplitz and D is a diagonal operator
defined as follows:

T =

⎡
⎢⎢⎢⎣
0 −I 0 · · ·
I 0 −I 0 · · ·
0 I 0 −I 0 · · ·

. . .
. . .

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
4 I

1
8 I

. . .
1
4n

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where the 1
4n occurs at the (n, n) diagonal index (again with zero-indexing).

We conclude this section with an observation concerning an elementwise product oper-
ation. First, concerning the maps H2 and S. Each of these commute with d × d matrix
multiplication in the following sense. If M ∈ C

d×d , h ∈ �1ν and we define (M � h)n = Mhn

to be the “elementwise (block) product”, then

M H2h = H2(M � h), M Sh = S(M � h). (56)

Next, if Y ∈ �1ν(C
d×d) and h ∈ �1ν , we have the following identity concerning “associativity”

of the elementwise product with convolution:

M � (Y ∗ h) = (M � Y ) ∗ h. (57)

provided we overload the notation and define (M � Y )n = MYn .

5 A dictionary of norm bounds

In the sections that follow, wewill be computing formulas for the c2 and c3 bounds of Lemma
4.3.1. Especially oncewe consider the case 1 < p < q for the period and delay, the individual
linear maps that we need to bound (in norm) to get tight estimates for c2 and c3 become quite
numerous and the analysis can at times be technical. To facilitate the presentation of later
proofs, in this section we will list and prove a collection of norm bounds for such maps.
However, as some bounds are used very frequently and it is easier to locate them from a
table, we place these bounds (and their proofs) in “Appendix A”.
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There are some common elements between the computation of the bounds, so at this stage
we introduce some additional notation. For N > 0, define π N : �1ν → �1ν by [π N h]n = hn

if n ≤ N , and zero otherwise. Then, define π∞
N : �1ν → �1ν to be the complementary

projector π∞
N h = h − π N h. For h ∈ �1ν , the decomposition h = hN + h∞ will always

mean hN = π N h and h∞ = π∞
N h. Analogously, if φ ∈ Xν and N ≥ 0, we will write

φ = φN +φ∞ for φN ∈ X N
ν and φ∞ ∈ X∞

ν . Also, because �1ν admits the internal direct sum
�1ν = π N (�1ν) ⊕ π∞

N (�1ν) and h = hN + h∞ satisfies ||h||ν = ||hN ||ν + ||h∞||ν , any linear
operator L : �1ν → �1ν satisfies

||L||B(�1ν ) ≤ max

{
sup

||hN ||ν≤1
||LhN ||ν, sup

||h∞||ν≤1
||Lh∞||ν

}
, (58)

where the suprema are taken over hN ∈ π N (�1ν) and h∞ ∈ π∞
N (�1ν). Similarly, for L0 : �1ν →

C
d we have

||L0||L(�1ν ,Cd ) ≤ max

{
sup

||hN ||ν≤1
||L0hN ||, sup

||h∞||ν≤1
||L0h∞||

}
. (59)

Analogous bounds hold for a linear operator L : Xν → Xν . First, write

L(x(0), x0, . . . , x1−q) = (L(0)(x(0), x0, . . . , x1−q), L0(x(0), x0, . . . , x1−q),

. . . , L1−q(x(0), x0, . . . , x1−q)).

We can decompose by linearity over the direct sum:

L(0)(x(0), x0, . . . , x1−q) = L(0)(x(0), 0, . . . , 0) + L(0)(0, x0, 0, . . . , 0)

+ · · · + L(0)(0, 0, . . . , x1−q)

L j (x(0), x0, . . . , x1−q) = L j (x(0), 0, . . . , 0) + L j (0, x0, 0, . . . , 0)

+ · · · + L j (0, 0, . . . , x1−q),

for j = 1 − q, . . . , 0. Then each L j : Xν → �1ν satisfies

||L j || ≤ sup
|x(0)|≤1

||L j (x(0), 0)||ν +
0∑

k=1−q

max

⎧⎨
⎩ sup

||x N
k ||ν≤1

||L j (0, x N
k )||ν , sup

||x∞
k ||ν≤1

||L j (0, x∞
k )||ν

⎫⎬
⎭ ,

where L j (x(0), 0) ≡ L j (x(0), 0, . . . , 0), and L j (0, xk) ≡ L j (0, . . . , xk, . . . ) has zeros
except at the k index. It then follows by definition of the norm on Xν that

||L||B(Xν ) ≤ max

{
sup

|x(0)|≤1
||L(0)(x(0), 0)||

+
0∑

k=1−q

max

⎧⎨
⎩ sup

||x N
k ||ν≤1

||L(0)(0, x N
k )||, sup

||x∞
k ||ν≤1

||L(0)(0, x∞
k )||

⎫⎬
⎭ ,

max
j=1−q,...,0

{
sup

|x(0)|≤1
||L j (x(0), 0)||ν

+
0∑

k=1−q

max

⎧⎨
⎩ sup

||x N
k ||ν≤1

||L j (0, x N
k )||ν, sup

||x∞
k ||ν≤1

||L j (0, x∞
k )||ν

⎫⎬
⎭
⎫⎬
⎭
⎫⎬
⎭ (60)
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Conversely, if the right-hand side of (60) is finite then L is bounded.
In the following sections we will be playing somewhat fast and loose with the notation

involving our convolutions. The primary abuse of notationwill be as follows. IfY ∈ �1ν(C
d×d)

and L ∈ B(�1ν), we define the operator Y ∗ L ∈ B(�1ν) by h �→ Y ∗ L(h) := Y ∗ (Lh). For
example, often L will be a projection operator (although there are exceptions). Finally, the
following equivalent norm on �1ν(C

d×d) will be beneficial later. For Y ∈ �1ν(C
d×d), define

||Y ||ω = 2||Y ||ν − ||Y0||. This implies the convenient formula ||(Y ∗ h)||ν ≤ 2||Y ||ω||h||ν
whenever h ∈ �1ν ; see Proposition 4.1.1.

A brief warning before we proceed. The symbol I will always denote an the identity
operator, though on which space it acts will sometimes be left implicit by context. When we
wish to make the domain X explicit, we will write IX .

5.1 The operatorsQ and ˜Q

Many of the bounds of this section will involve the following pair of linear operators. They
appear frequently in the “block operator” representation of implicit part operators. Let Y ∈
�1ν(C

d×d) and N2, N1 ∈ N.

Q(Y ) = I�1ν − H1Y ∗ I�1ν , Q̃(Y ) = I�1ν − π N2 H1Y N1 ∗ π N2 , Q̃−1(Y ) = (Q̃(Y ))−1.

(61)

Whenever these symbols appear, N1 and N2 will always be fixed a priori so they can be used
without ambiguity. We will sometimes also write Q̃−1(Y N1) whenever we want to make the
dependence on N1 explicit.

Remark 5.1.1 It is a simple consequence of Theorem3.2.1 that Q̃−1(Y ) exists and is bounded.

Lemma 5.1.1 ||Q̃−1(Y )||B(�1ν ) ≤ max{||Q̃−1(Y )π N2 ||B(�1ν ), 1}.
Proof By construction, Q̃−1 acts as the identity onπ∞

N2
(�1ν). The inequality then follows from

(58). �
Lemma 5.1.2 π N2 Q̃−1(Y ) = π N2 Q̃−1(Y )π N2 and π∞

N2
Q̃−1(Y ) = π∞

N2
.

Proof Set Q̃−1 = Q̃−1(Y ). If Q̃−1x = y then x = y − π N2 H1Y N1 ∗ π N2 y and x N2 =
yN2 − π N2 H1Y N1 ∗ yN2 . But then

yN2 = π N2 Q̃−1x = (Iπ N2 (�1ν ) − π N2 H1Y N1 ∗ Iπ N2 (�1ν ))
−1x N2 ,

which coincides with π N2 Q̃−1π N2 x . The other statement is proven by similar arguments. �
Lemma 5.1.3 Let N2, N1 ≥ 0 and given Y ∈ �1ν(C

d×d), let Y N1 = (Y0, . . . , YN1 and
Y ∞ = Y −Y N1 . Denote Q = Q(Y ) and Q̃−1 = Q̃−1(Y ). The linear operators I�1ν − Q̃−1Q

and I�1ν − Q Q̃−1 can be written as follows:

I�1ν − Q̃−1Q = Q̃−1π N2
(

H1(Y
∞ ∗ I�1ν ) + H1(Y

N1 ∗ π∞
N2

)
)

+ π∞
N2

H1(Y ∗ I�1ν )

I�1ν − Q Q̃−1 = H1(Y
∞ ∗ Q̃−1) + π N2(H1(Y

N1 ∗ π∞
N2

)) + π∞
N2

H1(Y
N1 ∗ Q̃−1).

Proof Keeping track of the projection operators, recalling that each of π N2(�1ν) and π∞
N2

(�1ν)

is invariant under Q̃−1 and the latter acts as the identity on π∞
N2

(�1ν), we can equivalent write

I�1ν − Q̃−1Q = I�1ν − Q̃−1(I�1ν − π N2 H1(Y ∗ I�1ν ) − π∞
N2

H1(Y ∗ I�1ν ))
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= I�1ν − Q̃−1(I�1ν − π N2 H1(Y
N1 ∗ π N2 ) − π N2 H1(Y

∞ ∗ I�1ν )

− π N2 H1(Y
N1 ∗ π∞

N2
) − π∞

N2
H1(Y ∗ I�1ν ))

= I�1ν − Q̃−1(Q̃ − π N2 H1(Y
∞ ∗ I�1ν ) − π N2 H1(Y

N1 ∗ π∞
N2

) − π∞
N2

H1(Y1 ∗ I�1ν ))

= Q̃−1π N2
(

H1(Y
∞ ∗ I�1ν ) + H1(Y

N1 ∗ π∞
N2

)
)

+ Q̃−1π∞
N2

H1(Y ∗ I�1ν )

= Q̃−1π N2
(

H1(Y
∞ ∗ I�1ν ) + H1(Y

N1 ∗ π∞
N2

)
)

+ π∞
N2

H1(Y ∗ I�1ν )

Similarly, one can verify

I�1ν − Q Q̃−1 = π N2 (H1(Y
∞ ∗ I�1ν )Q̃−1 + H1(Y

N1 ∗ π∞
N2

)Q̃−1) + π∞
N2

(H1(Y ∗ I�1ν )Q̃−1)

= π N2 H1(Y
∞ ∗ Q̃−1) + π N2 H1(Y

N1 ∗ π∞
N2

Q̃−1) + π∞
N2

H1((Y
N1 + Y ∞) ∗ Q̃−1)

= H1(Y
∞ ∗ Q̃−1) + π N2 (H1(Y

N1 ∗ π∞
N2

)) + π∞
N2

(H1(Y
N1 ∗ Q̃−1)).

�

5.2 A general-purpose finite computation norm estimate

For a given linear operator L : Xν → Xν , it is often useful to work with a “block decompo-
sition”,

Lh =
[

T (0) T...

U V

] [
h(0)
h...

]
.

The following lemma facilitates the computation of the norm of such an operator. When
ker L = X∞

ν , the bound of the lemma reduces to a tight, finite computation.

Lemma 5.2.1 Denote Xν(0) = span{(e j , 0, . . . , 0) : j = 1, . . . , d} ⊂ Xν and π(0) : Xν →
Xν(0) the projection onto Xν(0). Let L : Xν → Xν be a bounded operator being expressible
in the form L = T + U + V with the following specifications:

• T has range in Xν(0) and there exists T (0) and Tm, j ∈ C
d×d for m = 1− q, . . . , 0 and

j ∈ N such that

(T h)(0) = T (0)h(0) +
0∑

m=1−q

∞∑
j=0

Tm, j hm, j ,

• ker(U ) = im(IXν −π(0)),U has range in im(IXν −π(0)), and there existUm ∈ �1ν(C
d×d)

for m = 1 − q, . . . , 0 such that (Uh)m, j = Um, j h(0),
• ker(V ) = Xν(0), V has range in im(IXν −π(0)), and there exist (Vm,k) j,n ∈ C

d×d with
m, k ∈ {1 − q, . . . , 0} and j, n ∈ N such that

(V h)m, j =
0∑

k=1−q

∞∑
n=0

(Vm,k) j,nhk,n .

Then ||L||B(Xν ) ≤ max{T ,U + V}, where

Tm = sup
j≥0

1

ν j
||Tm, j ||, T = ||T (0)|| +

0∑
m=1−q

Tm
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Vm,k = sup
n≥0

1

νn

∞∑
j=0

||(Vm,k) j,n ||ν j , U + V = max

⎧⎨
⎩||Um ||ν +

0∑
k=1−q

Vm,k : m = 1 − q, . . . , 0

⎫⎬
⎭ .

Proof By definition of the norm on Xν , we have

||L||B(Xν ) = sup
||h||Xν ≤1

max{||(Lh)(0)||, ||(Lh)0||ν, . . . , ||(Lh)1−q ||ν}. (62)

Making use of the decomposition L = T + U + V , the contribution from ||(Lh)(0)|| comes
solely from T . We bound this term first. First, observe that by definition of Tm we have
||Tm, j || ≤ ν jTm for all j ≥ 0. Then

||T h(0)|| ≤ ||T (0)h(0)|| +
0∑

m=1−q

∞∑
j=0

||Tm, j hm, j ||

≤ ||T (0)|| +
0∑

m=1−q

∞∑
j=0

Tmν j ||hm, j ||

= ||T (0)|| +
0∑

m=1−q

Tm ||hm ||

≤ T .

Next, since (Lh)m = (Uh)m + (V h)m for m = 1 − q, . . . , 0, we will bound ||(Lh)m ||ν
using the triangle inequality. Clearly ||(Uh)m ||ν ≤ ||Um ||ν . As for the V terms, first observe
that by definition of Vm,k ,

∞∑
j=0

||(Vm,k) j,n ||ν j ≤ Vm,kν
n

for all n ≥ 0. Then

||(V h)m ||ν =
∞∑
j=0

||(V h)m, j ||ν j

≤
∞∑
j=0

0∑
k=1−q

∞∑
n=0

||(Vm,k) j,n || · ||hk,n||ν j

=
0∑

k=1−q

∞∑
n=0

⎛
⎝ ∞∑

j=0

||(Vm,k) j,n ||ν j

⎞
⎠ ||hk,n ||

≤
0∑

k=1−q

∞∑
n=0

Vm,kν
n ||hk,n||

=
0∑

k=1−q

Vm,k,

where in the third line we make use of Fubini’s theorem. Combining the previous two esti-
mates, it follows that ||(Lh)m ||ν ≤ ||Um ||ν + ∑

k Vm,k . Taking the maximum over m and
applying (62), we obtain the bound ||L||B(Xν ) ≤ max{T ,U + V}. �
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5.3 Finite convolutions and the operator H1

Let L be a d × (N2 + 1) × d(N2 + 1) matrix, and define L : �1ν → �1ν by

(Lh)n =
{∑N2

k=0 Ln,khk, n ≤ N2

0 n > N2,

where Ln,k denotes the d × d block with row-column index (n, k) with indexing from zero
(that is, n = 0 corresponds to the first row). We write L = i ◦ L.

We are will later need to bound operators of the form π∞
N2

H1(Y N1 ∗ L) in norm. To
accomplish this, we first make two observations.

1. The image of Y N1 ∗ L is finite-dimensional and equal to π N1+N2(�1ν).
2. The kernel of π∞

N2
H1 is equal (for N2 ≥ 1) to π N2−1(�1ν).

To proceed, we will therefore represent (Y N1 ∗ L) as an infinite matrix with a finite nonzero
block and multiply it with a matrix representation of π∞

N2
H1 on the left. Let ζ N2−1 be the

matrix associated to the linear map

C
d(N1+N2+1) � (x0, x1, . . . , xN1+N2) �→ (0, . . . , xN2 , . . . , xN1+N2).

ξ N2−1 is a d(N1 + N2 + 1) × d(N1 + N2 + 1) diagonal matrix. Define

G(Y N1 , L) = ζ N2−1[DT ]0:N1+N2
0:N1+N2

⎡
⎢⎢⎢⎢⎢⎢⎣

(Y N1 ∗ L)0
...

(Y N1 ∗ L)N2
...

(Y N1 ∗ L)N1+N2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (63)

where (Y N1 ∗ L) is the d(N1 + N2 + 1) × d(N2 + 1) matrix defined row-wise

(Y N1 ∗ L) j =
N1∑

n=−N1

Y N1|n| L|n− j |

For h ∈ �1ν , we have by definition of convolution and L that

(Y N1 ∗ Lh) j =
N1∑

n=−N1

Y N1|n|
N2∑

k=0

L|n− j |,khk = (Y N1 ∗ Lh) j

where hn = hn for n ≤ N2 and zero otherwise. From this, we conclude that for h ∈ �1ν ,

π N1+N2
(
π∞

N2
H1(Y

N1 ∗ L)h
)

= ψ−1
N1+N2

(G(Y N1 , L)h),

π∞
N1+N2

(
π∞

N2
H1(Y

N1 ∗ L)h
)

= 0,

where ψN : π N (�1ν) → C
d(N+1) is the isomorphism defined by (ψN h)1+nd:(n+1)d = hn .

Formally,

ψN (h0, . . . , hN , 0, . . . ) =
⎡
⎢⎣

h0
...

hN

⎤
⎥⎦ . (64)
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Taking into account Lemma 5.2.1 and that the first N2 − 1 (block) rows of G(Y N1 , L) are
zero, this proves the following proposition.

Proposition 5.3.1 Let L be a d(N2 + 1) × d(N2 + 1) matrix, and Y ∈ �1ν(C
d×d). Define

G(Y N1 , i ◦ L) according to (63). Then,

||π∞
N2

H1(Y
N1 ∗ i ◦ L)||B(�1ν ) ≤ max

k=0,...,N2

1

νk

N1+N2∑
j=N2

||G(Y N1 , i ◦ L) j,k ||ν j .

6 Truncatedmonodromy operator and tight formulas for c2, c3 and
||(MN1,N2 − zI)−1||B(X∞

� ) bounds

In this section we will compute tight bounds c2, c3 and ||(MN1,N2 − z I )−1||B(X∞
ν ) from

Lemma 4.3.1 for the cases p = q = 1, 1 = p < q and 1 �= p < q . It is beneficial both for
clarity of presentation and also for some slight mathematical differences to consider these
cases separately. As for the c1 bound, in all cases it involves a computation of a finite matrix
norm and will be done on a computer. This will be elaborated upon in Sect. 7.1.

