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Abstract
We study a quasi-one-dimensional classical Poisson–Nernst–Planck model for ionic flow
through a membrane channel with two positively charged ion species (cations) and one neg-
atively charged, and with zero permanent charges. We treat the model problem as a boundary
value problem of a singularly perturbed differential system. Under the framework of the geo-
metric singular perturbation theory, together with specific structures of this concrete model,
the existence of solutions to the boundary value problem is established and, for a special
case that the two cations have the same valences, we are able to derive approximations of
the individual fluxes and the I–V (current–voltage) relation explicitly, from which, our two
main focuses in this work, boundary layer effects on ionic flows and competitions between
two cations, are analyzed in great details. Critical potentials are identified and their roles
in characterizing these effects are studied. Nonlinear interplays among physical parameters,
such as boundary concentrations and potentials, diffusion coefficients and ion valences, are
characterized, which could potentially provide efficient ways to control and affect some bio-
logical functions. Numerical simulations are performed, and numerical results are consistent
with our analytical ones.
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1 Introduction

Ion channels are large cylindrical shaped, hollow proteins embedded in cell membranes that
regulates the movement of charged particles (mainly Ca++, Na+, K+ and Cl−) and establish
communication between the cell and its external environment. And hence, they are able
to control a wide range of biological functions. The study of ion channels consists of two
related major topics: structures of ion channels and ionic flow properties. Our main focus in
this work is exclusively on open channels with given structures. With a given structure of an
open channel, the main interest is to understand its electrodiffusion property.

Electrodiffusion, the diffusion of electric charge, plays a central role in a wide range
of important technological devices and physical phenomena [15,16,18,45,62,63,74]: semi-
conductors controls the migration and diffusion of quasi-particles of charge in transistors
and integrated circuits [71,78,82], properties of electrolytic solutions and thin films
[6,11,16,17,20,27], all of biology occurs in solutions of ions and charged organicmolecules in
water [3,19,35,81]. It is the goal of technology (and much of physical science and biological
processes) to control these electorodiffusive systems to produce useful behavior.

Beyond general electrodiffusion phenomena for electrolytic solutions in bulks or near
chargedwalls, ionic flows throughmembrane channels havemore specifics; namely, the study
of ionic flows has to take into considerations of global constraints, including the boundary
conditions (boundary concentrations and boundary potentials) in addition to protein struc-
tures. As demonstrated by the celebrated works [36–40] of Hodgkin and Huxley for neurons
consisting of a population of ion channels and by the works in the volume Single-Channel
Recording ([73] edited by B. Sakmann and E. Neher) and many other works afterwards, the
properties of ion channels depend in an extremely rich way on different regions of boundary
concentrations and boundary potentials. It is exactly the global constraints and the internal
structures of membrane channels that make the relevant electrodiffusion properties specific
for ion channel problems.

A basic continuum model for electrodiffusion is the Poisson–Nernst–Planck (PNP) sys-
tem, a reduced model that treats the medium (aqueous within which ions are migrating) as
a dielectric continuum. The channel is assumed to be narrow so that it can be effectively
viewed as a one-dimensional line segment [0, l] where l, typically in the range of 10 − 20
nanometers, is the length of the channel whose endpoints are the baths that the channel links.
A quasi-one-dimensional steady-state PNP model for ion flows of n ion species through a
single channel is (see [58,65])

1

A(X)

d

dX

(
εr (X)ε0A(X)

d�

dX

)
= −e

( n∑
j=1

z jC j (X) + Q(X)

)
,

dJi

d X
= 0, −Ji = 1

kBT
Di (X)A(X)Ci (X)

dμi

d X
, i = 1, 2, · · · , n,

(1.1)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute temperature;
� is the electric potential, Q(X) is the permanent charge of the channel, εr (X) is the relative
dielectric coefficient, ε0 is the vacuum permittivity; A(X) is the area of cross-section of the
channel over the point X ∈ [0, l]. For the i th ion species, Ci is the concentration (number of
i th ions per unit volume), zi is the valence (number of charges per particle) that is positive
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for cations and negative for anions, μi is the electrochemical potential, Ji is the flux density,
and Di (X) is the diffusion coefficient.

For system (1.1), we impose the following boundary conditions (see, [24] for justification),
for k = 1, 2, · · · , n,

�(0) = V, Ci (0) = Li > 0; �(l) = 0, Ci (l) = Ri > 0. (1.2)

The electrochemical potential μk is the sum of the ideal component

μid
k (X) = zke�(X) + kBT ln

Ck(X)

C0
(1.3)

with some characteristic number density C0, and the excess component μex
k (X).

The PNP system can be derived as a reduced model from molecular dynamics [76],
from Boltzmann equations [4], and from variational principles [41–43]. More sophisticated
models have also been developed. Coupling PNP and Navier-Stokes equations for aqueous
motions has also been proposed (see, e.g. [10,21,22,28,33,79]). Reviews of various models
for ion transport and comparisons among the models can be found in [12,44,72,85]. While
these sophisticated systems can model the physical problem more accurately, it is a great
challenge to examine their dynamics analytically and even computationally. Focusing on key
features of the biological system, the PNP system is an appropriate model for analysis and
numerical simulations of ionic flows.

The simplest PNP system is the classical Poisson–Nernst–Planck (cPNP) system that
includes the ideal componentμid

k (X) in (1.3) only. The ideal componentμid
k contains contri-

butions by considering ion particles as point charges and ignoring the ion-to-ion interaction.
For a wide range of purposes, the classical PNP models have been studied numerically
and analytically to a great extent (see, e.g., [1,4,5,7,8,24,25,47,54–56,58,60,67,73,75,83,84,
87,88]). Very often, in the studies of ion channel problems, the so-called electroneutrality
boundary conditions are enforced at both ends of the channel (see, e.g., [5,13,46,47,55–
57,59,87]). This greatly reduces the difficulty in examining the qualitative properties of
ionic flows because, under the assumption of electroneutrality boundary concentrations, the
boundary layers disappear in the study of PNP model for membrane channels (see, e.g.,
[1,13,47,48,57,86]). Accordingly, in order to study the effect on ionic flows from boundary
layers, one should remove the neutral conditions on boundary concentrations. On the other
hand, if those boundary layers reach into the part of the device performing atomic control,
they dramatically affect its behavior. In particular, boundary layers of charge are likely to
create artifacts over long distances because the electric field spreads a long way.

