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Abstract
The Cauchy problem in R

n , n ≥ 1, for the parabolic equation

ut = u p�u (�)

is considered in the strongly degenerate regime p ≥ 1. The focus is firstly on the case of
positive continuous and bounded initial data, in which it is known that a minimal positive
classical solution exists, and that this solution satisfies

t
1
p ‖u(·, t)‖L∞(Rn) → ∞ as t → ∞. (0.1)

The first result of this study complements this by asserting that given any positive f ∈
C0([0,∞)) fulfilling f (t) → +∞ as t → ∞ one can find a positive nondecreasing function
φ ∈ C0([0,∞)) such that whenever u0 ∈ C0(Rn) is radially symmetric with 0 < u0 <

φ(| · |), the corresponding minimal solution u satisfies

t
1
p ‖u(·, t)‖L∞(Rn)

f (t)
→ 0 as t → ∞.

Secondly, (�) is considered along with initial conditions involving nonnegative but not neces-
sarily strictly positive bounded and continuous initial data u0. It is shown that if the connected
components of {u0 > 0} complywith a condition reflecting some uniform boundedness prop-
erty, then a corresponding uniquely determined continuous weak solution to (�) satisfies

0 < lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
≤ lim sup

t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
< ∞.

Under a somewhat complementary hypothesis, particularly fulfilled if {u0 > 0} contains
componentswith arbitrarily small principal eigenvalues of the associatedDirichlet Laplacian,
it is finally seen that (0.1) continues to hold also for such not everywhere positive weak
solutions.
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1 Introduction

The dynamical features of the nonlinear parabolic equation

ut = u p�u (1.1)

are known to depend quite crucially on the exponent p > 0 that quantifies the strength
of diffusion degeneracies in regions where the solution is small; indeed, a considerable
literature has rigorously revealed various parabolictiy-diminishing effects going along with
an increase of p. Among the most comprehensively understood aspects in this regard seem to
be phenomena related to propagation of positivity: In striking difference to the borderline case
p = 0 of the linear heat equation, throughout the range p ∈ (0, 1) in which (1.1) is equivalent
to the porous medium equation vt = �vm with m = 1

1−p > 1, compactly supported initial
data evolve into continuous solutions [8] which at each point in the considered domain do
eventually become positive, but the spatial positivity set of which propagates at finite speed
([5,15]; see also [2,7,9,13] for more detailed information, and [1] or [16] for an overview).

In this respect, a second sharp transition in behavior can be observed when further
increasing p: Yet more drastically, namely, the support of solutions remains constant in
time whenever p ≥ 1 ([21]; cf. also Proposition 3.1 below), and in the case p > 2 there
even exist classical solutions to an associated homogeneous Dirichlet problem in domains
� ⊂ R

n which satisfy u(·, t) ∈ C∞
0 (�) for all t > 0 [22]. Two examples addressing a

relative of (1.1) with p ≥ 3 in such Dirichlet problems, augmented by the zero-oder source
term u p+1, have unveiled that in such very strongly degenerate cases, the global behavior
may be influenced quite substantially, up to an enforcement of repeated oscillations between
vanishing and everywhere infinite profiles, by the particular manner in which the boundary
value 0 is approached by the initial data [19,20].

Beyond this, however, increasing the degeneracy in (1.1) may considerably affect the
dynamics even of solutions which are strictly positive, and for which (1.1) hence actually is
non-degenerate near each fixed point (x, t). In the context of the Cauchy problem

{
ut = u p�u, x ∈ R

n, t > 0,
u(x, 0) = u0(x), x ∈ R

n,
(1.2)

for instance, the large time asymptotics of positive classical solutions emanating frompositive
and sufficiently fast decaying initial data u0 in general differs from that in the heat equation
by some quantitative corrections already in the porous medium regime: When p ∈ (0, 1),

namely, any such solution with u1−p
0 ∈ L1(Rn) satisfies 1

C t
− n

2+(n−2)p ≤ ‖u(·, t)‖L∞(Rn) ≤
Ct−

n
2+(n−2)p for all t > 1 with some C > 0 ([16, Theorem I.2.5], [12]), meaning that

temporal decay properties of widely arbitrary solutions with rapidly decreasing initial data
rather closely parallel those of the particular explicit self-similar solutions that form the
celebrated family of so-called Barenblatt solutions [1,3].

As some more recent findings have been indicating, however, outside the range p ∈ (0, 1)
within which such Barenblatt solutions are available, some yet more subtle facets in the
dependence of large time decay on spatial asymptotics need to be expected. When p ≥ 1,
namely, decay rates of strictly positive solutions have some common lower bound which can
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be approached up to errors with arbitrarily small algebraic asymptotics, but which can never
be attained exactly by any such solution. More precisely, the following has been shown in
[10]:

Proposition A Let n ≥ 1, p ≥ 1 and u0 ∈ C0(Rn) ∩ L∞(Rn) be such that u0(x) > 0 for all
x ∈ R

n. Then (1.2) possesses a classical solution u ∈ C0(Rn ×[0,∞))∩C2,1(Rn ×(0,∞))

which is such that u(x, t) > 0 for all x ∈ R
n and t > 0, and which is minimal in the sense

that whenever T ∈ (0,∞] and ũ ∈ C0(Rn × [0, T )) ∩C2,1(Rn × (0, T )) are such that ũ is
positive and solves (1.2) classically in Rn × (0, T ), we have u ≤ ũ in R

n × (0, T ).
Moreover,

lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
= ∞

and if in addition u0 ∈ ⋂
q>0 L

q(Rn), then

lim sup
t→∞

{
t
1
p −δ‖u(·, t)‖L∞(Rn)

}
< ∞ for all δ > 0.

Apart from this, in [11] respective classes of suitably fast decreasing initial data have been
identified within which actually any logarithmic, and even doubly logarithmic, corrections

to the algebraic decay of t−
1
p is essentially attained by corresponding positive solutions to

(1.2) (see [11, Corollaries 1.5, 1.6, 1.8 and 1.9]).