For a fixed Y ∈ �1ν(C
d×d), let Q̃−1(Y ) be the d(N2 + 1) × d(N2 + 1) block matrix such

that

(Q̃−1(Y )h) j =
{∑N2

k=0 Q̃
−1
j,k(Y )hk, j ≤ N2

h j , j ≥ N2 + 1,

where Q̃−1
j,k(Y ) denotes the row j , column k block of dimension d × d , with zero-indexing

(that is, row one corresponds to j = 0 and column one corresponds to k = 0). LetDT denote
the d(N2 + 1) × d(N2 + 2) block matrix

DT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · ·
1
4 Id 0 − 1

4 Id 0 · · ·
0 1

8 Id 0 − 1
8 Id 0 · · ·

. . .
. . .

. . .

. . .
. . .

. . .
1

4N2
Id 0 − 1

4N2
Id

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

that is, DT is the nontrivial finite-dimensional block of π N2 DT . Let H0
1 denote the d ×

d(N2 + 2) matrix

H0
1 =

[
1
2 Id − 1

4 Id − 1
3 Id

1
8 Id − 1

15 Id · · · − (−1)N2+1

N2
2−1

Id

]
;

that is, H0
1 is a domain truncation of the finite-dimensional block of H0

1 . For k = 0, . . . , N1,

let Z N1,N2
k denote the d(N2 + 2) × d(2N1 + 1) block Toeplitz matrix and S(Y N1) denote the
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d(2N1 + 1) × d matrix

Z N1,N2
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
Id

0 I d
...

. . .

0 . . . 0 Id 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S(Y N1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

YN1

YN1−1
...

Y1

Y0

Y1
...

YN1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where the first nonzero block in Z N1,N2
k has row index N2 − N1 + 1 + k (and consequently

the last nonzero block column has index N1 − k). Let Q̃−1
j (Y ) and DT j denote the j th (d-

dimensional block) row of Q̃−1(Y ) and DT, and also let DT j,k denote the row j , column k
block ofDT. With a slight abuse of notation, we define Q̃−1

j,k = 0 whenever the indices ( j, k)

are out of range: that is, j > N2 or k > N2 (recall we index from zero).

6.1 Bounds in the case p = q = 1

Let N2 > 0 be given. Making use of the identifications from Sect. 4.4, we can write E and
(I − W ) as block matrix operators acting on Cd × �1ν as follows. If h = (h(0), φ),

Eh =
[

(I + C1 + C2) (I + C1)H2B1 ∗ I�1ν
e0 ICd H1B1 ∗ I�1ν

] [
h(0)
φ

]
(65)

(I�1ν − W )h =
[

ICd −(I + C1)H2A1 ∗ I�1ν
0 Q(A1)

] [
h(0)
φ

]
(66)

Next, let N1 ≥ 0. We can write EN1,N2 and I − WN1,N2 using this same notation:

EN1,N2 =
[

(I + C1 + C2) (I + C1)H2B N1
1 ∗ π N2

e0 ICd π N2 H1B N1
1 ∗ π N2

]
(67)

I�1ν − WN1,N2 =
[

ICd −(I + C1)H2AN1
1 ∗ π N2

0 Q̃(A1)

]
, (68)

where this time we have suppressed the input h. From here it follows that

(I�1ν − WN1,N2)
−1 =

[
ICd (I + C1)H2AN1

1 ∗ π N2 Q̃−1(A1)

0 Q̃−1(A1)

]
. (69)

We have included the explicit domains on the identity operators for clarity. We can now
express the truncated monodromy operator MN1,N2 = (I − WN1,N2)

−1EN1,N2 in block
operator form:

MN1,N2 =
[

M11
N1,N2

M12
N1,N2

M21
N1,N2

M22
N1,N2

]
,

M11
N1,N2

= C2 + (ICd + C1)(ICd + H2AN1
1 ∗ π N2 Q̃−1(A1)e0 I )

M12
N1,N2

= (ICd + C1)(H2B N1
1 ∗ π N2 + H2AN1

1 ∗ π N2 Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2

M21
N1,N2

= Q̃−1(A1)e0 ICd
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M22
N1,N2

= Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2 . (70)

Remark 6.1.1 When we want to use the computer to calculate eigenvalues of our impulsive
delay differential equation, we implement the matrix representation of the restriction of the
linear operator MN1,N2 to the finite-dimensional vector space X N2

ν .

Lemma 6.1.1 (Truncated monodromy operator, p = q = 1) Define MN1,N2 = (I −
WN1,N2)

−1EN1,N2 . Suppose φ is an eigenvector of MN1,N2 with eigenvalue λ. If λ �= 0
then with φ = φN2 + φ∞, we have φ∞ = 0. Also, each of X∞

ν and X N2
ν is an invariant

subspace for MN1,N2 and for r > 0 we have

||(MN1,N2 − reiθ )−1||B(X∞
ν ) ≤ 1

r
.

If λ ∈ C, 0 < r < |λ| and 0 < ω < π , then for U ∈ {Dr (λ), Rλ(r , ω)},

sup
z∈∂U

||(MN1,N2 − z I )−1||B(X∞
ν ) ≤ 1

|λ| − r
.

Proof The assertions concerning the eigenvalues, eigenvectors and invariant subspaces follow
directly from the definition of EN1,N2 and (I − WN1,N2)

−1. As for the bound, we have
MN1,N2φ

∞ = 0, which implies (MN1,N2 − reiθ )−1φ∞ = 1
r e−iθφ∞ and subsequently,

||(MN1,N2 − reiθ )−1φ∞||Xν ≤ 1
r ||φ∞||Xν . For the proof concerning the closed ball Dr (λ),

observe that (MN1,N2 − (λ + reit )I )−1φ∞ = (λ + reit )−1φ∞ for t ∈ [0, 2π], so that

||(MN1,N2 − (λ + reit )I )−1||Xν ≤ sup
t∈[0,2π ]

1

|λ + reit | ||φ
∞||Xν .

which attains its maximum when t = − arg λ, resulting in the bound claimed in the lemma.
As for the radial sector, we have

(MN1,N2 − z(t; λ, r , ω)I )−1φ∞ = 1

z(t; λ, r , ω)
φ∞

for the parameterization in (44). Taking norms and suprema for t ∈ [0, 4], the upper bound
stated in the lemma is attained for t ∈ [0, 1]. �
Remark 6.1.2 For fixed λ ∈ C and r ∈ (0, |λ|), the coarse bound for supz∈∂U ||(MN1,N2 −
z I )−1||B(X∞

ν ) is attained at a single point in the boundary parameterization for a closed ball
Dλ(r), whereas it is attained on a continuum for a given radial sector Rλ(r , ·). In this sense,
supz∈∂U ||(MN1,N2 − z I )−1||B(X∞

ν ) can be more conservatively bounded on a radial sector
(of a given width) than it can for a closed ball (of radius equal to the prior width).

This lemma gives preliminary justification for why MN1,N2 is a reasonable choice for
a truncated monodromy operator. It also guarantees that the nonzero eigenvalues of the
truncation can in principle be computed from the finite (and generally nontrivial) part of
MN1,N2 . The following theorems gives computable bounds c2 and c3.

Theorem 6.1.1 (c2 bound, p = q = 1) Let N2 > N1 ≥ 0. Denote AN1
1 =

(A1,0, . . . , A1,N1 , 0, . . . ) and A∞
1 = A1 − AN1

1 . Define

K0 = max
k=0,...,N2

1

νk

N2∑
j=0

||Q̃−1
j,k(AN1

1 )||ν j
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K �
0 = max

k=0,...,N2

1

νk

N2∑
j=0

||(I + C1)Q̃
−1
j,k(AN1

1 )||ν j

K1 = max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||AN1

1 ||ω
(N2 + 1 − N1)2 − 1

||Q̃−1
j,0(AN1

1 )||

+||Q̃−1
j (AN1

1 )DTZ N1,N2
k S(AN1

1 )||
)

ν j

m j,k =
(

||AN1
1 ||ω

(N2 + 1 − N1)2 − 1
||(I + C1)Q̃

−1
j,0(AN1

1 )||

+||(I + C1)Q̃
−1
j (AN1

1 )DTZ̃ N1,N2
k S(AN1

1 )||
)

K2 = max
k=0,...,N1

1

νN2+1+k
m j,0 +

N2∑
j=2

(−1) j + 1

j2 − 1

(
max

k=0,...,N1

1

νN2+1+k
m j,k

)

J0(AN1
1 ) = max

k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(AN1
1 , i ◦ I

Cd(N2+1) ) j,k ||ν j

α(AN1
1 ) = 1

4(N2 + 1)

((
ν + 2

ν
+ 1

ν3

)
||AN1

1 ||ν −
(
1

ν
+ 1

ν3

)
||AN1

1,0||
)

β = max
{

J0(AN1
1 ), K1 + α(AN1

1 )
}

and introduce the quantities

ρ1 =
(

K0

(
1 + ν

2

)
+ ν + ν−1

2(N2 + 1)

)
||A∞

1 ||ω + β

ρ(0) = g(ν)K �
0

(
1 + ν

2

)
||A∞

1 ||ω

+ max

{
2g(ν)||I + C1|| · ||A∞

1 ||ω,
2||(I + C1) � AN1

1 ||ν
νN2+1 + K2

}

Suppose ρ := max{ρ1, ρ(0)} < 1. Then, with

c2 := ||(I − WN1N2)
−1||B(Xν )

1 − ρ
=

max{1, ||(I − WN1,N2)
−1||

B(X
N2
ν )

}
1 − ρ

, (71)

the operator I − W satisfies ||(I − W )−1||B(Xν ) ≤ c2.

Proof Define the operator � = I − (I − WN1,N2)
−1(I − W ). By construction,

||(I�1ν − W )−1||B(�1ν ) ≤ ||(I�1ν − WN1,N2)
−1||B(�1ν ) · ||(I − �)−1||B(�1ν ),

so if we can estimate the norm of � and prove that this is less than one, a Neumann series
argument will give a constructive bound for c2, since the norm ||(I�1ν − WN1,N2)

−1||B(�1ν ) can
be approximated (or rigorously enclosed) on a computer: in particular, it is bounded above
by max{1, ||(I − WN1,N2)

−1π N2 ||
B(X

N2
ν )

}.
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Moving on to the estimation of the operator norm of �, a careful multiplication shows

� =
[
0 (I + C1)�12

0 I�1ν − Q̃−1(A1)Q(A1)

]
,

with the upper right block given by

�12 = H2AN1
1 ∗ π N2 Q̃−1(A1)Q(A1) − H2A1 ∗ I�1ν

= H2

(
AN1
1 ∗ π N2 Q̃−1(A1)Q(A1) − A1 ∗ I�1ν

)

= H2

(
AN1
1 ∗ π N2(Q̃−1(A1)Q(A1) − I�1ν ) + AN1

1 ∗ π N2 − A1 ∗ (π N2 + π∞
N2

)
)

= H2

(
AN1
1 ∗ π N2(Q̃−1(A1)Q(A1) − I�1ν ) − A∞

1 ∗ π N2 − AN1
1 ∗ π∞

N2

)
.

By definition of the norm on Xν = C
d × �1ν , it follows that

||�||B(Xν ) ≤ max{||(I + C1)�12||B(�1ν ), ||I�1ν − Q̃−1(A1)Q(A1)||B(�1ν )}.
We will estimate these two norms separately. For brevity, write Q̃ = Q̃(AN1

1 ) and Q =
Q(A1). First, we use Lemma 5.1.3 to write

I�1ν − Q̃−1Q = Q̃−1π N2 H1(A∞
1 ∗ I�1ν ) + Q̃−1π N2 H1(AN1

1 ∗ π∞
N2

) + π∞
N2

H1(A∞
1 ∗ I�1ν )

+ π∞
N2

H1(AN1
1 ∗ π N2) + π∞

N2
H1(AN1

1 ∗ π∞
N2

).

Wewill nowbound this linear operator using (58) to consider themaximumof the contribution
from the body π N2(�1ν) and tail π∞

N2
(�1ν). Using Propositions 4.1.1, 5.3.1 and rows 3, 4, and

8 of Table A, we can get the bound

||(I�1ν − Q̃−1Q)π N2 ||B(�1ν ) ≤ K0

(
1 + ν

2

)
||A∞

1 ||ω + ν + ν−1

2(N2 + 1)
||A∞

1 ||ω + J0(AN1
1 ).

(72)

Similarly, using Proposition 4.1.1 and rows 3, 4, 8, 12 and 14 of Table A, we get

||(I�1ν − Q̃−1Q)π∞
N2

||B(�1ν ) ≤ K0

(
1 + ν

2

)
||A∞

1 ||ω + K1 + ν + ν−1

2(N2 + 1)
||A∞

1 ||ω + α(AN1
1 ).

(73)

Taking into account (58), it follows that ||I�1ν − Q̃−1Q||B(�1ν ) ≤ ρ1.

Next, we deal with�12. We begin by splitting π N2(Q̃−1Q − I�1ν ) into two separate terms:

π N2(Q̃−1Q − I�1ν ) = −π N2 Q̃−1(H1(A∞
1 ∗ I�1ν )) − π N2 Q̃−1H1(AN1

1 ∗ π∞
N2

).

With this decomposition, we can write −�12 as follows:

−�12 = H2(A∞
1 ∗ π N2 + π N2 Q̃−1(H1(A∞

1 ∗ I�1ν ))) + H2(AN1
1 ∗ π∞

N2

+ π N2 Q̃−1(H1(AN1
1 ∗ π∞

N2
))).

This decomposition has the effect of separating the terms that are asymptotically O(||A∞
1 ||ω)

from everything else. After distributing through the I +C1 matrix term using the elementwise
product operand �, we use Proposition 4.1.1, rows 1, 2, 3, 4 and 15 and (59) to obtain the
bound

||(I + C1)�12||B(�1ν )
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≤ g(ν)K �
0

(
1 + ν

2

)
||A∞

1 ||ω + max {2g(ν)||I

+C1|| · ||A∞
1 ||ω,

2||(I + C1) � AN1
1 ||ν

νN2+1 + K2

}

= ρ(0) (74)

Combining the previous estimates, we conclude ||�||B(�1ν ) ≤ max{ρ1, ρ(0)} = ρ. By

Neumann series, ||(I − �)−1||B(�1ν ) ≤ 1
1−ρ

, which combined with the discussion at the
beginning completes the proof. �
Remark 6.1.3 The matrix Q̃−1(AN1

1 ) can be identified with the nontrivial, finite block of

Q̃−1(AN1
1 )π N2 = [ 0 π N2 ](I − WN1,N2)

−1
[

0
π N2

]
,

and is computed explicitly in our numerical scheme. As such, any finite computations involv-
ing this can be accomplished on a computer.

Theorem 6.1.2 (c3 bound, p = q = 1) Let N2 > 1 and N1 > 0, and let K0, AN1
1 and A∞

1 be

defined as in Theorem 6.1.1. Denote B N1
1 = (B1,0, . . . , B1,N1 , 0, . . . ) and B∞

1 = B1 − B N1
1 .

Let M be the d(N2 + 1) × d(N2 + 1) matrix such that for all h ∈ π N2(�1ν),

ψN2

(
Q̃−1(A1)π

N2 H1B N1
1 ∗ h

)
= MψN2(h)

where ψ the isomorphism defined by in (64). Introduce the quantities

||M||ν = max
k=0,...,N2

1

νk

N2∑
j=0

||M j,k ||ν j

K 0
0 =

N2∑
j=0

||Q−1
j,0(AN1

1 )||

L0 = max
k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(AN1
1 , i ◦ Q̃−1(AN1

1 ) diag(I , 0, . . . , 0)) j,k ||ν j

L1 = max
k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(AN1
1 , i ◦ M) j,k ||ν j

L2 = max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||B N1

1 ||ω
(N2 + 1 − N1)2 − 1

||10( j) + ||DT j Z N1,N2
k S(B N1

1 )||
)

ν j

J0(B N1
1 ) = max

k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(B N1
1 , i ◦ I

Cd(N2+1) )||ν j

α(B N1
1 ) = 1

4(N2 + 1)

((
ν + 2

ν
+ 1

ν3

)
||B N1

1 ||ν −
(
1

ν
+ 1

ν3

)
||B N1

1,0||
)

γ = max
{(

1 + ν

2

)
||M||ν ||A∞

1 ||ω + L1 + J0(B N1
1 ) , L2 + α(B N1

1 )
}

κ1 =
(
1 + ν

2

)
(K 0

0 ||A∞
1 ||ω + ||B∞

1 ||ω) + L0 + γ
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κ(0) = 2g(ν)||I + C1||K 0
0 ||A∞

1 ||ω + max
{
2g(ν)||I + C1|| · ||B∞

1 ||ω,

2g(ν)||I + C1|| · ||A∞
1 ||ω||M||ν + · · ·

1

νN2+1

(
2||(I + C1) � B N1

1 ||ν +
(
1 + 1

νN2+1

)
||I + C1|| · ||B∞

1 ||ω
)}

Then, with

c3 := max{κ1, κ(0)}, (75)

we have the estimate ||(I − W )MN1,N2 − E ||B(Xν ) ≤ c3.

Proof Define � = (I − W )MN1,N2 − E . Using (65)–(69) one can write � in the form

� = −
[

(I + C1)�11 (I + C1)�12

�21 �22

]

with the more complicated terms being given by

�11 = H2(A1 ∗ I�1ν − AN1
1 ∗ π N2 )Q̃−1(A1)e0 ICd

= H2(A1 ∗ I�1ν − AN1
1 ∗ I�1ν )Q̃−1(A1)e0 ICd

= H2 A∞
1 ∗ Q̃−1(A1)e0 ICd

�12 = H2

(
B1 ∗ I�1ν − B N1

1 ∗ π N2 + (A1 ∗ I�1ν − AN1
1 ∗ π N2 )Q̃−1(A1)π

N2 H1B N1
1 ∗ π N2

)

= H2

(
B∞
1 ∗ π N2 + B1 ∗ π∞

N2
+ (A1 ∗ I�1ν − AN1

1 ∗ π N2 )π N2 Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2
)

= H2

(
B∞
1 ∗ π N2 + B1 ∗ π∞

N2
+ A∞

1 ∗ π N2 Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2
)

�21 = (I − Q(A1)Q̃−1(A1))e0 ICd

�22 = H1B1 ∗ I�1ν − Q(A1)Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2

= (I�1ν − Q(A1)Q̃−1(A1))π
N2 H1B N1

1 ∗ π N2 + H1B1 ∗ I�1ν − π N2 H1B N1
1 ∗ π N2

= (I�1ν − Q(A1)Q̃−1(A1))π
N2 H1B N1

1 ∗ π N2

+ H1B∞
1 ∗ I�1ν + π N2 H1B N1

1 ∗ π∞
N2

+ π∞
N2

H1B N1
1 ∗ I�1ν ,

Like in the proof of the previous theorem, we can bound ||�||B(�1ν ) via

||�||B(�1ν ) ≤ max
{||(I + C1)�11|| + ||(I + C1)�12|| , ||�21|| + ||�22||

}
, (76)

where the norms are norms on appropriate spaces of linear maps. It therefore suffices to
compute the individual norm bounds. Starting with �21, we can write

�21 = H1(A∞
1 ∗ Q̃−1e0) + π∞

N2
H1(AN1

1 ∗ Q̃−1e0).

