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Abstract
In this paper, we deal with the Gause–Kolmogorov-type predator–prey system with indirect
prey-taxis, which means that directional movement of predators is stimulated by some chem-
icals emitted by preys. The existence of the positive equilibrium, the effect of the indirect
prey-taxis on the stability and the related bifurcations are investigated. The critical values
for the occurrence of the Hopf bifurcation, Turing bifurcation, Turing–Hopf bifurcation and
double-Hopf bifurcation are explicitly determined. An algorithm for calculating the normal
form of the double-Hopf bifurcation for the non-resonance and weak resonance is derived.
Moreover, we apply the theoretical results to the system with Holling-II type functional
response, the stable region and the bifurcation curves are completely determined in the plane
of the indirect prey-taxis and self saturation coefficient. The dynamical classification near the
double-Hopf bifurcation point is explicitly determined. In the neighborhood of the double-
Hopf bifurcation, there are stable spatially homogeneous/inhomogeneous periodic solutions,
stable spatially inhomogeneous quadi-periodic solutions and the pattern transitions from one
spatial–temporal patterns to another one with the changes of the indirect taxis and semi sat-
uration coefficients. The results show that spatially inhomogeneous Hopf bifurcations are
induced by an indirect prey-taxis parameter χ > 0, which is impossible for the reaction–
diffusion predator–prey model with a direct prey-taxis.
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1 Introduction

Since the pioneer work of Lotka [32] and Volterra [50], predator–prey interactions have been
one of the hottest topics in mathematics and ecology and exhibited the rich biodiversity of
ecosystem [3]. Spatiotemporal heterogeneity plays an important role in ecological systems,
directly accounting for ecosystem biodiversity and species interactions. The reaction–
diffusion models including taxis terms provide effective theoretical and practical tools in
describing the spatiotemporal heterogeneity in ecosystems [6,7,29,33,34,46]. The prey-taxis
describes active movement of predators towards the area of higher prey density, which was
first observed in the experiment and treated as biased random walks by Karevia and Odell
[25].

In view of the random diffusion of predator and prey and biased random walks to prey, a
general reaction–diffusion equation with direct prey-taxis is the following form:

⎧
⎨

⎩

∂N
∂t = N f (N ) − Pg(N ) + δN�N , x ∈ �, t > 0,

∂P
∂t = γ Pg(N ) − mP + ∇ · (−χ(P)∇N + δP∇P), x ∈ �, t > 0,

(1.1)

where N (x, t), P(x, t) are the densities of prey and predator populations at space x and
time t , Pg(N ) denotes the inter-specific interaction, f (N ) is the per capita growth rate
of the prey population in the absence of predator. m is the mortality rate of the predator
population. γ is the conversion coefficient. In particular, g(N ) is the functional response
which reflects the intake rate of predators to preys. δN , δP are the diffusion coefficients of
the prey and predator. ∇ · (−χ(P)∇N ) denotes the tendency of predator moving upward
or downward the prey gradient direction. The existence and uniqueness of weak solutions
of system (1.1) were obtained by [2]. Tao [44] investigated the existence and uniqueness
of classical solutions of system (1.1) in a smooth bounded domain � ⊂ Rn, 1 ≤ n ≤ 3.
Pattern formation induced by prey-taxis was studied for different functional responses in
[29]. The existence, bifurcation of nonconstant steady state and pattern formations of system
(1.1) are investigated in [52]. Wu et al. [53] focused on a more general form of system (1.1)
and obtained the global existence and boundness of the solutions. Wang et al. [51] studied
the existence and boundedness of the solutions of the three-species predator–prey model
with two prey-taxis in bounded domain of arbitrary spatial domain. Yousefnezhad et al. [54]
studied the global stability of the constant positive equilibrium of a predator–prey system
with prey-taxis and special functional responses by constructing a Lyapunov function. The
existence of nonconstant steady state and Turing instability induced by direct prey-taxis has
also been widely investigated in the literatures (see [5,24,27,30,55,56]), which show that the
prey-taxis term can destabilize the constant equilibrium.

Direct taxis models as (1.1) to simulate the active movement of predators to preys are
fraught since such models can not result in stable spatially heterogeneous dynamical behav-
iors in the absence of nonlinear terms, illustrated in [4,19,47]. Instead of a direct influence of
prey-taxis and assuming that the taxis is stimulated by some chemicals that are continuously
emitted by prey (e.g., odour, pheromones, exometabolites), the predator–prey model with
the indirect prey-taxis has attracted the great attention of the researchers. Compared with the
direct prey-taxi, there is a little work on the predator–prey system with indirect prey-taxis.

It has been shown that intensive indirect prey-taxis results in the spatial heterogeneity
in the predator–prey models even in the absence of predator’s reproduction and mortality
processes [4,9,45]. Recently, Tyutyunov et al. [49] investigated the influence of the indirect
prey-taxis on the dynamics for the diffusive Gause–Kolmogorov-type predator–prey model,
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where the predator ability to pursue the prey is modelled by the Patlak–Keller–Segel taxis
model and the movement velocities of predators are proportional to the gradients of specific
cues emitted by the prey population. And it has been shown that the prey-taxis destabilizes
the constant steady state and induces Hopf bifurcation. Tyutyunov et al. [48] considered
the indirect prey-taxis model based on the Rosenzweig–MacArthur predator–prey model
with Allee effect in predator population growth. They found that the indirect prey-taxis
activity of the predator candestabilize both the stationary andperiodic spatially-homogeneous
regimes of the species coexistence. The results in [48,49] are mainly based on the numerical
investigation and the assumption. More recently, Ahn et al. [1] proved the global existence
and uniformboundedness of solutions of system (1.2)with indirect taxis in any spatial domain
and the global stability of semi-trivial equilibrium, And the simulations reveal that indirect
prey-taxis can result in complex spatial patterns.

In the present paper, we consider the following Gause–Kolmogorov-type predator–prey
system with indirect prey-taxis as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N
∂t = N f (N ) − Pg(N ) + δN�N , x ∈ �, t > 0,

∂P
∂t = γ Pg(N ) − mP + ∇ · (−χ P∇S + δP∇P), x ∈ �, t > 0,

∂S
∂t = ξN − ηS + δS�S, x ∈ �, t > 0,

∂N
∂ν

= ∂P
∂ν

= ∂S
∂ν

= 0, x ∈ ∂�, t > 0,

N (x, 0) = N0(x) ≥ 0, P(x, 0) = P0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ �,

(1.2)

where S(x, t) is the taxis stimulus concentration, δS is the constant diffusion coefficient of
stimulus, χ is the taxis coefficient of the predator population. When χ = 0, there is no
indirect prey-taxis. Generally, χ > 0 (known as the attractive taxis), which implies that the
prey-taxis movements of predator density are positively stimulated by some chemical emitted
by the prey and show the tendency to the high prey area. When the predator may retreat from
high prey area, χ can be negative (known as the repulsive taxis), which occurs in the case
when the prey act anti-predator defensive behaviors and show chemical defences [31]. Other
parameters are as the same as system (1.1). Here, we choose � = (0, lπ) for simplicity and
convenience in computing the normal forms and carrying out the numerical simulations. ν
is the outer normal direction. The zero-flux boundary condition is imposed to imply that the
system is close to the exterior environment.

The primary purpose in this paper is to investigate mathematically what interesting
dynamical behaviors for system (1.2). Especially, we investigate the occurrence of the
codimension-two double-Hopf bifurcation and Turing–Hopf bifurcation and determine the
dynamical classification near the double-Hopf bifurcation by calculating the normal form of
the double-Hopf bifurcation. System (1.2) has been proposed in [49], however, to the best
of our knowledge, the study for the stability and codimension-two bifurcation is the first
mathematical investigation.

As we all know, the codimension-one Hopf bifurcation and Turing bifurcation have been
extensively studied in various reaction–diffusion systems (e.g. [8,17,23,40,49,57] ). How-
ever, the interactions of double-Hopf bifurcations may generate spatially homogeneous
and nonhomogeneous periodic solutions, quasi-periodic solutions, coexisting of several
periodic solutions [13,20,21]. Interactions of Turing andHopf bifurcationsmay generate spa-
tiotemporal periodic pattern, bistability between spatial and temporal patterns [38,40,42,43].
Following the outstanding work of Faria [16,18], the general frame of calculating the normal
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forms of double-Hopf bifurcations has been derived by Jiang and Song [22] for the delay
differential equations under the case of non-resonance and weak resonance and by Du et al.
[13] for the reaction–diffusion with delay, where is no prey-taxis, and by Song et al. [39] for
the resource-consumer model with random and memory-based diffusions.

In comparison with other existing results, we roughly summarize our main results as
follows:

• The spatially inhomogeneous Hopf bifurcations induced by the indirect prey-taxis for
the predator–prey model are found.

• Taking the indirect taxis coefficient and other parameter as the bifurcation parameters, we
mathematically investigate the existence of double-Hopf bifurcations and Turing–Hopf
bifurcations of system (1.2), which reflect that indirect prey-taxis can bring about rich
dynamical behaviors.

• An algorithm for calculating the normal form of the double-Hopf bifurcation for the non-
resonance and weak resonance is derived, which guarantees the exact regional divisions
with different dynamics near double-Hopf bifurcation points.

• Our theoretical results are applied to the predator–prey system (1.2) with Holling-II
functional response and some interesting pattern formations are illustrated.

We would like to mention that spatially inhomogeneous Hopf bifurcations do not occur
for the reaction–diffusion predator–prey model with a direct prey-taxi like (1.1) when χ > 0,
and here it is shown that an indirect prey-taxi can generate spatially inhomogeneous Hopf
bifurcations. The spatially inhomogeneous Hopf bifurcations are also proved in [31] for the
attraction-repulsion Keller–Segel system. The mechanism there is to have both attractive and
repulsive chemotaxis, while the mechanism here is to have indirect prey-taxi. Both of them
need three equations. However, when the delay is involved into the diffusion terms, spa-
tially inhomogeneous Hopf bifurcations can occur even for the single population model with
memory-based diffusion [36,37,41]. In [37], the authors first proposed this spatial memory
model and it has been shown that the delay-induced spatially inhomogeneous Hopf bifurca-
tions are always unstable. However, the delay-induced stable spatially inhomogeneous Hopf
bifurcations are possible in the models proposed in [36,41]. In [41], the mechanism of spa-
tially inhomogeneous Hopf bifurcations comes from the interaction of the memory delay and
the nonlocal reaction, while in [36], it comes from the interaction of the memory delay and
maturation delay. For classical Keller–Segel equation with logistic growth, spatially inho-
mogeneous periodic orbits are also found, but which are not the results of Hopf bifurcation
from the positive constant equilibrium [15,35].

The rest of this article is as follows. In Sect. 2, we investigate the stability of the positive
equilibrium and existence of spatially homogeneous and nonhomogeneous Hopf bifurcations
and Turing bifurcations, and the critical values of the double-Hopf bifurcation and Turing–
Hopf bifurcation points are explicitly obtained. Besides, our results are applied to the system
(2.12) with Holling-II functional response and the corresponding results are derived. In
Sect. 3, the normal form of double-Hopf bifurcation for a general reaction–diffusion system
with indirect prey-taxis is derived and rich dynamical behaviors near the double-Hopf bifur-
cation points are discussed. In Sect. 4, numerical simulations are illustrated to verify and
expand our theoretical results and complex spatial patterns are exhibited. Conclusion and
further discussion are given in Sect. 5.
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2 Stability and Bifurcation Analysis

In this article, we further assume the absence of the Allee effect in the prey population.
Moreover, the functional response of predators is only prey-dependent, which implies that
f (N ) and g(N ) satisfy the following conditions formulated by Kolmogorov [26]:

(H1) f (0) > 0, f ′
N < 0 and there exists a constant K > 0 such that f (K ) = 0;

(H2) g(0) = 0, g′
N > 0 and there exists a constant N∗

2 > 0 such that g(N∗
2 ) = m

γ
.

It is shown that the system (1.2) has the zero equilibrium E0(0, 0, 0) and the bound-
ary equilibrium E1(K , 0, ξK

η
) (extinction of predator) and the unique positive equilibrium

E2(N∗
2 , P∗

2 , S∗
2 ) (coexistence of prey and predator), where

N∗
2 = g−1

(
m

γ

)

, P∗
2 = N∗

2 f (N∗
2 )

g(N∗
2 )

= γ N∗
2 f (N∗

2 )

m
, S∗

2 = ξN∗
2

η
. (2.1)

The corresponding ordinary differential equation of system (1.2) is as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN
dt = N f (N ) − Pg(N ),

dP
dt = γ Pg(N ) − mP,

dS
dt = ξN − ηS.

(2.2)

From [49], we have the following result:

Lemma 2.1 [49] System (2.2) has a unique positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) defined

by (2.1), which is locally asymptotically stable if f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 ) < 0
and unstable if f (N∗

2 ) − P∗
2 g

′(N∗
2 ) + N∗

2 f ′(N∗
2 ) > 0. And system (2.2) undergoes a Hopf

bifurcation at E2(N∗
2 , P∗

2 , S∗
2 ) when f (N∗

2 ) − P∗
2 g

′(N∗
2 ) + N∗

2 f ′(N∗
2 ) = 0.

Through this section, we assume the following condition holds:
(H3) f (N∗

2 ) − P∗
2 g

′(N∗
2 ) + N∗

2 f ′(N∗
2 ) ≤ 0.