In [88], we examined the classical PNP system with two ion species, one positively
charged and one negatively charged. More rich dynamics of ionic flows were observed due
to the existence of boundary layers. However, ions are crowded and more ion species should
be included to obtain a more realistic model and to better understand the dynamics of ionic
flows. In this work, as a natural extension, we will study the cPNP model with three ion
species, two positively charged and one negatively charged to further examine the important
role, in which the boundary layer plays. Of particular interest are

(I) effects of boundary layers on both individual fluxes and I–V relations based on system
(1.1)–(1.2).

(II) Competitions between two cations with boundary layers, which is closely related to
selectivity phenomena, a popular topic in the study of ion channel problem.

We would like to comment that due to the additional cation involved in the system, it
becomes very challenging to derive approximate solutions (in ε) to the limiting system, in
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particular, for the limiting slow system. To overcome this difficulty, we further assume that
the two cations have the same valences, together with the specific structures of the system,
we are able to obtain the solutions of the limiting systems explicitly, fromwhich both the I–V
relations and the individual fluxes can be extracted. This is critical for one to characterize the
two most important biological properties of interest: permeation and selectivity. In addition,
the competition between two cations that is closely related to the selectivity phenomenon of
ion channels is carefully analyzed under the existence of boundary layers. This is one of our
main contributions, and also the novelty of this work compared to the one done in [88].

The framework for the analysis is a geometric singular perturbation theory [24,56]. In
Sect. 2, we set up our problemwith further assumptions. In Sect. 3, following the same outline
as in [55,56,58,60], the existence and uniqueness of solutions of the singularly perturbed
system are established. Our main results are in Sect. 4, which consists of three subsections.
To examine the qualitative properties of ionic flows with boundary layer effects, we further
assume that the two cations have the same valences (such as Na+ and K+) so that the zeroth
order (in ε) explicit expressions of the individual fluxes can be obtained (see Lemma 4.1).
In particular, we assume −z3L3 = σ(zL1 + zL2) and −z3R3 = ρ(zR1 + zR2), where
σ and ρ are some positive constants not equal to 1 simultaneously since (σ, ρ) = (1, 1)
implies electroneutrality boundary conditions. Our main interest is to analyze the qualitative
properties of ionic flows as (σ, ρ) → (1, 1), namely the boundary layer effects on ionic flows.
In Sect. 4.1, we study the boundary layer effects on ionic flows in terms of both individual
fluxes and the total flow rate of charges, while in Sect. 4.2, we focus on the competitions
between two cations with boundary layers. It turns out that under some further restrictions on
the boundary concentrations and diffusion coefficients, the ion channel will prefer one cation
over the other determined by the boundary potential (see Theorems 4.10, 4.11 and 4.12). In
both subsections, critical potentials are identified and their roles in characterizing the effects
on ionic flows are carefully discussed. Numerical simulations are performed in Sects. 4.3 to
further examine the boundary layer effects, and our numerical results are consistent with our
analytical ones.

2 Problem Set-Ups

For simplicity, we make the following assumptions:

(A1). We consider three ion species (n = 3) with z1 > 0, z2 > 0 and z3 < 0.
(A2). We assume the permanent charge Q(X) = 0 over the whole interval [0, 1].
(A3). For μk , we only include the ideal component μid

k as in (1.3).
(A4). We assume the relative dielectric coefficient and the diffusion coefficient to be con-

stants, that is, εr (X) = εr and Di (X) = Di .

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling fol-
lowing [30]. Set C0 = max{Li ,Ri : i = 1, 2} and let

ε2 =εrε0kBT

e2l2C0
, x = X

l
, h(x) = A(X)

l2
, Di = lC0Di ;

φ(x) = e

kBT
�(X), ci (x) = Ci (X)

C0
, Ji = Ji

Di
;

V = e

kBT
V, Li = Li

C0
; Ri = Ri

C0
.

(2.1)
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The BVP (1.1)–(1.2) then reads

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −(z1c1 + z2c2 + z3c3),

dc1
dx

+ z1c1
dφ

dx
= − J1

h(x)
,

dc2
dx

+ z2c2
dφ

dx
= − J2

h(x)
,

dc3
dx

+ z3c3
dφ

dx
= − J3

h(x)
,

d Jk
dx

= 0,

(2.2)

with the boundary conditions, for i = 1, 2, 3,

φ(0) = V , ci (0) = Li > 0; φ(1) = 0, ci (1) = Ri > 0. (2.3)

For ion channels, an important characteristic is the I–V (current-voltage) relation. Given
a solution of the boundary value problem (BVP) (1.1)–(1.2), the current is

I =
n∑

k=1

zkJk =
n∑

k=1

zk Dk Jk, (2.4)

where zkJk is the individual flux of charge of the kth ion species. For fixed boundary con-
centrations Lk’s and Rk’s, Jk’s depend on V only and formula (2.4) provides a dependence
of the current I(V ; ε) on the voltage V .

With the assumption that ε is small, system (2.2) together with the boundary condition
(2.3) will be treated as a singular boundary value problem.We comment that in our following
discussion, we take h(x) = 1 over the whole interval [0, 1]. This is because for ion channels
with zero permanent charge, the variable h(x) contributes through an average, explicitly
through the factor 1∫ 1

0 h−1(x)dx
(see [57] for example), which does not affect our analysis of

the qualitative properties of the ionic flows.