This we bound using Propositions 4.1.1, 5.3.1 and rows 3 and 9 of Table A to get

||�21|| ≤
(
1 + ν

2

)
K 0
0 ||A∞

1 ||ω + L0.

Next, we write down �22 with more structure. We have

�22 = H1(A∞
1 ∗ Q̃−1π N2 H1(B N1

1 ∗ π N2)) + π∞
N2

H1(AN1
1 ∗ Q̃−1π N2 H1(B N1

1 ∗ π N2))

+ H1(B∞
1 ∗ I�1ν ) + π N2 H1(B N1

1 ∗ π∞
N2

) + π∞
N2

H1B N1
1 I�1ν
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= H1(A∞
1 ∗ Q̃−1(A1)π

N2 H1B N1
1 ∗ π N2)

+ π∞
N2

H1(AN1
1 ∗ Q̃−1(A1)π

N2 H1B N1
1 ∗ π N2) + H1(B∞

1 ∗ I�1ν )

+ H1(B N1
1 ∗ π∞

N2
) + π∞

N2
H1(B N1

1 ∗ π N2).

We can bound the individual terms with Propositions 4.1.1, 5.3.1, Lemma 5.2.1 and rows 3,
4, 13 and 14 of Table A. Additionally taking into account the tail-body split inequality (58),
we get

||�22|| ≤
(
1 + ν

2

)
||B∞

1 ||ω + γ.

Combining the two previous estimates, we have ||�21|| + ||�22|| ≤ κ1. Next we bound
(I + C1)�11. Using Proposition 4.1.1 and rows 1 and 9 of Table A, We have

||(I + C1)�11|| ≤ ||I + C1||2g(ν)K 0
0 ||A∞

1 ||ω.

To handle (I +C1)�12, we use Propositions 4.1.1, 5.3.1, Lemma 5.2.1, rows 1 and 2 of Table
A and inequality (59) to get

||(I + C1)�12|| ≤ max
{
2g(ν)||I + C1|| · ||B∞

1 ||ω, 2g(ν)||I + C1|| · ||A∞
1 ||ω||M||ν + · · ·

2

νN2+1

(
||(I + C1) � B

N1
1 ||ν +

(
1 + 1

νN2+1

)
||I + C1|| · ||B∞

1 ||ν
)}

It follows that ||(I + C1)�11|| + ||(I + C1)�12|| ≤ κ(0). Combining these with the previous inequality (76)
for ||�||B(�1ν )

, we get ||�||B(�1ν )
≤ c3 as claimed.

Remark 6.1.4 M coincides with the nontrivial d(N2 + 1)× d(N2 + 1) block of M22
N1,N2

from
(70). �

6.2 Bounds in the case 1 = p < q

The implicit part W has a particular structure, which in turn induces a structure on (I − W ).
From (38) and the representations of Sect. 4.4, we can interpret it as being the following
block operator acting on Xν . For φ = (φ(0), φ0, . . . , φ1−q),

(I − W )φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −(I + C1)H2A1 ∗ I�1ν 0 · · · · · · 0
0 Q(A1) 0 · · · · · · 0
0 0 I�1ν 0 · · · 0
0 0 0 I�1ν · · · 0
...

...
. . .

. . .
. . .

...

0 · · · · · · · · · 0 I�1ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ,

where the identity operators I are on the implied spaces: for instance, the first one is on C
d

and the others are on �1ν . If we take a direct (N1, N2)-mode truncation of W (in the same way
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we did for p = q = 1), we obtain

(I − WN1,N2)
−1φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I (I + C1)H2AN1
1 ∗ π N2 Q̃−1(A1) 0 · · · · · · 0

0 Q̃−1(A1) 0 · · · · · · 0
0 0 I�1ν 0 · · · 0
0 0 0 I�1ν · · · 0
...

...
. . .

. . .
. . .

...

0 · · · · · · · · · 0 I�1ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ.

We can similarly express the explicit part E as a block operator acting on Xν . We have

Eφ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(I + C1) 0 · · · 0 C2S∗ (I + C1)H2B1 ∗ I�1ν
e0 0 · · · 0 0 H1B1 ∗ I�1ν
0 I�1ν 0 · · · 0 0
...

. . .
. . .

...

0 · · · 0 I�1ν 0 0
0 · · · · · · 0 I�1ν 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0)
φ0
...
...

φ2−q

φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can now truncate the sequence B1 to N1 modes, while for the second level of truncation
we will do something a bit different. We define

EN1,N2φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(I + C1) 0 · · · 0 C2S∗π N2 (I + C1)H2B N1
1 ∗ π N2

e0 0 · · · 0 0 π N2 H1B N1
1 ∗ π N2

0 I�1ν 0 · · · 0 0
...

. . .
. . .

...

0 · · · 0 I�1ν 0 0
0 · · · · · · 0 I�1ν 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0)
φ0
...
...

φ2−q

φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 6.2.1 When we want to use the computer to calculate eigenvalues of our impulsive
delay differential equation, we implement the matrix representation of the restriction of the
linear operator MN1,N2 = (I −WN1,N2)

−1EN1,N2 to the finite-dimensional vector space X N2
ν .

Remark 6.2.2 It might be tempting to replace the identity maps I�1ν in the lower diagonal part

of E with projections π N2 in the expression for EN1,N2 . The reason we do not is because if
we do, the analogous diagonal terms of E − EN1,N2 become projections π∞

N2
, which have

norm 1 for all N2 > 0. This would eliminate our ability to control the bound c3 by taking
more modes, which is undesirable for computer-assisted proofs. It would also imply MN1,N2

does not converge to M as a bounded operator on Xν as we increase the number of modes,
which is completely wrong if we want to think of MN1,N2 as an approximation of M .

Lemma 6.2.1 (Truncated monodromy operator, 1 = p < q) Define MN1,N2 = (I −
WN1,N2)

−1EN1,N2 . Suppose φ is an eigenvector of MN1,N2 with eigenvalue λ. If λ �= 0
then with φ = φN2 + φ∞, we have φ∞ = 0. Also, each of X∞

ν and X N2
ν is an invariant

subspace for MN1,N2 and for r > 0 we have

||(MN1,N2 − reiθ )−1||B(X∞
ν ) ≤ max

{
1

r
,
1 − r−q

r − 1

}
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unless r = 1, in which case ||(MN1,N2 − reiθ )−1||B(X∞
ν ) ≤ 1. If λ ∈ C, 0 < r < |λ| and

0 < ω < π , then for U ∈ {Dr (λ), Rλ(r , ω)},

sup
z∈U

||(MN1,N2 − z I )−1||B(X∞
ν ) ≤ max

{
1

|λ| − r
,
1 − (|λ| − r)−q

|λ| − r − 1

}
.

Proof The assertions concerning the eigenvalues, eigenvectors and invariant subspaces follow
directly from the definition of EN1,N2 and (I − WN1,N2)

−1. As for the bound, one can verify
directly that if φ∞ and h∞ satisfy (MN1,N2 − reiθ )φ∞ = h∞, then

φ∞
0 = −1

r
e−iθ h∞

0 ,

φ∞
k = −1

r
e−iθ (h∞

k − φ∞
k+1

)
, 1 − q ≤ k ≤ −1.

Thus, if ||h∞||Xν ≤ 1, then ||φ∞
0 ||ν ≤ 1

r and by a quick inductive proof, one can check that

||φ∞
k ||ν ≤ 1

r
(1 + ||φ∞

k+1||ν) ⇒ ||φ∞
k ||ν ≤ 1 − rk−1

r − 1
=: w(k),

unless r = 1, in which case ||φ∞
k ||ν ≤ 1. To complete the proof, observe that w is strictly

decreasing and therefore reaches its maximum at index k = 1 − q . The argument for the
radial sector and closed ball are similar and omitted. �
Theorem 6.2.1 (c2 bound, 1 = p < q) Let N2 > N1 ≥ 0. With ρ as defined in Theorem
6.1.1, the operator I − W satisfies ||(I − W )−1||B(Xν ) ≤ c2 with

c2 := ||(I − WN1N2)
−1||B(Xν )

1 − ρ
=

max{1, ||(I − WN1,N2)
−1||

B(X
N2
ν )

}
1 − ρ

. (77)

Proof Define � = I − (I − WN1,N2)
−1(I − W ). Then

� =
⎡
⎣ 0 (I + C1)�12

0 I�1ν − Q̃−1(A1)Q(A1)

0

⎤
⎦ ,

where empty entries are zero (of appropriate spaces of linear maps) and 0 = diag(0, . . . , 0)
is the zero operator on (�1ν)

q−1. The nontrivial part of � coincides precisely with �

from the proof of Theorem 6.1.1. To show that ||(I − WN1N2)
−1||B(Xν ) = max{1, ||(I −

WN1,N2)
−1||

B(X
N2
ν )

}, observe that (I −WN1,N2)
−1 is still the identity operator when restricted

to X∞
ν . �

Theorem 6.2.2 (c3 bound, 1 = p < q) Let N2 ≥ N1 > 0 and let κ1 and κ(0) be defined as
as defined in Theorem 6.1.2. Then, with

c3 := max

{
κ1 , κ(0) + 2||C2||

νN2+1

}
, (78)

we have the estimate ||(I − W )MN1,N2 − E ||B(Xν ) ≤ c3.

Proof Let� = (I −W )(I −WN1,N2)
−1EN1,N2 − E . Making use of the previous expressions

for I − W , (I − WN1,N2)
−1, E and EN1,N2 , we find that in block operator form,

� = −
⎡
⎣ (I + C1)�11 0 · · · 0 C2S∗π∞

N2
(I + C1)�1+

�21 0 · · · 0 0 �2+
0 0 · · · 0 0 0

⎤
⎦ ,
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with zeroes representing the zero maps in the appropriate spaces, and

�11 = H2A1 ∗ I�1ν Q̃−1(A1)e0 ICd − H2AN1
1 ∗ π N2 Q̃−1(A1)e0 ICd

= �11

�1+ = H2B1 ∗ I�1ν −H2B N1
1 ∗ π N2 + H2(A1 ∗ I�1ν − AN1

1 ∗ π N2)Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2

= �12

�21 = (I�1ν − Q(A1)Q̃−1(A1))e0

= �21

�2+ = H1B1 ∗ I�1ν − Q(A1)Q̃−1(A1)π
N2 H1B N1

1 ∗ π N2

= �22

where the�i j are the same as those appearing in the proof of Theorem 6.1.2. The conclusion
then follows by the same estimates as in the proof of the aforementioned, together with the
bound for the norm of C2S∗π∞

N2
being supplied by row 7 of Table A. �

6.3 Bounds in the case 1 < p < q

In this final subsection we will compute the bounds c2 and c3 in the final case, where 1 <

p < q . This case will be a fair bit more involved than the previous ones and the bounds
are significantly more complicated. Like in the last section, we write I − W using (38)
and the representations of Sect. 4.4. Making use of the short form Lφ j := (Lφ) j and
Lφ(0) := (Lφ)(0) for a linear operator L : Xν → Xν ,

(I − W )φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(I − W )φ(0)
(I − W )φ0

(I − W )φ−1

.

.

.

(I − W )φ2−p

(I − W )φ1−p

(I − W )φ−p

.

.

.

(I − W )φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) − (I + C1)H2 Ap ∗ φ0 − (I + C1)Sφ−1

Q pφ0 − e0Sφ−1

Q p−1φ−1 − e0Sφ−2

.

.

.

Q2φ2−p − e0Sφ1−p

Q1φ1−p

φ−p

.

.

.

φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (79)

(I − WN1,N2 )φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(I − WN1,N2 )φ(0)
(I − WN1,N2 )φ0

(I − WN1,N2 )φ−1

.

.

.

(I − WN1,N2 )φ2−p

(I − WN1,N2 )φ1−p

(I − WN1,N2 )φ−p

.

.

.

(I − WN1,N2 )φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) − (I + C1)H2 AN1
p ∗ φ0 − (I + C1)Sπ N2φ−1

Q̃ pφ0 − e0Sπ N2φ−1

Q̃ p−1φ−1 − e0Sπ N2φ−2

.

.

.

Q̃2φ2−p − e0Sπ N2φ1−p

Q̃1φ1−p

φ−p

.

.

.

φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(80)
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where we denote Q j = Q(A j ) and Q̃ j = Q̃(A j ). Similarly, we can write down the explicit
part operator E and define the truncation EN1,N2 .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eφ(0)
Eφ0

Eφ−1
...

Eφ2−p

Eφ1−p

Eφ−p

Eφ−p−1
...

Eφ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C2S∗φ1+p−q + (I + C1)H2Bp ∗ I�1ν φp−q

H1Bp ∗ I�1ν φp−q

H1Bp−1 ∗ I�1ν φp−q−1
...

H1B2 ∗ I�1ν φ2−q

e0φ(0) + H1B1 ∗ I�1ν φ1−q

φ0

φ−1
...

φ1−(q−p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (81)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EN1,N2φ(0)
EN1,N2φ0

EN1,N2φ−1
...

EN1,N2φ2−p

EN1,N2φ1−p

EN1,N2φ−p

EN1,N2φ−p−1
...

EN1,N2φ1−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C2S∗π N2φ1+p−q + (I + C1)H2B N1
p ∗ π N2φp−q

π N2 H1B N1
p ∗ π N2φp−q

π N2 H1B N1
p−1 ∗ π N2φp−q−1

...

π N2 H1B N1
2 ∗ π N2φ2−q

e0φ(0) + π N2 H1B N1
1 ∗ π N2φ1−q

φ0

φ−1
...

φ1−(q−p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (82)

Note that here we are using the short form Lφ j := (Lφ) j and Lφ(0) := (Lφ)(0) for
L ∈ {E, EN1,N2}.
Remark 6.3.1 When we want to use the computer to calculate eigenvalues of our impulsive
delay differential equation, we implement the matrix representation of the restriction of the
linear operator MN1,N2 = (I −WN1,N2)

−1EN1,N2 to the finite-dimensional vector space X N2
ν .

Lemma 6.3.1 (Truncated monodromy operator, 1 < p < q) Define MN1,N2 = (I −
WN1,N2)

−1EN1,N2 . Suppose φ is an eigenvector of MN1,N2 with eigenvalue λ. If λ �= 0
then with φ = φN2 + φ∞, we have φ∞ = 0. Also, each of X∞

ν and X N2
ν is an invariant

subspace for MN1,N2 and for r > 0 we have

||(MN1,N2 − reiθ )−1||B(X∞
ν ) ≤ max

{
1

r
,
1 − r−�q/p�

r − 1

}

unless r = 1, in which case ||(MN1,N2 − reiθ )−1||B(X∞
ν ) ≤ 1. If λ ∈ C, 0 < r < |λ| and

0 < ω < π , then for U ∈ {Dr (λ), Rλ(r , ω)},

sup
z∈∂ Bλ(r ,ω)

||(MN1,N2 − z I )−1||B(X∞
ν ) ≤ max

{
1

|λ| − r
,
1 − (|λ| − r)−�q/p�

|λ| − r − 1

}
.

Proof The assertions concerning the eigenvalues, eigenvectors and invariant subspaces follow
directly from the definition of EN1,N2 and (I − WN1,N2). Indeed, it is easy to verify that each
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of X N2
ν and X∞

ν are invariant subspaces for I − WN1,N2 and its inverse. As for the bound,
one can verify directly that if φ∞ and h∞ satisfy (MN1,N2 − reiθ )φ∞ = h∞, then

0 = h∞
k − reiθφ∞

k , 1 − p ≤ k ≤ 0

φ∞
k+p = h∞

k − reiθφ∞
k , 1 − q ≤ k ≤ −p

If ||h∞||Xν ≤ 1 then ||φ∞
k ||ν ≤ 1

r for 1 − p ≤ k ≤ 0, and for 1 − q ≤ k ≤ −p, we have

||φ∞
k ||ν ≤ 1

r

(
1 + ||φ∞

k+p||ν
)

.

If r = 1 we get ||φ∞
k ||ν ≤ 1 for k = 1 − q, . . . , 0. Otherwise, observe that ||φ∞

k ||ν ≤ xk ,
where

xk = 1

r
(1 + xk+p), 1 − q ≤ k ≤ −p,

with x0 = · · · = x1−p = r−1. It is easy to verify by induction that this sequence is nonin-
creasing and therefore reaches its maximum at k = 1 − q . Also, since the initial conditions
x0, . . . , x1−p are equal, we have xk+ j p = xk for integers j ≤ 0 and k ∈ {1 − p, . . . , 0}.
Consequently,

xk+( j−1)p = 1

r
(1 + xx+ j p) ⇒ xk+ j p = 1 − r j−1

r − 1
:= w( j).

Since j∗ = 1 − �q/p� is the most negative integer such that k + j∗ p ≥ 1 − q for some
k ∈ {1− p, . . . , 0}, we conclude ||φ∞||ν ≤ max{1/r , w( j∗)}. The proof for the radial sector
and closed ball are similar. �
Lemma 6.3.2 Let N1, N2 > 0 and suppose (I − WN1,N2)

−1(I − W ) f = φ for some f , φ ∈
Xν . Denote Q j = Q(A j ) and Q̃ j = Q̃(A j ). Then φk = fk for 1 − q ≤ k ≤ −p and

φn−p = Q̃−1
n Qn fn−p + Q̃−1

n

n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

e0Sπ N2 Q̃−1
j

⎞
⎠

e0
(

Sπ N2 Q̃−1
k Qk − S

)
fk−p, n = 1, . . . , p (83)

φ(0) = f (0) − (I + C1)H2(Ap ∗ f0 − AN1
p ∗ π N2φ0)

− (I + C1)S( f−1 − π N2φ−1) (84)

where product denotes composition from right to left (bottom to top index), the empty product
is defined to be the identity and the empty sum to be zero.

Proof The assertion that φk = fk for 1 − q ≤ k ≤ −p is clear. We next prove the formula
for φn−p for n = 1, . . . , p. The definition of φ and f is equivalent to having

(I − W ) f = (I − WN1,N2)φ.