Main results I: Arbitrarily slow increase of t
1
p ‖u(·, t)‖L∞(�). The first objective of

the present study now consists in examining whether beyond the latter particular examples,
arbitrarily small deviations of the borderline decay rate indicated in Proposition A can be
undercut by some positive solutions to (1.2). Our main results in this direction show that this
indeed is possible in the following flavor that seems to be the least restrictive conceivable in
this regard:

Theorem 1.1 Let n ≥ 1 and p ≥ 1, and suppose that f ∈ C0([0,∞)) is positive and
such that f (t) → +∞ as t → ∞. Then there exists a positive nonincreasing function
φ ∈ C0([0,∞)) with the property that whenever u0 ∈ C0(Rn) is radially symmetric and
such that

0 < u0(x) < φ(|x |) for all x ∈ R
n, (1.3)

the corresponding minimal solution u of (1.2) satisfies

t
1
p ‖u(·, t)‖L∞(Rn)

f (t)
→ 0 as t → ∞. (1.4)

Main results II: Attaining vs. remaining away from critical decay for solutions with
{u0 > 0} 
= R

n . We shall next address the question whether critical decay can be observed at
least when the initial data are not strictly positive throughoutRn . Here we note that already at
the level of basic solution theories, the strong diffusion degeneracies present in the considered
range p ≥ 1 give rise to significant challenges, for the caveat documented in [14] indicates
that within straightforward and seemingly natural adaptations of weak solution concepts to
the framework of (1.2), uniqueness of solutions can not even be expected for initial data from
C∞
0 (Rn).We accordingly resort to a slightlymodified notion of solvability, to be substantiated

in Proposition 3.1 below, which inter alia requires continuity of the considered solution, and
for which we thus, in accordance with known results on discontinuous solution behavior in
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the presence of initially isolated zeros [4,6], impose some restrictions on the regularity of the
positivity set {u0 > 0} in order to assert the mere existence of such solutions. More precisely,
in this part we shall assume that

⎧
⎨
⎩
0 
≡ u0 ∈ C0(Rn) is nonnegative such that
{u0 > 0} coincides with the interior of supp u0, and that
each � ∈ C(u0) is a bounded domain with Lipschitz boundary,

(1.5)

where for 0 ≤ ϕ ∈ C0(Rn) we have set

C(ϕ) :=
{
� ⊂ R

n
∣∣∣ � is a connected component of {ϕ > 0}

}
, (1.6)

and note that under these hypotheses, a uniquely determined continous weak solution can
indeed be found (Proposition 3.1).

Now our intention in this part is to relate the possibility of exhibiting critical decay to
some properties exclusively referring to features of the connected components of {u0 > 0},
rather than to the size of u0 nor its overall decay in space. Specifically, our first result in this
respect reads as follows.

Proposition 1.2 Let n ≥ 1 and p ≥ 1, and suppose that u0 satisfies (1.5) with

inf
�∈C(u0)

sup
0 ≤ ϕ ∈ C0(�) ∩ C2(�)

‖ϕ‖L∞(�) = 1

inf
x∈�

{
− ϕ p−1(x)�ϕ(x)

}
> 0. (1.7)

Then the continous weak solution u of (1.2) has the property that

0 < lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
≤ lim sup

t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
< ∞. (1.8)

Indeed, the following consequence thereof establishes a link to the maximum size of all
the members from C(u0):

Corollary 1.3 Let n ≥ 1 and p ≥ 1, and suppose that u0 is such that (1.5) holds, and that there
exists K > 0 with the property that each � ∈ C(u0) lies between two parallel hyperplanes
with distance K , that is, for any such � one can find x0 ∈ R

n and A ∈ SO(n) such that

� ⊂ x0 + AS with S :=
{
x = (x1, . . . , xn) ∈ R

n
∣∣∣ 0 < x1 < K

}
.

Then the continuous weak solution u of (1.2) satisfies (1.8). In particular, this conclusion
holds if

sup
�∈C(u0)

diam� < ∞.

We shall next identify a criterion, partially complementary to that from Proposition 1.2,
as sufficient to ensure absence of critical decay speeds also for some not strictly positive
initial data. In formulating this, for notational convenience we abbreviate C0

0 (�) := {ϕ ∈
C0(�) | ϕ|∂� = 0} for open sets � ⊂ R

n .

Proposition 1.4 Let n ≥ 1 and p ≥ 1, and let u0 be such that (1.5) holds, and that

inf
�∈C(u0)

inf
0 ≤ ϕ ∈ C0

0 (�) ∩ C2({ϕ > 0})
‖ϕ‖L∞(�) = 1

sup
x∈{ϕ>0}

{
− ϕ p−1(x)�ϕ(x)

}
= 0. (1.9)
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Then for the continous weak solution u of (1.2) we have

lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
= ∞. (1.10)

To finally indicate that here the requirement (1.9) again is in close relationship to the
component sizes of {u0 > 0}, let us adopt the standard notation

λ1(�) := inf
0 
≡ϕ∈W 1,2

0 (�)

∫
�

|∇ϕ|2∫
�

ϕ2
(1.11)

for the principal Dirichlet eigenvalue of −� in a bounded domain � ⊂ R
n . In fact, we shall

see that the conclusion of Proposition 1.4 holds whenever {u0 > 0} contains components
with arbitrarily small values of these eigenvalues, and hence whenever {u0 > 0} has infinite
inradius:

Corollary 1.5 Let n ≥ 1 and p ≥ 1, and let u0 be such that (1.5) holds, and that

inf
�∈C(u0)

λ1(�) = 0. (1.12)

Then the continuous weak solution u of (1.2) satisfies (1.10). This especially follows if

sup

{
R > 0

∣∣∣∣There exist� ∈ C(u0) and x0 ∈ R
n such that BR(x0) ⊂ �

}
= ∞. (1.13)

2 Slow Increase of t
1
p‖u(·, t)‖L∞(Ä). Proof of Theorem 1.1

2.1 Specifying the Objective

Our approach toward the derivation of Theorem 1.1 will be based on the following funda-
mental observation made in [11, Theorem 1.3].

Theorem B Assume that n ≥ 1 and p ≥ 1, that s0 > 0, and that L ∈ C0([0,∞)) ∩
L∞((0,∞))∩C2((0, s0)) is positive and nondecreasing on (0,∞) and such that L(0) = 0,
that there exist a > 0 and λ0 > 0 fulfilling

L(s) ≤ (1 + aλ)L(s1+λ) for all s ∈ (0, s0) and λ ∈ (0, λ0), (2.1)

and that furthermore

sL′′(s) ≥ −3p + q0 − 2

p + q0
L′(s) for all s ∈ (0, s0) (2.2)

with a certain q0 > 0. Then whenever u0 ∈ C0(Rn) is positive, radially symmetric and

nonincreasing with respect to |x | and such that u0 < min
{
s

2
p
0 , s

2
p+q0
0

}
in R

n as well as

∫

Rn
L(u0) < ∞,

there exist t0 > 0 and C > 0 such that the minimal classical solution u of (1.2) satisfies

‖u(·, t)‖L∞(Rn) ≤ Ct−
1
p L− 2

np

(1
t

)
for all t ≥ t0. (2.3)
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Now in order to appropriately prepare a construction of a functionLwhich on the one hand
satisfies the requirements in Theorem B, and especially the inequalities (2.1) and (2.2), but

for which, on the other hand, the correction factor L− 2
np ( 1t ) in (2.3) remains small relative to

a given divergent function f in the style of Theorem 1.1, let us firstly derive a handy criterion
sufficient for (2.1).