3 Geometric Singular Perturbation Approach to System (2.2)–(2.3)

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and τ = x . We
rewrite system (2.2) into the following standard form for singularly perturbed system, the
so-called slow system:

εφ̇ =u, εu̇ = −z1c1 − z2c2 − z3c3, εċ1 = −z1c1u − εJ1,

εċ2 = − z2c2u − εJ2, εċ3 = −z3c3u − εJ3, J̇k = 0, τ̇ = 1.
(3.1)

We will treat system (3.1) as a singularly perturbed system with ε being the singular
parameter, whose phase space is R9 with state variables (φ, u, c1, c2, c3, J1, J2, J3, τ ).

For ε > 0, under the rescaling x = εξ of the independent variable, one gets the so-called
fast system with prime denoting the derivative about the variable ξ ,

φ′ =u, u′ = −z1c1 − z2c2 − z3c3, c′
1 = −z1c1u − εJ1,

c′
2 = − z2c2u − εJ2, c′

3 = −z3c3u − εJ3, J ′
k = 0, τ ′ = ε.

(3.2)

We comment that for ε > 0, slow system (3.1) and fast system (3.2) have exactly the same
phase portrait. However, their limiting systems at ε = 0 are different. The limiting system of
(3.1) is called the limiting slow system, whose orbits are called slow orbits or regular layers.
The limiting system of (3.2) is the limiting fast system, whose orbits are called fast orbits or
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singular (boundary and/or internal) layers. Under this context, we define a singular orbit of
system (3.1) or (3.2) to be a continuous and piecewise smooth curve in R

9 that is a union
of finitely many slow and fast orbits. Very often, limiting slow and fast systems provide
complementary information on state variables. Accordingly, the main task is to patch the
limiting information together to form a solution for the entire ε > 0 system.

Let BL and BR be the subsets of the phase space R9 defined by

BL ={(V , u, L1, L2, L3, J1, J2, J3, 0) ∈ R
9 : arbitrary u, J1, J2, J3},

BR ={(0, u, R1, R2, R3, J1, J2, J3, 1) ∈ R
9 : arbitrary u, J1, J2, J3}.

(3.3)

Then the original boundary value problem is equivalent to a connecting problem, namely,
finding a solution of (3.1) or (3.2) from BL to BR (see, for example, [49]).

3.1 Geometric Construction of Singular Orbits

We will construct a singular orbit on [0, 1] connecting BL to BR [24,55,56]. In general, such
an orbit will include two boundary layers and a regular layer.

3.1.1 Limiting Fast Dynamics and Boundary Layers

Setting ε = 0 in (3.1), we get the so-called slow manifold

Z = {u = 0, z1c1 + z2c2 + z3c3 = 0}. (3.4)

Setting ε = 0 in (3.2), we get the limiting fast system

φ′ =u, u′ = −z1c1 − z2c2 − z3c3, c′
1 = −z1c1u,

c′
2 = − z2c2u, c′

3 = −z3c3u, J ′
k = 0, τ ′ = 0.

(3.5)

Observe that the slow manifold Z is the set of equilibria of (3.5). We have [5,56,57]

Lemma 3.1 For the limiting fast system (3.5), the slow manifold Z is normally hyperbolic.

We denote the stable (resp. unstable) manifold of Z by Ws(Z) (resp. Wu(Z)). Let ML

(resp. MR) be the collection of orbits from BL (resp. BR) in forward (resp. backward) time
under the flow of system (3.5). Then, for a singular orbit connecting BL to BR , the boundary
layer at x = 0 must lie in NL = ML ∩ Ws(Z) and the boundary layer at x = 1 must lie in
NR = MR ∩ Wu(Z). In this part, we will determine the boundary layers NL and NR , and
their landing points ω(NL) and α(NR) on the slow manifold Z. The regular layer, which
is determined by the limiting slow system in § 3.1.2, will lie in Z and connect the landing
points ω(NL) at x = 0 and α(NR) at x = 1.

Proposition 3.2 (i) System (3.5) has the following first integrals

H1 =c1e
z1φ, H2 = c2e

z2φ, H3 = c3e
z3φ, H4 = u2

2
− c1 − c2 − c3,

H5 =J1, H6 = J2, H7 = J3, H8 = τ.

(ii) Let �0 ⊂ NL be a boundary at x = 0. Assume �0 is the orbit of the solution z(ξ) =
(φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1, J2, J3, 0) with z(0) ∈ BL and limξ→+∞ z(ξ) =
z(+∞) ∈ Z. Then, φ(ξ) is determined by the Hamiltonian system

φ′′ + z1L2e
−z1(φ−V ) + z2L2e

−z2(φ−V ) + z3L3e
−z3(φ−V ) = 0
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together with φ(+∞) = φL , where φL is the unique solution of

z1L2e
−z1(φ−V ) + z2L2e

−z2(φ−V ) + z3L3e
−z3(φ−V ) = 0;

u(ξ) = φ′(ξ) with u(0) = ul and u(+∞) = 0, where

ul = sgn(φL − V )

(
3∑

k=1

2Lk(1 − ezk (V−φL ))

) 1
2

,

where sgn is the sign function; and

ck(ξ) = Lke
−zk (φ(ξ)−V )

with ck(0) = Lk and cLk := ck(+∞) = Lke−zk (φL−V ). The stable manifold Ws(Z)

intersects BL transversally at points
(
V , ul , L1, L2, L3, J1, J2, J3, 0

)
, and the ω-limit

set of NL = ML
⋂

Ws(Z) is

ω(NL) = {
(φL , 0, cL1 , cL2 , cL3 , J1, J2, J3, 0)

}
.