The linearization of the system (1.2) at E2(N∗
2 , P∗

2 , S∗
2 ) is as follows:

⎛

⎜
⎜
⎝

∂N
∂t
∂P
∂t
∂S
∂t

⎞

⎟
⎟
⎠ = D

⎛

⎝
�N
�P
�S

⎞

⎠+ A

⎛

⎝
N
P
S

⎞

⎠ ,

where

D =
⎛

⎝
δN 0 0
0 δP −χ P∗

2
0 0 δS

⎞

⎠ ,

and

A =

⎛

⎜
⎜
⎝

a11 −g(N∗
2 ) 0

γ P∗
2 g

′(N∗
2 ) γ g(N∗

2 ) − m 0

ξ 0 −η

⎞

⎟
⎟
⎠ =

⎛

⎝
a11 −m

γ
0

γ P∗
2 g

′(N∗
2 ) 0 0

ξ 0 −η

⎞

⎠ ,

where a11 = f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 ) ≤ 0.
It is well-known that the eigenvalue problem

−�u(x) = μu(x), x ∈ (0, lπ),

ux (0) = ux (lπ) = 0,
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has the eigenvalues μn = n2

l2
, n = 0, 1, 2, . . ., with the corresponding normalized eigen-

functions

β
( j)
n (x) = rn(x)e j , rn(x) = cos nx

l

‖ cos nx
l ‖ 2,2

=
⎧
⎨

⎩

1√
lπ

, n = 0,
√

2
lπ cos nx

l , n �= 0.
(2.3)

The characteristic equations corresponding to the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) are

λ3 + P(χ, n)λ2 + Q(χ, n)λ + R(χ, n) = 0, (2.4)

where

P(χ, n) = (δN + δS + δP )
(n

l

)2 + η − a11,

Q(χ, n) = (δN δS + (δS + δN )δP )
(n

l

)4 + (η(δN + δP ) − (δS + δP )a11)
(n

l

)2

− ηa11 + mP∗
2 g

′(N∗
2 ),

R(χ, n) = δN δSδP

(n

l

)6 + (δN δPη − a11δSδP )
(n

l

)4 + ηmP∗
2 g

′(N∗
2 )

+
(

−ηδPa11 + mP∗
2 g

′(N∗
2 )δS + mξ

γ
χ P∗

2

)(n

l

)2
.

(2.5)

2.1 Stability, Hopf and Double-Hopf Bifurcations

In this section, we consider the stability and Hopf bifurcation of the system (1.2) by ana-
lyzing the characteristic values. By the Routh–Hurwitz criterion, E2(N∗

2 , P∗
2 , S∗

2 ) is locally
asymptotically stable if and only if for all n = 0, 1, 2, . . . ,

�1n > 0, �2n > 0, �3n > 0,

where

�1n = P(χ, n) = (δN + δS + δP )
(n

l

)2 + η − a11 > 0,

�2n =
∣
∣
∣
∣
P(χ, n) 1
R(χ, n) Q(χ, n)

∣
∣
∣
∣ = P(χ, n)Q(χ, n) − R(χ, n)

= b1
(n

l

)6 + b2
(n

l

)4 + b3
(n

l

)2 − mξ

γ
χ P∗

2

(n

l

)2 + b4,

�3n =
∣
∣
∣
∣
∣
∣

P(χ, n) 1 0
R(χ, n) Q(χ, n) P(χ, n)

0 0 R(χ, n)

∣
∣
∣
∣
∣
∣
= R(χ, n)�2n,

with
b1 = (δs + δN )δ2P + δ2S(δP + δN ) + δ2N (δS + δP ) + 2δN δSδP > 0,

b2 = η(δ2N + δ2P + 2δP (δS + δN ) + 2δSδN )

− a11(δ
2
S + δ2P + 2((δN + δS)δP + δN δS)) > 0,

b3 = a211(δS + δP ) − 2a11η(δS + δP ) − 2a11ηδN + η2(δN + δP )

+ mP∗
2 g

′(N∗
2 )(δN + δP ) > 0,

b4 = a211η − a11η
2 − a11mP∗

2 g
′(N∗

2 )

{= 0, a11 = 0,
> 0, a11 < 0.

(2.6)
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Clearly, the sign of�3n agrees with�2n since R(χ, n) > 0 for all n ∈ N0 � {0, 1, 2, . . .}.
Thus, the stability of E2(N∗

2 , P∗
2 , S∗

2 ) and the existence of Hopf bifurcation are determined
only by the sign of �2n . It is easy to check that, when a11 < 0, system (1.2) has no Hopf
bifurcation for any χ ≤ 0 since �2n > 0 for n ∈ N0. Thus, when a11 < 0, we can obtain
the existence of Hopf bifurcation only when χ > 0. In this case, λ = 0 is not a root of the
characteristic Eq. (2.4).

The necessary condition for Hopf bifurcation to occur is �2n = 0 for a fixed n ∈ N0,
which is equivalent to

χ � χH
n = γ

mξ P∗
2

(

b1
(n

l

)4 + b2
(n

l

)2 + b3 + b4

(
l

n

)2
)

> 0, n = 1, 2, . . . , (2.7)

or

a11 = 0, n = 0.

Remark 2.1 The Hopf bifurcation curve a11 = f (N∗
2 )− P∗

2 g
′(N∗

2 )+N∗
2 f ′(N∗

2 ) = 0, n = 0
of the diffusive system (1.2) is exactly the Hopf bifurcation of the corresponding ODE (2.2).

Hence, for fixed n ∈ {1, 2, . . .}, Eq. (2.4) has a pair of purely imaginary roots,

λn = ±iωn = ±i
√
Q(χ, n) at χ = χH

n . (2.8)

Next, we verify that the transversality condition holds.
Taking the derivative of both sides of Eq. (2.4) with respect to χ at χ = χH

n , we have that,

dλ

dχ
(3λ2 + 2λP(χ, n) + Q(χ, n))

∣
∣
∣
∣
χ=χH

n

= −mξ

γ
P∗
2

(n

l

)2
,

which implies that

Re

(
dλ

dχ

)−1
∣
∣
∣
∣
∣
χ=χH

n

= − γ Re(3λ2 + 2λP(χ, n) + Q(χ, n))

ξmP∗
2

( n
l

)2

∣
∣
∣
∣
∣
χ=χH

n

= 2γ Q(χ, n)

mξ P∗
2

( n
l

)2 > 0.

Thus, dReλ
dχ

∣
∣
∣
χ=χH

n

> 0 since the sign of Re
(
dλ
dχ

)−1
is consistent with the sign of dReλ

dχ
.

In the sequel, we show the monotonicity of the critical values χH
n with respect to n.

Lemma 2.2 Let x0 be a unique positive root of the cubic equation 2b1x3 + b2x2 − b4 = 0,
where b1, b2, b4 are defined in (2.6). Set

n∗
H =

⎧
⎨

⎩

[√x0l], if χH
[√x0l] ≤ χH

[√x0l]+1,

[√x0l] + 1, if χH
[√x0l] > χH

[√x0l]+1.
(2.9)

Then χH
n is decreasing in n ≤ n∗

H and increasing in n > n∗
H . That is, χ

H
n∗
H

= min
n∈{1,2,...}{χ

H
n },

where χH
n is defined by (2.7).

In particular, when a11 = 0, χH
n is increasing in n, that is, χH

1 = min
n∈{1,2,...}{χ

H
n }.

Proof (i) When a11 �= 0, let G(x) = b1x2 + b2x + b3 + b4
x . Then G

′(x) = 2b1x + b2 − b4
x2
.

Clearly, G ′(x) = 0 is equivalent to W (x)
.= 2b1x3 + b2x2 − b4 = 0.
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Obviously,W (x) is increasing in (0,+∞) since b1, b2 > 0 andW (0) = −b4 < 0. Thus,
there exists a unique x0 > 0 such that W (x0) = 0 and W (x) < 0 on (0, x0) and W (x) > 0
on (x0,+∞). Since G ′(x) = W (x)/x2, G(x) is decreasing on (0, x0) and increasing on
(x0,+∞). By the definition (2.9) of n∗

H , the result is confirmed.

(ii) When a11 = 0, χH
n = γ

mξ P∗
2

(
b1
( n
l

)4 + b2
( n
l

)2 + b3
)
is increasing in n since b1 >

0, b2 > 0, b3 > 0. Clearly, χH
1 = min

n∈{1,2,...}{χ
H
n }. ��

From the analysis above, we obtain the following results:

Theorem 2.1 Assume that the conditions (H1)–(H3) hold and χH
n , n = 1, 2, . . . , are defined

by (2.7). Then the following results are true:

(I) when f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 ) < 0 and χ ≤ 0, system (1.2) has no Hopf
bifurcation;

(II) when f (N∗
2 )−P∗

2 g
′(N∗

2 )+N∗
2 f ′(N∗

2 ) < 0andχ > 0, for fixed δN , δP , δS, γ, m, ξ, η,

a11 and l,

(i) if for any j ∈ N0 and j �= n such that χH
j �= χH

n , system (1.2) undergoes spatially
inhomogeneous Hopf bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at
χ = χH

n , and a family of spatially inhomogeneous periodic solutions bifurcate from
the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 );
(ii) if there exists n1, n2, . . . , ns ∈ N0 such that χH

n1 = χH
n2 = · · · = χH

ns and χH
j �= χH

n1
for j �= n1, n2, . . . , ns , system (1.2) undergoes spatially inhomogeneous s−multiple
Hopf bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χH
ni , i =

1, 2, . . . , s;
In particular, if s = 2, 2-multiple Hopf bifurcation is often called double-Hopf
bifurcation;

(iii) the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) is locally asymptotically stable for χ ∈

[0, χH
n∗
H
) and unstable for χ ∈ (χH

n∗
H
,+∞), where n∗

H is defined by (2.9);

(III) if f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 ) = 0, system (1.2) undergoes double-Hopf bifurca-
tions near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χDH
n , where

χDH
n = γ

mξ P∗
2

(

b1
(n

l

)4 + b2
(n

l

)2 + b3

)

> 0, n = 1, 2, . . . ,

and χDH
1 = min

n∈{1,2,...}{χ
DH
n }.

Remark 2.2 Hopf bifurcation in the predator–prey models has been widely studied in [43,
57], where Hopf bifurcation at the first critical value is always homogenous. In fact, it is
exactly Hopf bifurcation of the corresponding ODE. However, the indirect-taxis-induced
Hopf bifurcation at the first critical value is spatially inhomogeneous.

2.2 Turing Instability and Turing–Hopf Bifurcation

From the above analysis, we know that when a11 < 0, system (1.2) has no Turing pattern for
any χ ≥ 0 since λ = 0 is not a root of the characteristic Eq. (2.4). Thus, we can obtain the
existence of Turing bifurcation only when χ < 0.
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Thenecessary condition forTuringbifurcation to occur is R(χ, n) = 0,which is equivalent
to

χ = χT
n � − γ

mξ P∗
2

(

δN δSδP

(n

l

)4 + (δNηδP − a11δSδP )
(n

l

)2

+ηmP∗
2 g

′(N∗
2 )

(
l

n

)2

− ηδPa11 + mP∗
2 g

′(N∗
2 )δS

)

, n = 1, 2, . . . .

(2.10)

Clearly, for fixed n ∈ {1, 2, . . .}, Eq. (2.4) has a simple zero root at χ = χT
n since R(χ, n) =

0, Q(χ, n) > 0. Next, we verify the transversality condition.
Taking the derivative of both sides of Eq. (2.4) with respect to χ at χ = χT

n , we have that,

dλ

dχ
(3λ2 + 2λP(χ, n) + Q(χ, n))

∣
∣
∣
∣
χ=χT

n

= −mξ

γ
P∗
2

(n

l

)2
,

which implies that

(
dλ

dχ

)−1
∣
∣
∣
∣
∣
χ=χT

n

= − γ (3λ2 + 2λP(χ, n) + Q(χ, n))

ξmP∗
2

( n
l

)2

∣
∣
∣
∣
∣
χ=χT

n

= − γ Q(χ, n)

mξ P∗
2

( n
l

)2 < 0.

Thus, dλ
dχ

∣
∣
∣
χ=χT

n

< 0 since the sign of
(
dλ
dχ

)−1
is consistent with the sign of dλ

dχ
.

Next, we give the monotonicity of χT
n on n.

Lemma 2.3 Let x∗ be a unique positive root of cubic equation

2δN δSδP x
3 + (δNηδP − a11δSδP )x2 − ηmP∗

2 g
′(N∗

2 ) = 0.

Set

n∗
T =

⎧
⎨

⎩

[√x∗l], if χT
([√x∗l]) ≥ χT

([√x∗l]+1)
,

[√x∗l] + 1, if χT
([√x∗l]) < χT

([√x∗l]+1)
.

(2.11)

Then χT
n is increasing in n ≤ n∗

T and decreasing in n > n∗
T . That is, χ

T
n∗
T

= max
n∈{1,2,...}{χ

T
n },

where χT
n is defined by (2.10).

Proof Let

L(x) = δN δSδP x
2 + (δNηδP − a11δSδP )x + ηmP∗

2 g
′(N∗

2 )

x
.

Clearly,

L ′(x) =2δN δSδP x + (δNηδP − a11δSδP ) − ηmP∗
2 g

′(N∗
2 )

x2
,

L ′′(x) =2δN δSδP + 2ηmP∗
2 g

′(N∗
2 )

x3
.

That is, L ′(x) is increasing in (0,+∞) and L ′(0+) = −∞, L ′(+∞) = +∞. Hence, there
exists a unique x∗ > 0 such that L ′(x∗) = 0 and L ′(x) < 0 for x ∈ (0, x∗) and L ′(x) > 0
for x ∈ (x∗,+∞).

By the definition of n∗
T , the result is confirmed. ��
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In addition, it is clear that �1n > 0, �2n > 0 when χ < 0, a11 ≤ 0. Hence, the positive
equilibrium E2 is unstable only when R(χ, n) < 0, which is equivalent to

χ < max
n∈N {χT

n } = χT
n∗
T
.

From the analysis results above and combining Lemmas 2.1 and 2.3, we have the following
results:

Theorem 2.2 Assume that the conditions (H1)–(H3) hold and χT
n , n = 1, 2, . . . , are defined

by (2.10). Then the following results are true:

(I) when χ ≥ 0, system (1.2) has no Turing bifurcation;
(II) when χ < 0, for fixed δN , δP , δS, γ, m, ξ, η, a11 and l,

(i) if for any j ∈ N0 and j �= n such that χT
j �= χT

n , system (1.2) undergoes Turing

bifurcations near the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) at χ = χT

n ;

(ii) if there exists n1, n2, . . . , ns ∈ N0 such that χT
n1 = χT

n2 = · · · = χT
ns and χT

j �= χT
n1

for j �= n1, n2, . . . , ns , system (1.2) undergoes s−multiple Turing bifurcations near
the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χT
n1 ;

In particular, if s = 2, 2−multiple Turing bifurcation is often called Turing–Turing
bifurcation;

(iii) the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) of system (1.2) is asymptotically stable for

χT
n∗
T

< χ ≤ 0 and unstable for χ < χT
n∗
T
, where n∗

T is defined in (2.11);

(III) when f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 ) = 0, system (1.2) undergoes Turing–Hopf
bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χT H
n , where

χT H
n∗
T

= − γ

mξ P∗
2

(

δN δSδP

(
n∗
T

l

)4

+ (δNηδP − a11δSδP )

(
n∗
T

l

)2

+ηmP∗
2 g

′(N∗
2 )

(
l

n∗
T

)2

− ηδPa11 + mP∗
2 g

′(N∗
2 )δS

)

.