Lemma 2.1 Let s0 ∈ (0, 1] and a ∈ (0, 1], and suppose that L ∈ C1((0, s0)) is positive and
such that

L′(s) ≤ a · L(s)

s ln s0
s

for all s ∈ (0, s0). (2.4)

Then

L(s) ≤ (1 + aλ) · L(s1+λ) for all s ∈ (0, s0) and λ > 0. (2.5)

Proof Since L is positive, letting

H(s) := ln
1

L(s)
, s ∈ (0, s0),

we obtain a well-defined element H of C1((0, s0)) which according to (2.4) satisfies

H ′(s) = −L′(s)
L(s)

≥ − a

s ln s0
s

for all s ∈ (0, s0).

Using that s0 ≤ 1, and that thus sa+λ ≤ s for all s ∈ (0, s0) and λ > 0, we can therefore
estimate

H(s) − H(s1+λ) =
∫ s

s1+λ

H ′(σ )dσ

≥ −a
∫ s

s1+λ

dσ

σ ln s0
σ

= −a
∫ s

s0

( s
s0

)1+λ

dξ

ξ ln 1
ξ

for all s ∈ (0, s0) and λ > 0. (2.6)

Since
∫ �

�1+λ

dξ

ξ ln 1
ξ

= −
[
ln ln

1

ξ

]ξ=�

ξ=�1+λ

= − ln

(
ln 1

�

(1 + λ) ln 1
�

)

= ln(1 + λ) for all� ∈ (0, 1) and λ > 0,

and since

a ln(1 + λ) = ln
{
(1 + λ)a

}
≤ ln(1 + aλ) for all λ > 0

due to the fact that a ≤ 1 ensures that (1 + λ)a ≤ 1 + aλ for all λ > 0, from (2.6) we thus
obtain that

H(s) − H(s1+λ) ≥ − ln(1 + aλ) for all s ∈ (0, s0) and λ > 0.
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According to the definition of H , this implies that

ln

( L(s)

(1 + aλ)L(s1+λ)

)
= H(s1+λ) − H(s) − ln(1 + aλ) ≤ 0 for all s ∈ (0, s0) and λ > 0

and hence establishes (2.5). ��
Fortunately, both this condition (2.4) and (2.2) can be reformulated in a rather convenient

manner after a simple variable transformation:

Lemma 2.2 Let h ∈ C2([0,∞)). Then for any choice of s0 > 0, writing

z ≡ z(s) := ln
s0
s

and L(s) := e−h(z), s ∈ (0, s0], (2.7)

defines a positive function L ∈ C2((0, s0]) which is such that whenever κ ∈ R, for all
s ∈ (0, s0) we have

s ln
s0
s

· L
′(s)

L(s)
= zh′(z) (2.8)

and

sL′′(s) + κL′(s) = 1

s
· e−h(z) ·

{
− h′′(z) + (κ − 1)h′(z) + h′2(z)

}
(2.9)

with z = z(s).

Proof On the basis of (2.7), for s ∈ (0, s0) we compute z′(s) = − 1
s and

L′(s) = 1

s
· e−h(z)h′(z)

and

L′′(s) = − 1

s2
· e−h(z)h′′(z) + 1

s2
· e−h(z)h′2(z) − 1

s2
· e−h(z)h′(z)

with z = z(s), so that both (2.8) and (2.9) readily follow. ��
In line with Theorem B, Lemmas 2.1 and 2.2, we will thus subsequently intend to make

sure that given any function f = f (t) exhibiting arbitrarily slow unbounded growth, after
transformation to a positive divergent function F = F(z) on [0,∞) in the style suggested by
(2.3) and (2.7), we can find a yet unbounded minorant h for which the correspondingly trans-
lated version L, as defined through (2.7), satisfies the requirement in (2.1) in the sharpened
sense expressed in Lemma 2.1 and (2.8), and which simultaneously complies with (2.2) via
(2.9). Here we observe that since fortunately the rightmost summand in (2.9) is nonnegative,
and since the factor appearing on the right of (2.2) satisfies 3p+q0−2

p+q0
≥ 1 for any choice of

p ≥ 1 and q0 > 0, with regard to (2.2) it will be sufficient to construct h in such a way that
h′ ≥ 0 and h′′ ≤ 0.

2.2 Construction of Slowly IncreasingMinorants

To accomplish the first among two major steps in our design of a smooth minorant with
the desired properties, let us construct a piecewise linear but already concave preliminary
candidate.
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Lemma 2.3 Let F ∈ C0([0,∞)) be positive and such that F(z) → +∞ as z → ∞. Then
there exist a strictly increasing sequence (z j ) j∈N ⊂ [0,∞) and a positive concave function

h0 ∈ W 1,∞
loc ([0,∞)) such that z1 = 0 and z j → ∞ as j → ∞, that for all j ∈ N we have

h0 ∈ C2((z j , z j+1)) with h′′
0(z) = 0 for all z ∈ (z j , z j+1) (2.10)

and

0 < h′
0(z) ≤ 1

z + 1
for all z ∈ (z j , z j+1), (2.11)

and that

h(z) ≤ F(z) for all z > 0 (2.12)

and

h0(z) → +∞ asz → ∞. (2.13)

Proof We pick b ∈ (0, 1) in such a way that F(z) ≥ 2b for all z ≥ 0, and construct (z j ) j∈N
and h0 recursively as follows: Taking z1 := 0, and for notational convenience also introducing
z0 := −b, we assume that for some j ≥ 1 we already have found (zi )i∈{0,..., j} ⊂ R such that
zi+1 > zi for all i ∈ {0, . . . , j − 1} and