(iii) Let �1 ⊂ NR be a boundary at x = 1. Assume �1 is the orbit of the solution z(ξ) =
(φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1, J2, J3, 0) with z(0) ∈ BR and limξ→−∞ z(ξ) =
z(−∞) ∈ Z. Then, φ(ξ) is determined by the Hamiltonian system

φ′′ + z1R1e
−z1(φ−0) + z2R2e

−z2(φ−0) + z3R3e
−z3(φ−0) = 0

together with φ(−∞) = φR, where φR is the unique solution of

z1R1e
−z1(φ−0) + z2R2e

−z2(φ−0) + z3R3e
−z3(φ−0) = 0;

u(ξ) = φ′(ξ) with u(0) = ur and u(−∞) = 0, where

ur = sgn(φR − 0)

(
3∑

k=1

2Rk(1 − ezk (0−φR))

) 1
2

,

where sgn is the sign function; and

ck(ξ) = Rke
−zk (φ(ξ)−0)

with ck(0) = Rk and cRk := ck(−∞) = Rke−zk (φR−0). The unstable manifold Wu(Z)

intersects BR transversally at points
(
0, ur , R1, R2, R3, J1, J2, J3, 1

)
, and the α-limit

set of NR = MR
⋂

Wu(Z) is

ω(NR) = {
(φR, 0, cR1 , cR2 , cR3 , J1, J2, J3, 1)

}
.

Proof Statement (i) can be checked directly.We provide a detailed proof for statement (ii).We
assume z(ξ) = (φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1(ξ), J2(ξ), J3(ξ), τ (ξ)) is a solution of
the limiting fast system (3.5) from BL toZ; namely, z(ξ) ∈ NL . It follows that Jk(ξ) = Jk are
some constants and τ(ξ) = 0.Notice that z(0) ∈ BL and limξ→+∞ z(ξ) = z(+∞) ∈ Z.One
has φ(0) = V , ck(0) = Lk, u(+∞) = 0, and z1c1(+∞) + z2c2(+∞) + z3c3(+∞) = 0.
Define u(0) = ul . By the integrals in statement (i), we get

ln ck(ξ) + zkφ(ξ) = ln Lk + zkV .

Hence,

ck(ξ) = Lke
−zk (φ(ξ)−V ). (3.6)

123



218 Journal of Dynamics and Differential Equations (2021) 33:211–234

Fig. 1 The phase portrait for the Hamiltonian system (3.7). The sign of ul agrees with the sign of (φL − V )

Now the first two equations in the limiting fast system (3.5) read

φ′ = u, u′ = −z1L1e
−z1(φ−V ) − z2L2e

−z2(φ−V ) − z3L3e
−z3(φ−V ), (3.7)

which is a Hamiltonian system with a Hamiltonian function given by

H(φ, u) = 1

2
u2 − z1L1e

−z1(φ−V ) − z2L2e
−z2(φ−V ) − z3L3e

−z3(φ−V ).

Not difficult to see that the above Hamiltonian function is exactly the integral H4 in statement
(i) with the relation (3.6). The equilibria of (3.7) are given by

u = 0, z1L1e
−z1(φ−V ) + z2L2e

−z2(φ−V ) + z3L3e
−z3(φ−V ) = 0. (3.8)

We now claim that φL is the unique solution of the second equation in (3.8). To get started,
we let

f (φ) = z1L1e
−z1(φ−V ) + z2L2e

−z2(φ−V ) + z3L3e
−z3(φ−V ). (3.9)

It is easy to see that

f ′(φ) = −z21L1e
−z1(φ−V ) − z22L2e

−z2(φ−V ) − z23L3e
−z3(φ−V ) < 0,

which implies that f (φ) is a decreasing function. Note that in our set-up, z1 > 0, z2 >

0, z3 < 0 and Lk’s are positive, one has f (φ) → −∞ as φ → +∞ and f (φ) → +∞ as
φ → −∞. Correspondingly, (3.8) has a unique solution.

Let ck(+∞) = cLk , then, from (3.6), one has

cLk = Lke
−zk (φL−V ).

Evaluating the integral H4 in Statement (i) at ξ = 0 and ξ → +∞, we have

1

2
u(0) − L1 − L2 − L3 = −L1e

−z1(φL−V ) − L2e
−z2(φL−V ) − L3e

−z3(φL−V ),

which gives the expression for ul . The choice of the sign can be determined from the phase
portrait sketched in Fig. 1.
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Finally, we claim that the expressions under the square root in ul and ur are non-negative.
We just provide the proof for the expression in ul . Let

F(φ) = L1

(
1 − ez1(V−φ)

)
+ L2

(
1 − ez1(V−φ)

)
+ L1

(
1 − ez1(V−φ)

)
.

Notice that F ′(φ) = f (φ) and F ′′(φ) = f ′(φ) where f (φ) is defined in (3.9). Since
f ′(φ) < 0, one has F(φ) is concave down. Together with F ′(φL) = f (φL) = 0, one has
F(φL) is the unique maximal value of F(φ), and particularly, F(φL) ≥ F(V ) = 0. This
completes the proof. 	


3.1.2 Limiting Slow Dynamics and Regular Layers

We now construct the regular layer � on Z connecting ω(NL) and α(NR). Notice that, for
ε = 0, system (3.1) loses most information. To remedy this degeneracy, we follow the idea
in [5,24,55–57] and rescale system (3.1) by setting

u = εp, −z3c3 = z1c1 + z2c2 + εq. (3.10)

Via the new variables, system (3.1) becomes

φ̇ =p, ε ṗ = q,

εq̇ = ((z1 − z3)z1c1 + (z2 − z3)z2c2 − εz3q) p + z1 J1 + z2 J2 + z3 J3,

ċ1 = − zc1 p − J1, ċ2 = −zc2 p − J2, J̇k = 0, τ̇ = 1.