We prove this by induction. Starting with n = 1, using (79)–(80) with the above equation
implies Q1 f1−p = Q̃1φ1−p and consequently, φ1−p = Q̃−1

1 Q1 f1−p . This is consistent with
(83). Taking an inductive step, if n ≥ 1 we can again use the above equation together with
the explicit expressions (79)–(80) to get

Qn+1 fn+1−p − e0S fn−p = Q̃n+1φn+1−p − e0Sπ N2φn−p.
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Solving for φn+1−p , we have

φn+1−p = Q̃−1
n+1

(
Qn+1 fn+1−p − e0S fn−p + e0Sπ N2φn−p

)

= Q̃−1
n+1Qn+1 fn+1−p + Q̃−1

n+1

(
−e0S fn−p + e0Sπ N2 Q̃−1

n Qn fn−p + · · ·

e0Sπ N2 Q̃−1
n

n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

e0Sπ N2 Q̃−1
j

⎞
⎠ e0

(
Sπ N2 Q̃−1

k Qk − S
)

fk−p

⎞
⎠

= Q̃−1
n+1Qn+1 fn+1−p + Q̃−1

n+1

(
e0(Sπ N2 Q̃−1

n Qn − S) fn−p

)
+ · · ·

Q̃−1
n+1

⎛
⎝n−1∑

k=1

⎛
⎝ n∏

j=k+1

e0Sπ N2 Q̃−1
j

⎞
⎠ e0

(
Sπ N2 Q̃−1

k Qk − S
)

fk−p

⎞
⎠

= Q̃−1
n+1Qn+1 fn+1−p

+ Q̃−1
n+1

⎛
⎝ n∑

k=1

⎛
⎝ n∏

j=k+1

e0Sπ N2 Q̃−1
j

⎞
⎠ e0

(
Sπ N2 Q̃−1

k Qk − S
)

fk−p

⎞
⎠ ,

which is precisely (83) at index n + 1. To get Eq. (84) for φ(0) one uses the same strategy,
except we have left the result implicit. �
Lemma 6.3.3 Let N1, N2 > 0 and suppose (I − W )(I − WN1,N2)

−1 f = φ for some f , φ ∈
Xν . Denote Q j = Q(A j ) and Q̃ j = Q̃(A j ). Then φk = fk for 1 − q ≤ k ≤ −p and

φn−p = Qn Q̃−1
n fn−p + (Qn Q̃−1

n e0Sπ N2 − e0S)

Q̃−1
n−1

n−1∑
k=1

⎛
⎝n−2∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ fk−p, n = 1, . . . , p (85)

φ(0) = f (0) − (I + C1)H2(Ap ∗ I�1ν − AN1
p ∗ π N2)

Q̃−1
p

p∑
k=1

⎛
⎝p−1∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ fk−p − (I + C1)Sπ∞

N2
f−1 (86)

where product denotes composition from right to left (bottom to top index), the empty product
is defined to be the identity and the empty sum to be zero.

Proof The proof here is similar to the one for Lemma 6.3.2, so we will provide only an
outline. Set z = (I − WN1,N2)

−1 f . Then zk = fk for 1 − q ≤ k ≤ −p, and using (80) one
can prove by induction that

zn−p = Q̃−1
n

n∑
k=1

⎛
⎝n−1∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ fk−p, n = 1, . . . , p

z(0) = f (0) + (I + C1)(H2AN1
p ∗ π N2 f0 + Sπ N2 f−1).

Next, one computes φ = (I − W )(I − WN1,N2)
−1 f = (I − W )z using (79) and the above

expressions. The result is φk = fk for 1 − q ≤ k ≤ −p and (85) for n = 1, . . . , p, while

φ(0) = z(0) − (I + C1)(H2Ap ∗ I�1ν z0 + Sz−1)
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= f (0) + (I + C1)(H2AN1
p ∗ π N2 z0 + Sπ N2 z−1) − (I + C1)(H2Ap ∗ I�1ν z0 + Sz−1)

= f (0) − (I + C1)(H2Ap ∗ I�1ν − H2AN1
p ∗ π N2)z0 − (I + C1)(S − Sπ N2)z−1

= f (0) − (I + C1)(H2Ap ∗ I�1ν − H2AN1
p ∗ π N2)z0 − (I + C1)Sπ∞

N2
z−1.

We obtain (86) by substituting z0 and z−1 into the above, but we will point out one subtlety.
Since π∞

N2
Q̃−1

n π∞
N2
—see Lemma 5.1.2—we have

π∞
N2

z−1 = π∞
N2

Q̃−1
p−1

p−1∑
k=1

⎛
⎝p−2∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ fk−p = π∞

N2
f−1,

since all terms in the summation except for the p − 1 term contain a e0 on the extreme left,
which maps into π N2(�1ν), while for the p−1 term the product collapses to the trivial product
(identity). �
Theorem 6.3.1 (c2 bound, 1 < p < q) Let N2 > N1 ≥ 0. For m = 1, . . . , p, define
AN1

m = (Am,0, . . . , Am,N1 , 0, . . . ), A∞
m = Am − AN1

m ,

K0,m = max
k=0,...,N2

1

νk

N2∑
n=0

||Q̃−1
n,k (A

N1
m )||νn , K 0

0,m =
N2∑

n=0

||Q̃−1
n,0(A

N1
m )||

K S,k
0,m = ||Q̃−1

0,k (A
N1
m )|| + 2

N2∑
n=1

||Q̃−1
n,k (A

N1
m )||, 0 ≤ k ≤ N2

K S,k,�
0,m = ||(I + C1)Q̃

−1
0,k (A

N1
m )|| + 2

N2∑
n=1

||(I + C1)Q̃
−1
n,k (A

N1
m )||, 0 ≤ k ≤ N2

K S,∗
0,m = max

k=0,...,N2

1

νk
K S,k
0,m , K S,∗,�

0,m = max
k=0,...,N2

1

νk
K S,k,�
0,m

K �
0,p = max

k=0,...,N2

1

νk

N2∑
j=0

||(I + C1)Q̃
−1
j ,k (A

N1
p )||ν j

K1,m = max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||AN1

m ||ω
(N2 + 1 − N1)

2 − 1
||Q̃−1

j,0(A
N1
m )||

+||Q̃−1
j (A

N1
m )DTZ̃

N1,N2
k S(A

N1
m )||

)
ν j

m(m)
j,k = ||AN1

m ||ω
(N2 + 1 − N1)

2 − 1
||(I + C1)Q̃

−1
j ,0(A

N1
m )|| + ||(I + C1)Q̃

−1
j (A

N1
m )DTZ̃

N1,N2
k S(A

N1
m )||,

K �
1,m = max

k=0,...,N1

1

νN2+1+k

N2∑
j=0

m(m)
j ,k ν j

K2,p = max
k=0,...,N1

1

νN2+1+k
m(p)

j ,0 +
N2∑
j=2

(−1) j + 1

j2 − 1

(
max

k=0,...,N1

1

νN2+1+k
m(p)

j,k

)

J0(A
N1
m ) = max

k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(A
N1
m , i ◦ I

C
d(N2+1) ) j ,k ||ν j

α(A
N1
m ) = 1

4(N2 + 1)

((
ν + 2

ν
+ 1

ν3

)
||AN1

m ||ν −
(
1

ν
+ 1

ν3

)
||AN1

m,0||
)

βm = max

⎧⎨
⎩J0(A

N1
m ), K1,m + α(A

N1
m ) + K 0

0,m

m−1∑
k=1

⎛
⎝ m−1∏

j=k+1

K S,0
0, j

⎞
⎠
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·
(

2

νN2+1
+ max{1, 2ν−1}K1,k

)}

ηm = 2

νN2+1
+ max{1, 2ν−1}K1,m + K S,∗

0,m

(
1 + ν

2

)
||A∞

m ||ω

ρm =
(

K0,m

(
1 + ν

2

)
+ ν + ν−1

2(N2 + 1)

)
||A∞

m ||ω

+ K 0
0,m

m−1∑
k=1

⎛
⎝ m−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k

(
1 + ν

2

)
||A∞

k ||ω + βm

ρN2 (0) = 2g(ν)||I + C1|| · ||A∞
p ||ω + 2g(ν)||(I + C1) � A

N1
p ||ω

+ K 0
0,p

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k

(
1 + ν

2

)
||A∞

k ||ω

+ K S,∗,�
0,p−1

(
1 + ν

2

) p−1∑
k=1

⎛
⎝ p−2∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k ||A∞
k ||ω

ρ∞(0) = 2||(I + C1) � A
N1
p ||ν

νN2+1
+ K2,p + 2||I + C1||

νN2+1

+ max{1, 2ν−1}K �
1,p−1 + K S,∗,�

0,p−1

(
1 + ν

2

)
||A∞

p−1||ω

+ 2g(ν)||(I + C1) � A
N1
p ||ω

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ · ηk + K S,0,�

0,p−1

p−2∑
k=1

⎛
⎝ p−2∏

j=k+1

K S,0
0, j

⎞
⎠ · ηk

ρ(0) = g(ν)K �
0,p

(
1 + ν

2

)
||A∞

p ||ω + max{ρN2 (0), ρ∞(0)}

With ρ := max{ρ(0), ρ1, . . . , ρp}, the operator I − W satisfies ||(I − W )−1||B(Xν ) ≤ c2 with

c2 := ||(IXν − WN1N2 )
−1||B(Xν )

1 − ρ
=

max{1, ||(I − WN1,N2 )
−1||

B(X
N2
ν )

}
1 − ρ

. (87)

Proof Define � = I − (I − WN1,N2)
−1(I − W ). Let h ∈ Xν satisfy ||h||Xν ≤ 1. By Lemma

6.3.2, we have (�h)k = 0 for 1 − q ≤ k ≤ −p, while for n = 1, . . . , p,

(�h)n−p = (I − Q̃−1
n Qn)hn−p + Q̃−1

n

n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

e0Sπ N2 Q̃−1
j

⎞
⎠

e0(S − Sπ N2 Q̃−1
k Qk)hk−p

= (I − Q̃−1
n Qn)hn−p + Q̃−1

n e0
n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

Sπ N2 Q̃−1
j e0

⎞
⎠

S(π∞
N2

+ π N2(I − Q̃−1
k Qk))hk−p.

We separately majorize in norm for h ∈ X N2
ν and h ∈ X∞

ν . From Lemma 5.1.3, we can
decompose as follows:

(�π N2h)n−p = (I − Q̃−1
n Qn)π N2hn−p + Q̃−1

n e0
n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

Sπ N2 Q̃−1
j e0

⎞
⎠
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S(Q̃−1
k π N2 H1(A∞

k ∗ π N2))hk−p

(�π∞
N2

h)n−p = (I − Q̃−1
n Qn)π∞

N2
hn−p + Q̃−1

n e0
n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

Sπ N2 Q̃−1
j e0

⎞
⎠

S(π∞
N2

+ Q̃−1
k π N2(H1(Ak ∗ π∞

N2
)))hk−p.

Bounding each of (I − Q̃−1
n Qn)π N2 and (I − Q̃−1

n Qn)π∞
N2

can be accomplished in the same

way as in the proof of Theorem 6.1.1; see (72) and (73). We have ||Q̃−1
n e0|| ≤ K 0

0,n by row

9 of the table, while row 11 gives the estimate ||Sπ N2 Q̃−1
j e0|| ≤ K S,0

0, j . As for the remaining
terms, row 3, 5, 6, 10 and 12 give

||S(Q̃−1
k π N2 H1(A∞

k ∗ π N2))|| ≤ K S,∗
0,k

(
1 + ν

2

)
||A∞

k ||ω,

||S(π∞
N2

+ Q̃−1
k π N2(H1(Ak ∗ π∞

N2
)))|| ≤ 2

νN2+1 + max
{
1, 2ν−1} K1,k

+ K S,∗
0,k

(
1 + ν

2

)
||A∞

k ||ω.

Combining the previous estimates, we apply (60) to get ||(�h)n−p||ν ≤ ρn .
Also using Lemma 6.3.2, writing (�h)(0) = (I + C)(�h)(0), we have

(�h)(0) = H2

⎛
⎝A p ∗ h0 − A

N1
p ∗ π N2

⎛
⎝Q̃−1

p Q ph0 + Q̃−1
p

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

e0Sπ N2 Q̃−1
j

)
e0(Sπ N2 Q̃−1

k Qk − S)hk−p

))

+ S

⎛
⎝h−1 − π N2 Q̃−1

p−1Q p−1h−1 − Q̃−1
p−1

p−2∑
k=1

⎛
⎝ p−2∏

j=k+1

e0Sπ N2 Q̃−1
j

)
e0(Sπ N2 Q̃−1

k Qk − S)hk−p

)

= H2

(
A∞

p ∗ h0 + A
N1
p ∗ π N2 (I − Q̃−1

p Q p)h0 + A
N1
p ∗ π∞

N2
h0
)

+ S(π∞
N2

+ π N2 (I − Q̃−1
p−1Q p−1))h−1

+ H2

⎛
⎝A

N1
p ∗ Q̃−1

p e0

⎛
⎝p−1∑

k=1

⎛
⎝ p−1∏

j=k+1

Sπ N2 Q̃−1
j e0

⎞
⎠ S(π∞

N2
+ π N2 (I − Q̃−1

k Qk ))hk−p

⎞
⎠
⎞
⎠

+ S

⎛
⎝Q̃−1

p−1e0

p−2∑
k=1

⎛
⎝ p−2∏

j=k+1

Sπ N2 Q̃−1
j e0

⎞
⎠ S(π∞

N2
+ π N2 (I − Q̃−1

k Qk ))hk−p

⎞
⎠

We can bound this term in norm using much the same estimates as before. The only differences are that we
will need to use (56) to commute (I + C1) through the operator H2, while a bound for∣∣∣

∣∣∣(I + C1)H2

(
A∞

p ∗ h0 + A
N1
p ∗ π N2 (I − Q̃−1

p Q p)h0 + A
N1
p ∗ π∞

N2
h0
)∣∣∣
∣∣∣

can be constructed by observing that the quantity being bounded symbolically coincides (except for a single
projector, which does not effect the norm) with (I + C1)�12 from the proof of Theorem 6.1.1, so (74) can be
re-used. In total, we get

||�π N2h|| ≤ g(ν)K �
0,p

(
1 + ν

2

)
||A∞

p ||ω + 2g(ν)||I + C1|| · ||A∞
p ||ω + 2g(ν)||(I + C1) � A

N1
p ||ω

+ K 0
0,p

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k

(
1 + ν

2

)
||A∞

k ||ω
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+ K S,∗,�
0,p−1

(
1 + ν

2

) p−1∑
k=1

⎛
⎝ p−2∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k ||A∞
k ||ω

||�π∞
N2

h|| ≤ g(ν)K �
0,p

(
1 + ν

2

)
||A∞

p ||ω + 2||(I + C1) � A
N1
p ||ν

νN2+1

+ K2,p + 2||I + C1||
νN2+1

+ max{1, 2ν−1}K �
1,p−1

+ K S,∗,�
0,p−1

(
1 + ν

2

)
||A∞

p−1||ω + K S,0,�
0,p−1

p−2∑
k=1

⎛
⎝ p−2∏

j=k+1

K S,0
0, j

⎞
⎠ ·

(
2

νN2+1
+ max{1, 2ν−1}K1,k + K S,∗

0,k

(
1 + ν

2

)
||A∞

k ||ω
)

+ 2g(ν)||(I + C1) � A
N1
p ||ω

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ ·

(
2

νN2+1
+ max{1, 2ν−1}K1,k + K S,∗

0,k

(
1 + ν

2

)
||A∞

k ||ω
)

We then get ||�h(0)|| ≤ ρ(0) and taking into account (60), we conclude ||�||B(Xν ) ≤ ρ. The rest of the
proof is nearly identical to the proof of Theorem 6.1.1. Verifying that

||(IXν − WN1,N2 )
−1||B(Xν ) ≤ max{1, ||(I − WN1,N2 )

−1π N2 ||
B(X

N2
ν )

}

is clear by definition of WN1,N2 . �

Theorem 6.3.2 (c3 bound, 1 < p < q) Let N2 > N1 ≥ 0. For j = 1, . . . , p, define
AN1

m = (Am,0, . . . , Am,N1 , 0, . . . ), A∞
m = Am − AN1

m , B N1
m = (Bm,0, . . . , Bm,N1 , 0, . . . )

and B∞
m = Bm − B N1

m . Let M(m) be the d(N2 + 1) × d(N2 + 1) matrix such that for all
h ∈ π N2(�1ν),

ψN2

(
Q̃−1(AN1

m )π N2 H1B N1
m ∗ h

)
= M(m)ψN2(h)

where ψ the isomorphism defined by in (64). Also for m = 1, . . . , p define the quantities

||M(m)||ν = max
k=0,...,N2

1

νk

N2∑
j=0

||M(m)
j,k ||ν j

K0,m = max
k=0,...,N2

1

νk

N2∑
n=0

||Q̃−1
n,k(AN1

m )||νn, K 0
0,m =

N2∑
j=0

||Q−1
j,0(AN1

m )||

K S,k
0,m = ||Q̃−1

0,k(AN1
m )|| + 2

N2∑
n=1

||Q̃−1
n,k(AN1

m )||, 0 ≤ k ≤ N2

K S,∗
0,m = max

k=0,...,N2

1

νk
K S,k
0,m

L0,m = max
k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(AN1
m , i ◦ Q̃−1(AN1

m ) diag(I , 0, . . . , 0)) j,k ||ν j

L1,m = max
k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(AN1
m , i ◦ M(m)) j,k ||ν j
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L2,m = max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||B N1

m ||ω
(N2 + 1 − N1)2 − 1

||10( j) + ||DT j Z N1,N2
k S(B N1

m )||
)

ν j

J0(B N1
m ) = max

k=0,...,N2

1

νk

N2+N1∑
j=N2

||G(B N1
m , i ◦ I

Cd(N2+1) )||ν j

α(B N1
m ) = 1

4(N2 + 1)

((
ν + 2

ν
+ 1

ν3

)
||B N1

m ||ν −
(
1

ν
+ 1

ν3

)
||B N1

m,0||
)

�m =
(
1 + ν

2

)
||M(m)||ν ||A∞

m ||ω + L1,m + J0(B N1
m )

+
(
1 + ν

2

) [
K 0
0,m ||A∞

m ||ω + L0,m
] m−1∑

k=1

⎛
⎝ m−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k ||B N1
k ||ω

�(0) = 2g(ν)||I + C1||
(
||B∞

p ||ω + ||A∞
p ||ω

(
K0,p

(
1 + ν

2

)))

+ 2g(ν)||I + C1|| · ||A∞
p ||ω K 0

0,p

(
1 + ν

2

) p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k ||B N1
k ||ω

κm =
(
1 + ν

2

)
||B∞

m ||ω + max
{

L2,m + α(B N1
m ),�m

}

κ(0) = max

{
�(0),

2

νN2+1

(
||C2|| + ||I + C1||

(
1 + 1

νN2+1

)
||B∞

p ||ν

+||(I + C1) � B N1
2 ||ν

)}
.

Then, with

c3 := max{κ(0), κ1, . . . , κp}, (88)

we have the estimate ||(I − W )MN1,N2 − E ||B(Xν ) ≤ c3.