2.3 Application to the Predator–Prey Model with Logistic Growth and Holling-II
Functional Response

In this subsection, we consider the following predator–prey model with Logistic growth and
Holling-II functional response:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N
∂t = r N

(
1 − N

k

)− βN P
1+σN + δN�N , x ∈ (0, lπ), t > 0,

∂P
∂t = β

(
γ N P
1+σN − ρP

)
+ ∇ · (−χ P∇S + δP∇P), x ∈ (0, lπ), t > 0,

∂S
∂t = ξN − ηS + δS�S, x ∈ (0, lπ), t > 0,

Nx (x, t) = Px (x, t) = Sx (x, t) = 0, x = 0, lπ, t > 0,

N (x, 0) = N0(x) ≥ 0, P(x, 0) = P0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ [0, lπ].
(2.12)

Assume that

(A1) 0 < ρ <
γ k

σk + 1
,
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then system (2.12) has a unique positive steady state E2(N∗
2 , P∗

2 , S∗
2 ), where

N∗
2 = ρ

γ − σρ
, P∗

2 = rγ

β(γ − σρ)2

(

γ − ρ

(

σ + 1

k

))

, S∗
2 = ξN∗

2

η
.

For system (2.12), we have

f (N ) = r

(

1 − N

k

)

, g(N ) = βN

1 + σN
, m = βρ,

and then

a11 = ρr

(
1

γ

(

σ + 1

k

)

− 2

k(γ − σρ)

)

, a12 = −βρ

γ
,

a21 = r

(

γ − ρ

(

σ + 1

k

))

, a22 = 0.

It is easy to verify that,

a11 < 0, if σ ≤ 1

k
, (2.13)

and when σ > 1
k ,

a11 = f (N∗
2 ) − P∗

2 g
′(N∗

2 ) + N∗
2 f ′(N∗

2 )

⎧
⎨

⎩

< 0, ρ > ρ1(σ ),

= 0, ρ = ρ1(σ ),

> 0, ρ < ρ1(σ ),

(2.14)

where

ρ = ρ1(σ ) � γ (kσ − 1)

σ 2k + σ
for fixed γ, k. (2.15)

Therefore, for the following corresponding ODE of system (2.12),
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN
dt = r N

(
1 − N

k

)− βN P
1+σN ,

dP
dt = β

(
γ N P
1+σN − ρP

)
,

dS
dt = ξN − ηS,

(2.16)

we have the following results on the stability and Hopf bifurcation for system (2.16):

Theorem 2.3 Assume that the condition (A1) holds and ρ = ρ1(σ ) is defined by (2.15). Then
the following results are true:

(i) if σ ≤ 1
k , the positive steady state E2(N∗

2 , P∗
2 , S∗

2 ) of system (2.16) is always stable for
any ρ > 0;

(ii) if σ > 1
k , the positive steady state E2(N∗

2 , P∗
2 , S∗

2 ) of system (2.16) is stable for ρ >

ρ1(σ ) and unstable for ρ < ρ1(σ );
(iii) for fixed k, γ and 0 < ρ < ρ∗

max , where

ρ∗
max =

√
2γ k

4 + 3
√
2
, (2.17)

system (2.16) undergoes Hopf bifurcations at σ = σ j , j = 1, 2, where σ1 and σ2

are two roots of (2.15) for fixed ρ. And when ρ∗
max < ρ <

γ k
σk+1 , there is no Hopf

bifurcation for system (2.16).
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Proof From Lemma 2.1 and (2.13), (2.14), (i) and (ii) are confirmed. Next we only verify
the result (iii).

(iii) It follows from Eq. (2.15) that

∂ρ1(σ )

∂σ
= (−k2σ 2 + 2σk + 1)γ

(σ 2k + σ)2
,

which implies that there exists a unique σ ∗ = 1+√
2

k such that ∂ρ1(σ )
∂σ

|σ=σ ∗ = 0, ∂ρ1(σ )
∂σ

> 0

for σ ∈
(
1
k ,

1+√
2

k

)
and ∂ρ1(σ )

∂σ
< 0 for σ ∈

(
1+√

2
k ,+∞

)
.

Thus, for fixed k, γ , the function ρ1(σ ) is increasing for σ ∈
(
1
k ,

1+√
2

k

)
and decreasing

for σ ∈
(
1+√

2
k ,+∞

)
with respect to σ . And ρ1(σ ) reaches its maximum value

ρ∗
max � ρ1(σ

∗) =
√
2γ k

4 + 3
√
2
.

Therefor, for fixed k, γ and ρ ∈ (0, ρ∗
max ) = (0,

√
2γ k

4+3
√
2
), there exists two possible Hopf

bifurcation points σ1, σ2 with σ1 < 1+√
2

k < σ2 such that

ρ = γ (kσ j − 1)

σ 2
j k + σ j

, j = 1, 2. (2.18)

The characteristic equation of the linearized system of (2.16) at E2(N∗
2 , P∗

2 , S∗
2 ) is

(λ + η)(λ2 − a11λ − a12a21) = 0,

which means that λ0 = −η < 0, and

λ2 − a11λ − a12a21 = 0. (2.19)

Clearly, Eq. (2.19) has a pair of purely imaginary roots λ1,2 = ±i
√−a12a21 at σ = σ j , j =

1, 2. In addition, taking the derivative of both sides of Eq. (2.19) with respect to σ at σ = σ j

and combining (2.18), we have that,

dλ

dσ
= λ∂a11

∂σ
+ a12

∂a21
∂σ

2λ − a11
,

which implies that,

Re

(
dλ

dσ

)−1
∣
∣
∣
∣
∣
σ=σ j

= Re

⎛

⎝
ρr
(
λ
(
1
γ

− 2ρ
k(γ−σρ)2

)
− a12

)

2λ − a11

⎞

⎠

∣
∣
∣
∣
∣
∣
σ=σ j

= ρr

2

(
1

γ
− 2ρ

k(γ − σρ)2

)∣
∣
∣
∣
σ=σ j

= − ρrk

4γ σ j

(

σ j − 1 + √
2

k

)(

σ j +
√
2 − 1

k

)

, j = 1, 2.

By σ1 < 1+√
2

k < σ2, we have that,

Re

(
dλ

dσ

)−1
∣
∣
∣
∣
∣
σ=σ1

> 0, Re

(
dλ

dσ

)−1
∣
∣
∣
∣
∣
σ=σ2

< 0.
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Hence, system (2.18) undergoes Hopf bifurcation at σ j , j = 1, 2. Theorem 2.3 is confirmed.
��

We apply the results of Sects. 2.1,2.2 to the taxis-induced predator–prey model with Logistic
growth and Holling-II functional response under the condition (A1).

By Theorems 2.1, 2.2 and 2.3, we have the following results:

Theorem 2.4 Assume that the condition (A1) holds and χH
n , χT

n are defined by (2.7) and
(2.10) respectively. Then when one of the following three conditions (i) σ ≤ 1

k , (ii) ρ∗
max <

ρ <
γ k

σk+1 and σ > 1
k , (iii) 0 < ρ < ρ∗

max and σ ∈ (1/k, σ1) ∪ (σ2,
γ k−ρ
kρ ) holds, where

σ1, σ2 are homogenous Hopf bifurcation points defined by Theorem 2.3(iii), the following
results are true:

(I) the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) is locally asymptotically stable for χ ∈

(χT
n∗
T
, χH

n∗
H
) and unstable for χ ∈ (−∞, χT

n∗
T
) ∪ (χH

n∗
H
,+∞);

(II) if for any j ∈ N0 and j �= n such that χH
j �= χH

n , system (1.2) undergoes spatially
inhomogeneous Hopf bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at
χ = χH

n > 0; and if there exists n1, n2, . . . , ns such that χH
n1 = χH

n2 = · · · = χH
ns

and χH
j �= χH

n1 , system (1.2) undergoes s−multiple Hopf bifurcations near the positive

equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) at χ = χH

n1 > 0. In particular, if s = 2, system (1.2)
undergoes double-Hopf bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 );
(III) if for any j ∈ N0 and j �= n such that χT

j �= χT
n , system (1.2) undergoes Turing

bifurcations near the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ) at χ = χT

n < 0; and if
there exists n1, n2, . . . , ns such that χT

n1 = χT
n2 = · · · = χT

ns and χT
j �= χT

n1 ,
system(1.2) undergoes s−multiple Turing bifurcations near the positive equilibrium
E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χT
n1 > 0. In particular, if s = 2, system (1.2) undergoes

Turing–Turing bifurcations near the positive equilibrium E2(N∗
2 , P∗

2 , S∗
2 ).

Theorem 2.5 Assume that the condition (A1) holds and χH
n , χT

n are defined by (2.7) and
(2.10) respectively. Then when σ = σ1 or σ = σ2, and 0 < ρ < ρ∗

max , where σ1, σ2 are
homogenous Hopf bifurcation points defined by Theorem 2.3(iii), system (1.2) undergoes
double-Hopf bifurcations near the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) at χ = χH
n >

0, n = 1, 2, . . ., and Turing–Hopf bifurcations at χ = χT
n < 0, n = 1, 2, . . ., and χH

1 =
min

n=1,2,...
{χH

n }.

3 Normal Form of Double–Hopf Bifurcations on the Center Manifold

In this section, we follow the normal form theory developed in [16,42] for the reaction–
diffusion system with/without delay and use the same notations as in [16,42] and derive the
normal form of double-Hopf bifurcations for the non-resonance or weak resonance case. This
section is also motivated by the works on the double-Hopf bifurcations in [11,12,22] for the
delay differential equations without diffusion, in [13,14,39] for the reaction–diffusion with
delay but without indirect prey-taxis.

3.1 Decomposition of Phase Space

From Theorem 2.2, we know that system (2.12) undergoes double-Hopf bifurcations at the
interaction points (σ, χH

n ) of two Hopf bifurcation curves near the positive steady state
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E2(N∗
2 , P∗

2 , S∗
2 ). We assume that at the interaction point (σ, χH

n ) = (σ ∗, χ∗), Eq. (2.4) has
two pairs of purely imaginary roots ±iωn1 , ± iωn2 for n = n1 and n = n2 with n1 < n2,
respectively, which only requires that the ratio of ωn1 and ωn2 is not 1 : 1, 1 : 2, 1 : 3, 1 : 4,
that is non-resonance or weak resonance case. And all other eigenvalues have negative real
parts. Define the real-value Sobolev space:

X = {(u1, u2, u3) ∈ (W 2,2(0, lπ))3|∂ui
∂x

= 0, x = 0, lπ, i = 1, 2, 3}
with the inner product

[u, v] =
∫ lπ

0
(u1v1 + u2v2 + u3v3)dx, for u = (u1, u2, u3), v = (v1, v2, v3). (3.1)

To investigate codimension-2 bifurcation, we introduce two parameters ε1 and ε2. Set
ε1 = σ − σ ∗, ε2 = χ − χ∗ such that ε1 = ε2 = 0 are double-Hopf bifurcation values.
Thus, the positive equilibrium E2(N∗

2 , P∗
2 , S∗

2 ) can be written into a parameter-dependent
form E2ε1(N

∗
2 (ε1), P∗

2 (ε1), S∗
2 (ε1)) with

N∗
2 (ε1) = ρ

γ − (σ ∗ + ε1)ρ
, P∗

2 (ε1) = rγ

β(γ − (σ ∗ + ε1)ρ)2

(

γ − ρ

(

σ ∗ + ε1 + 1

k

))

,

S∗
2 (ε1) = ξN∗

2 (ε1)

η
.

Letting Ñ (·, t) = N (·, t) − N∗
2 (ε1), P̃(·, t) = P(·, t) − P∗

2 (ε1), S̃(·, t) = S(·, t) − S∗
2 (ε1)

and Ũ (t) = (Ñ (·, t), P̃(·, t), S̃(·, t)), then dropping the tildes for simplification, system
(2.12) can be rewritten into the following abstract form:

dU (t)

dt
= D(ε)Uxx + L(ε1)U + F(U , ε1), (3.2)

where

F(U , ε1) = ( f (1)(N , P, S, ε1), f (2)(N , P, S, ε1), f (3)(N , P, S, ε1))
T − L(ε1)U , (3.3)

with

f (1)(N , P, S, ε1) = r(N + N∗
2 (ε1))

(

1 − N + N∗
2 (ε1)

k

)

− β(N + N∗
2 (ε1))(P + P∗

2 (ε1))

1 + (σ ∗ + ε1)(N + N∗
2 (ε1))

,

f (2)(N , P, S, ε1) = β

(
γ (N + N∗

2 (ε1))(P + P∗
2 (ε1))

1 + (σ ∗ + ε1)(N + N∗
2 (ε1))

− ρ(P + P∗
2 (ε1))

)

,

f (3)(N , P, S, ε1) = ξ(N + N∗
2 (ε1)) − η(S + S∗

2 (ε1)),

and
D(ε)Uxx = DUxx + Gd(U , ε),

with

Gd(U , ε) =
⎛

⎝
0

−χ∗Px Sx
0

⎞

⎠+ ε1D1Uxx + ε2D2Uxx

− ε2

⎛

⎝
0

Px Sx
0

⎞

⎠− ε1ε2

⎛

⎝
0

P∗
2

′(0)Sxx
0

⎞

⎠+ o(ε),

123



Journal of Dynamics and Differential Equations (2021) 33:1917–1957 1931

where

D =
⎛

⎝
δN 0 0
0 δP −χ∗P∗

2
0 0 δS

⎞

⎠ , D1 =
⎛

⎝
0 0 0
0 0 −χ∗P∗

2
′(0)

0 0 0

⎞

⎠ , D2 =
⎛

⎝
0 0 0
0 0 −P∗

2
0 0 0

⎞

⎠ ,

and

L(ε1)U =
⎛

⎝
a11(ε1) a12(ε1) 0
a21(ε1) a22(ε1) 0

ξ 0 −η

⎞

⎠ � AU + ε1QU + o(ε1),

where

a11(ε1) = ρr

(
1

γ

(

σ ∗ + ε1 + 1

k

)

− 2

k(γ − (σ ∗ + ε1)ρ)

)

, a12 = −βρ

γ
,

a21(ε1) = r

(

γ − ρ

(

σ ∗ + ε1 + 1

k

))

, a22(ε1) = 0,

(3.4)

and

A =
⎛

⎝
a11(0) a12(0) 0
a21(0) a22(0) 0

ξ 0 −η

⎞

⎠ , Q =
⎛

⎝
a11′(0) 0 0
a21′(0) 0 0

0 0 0

⎞

⎠ .