(3.11)

It is again a singular perturbation problem and its limiting slow system is

φ̇ =p, q = 0, p = − z1 J1 + z2 J2 + z3 J3
(z1 − z3)z1c1 + (z2 − z3)z2c2

,

ċ1 = − z1c1 p − J1, ċ2 = −z2c2 p − J2, J̇k = 0, τ̇ = 1.
(3.12)

For system (3.12), the slow manifold is

S =
{
q = 0, p = − z1 J1 + z2 J2 + z3 J3

(z1 − z3)z1c1 + (z2 − z3)z2c2

}
.

Therefore, the limiting slow system on S is

φ̇ = − z1 J1 + z2 J2 + z3 J3
(z1 − z3)z1c1 + (z2 − z3)z2c2

,

ċ1 = z1 J1 + z2 J2 + z3 J3
(z1 − z3)z1c1 + (z2 − z3)z2c2

z1c1 − J1,

ċ2 = z1 J1 + z2 J2 + z3 J3
(z1 − z3)z1c1 + (z2 − z3)z2c2

z2c2 − J2, J̇k = 0, τ̇ = 1.

(3.13)

Notice that, on S where q = 0, one has from (3.10),

z1c1 + z2c2 = −z3c3,

which yields

(z1 − z3)z1c1 + (z2 − z3)z2c2 =z21c1 + z22c2 − z3(z1c1 + z2c2)

=z21c1 + z22c2 + z23c3 > 0
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since ck’s are concentrations of ion species andwe are only interested in solutionswith ck > 0
for k = 1, 2, 3.

Multiply (z1− z3)z1c1+ (z2− z3)z2c2 on the right-hand side of system (3.13), the system
reads, in terms of a new independent variable, say y,

dφ

dy
= − (z1 J1 + z2 J2 + z3 J3),

dc1
dy

=(
z1 J1 + z2 J2 + z3 J3

)
z1c1 − J1

(
(z1 − z3)z1c1 + (z2 − z3)z2c2

)
,

dc2
dy

=(
z1 J1 + z2 J2 + z3 J3

)
z2c2 − J2

(
(z1 − z3)z1c1 + (z2 − z3)z2c2

)
,

J̇k =0,
dτ

dy
= (z1 − z3)z1c1 + (z2 − z3)z2c2.

(3.14)

Observe that the equations for c1 and c2 form a linear system(
dc1
dy
dc2
dy

)
=

(
z1

∑3
k=1 zk Jk + z1(z3 − z1)J1 z2(z3 − z2)J1

z1(z3 − z1)J2 z2
∑3

k=1 zk Jk + z2(z3 − z2)J2

) (
c1
c2

)
.

By the variation of parameter formula, together with the initial condition
(φL , cL1 , cL2 , J1, J2, J3, 0) ∈ ω(NL), we obtain the solution of system (3.14)

φ(y) =φL − y(z1 J1 + z2 J2 + z3 J3),

C(y) =eAyCL ,

τ =(z1 − z3)z1

∫ y

0
c1(s)ds + (z2 − z3)z2

∫ y

0
c2(s)ds,

(3.15)

where C(y) = (c1(y), c2(y)T CL = (cL1 , cL2 )T , and

A =
(
z1

∑3
k=1 zk Jk + z1(z3 − z1)J1 z2(z3 − z2)J1

z1(z3 − z1)J2 z2
∑3

k=1 zk Jk + z2(z3 − z2)J2

)
.

Note that we are seeking for solution of (3.14) lying on � from ω(NL) to α(NR). We
suppose τ(y0) = 1 for some y0 which is necessarily positive, and necessarily, φ(0) = φR

and C(y0) = CR = (cR1 , cR2 )T . We now evaluate (3.15) and get

φR =φL − y0(z1 J1 + z2 J2 + z3 J3),

CR =eAy0CL ,

1 =(z1 − z3)z1

∫ y0

0
c1(s)ds + (z2 − z3)z2

∫ y0

0
c2(s)ds,

(3.16)

Observe that

(z1(z1 − z3), z2(z2 − z3)) = 1

z3(J1 + J2 + J3)
(z1 − z3, z2 − z3)A.

System (3.16) is then equivalent to

φR =φL − y0(z1 J1 + z2 J2 + z3 J3),

CR =eAy0CL ,

J1 + J2 + J2 = (z1 − z3, z2 − z3)(CL − CR)

z3
.

(3.17)
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We comment that there are 4 unknowns J1, J2, J3 and y0, and 4 equations. Theoretically,
there should have at least one solution. Of course, the solution may not be unique. Based
on our discussion, associate to each solution, a singular orbit �0 ∪ � ∪ �1 over the interval
[0, 1] is able to be constructed.

The slow orbit

�(x) = (
φ(x), c1(x), c2(x), J1, J2, J3, τ (x)

)
(3.18)

given in (3.15) connects ω(NL) and α(NR). Let M̄L (resp., M̄R) be the forward (resp.,
backward) image of ω(NL) (resp., α(NR)) under the slow flow (3.13). One has the following
result whose proof can be established by a similar argument as those in [48,56,57,60].

Proposition 3.3 On the seven-dimensional slow manifold S, M̄L and M̄R intersect transver-
sally along the unique orbit �(x) given in (3.18).

3.2 Existence of Solutions Near the Singular Orbit

We have constructed a unique singular orbit on [0,1] that connects BL to BR . It con-
sists of two boundary layer orbits �0 ∪ �1 and a regular layer � with �0 from the point
(V , ul , L1, L2, L3, J1, J2, J3, 0) ∈ BL to the point (φL , 0, cL1 , cL2 , cL3 , J1, J2, J3, 0) ∈
ω(NL) ⊂ Z, and �1 from the point (φR, 0, cR1 , cR2 , cR3 , J1, J2, J3, 1) ∈ α(NR) ⊂ Z to the
point (0, ur , R1, R2, R3, J1, J2, J3, 1) ∈ BR, and � ⊂ Z connecting the two landing points
(φL , 0, cL1 , cL2 , cL3 , J1, J2, J3, 0) ∈ ω(NL) and (φR, 0, cR1 , cR2 , cR3 , J1, J2, J3, 1) ∈ α(NR)

of the two boundary layers.
We now establish the existence of a solution to (2.2)–(2.3) near the singular orbit con-

structed abovewhich is a union of two boundary layers and one regular layer�0∪�∪�1. The
proof follows the same line as that in [24,48,55–57] and the main tool used is the Exchange
Lemma (see, for example [49–51,80]) of geometric singular perturbation theory.