F(z) ≥ (i + 1)b for all z ≥ zi and i ∈ {1, . . . , j}, (2.14)

and that letting

h0(z) := mi · (z − zi ) + i · b, z ∈ (zi , zi+1], i ∈ {0, . . . , j − 1}, (2.15)

with

mi := b

zi+1 − zi
, i ∈ {0, . . . , j − 1}, (2.16)

defines a continuous and concave function h0 on (z0, z j ] which satisfies

0 < h′
0(z) ≤ 1

z + 1
for all z ∈ (z0, z j )\

{
zi

∣∣∣ i ∈ {1, . . . , j − 1}
}
. (2.17)

Now since F(z) → +∞ as z → ∞, and since b < 1, we can fix z j+1 > z j large enough
such that

F(z) ≥ ( j + 2)b for all z ≥ z j+1, (2.18)

and that furthermore

z j+1 > 2z j − z j−1 (2.19)

as well as

(1 − b)z j+1 ≥ z j + b. (2.20)

Then letting

m j := b

z j+1 − z j
and h0(z) := m j · (z − z j ) + j · b, z ∈ (z j , z j+1], (2.21)

evidently extends h0 to a function defined on all of (z0, z j+1], in a manner consistent with
(2.15) and (2.16), which is continuous on (z0, z j+1] due to the fact that according to (2.21)
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and (2.15) we have h0(z) → j ·b = h0(z j ) as (z j , z j+1] � z ↘ z j . To see that h0 is concave
on (0, z j+1], in view of (2.15) and (2.21) it is sufficient to observe that thanks to the definition
of (mi )i∈{0,..., j} in (2.16) and (2.21), the requirement in (2.19) guarantees that

1

m j
− 1

m j−1
= z j+1 − 2z j + z j−1

b
> 0,

which namely asserts that

lim
z↘z j

h′
0(z) = m j < m j−1 = lim

z↗z j
h′
0(z).

We next make use of (2.20) to confirm that

(z + 1) · h′
0(z) = (z + 1)m j

≤ (z j+1 + 1)m j

= b(z j+1 + 1)

z j+1 − z j

= b ·
{
1 + z j + 1

z j+1 − z j

}

≤ b ·
{
1 + z j + 1

z j+b
1−b − z j

}

= 1 for all z ∈ (z j , z j+1),

which together with (2.17) implies that

0 < h′
0(z) ≤ 1

z + 1
for all z ∈ (z0, z j+1)\

{
zi

∣∣∣ i ∈ {1, . . . , j}
}
.

Since (2.18) along with (2.14) clearly ensures that

F(z)≥(i + 1)b for all z ≥ zi and any i ∈ {1, . . . , j + 1},
this completes our inductive construction of a strictly increasing sequence (z j ) j≥0 ⊂ R

which satisfies z1 = 0 and is such that (2.14) holds for all j ∈ N, in particular meaning that
necessarily z j → ∞ as j → ∞.

In view of the fact that (2.15)–(2.17) are valid for all j ∈ N, we therefore moreover obtain
a function h0 : (z0,∞) → Rwhich when restricted to [0,∞) belongs toW 1,∞([0,∞)) and
satisfies (2.10) and (2.11) for all j ∈ N, which is concave by construction, and for which
(2.13) holds thanks to the circumstance that h0(z j ) = j · b → +∞ as j → ∞.

In order to finally verify (2.12), given z > 0 we fix j ∈ N such that z ∈ (z j , z j+1], and
use the definition of h0 in (z j , z j+1] implied by (2.15) in estimating

h0(z) = b · z − z j
z j+1 − z j

+ j · b ≤ b + j · b,

because z ≤ z j+1. Since, on the other hand, the inequality z ≥ z j enables us to conclude
from (2.14) that

F(z) ≥ ( j + 1)b,

this completes the proof. ��
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We next prepare an appropriate smoothing procedure, to be finally performed near each
discontinuity point of the function h0 from Lemma 2.3, by means of an explicit construction
concentrating on cases in which only one point of such nonsmooth behavior is present.

Lemma 2.4 Let z� ∈ R and h� ∈ C0(R) ∩ C2(R\{z�}) be concave and such that h′′
�(z) = 0

for all z ∈ R\{z�}. Then for any ε > 0 there exists hε ∈ C2(R) such that

hε(z) = h�(z) for all z ∈ R\(z� − ε, z� + ε) (2.22)

and

hε(z) ≤ h�(z) for all z ∈ R (2.23)

as well as

h′′
ε (z) ≤ 0 for all z ∈ R. (2.24)

Proof Our hypotheses precisely mean that there exist c1 ∈ R,m ∈ R and m ≤ m such that

h�(z) =
{
m · (z − z�) + c1 for all z ≤ z�,
m · (z − z�) + c1 for all z > z�,

and we may assume that actually m < m, for otherwise choosing hε ≡ h� clearly warrants
validity of (2.22)–(2.24).

For fixed ε > 0, we then let

A1 := ε

2
(m − m), A2 := m + m

2
and A3 := c1 − ε

2
(m − m) − 1

2
(m + m)z�

and observe that, as can easily be verified, these selections ensure that

h�(z) = A1 · ĥ�

( z − z�
ε

)
+ A2z + A3 for all z ∈ R, (2.25)

where

ĥ�(ξ) := 1 − |ξ |, ξ ∈ R.

To see that the normalized situation thus obtained can be coped with by means of an explicit
construction, we introduce

ĥ1(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

1 + ξ, ξ ∈ (−∞,−1],
− 1

3ξ
3 − ξ2 + 2

3 , ξ ∈ (−1, 0],
1
3ξ

3 − ξ2 + 2
3 , ξ ∈ (0, 1],

1 − ξ, ξ ∈ (1,∞).

Then straightforward computation shows that ĥ1 belongs to C2(R) and satisfies

ĥ1(ξ) = ĥ�(ξ) for all ξ ∈ R\(−1, 1) (2.26)

and

ĥ1(ξ) − ĥ�(ξ) =
{1
3
|ξ |3 − ξ2 + 2

3

}
−

{
1 − |ξ |

}

≤ 1

3
· (|ξ | − 1)3

≤ 0 for all ξ ∈ (−1, 1) (2.27)
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as well as

ĥ′′
1(ξ) = 2(|ξ | − 1) ≤ 0 for all ξ ∈ (−1, 1). (2.28)

Therefore, if in reminiscence of (2.25) we let

hε(z) := A1 · ĥ1
( z − z�

ε

)
+ A2z + A3, z ∈ R, (2.29)

then (2.22) and (2.23) directly result from (2.26), (2.27) and (2.25), whereas (2.24) is a
consequence of (2.28), because

h′′
ε (z) = A1

ε
· ĥ′′

1

( z − z�
ε2

)
for all z ∈ (z� − ε, z� + ε)

by (2.29). ��
Now suitable application of the latter to the function gained in Lemma 2.3 yields the

following.