Noticing that ε1, ε2 are the parameters, we can obtain another form of (3.2) as follows:

dU (t)

dt
= DUxx + AU + F̃(U , ε1, ε2), (3.5)

where
F̃(U , ε1, ε2) = F(U , ε1) + ε1QU + Gd(U , ε) + o(ε1). (3.6)

The linearized system of system (2.12) at the origin is

dU

dt
= DUxx + AU . (3.7)

By Theorem 2.5, the operator D+A has two pairs of purely imaginary eigenvalues±iωn1 , ±
iωn2 (ωn1 �= ωn2) for n = n1 and n = n2 and all other eigenvalues have negative real parts.

Set
Bn = Span{[φ(·), β( j)

n ]β( j)
n |φ ∈ X , j = 1, 2, 3},

where β
( j)
n (x), j = 1, 2, 3 are defined in (2.3).

On Bn , the linear equation (3.7) is equivalent to the ODE on R3:
⎛

⎝
Ṅ
Ṗ
Ṡ

⎞

⎠ =
⎛

⎜
⎝

−δN
( n
l

)2 0 0

0 −δP
( n
l

)2
χ∗P∗

2

( n
l

)2

0 0 −δS
( n
l

)2

⎞

⎟
⎠

⎛

⎝
N
P
S

⎞

⎠+ A

⎛

⎝
N
P
S

⎞

⎠ , (3.8)

where (N , P, S) ∈ R3. It is easy to check that (3.8) has the same characteristic equation as
the linearized equation (3.7).

Let

Mn =
(n

l

)2
D + A (3.9)

be the characteristicmatrix of (3.8). Let� be the finite set of all eigenvalues of thematrix (3.9)
with zero real parts. We have known, when n = n1, n2, Mn has two pairs of purely imag-
inary roots ±iωn1 ,±iωn2 , i.e. � = {iωn1 ,−iωn1 , iωn2 ,−iωn2}. And P is the generalized
eigenspace corresponding to �. P∗ is the dual space of P .
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Define the scalar product

〈ψT , φ〉 = ψTφ, for ψ, φ ∈ R3.

Denote
�n1 = (φ1, φ2), �n2 = (φ3, φ4),

�n1 = col(ψT
1 , ψT

2 ),�n2 = col(ψT
3 , ψT

4 ).

Let �
.= (�n1 ,�n2) = (φ1, φ2, φ3, φ4), �

.= diag(�n1 , �n2) be the basis of P and P∗
associated with the eigenvalues iωn1 and iωn2 satisfying

Mn�n = �n Bn, M T
n �n = Bn�n, 〈�n,�n〉 = I , n = n1, n2,

with Bn1 = diag(iωn1 ,−iωn1), Bn2 = diag(iωn2 ,−iωn2).
By virtue of Mn1�n1 = �n1Bn1 , M T

n1�n1 = Bn1�n1 , i.e.

Mn1φ1 = iωn1φ1, Mn1φ2 = −iωn1φ2, M T
n1ψ

T
1 = iωn1ψ

T
1 , M T

n1ψ
T
2 = −iωn1ψ

T
2 ,

we choose that

φ1 =
⎛

⎝
φ11

φ12

φ13

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

1

iωn1+δN
( n1

l

)2−a11(0)
a12(0)

ξ

iωn1+δS
( n1

l

)2+η

⎞

⎟
⎟
⎟
⎟
⎠

,

ψ1 =
⎛

⎝
ψ11

ψ12

ψ13

⎞

⎠ = M1

⎛

⎜
⎜
⎜
⎜
⎝

iωn1+δp
( n1

l

)2−a22(0)
a12(0)
1

χ∗P∗
2

( n1
l

)2

iωn1+δS
( n1

l

)2+η

⎞

⎟
⎟
⎟
⎟
⎠

,

φ2 = φ1, ψ2 = ψ1,

with

M1 =
(
2iωn1 + (δP + δN )

( n1
l

)2 − a11(0) − a22(0)

a12(0)
+ ξχ∗P∗

2

( n1
l

)2

(iωn1 + δS
( n1

l

)2 + η)2

)−1

.

By the same way, in terms of Mn2�n2 = �n2 Bn2 , M T
n2�n2 = Bn2�n2 , i.e.

Mn2φ3 = iωn2φ3, Mn2φ4 = −iωn2φ4, M T
n2ψ

T
3 = iωn2ψ

T
3 , M T

n2ψ
T
4 = −iωn2ψ

T
4 ,

we choose that

φ3 =
⎛

⎝
φ31

φ32

φ33

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

1

iωn2+δN
( n2

l

)2−a11(0)
a12(0)

ξ

iωn2+δS
( n2

l

)2+η

⎞

⎟
⎟
⎟
⎟
⎠

,
ψ3 =

⎛

⎝
ψ31

ψ32

ψ33

⎞

⎠ = M2

⎛

⎜
⎜
⎜
⎜
⎝

iωn2+δp
( n2

l

)2−a22(0)
a12(0)
1

χ∗P∗
2

( n2
l

)2

iωn2+δS
( n2

l

)2+η

⎞

⎟
⎟
⎟
⎟
⎠

,

φ4 = φ3, ψ4 = ψ3,

with

M2 =
(
2iωn2 + (δP + δN )

( n2
l

)2 − a11(0) − a22(0)

a12(0)
+ ξχ∗P∗

2

( n2
l

)2

(iωn2 + δS
( n2

l

)2 + η)2

)−1

.
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Now, we decompose the Sobolev space X into a center subspace P and its orthocomple-
ment, i.e.

X = P ⊕ kerπ,

where π : X → P is the projection defined by

π(φ) = �n1〈�n1 , [φ(·), βn1 ]〉 · βn1 + �n2〈�n2 , [φ(·), βn2 ]〉 · βn2 , (3.10)

with

[
φ(·), βn j

] =
⎛

⎜
⎝

[
φ(·), β(1)

n j

]

[
φ(·), β(2)

n j

]

⎞

⎟
⎠ , j = 1, 2.

By (3.10), U = (N , P, S)T ∈ X can be rewritten as

U = �n1 z̃n1 · βn1 + �n2 z̃n2 · βn2 + w

= (z1φ1 + z2φ1)rn1(x) + (z3φ3 + z4φ3)rn2(x) + w
.= �zx + w,

(3.11)

where z̃n1 = 〈�n1 , [U , βn1 ]〉 = (z1, z2), z̃n2 = 〈�n2 , [U , βn2 ]〉 = (z3, z4), and

zx = (z1rn1(x), z2rn1(x), z3rn2(x), z4rn2(x))
T ,

w = (w1, w2, w3)
T ∈ Q � C1 ∩ Kerπ = {φ ∈ Kerπ |φ̇ ∈ C}.

For convenience, denote z
.= (z̃n1 , z̃n2)

T = (z1, z2, z3, z4) and B = diag(iωn1 ,−iωn1 , iωn2 ,

−iωn2). Then system (3.5) is decomposed as a system of abstract ODEs on R4 × Kerπ :

⎧
⎪⎨

⎪⎩

ż = Bz + �

(
[F̃(�zx + w, ε), βn1 ]
[F̃(�zx + w, ε), βn2 ]

)

,

ẇ = L1w + (I − π)F̃(�zx + w, ε),

(3.12)

where L1 is the restriction of the linear operator D + A in Q.

3.2 Center Manifold Reduction

Consider the formal Taylor expansion

F̃(U , ε) =
∑

j≥2

1

j ! F̃j (U , ε), F(U , ε1) =
∑

j≥2

1

j ! Fj (U , ε1),

where F̃j is the j th Fréchet derivative of F̃ . And

Gd(U , ε) = 1

2
Gd

2(U , ε) + 1

3!G
d
3(U , ε) + o(ε),

where
Gd

2(U , ε) = Gd(0,0)
2 (U ) + ε1G

d(1,0)
2 (U ) + ε2G

d(0,1)
2 (U ),

Gd
3(U , ε) = ε1G

d(1,0)
3 (U ) + ε2G

d(0,1)
3 (U ) + ε1ε2G

d(1,1)
3 (U ),

(3.13)
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with

Gd(0,0)
2 (U ) = 2

⎛

⎝
0

−χ∗Px Sx
0

⎞

⎠ , Gd(1,0)
2 (U ) = 2D1Uxx ,

Gd(0,1)
2 (U ) = 2D2Uxx , Gd(1,0)

3 (U ) = 0,

Gd(0,1)
3 (U ) = −6

⎛

⎝
0

Px Sx
0

⎞

⎠ , Gd(1,1)
3 (U ) = −6

⎛

⎝
0

P∗
2

′(0)Sxx
0

⎞

⎠ .

(3.14)

From (3.6), we have that,

F̃2(U , ε1, ε2) = 2ε1QU + Gd
2(U , ε) + F2(U , ε1), (3.15)

and
F̃3(U , ε1, ε2) = Gd

3(U , ε) + F3(U , ε1). (3.16)

Then (3.12) can be written as
⎧
⎪⎨

⎪⎩

ż = Bz + ∑

j≥2

1
j ! f̃

1
j (z, w, ε),

ẇ = L1w + ∑

j≥2

1
j ! f̃

2
j (z, w, ε),

(3.17)

where ⎧
⎪⎨

⎪⎩

f̃ 1j (z, w, ε) = �

(
[F̃j (�zx + w, ε), βn1 ]
[F̃j (�zx + w, ε), βn2 ]

)

,

f̃ 2j (z, w, ε) = (I − π)F̃j (�zx + w, ε).

(3.18)

Let V 6
j (R

4) denote the space of homogeneous polynomials of degree j in 6 variables

z = (z1, z2, z3, z4)T , ε = (ε1, ε2)
T with coefficients in R4 as follows:

V 6
j (R

4) = Span{zq11 zq22 zq33 zq44 ε
p1
2 ε

p2
1 ϑk, q1, q2, q3, q4, p1, p2 ∈ N0,

and q1 + q2 + q3 + q4 + p1 + p2 = j},
where ϑk(k = 1, 2, 3, 4) are unit coordinate vector of R4.

Define the operator Mj = (M1
j , M

2
j ), j ≥ 2 by

M1
j : V 6

j (R
4) → V 6

j (R
4), M2

j : V 6
j (Q1) → V 6

j (Kerπ),

(M1
j p)(z, ε) = Dz p(z, ε)Bz − Bp(z, ε),

(M2
j h)(z, ε) = Dzh(z, ε)Bz − L1h(z, ε).

(3.19)

It is easy to verify that,

M1
j (z

qε pϑk) = (iωn1(q1 − q2) + iωn2(q3 − q4) + (−1)k iωn1)z
qε pϑk, k = 1, 2,

M1
j (z

qε pϑk) = (iωn1(q1 − q2) + iωn2(q3 − q4) + (−1)k iωn2)z
qε pϑk, k = 3, 4,

(3.20)

where zqε p = zq11 zq22 zq33 zq44 ε
p1
2 ε

p2
1 .

Then from (3.20), we have that,

Ker(M1
2 ) = Span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

z1εi
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
z2εi
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0

z3εi
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0
0

z4εi

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

, i = 1, 2,
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and
Ker(M1

3 ) = Span{z1z3z4ϑ1, z1ε
2
i ϑ1, z

2
1z2ϑ1, z1ε2ε1ϑ1,

z2z3z4ϑ2, z2ε
2
i ϑ2, z1z

2
2ϑ2, z2ε2ε1ϑ2,

z1z2z3ϑ3, z3ε
2
i ϑ3, z

2
3z4ϑ3, z3ε2ε1ϑ3,

z1z2z4ϑ4, z4ε
2
i ϑ4, z3z

2
4ϑ4, z4ε2ε1ϑ4, i = 1, 2}.

Remark 3.1 If ωn1 : ωn2 is 1 : 1, 1 : 2, 1 : 3 or 1 : 4, that is the strong resonance case, the
base forms of the space Ker(M1

2 ), Ker(M1
3 ) will be more complex, which is not considered

here.

For autonomous ODEs in the finite dimension space [10], by a recursive transformation of
variables

(z, w) = (z̃, w̃) + 1

j ! (U
1
j (z̃, ε),U

2
j (z̃, ε)), j ≥ 2,

where U 1
j and U

2
j are homogeneous polynomials of j in z̃ and ε, and dropping the tilde, the

normal form on the center manifold for (3.17) is

ż = Bz + 1

2
g12(z, 0, ε) + 1

3!g
1
3(z, 0, ε) + o(ε|z|2), (3.21)

where g12 and g13 are the second and third terms in (z, ε), defined by

g12(z, 0, ε) = ProjKer(M1
2 ) f̃

1
2 (z, 0, ε), g13(z, 0, ε) = ProjKer(M1

3 ) f̄
1
3 (z, 0, 0) + o(ε|z|2),

(3.22)
where

f̄ 13 (z, 0, 0) = f̃ 13 (z, 0, 0) + 3

2
[(Dz f̃ 12 )(z, 0, 0)U 1

2 (z, 0) + (Dw f̃ 12 )(z, 0, 0)U 2
2 (z, 0)

− (DzU
1
2 (z, 0))g12(z, 0, 0)].

(3.23)

3.3 Second Order Terms of the Normal Form

It follows from (3.18) that,

f̃ 12 (z, 0, ε) = �

⎛

⎝

[
F̃2(�zx , ε), βn1

]

[
F̃2(�zx , ε), βn2

]

⎞

⎠ . (3.24)

From (3.11) and (3.14), we have that,
([

2ε1Q(�zx ), βn1

]

[
2ε1Q(�zx ), βn2

]

)

=
(
2ε1Q(z1φ1 + z2φ1)

2ε1Q(z3φ3 + z4φ3)

)

,

⎛

⎝

[
ε1G

d(1,0)
2 (�zx ), βn1

]

[
ε1G

d(1,0)
2 (�zx ), βn2

]

⎞

⎠ =
⎛

⎝
−2ε1

( n1
l

)2
D1(z1φ1 + z2φ1)

−2ε1
( n2

l

)2
D1(z3φ3 + z4φ3)

⎞

⎠ ,

⎛

⎝

[
ε2G

d(0,1)
2 (�zx ), βn1

]

[
ε2G

d(0,1)
2 (�zx ), βn2

]

⎞

⎠ =
⎛

⎝
−2ε2

( n1
l

)2
D2(z1φ1 + z2φ1)

−2ε2
( n2

l

)2
D2(z3φ3 + z4φ3)

⎞

⎠ .