Theorem 3.4 Let �0 ∪ � ∪ �1 be the singular orbit of the connecting problem for (3.1)
associated with BL and BR in (3.3). Then, for ε > 0 small, the boundary value problem
(2.2)–(2.3) has a unique smooth solution near the singular orbit.

Proof Fix δ > 0 small to be determined. Define

BL(δ) =
{
(V , u, L1, L2, L3, J1, J2, J3, 0) ∈ R

9 : |u − ul | < δ, |Ji − Ji (ν)| < δ
}

.

For ε > 0, let ML(ε, δ) be the forward trace of BL(δ) under the flow of system (3.1) or
equivalently of system (3.2) and letMR(ε)be the backward trace of BR . To prove the existence
and uniqueness statement, it suffices to show that ML(ε, δ) intersects MR(ε) transversally
in a neighborhood of the singular orbit �0 ∪ � ∪ �1. The latter will be established by an
application of the Exchange Lemma.

Note that dim BL(δ)=4. It is obvious that the vector field of the fast system (3.2) is not
tangent to BL(δ) for ε ≥ 0, it follows that dim ML(ε, δ)=5. We next apply the Exchange
Lemma to track ML(ε, δ) in the vicinity of �0 ⋃

�
⋃

�1. Under the conditions

(i) the transversality of the intersection BL(δ)
⋂

Ws(Z) along�0 in Proposition 3.2 implies
the transversality of the intersection ML(0, δ)

⋂
Ws(Z);

(ii) we have also established that dimω(NL) = dim NL − 1 = 3 in Proposition 3.2 and that
the limiting slow flow is not tangent to ω(NL) in Sect. 3.1.2;

123



222 Journal of Dynamics and Differential Equations (2021) 33:211–234

the Exchange Lemma [49–51,80] states that there exist ρ > 0 and ε1 > 0 such that, if
0 < ε ≤ ε1, then ML(ε, δ) will first follow �0 toward ω(NL) ⊂ Z, then follow the trace
of ω(NL) in the vicinity of � toward {τ = 1}, leave the vicinity of Z, and, upon exiting, a
portion of ML(ε, δ) is C1 O(ε)-close toWu(ω(NL)× (1− δ1, 1+ δ1)) in the vicinity of �1.
Note that dimWu(ω(NL) × (1 − δ1, 1 + δ1)) = dim ML(ε, δ) = 5.

It remains to show thatWu(ω(NL)×(1−δ1, 1+δ1)) intersects MR(ε) transversally since
ML(ε, δ) is C1 O(ε)-close to Wu(ω(NL) × (1 − δ1, 1 + δ1)). Recall that, for ε = 0, MR

intersects Wu(Z) transversally along NR (Proposition 3.2); in particular, at γ1 := α(�1) ∈
α(NR) ⊂ Z, we have

Tγ1MR = Tγ1α(NR) ⊕ Tγ1W
u(γ1) ⊕ span{Vs},

where, Tγ1W
u(γ1) is the tangent space of the one-dimensional unstable fiber Wu(γ1) at γ1

and the vector Vs /∈ Tγ1W
u(Z) (the latter follows from the transversality of the intersection

of MR and Wu(Z)). Also,

Tγ1W
u(ω(NL) × (1 − δ1, 1 + δ1)) = Tγ1(ω(NL) · 1) ⊕ span{Vτ } ⊕ Tγ1W

u(γ1),

where the vector Vτ is the tangent vector to the τ -axis as a result of the interval factor
(1− δ1, 1+ δ1). From Proposition 3.3, ω(NL) · 1 and α(NR) are transversal on Z ∩{τ = 1}.
Therefore, at γ1, the tangent spaces Tγ1MR and Tγ1W

u(ω(NL) × (1 − δ1, 1 + δ1)) contain
seven linearly independent vectors: Vs , Vτ , Tγ1W

u(γ1) and the other four from Tγ1(ω(NL)·1)
and Tγ1α(NR); that is, MR andWu(ω(NL)×(1−δ1, 1+δ1)) intersect transversally.We thus
conclude that, there exists 0 < ε0 ≤ ε1 such that, if 0 < ε ≤ ε0, then ML(ε, δ) intersects
MR(ε) transversally.

For uniqueness, note that the transversality of the intersection ML(ε, δ) ∩ MR(ε) implies
dim(ML(ε, δ) ∩ MR(ε)) = dim ML(ε, δ) + dim MR(ε) − 9 = 1. Thus, there exists δ0 > 0
such that, if 0 < δ ≤ δ0, the intersection ML(ε, δ)∩MR(ε) consists of precisely one solution
near the singular orbit �0 ∪ � ∪ �1. 	


4 Qualitative Properties of Ionic Flows: Case Studies

Wewould like to point out, for the PNP system with three ion species, two positively charged
and one negatively charged, an explicit solution to the limiting slow system (the zeroth order
approximation in ε) cannot be obtained explicitly if z1 �= z2. However, the capability of
constructing such an explicit solution, fromwhich one can derive the approximated individual
flux explicitly in terms of boundary conditions and other physical parameters, is crucial for
us to further examine the qualitative properties of ionic flows. For this purpose, we assume
that the two positively charged ion species have the same valences, that is, z1 = z2 > 0. Of
particular interest in this work are

(I) Effects on ionic flows from boundary layers in terms of both individual fluxes and the
total flow rate of charges;

(II) Competitions between two cations (positively charged ion species) with boundary layers.