Lemma 2.5 Let F ∈ C0([0,∞)) be such that F(z) > 0 for all z ≥ 0 and F(z) → +∞ as
z → ∞. Then there exists h ∈ C2([0,∞)) such that

0 < h(z) ≤ F(z) for all z ≥ 0 (2.30)

and

0 < h′(z) ≤ 1

z
for all z > 0, (2.31)

and such that moreover

h′′(z) ≤ 0 for all z > 0 (2.32)

and

h(z) → +∞ asz → ∞. (2.33)

Proof We take (z j ) j∈N ⊂ [0,∞) and h0 ∈ W 1,∞
loc ([0,∞)) as provided by Lemma 2.3, and

for j ∈ N with j ≥ 2 we then obtain from the linearity of h0 on [z j−1, z j ] and on [z j , z j+1]
that

h0(z) = h( j)
� (z) for all z ∈ [z j−1, z j+1], (2.34)

where

h( j)
� (z) :=

{
m j · (z − z j ) + b j , z ∈ (−∞, z j ],
m j · (z − z j ) + b j , z ∈ (z j ,∞),

with b j := h0(z j ), and with m j ∈ R and m j ∈ R being the well-defined constants fulfilling
h′
0 ≡ m j in (z j−1, z j ) and h′

0 ≡ m j in (z j , z j+1). As the concavity of h0 requires that

m j ≥ m j and that thus also h( j)
� is concave for any such j , fixing any ε j > 0 such that

ε j < min

{
z j − z j−1

2
,
z j+1 − z j

2
,
1

2

}
, (2.35)

we may employ Lemma 2.4 to find

h( j) ≡ h( j)
ε j

∈ C2(R) (2.36)
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such that

h( j)(z) = h( j)
� (z) for all z ∈ R\(z j − ε j , z j + ε j ), (2.37)

that

h( j)(z) ≤ h( j)
� (z) for all z ∈ R, (2.38)

and that

(h( j))′′(z) ≤ 0 for all z ∈ R. (2.39)

Then since (2.35) ensures that for all j ≥ 2 we have

z j + ε j < z j + z j+1 − z j
2

= z j + z j+1

2
= z j+1 − z j+1 − z j

2
< z j+1 − ε j+1,

it follows that

[z j − ε j , z j + ε j ] ∩ [zk − εk, zk + εk] = ∅ for all j ∈ N and k ∈ N

such that j ≥ 2, k ≥ 2 and j 
= k, (2.40)

and that thus

h(z) :=
{
h( j)(z) if z ∈ [z j − ε j , z j + ε j ] for some j ≥ 2,
h0(z) if z ∈ [0,∞)\ ⋃∞

j=2[z j − ε j , z j + ε j ], (2.41)

introduces a well-defined function h on [0,∞)which due to (2.36), (2.37) and (2.40) belongs
to C2([0,∞)), and for which from (2.39) and the piecewise linearity of h0 we know that
(2.32) holds.

This concavity property also entails the left inequality in (2.31) as a particular consequence,
because given any z > 0 we can rely on the unboundedness of (z j ) j∈N to find j ≥ 2 such
that z ≤ z j + ε j , so that by (2.32), (2.41) and the left inequality in (2.11),

h′(z) ≥ h′(z j + ε j ) = h′
0(z j + ε j ) > 0.

Likewise, combining (2.32) with the right inequality in (2.11) we see that if z > 0 is such
that z ∈ [z j − ε j , z j + ε j ] for some j ≥ 2, then due to the rightmost restriction expressed
in (2.35),

zh′(z) − 1 ≤ zh′(z j − ε j ) − 1

= zh′
0(z j − ε j ) − 1

≤ z

(z j − ε j ) + 1
− 1

≤ z j + ε j

z j − ε j + 1
− 1

= 2ε j − 1

z j − ε j + 1
≤ 0,

whereas if z ∈ [0,∞)\ ⋃
j≥2[z j − ε j , z j + ε j ], then clearly zh′(z) ≤ z

z+1 ≤ 1 by (2.11).
Having thereby asserted both inequalities in (2.31) for all z ≥ 0, we proceed to observe

that again thanks to (2.40), we may draw on (2.13) to infer that

lim sup
z→∞

h(z) ≥ lim sup
j→∞

h(z j + ε j ) = lim sup
j→∞

h0(z j + ε j ) = +∞,
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whence (2.33) becomes a consequence of the upwardmonotonicity of h guaranteed by (2.31).
Thus left with the verification of (2.30), we first note that for all z ∈ [0,∞)\ ⋃∞

j=2[z j −
ε j , z j + ε j ] it directly follows from (2.12) that

h(z) = h0(z) ≤ F(z),

while if z ∈ [z j − ε j , z j + ε j ] for some j ≥ 2, then (2.38) and (2.34) enable us to again
invoke (2.12) when concluding that

h(z) = h( j)(z) ≤ h( j)
� (z) = h0(z) ≤ F(z).

Finally, the left inequality in (2.30) also results from the nonnegativity of h′ when combined
with the observation that since ε2 < z2−z1

2 = z2
2 by (2.35), and since thus z2 − ε2 > z2

2 > 0,
the definition (2.41) ensures that h(0) = h0(0) and that hence h(0) > 0 due to the positivity
of h0, as warranted by Lemma 2.3. ��

We can now return to Lemmas 2.1 and 2.2 to verify that indeed for essentially any given
f diverging to +∞ we can find a function L that simultaneously possesses all the intended
properties.

Lemma 2.6 Let n ≥ 1 and p ≥ 1, and suppose that f ∈ C0([1,∞)) is such that f (t) > 1 for
all t ≥ 1, and that f (t) → +∞ as t → ∞. Then one can find L ∈ C0([0,∞)) ∩C2((0, 1))
with the properties that

L(0) = 0, L(s) > 0 for all s ∈ (0, 1] and L(s) = L(1) for all s > 1, (2.42)

that

0 < L′(s) ≤ L(s)

s ln 1
s

for all s ∈ (0, 1), (2.43)

that

sL′′(s) ≥ −L′(s) for all s ∈ (0, 1), (2.44)

and that

L(s) ≥ f − np
4

(1
s

)
for all s ∈ (0, 1). (2.45)

In particular,

L− 2
np

(
1
t

)

f (t)
→ 0 as1 < t → ∞. (2.46)

Proof We let

F(z) := np

4
ln f (ez), z ≥ 0, (2.47)

and observe that our assumptions on f ensure that F is continuous and positive on [0,∞)

with F(z) → +∞ as z → ∞. We may therefore employ Lemma 2.5 to obtain a function
h ∈ C2([0,∞)) which satisfies (2.30)–(2.33), and thereupon define

L(s) :=
⎧
⎨
⎩
0 if s = 0,
e−h(z), z ≡ z(s) := ln 1

s , if s ∈ (0, 1],
e−h(0) if s > 1.