(3.25)
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From (3.3), it is easy to check that for any ε ∈ R2+,

F2(�zx , ε) = F2(�zx , 0),

which, together with (3.15), (3.22), (3.25) results in

1

2
g12(z, 0, ε) = 1

2
ProjKer(M1

2 ) f̃
1
2 (z, 0, ε) =

⎛

⎜
⎜
⎝

Bn11z1ε1 + Bn12z1ε2
Bn11z2ε1 + Bn12z2ε2
Bn21z3ε1 + Bn22z3ε2
Bn21z4ε1 + Bn22z4ε2

⎞

⎟
⎟
⎠ , (3.26)

where

Bn11 = ψT
1

(

Qφ1 −
(n1
l

)2
D1φ1

)

, Bn12 = −
(n1
l

)2
ψT
1 D2φ1,

Bn21 = ψT
3

(

Qφ3 −
(n2
l

)2
D1φ3

)

, Bn22 = −
(n2
l

)2
ψT
3 D2φ3.

3.4 Third Order Terms of the Normal Form

Since o(|z|ε2) is irrelevant to determine the generic Hopf bifurcation, it is sufficient to
compute g13(z, 0, 0) for determining the properties of Hopf bifurcation.

By (3.22), (3.23) and g12(z, 0, 0) = (0, 0, 0, 0)T , we have that,

g13(z, 0, 0) = ProjKer(M1
3 ) f̄

1
3 (z, 0, 0), (3.27)

where

f̄ 13 (z, 0, 0) = f̃ 13 (z, 0, 0) + 3

2
[(Dz f̃ 12 )(z, 0, 0)U 1

2 (z, 0) + (Dw f̃ 12 )(z, 0, 0)U 2
2 (z, 0)],

and
U 1
2 = (M1

2 )−1 f̃ 12 (z, 0, 0), U 2
2 = (M2

2 )−1 f̃ 22 (z, 0, 0). (3.28)

Next we calculate the third order terms g13(z, 0, 0) in three steps.

Step 1. The calculation of ProjKer(M1
3 ) f̃

1
3 (z, 0, 0).

By (3.13) and (3.16), we have that,

F̃3(�zx , 0) = F3(�zx , 0).

Expand F3(�zx , 0) in Taylor series described as follows:

F̃3(�zx , 0) = F3(�zx , 0) =
∑

q1+q2+q3+q4=3

Fq1q2q3q4r
q1+q2
n1 (x)rq3+q4

n2 (x)zq11 zq22 zq33 zq44 ,

where Fq1q2q3q4 = (F (1)
q1q2q3q4 , F

(2)
q1q2q3q4 , F

(3)
q1q2q3q4)

T . Hence, from (3.18), we have that,

f̃ 13 (z, 0, 0) = �

⎛

⎝

[
F̃3(�zx , 0), βn1

]

[
F̃3(�zx , 0), βn2

]

⎞

⎠ = �

([
F3(�zx , 0), βn1

]

[
F3(�zx , 0), βn2

]

)

= �

⎛

⎜
⎝

∑

q1+q2+q3+q4=3
Fq1q2q3q4

∫ lπ
0 rq1+q2+1

n1 (x)rq3+q4
n2 (x)dxzq11 zq22 zq33 zq44

∑

q1+q2+q3+q4=3
Fq1q2q3q4

∫ lπ
0 rq1+q2

n1 (x)rq3+q4+1
n2 (x)dxzq11 zq22 zq33 zq44

⎞

⎟
⎠ .
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Therefore,

1

3! ProjKer(M1
3 ) f̃

1
3 (z, 0, 0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C2100z21z2 + C1011z1z3z4

C2100z1z22 + C1011z2z3z4

C0021z23z4 + C1110z1z2z3

C0021z3z24 + C1110z1z2z4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.29)

where, combining with the fact
∫ lπ
0 r2n1(x)r

2
n2(x)dx = 1

lπ ,

C2100 =
⎧
⎨

⎩

1
6lπ ψT

1 F2100, n1 = 0,

1
4lπ ψT

1 F2100, n1 �= 0,
C1011 = 1

6lπ
ψT
1 F1011,

C0021 = 1

4lπ
ψT
3 F0021, C1110 = 1

6lπ
ψT
3 F1110.

Step 2. The calculation of ProjKer(M1
3 )(Dz f̃ 12 )(z, 0, 0)U 1

2 (z, 0).
It follows from (3.13),(3.15) that

F̃2(�zx , 0) = Gd
2(�zx , 0) + F2(�zx , 0) = Gd(0,0)

2 (�zx ) + F2(�zx , 0). (3.30)

Since for all ε ∈ R2, F(0, ε) = DF(0, ε)U = (0, 0, 0)T . Then we have that,

F2(�zx + w, ε) = F2(�zx + w, 0)

=
∑

q1+q2+q3+q4=2

Fq1q2q3q4r
q1+q2
n1 (x)rq3+q4

n2 (x)zq11 zq22 zq33 zq44 + S2(�zx + w, 0) + o(|w|2),
(3.31)

where S2(�zx + w, 0) is the cross term of �zx and w.
Besides, denote Gd(0,0)

2 (�zx ) = (0,Gd(0,0)(2)
2 (�zx ), 0)T for convenience. From (3.14),

we have that,

Gd(0,0)(2)
2 (�zx )

= − 4

lπ
χ∗
{(n1

l

)2
(φ12φ13z

2
1 + 2Re(φ12φ13)z1z2 + φ12φ13z

2
2)
(
sin

n1x

l

)2

+ n1n2
l2

((φ12φ33 + φ13φ32)z1z3 + (φ12φ33 + φ13φ32)z1z4

+ (φ12φ33 + φ13φ32)z2z3 + (φ12φ33 + φ13φ32)z2z4) sin
n1x

l
sin

n2x

l

+
(n2
l

)2
(φ32φ33z

2
3 + 2Re(φ32φ33)z3z4 + φ32φ33z

2
4)
(
sin

n2x

l

)2
}

.

(3.32)
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Noticing that,

∫ lπ

0
r2m(x)rn(x)dx =

⎧
⎪⎪⎨

⎪⎪⎩

1√
lπ

, m �= 0, n = 0,
1√
2lπ

, 2m = n �= 0,

0, otherwise,

∫ lπ

0

(
sin

mx

l

)2
rn(x)dx =

⎧
⎪⎪⎨

⎪⎪⎩

√
lπ
2 , m �= 0, n = 0,

−
√
2lπ
4 , 2m = n �= 0,

0, otherwise,

∫ lπ

0
sin

mx

l
sin

nx

l
rk(x)dx =

⎧
⎪⎪⎨

⎪⎪⎩

√
2lπ
4 , k = n − m, m �= 0,

−
√
2lπ
4 , k = n + m,

0, otherwise,
∫ lπ

0
rm(x)rn(x)rk(x)dx =

{
1√
2lπ

, k = m + n, or k = n − m.

0, otherwise.

(3.33)

by (3.24), (3.30), (3.33), direct calculation results in

f̃ 12 (z, 0, 0) = �

⎛

⎜
⎝

[
F̃2(�zx , 0), βn1

]

[
F̃2(�zx , 0), βn2

]

⎞

⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
lπ

�

⎛

⎜
⎝

F2000z21 + F2000z22 + (F0020 − E1)z23 + (F0020 − E1)z24
+(F0011 − E2)z3z4 + F1100z1z2

F1010z1z3 + F1001z1z4 + F0110z2z3 + F0101z2z4

⎞

⎟
⎠ , n1 = 0, n2 �= 0,

(0, 0, 0, 0)T , n2 �= 2n1,

1√
2lπ

�

⎛

⎜
⎝

(F1010 − E3)z1z3 + (F1001 − E4)z1z4 + (F0110 − E4)z2z3
+(F0101 − E3)z2z4

(F2000 + E5)z21 + (F2000 + E5)z22 + (F1100 + E6)z1z2

⎞

⎟
⎠ , n2 = 2n1,

where

E1 = (0, 2χ∗φ32φ33

(n2
l

)2
, 0)T , E2 = (0, 4χ∗Re(φ32φ33)

(n2
l

)2
, 0)T ,

E3 = (0, 2χ∗(φ12φ33 + φ13φ32)
n1n2
l2

, 0)T , E4 = (0, 2χ∗(φ12φ33 + φ13φ32)
n1n2
l2

, 0)T ,

E5 = (0, 2χ∗φ12φ13

(n1
l

)2
, 0)T , E6 = (0, 4χ∗Re(φ12φ13)

(n1
l

)2
, 0)T .

(3.34)
Thus, for n2 �= 2n1, n1 �= 0, U 1

2 (z, 0) = (0, 0, 0, 0)T .
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For n1 = 0, n2 �= 0, we can compute that U 1
2 (z, 0) = (U 1(1)

2 ,U 1(2)
2 ,U 1(3)

2 ,U 1(4)
2 )T from

U 1
2 = (M1

2 )−1 f̃ 12 (z, 0, 0) as follows:

U 1(1)
2 = 1√

lπ
ψT
1

(
1

iωn1
F2000z

2
1 − 1

3iωn1
F2000z

2
2 + 1

2iωn2 − iωn1
(F0020 − E1)z

2
3

− 1

2iωn2 + iωn1
(F0020 − E1)z

2
4 − 1

iωn1
F1100z1z2 − 1

iωn1
(F0011 − E2)z3z4

)

,

U 1(2)
2 = 1√

lπ
ψ1

T
(

1

3iωn1
F2000z

2
1 − 1

iωn1
F2000z

2
2 + 1

2iωn2 + iωn1
(F0020 − E1)z

2
3

− 1

2iωn2 − iωn1
(F0020 − E1)z

2
4 + 1

iωn1
F1100z1z2 + 1

iωn1
(F0011 − E2)z3z4

)

,

U 1(3)
2 = 1√

lπ
ψT
3

(
F1010
iωn1

z1z3 − F1001
2iωn2 − iωn1

z1z4 − F0110
iωn1

z2z3 − F0101
2iωn2 + iωn1

z2z4

)

,

U 1(4)
2 = 1√

lπ
ψ3

T
(

F1010
iωn1 + 2iωn2

z1z3 + F1001
iωn1

z1z4 − F0110
iωn1 − 2iωn2

z2z3 − F0101
iωn1

z2z4

)

.

For 2n1 = n2 �= 0, U 1
2 (z, 0) = (U 1(1)

2 ,U 1(2)
2 ,U 1(3)

2 ,U 1(4)
2 ) denoted by

U 1(1)
2 = 1√

2lπ
ψT
1

(
1

iωn2
(F1010 − E3)z1z3 − 1

iωn2
(F1001 − E4)z1z4

+ 1

iωn2 − 2iωn1
(F0110 − E4)z2z3 − 1

iωn2 + 2iωn1
(F0101 − E3)z2z4

)

,

U 1(2)
2 = 1√

2lπ
ψ1

T
(

1

2iωn1 + iωn2
(F1010 − E3)z1z3 + 1

2iωn1 − iωn2
(F1001 − E4)z1z4

+ 1

iωn2
(F0110 − E4)z2z3 − 1

iωn2
(F0101 − E3)z2z4

)

,

U 1(3)
2 = 1√

2lπ
ψT
3

(
F2000 + E5

2iωn1 − iωn2
z21 − F2000 + E5

2iωn1 + iωn2
z22 − F1100 + E6

iωn2
z1z2

)

,

U 1(4)
2 = 1√

2lπ
ψ3

T

(
F2000 + E5

2iωn1 + iωn2
z21 − F2000 + E5

2iωn1 − iωn2
z22 + F1100 + E6

iωn2
z1z2

)

.

Thus,

1

3! ProjKer(M1
3 )[(Dz f̃ 12 )U 1

2 ](z, 0, 0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D2100z21z2 + D1011z1z3z4

D2100z1z22 + D1011z2z3z4

D0021z23z4 + D1110z1z2z3

D0021z3z24 + D1110z1z2z4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.35)
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where for n2 �= 2n1, n1 �= 0, D2100 = D1011 = D0021 = D1110 = 0. And for n1 = 0,
n2 �= 0,

D2100 = 1

6lπ iωn1

(

−(ψT
1 F2000)(ψ

T
1 F1100) + 2

3
|ψT

1 F2000|2 + |ψT
1 F1100|2

)

,

D1011 = 1

6lπ

(

− 2

iωn1
(ψT

1 F2000)(ψ
T
1 (F0011 − E2)) + 1

iωn1
(ψT

1 F1100)(ψ1
T
(F0011 − E2))

− 2

2iωn2 − iωn1
(ψT

1 (F0020 − E1))(ψ
T
3 F1001) + 1

iωn1
(ψT

1 (F0011 − E2))(ψ
T
3 F1010)

+ 2

2iωn2 + iωn1
(ψT

1 (F0020 − E1))(ψ3
T
F1010) + 1

iωn1
(ψT

1 (F0011 − E2))(ψ3
T
F1001)

)

,

D0021 = 1

6lπ

(

− 1

iωn1
(ψT

3 F1010)(ψ
T
1 (F0011 − E2)) + 1

2iωn2 − iωn1
(ψT

3 F1001)(ψ
T
1 (F0020 − E1))

+ 1

iωn1
(ψT

3 F0110)(ψ1
T
(F0011 − E2)) + 1

2iωn2 + iωn1
(ψT

3 F0101)(ψ1
T
(F0020 − E1))

)

,

D1110 = 1

6lπ

(
1

iωn1
(ψT

3 F0110)(ψ1
T
F1100) − 1

iωn1
(ψT

3 F1010)(ψ
T
1 F1100) − 1

iωn1
(ψT

3 F1010)(ψ
T
3 F0110)

+ 1

iωn1
(ψT

3 F0110)(ψ
T
3 F1010) + |ψT

3 F1001|2
2iωn2 − iωn1

+ |ψT
3 F0101|2

iωn1 + 2iωn2

)

.