Note that, under electroneutrality boundary conditions, twoboundary layers disappear. There-
fore, to examine the boundary layer effects on ionic flows, a first step is to examine the ionic
flow properties of interest without assuming electroneutrality conditions in boundary con-
centrations but close to the neutral state. More precisely, we assume

− z3L3 = σ(zL1 + zL2) and − z3R3 = ρ(zR1 + zR2), (4.1)
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for some positive constants σ and ρ, which are not both equal to 1 and study the case
as (σ, ρ) → (1, 1) since (σ, ρ) = (1, 1) in (4.1) implies electroneutrality conditions on
boundary concentrations.

To get started, we first obtain the explicit approximations of the individual fluxes J1, J2
and J3, and expand Jk, k = 1, 2, 3, at the point (σ ∗, ρ∗) = (1, 1) up to the first order (we
neglect higher order terms).

Lemma 4.1 Under the assumption z1 = z2 := z, from (3.17), one has the zeroth order (in ε)
approximations of the individual fluxes

J1 = cL1 + cL2 − cR1 − cR2
ln(cL1 + cL2 ) − ln(cR1 + cR2 )

ln(cL1 + cL2 ) − ln(cR1 + cR2 )ez(φ
R−φL )

cL1 + cL2 − (cR1 + cR2 )ez(φR−φL )
(cL1 − cR1 e

z(φR−φL )),

J2 = cL1 + cL2 − cR1 − cR2
ln(cL1 + cL2 ) − ln(cR1 + cR2 )

ln(cL1 + cL2 ) − ln(cR1 + cR2 )ez(φ
R−φL )

cL1 + cL2 − (cR1 + cR2 )ez(φR−φL )
(cL2 − cR2 e

z(φR−φL )),

J3 = − z

z3

cL1 + cL2 − cR1 − cR2
ln(cL1 + cL2 ) − ln(cR1 + cR2 )

(
ln(cL1 + cL2 ) − ln(cR1 + cR2 )ez3(φ

R−φL )
)

.

Proposition 4.2 Assume conditions (4.1). For φL , φR, cLk and cRk defined in Proposition 3.2,
one has

φL =V − ln σ

z − z3
, cL1 = L1σ

z
z−z3 , cL2 = L2σ

z
z−z3 ;

φR = − ln ρ

z − z3
, cR1 = R1ρ

z
z−z3 , cR2 = R2ρ

z
z−z3 .

Furthermore, as (σ, ρ) → (1, 1), up to the first order, one has

J1(V ; σ, ρ) =D1 f1(L1, L2, R1, R2; V )g(σ, ρ; L1, L2, R1, R2)
(
L1 − R1e

−zV
)

,

J2(V ; σ, ρ) =D2 f1(L1, L2, R1, R2; V )g(σ, ρ; L1, L2, R1, R2)
(
L2 − R2e

−zV
)

,

J3(V ; σ, ρ) = − z

z3
D3 f2(L1, L2, R1, R2; V )g(σ, ρ; L1, L2, R1, R2)

×
(
L1 + L2 − (R1 + R2)e

−z3V
)

,

(4.2)

where f1 = f1(L1, L2, R1, R2; V ), f2 = f2(L1, L2, R1, R2; V )and g = (σ, ρ; L1, L2, R1, R2)

are defined by

f1 = ln (L1 + L2) − ln (R1 + R2) + zV

(L1 + L2) − (R1 + R2)e−zV
,

f2 = ln (L1 + L2) − ln (R1 + R2) + z3V

(L1 + L2) − (R1 + R2)e−z3V
,

g = f0(L1, L2, R1, R2) + z

z − z3
g0(σ, ρ; L1, L2, R1, R2),

(4.3)

where

f0 = (L1 + L2) − (R1 + R2)

ln(L1 + L2) − ln(R1 + R2)
,

g0 =
(
L1 + L2 − f0

)
(σ − 1)

ln (L1 + L2) − ln (R1 + R2)
−

(
R1 + R2 − f0

)
(ρ − 1)

ln (L1 + L2) − ln (R1 + R2)
.

(4.4)
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The following result can be easily established.

Lemma 4.3 The functions f0, f1 and f2 defined in (4.3) and (4.4) are positive. In particular,
f0 → R1+R2 > 0 as L1+L2 → R1+R2, f1 → ezV

R1+R2
> 0 as L1+L2 → (R1+R2)e−zV ,

and f2 → ez3V
R1+R2

> 0 as L1 + L2 → (R1 + R2)e−z3V .

Additionally, for the function g defined in (4.3), one has

Lemma 4.4 Assume L1 + L2 �= R1 + R2. One has g(σ, ρ; L1, L2, R1, R2) > 0 as (σ, ρ) →
(1, 1).

Proof Without loss of generality, we assume L1 + L2 > R1 + R2. Rewrite g as
g(σ, ρ; L1, L2, R1, R2) = (R1 + R2)h(x) where, with x = L1+L2

R1+R2
> 1,

h(x) = z − z3
z

(x − 1) + (σ − 1)x + (ρ − σ)
x − 1

ln x
+ 1 − ρ = h1(x)

ln x
,

with

h1(x) = (σ − z3
z

)x ln x + (ρ − σ)(x − 1) + (
z3
z

− ρ) ln x .

Note that h1(1) = 0,

h′
1(x) = (σ − z3

z
) ln x + σ − z3

z
+ ρ − σ +

z3
z − ρ

x
�⇒ h′

1(1) = 0.

h′′
1(x) = σ − z3

z

x
−

z3
z − ρ

x2
= (σ − z3

z )x + (ρ − z3
z )

x2
,

fromwhich h′′
1(x) > 0 for all x > 1. It follows that h′

1(x) is increasing for all x > 1. Together
with h′

1(1) = 0, we have h′
1(x) > 0 for all x > 1, which implies that h1(x) is increasing

for all x > 1. Note that h1(1) = 0, one can conclude that h1(x) > 0 for all x > 1. Thus,
h(x) > 0 for all x > 1, and hence g(σ, ρ; L1, L2, R1, R2) > 0 for L1 + L2 > R1 + R2. 	