(2.48)
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Then since h(z) → +∞ as z → ∞, it follows that L is continuous, whereas the inclusion
h ∈ C2([0,∞)) clearly implies that L moreover belongs to C2((0, 1)). All three properties
in (2.42) and the left inequality in (2.43) are evident from (2.48) and the strict positivity of
h′, and the right inequality in (2.43) results from the identity in (2.8), applied to s0 := 1, and
the fact that zh′(z) ≤ 1 for all z > 0 by (2.31). To verify (2.44), we only need to invoke (2.9)
with κ := 1 and use that h′′(z) ≤ 0 for all z > 0, and (2.45) can be seen by combining (2.48)
with (2.47), which thanks to the right inequality in (2.30), namely, guarantees that

lnL(s) = −h(z(s))

≥ −F(z(s))

= −np

4
ln f (ez(s))

= ln f − np
4

(1
s

)
for all s ∈ (0, 1).

Finally, since f (t) → +∞ as t → ∞, this indeed entails (2.46) as a particular consequence,
for by (2.45),

L− 2
np

(
1
t

)

f (t)
≤ f

1
2 (t)

f (t)
= f − 1

2 (t) → 0

as 1 < t → ∞. ��

The derivation of our main result on arbitrarily small deviations from the critical decay
rate thereupon becomes quite straightforward:

Proof of Theorem 1.1 We take L as given by Lemma 2.6, and note that as a strictly increasing
function, L|[0,1] possesses a strictly increasing inverse � defined on [0,L(1)]. Fixing any
nonincreasing ψ ∈ C0([0,∞)) such that 0 < ψ(r) < L(1) for all r ≥ 0 and

∫ ∞

0
rn−1ψ(r)dr < ∞, (2.49)

we then see that letting

φ(r) := �(ψ(r)), r ≥ 0, (2.50)

introduces a well-defined φ ∈ C0([0,∞)) which is positive and nonincreasing according to
the monotonicity properties of �.

Now (2.44) together with the nonnegativity of L′ ensures that if we pick any q0 > 0, then

sL′′(s) + 3p + q0 − 2

p + q0
· L′(s) ≥ −L′(s) + 3p + q0 − 2

p + q0
· L′(s)

= 2(p − 1)

p + q0
· L′(s) for all s ∈ (0, 1),

whereas (2.43) in conjunction with Lemma 2.1 warrants that

L(s) ≤ (1 + λ)L(s1+λ) for all s ∈ (0, 1) and λ > 0.

We may therefore employ Theorem B to conclude that whenever u0 ∈ C0(Rn) is radially
symmetric and such that (1.3) holds, then since especially also u0(x) < �(L(1)) = 1 =
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max
{
1

2
p , 1

2
p+q0

}
for all x ∈ R

n by (2.50), and since
∫

Rn
L(u0) ≤

∫

Rn
L(φ(|x |))dx

= n|B1(0)|
∫ ∞

0
rn−1L(φ(r))dr

= n|B1(0)|
∫ ∞

0
rn−1ψ(r)dr

< ∞
due to (2.49), we can find t0 ≥ 1 and c1 > 0 such that

t
1
p ‖u(·, t)‖L∞(Rn) ≤ c1L− 2

np

(1
t

)
for all t ≥ t0.

In view of (2.46), however, this already establishes (1.4). ��

3 ContinuousWeak Solutions with Nontrivial Zero Sets

Thebasis for our investigation of solutions emanating from initial datau0 with {u0 > 0} 
= R
n

will be formed by the following statement on existence and uniqueness of continuous weak
solutions, as essentially contained already in the literature, together with a basic lower bound
for their temporal decay.

Proposition 3.1 Given p ≥ 1, let �(s) := ∫ s
1

dσ
σ p , σ > 0, and assume that n ≥ 1 and that

u0 ∈ C0(Rn) is nonnegative and such that {u0 > 0} coincideswith the interior of supp u0, and
that each connected component of {u0 > 0} is a bounded domain with Lipschitz boundary.
Then there exists a nonnegative function u ∈ C0(Rn ×[0,∞))∩L∞(Rn ×(0,∞)), uniquely
determined by the additional regularity requirements that

(u − η)+ ∈ W 1,2(Rn × (t1, t2)) for any η > 0, t1 > 0 and t2 > 0,

and that for all bounded domains � ⊂ R
n and any ϕ ∈ C2(�) with ϕ > 0 in � and

ϕ|∂� = 0,

0 ≤ t �→
∫

�

�(u(·, t))ϕ is continuous as a [−∞,∞)-valuedmapping,

such that u forms a continuous weak solution of (1.2) in the sense that u|t=0 = u0 and that
whenever � ⊂ R

n is a bounded domain with Lipschitz boundary and ϕ ∈ C2(�) satisfies
ϕ > 0 in � with ϕ|∂� = 0,

∫

�

�(u(·, t2))ϕ =
∫ t2

t1

∫

�

u�ϕ −
∫ t2

t1

∫

∂�

u
∂ϕ

∂ν
+

∫

�

�(u(·, t1))ϕ

holds as an identity in [−∞,∞) for any t1 ≥ 0 and t2 > t1.
In addition, this solution satisfies

u(x, t) = 0 for all x ∈ R
n\{u0 > 0} and t > 0, (3.1)

and for each connected component �0 of {u0 > 0}, u belongs to C2,1(�0 × (0,∞)) with
u > 0 in �0 × (0,∞). Furthermore, there exists C > 0 such that

t
1
p ‖u(·, t)‖L∞(Rn) ≥ C for all t > 1. (3.2)
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Proof Except for (3.2), all statements can be obtained by means of an almost verbatim
transfer of the arguments from [18, Theorem 1.2.4], as detailed there for homogeneous
Dirichlet problems in bounded domains, to the present Cauchy problem situation (cf. also
[21, Theorem2.1] for a slightly simpler close relative involvingmarginally stronger regularity
classes).