For 2n1 = n2 �= 0,

D2100 = 1

12lπ

(

− (ψT
1 (F1010 − E3))(ψ

T
3 (F1100 + E6))

iωn2
+ (ψT

1 (F0110 − E4)(ψ
T
3 (F2000 + E5))

2iωn1 − iωn2

+ (ψT
1 (F1001 − E4))(ψ3

T
(F1100 + E6))

iωn2
+ (ψT

1 (F0101 − E3))(ψ3
T
(F2000 + E5))

2iωn1 + iωn2

)

,

D1011 = 1

12lπ

(

− (ψT
1 (F1010 − E3))(ψ

T
1 (F1001 − E4))

iωn2
+ (ψT

1 (F1001 − E4))(ψ
T
1 (F1010 − E3))

iωn2

+ 1

2iωn1 − iωn2
|ψT

1 (F0110 − E4)|2 + 1

2iωn1 + iωn2
|ψT

1 (F0101 − E3)|2
)

,

D0021 = 0,

D1110 = 1

12lπ

(
2ψT

3 (F2000 + E5)(ψ
T
1 (F0110 − E4)

iωn2 − 2iωn1
+ (ψT

3 (F1100 + E6)(ψ
T
1 (F1010 − E3))

iωn2

+2ψT
3 (F2000 + E5)(ψ1

T
(F1010 − E3))

2iωn1 + iωn2
+ (ψT

3 (F1100 + E6)(ψ1
T
(F0110 − E4))

iωn2

)

.

Step 3. The calculation of ProjKer(M1
3 )(Dw f̃ 12 )(z, 0, 0)U 2

2 (z, 0).
By (3.13), (3.14), (3.15) and (3.18), we have that,

(Dw f̃ 12 )(z, 0, 0)U 2
2 (z, 0) = �

⎛

⎝

[
Dw F̃2(�zx + w, 0)|w=0U 2

2 (z, 0), βn1

]

[
(Dw F̃2(�zx + w, 0)|w=0U 2

2 (z, 0), βn2

]

⎞

⎠ , (3.36)

where
F̃2(�zx + w, 0) = Gd(0,0)

2 (�zx + w) + F2(�zx + w, 0). (3.37)
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Direct computation shows that

DwG
d(0,0)
2 (�zx + w)|w=0U

2
2 (z, 0) = 0, (3.38)

since Gd(0,0)
2 (�zx + w) is independent on w.

From (3.31),

F2(�zx + w, 0) = S2(�zx + w, 0) + O(z2, w2)

=
3∑

j=1

(
2∑

k=1

S jkw j zkrn1(x) +
4∑

k=3

S jkw j zkrn2(x)

)

+ O(z2, w2),

where S jk = 2 ∂2F2(�zx+w,0)
∂w j ∂zk

|zk=0, w=0, ( j = 1, 2, 3, k = 1, 2, 3, 4), which induces that

DwF2(�zx + w, 0)|w=0w =
(

2∑

k=1

(S1k S2k S3k)zkrn1(x) +
4∑

k=3

(S1k S2k S3k)zkrn2(x)

)

w.

(3.39)
Let

U 2
2 (z, 0)

.= h(z) =
∑

n≥0

hn(z)rn(x), (3.40)

with

hn
.= hn(z) =

⎛

⎜
⎜
⎝

h(1)
n (z)

h(2)
n (z)

h(3)
n (z)

⎞

⎟
⎟
⎠ =

∑

q1+q2+q3+q4=2

⎛

⎜
⎜
⎜
⎝

h(1)
nq1q2q3q4

h(2)
nq1q2q3q4

h(3)
nq1q2q3q4

⎞

⎟
⎟
⎟
⎠
zq11 zq22 zq33 zq44 .

According to (3.36)–(3.40), we have that,

(Dw f̃ 12 )(z, 0, 0)U 2
2 (z, 0) = �

⎛

⎜
⎜
⎜
⎜
⎝

[

DwF2(�zx + w, 0)|w=0
∑

n≥0
hn(z)rn(x), βn1

]

[

DwF2(�zx + w, 0)|w=0
∑

n≥0
hn(z)rn(x), βn2

]

⎞

⎟
⎟
⎟
⎟
⎠

= �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[∑
n≥0

(
∑2

k=1(S1k S2k S3k)hn(z)zkrn(x)rn1(x)

+∑4
k=3(S1k S2k S3k)hn(z)zkrn(x)rn2(x), βn1 ]

[∑
n≥0

(
∑2

k=1(S1k S2k S3k)hn(z)zkrn(x)rn1(x)

+∑4
k=3(S1k S2k S3k)hn(z)zkrn(x)rn2(x), βn2 ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= �

⎛

⎜
⎝

∑

n≥0
(bnn1n1

∑2
k=1(S1k S2k S3k)hnzk + bnn1n2

∑4
k=3(S1k S2k S3k)hnzk)

∑

n≥0
(bnn1n2

∑2
k=1(S1k S2k S3k)hnzk + bnn2n2

∑4
k=3(S1k S2k S3k)hnzk)

⎞

⎟
⎠ ,
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where n = 0, 1, 2, . . . and

bnn1n1 =
∫ lπ

0
rn(x)r

2
n1(x)dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
lπ

, n = 0,

1√
2lπ

, n = 2n1 �= 0,

0, otherwise.

bnn1n2 =
∫ lπ

0
rn(x)rn1(x)rn2 (x)dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
lπ

, n = n2 �= 0, n1 = 0,

1√
2lπ

, 0 < n1 < n2, n = n2 + n1 or n = n2 − n1,

0, otherwise.

Thus, for n1 = 0, n2 �= 0,

(Dw f̃ 12 )(z, 0, 0)U2
2 (z, 0) = �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1√
lπ

(∑2
k=1(S1k S2k S3k)h0zk +∑4

k=3(S1k S2k S3k)hn2 zk
)

1√
lπ

(∑2
k=1(S1k S2k S3k)hn2 zk +∑4

k=3(S1k S2k S3k)h0zk
)

+ 1√
2lπ

∑4
k=3(S1k S2k S3k)h(2n2)zk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

For 0 < n1 ≤ n2,

(Dw f̃ 12 )(z, 0, 0)U 2
2 (z, 0)

= �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2lπ

(∑2
k=1(S1k S2k S3k)h2n1 zk +∑4

k=3(S1k S2k S3k)hn1+n2 zk
)

+ 1√
lπ

∑2
k=1(S1k S2k S3k)h0zk + δn1n2

∑4
k=3(S1k S2k S3k)hn2−n1 zk

1√
2lπ

(∑2
k=1(S1k S2k S3k)hn1+n2 zk +∑4

k=3(S1k S2k S3k)h2n2 zk
)

+ 1√
lπ

∑4
k=3(S1k S2k S3k)h0zk + δn1n2

∑2
k=1(S1k S2k S3k)hn2−n1 zk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where δn1n2 =
⎧
⎨

⎩

1√
2lπ

, n1 < n2
1√
lπ

, n1 = n2
. Then,

1

3! ProjKer(M1
3 )(Dw f̃ 12 )(z, 0, 0)U 2

2 (z, 0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E2100z21z2 + E1011z1z3z4

E2100z1z22 + E1011z2z3z4

E0021z23z4 + E1110z1z2z3

E0021z3z24 + E1110z1z2z4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.41)
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where for n1 = 0, n2 �= 0,

E2100 = 1

6
√
lπ

ψT
1 ((S11 S21 S31)h01100 + (S12 S22 S32)h02000),

E1011 = 1

6
√
lπ

ψT
1 ((S11 S21 S31)h00011 + (S13 S23 S33)hn21001 + (S14 S24 S34)hn21010),

E0021 = 1

6
ψT
3

(
1√
lπ

((S13 S23 S33)h00011 + (S14 S24 S34)h00020)

+ 1√
2lπ

((S13 S23 S33)h(2n2)0011 + (S14 S24 S34)h(2n2)0020)

)

,

E1110 = 1

6
ψT
3

(
1√
lπ

((S11 S21 S31)hn20110 + (S12 S22 S32)hn21010

+(S13 S23 S33)h01100) + 1√
2lπ

(S13 S23 S33)h(2n2)1100

)

,

and for 0 < n1 ≤ n2,

E2100 = 1

6
ψT
1

(
1√
lπ

((S11 S21 S31)h01100 + (S12 S22 S32)h02000)

+ 1√
2lπ

((S11 S21 S31)h(2n1)1100 + (S12 S22 S32)h(2n1)2000)

)

,

E1011 = 1

6
ψT
1

(
1√
2lπ

(
(S11 S21 S31)h(2n1)0011 + (S13 S23 S33)h(n1+n2)1001

+(S14 S24 S34)h(n1+n2)1010
)+ 1√

lπ
(S11 S21 S31)h00011

+δn1n2((S13 S23 S33)h(n2−n1)1001 + (S14 S24 S34)h(n2−n1)1010)

)

,

E0021 = 1

6
ψT
3

(
1√
2lπ

((S13 S23 S33)h(2n2)0011 + (S14 S24 S34)h(2n2)0020)

+ 1√
lπ

((S13 S23 S33)h00011 + (S14 S24 S34)h00020)

)

,

E1110 = 1

6
ψT
3

(
1√
2lπ

(
(S11 S21 S31)h(n1+n2)0110 + (S12 S22 S32)h(n1+n2)1010

+(S13 S23 S33)h(2n2)1100
)+ 1√

lπ
(S13 S23 S33)h01100

+ δn1n2(S11 S21 S31)h(n2−n1)0110 + (S12 S22 S32)h(n2−n1)1010

)

.

Obviously, we still need to compute hn1100, hn2000, hn0011, hn1001, hn1010, hn0020,
hn0110.

By (3.19), we have that,

(M2
2 )(hn(z)rn(x)) = (Dz)(hn(z)rn(x))Bz − L1(hn(z)rn(x)),
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which, combining (3.1), (3.9), (3.12), leads to

[
(M2

2 )(hn(z)rn(x)), βn
] = iωn1(2hn2000z

2
1 + hn1010z1z3 + hn1001z1z4

− 2hn0200z
2
2 − hn0101z2z4 − hn0110z2z3)

+ iωn2(2hn0020z
2
3 + hn1010z1z3 + hn0110z2z3

− 2hn0002z
2
4 − hn1001z1z4 − hn0101z2z4) − Mnhn(z),

(3.42)

where Mn is defined in (3.9). According to (3.10), (3.12), (3.30), we have that,

f̃ 22 (z, 0, 0) = (I − π)F̃2(�zx , 0)

=F̃2(�zx , 0) − (ψT
1 [F̃2(�zx , 0), βn1 ]φ1 + ψ1

T [F̃2(�zx , 0), βn1 ]φ1)rn1(x)

− (ψT
3 [F̃2(�zx , 0), βn2 ]φ3 + ψ3

T [F̃2(�zx , 0), βn2 ]φ3)rn2(x),

F̃2(�zx , 0) =Gd(0,0)
2 (�zx ) + F2(�zx , 0),

which, combining (3.33), induces that, for n1 = 0, n2 �= 0,

[
f̃ 22 (z, 0, 0), β0

]
= 1√

lπ

(
(F2000 − ψT

1 F2000φ1 − ψ1
T
F2000φ1)z

2
1

+ (F2000 − ψT
1 F2000φ1 − ψ1

T
F2000φ1)z

2
2

+ (F1100 − ψT
1 F1100φ1 − ψ1

T
F1100φ1)z1z2

+ (F0020 − E1 − ψT
1 (F0020 − E1)φ1 − ψ1

T
(F0020 − E1)φ1)z

2
3

+ (F0020 − E1 − ψT
1 (F0020 − E1)φ1 − ψ1

T
(F0020 − E1)φ1)z

2
4

+(F0011 − E2 − ψT
1 (F0011 − E2)φ1 − ψ1

T
(F0011 − E2)φ1)z3z4

)
,

[ f̃ 22 (z, 0, 0), βn2 ] = 1√
lπ

(
(F1010 − ψT

3 F1010φ3 − ψ3
T
F1010φ3)z1z3

+ (F1001 − ψT
3 F1001φ3 − ψ3

T
F1001φ3)z1z4

+ (F1001 − ψT
3 F1001φ3 − ψ3

T
F1001φ3)z2z3

+(F1010 − ψT
3 F1010φ3 − ψ3

T
F1010φ3)z2z4

)
,

[ f̃ 22 (z, 0, 0), β2n2 ] = 1√
2lπ

(
(F0020 + E1)z

2
3 + (F0020 + E1)z

2
4 + (F0011 + E2)z3z4

)
,

(3.43)
where E1, E2 are defined by (3.34).

For 0 < n1 < n2,

[
f̃ 22 (z, 0, 0), βn

]

=

⎧
⎪⎪⎨

⎪⎪⎩

1√
lπ

(
(F2000 − E5)z21 + (F2000 − E5)z22 + (F0020 − E1)z23

+ (F0020 − E1)z24 + (F1100 − E6)z1z2 + (F0011 − E2)z3z4
)
, n = 0,

1√
2lπ

(
(F0020 + E1)z23 + (F0020 + E1)z24 + (F0011 + E2)z3z4

)
, n = 2n2,

(3.44)
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[
f̃ 22 (z, 0, 0), βn

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2lπ

(
(F1010 + E3)z1z3 + (F1010 + E3)z2z4

+ (F1001 + E4)z1z4 + (F1001 + E4)z2z3
)
, n = n1 + n2,

1√
2lπ

(
(F1010 − E3)z1z3 + (F1010 − E3)z2z4

+ (F1001 − E4)z1z4 + (F1001 − E4)z2z3
)
, n = n2 − n1, n2 �= 2n1, n2 �= 3n1,

1√
2lπ

(
(F1010 − E3 − ψT

1 (F1010 − E3)φ1 − ψ1
T
(F1010 − E3)φ1))z1z3

+(F1001 − E4 − ψT
1 (F1001 − E4)φ1 − ψ1

T
(F1001 − E4)φ1))z1z4

+(F1001 − E4 − ψT
1 (F1001 − E4)φ1 − ψ1

T
(F1001 − E4)φ1))z2z3

+ (F1010 − E3 − ψT
1 (F1010 − E3)φ1 − ψ1

T
(F1010 − E3)φ1))z2z4

)
, n = n2 − n1, n2 = 2n1,

1√
2lπ

(
(F2000 + E5)z21 + (F2000 + E5)z22 + (F1100 + E6)z1z2

+(F1010 − E3)z1z3 + (F1001 − E4)z1z4 + (F1010 − E3)z2z4
+(F1001 − E4)z2z3

)
, n = n2 − n1, n2 = 3n1,

(3.45)
and

[
f̃ 22 (z, 0, 0), βn

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2lπ

(
(F2000 + E5)z

2
1 + (F2000

)

+ 1√
2lπ

(
E5)z

2
2 + (F1100 + E6)z1z2

)
, n = 2n1, n2 �= 2n1, n2 �= 3n1,

1√
2lπ

(
(F2000 + E5 − ψT

3 (F2000 + E5)φ3 − ψ3
T
(F2000 + E5)φ3)z

2
1

+(F2000 + E5 − ψT
3 (F2000 + E5)φ3 − ψ3

T
(F2000 + E5)φ3)z

2
2

+(F1100 + E6 − ψT
3 (F1100 + E6)φ3 − ψ3

T
(F1100 + E6)φ3)z1z2

)
, n = 2n1, n2 = 2n1,

1√
2lπ

(
(F2000 + E5)z

2
1 + (F2000 + E5)z

2
2 + (F1100 + E6)z1z2

+(F1010 + E3)z1z3 + (F1001 + E4)z1z4 + (F1010 + E3)z2z4
+(F1001 + E3)z2z4

)
, n = 2n1, n2 = 3n1.