Proof Define � = (I − W )MN1,N2 − E . Let h ∈ Xν satisfy ||h||Xν ≤ 1 and denote φ = Eh
and φ̃ = EN1,N2h. Making use of Lemma 6.3.3, we have for h ∈ Xν , n = 1, . . . , p and
1 − q ≤ m ≤ −p,

(�h)n−p = [Qn Q̃−1
n φ̃n−p − φn−p] + (Qn Q̃−1

n − I )

e0Sπ N2 Q̃−1
n−1

n−1∑
k=1

⎛
⎝n−2∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ φ̃k−p

= [Qn Q̃−1
n φ̃n−p − φn−p] + (Qn Q̃−1

n − I )

e0
n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

S̃Q−1
j e0

⎞
⎠ Sπ N2 Q̃−1

k φ̃k−p

(�h)m = φ̃m − φm

(�h)(0) = [φ̃(0) − φ(0)] − (I + C1)H2(Ap ∗ I�1ν − AN1
p ∗ π N2)

Q̃−1
p

p∑
k=1

⎛
⎝p−1∏

j=k

e0Sπ N2 Q̃−1
j

⎞
⎠ φ̃k−p − (I + C1)Sπ∞

N2
φ̃−1

= −(I + C1)H2(Ap ∗ I�1ν
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− AN1
p ∗ π N2)

⎛
⎝Q̃−1

p φ̃0 + Q̃−1
p e0

p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

SQ̃−1
j e0

⎞
⎠ Sπ N2 Q̃−1

k φ̃k−p

⎞
⎠

+ [φ̃(0) − φ(0)] − (I + C1)Sπ∞
N2

φ̃−1

To derive a bound for ||�||B(Xν ), we will need to separately bound the terms above. First,
the easy one: by definition of E and EN1,N2 we have φ̃m − φm = 0 for 1 − q ≤ m ≤ −p.
Next, observe that (EN1,N2π

∞
N2

h)k−p = 0 for k = 1, . . . , p. As such, all of the “product”

terms vanish for arguments h ∈ X∞
ν as they are terminated (at the right) by a φ̃k−p . This will

simplify the application of the direct sum operator norm inequality (60) for B(Xν). We will
therefore bound each of the above for h ∈ X∞

ν first.
Let h∞ ∈ X∞

ν . Replacing h with h∞ in the above expressions, we get

(�h∞)n−p = −(Eh∞)n−p = −H1(Bn ∗ h∞
n−q)

(�h∞)(0) = −(Eh∞)(0) = −C2S∗h∞
1−p−q − (I + C1)H2(Bp ∗ h∞

p−q)

Row 2 and 7 of Table A and Proposition 4.1.1 can be used to bound the second quantity with
geometric decay in N2. As for the first, we use row 13 and 14 to handle the body B N1

n of the
sequence Bn , with row 3 and Proposition 4.1.1 to handle the tail B∞

n . All together, we get

||(�h∞)n−p||ν ≤ L2,n + α(B N1
n ) +

(
1 + ν

2

)
||B∞

n ||ω (89)

||(�h∞)(0)|| ≤ 2

νN2+1

(
||C2|| + ||I + C1||

(
1 + 1

νN2+1

)
||B∞

p ||ν + ||(I + C1) � B N1
2 ||ν

)

(90)

Now we let hN2 ∈ X N2
ν . Replacing h with hN2 in the first set of equations, we will work

piece by piece. Making use of (81) and (82),

[Qn Q̃−1
n φ̃n−p − φn−p] = [Qn Q̃−1

n π N2 H1(B N1
n ∗ π N2) − H1(Bn ∗ π N2)]hN2

n−q

= −[(I − Qn Q̃−1
n )π N2 H1(B N1

n ∗ π N2)

+ π∞
N2

H1(B N1
n ∗ π N2) + H1(B∞

n ∗ π N2)
]
hN2

n−q .

These terms all appear in the expression for �22 from the proof of Theorem 6.1.2 (modulo
some projections that do not alter the norms), so we can bound them using the samemethods.
Namely, we use Propositions 4.1.1, 5.3.1, Lemma 5.2.1 and rows 3, 4, 13 and 14 of Table A
(and some algebra) to get

||[Qn Q̃−1
n φ̃n−p − φn−p]||ν ≤

(
1 + ν

2

)
||M(n)||ν ||A∞

n ||ω + L1,n + J0(B N1
n ) +

(
1 + ν

2

)
||B∞

n ||ω.

(91)

Next, recalling the argument from the proof of Theorem 6.1.2 (see the �21 term), we can
make the estimate

||(Qn Q̃−1
n − I )e0||L(Cd ,�1ν ) ≤

(
1 + ν

2

)
K 0
0,n||A∞

n || + L0,n . (92)

For the summation-product part, recall that the SQ̃−1
j e0 terms in the products can ban be

bounded individually using row 11, with ||SQ̃−1
j e0||L(Cd ,�1ν ) ≤ K S,0

0, j . As for the “external”

123



Journal of Dynamics and Differential Equations (2021) 33:2173–2252 2225

terms of the form Sπ N2 Q̃−1
k φ̃k−p , since we have replaced h with hN2 , these are given by

Sπ N2 Q̃−1
k φ̃k−p = Sπ N2 Q̃−1

k π N2 H1(B N1
k ∗ hN2

k−q).

We can bound these using a combination row 3 and 10 of the table and Proposition 4.1.1. We
get

||Sπ N2 Q̃−1
k φ̃k−p||ν ≤ K S,∗

0,k

(
1 + ν

2

)
||B N1

k ||ω. (93)

Next, expanding φ̃k−p in Q̃−1
k φ̃k−p we can get the estimate

||Q̃−1
k φ̃k−p||ν ≤ K0,k

(
1 + ν

2

)
||B N1

k ||ω (94)

using row 3 and 9 of Table A and Proposition 4.1.1. By combining (91), (92), (93), (94) and
the inline estimates, we can finally get the bound

||(�hN2)n−p||ν ≤
(
1 + ν

2

)
||M(n)||ν ||A∞

n ||ω + L1,n + J0(B N1
n ) +

(
1 + ν

2

)
||B∞

n ||ω

+
[(

1 + ν

2

)
K 0
0,n||A∞

n || + L0,n

] n−1∑
k=1

⎛
⎝ n−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k

(
1 + ν

2

)
||B N1

k ||ω

Taking the maximum of the above with (89), the result is ||(�h)n−p||ν ≤ κn .
To get a bound for ||�h(0)||, we will also need to compute and bound φ̃(0) − φ(0). This

is straightforward: as we have already obtained a bound for h∞, we let hN2 ∈ X N2
ν so that

||φ̃(0) − φ(0)|| = ||C2S∗π∞
N2

hN2
1+p−q + (I + C1)(H2(Bp ∗ I�1ν ) − H2(B N1

p ∗ π N2))φp−q ||
= ||(I + C1)H2(B∞

p ∗ π N2)hN2
p−q ||

≤ 2g(ν)||I + C1|| · ||B∞
p ||ω.

The last thing we need to do is deal with the H2(Ap ∗ I�1ν − AN1
p ∗ π N2) terms, multiplied on

the right by Q̃−1
p φ̃0 or Q̃−1

p e0. However, since the latter two have range in π N2(�1ν) (recall
we already have a bound for the case h ∈ X∞

ν , see (90)), this can be equivalently written (for
placeholder z ∈ C

d ) as

H2(Ap ∗ I�1ν − AN1
p ∗ π N2)

(
Q̃−1

p φ̃0 + Q̃−1
p e0z

)
= H2(A∞

p ∗ π N2)
(

Q̃−1
p φ̃0 + Q̃−1

p e0z
)

.

The map H2(Ap ∗ I�1ν − AN1
p ∗π N2) can without loss of generality be replaced with H2(A∞

p ∗
π N2), which gives the bound

||H2(A∞
p ∗ π N2)||L(�1ν ,Cd ) ≤ 2g(ν)||B∞

p ||ω + ||I + C1||
Combining the previous estimates again, we finally get the bound

||(�hN2)(0)|| ≤ 2g(ν)||I + C1||
(
||B∞

p ||ω + ||A∞
p ||ω

(
K0,p

(
1 + ν

2

)))

+ 2g(ν)||I + C1|| · ||A∞
p ||ω K 0

0,p

(
1 + ν

2

) p−1∑
k=1

⎛
⎝ p−1∏

j=k+1

K S,0
0, j

⎞
⎠ K S,∗

0,k ||B N1
k ||ω.

Applying (60) to take the maximum of the above with (90) we get the bound ||(�h)(0)|| ≤
κ(0). Finally, applying (60) again but this time to � : Xν → Xν , we get ||�||B(Xν ) ≤
max{κ(0), κ1, . . . , κp}. �

123



2226 Journal of Dynamics and Differential Equations (2021) 33:2173–2252

7 MATLAB implementation

To accompany this publication we have implemented the numerical discretization of the
monodromy operator in MATLAB. It can be found at the author’s GitHub [9]. The imple-
mentation can handle arbitrary period p and delay q , provided these are integers. Rigorous
enclosures of the c2 and c3 bounds is accomplished with the INTLAB library [24], although
at present we have only implemented the case 1 = p ≤ q . In the same way, c1 bound
computation for generalized Morse index and radial sector validation are implemented and
handled with INTLAB. The code is general-purpose, taking as input the matrix-valued func-
tions A(t) and B(t) appropriately pre-processed, impulse matrices C1 and C2 and various
other user-specified data. The code can be found at [9]. INTLAB is required for rigorous
proof, but is not required for monodromy operator discretization, so the latter is suitable for
eigenvalue (Floquet multiplier) estimation. The validation code can also be run with floating
point arithmetic, but in this mode the output should not be considered rigorous (especially
the c1 bound code). At time of writing there are several parts of the code that could be vec-
torized (specifically some functions that implement block-matrix convolutions), leading to
performance improvement.

7.1 Computation of c1 bounds

For generalized Morse index validation, the c1 bound must satisfy

max

(
c†1, sup

θ∈[0,2π ]
||(MN1,N2 − reiθ I )−1||

B(X
N2
ν )

)
≤ c1,

where c†1 = supθ∈[0,2π ] ||(MN1,N2 − reiθ I )−1||B(X∞
ν ) can be bounded using an explicit

formula (Lemmas 6.1.1, 6.2.1 and 6.3.1). Since the eigenvalues of MN1,N2 come in complex-
conjugate pairs, it is enough to perform the former bound over θ ∈ [0, π]. The strategy is
therefore to fix a mesh size m, partition [0, π ] according to

0 = θ1 < θ2 · · · < θm−1 < θm = π

and compute

c1 = max

(
c†1, max

j=1,...,m
sup

θ∈[θ j−1,θ j ]
||(MN1,N2 − reiθ I )−1||

B(X
N2
ν )

)
,

where c†1 is replaced by an appropriate upper bound. The supremums are done using interval
arithmetic (INTLAB). If c1c2c3 ≥ 1, one should refine the mesh (to reduce the over-
estimation due to interval arithmetic and subsequently decrease c1), increase the number
of modes (to push c3 closer to zero and decrease the error ||M − MN1,N2 ||B(Xν )) or work with
ν if such flexibility is afforded by the given problem. It may also be necessary to change the
value of the radius r .

The situation is similar for validation in a closed ball. The c1 bound must satisfy

max

(
c†1, sup

t∈[0,2π ]
||(MN1,N2 − (λ + reiθ )I )−1||

B(X
N2
ν )

)
≤ c1,

where c†1 = supθ∈[0,2π ] ||(MN1,N2 − (λ + reiθ )I )−1||B(X∞
ν ). There is no symmetry that can

be exploited here, so we must partition the entire interval [0, 2π]. With m mesh points, we
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compute

c1 = max

(
c†1, max

j=1,...,m
sup

θ∈[θ j−1,θ j ]
||(MN1,N2 − (λ + reiθ )I )−1||

B(X
N2
ν )

)

using interval arithmetic. The conditioning guidelines are the same as for generalized Morse
index validation.

For radial sector validation, the c1 bound must satisfy

max

(
c†1, sup

t∈[0,4]
||(MN1,N2 − z(t; λ, r , ω)I )−1||

B(X
N2
ν )

)
≤ c1

for the radial sector parameterization z from (44), where c†1 = supt∈[0,r ] ||(MN1,N2 −
z(t; λ, r , ω)I )−1||B(X∞

ν ) can once again be bounded using an explicit formula (Lemmas 6.1.1,
6.2.1 and 6.3.1). By choosing mesh sizes mk and partitioning the intervals [k, k + 1] for
k = 0, 1, 2, 3 according to

k = tk,1 < tk,2 < · · · < tk,mk = k + 1,

one can then compute

c1 = max

(
c†1, max

k=0,1,2,3
max

j=1,...,mk
sup

t∈[tk, j−1,tk, j ]
||(MN1,N2 − z(t; λ, r , ω)I )−1||

B(X
N2
ν )

)
,

where c†1 is replaced by an appropriate upper bound and all suprema are calculated using
interval arithmetic (INTLAB). Conditioning guidelines are the same as the previous case,
except that generally it might also be necessary to change the value of the width r or sweep
ω of the radial sector.

Remark 7.1.1 In all cases, an appropriate bound for c†1 is available from one of Lemmas 6.1.1,
6.2.1 or Lemma 6.3.1.

7.1.1 Mesh generation

In our implementation of the c1 bound we have allowed two options for the mesh. The first
is a uniform grid, and the second one is a pre-specified mesh. A script is included to generate
a (nonuniform) mesh in one of two ways. The first, which is generally very slow, involves
first computing

s �→ ||(MN1,N2 − z(s)I )−1||
B(X

N2
ν )

at a specified number of equally-spaced points throughout the domain dom(z) of the param-
eterization for ∂U (for U the set to validated) with floating point arithmetic (for speed). A
mesh 0 = s1 < · · · < sm = max(dom(z)) for specified m is then computed so that∫ si

si−1

||(MN1,N2 − z(s)I )−1||
B(X

N2
ν )

ds

is (nearly) equal for i = 1, . . . , m. A much faster way is to instead take {σ1, . . . , σN } =
σ(MN1,N2) the eigenvalues of MN1,N2 and compute

s �→ 1

mink(|σk − z(s)|)
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at a specified number of equally-spaced points throughout the domain dom(z), and then
generate the mesh in such a way that∫ si

si−1

1

mink(|σk − z(s)|ds

is (nearly) equal for i = 1, . . . , m

7.2 Handling arbitrary period and delay in the absence of validation

Our basic implementation of the discretized monodromy operator is built on the premise
that the the period p and delay q are coprime and p ≤ q . In this section we explain how
the implementation handles the other cases. If p and q are not coprime but p ≤ q , one can
interpret the monodromy operator M as being a product:

M = U (p, p − 1)U (p − 1, p − 2) · · · U (2, 1)U (1, 0),

with U (t1, t0) denoting the solution operator from time t0 to time t1 for (12)–(13). Each of
U (k, k − 1) for k = 1, . . . , p can be discretized using our scheme, since these operators
can, themselves, be interpreted as the monodromy operator for a system of the type (12)–
(13) except with period p0 = 1 and delay q . This is not optimal, and implementing the
discretization from the ground up treating arbitrary p ≤ q would improve efficiency by
reducing the amount of large matrix multiplications.

Depending on the relationship between p and q and the regularity of the matrix-valued
functions A(t) and B(t), one might be able to write M using fewer than p factors. Suppose
p ≤ q have a common factor m. Then p = jm for some j ≥ 0, and we can write

M = U (p, ( j − 1)m)U (( j − 1)m, ( j − 2)m) · · · U (2m, m)U (m, 0).

Provided thematrix-valued functions A(t) and B(t) are piecewise-analytic with respect to the
intervals (km, (k + 1)m) for k ∈ Z, we can apply our discretization scheme by interpreting
each factor as the monodromy operator of a system of the type (12)–(13) with period p0 = m
and delay q . After an appropriate time rescaling (since the new period m divides q) we
can rescale the period to 1. However, since this is problem-specific, we do not implement it
directly in ourMATLAB code and instead implement the worst-case fallback option outlined
in the previous paragraph.

Suppose now that p > q: that is, the period is greater than the delay. We can write
p = jq + k for some positive integer j and a remainder k ∈ {0, . . . , q − 1}. We can then
write the monodromy operator M as

M = U (p, jq)U ( jq, ( j − 1)q) · · · U (2q, q)U (q, 0).

In the same way as last time, we can interpret U (mq, (m − 1)q) as being a monodromy
operator for a system of the type (12)–(13) except with period and delay both equal to q ,
while U (p, jq) can be interpreted as a monodromy operator for a system of the same type,
except with period equal to p0 = k and delay equal to q . This is handled automatically in our
MATLAB implementation, where each of the M(mq, (m − 1)q) operators are discretized
using the worst-case product fallback approach from the first paragraph.

At a theoretical level, the discretization MN1,N2 resulting from this construction converges
to M (although with a generally worse rate) in B(Xν) just as it does for the coprime cases
p ≤ q; namely, the convergence is achieved as N1, N2 → ∞ provided N2 − N1 → ∞. This
can be proven by careful analysis of the bounds c2 and c3. Namely, c2 is uniformly bounded
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and c3 is O(1/(N2 − N1)). One can then apply the error bound (42). However, the validated
numerics of Sect. 4.3 no longer apply. The proof of the main lemma and theorem in the latter
section explicitly uses the decomposition of M in terms of a single implicit and explicit part
operator, and if p > q or they are not coprime it is generally necessary to split M into several
such operators. We briefly demonstrate the problem at the end of Sect. 10. While the result
can indeed be generalized to the case p > q or non-coprime p and q , the estimation of the
analogous bounds (such as c2 and c3) quickly become rather involved. Thus, while these
cases could be handled using our validated numerics setup, we do not do so at this time.

7.3 Optimizations for some special scalar problems

Some additional preprocessing can improve the speed of computer-assisted proofs if q = kp
for a natural number k and the impulsive delay differential equation is scalar. First recall [10]
that μ is a Floquet multiplier if and only if to λ := p−1 logμ there is associated a nontrivial
complex-valued p-periodic function φ(t) such that t �→ φ(t)etλ is a solution of (10)–(11).
One can then check directly that φ is a periodic solution of

φ̇(t) = (A(t) − λI )φ(t) + e−λq B(t)φ(t − q), t /∈ pZ

�φ(t) = C1φ(t−) + e−λqC2φ(t − q), t ∈ pZ.

However, since q = kp for p the period of φ, the above is equivalent to

φ̇(t) = (A(t) − λI )φ(t) + e−λq B(t))φ(t), t /∈ pZ

�φ(t) = C1φ(t−) + e−λqC2φ(t), t ∈ pZ.