To derive (3.2), we fix any ball B ⊂ R
n such that B ⊂ {u0 > 0}, and let� ∈ C2(B) denote

the principal Dirichlet eigenfunction of −� in B with maxx∈B �(x) = 1. Then defining

u(x, t) := y(t)�(x), x ∈ B, t ≥ 0, where y(t) :=
{
y−p
0 + pλ1(B)t

}− 1
p
, t ≥ 0,

(3.3)

with y0 := 1
2 minx∈B u0(x) being positive by continuity of u0, we immediately see that

u(x, 0) = y0�(x) < u0(x) for all x ∈ B and u(x, t) = 0 < u(x, t) for all x ∈ B and t ≥ 0
by positivity of u in {u0 > 0} × [0,∞). As moreover the identities −�� = λ1(B)� and
y′ = −λ1y p+1 along with the inequalities 0 ≤ � ≤ 1 ensure that

ut − u p�u = � ·
{
y′(t) + λ1(B)y p+1(t)�p

}
≤ � ·

{
y′(t) + λ1(B)y p+1(t)

}
= 0

in B × (0,∞), due to the fact that u classically solves ut = u p�u in B × (0,∞) we may
conclude by a comparison argument [17, Sect. 3.1] that u(x, t) ≤ u(x, t) for all x ∈ B and

t > 0. Since ‖u(·, t)‖L∞(B) = y(t) for all t ≥ 0, and since y is positive with t
1
p y(t) →

(pλ1(B))
− 1

p as t → ∞ by (3.3), this immediately yields (3.2) with suitably small C > 0. ��

3.1 Attaining Critical Decay. Proof of Proposition 1.2 and of Corollary 1.3

Now our general criterion ensuring attainment of critical speed is based on a comparison
argument involving separated supersolutions:

Proof of Proposition 1.2 According to (1.7), there exists c1 > 0 with the property that for any
� ∈ C(u0) one can find ϕ ∈ C0(�) ∩ C2(�) such that

0 ≤ ϕ(x) ≤ 1 for all x ∈ � (3.4)

and −ϕ p−1(x)�ϕ(x) ≥ c1 for all x ∈ �, where the latter clearly entails that actually
ϕ(x) > 0 for all x ∈ � and

− 1

c1
ϕ p−1(x)�ϕ(x) ≥ 1 for all x ∈ �. (3.5)

For any such �, we now define u ≡ u� by letting

u(x, t) := y(t) · (
ϕ(x) + 1

)
, x ∈ �, t ≥ 0, (3.6)

where

y(t) :=
{
y−p
0 + pc1t

}− 1
p
, t ≥ 0, (3.7)

with

y0 := ‖u0‖L∞(Rn), (3.8)
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and observe that then

u(x, 0) = y0 · (
ϕ(x) + 1

)
> y0 ≥ u(x, 0) for all x ∈ � (3.9)

by (3.6)–(3.8), and that

u(x, t) > u(x, t) for all x ∈ ∂� and t ≥ 0 (3.10)

due to the fact that u|∂�×[0,∞) = 0 thanks to Proposition 3.1. Apart from that, using that
y′(t) = −c1y p+1(t) for all t > 0 by (3.7), from (3.5) we obtain that

ut − u p�u = y′(t) · (ϕ + 1) − y p+1(t) · (ϕ + 1)p�ϕ

= (ϕ + 1) ·
{
y′(t) − y p+1(t) · (ϕ + 1)p�ϕ

}

= c1y
p+1(t) · (ϕ + 1) ·

{
− 1 − 1

c1
(ϕ + 1)p�ϕ

}

≥ c1y
p+1(t) · (ϕ + 1) ·

{
− 1 + (ϕ + 1)p−1

ϕ p−1

}

> 0 in � × (0,∞).

Relying on the strictness of the inequalities both in (3.9) and (3.10), wemay therefore employ
the comparison principle from [17, Sect. 3.1] to conclude that whenever � ∈ C(u0),

u(x, t) ≤ u�(x, t) for all x ∈ � and t > 0,

which again due to Proposition 3.1 implies that

‖u(·, t)‖L∞(Rn) = sup
�∈C(u0)

‖u(·, t)‖L∞(�)

≤ sup
�∈C(u0)

‖u�(·, t)‖L∞(�)

≤ 2(pc1)
− 1

p t−
1
p for all t > 0, (3.11)

because obviously y(t) ≤ (pc1t)
− 1

p for all t > 0 by (3.7), and because 1 ≤ ϕ + 1 ≤ 2 in
� by (3.4). As c1 was positive, (1.8) thus results from (3.11) when combined with the lower
estimate provided by (3.2). ��

Indeed, the requirement on boundedness in one directionmade in Corollary 1.3 can readily
be seen by means of an explicit construction to ensure a uniform elliptic inequality in the
flavor of that required in (1.7):

Proof of Corollary 1.3 It is sufficient to verify that

sup
0 ≤ ϕ ∈ C0(�) ∩ C2(�)

‖ϕ‖L∞(�) = 1

inf
x∈�

{
− ϕ p−1(x)�ϕ(x)

}
≥ c1 := π2

2
p+4
2 K 2

for all� ∈ C(u0),

(3.12)

and to achieve this, we let any � ∈ C(u0) be given and first note that upon translating and
rotating that � ⊂ S. Then

ϕ0(x) := cos
π · (2x1 − K )

4K
, x = (x1, . . . , xn) ∈ �,
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defines a function ϕ0 ∈ C2(�) which satisfies

ϕ0(x) ≥ cos
π

4
= 2− 1

2 for all x ∈ �,

because

−π

4
= π · (−K )

4K
≤ π · (2x1 − K )

4K
≤ π · (2K − K )

4K
= π

4
for all x1 ∈ [0, K ].

Since clearly �ϕ0(x) = −( π
2K )2ϕ0(x) for all x ∈ �, we therefore obtain that

− ϕ
p−1
0 (x)�ϕ0(x) = π2

4K 2 ϕ
p
0 (x) ≥ c1 for all x ∈ �, (3.13)

so that (3.12) results upon observing that

ϕ(x) := c2ϕ0(x), x ∈ �, with c2 := 1

‖ϕ0‖L∞(�)

≥ 1,

thus defines a nonnegative function ϕ ∈ C0(�) ∩ C2(�) with ‖ϕ‖L∞(�) = 1 and

−ϕ p−1(x)�ϕ(x) = cp2 ·
{
ϕ
p−1
0 (x)�ϕ0(x)

}
≥ cp2 c1 ≥ c1 for all x ∈ �

by (3.13). Based on the inequality (3.12) thus derived, an application of Proposition 1.2 hence
completes the proof. ��

3.2 Decay Slower than Critical. Proof of Proposition 1.4 and of Corollary 1.5

Conversely, the framework created in the formulation of Proposition 1.4 enables us to derive
the claimed unboundedness feature through comparison from below with separated subsolu-
tions, refining the corresponding procedure from the proof of Proposition 3.1 so as to yield
suitably large lower bounds.