(3.46)
From (3.28), we have that,

[(M2
2 )(hn(z)rn(x)), βn] = [ f̃ 22 (z, 0, 0), βn], n = 0, 1, 2, . . . . (3.47)

Next, we compute hnq1q2q3q4 in three cases.
Case 1. For n1 = 0, n2 �= 0, from (3.42),(3.43), (3.47) and matching the coefficients

z21, z23, z1z2, z3z4, we have that,

n = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2iωn1h02000 − M0h02000 = 1√
lπ

(F2000 − ψT
1 F2000φ1 − ψ1

T
F2000φ1),

2iωn2h00020 − M0h00020 = 1√
lπ

(F0020 − E1 − ψT
1 (F0020 − E1)φ1 − ψ1

T
(F0020 − E1)φ1),

−M0h01100 = 1√
lπ

(F1100 − ψT
1 F1100φ1 − ψ1

T
F1100φ1),

−M0h00011 = 1√
lπ

(F0011 − E2 − ψT
1 (F0011 − E2)φ1 − ψ1

T
(F0011 − E2)φ1).
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Therefore,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h02000 = 1√
lπ

(2iωn1 I − M0)
−1(F2000 − ψT

1 F2000φ1 − ψ1
T
F2000φ1),

h00020 = 1√
lπ

(2iωn2 I − M0)
−1(F0020 − E1 − ψT

1 (F0020 − E1)φ1 − ψ1
T
(F0020 − E1)φ1),

h01100 = − 1√
lπ

M−1
0 (F1100 − ψT

1 F1100φ1 − ψ1
T
F1100φ1),

h00011 = − 1√
lπ

M−1
0 (F0011 − E2 − ψT

1 (F0011 − E2)φ1 − ψ1
T
(F0011 − E2)φ1).

Similarly, when n = n2 and n = 2n2, by matching the coefficients z1z3, z1z4, z2z3, we
have that,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hn21010 = 1√
lπ

(i(ωn1 + ωn2)I − Mn2)
−1(F1010 − ψT

3 F1010φ3 − ψ3
T
F1010φ3),

hn21001 = 1√
lπ

(i(ωn1 − ωn2)I − Mn2)
−1(F1001 − ψT

3 F1001φ3 − ψ3
T
F1001φ3),

hn20110 = 1√
lπ

(i(ωn2 − ωn1)I − Mn2)
−1(F1001 − ψT

3 F1001φ3 − ψ3
T
F1001φ3),

h(2n2)0011 = − 1√
2lπ

M−1
2n2

(F0011 + E2),

h(2n2)0020 = 1√
2lπ

(2iωn2 I − M2n2)
−1(F0020 + E1), h(2n2)1100 = �0.

Case 2. For 0 < n1 < n2, from (3.42), (3.44), (3.46), (3.47) and matching the coefficients
z21, z23, z1z2, z3z4, we have that,

n = 0,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2iωn1h02000 − M0h02000 = 1√
lπ

(F2000 − E5),

2iωn2h00020 − M0h00020 = 1√
lπ

(F0020 − E1),

−M0h01100 = 1√
lπ

(F1100 − E6),

−M0h00011 = 1√
lπ

(F0011 − E2).

Therefore,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h02000 = 1√
lπ

(2iωn1 I − M0)
−1(F2000 − E5),

h00020 = 1√
lπ

(2iωn2 I − M0)
−1(F0020 − E1),

h01100 = − 1√
lπ
M−1

0 (F1100 − E6),

h00011 = − 1√
lπ
M−1

0 (F0011 − E2).

Similarly, when n = 2n1, n = n1 + n2, n = n2 − n1 and n = 2n2, by matching the
coefficients z21, z23, z1z2, z1z3, z1z4, z2z3, z3z4, we have that,

n = 2n2,

{
h(2n2)0011 = − 1√

2lπ
M−1

2n2
(F0011 + E2),

h(2n2)0020 = 1√
2lπ

(2iωn2 I − M2n2)
−1(F0020 + E1), h(2n2)1100 = �0,

n = n1 + n2,

⎧
⎪⎪⎨

⎪⎪⎩

h(n1+n2)1001 = 1√
2lπ

(i(ωn1 − ωn2)I − Mn1+n2)
−1(F1001 + E4),

h(n1+n2)0110 = 1√
2lπ

(i(ωn2 − ωn1)I − Mn1+n2)
−1(F1001 + E4),

h(n1+n2)1010 = 1√
2lπ

(i(ωn2 + ωn1)I − Mn1+n2)
−1(F1010 + E3).

For n = 2n1, n2 �= 2n1,
{
h(2n1)1100 = − 1√

2lπ
(M2n1)

−1(F1100 + E6), h(2n1)0011 = �0,
h(2n1)2000 = 1√

2lπ
(2iωn1 I − M2n1)

−1(F2000 + E5), h(2n1)0020 = �0.
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For n = 2n1, n2 = 2n1,

⎧
⎪⎪⎨

⎪⎪⎩

h(2n1)1100 = − 1√
2lπ

(M2n1 )
−1(F1100 + E6 − ψT

3 (F1100 + E6)φ3 − ψ3
T
(F1100 + E6)φ3),

h(2n1)2000 = 1√
2lπ

(2iωn1 I − M2n1 )
−1(F2000 + E5 − ψT

3 (F2000 + E5)φ3 − ψ3
T
(F2000 + E5)φ3),

h(2n1)0011 = h(2n1)0020 = �0.
For n = n2 − n1, n2 �= 2n1,

⎧
⎪⎪⎨

⎪⎪⎩

h(n2−n1)1001 = 1√
2lπ

(i(ωn1 − ωn2)I − Mn2−n1)
−1(F1001 − E4),

h(n2−n1)1010 = 1√
2lπ

(i(ωn1 + ωn2)I − Mn2−n1)
−1(F1010 − E3),

h(n2−n1)0110 = 1√
2lπ

(i(ωn2 − ωn1)I − Mn2−n1)
−1(F1001 − E4).

For n = n2 − n1, n2 = 2n1,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(n2−n1)1001 = 1√
2lπ

(i(ωn1 − ωn2)I − Mn2−n1)
−1(F1001 − E4

−ψT
1 (F1001 − E4)φ1 − ψ1

T
(F1001 − E4)φ1)),

h(n2−n1)1010 = 1√
2lπ

(i(ωn1 + ωn2)I − Mn2−n1)
−1(F1010 − E3

−ψT
1 (F1010 − E3)φ1 − ψ1

T
(F1010 − E3)φ1)),

h(n2−n1)0110 = 1√
2lπ

(i(ωn2 − ωn1)I − Mn2−n1)
−1(F1001 − E4

−ψT
1 (F1001 − E4)φ1 − ψ1

T
(F1001 − E4)φ1)).

Hence, by (3.21), (3.26), (3.27), (3.29), (3.35) and (3.41), the norm form to third order for
double bifurcation is as follows:

ż = Bz +

⎛

⎜
⎜
⎜
⎜
⎝

Bn11z1ε1 + Bn12z1ε2

Bn11z2ε1 + Bn12z2ε2
Bn21z3ε1 + Bn22z3ε2

Bn21z4ε1 + Bn22z4ε2

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B2100z21z2 + B1011z1z3z4

B2100z1z22 + B1011z2z3z4

B0021z23z4 + B1110z1z2z3

B0021z3z24 + B1110z1z2z4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.48)

where,

B2100 =C2100 + 3

2
(D2100 + E2100), B1011 = C1011 + 3

2
(D1011 + E1011),

B0021 =C0021 + 3

2
(D0021 + E0021), B1110 = C1110 + 3

2
(D1110 + E1110).

Making double polar coordinates transformation by

z1 = ρ1e
iθ1 , z2 = ρ1e

−iθ1 , z3 = ρ2e
iθ2 , z4 = ρ2e

−iθ2 ,

system (3.48) is equivalent to the following equation:

ρ̇1 = ρ1(c1ε1 + c2ε2 + d1ρ
2
1 + k1ρ

2
2 ),

ρ̇2 = ρ2(c3ε1 + c4ε2 + d2ρ
2
1 + k2ρ

2
2 ),

where
c1 = Re(Bn11), c2 = Re(Bn12), c3 = Re(Bn21), c4 = Re(Bn22),

d1 = Re(B2100), d2 = Re(B1110), k1 = Re(B1011), k2 = Re(B0021).
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4 Numerical Simulations

In this section, we numerically investigate the spatiotemporal patterns of system (2.12).
Firstly, for the local system (2.16) with

r = 1, k = 2, β = 1.2, γ = 1, ξ = 2, η = 0.5,

it follows from (A1) that the positive equilibrium E2 exists for 0 < ρ < 2/(2σ + 1) and
from (2.17) that system (2.16) has no Hopf bifurcation for ρ > ρ∗

max ≈ 0.3431. By (2.15),
we have the Hopf bifurcation curve H: ρ = (2σ − 1)/(2σ 2 + σ) and E2 is asymptotically
stable for ρ > (2σ − 1)/(2σ 2 + σ) and unstable for ρ < (2σ − 1)/(2σ 2 + σ). The stability
region D1 and the Hopf bifurcation curve H for system (2.16) in the σ–ρ plane are illustrated
in Fig. 1a for 0 < σ < 4.2 and 0 < ρ < 2.

For fixed ρ = 0.2 < ρ∗
max , we have σ1 � 0.6492 and σ2 � 3.8508. Thus, the positive

equilibrium E2 is asymptotically stable for 0 < σ < σ1 or σ > σ2 and unstable for
σ1 < σ < σ2, and system (2.16) undergoes Hopf bifurcations at σ = σ j , j = 1, 2, which
are also the critical values of the spatially homogeneous Hopf bifurcation of the diffusive
system (2.12). Then, for (2.12), choosing the diffusive coefficients and the spatial interval
(0, lπ) as

δN = 0.5, δP = 0.8, δS = 0.5, l = 4,

we investigate the spatiotemporal dynamics taking the parameters χ and σ as two bifurcation
parameters. It follows from Lemma 2.2 that [√x0l] = 1 if σ ∈ (0, 4.2). A further calculation
shows that χH

1 (σ ) > χH
2 (σ ) for σ ∈ (0, 0.1837) ∪ (4.0146, 4.2) and χH

1 (σ ) < χH
2 (σ ) for

σ ∈ (0.1837, 4.0146). Thus,

n∗
H =

{
1, σ ∈ (0.1837, 4.0146),
2, σ ∈ (0, 0.1837) ∪ (4.0146, 4.2).

Denote the Hopf bifurcation curves in the σ–χ plane by

H (1)
0 : σ = σ1 � 0.6492, H (2)

0 : σ = σ2 � 3.8508,

which correspond to the spatially homogeneous Hopf bifurcations, and by Theorem 2.1,

H1 : χ = χH
1 (σ ) = 2.5(1 − 0.2σ)2(9.3a211 − (9.4429 − 0.768σ)a11 + 0.7058 − 0.0624σ)

0.9 − 0.2σ
,

H2 : χ = χH
2 (σ ) = 2.5(1 − 0.2σ)2(3.3a211 − (4.4115 − 0.192σ)a11 + 1.0852 − 0.0624σ)

0.9 − 0.2σ
,

where a11 = 0.2(σ +0.5−1/(1−0.2σ)), which correspond to the spatially inhomogeneous
Hopf bifurcations, for wave numbers n = 1 and n = 2, respectively.

Similarly, by Lemma 2.3, we have

n∗
T =

{
3, σ ∈ (0, 2.857),
2, σ ∈ (2.857, 4.2).
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Fig. 1 a The existence and stability regions of the positive equilibrium E2 of the local system (2.16);bStability
regions and bifurcation diagrams for the diffusive system (2.12) in the χ −σ for ρ = 0.2 and other parameters

are the same as in (a). The shaded regions SR1 and SR2 are stable regions, H (1)
0 and H (2)

0 are homogeneous
Hopf bifurcation lines. H1, H2 are spatially inhomogeneous Hopf bifurcation curves and T3, T2 are critical
Turing bifurcation curves

Then, by Theorems 2.1 and 2.2, the boundaries of the stability regions of system (2.12)
consist of the spatially inhomogeneous Hopf bifurcation curves H1 and H2, the spatially
homogeneous Hopf bifurcation lines H (1)

0 and H (2)
0 and the Turing bifurcation curves T3 and

T2, as shown in Fig. 1b, where

T2 : χ = χT
2 (σ ) = −2.5(1 − 0.2σ)2

0.9 − 0.2σ

(

−0.22σ + 0.5525 + 1

10 − 2σ

)

,

T3 : χ = χT
3 (σ ) = −2.5(1 − 0.2σ)2

0.9 − 0.2σ

(

−0.1917σ + 0.4133 + 0.125

1 − 0.2σ

)

,

according to Theorem 2.2.
The spatially inhomogeneous Hopf bifurcation curves H1 and H2 intersect at two points

Q3(0.1837, 3.7633) and Q4(4.0146, 1.2837). The spatially inhomogeneous Hopf bifurca-
tion curve H1 intersects with the straight Hopf bifurcation lines H (1)

0 and H (2)
0 at the point

Q1(0.6492, 1.6353) and Q2(3.8508, 0.4736), respectively. These double-Hopf bifurcation
points Q j , ( j = 1, 2, 3, 4) lie on the the boundaries of the stability regions of system (2.12).

The critical Turing bifurcation curves T3 and T2 intersect with the straight Hopf bifur-
cation lines H (1)

0 and H (2)
0 at the points R1(0.6492,−1.063) and R2(3.8508,−0.1428),

respectively. By Theorem 2.5, system (2.12) undergoes Turing–Hopf bifurcations near the
positive constant equilibrium E2 at R1 and R2, which also lie on the the boundaries of the
stability regions of system (2.12).
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In what follows, we are interested in the dynamical classification of system (2.12) near
the double-Hopf bifurcation points.