Let A = p−1
∫ p
0 A(t)dt and B = p−1

∫ t
0 B(t)dt . If φ is scalar, φ is periodic with period p

and nontrivial if and only if

1 = (1 + C1) exp
(

p(A + e−λq B − λ)
)+ C2e−λq ,

as can be verified by solving the ordinary impulsive differential equation and imposing the
equalityφ(0) = φ(p). However, this is the exact same equation one obtains upon substituting
the ansatz y(t) = φ(t)etλ into

ẏ = Ay(t) + B y(t − q), t /∈ pZ

�y = C1y(t−) + C2y(t − q), t ∈ pZ

and imposing periodicity of φ. The above impulsive DDE and (10)–(11) therefore have the
same Floquet multipliers, so in the computation of the bounds c1, c2 and c3, it is sufficient
to replace the inputs A and B with rigorous interval enclosures of the mean over the entire
interval [0, p]. The tail terms can also be rolled into this rigorous enclosure of the means, so
that in the bound computations one can take them to be zero.

8 Examples and applications: rigorous numerics

The following sections demonstrate the strengths (and weaknesses) of our numerical mon-
odromy operator discretization scheme and the rigorous numerics approach to eigenvalue
validation. The models of the first two sections (Sects. 8.1, 8.2) are motivated in part by
existing mathematical models or well-known equations. In the first of these sections we
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exploit the robustness of INTLAB to prove results that are uniform with respect to model
parameters. In particular, we prove some robust stability and bifurcation enclosure results.
Section 8.3 demonstrates the importance of eigenvalue validation by way of a family of
simple examples.

In all proofs of this section, the periodic coefficients of our delay equations will be entire.
By Corollary 4.1.1, we can therefore use any ν > 1 in proofs that we want. For the most
part we will use ν = 1.17, but when we need to take N2 very large as we do in the proof of
Theorem 8.2.1, it will be necessary to use a smaller ν to balance the interval arithmetic.

Remark 8.0.1 [Disclosure] All references to computing time in the computer-assisted proofs
were as performed on a Windows 10 machine with an AMD Ryzen 5 1500X processor
and 16gb of memory in MATLAB R2019b with INTLAB v12 unless otherwise stated. The
times are for the entire runtime of the proof (e.g. they include interval arithmetic computa-
tions of MN1,N2 ), not just the c1, c2 and c3 bound calculation. Times were done using the
tic/toc MATLAB function. These times are not necessarily optimal. Different choices
of modes (N1, N2) and weight (ν) can have a significant impact on computing time while
still yielding correct proofs. The computation times include negligible overhead associated
to the computation of the mesh (generated using the “fast” method from Sect. 7.1.1) for the
c1 bound. The number of points in this mesh has a significant impact on computation time,
and this number is generally different for each proof. See the associated MATLAB code [9]
for documentation.

8.1 Time-delay predator-preymodel with impulsive harvesting

The following predator-prey system is modeled off of one considered in [22]:

ẋ = r x(t)

(
1 − x(t)

K

)
− βx(t)y(t) (95)

ẏ = ρβe−d1τ x(t − τ)y(t − τ) − d2y(t), t /∈ Z (96)

�y = −hy(t−), t ∈ Z. (97)

The difference between the above system and one cited is that instead of impulsive harvest-
ing of prey (x), we consider impulsive harvesting of the mature predator (y). Predator age
structure is taken into account, but the juvenile dynamics do not have an influence on the
remaining population classes and have been neglected here. One may consult [22] for details.

There is a predator-free equilibrium, (x∗, y∗) = (K , 0). The linearization at this equilib-
rium is

ż =
[−r −βK

0 −d2

]
z(t) +

[
0 0
0 ρβK e−d1τ

]
z(t − τ), t /∈ Z

�z =
[
0 0
0 −h

]
z(t−), t ∈ Z.

This system is upper triangular and it is easy to verify that its stability (and, consequently,
the dimension of the unstable manifold of (x∗, y∗)) is entirely determined by the following
scalar equation:

v̇ = −d2v(t) + ρβK e−d1τ v(t − τ), t /∈ Z (98)

�v = −hv(t−), t ∈ Z. (99)
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Table 1 Numerical outputs from the proof of Theorems 8.1.1 and 8.1.2

τ h N2 ν c1 c2 c3 c1c2c3 Computing time (s)

1 0.075 30 1.17 219.4946 1.0278 0.0016013 0.36126 11

1 0.060 30 1.17 247.2036 1.0283 0.0016013 0.40704 14

1 [0,0.050] 40 1.17 326.7163 1.0300 0.0013785 0.46387 32

1 [0.050,0.060] 40 1.17 359.694 1.0285 0.0013785 0.50996 36

2 0.075 30 1.17 133.5642 1.0278 0.0015696 0.21547 28

2 0.060 40 1.17 368.8167 1.0282 0.0011863 0.44983 47

3 0.075 40 1.17 135.1902 1.0277 0.0011628 0.16155 105

3 0.060 70 1.3 723.1795 1.0280 0.00068617 0.51012 430

Making use of this observation, our numerical implementation of the discretized monodromy
operator and implementations of the c1, c2 and c3 bounds, we can prove the following.

Theorem 8.1.1 (Pointwise stability) Suppose τ ∈ {1, 2, 3}. With the parameters β = 0.1,
ρ = 1, K = 1, d1 = 0.02 and d2 = 0.03, the predator-free equilibrium (x∗, y∗) = (K , 0)
of (95)–(97) is:

• unstable if h = 0.060 with a one-dimensional unstable manifold,
• locally asymptotically stable if h = 0.075.

Proof (Outline) For each choice of τ and h, we compute the interval enclosures of the dis-
cretized monodromy operatorM (with a suitable number of nonconstant Chebyshev modes)
with INTLAB. We then compute c2 and c3 bounds, as well as the c1 bound for Morse index
validation. Following this, we count the eigenvalues of the interval matrix M with absolute
value at least one. We do this using the radii polynomial approach from [6]. This count then
gives the number of Floquet multipliers of (98)–(99) with absolute value greater than (and,
by robustness, greater than or equal to) one. By previous observations, these results carry
over to the linearization of the full system (95)–(97) at the predator-free equilibrium. �

The results of the computer-assisted proof are tabulated in Table 1 and the approximate
spectrum for h = 0.060 and τ = 3 is plotted in Fig. 3.

We can also prove the following “robust instability” result for the system with τ = 1. The
results of the computer-assisted proof can be found in Table 1.

Theorem 8.1.2 (Robust instability) Suppose τ = 1. With the parameters β = 0.1, ρ = 1,
K = 1, d1 = 0.02 and d2 = 0.03, the predator-free equilibrium (x∗, y∗) = (K , 0) of
(95)–(97) is unstable with a one-dimensional unstable manifold for all h ∈ [0, 0.060].
Proof (Outline) Let MN1,N2(h) denote discretized the monodromy operator of (98)–(99)
for harvesting parameter h (and all others fixed as in the theorem), and let M(h) be the
(undiscretized) monodromy operator. We compute an interval enclosureM of the discretized
monodromy operator with N2 = 40 nonconstant Chebyshev modes and interval parame-
ters h0 = [0, 0.050] and h1 = [0.050, 0.060]. Consequently, for each h ∈ h0, we have
M0,N2(h) ∈ M(h0) and for each h ∈ h1, M0,N2(h) ∈ M(h1). We therefore compute upper
estimates for the c1, c2 and c3 bounds for the interval matricesM(h0) andM(h1) using INT-
LAB, for Morse index validation (i.e. radius r = 1). If c1c2c3 < 1, then M(h) and M0,N2(h)

have the same number of eigenvalues in the complement B1(0) for all h ∈ [0, 0.060]. By
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Fig. 3 Left: Approximate spectrum of monodromy operator for the linearized predator-prey model (98)–(99)
with parameters from Theorem 8.1.1, τ = 3 and h = 0.060, with a unit circle for scale and visual instability
reference. Right: zoomed in portion of the region in the dashed box showing the unstable Floquet multiplier
(black dot)

Theorem 8.1.1, we already know this number of eigenvalues is exactly one. The supplied
MATLAB code completes all these calculations. �

Finally, we can accurately enclose the possible bifurcation that is identified by Theorem
8.1.1. Doing this requires:

• selection of an interval h in which the bifurcation is contained,
• validation of a generalized Morse index (of an appropriate radius r < 1) uniformly over

h,
• validation of a radial sector (of appropriate radius and sweep), uniformly over h,
• two sets of rigorous interval eigenvalue enclosures, one for each endpoint of h,
• two additional Morse index validations (at radius r = 1) at the endpoints of h.

The computer-assisted proof took 1155s (19min, 15 s) to complete. The following theorem
summarizes the result, and we outline the proof in a similar manner to the previous one.
Figure 4 provides a visual depiction of the combined validation structure and output of the
code, while Table 2 provides the c1, c2 and c3 bounds for each step.

Theorem 8.1.3 (Bifurcation) Suppose τ = 1. Let h = [0.065, 0.066]. With β = 0.1, ρ = 1,
K = 1, d1 = 0.02 and d2 = 0.03, the predator-free equilibrium (x∗, y∗) = (K , 0) of
(95)–(97) enjoys the following properties.

• For all h ∈ h, it has a single Floquet multiplier λ(h) that satisfies |λ(h)| ≥ 0.8, and all
other multipliers are strictly contained in the interior of the ball B0.8(0) ⊂ C.

• λ(h) ∈ Rλ∗(r , ω) with λ∗ = 1, r = 5 × 10−3 and ω = 2.5 × 10−3 for all h ∈ h.
• |λ(0.066)| < 1 < |λ(0.065)|. That is, λ(h) crosses the unit circle at some h ∈ h.

Proof (Outline) Similar to the previous proof, we let MN1,N2(h) denote the discretized the
monodromy operator of (98)–(99) for harvesting parameter h (and all others fixed as in
the theorem), and M(h) the (undiscretized) monodromy operator. We compute an interval
enclosure We compute an interval enclosureM of the discretized monodromy operator with
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Fig. 4 Visual depiction of the content of Theorem 8.1.3 generated by the computer-assisted proof. Left: the
Morse index at radius 0.8 is validated and is represented by the solid black circle. The dashed blue circle
has radius 1 and is provided for comparison. At the extreme right are two eigenvalues (one for h = 0.065
and another for h = 0.066) and the radial sector Rλ∗ (r , ω) that are too small to resolve at this level of
magnification. Right: zoomed in portion of a region within the dotted black square. The radial sector appears
as a solid black curve, and the individual eigenvalues (red dots, h = 0.065 on the right and h = 0.066 on the
left) can be resolved. Note that the exact location of the eigenvalues is only known up to inclusion within this
radial sector and the ordering |λ(0.066)| < 1 < |λ(0.065)| (Color figure online)

N2 = 150 nonconstant Chebyshev modes and interval parameter h. As such, for each h ∈ h
we have M0,N2(h) ∈ M. We therefore compute upper estimates for the c2 and c3 bounds for
the interval matrix M. Next, we compute c1 bounds for two validation structures:

1. the ball B0.8(0), for generalized Morse index validation at radius 0.8,
2. the radial sector Rλ∗(r , ω) with λ∗ = 1, r = 5× 10−3 and ω = 2.5× 10−3, for compact

eigenvalue validation.

If c1c2c3 < 1 for theMorse index structure, we can conclude that for all h ∈ h, the number of
eigenvalues of M(h) and MN2,0(h) in the complement of B0.8(0) are constant and equal. If
c1c2c3 < 1 for the radial sector structure, the number of eigenvalues of M(h) and MN2,0(h)

in Rλ∗(r , ω) is constant and equal for all h ∈ h. This proves the first two points. For the final
point, we need to compute M(0.065) and M(0.066), validate their eigenvalues and ensure
that the eigenvalues with absolute value greater than 0.8 have rigorous enclosures contained
in Rλ∗(r , ω) and satisfy |λ(0.066)| < 1 < |λ(0.065)|. To ensure that this ordering is correct
for the exact eigenvalues, we need to validate the Morse index at radius 1 for h = 0.065 and
also at h = 0.066. Verifying rigorously that the eigenvalues (of the discretized operator) are
contained within Rλ∗(r , ω) is accomplished with Proposition 4.3.1 and the radii polynomial
approach for enclosure of eigenvalues of interval matrices from [6]. The supplied MATLAB
code completes all these calculations, and we use ν = 1.17 to complete the proof. As a
final remark, the c2 and c3 bounds for M can be used for all validation proofs since they
are by definition over-estimates for the associated c2 and c3 bounds for the interval matrices
M0,N )2(0.065) and M0,N2(0.066). �
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The bifurcation proven in Theorem 8.1.3 corresponds to a transcritical bifurcation of
periodic solutions. There is some h∗ ∈ [0.065, 0, 066] at which a nontrivial periodic solution
of (95)–(97) collapses onto the equilibrium solution (K , 0). Its distance to (K , 0) is O(|h −
h∗|) and it is locally asymptotically stable when h < h∗. For visualization, we have provided
in Fig. 5 a numerical integration of the system at the parameters where this solution is stable.

8.2 Hopf bifurcation“normal form” with symmetry-breaking delays

Consider the following planar delay differential equation with real parameter β and integer
delay τ ∈ N:

ẋ = βx(t) − π y(t) − x(t)(x2(t − τ) + y2(t)) (100)

ẏ = πx(t) + β y(t) − y(t)(x2(t) + y2(t − τ)). (101)

The system (100)–(101) is qualitatively similar to the normal form of the Hopf bifurcation for
ODEs with angular velocity π , except we have inserted two delays τ > 0 into the nonlinear
terms. The solutions of the traditional Hopf normal form are invariant under rotation about
zero, but this is not the case for the system above.

(x, y) = (0, 0) is an equilibrium solution and as β crosses through zero, a supercritical
Hopf bifurcation occurs. The bifurcating periodic solution is explicitly available: for given
parameter β > 0 it is precisely

(x∗(t), y∗(t)) = (
√

β cos(π t),
√

β sin(π t)).

This follows almost immediately from the observation that x∗(t − τ) = (−1)τ x∗(t) and
y∗(t − τ) = (−1)τ y∗(t). We are interested in the stability and possible bifurcations that
can occur on this branch of periodic orbits. After some algebraic simplifications and use of
trigonometric identities, one can show that the linearization at (x∗, y∗) is

ż =
[

0 −π − β sin(2π t)
π − β sin(2π t) 0

]
z(t)

+ (−1)τ+1
[

β(1 + cos(2π t)) 0
0 β(1 − cos(2π t))

]
z(t − τ) (102)

for z ∈ R
2. Note that even though the original periodic solution has period two, we can see

that the linearization has period one. If we let U (t, s) : C([−τ, 0],R2) → C([−τ, 0],R2)

denote the associated solution operator, the monodromy operator M := U (2, 0) can be
factored: if we define M̃ := U (1, 0), then

M = U (2, 0) = U (2, 1)U (1, 0) = U (1, 0)U (1, 0) = M̃2 (103)

due to the periodicity of the coefficients. By the spectral mapping theorem, the eigenvalues
of M are the squares of the eigenvalues of M̃ . Thus, to investigate the stability of (x∗, y∗)
it suffices to work with the monodromy operator for (102) interpreted as a periodic system
with period p = 1 and delay q = τ , rather than period two. Also, recall that since (x∗, y∗)
is a periodic solution of an autonomous delay differential equation, μ = 1 will always be a
Floquet multiplier [14, Section XIV.2, Proposition 2.6], so we will always have

√
μ ∈ ±1 as

an eigenvalue of M̃ . Stability of (x∗, y∗) is determined by the remaining Floquet multipliers.
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Fig. 5 Left: numerical simulation of the system (95)–(97) at the parameters τ = 1, β = 0.1, ρ = 1, K = 1,
d1 = 0.02, d2 = 0.03, r = 0.7 and h = 0.06 from the constant initial condition (x0, y0) = (1, 0.01) for
t ∈ [0, 2000). The equilibrium (x, y) = (1, 0) is unstable by Theorem 8.1.2. The x component is the top curve
(black) and y is the blue curve (bottom). The discontinuities occurring at the integers make the y curve difficult
to resolve (note the varying “thickness” of the curve with respect to t). Top right: x component windowed
to t ∈ [1995, 2000). Bottom right: y component with the same windowing. At this resolution the converged
periodic solution (of period 1) is easily discernible

Namely, orbital asymptotic stability with asymptotic phase (i.e. asymptotic stability modulo
phase difference) occurs if all other multipliers have modulus less than one, and instability
occurs if there is a multiplier with modulus greater than one.

Since each of cos(2π t) and sin(2π t) (the nontrivial time-varying coefficients in (102))
can be generated as solutions of the two-dimensional linear ODE

u̇ =
[

0 −2π
2π 0

]
u, (104)

we can:

• get the terms of the truncated Chebyshev series of cos(π(s − 1)) and sin(π(s − 1)) with
rigorous interval enclosures (for a partiaular level of discretization) using monodromy
operator discretization on (104);

• obtain bounds for the absolute error in the truncated coefficients using the discretization
error c2c3;

• bound the tails using the discretization error.

This information is then used to obtain interval enclosures of the truncated Chebyhev series
of the matrices in (102) (after transforming the time domain from t ∈ [−1, 0] to s ∈ [−1, 1])
and bounds on the tails. Using our rigorous numerical method, we can prove then prove the
following theorem.

Theorem 8.2.1 Let τ = 1. The unstable manifold of the nontrivial periodic solution
(x∗(t), y∗(t))of the two-dimensional Hopf-like normal form (100)–(101)at parameterβ = 3

2
is at least two-dimensional.
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Fig. 6 The black dots are the eigenvalues of the finite (matrix) part of the operator M̃N1,N2 . Observe that
−1 is a (numerical) eigenvalue, which is consistent with the discussion following (103). The radial sector
Rλ∗ (r , ω) from the proof of Theorem 8.2.1 appears in blue. The unit circle is provided for relative scale, and
is delineated by a black dashed curve. The gap between the radial sector and the unit circle is very small and
difficult to resolve in the figure: in the radial direction the length of the gap is bounded below by 3.4× 10−3

Table 3 Numerical outputs from
the proof of Theorem 8.2.1

c1 c2 c3 c1c2c3

85.79436 5.70375 0.0020193 0.98813

Proof (Outline) We validated the radial sector Rλ∗(r , ω) with

λ∗ = 0.405828912008976 + 0.974191597102970i, r = 0.055, ω = 0.1.