Proof of Proposition 1.4 Given M > 0, we let

η ≡ ηM := 1

2p+1 pM p
, (3.14)

and then may rely on (1.9) in choosing � ∈ C(u0) and a nonnegative ϕ ∈ C0
0 (�) ∩

C2({ϕ > 0}) such that
max
x∈�

ϕ(x) = 1 (3.15)

and −ϕ p−1(x)�ϕ(x)< η for all x ∈ {ϕ > 0}, that is,

− 1

η
�ϕ(x)<ϕ1−p(x) for all x ∈ {ϕ > 0}. (3.16)

Now since ϕ is continuous in � with ϕ = 0 on ∂�, the open set �0 := {ϕ > 1
2 } satisfies

�0 ⊂ �, and therefore the positivity of the continuous function u0 on �0 ensures the
existence of y0 > 0 such that

1

2
y0 < u0(x) for all x ∈ �0. (3.17)
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Moreover, (3.15) guarantees that

u(x, t) := y(t) ·
(
ϕ(x) − 1

2

)
, x ∈ �0, t ≥ 0, (3.18)

with

y(t) :=
{
y−p
0 + pηt

}− 1
p
, t ≥ 0, (3.19)

satisfies

u(x, 0) = y0 ·
(
ϕ(x) − 1

2

)
≤ 1

2
y0 < u0(x) for all x ∈ �0 (3.20)

due to (3.17), and

u(x, t) = 0 < u(x, t) for all x ∈ ∂�0 and t ≥ 0 (3.21)

according to the definition of �0 and the positivity of u inside � × [0,∞), as asserted by
Proposition 3.1. Forthermore, since y′(t) = −ηy p+1(t) for all t > 0 by (3.19), using (3.16)
we see that

ut − u p�u = y′(t) ·
(
ϕ − 1

2

)
−

(
ϕ − 1

2

)p
�ϕ · y p+1(t)

= η ·
(
ϕ − 1

2

)
· y p+1(t) ·

{
− 1 − 1

η
·
(
ϕ − 1

2

)p−1
�ϕ

}

< η ·
(
ϕ − 1

2

)
· y p+1(t) ·

{
− 1+

(
ϕ − 1

2

)p−1

ϕ p−1

}

≤ 0 in �0 × (0,∞),

whence on the basis of (3.20) and (3.21) we may once more employ the comparison principle
from [17, Sect. 3.1] to infer that

u(x, t) ≥ u(x, t) for all x ∈ �0 and t > 0,

and that thus

‖u(·, t)‖L∞(Rn) ≥ ‖u(·, t)‖L∞(�0)

= y(t) ·
∥∥∥ϕ − 1

2

∥∥∥
L∞(�0)

= 1

2
y(t) for all t > 0

thanks to (3.18) and (3.15). Since (3.19) implies that

y(t) ≥ (2pηMt)−
1
p for all t ≥ tM := 1

pηM y p0
,

and since (3.14) says that

1

2
· (2pηM )

− 1
p = M,

this means that

t
1
p ‖u(·, t)‖L∞(Rn) ≥ M for all t ≥ tM

and thereby establishes (1.10), for M > 0 was arbitrary. ��
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Now in the presence of arbitrarily small principal eigenvalues within C(u0), the validity
of (1.9) can be verified by simply using appropriate eigenfunctions of −�:

Proof of Corollary 1.5 Given ε > 0, due to (1.12)we can find� ∈ C(u0) such thatλ1(�) ≤ ε
2 .

Then taking� ∈ W 1,2
0 (�) such that 0 < λ1(�)

∫
�

�2 = ∫
�

|∇�|2, by definition ofW 1,2
0 (�)

we can pick (ϕ j ) j∈N ⊂ C∞
0 (�)\{0} such that ϕ j → � in W 1,2

0 (�) as j → ∞ and hence
∫
�

|∇ϕ j |2∫
�

ϕ2
j

→
∫
�

|∇�|2∫
�

�2
= λ1(�)

as j → ∞. We can therefore fix j0 ∈ N such that
∫
�

|∇ϕ j0 |2∫
�

ϕ2
j0

≤ ε, (3.22)

and use that then {ϕ j0 > 0} is a compact subset of � to construct a smoothly bounded
subdomain �0 ⊂ � such that {ϕ j0 > 0} ⊂ �0. Since ϕ j0 clearly belongs to W 1,2

0 (�0),
relying on the variational characterization of λ1(�0) we thus infer from (3.22) that

λ1(�0) ≤
∫
�0

|∇ϕ j0 |2∫
�0

ϕ2
j0

=
∫
� |∇ϕ j0 |2∫

� ϕ2
j0

≤ ε, and since �0 has smooth boundary, standard

elliptic regularity theory applies so as to ensure the existence of a function �0 ∈ C2(�0)

fulfilling −��0(x) = λ1(�0)�0(x) for all x ∈ �0, �0(x) = 0 for all x ∈ ∂�0 and
0 ≤ �0(x) ≤ 1 = maxy∈�0

�0(y) for all x ∈ �0. Therefore, the nonnegative function

ϕ ∈ C0
0 (�) ∩ C2({ϕ > 0}) defined by

ϕ(x) :=
{

�(x), x ∈ �0,

0 x ∈ �\�0,

satisfies

−ϕ p−1(x)�ϕ(x)=− �
p−1
0 (x)��0(x)=λ1(�0)�

p
0 (x) ≤ λ1(�0)≤ε for all x ∈{ϕ > 0},

so that since ε > 0 was arbitrary, we conclude that (1.9) holds, and that hence (1.12) implies
(1.10) as a consequence of Proposition 1.4.

Finally, assuming (1.13) to be satisfied, for arbitraryη > 0we can take R > 0 large enough
such that λ1(B1(0))

R2 < η, and then use (1.13) to choose � ∈ C(u0) fulfilling � ⊃ BR(x0) for
some x0 ∈ R

n . Then, by evident monotonicity and scaling properties of λ1(·), it follows that

λ1(�) ≤ λ1(BR(x0)) = λ1(B1(0))

R2 < η,

and that therefore (1.12) and hence the claimed conclusion holds. ��
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