4.1 The Double-Hopf Bifurcations Due to the Intersection of the Spatially
Homogeneous and Inhomogeneous Hopf Bifurcations

For the double-Hopf bifurcation point Q2(3.8508, 0.4736), which is the intersection point
of the spatially homogeneous Hopf bifurcation line H (2)

0 and the spatially inhomogeneous
Hopf bifurcation curves H1, we have n1 = 0, n2 = 1 and it follows from (2.5) and (2.8)
that

ω0 = 0.1765, ω1 = 0.2755.

Letting ε1 = σ − 3.8508, ε2 = χ − 0.4736 and employing the procedure developed in
Sect. 3, we obtain the normal form truncated to the third order terms as follows:

{
ρ̇1 = ρ1(−0.2786ε1 − 0.03075ρ2

1 − 10.0633ρ2
2 ),

ρ̇2 = ρ2(−0.2396ε1 + 0.0681ε2 − 0.0464ρ2
1 − 0.057ρ2

2 ).
(4.1)

System (4.1) has a zero equilibrium E∗
0 (0, 0) for any ε1, ε2 ∈ R, and two boundary equilibria

E∗
1 (
√−9.0594ε1, 0), ε1 < 0; E∗

2 (0,
√−4.2006ε1 + 1.1943ε2), ε2 > 3.5173ε1,

and a positive equilibrium

E∗(
√−5.1462ε1 + 1.4728ε2,

√−0.01196ε1 − 0.00401ε2), 3.4941ε1 < ε2 < −2.6569ε1.

By analyzing the stability and bifurcation of these equilibria, the normal form (4.1) is the
so-called simple case, illustrated in [28]. The phase portrait is easy to be obtained in Fig. 2,
where the curves H (2)

0 , H̃1, L1
2, L2

2 are denoted by

H (2)
0 : σ = 3.8508, H̃1 : χ = 0.4736 + 3.5173(σ − 3.8508),

L1
2 : χ = 0.4736 + 3.4941(σ − 3.8508), (σ < 3.8508),

L2
2 : χ = 0.4736 − 2.6569(σ − 3.8508), (σ < 3.8508).

The lines H (2)
0 , H̃1, L1

2, L2
2 divide the (σ, χ) plane into six regions with different dynamics.

Remark 4.1 The Hopf bifurcation line H̃1 obtained by the normal form (4.1) is tangent to the
Hopf bifurcation curve H1 due to the linear analysis at the point Q2(3.8508, 0.4736).

According to the phase portrait Fig. 2, there are three stable patterns near the double-Hopf
bifurcation point Q2 as follows:

(i) when (σ, χ) = (3.858, 0.44) ∈ 1©, (4.1) has a stable equilibrium E∗
0 , which implies

that the positive equilibrium E2(0.8757, 2.0511, 3.5026) of system (2.12) is asymptoti-
cally stable, as shown in Fig. 3a, d;
(i i) when (σ, χ) = (3.848, 0.44) ∈ 6©, (4.1) has a stable boundary equilibrium E∗

1 ,
which implies that system (2.12) has a stable spatially homogeneous periodic solution,
as shown in Fig. 3b, e;
(i i i) when (σ, χ) = (3.8608, 0.5096) ∈ 2©, (4.1) has a stable boundary equilibrium E∗

2 ,
which implies that system (2.12) has a stable spatially inhomogeneous periodic solution
with the spatial shape like cos(x/4), as shown in Fig. 3c, f.
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Fig. 2 The phase portrait near the double-Hopf bifurcation point Q2 in Fig. 1

Fig. 3 Spatiotemporal dynamics of (2.12) for different parameters σ and χ near the point Q2: a, b and c are
the projections of N (x, t) on the x–t plane for (σ, χ) = (3.858, 0.44) ∈ 1©, (σ, χ) = (3.848, 0.44) ∈ 6©,
(σ, χ) = (3.8608, 0.5096) ∈ 2©, respectively. d, e and f are the spatial profiles for fixed time t = 1500 of (a),
(b) and (c), respectively

Except for these stable patterns, there are two types of pattern transitions: (i) from unstable
spatially homogeneous periodic solution to stable spatially inhomogeneous periodic solution,
which exists in the region 3©, (see Fig. 4a); (i i) from unstable spatially inhomogeneous
periodic solution to stable spatially homogeneous periodic solution, which exists in the region
5©, (see Fig. 5a). Figures 4a and 5a are the projections of N (x, t) on the x–t plane for
(σ, χ) = (3.85, 0.49) ∈ 3© and (σ, χ) = (3.842, 0.4438) ∈ 5©, respectively. Figure 4b, c
are the truncated sections of Fig. 4a for short-term and long-term behaviors, respectively.
Figure 5b, c are the truncated sections of Fig. 5a for short-term and long-term behaviors,
respectively.

When (σ, χ) lies in the region 4©, two stable spatially homogeneous and inhomogeneous
periodic solutions coexist.
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Fig. 4 a The projection of N (x, t) on the x–t plane for (σ, χ) = (3.85, 0.49) ∈ 3©, which shows the
existence of the pattern transition from unstable spatially homogeneous periodic solution to stable spatially
inhomogeneous periodic solution. b and c are the truncated section of (a) for short-term and long-term
behaviors, respectively

Fig. 5 a The projection of N (x, t) on the x–t plane for (σ, χ) = (3.842, 0.4438) ∈ 5©, which shows the
existence of the pattern transition from unstable spatially inhomogeneous periodic solution to stable spatially
homogeneous periodic solution. b, c are the truncated section of (a) for short-term and long-term behaviors,
respectively

4.2 The double-Hopf bifurcations due to the intersection of two spatially
inhomogeneous Hopf bifurcations

For the double-Hopf bifurcation point Q3(0.1837, 3.7633), which is the intersection point of
two spatially inhomogeneous Hopf bifurcation curves H1 and H2, we have n1 = 1, n2 = 2
and ω1 = 0.5414, ω2 = 0.7027, and the normal form truncated to the third order terms is

{
ρ̇1 = ρ1(0.08387ε1 + 0.0153ε2 − 0.0902ρ2

1 − 0.1524ρ2
2 ),

ρ̇2 = ρ2(0.08896ε1 + 0.03029ε2 + 0.1093ρ2
1 − 0.1886ρ2

2 ).
(4.2)

System (4.2) has a zero equilibriumM0(0, 0) for any ε1, ε2 ∈ R, and two boundary equilibria

M1(
√
0.9296ε1 + 0.1696ε2, 0), ε2 > −5.4822ε1; M2(0,

√
0.4716ε1 + 0.1605ε2), ε2 > −2.9373ε1,

and a positive equilibrium

M(
√
0.06715ε1 − 0.05138ε2,

√
0.5105ε1 + 0.1308ε2), for − 3.9033ε1 < ε2 < 1.3069ε1.
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Fig. 6 The phase portrait near the double-Hopf bifurcation point Q3 in Fig. 1

And the phase portrait for (4.2) is plotted in Fig. 6, where the curves H̃31, H̃32, L1
3, L2

3
are denoted by

H̃31 : χ = 3.7633 − 5.4822(σ − 0.1837), H̃32 : χ = 3.7633 − 2.9373(σ − 0.1837),

L1
3 : χ = 3.7633 − 3.9033(σ − 0.1837), (σ > 0.1837),

L2
3 : χ = 3.7633 + 1.3069(σ − 0.1837), (σ > 0.1837).

The lines H̃31, H̃32, L1
3, L2

3 divide the (σ, χ) plane into six regions with different dynamics.

Remark 4.2 The Hopf bifurcation curves H̃31 and H̃32 obtained by the normal form (4.2) are
tangent to the Hopf bifurcation curves H1 and H2, respectively, due to the linear analysis at
the point Q3(0.1837, 3.7633).

According to the phase portrait Fig. 6, there are four stable patterns near the double-Hopf
bifurcation point Q3:

(i) when (σ, χ) = (0.18, 3.685) ∈ 1©, system (4.2) has a stable equilibrium M0, which
means that the positive equilibrium E2(0.2075, 0.7748, 0.8299) of system (2.12) is
asymptotically stable, as shown in Fig. 7a, e;

(ii) when (σ, χ) = (0.19, 3.736) ∈ 2©, system (4.2) has a stable boundary equilibrium M1,
which means that system (2.12) has a stable spatially inhomogeneous periodic solution
with the spatial shape like cos(x/4), as shown in Fig. 7b, f;

(iii) when (σ, χ) = (0.18, 3.78) ∈ 6©, system (4.2) has a stable boundary equilibrium M2,
which means that system (2.12) has a stable spatially inhomogeneous periodic solution
with the spatial shape like cos(x/2), as shown in Fig. 7c, g;

(iv) when (σ, χ) = (0.19, 3.752) ∈ 4©, system (4.2) has a stable positive equilibrium M
and two unstable boundary equilibria M1, M2, which means that system (2.12) has a
stable spatially inhomogeneous quasi-periodic solution with the spatial shape like the
combination of cos(x/4) and cos(x/2), as shown in Fig. 7d, h.

For fixed space variable x = π/5, Fig. 8a–c are the time evolutions of N (x, t), and (d),
(e) and (f) are the orbits of system (2.12) in the phase space corresponding to Fig. 7b–d.

In addition, besides these four stable patterns, there are still three types of pattern tran-
sitions: (i) from unstable spatially inhomogeneous periodic solution with the spatial shape
like cos(x/4) to stable spatially inhomogeneous quasi-periodic solution for (σ, χ) ∈ 3©;
(i i) from unstable spatially inhomogeneous periodic solution with the spatial shape like
cos(x/2) to stable spatially inhomogeneous quasi-periodic solution for (σ, χ) ∈ 4©; (i i i)
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Fig. 7 Spatiotemporal dynamics of (2.12) for different parameters σ and χ near the point Q3: a–d are the
projections of N (x, t) on the x–t plane for (σ, χ) = (0.18, 3.685) ∈ 1©, (σ, χ) = (0.19, 3.736) ∈ 2©,
(σ, χ) = (0.18, 3.78) ∈ 6©, (σ, χ) = (0.19, 3.752) ∈ 4©, respectively. e–h are the spatial profiles for fixed
time t = 1500 of a–d, respectively

Fig. 8 For fixed space variable x = π/5, a–c are the time evolution of N (x, t), and d–f are the orbit of
system (2.12) in the phase space with the same parameters σ and χ as in Fig. 7b–d, respectively. d–e show
the existence of stable periodic orbit and f shows the existence of the quasi-periodic orbit

from unstable spatially inhomogeneous periodic solution with the spatial shape like cos(x/4)
to stable spatially inhomogeneous periodic solution with the spatial shape like cos(x/2) for
(σ, χ) ∈ 5©.

Remark 4.3 Compared with the case of Q2, the stable spatially inhomogeneous quasi-
periodic solution newly appears, but there is no the existence of stable spatially homogeneous
and inhomogeneous periodic solutions.

5 Conclusion

In this paper, we investigate the effect of the indirect prey-taxis on the dynamics of theGause–
Kolmogorov-type predator–prey system. The stability of the positive equilibrium and the
possible bifurcations are studied. We obtain the conditions guaranteeing the occurrence of
the Hopf bifurcation, double-Hopf bifurcation and Turing–Hopf bifurcation and the explicit
critical values for these bifurcations are determined.
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For this system and under the assumption that the positive equilibrium of the correspond-
ing ordinary differential system is stable, there is no diffusion-driven Turing instability when
there is no indirect prey-taxis (χ = 0). For the repulsive indirect taxis (χ < 0), there exists
only taxis-driven Turing bifurcation but no Hopf bifurcations and the boundaries of the sta-
bility region consist of the Turing bifurcation curves and the spatially homogeneous Hopf
bifurcation curve. The intersection points of these boundary curves are Turing–Turing bifur-
cation andTuring–Hopf bifurcation points, whichmay result in the occurrence of the spatially
inhomogeneous steady state, spatially homogeneous/inhomogeneous periodic solutions and
the coexistence of multiple stable steady states.

For the attractive indirect taxis (χ > 0), there exists only prey-taxis-driven spatially
Hopf bifurcation but no Turing bifurcation, which do not occur for the reaction–diffusion
predator–prey model with a direct prey-taxi like (1.1), and the boundaries of the stability
region consist of the Hopf bifurcation curves. The intersection points of these boundary
curves are double-Hopf bifurcation points, which leads to the occurrence of the spatially
homogeneous/inhomogeneous periodic solutions and quasi-periodic solutions. To theoreti-
cally investigate the dynamical classification near the double-Hopf bifurcation point, we take
the indirect prey-taxis and other parameter in the reaction term as the perturbation parameters,
and then derive an algorithm for calculating the normal form of codimension-2 double-Hopf
bifurcation for the non-resonance and weak resonance.

We also apply the obtained theoretical results to the system with the Holling-II functional
response. The stable region and the bifurcation curves are completely determined in the
σ − χ plane, where σ is the self saturation coefficient. Employing the normal form of
the double-Hopf bifurcation, the dynamical classification near this double-Hopf bifurcation
point is explicitly determined. For the double-Hopf bifurcation derived from the interaction
of the spatially homogeneous and inhomogeneous Hopf bifurcations, there are three kinds of
stable patterns: constant equilibrium, spatially homogeneous periodic solutions and spatially
inhomogeneous periodic solutions. Except for these stable spatial–temporal patterns, there
are two types of pattern transitions: one is from unstable spatially homogeneous periodic
solution to stable spatially inhomogeneous periodic solution, the other is from unstable
spatially inhomogeneous periodic solution to stable spatially homogeneous periodic solution.

For the double-Hopf bifurcation derived from the interaction of two spatially inhomoge-
neous Hopf bifurcations, there are four kinds of stable patterns: constant equilibrium, two
kinds of spatially inhomogeneous periodic solutions with different spatial profiles and spa-
tially inhomogeneous quasi-periodic solutions. Besides these four stable spatial–temporal
patterns, there are pattern transitions either between two spatially inhomogeneous periodic
solution with different spatial profiles or between spatially inhomogeneous periodic solution
and spatially inhomogeneous quasi-periodic solution.

There are other interesting but challenging bifurcation problems worthy of investigation
for this system with indirect prey-taxis: the spatial–temporal dynamics induced by the other
codimension-two bifurcations such as Turing–Turing bifurcation and Turing–Hopf bifurca-
tion or by the strong resonance double-Hopf bifurcation whichmay be the codimension-three
bifurcation.
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