The validation was done at N1 = 65, N2 = 1000 and ν = 1.04.We used the radii polynomial
method and Proposition 4.3.1 to prove that M̃N1,N2 has exactly one eigenvalue within this
radial sector. As the non-real eigenvalues of the monodromy operator come in complex-
conjugate pairs and Rλ∗(r , ω) does not intersect the real axis, we conclude that there is also
a conjugate eigenvalue. By Lemma 4.3.2, the (undiscretized, true) monodromy operator M̃
has a pair of complex-conjugate eigenvalues contained in the union of Rλ∗(r , ω) and its
reflection over the real axis. This sector is strictly outside of the unit disc in the complex
plane, so the eigenvalues have absolute value greater than one. From our observations above
concerning the spectral mapping theorem and the relationship between the eigenvalues of M
and M̃ , we conclude the unstable manifold of the periodic solution (x∗(t), y∗(t)) is at least
two-dimensional. See Fig. 6 for the validation structure and approximate eigenvalues. �

The proof is computationally expensive. Based on some heuristics, we would expect an
unparallelized version of the proof to take approximately 23 days to complete on ourmachine.
Almost all of this time is due to the lengthy c1 bound calculation. To speed up the computation
for the proof, we distributed the load over our primary machine and a laptop running an Intel
Core i7 5950HQwith 32GBofmemory. Eachmachine then ran five simultaneous instances of
MATLAB, and each instance was tasked with 1/10 of the load associated to the c1 bound. The
script at [9] includes a parameter that controls which section of the proof is to be completed,
and it was this script that was simultaneously run on the ten MATLAB instances. Doing the
proof this way, it took a bit over two days to complete. The results are found in Table 3.
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Fig. 7 The attractor of the planar system (100)–(101) at τ = 1 and β = 3
2 . Computed by forward integration

in ddde23 for t ∈ [0, 2000] and truncated to [1000, 2000]. The delayed variable y(t − 2) is included to
realize the embedding of the two-dimensional manifold (equivalent to a torus) in three-dimensional space

This theorem provides strong evidence for the existence of an invariant torus, since the
two unstable Floquet multipliers would need to have crossed through the unit circle between
β = 0 and β = 3

2 . The likely scenario is that this would have occured at a Neimark-Sacker
bifurcation. Numerical integration of the delay differential equations does indeed reveal an
attracting, invariant torus: see Fig. 7.

8.3 Spurious flower petals

This final example demonstrates the importance of validated numerics. It also provides some
aesthetically pleasing figures. Consider the following piecewise-constant delay equation:

ẋ = (−1)�t�
[
0 −c
c 0

]
x(t − τ), (105)

where τ is a nonnegative integer and c ∈ R. It is worth mentioning that this equation is
notoriously difficult to integrate to high precision.

Proposition 8.3.1 For any nonnegative integer delay τ and c ∈ R, the only nonzero Floquet
multiplier of (105) is μ = 1.

Proof Let x(t) = φ(t)etλ be a Floquet eigensolution—that is, λ ∈ C and φ complex-valued

with period 2. Let V (λ) =
[

0 −ce−λτ

ce−λτ 0

]
. Then

φ̇ = −λφ(t) + (−1)�t�V (λ)φ(t − τ).

Case 1: τ is even. Then φ(t − τ) = φ(t) since φ is periodic with period 2. Then

φ̇ = (−λI + (−1)�t�V (λ))φ.

123



Journal of Dynamics and Differential Equations (2021) 33:2173–2252 2239

One can verify that the matrices −λI + V (λ) and −λI − V (λ) commute, from which it
follows that the solution φ(t) of the above differential equation satisfies

φ(2) = exp(−λI − V (λ)) exp(−λI + V (λ))φ(0) = exp(−λI )φ(0).

Since φ is nontrivial, we must have λ = 0. Thereforeμ = e0 = 1 is the only nonzero Floquet
multiplier.

Case 2: τ is odd. Define φ0(t) = φ(t) and φ1(t) = φ(t − 1). Since φ is periodic with
period 2, we have φ0(t − τ) = φ1(t) and φ1(t − τ) = φ0(t). The pair (φ0, φ1) therefore
satisfies the ODE

φ̇0 = −λφ0 + (−1)�t�V (λ)φ1

φ̇1 = −λφ1 − (−1)�t�V (λ)φ0

Thematrices M1 = −λI4×4+diag⊥(V (λ),−V (λ)) and M2 = −λI4×4−diag⊥(V (λ),−V (λ))

commute, where diag⊥(A, B) =
[
0 A
B 0

]
. It follows that Œ(t) = (φ0(t), φ1(t)) satisfies

Œ(2) = exp(M2) exp(M1)Œ(0) = exp(−2λI4×t )Œ(0).

As φ is nontrivial, we must have λ = 0. Therefore μ = e0 = 1 is the only nonzero Floquet
multiplier. �

Even though μ = 1 is the only Floquet multiplier, the discretized operator MN1,N2 has
some rather interesting flower petal-shaped numerical eigenvalue patterns that are present
for seemingly arbitrarily high level of modes N2 (note: N1 = 0 for this problem). The latter
is a common element of the spurious eigenvalue phenomenon [12]. We provide plots of the
eigenvalues of MN1,N2 in Fig. 8 for c = 10, τ = 3, 5, 7 and various values of N2. We should
also emphasize that neither the radii polynomial method [6] nor verifyeig (applied to
validation of distinct eigenvalues) from INTLAB [24] are able to verify any of the eigenvalues
of the associated matrices MN1,N2 , so even if we were able to numerically verify c1c2c3 < 1
for for the closed circle with radius r = 0.99 (which seems bounded away from the all of the
discretized spectra), we would be unable to prove using a computer that there is an eigenvalue
with absolute value greater than 0.99.

Another interesting observation is that the diameter of the “flower” portion of the eigen-
value pattern seems to be proportional to the parameter c. We do not provide figures
demonstrating this scaling but refer the reader to the MATLAB code [9] where they may
adjust the parameters τ , c and N2 as desired. Even with c = 10−2, none of the eigenvalues
(treated as distinct, as opposed to clusters) can be validated with the radii polynomial method
or verifyeig.
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Fig. 8 Eigenvalues in the complex plane (horizontal axis real, vertical axis imaginary) of the discretized
monodromy operator MN1,N2 as computed by eig in MATLAB for the two-dimensional system (105) with

c = 10. Since the periodic coefficient (−1)�t� is piecewise-constant, N1 = 0. Plots are provided for τ = 3, 5, 7
and N2 = 50, 200, 400. Though the figures are not reported here, we did the same calculation with N2 = 1000
and the same “flower petal” patterns were present

9 Examples with floating point arithmetic

It is worthwhile doing some large-scale tests of our numerical method for monodromy oper-
ator discretization of impulsive delay differential equations in floating point arithmetic. In
particular, we are interested in how fast our implementation is for larger systems.

9.1 Methodology: examples with periodic coefficients

We generated six systems of the form (10)–(11) for each dimension d = 10, 50. The delays
were q ∈ {1, 2, 3} and the periods p ∈ {1, 2}, so that each combination of delay and period
is seen at each dimension. The systems were constructed as follows.

1 The matrices A(t) and B(t) were designed at the Chebyshev level. After transformation
to the s ∈ [−1, 1], suppose we write truncated Chebyshev series for the restriction of one
of A(t) or B(t) to an integer-length interval t ∈ [n, n + 1] as

S0 + 2
N1∑

k=1

Sk Tk(s)
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ford×d matrices Sk andTk the kthChebyshevpolynomial. The entries of Sk are drawn from
the uniform distribution on 2−k[−1, 1] to simulate analytic coefficients with geometric
decay rate 2. We took N1 = 50 so that all remaining terms of this (presumably) analytic
function would have norm bounded above by 9×10−16. The coefficients are then rescaled
by a random number drawn from uniform [0, 1].

2 The C1 matrices was designed to induce contraction (or at least non-expansion). We first
generate a randommatrix D by sampling entries from the uniform distribution on [−1, 1].
We then take k to be sampled from the uniform [0, 1] and define

C1 = k

||D|| D − Id×d .

By construction, ||I +C1|| = k ≤ 1, so the effect of the impulse due toC1 is nonexpansive
(contractive if k < 1).

3 The C2 matrices was taken to be a (relatively) small and random. Their entries were drawn
from the normal distribution with mean μ = 0 and variance σ 2 = 10−1, truncated to the
interval [−10−1, 10−1].

9.2 Methodology: examples with piecewise-constant coefficients

With constant coefficient systems it makes sense to look at lower-mode discretizations (since
we do not need to take into account the standing hypothesis N2 > N1). This also gives us
more flexibility (in terms of computer memory) to look at systems of higher dimension. We
look this time at systems of dimension d = 10, 50 and also 100. Our design methodology is
identical to the periodic coefficients case except that we take N1 = 0 so that our Chebyshev
series for A(t) and B(t) have zero nonconstant modes (i.e. A(t) and B(t) are piecewise
constant).

9.3 Results

Remark 9.3.1 All references to computing timewere as performed on aWindows 10machine
with an AMD Ryzen 5 1500X processor and 16gb of memory in MATLAB R2019b. All
operations were completed in 64-bit floating point arithmetic. Times were done using the
tic/tocMATLAB function. While this is relatively accurate for long computations, short
computations are subject to jitter and the actual computation time might be shorter.

Before we begin presenting the results, we should briefly mention that due to how we
have designed the matrices A(t), B(t), C1 and C2, it is expected that higher-dimensional
problems we study will be unstable (in the sense of Lyapunov stability) and therefore have
larger spectral radii σ(MN1,N2). Intuitively, this is because since these have been generated
randomly there is greater potential for multilayered feedback mechanisms to overwhelm the
contraction generated by I + C1.

The time needed to compute MN1,N2 in floating point arithmetic for each tuple of dimen-
sion, period, delay and number of modes (d, p, q, N2) is stated in Tables 4 and 5 for the
systems with periodic coefficients. The systems with constant coefficients have the results
stated in Tables 6, reftablespsfp50c and 8. The spectral radius of MN1,N2 for each tuple is
also stated, so that one can compare the predicted spectral radius (and inferred stability) as
the order (i.e. number of modes) increases. We should emphasize that the part of MN1,N2 that
lives in memory (i.e. the finite part) is a qd(N2 + 1) × qd(N2 + 1) matrix. The construction
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Table 4 Computation time for MN1,N2 and spectral radius for the 10-dimensional periodic coefficient exam-
ples

p q N2 Time σ(MN1,N2 ) p q N2 Time σ(MN1,N2 )

1 1 50 0.1823 0.260300268572241 2 1 50 0.3669 1.716890539322859

1 1 100 0.8171 0.260300268572240 2 1 100 1.8684 1.716890539322860

1 1 200 4.6518 0.260300268572241 2 1 200 10.6391 1.716890539322858

1 2 50 0.3009 0.862657110762436 2 2 50 0.8336 0.962102756266976

1 2 100 1.5717 0.862657110762425 2 2 100 4.6179 0.962102756266973

1 2 200 10.5377 0.862657110762449 2 2 200 30.3392 0.962102756266975

1 3 50 0.5769 0.835260513721166 2 3 50 0.7818 1.301687998067846

1 3 100 3.4762 0.835260513721170 2 3 100 4.2526 1.301687998067844

1 3 200 24.7049 0.835260513721173 2 3 200 25.8714 1.301687998067849

Table 5 Computation time for MN1,N2 and spectral radius for the 50-dimensional periodic coefficient exam-
ples

p q N2 Time σ(MN1,N2 ) p q N2 Time σ(MN1,N2 )

1 1 50 7.1569 2.007711242747832 2 1 50 16.1546 10.407570266516226

1 1 100 48.5008 2.007711242747846 2 1 100 115.242 10.407570266516256

1 1 200 348.3643 2.007711242747829 2 1 200 789.033 OOM

1 2 50 17.6226 3.790193289898586 2 2 50 52.8226 1.592405342469769

1 2 100 119.2017 3.790193289898596 2 2 100 400.6249 1.592405342469754

1 2 200 OOM OOM 2 2 200 OOM OOM

1 3 50 44.8359 1.146527675417064 2 3 50 50.2296 7.557587755604763

1 3 100 330.5872 1.146527675417057 2 3 100 378.5051 7.557587755604715

1 3 200 OOM OOM 2 3 200 OOM OOM

of each such matrix requires storing other large matrices in memory and multiplying them.
In those instances where we were unable to complete the calculation because we ran out of
memory, the associated entry in the table is flagged “OOM” (Out Of Memory).

From the point of view of spectral radius approximation, we see that computing more
than N2 = 50 nonconstant modes does not improve precision. For example, comparing
the results for the systems with periodic coefficients, the estimations of σ(MN1,N2) agree
to 10−13 precision for each problem (i.e. fixed p and q). Thus, at least insofar as stability
verification is concerned, there is no reason to use more than N2 = 50 nonconstant modes.
The same trend is present for the systemswith piecewise-constant coefficients. Going further,
comparing from N2 = 10 to N2 = 50 modes, we see that the spectral radius calculations
agree to 10−8 for all problems of dimension d = 10, 50, and to 10−4 for the 100-dimensional
problems.
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Table 6 Computation time for MN1,N2 and spectral radius for the 10-dimensional constant coefficient exam-
ples

p q N2 Time σ(MN1,N2 ) p q N2 Time σ(MN1,N2 )

1 1 10 0.0204 0.556128844229585 2 1 10 0.0478 2.185758750606892

1 1 50 0.2339 0.556128849778831 2 1 50 0.3671 2.185758750607603

1 1 100 0.5561 0.556128849778835 2 1 100 1.6692 2.185758750607603

1 2 10 0.0265 0.663276863767956 2 2 10 0.0329 0.661060805093243

1 2 50 0.2693 0.663276863768000 2 2 50 0.6227 0.661060805093239

1 2 100 1.2452 0.663276863768000 2 2 100 3.6868 0.661060805093245

1 3 10 0.0183 0.657019981757325 2 3 10 0.0494 1.762876266177592

1 3 50 0.5016 0.657019981765232 2 3 50 0.6014 1.762876266179832

1 3 100 3.0095 0.657019981765237 2 3 100 3.2392 1.762876266179832

Table 7 Computation time for MN1,N2 and spectral radius for the 50-dimensional constant coefficient exam-
ples

p q N2 Time σ(MN1,N2 ) p q N2 Time σ(MN1,N2 )

1 1 10 0.1289 1.431806607392872 2 1 10 0.3776 5.889651972534294

1 1 50 6.6510 1.431806607395949 2 1 50 15.2128 5.889651972514686

1 1 100 44.1495 1.431806607395935 2 1 100 103.2565 5.889651972514656

1 2 10 0.2640 3.021066383737128 2 2 10 0.7894 55.374021351893155

1 2 50 16.5041 3.021066384401501 2 2 50 47.9067 55.374022020448038

1 2 100 114.8197 3.021066384401488 2 2 100 338.0685 55.374022020448052

1 3 10 0.6170 2.713663289865321 2 3 10 0.7164 6.095605026664076

1 3 50 40.7782 2.713663291176386 2 3 50 46.6918 6.095605037539426

1 3 100 297.4751 2.713663291176395 2 3 100 320.8671 6.095605037539483

Table 8 Computation time for MN1,N2 and spectral radius for the 100-dimensional constant coefficient
examples

p q N2 Time σ(MN1,N2 ) p q N2 Time σ(MN1,N2 )

1 1 10 1.0073 4.756741912773284 2 1 10 1.9272 694.4431525710570

1 1 50 44.8451 4.756741869532997 2 1 50 103.5975 694.4431388682707

1 1 100 353.0308 4.756741869532950 2 1 100 893.3342 694.4431388682730

1 2 10 1.7046 3.180153198138059 2 2 10 4.9740 7.487399911295219

1 2 50 116.2478 3.180152710155930 2 2 50 366.5735 7.487399886587351

1 2 100 904.2700 3.180152710155918 2 2 100 3000.4027 7.487399886587358

1 3 10 3.8915 5.086753778285468 2 3 10 4.4939 7.141800125000926

1 3 50 310.9164 5.086753811041823 2 3 50 362.3332 7.141800129977383

1 3 100 2640.3295 5.086753811041799 2 3 100 2677.7598 7.141800129977379
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10 Conclusions

We have developed a numerical method for the discretization of the monodromy operator
associated for impulsive delay differetial equations with periodic coefficients. The method
is able to accomodate systems where the period and delay are commensurate: that is, their
ratio is a rational number. The numerical scheme is based Chebyshev collocation: we identify
concrete linear operators that act on Chebyshev series coefficients that represent sufficiently
smooth initial conditions to the impulsive delay differential equation. We also represent the
periodic coefficients in theChebyshevpolynomial basis (withmatrix coefficients). Truncating
the number ofmodes at the level of the inputs (initial conditions) and at the level of the periodic
coefficients yields a numerical method.

An advantage of our framework is that it is amenable to computer-assisted proofs con-
cerning the location of Floquet multipliers based on the discretized monodromy operator. In
Sect. 6 we proved explicit and computable formulas for quantities c1, c2 and c3 such that if
c1c2c3 < 1, the location of the Floquet multipliers of the impulsive DDE relative to a spec-
ified validation structure has the same location as analogous eigenvalues of the discretized
monodromy operator. These structures include specific compact sets in the complex plane
that are bounded away from the origin (e.g. radial sector validation) and complements of
closed discs centered at zero (i.e. generalized Morse index validation).

We implemented our numerical scheme for arbitrary integer period p and delay q in
MATLAB. We also implemented the bounds c1, c2 and c3 for the cases p = q = 1 and
1 = p < q . We demonstrated the computer-assisted proof techniques on two problems. The
first was a scalar problemmotivated by amodel frommathematical ecology. For this problem
we first proved binary stability/instability results by validating a Morse index at radius 1. We
then proved some robust stability and bifurcation enclosure results. The second example
was a two-dimensional nonlinear system modeled off of the Hopf bifurcation normal form.
We linearized about a periodic solution and verified using our method that at a particular
parameter value, the unstable manifold of this periodic solution is two-dimensional.

We tested our numerical implementation in floating point arithmetic on several problems.
The implementation is fast for problems of moderate (≤ 50) dimension and a reasonable
number (N2 ≤ 50) of modes provided p and q are fairly small. For the test problem of calcu-
lating the spectral radius of the monodromy operator, there was not a significant difference
in relative accuracy when the number of modes N2 was dramatically increased (i.e. from 50
to 100 or from 100 to 200), so fewer modes (e.g. 10 to 50) may be perfectly suitable for
situations where validated numerics are not needed. As should be expected, the computing
time and memory requirements become steep as the (rescaled, relative to period) delay q
increases. Some of the matrices needed to compute MN1,N2 are sparse, so memory could be
saved with a sparse matrix implementation at the cost of speed. Moreover, our implemen-
tation for arbitrary period and delay outlined in Sect. 7.2 has some inefficiencies and could
certainly be improved.

It should be emphasized that the extra dimensions (of which there are (q −1)(N2 +1)) in
the discretization due to the delay q are only present because of our stated goal of developing
not only a rigorous numerical method, but also techniques for computer-assisted proof of
Floquet multiplier location. Indeed, the extra dimensions are necessary to ensure that all
eigenfunctions canbe represented as uniformly convergentChebyshev serieswith coefficients
in Xν . However, if one were to expand the solutions in terms of other basis functions and the
form of convergence was taken to be more coarse (e.g. L2 convergence), a faster numerical
method could be developed that does not suffer from this drawback. However, such a method
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would likely not be as well-suited to computer-assisted proof of eigenvalue location and
proving its convergence might be difficult.

We have claimed that our approach to computer-assisted proof could be extended to the
case where the period is greater than the delay: p > q . We elaborate on this briefly now by
way of an example. Suppose that p = 2 and q = 1. Let M1 = (I − W1)

−1E1 denote the
operator that sends an initial condition at time t = 0 to its value at time t = 1 after flowing
along the dynamical system (10)–(11). Similarly, Let M2 = (I − W2)E2 be the operator
that an initial condition from time t = 1 forward to time t = 2. Then M = M2M1 is the
monodromy operator. If Ẽ1, W̃1, Ẽ2 and W̃2 are approximations of E1, W1, E2 and W2, then
one may be interested in adapting Lemma 4.3.1 to the operator M and its “approximation”
M̃ = M̃2M̃1, with M̃2 = (I − W̃2)

−1 Ẽ2 and M̃1 = (I − W̃1)
−1 Ẽ1. Observe that

M̃ − M = (I − W2)
−1
[
(I − W2)(I − W̃2)

−1 Ẽ2(I − W̃1)
−1 Ẽ1 − E2(I − W1)

−1E1

]

= (I − W2)
−1
{[

(I − W2)(I − W̃2)
−1 Ẽ2 − E2

]
(I − W̃1)

−1 Ẽ1

+E2

[
(I − W̃1)

−1 Ẽ1 − (I − W1)
−1E1

]}

= (I − W̃2)
−1
{[

(I − W2)M̃2 − E2

]
M̃1 + E2

[
M̃1 − M1

]}

The normof M̃1 can (presumably) be obtained precisely using a computer. Each of (I −W̃2)
−1

and (I − W2)M̃2 − E2 are formally analogous to operators that are bounded above by c2
and c3 in our present proof of Lemma 4.3.1. The latter lemma can technically be applied as
stated to obtain a bound on the norm of M̃1 − M1. As for E2, its norm can in principle be
estimated by writing

E2 = Ẽ2 + (E2 − Ẽ2),

computing a bound for the norm of Ẽ2 on a computer, and deriving a computable bound
for the norm of the error E2 − Ẽ2 by careful inspection. In summary, there should be an
explicit computable bound for the norm of M̃ − M and its computation will involve similar
estimates to those involved in the statement of Lemma 4.3.1, so we would expect many of the
bounds from Sect. 6 to be be applicable. The rest of the proof could be carried out essentially
verbatim. The above argument can be extended to general commensurate period-delay pairs.

Acknowledgements The author thanks Jean-Philippe Lessard for some helpful technical discussions. Kevin
E. M. Church acknowledges the support of NSERC (Natural Sciences and Engineering Research Council of
Canada) through the NSERC Postdoctoral Fellowships Program.

A Table of useful norm bounds

The two linear operators expressed in Lemma 5.1.3 appear often in estimates concerning
the c2 and c3 bound, and they are often accompanied by a projection operator. Several other
auxiliary operator norms are also required. Here, we list such operators and upper bounds
on their norms (in the appropriate spaces of linear maps) in the form of a table. We then
prove each bound directly. In what follows, we always have ν > 1, U , Y ∈ �1ν(C

d) and
N2 > N1 ≥ 0. Also, letQ−1(Y ),DT,H0

1, Z N1,N2
k and S(Y N1) be defined as at the beginning

of Sect. 6.
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Row Linear map F : X → Y Bound for ||F ||L(X ,Y )

1 H2 : �1ν → C
d 2 +

(
1

ν
− ν

)
tanh−1

(
1

ν

)
≡ g(ν)

2 H2(Y ∗ π∞
N2

) : �1ν → C
d 2

νN2+1

(
||Y N1 ||ν +

(
1 + 1

νN2+1

)
||Y ∞||ν

)

3 H1 : �1ν → �1ν
1

2
+ ν

4

4 π∞
N2

H1 : �1ν → �1ν
ν + ν−1

4(N2 + 1)
5 S : �1ν → C

d max{1, 2ν−1}
6 Sπ∞

N2
: �1ν → C

d 2ν−(N2+1)

7 S∗π∞
N2

: �1ν → C
d 2ν−(N2+1)

8 Q̃−1(Y N1 )π N2 : �1ν → �1ν max
k=0,...,N2

1

νk

N2∑
j=0

||Q̃−1
j,k (Y N1 )||ν j

9 Q̃−1(Y N1 )e0 : Cd → �1ν

N2∑
j=0

||Q̃−1
j ,0(Y

N1 )||ν j

10 SQ̃−1(Y N1 )π N2 : �1ν → C
d max

k=0,...,N2

1

νk

⎛
⎝||Q̃−1

0,k (Y N1 )|| + 2
N2∑

n=1

||Q̃−1
n,k (Y N1 )||

⎞
⎠

11 SQ̃−1(Y N1 )e0 : Cd → C
d ||Q̃−1

0,0(Y
N1 )|| + 2

N2∑
j=1

||Q̃−1
j,0(Y

N1 )||

12 Q̃−1(Y N1 )π N2 H1(U
N1∗

π∞
N2

) : �1ν → �1ν

max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||U N1 ||ω

(N2 + 1 − N1)
2 − 1

||Q̃−1
j,0||

+||Q̃−1
j DTZ

N1,N2
k S(U N1 )||)ν j

13 π N2 H1(Y
N1 ∗ π∞

N2
) : �1ν → �1ν

max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

(
||U N1 ||ω

(N2 + 1 − N1)
2 − 1

10( j)

+||DT j Z
N1,N2
k S(U N1 )||)ν j

14 π∞
N2

H1(Y
N1 ∗ π∞

N2
) : �1ν → �1ν

1

4(N2 + 1)

((
ν + 2

ν
+ 1

ν3

)
||Y N1 ||ν −

(
1

ν
+ 1

ν3

)
||Y N1

0 ||
)

15 H2(π
N2 Q̃−1(Y N1 )H1(U

N1
1 ∗

π∞
N2

)) :
�1ν → C

d

m0 +
N2∑

k=2

(−1)k + 1

k2 − 1
mk ,

mk = max
j=0,...,N1

1

νN2+1+ j
(

||U N1 ||ω
(N2 + 1 − N1)

2 − 1
||Q̃−1

k,0||
+||Q̃−1

k DTZ̃
N1,N2
j S(U N1 )||)

A.1 Proofs of the bounds from the table in Appendix A

This subsection will be structured with proofs being completed by row. The row number will
be stated and a proof will immediately follow.
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A.1.1 Proof of Row 1

Let h ∈ �1ν satisfy ||h||ν ≤ 1. Then

||H2h|| ≤ ||h0|| +
∞∑
j=1

2

(2 j)2 − 1
||h2 j || ≤ 1 +

∞∑
j=1

2ν−2 j

(2 j)2 − 1

= 1 + ν + (1 − ν2) tanh−1(ν−1)

ν
= g(ν).

A.1.2 Proof of Row 2

Let h ∈ �1ν satisfy ||h||ν ≤ 1. Then with h∞ = π∞
N2

h,

||H2(Y
∞ ∗ h∞)||ν = ||(Y ∞ ∗ h∞)0|| +

∞∑
j=1

2

(2 j)2 − 1
||(Y ∞ ∗ h∞)2 j ||ν2 j

≤ 2
∑

n≥N2+1

||Y ∞
n || · ||hn || +

∞∑
j=1

2

(2 j)2 − 1

∑
|m|≥N2+1

||Y ∞|m−2 j ||| · ||h|m|||

≤ 2||Y ∞||ν
ν2(N2+1)

+
∞∑
j=1

2

(2 j)2 − 1
||Y ∞||ν 1

νN2+1

∑
|m|≥N2+1

||h|m|||ν|m|

≤ 2||Y ∞||ν
ν2(N2+1)

+ 2

νN2+1

∞∑
j=1

2

(2 j)2 − 1
||Y ∞||ν

= 2

νN2+1 ||Y ∞||ν
(
1 + 1

νN2+1

)
.

Conversely, one can check that ||H2(Y N1 ∗ h∞)|| ≤ 2
νN2+1 ||Y N1 ||ν by a similar argument.

A.1.3 Proof of Row 3

||H1||B(�1ν ) ≤ sup
n≥0

1

νn

∞∑
j=0

||H1,( j,n)||ν j

≤ max

{
1

2
+ 1

4
ν,

1

ν

(
1

4
+ 1

8
ν2
)

,

sup
n≥2

1

νn

(
1

n2 − 1
+ νn−1

4(n − 1)
+ νn+1

4(n + 1)

)}
= 1

2
+ ν

4
.

A.1.4 Proof or Row 4

Let h ∈ �1ν satisfy ||h||ν ≤ 1.

||π∞
N2

H1(h)|| ≤
∞∑

k=N2+1

νk
∞∑
j=0

||H1,(k, j)h j || =
∞∑

k=N2+1

νk

4k
(||hk−1 + hk+1||)
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≤ 1

4(N2 + 1)

∞∑
k=N2+1

νk−1||hk−1||ν + νk+1||hk+1||ν−1

≤ 1

4(N2 + 1)

⎛
⎝ν +

∑
i≥0

νi ||hi || + ν−1
∑
j≥0

ν j ||h j ||
⎞
⎠

= ν + ν−1

4(N2 + 1)
||h||ν .

A.1.5 Proof of Row 5

Write h ∈ �1ν with ||h||ν = 1 as h = h0 + h∞, where h0 = (h0, 0, . . . ). Set λ = ||h0||. Then
||h∞||ν = 1 − λ and

||Sh|| ≤ ||h0|| + 2
∞∑
j=1

||h j || ≤ λ + 2

ν

∞∑
j=1

||h j ||ν j = 1 · λ + 2

ν
(1 − λ) ≤ max{1, 2ν−1}.

A.1.6 Proof of Row 6/7

||Sπ∞
N2

h|| ≤ 2
∑

k≥N2+1

||hk || ≤ 2

νN2+1

∑
k≥N2+1

||hk ||νk ≤ 2

νN2+1 ||h||ν .

The proof for S∗ is essentially identical.

A.1.7 Proof of Row 8

We will apply Lemma 5.2.1 to the operator L : Xν → Xν for Xν = C
d × �1ν , with

Lh = (0, Q̃−1π N2h0). By construction,

(Q̃−1π N2h) j =
∞∑

n=0

Q̃−1
j,nhn,

for 0 ≤ j ≤ N2 and is zero for all other indices. In that notation L consists of only a V -type
operator. Then ||L||B(Xν ) is bounded above by

sup
n≥0

1

νn

∞∑
j=0

||Q̃−1
j,n||νn = max

n=0,...,N2

1

νn

N2∑
j=0

||Q̃−1
j,n||νn .

and we obtain the bound for ||Q̃−1π N2 ||B(�1ν ) by restriction.

A.1.8 Proof of Row 9

Let z ∈ C
d . Then

(Q̃−1e0z) j =
{
Q̃−1

j,0z, 0 ≤ j ≤ N2

0 j ≥ N2 + 1.

}
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The proof is then similar to the one for Row 8. Apply Lemma 5.2.1 to the linear operator
L : Xν → Xν with Lh = (Q̃−1e0h(0), 0). In the notation of the lemma, L consists of only
a U -type operator.

A.1.9 Proof of Row 10/11

Apply Lemma 5.2.1 to L : Xν → Xν with Lh = (SQ̃−1π N2h0, 0). In the notation of the
lemma, L consists of only a T -type operator and T (0) = 0. The result for row 10 then follows
by definition of Q−1. The proof for row 11 is similar and omitted.

A.1.10 Proof of Row 12/13

Since Q̃−1π N2 = π N2 Q̃−1π N2 (Lemma 5.1.2), we can really think of Q̃−1π N2 as being the
infinite block diagonal matrix Q̃−1π N2 = diag(Q̃−1, 0∞), where 0∞ represents the infinite
zero block. To represent the operator-valued convolution (U N1 ∗ π∞

N2
), we write

U N1 ∗ π∞
N2

= U N1 ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
ICd

ICd

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where convolution acts “column-wise” and the first nonzero column is at index N2 + 1.
Lemma 5.2.1 implies the bound

||Q̃−1π N2 H1(U
N1 ∗ π∞

N2
)||B(�1ν ) ≤ sup

k≥0

1

νk

∞∑
j=0

||Q̃−1
j (H0

1 + DT )(U N1 ∗ π∞
N2

)k ||ν j ,

where we have abused notation and allowed the row-column indices for Q̃−1 to run greater
than N2 by treating the associated blocks as zero. It is our job to make this expression more
explicit. First, observe that since only the (block) rows 0, . . . , N2 of Q̃−1 can be nonzero, we
need only explicitly compute the rows 0, . . . , N2 of the product (H0

1 + DT )(U N1 ∗ π∞
N2

).

We first concentrate on H0
1 (U N1 ∗ π∞

N2
). H0

1 has only one nontrivial row (the zero row),
and for computations later the only observation we need to make is that if N2 > N1, then we
have the bound

||H0
1 (U N1 ∗ π∞

N2
)k || ≤

{
0 k < N2 + 1

1
(N2+1−N1)2−1

||U N1 ||ω k ≥ N2 + 1.

This follows because (U N1 ∗ π∞
N2

)k = 0 for k ≤ N2, while the first nonzero entry for
k ≥ N2 + 1 occurs at index N2 + 1 − N1. The calculation is then straightforward given the
definition of H0

1 . Denote N = N2 + 1 − N1 for later.
Nextwe dealwith DT (U N1∗π∞

N2
). Restricting to the block “rows” 0, . . . , N2 of the infinite

matrix DT , only the “columns” 0, . . . , N2 + 1 are nonzero. Thus, we need only explicitly
compute those columns of U N1 ∗ π∞

N2
that are nonzero at or above row index N2 + 1. The

final column index where this is satisfied is N2 + 1 + N1, and one can verify that the first
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N2 +1 rows correspond precisely to Z̃ N1,N2
k S(U N1) for N2 +1 ≤ k ≤ N2 +1+ N1. Finally,

we already know that (U N1 ∗ π∞
N2

)k = 0 for 0 ≤ k ≤ N2.
We now combine all of the previous discussion. Our bound becomes

||Q̃−1π N2 H1(U
N1 ∗ π∞

N2
)||B(�1ν )

≤ sup
k≥0

1

νk

∞∑
j=0

(||Q̃−1
j H0

1 (U N1 ∗ π∞
N2

)k || + ||Q̃−1
j DT (U N1 ∗ π∞

N2
)k ||
)
ν j

≤ max
k=0,...,N1

1

νN2+1+k

N2∑
j=0

( ||U N1 ||ω
N2 − 1

||Q̃−1
j,0|| + ||Q̃−1

j DTZ̃ N1,N2
k S(U N1)||

)
ν j .

The proof for row 13 follows by formally replacing Q̃−1 with the identity.

A.1.11 Proof of Row 14

Denote ek ∈ L(Cd , �1ν) the map defined by (ek z)n = δk,nz for δ the Kronecker delta. The
operator π∞

N2
H1(AN1

1 ∗ π∞
N2

) satisfies for π∞
N2

H1(AN1
1 ∗ π∞

N2
)ek = 0 for k ≤ N2, while for

k ≥ N2 + 1,

(π∞
N2

H1(Y
N1 ∗ π∞

N2
)ek) j = 1

4 j

(
(Y N1 ∗ ek) j−1 − (Y N1 ∗ ek) j+1

)

= 1

4 j

∑
|n|≥N2+1

(
Y N1| j−1−n| − Y N1| j+1−n|

)
ek|n|

= 1

4 j

(
Y N1| j−1−k| − Y N1| j+1−k|

)

≡ 1

4 j
c j,k

for j ≥ N2 + 1, while it is identically zero for j ≤ N2 because of the projection π∞
N2

on the
left. We can therefore set c j,k = 0 without loss of generality whenever 0 ≤ j, k ≤ N2. Since
we can write �1ν � h = ∑

k≥0 ekhk , we have the expression

(π∞
N2

H1(Y
N1 ∗ π∞

N2
)h) j =

∑
k≥0

1

4 j
c j,khk .

Next we apply Lemma 5.2.1.

||π∞
N2

H1(Y
N1 ∗ π∞

N2
)||B(�1ν )

≤ sup
k≥0

1

νk

∞∑
j=0

1

4 j
||c j,k ||ν j

≤ sup
c≥1

1

νN2+c
· 1

4(N2 + 1)

⎛
⎝ c+1+N1∑

j=c+1−N1

||Y N1| j−1−c|||νN2+ j +
c−1+N1∑

r=c−1−N1

||Y N1|r+1−c|||νN2+r

⎞
⎠

≤ sup
c≥1

1

4νc(N2 + 1)

⎛
⎝ N1∑

m=−N1

||Y N1|m| ||νm+c+1 +
N1∑

n=−N1

||Y N1|n| ||νr+c−1

⎞
⎠
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= 1

4(N2 + 1)

⎛
⎝ −1∑

m1=−N1

ν2m1+1||Y N1|m1|||ν|m1| +
N1∑

m2=0

ν||Y N1|m2|||ν|m2|

+
−1∑

r1=−N1

ν2r1−1||Y N1|r1|||ν|r1| +
N1∑

r2=0

ν−1||Y N1|r2|||ν|r2|
⎞
⎠

≤ 1

4(N2 + 1)

(
1

ν
(||Y N1 ||ν − ||Y N1

0 ||) + ν||Y N1 ||ν + 1

ν3
(||Y N1 ||ν − ||Y N1

0 ||) + 1

ν
||Y N1 ||ν

)

= α(Y N1).

A.1.12 Proof of Row 15

To complete this proof, we determine bounds for (π N2 Q̃−1(Y N1)H1(U N1 ∗ π∞
N2

)) j , k =
0, . . . , N2. An application of the triangle inequality will then supply the bound for row 15.
However, since π N2 Q̃−1(Y N1) = π N2 Q̃−1(Y N1)π N2 , much of the work has already been
done in the proof of row 12/13. Indeed, for fixed k ∈ {0, . . . , N2}, this calculation shows
that

||(π N2 Q̃−1(Y N1)H1(U
N1 ∗ π∞

N2
))k ||L(�1ν ,Cd )

≤ max
j=0,...,N1

1

νN2+1+ j

( ||U N1 ||ω
N2 − 1

||Q̃−1
k,0|| + ||Q̃−1

k DTZ̃ N1,N2
j S(U N1)||

)
.

Note, the roles of j and k are reversed relative to the previous proof.
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