Similar arguments lead to the following two lemmas about g0(σ, ρ; L1, L2, R1, R2)

defined in (4.4), which are crucial for our further discussion on qualitative properties of
ionic flows. For convenience, we define a function p(x), with x = L1+L2

R1+R2
, by

p(x) = (σ − 1)x ln x + (ρ − σ)(x − 1) + (1 − ρ) ln x .

Lemma 4.5 g0(σ, ρ; L1, L2, R1, R2) > 0 under one of the following conditions

(i) (σ, ρ) → (1+, 1+),
(ii) L1 + L2 > R1 + R2 and (σ, ρ) → (1+, 1−) with σ + ρ > 2,
(iii) L1 + L2 > R1 + R2, (σ, ρ) → (1−, 1+) with σ +ρ > 2, and 1 < L1+L2

R1+R2
< x∗

1 , where
x∗
1 is the unique root of p(x) = 0 on the interval (1,+∞),

(iv) L1 + L2 > R1 + R2, (σ, ρ) → (1+, 1−) with σ + ρ < 2, and L1+L2
R1+R2

> x∗
2 , where x

∗
2

is the unique root of p(x) = 0 on the interval (1,+∞),
(v) L1 + L2 < R1 + R2, (σ, ρ) → (1−, 1+) with σ + ρ > 2, and 0 < L1+L2

R1+R2
< 1,

(vi) L1 + L2 < R1 + R2, (σ, ρ) → (1+, 1−) with σ + ρ > 2, and x1∗ < L1+L2
R1+R2

< 1,
where x1∗ is the unique root of p(x) = 0 on the interval (0, 1),

(vii) L1 + L2 < R1 + R2, (σ, ρ) → (1−, 1+) with σ + ρ < 2, and 0 < L1+L2
R1+R2

< x2∗,
where x2∗ is the unique root of p(x) = 0 on the interval (0, 1).

Lemma 4.6 g0(σ, ρ; L1, L2, R1, R2) < 0 under one of the following conditions
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(i) (σ, ρ) → (1−, 1−),
(ii) L1 + L2 > R1 + R2 and (σ, ρ) → (1−, 1+) with σ + ρ < 2,
(iii) L1 + L2 > R1 + R2, (σ, ρ) → (1−, 1+) with σ + ρ > 2, and L1+L2

R1+R2
> x̃∗

1 , where x̃
∗
1

is the unique root of p(x) = 0 on the interval (1,+∞),
(iv) L1 + L2 > R1 + R2, (σ, ρ) → (1+, 1−) with σ +ρ < 2, and 1 < L1+L2

R1+R2
< x̃∗

2 , where
x̃∗
2 is the unique root of p(x) = 0 on the interval (1,+∞),

(v) L1 + L2 < R1 + R2, (σ, ρ) → (1+, 1−) with σ + ρ < 2, and 0 < L1+L2
R1+R2

< 1,

(vi) L1 + L2 < R1 + R2, (σ, ρ) → (1+, 1−) with σ + ρ > 2, and 0 < L1+L2
R1+R2

< x̃1∗,
where x̃1∗ is the unique root of p(x) = 0 on the interval (0, 1),

(vii) L1 + L2 < R1 + R2, (σ, ρ) → (1−, 1+) with σ + ρ > 2, and x̃2∗ < L1+L2
R1+R2

< 1,
where x̃2∗ is the unique root of p(x) = 0 on the interval (0, 1).

4.1 Boundary Layer Effects on Ionic Flows

To examine the effects from boundary layers, we first introduce J EN
k (resp. I EN ) to denote

the individual flux (resp. the total flux of charge) with electroneutrality boundary conditions,
and Jk (resp. I ) to denote the individual flux (resp. the total flux of charge)without electroneu-
trality boundary conditions. To investigate the boundary layer effect on ionic flows, which is
equivalent to the effects from the violation of electroneutrality boundary concentrations under
our setups, we define four functions Ek(V ; σ, ρ) = Ek(V ; σ, ρ; L1, L2, R1, R2), k = 1, 2, 3
and Et (V ; σ, ρ) = Et (V ; σ, ρ; L1, L2, R1, R2) as follows:

E1(V ; σ, ρ) =J1(V ; σ, ρ) − J EN
1 (V ; 1, 1)

= z

z − z3
f1(L1, L2, R1, R2; V )g0(σ, ρ; L1, L2, R1, R2)

(
L1 − R1e

−zV
)

,

E2(V ; σ, ρ) =J2(V ; σ, ρ) − J EN
2 (V ; 1, 1)

= z

z − z3
f1(L1, L2, R1, R2; V )g0(σ, ρ; L1, L2, R1, R2)

(
L2 − R2e

−zV
)

,

E3(V ; σ, ρ) =J3(V ; σ, ρ) − J EN
3 (V ; 1, 1)

= −z2

z3(z − z3)
(ln(L1 + L2) − ln(R1 + R2) + z3V ) g0(σ, ρ; L1, L2, R1, R2),

Et (V ; σ, ρ) =I (V ; σ, ρ) − I EN (V ; 1, 1)

= z2

z − z3
g0(σ, ρ; L1, L2, R1, R2) f̃1(L1, L2, R1, R2; D1, D2; V ),

(4.5)

where

f̃1 = f1(L1, L2, R1, R2; V )
(
D1L1 + D2L2 − (D1R1 + D2R2)e

−zV
)

− D3 (ln(L1 + L2) − ln(R1 + R2) + z3V ) .

Wefirst identify four critical potentials which play important role in characterizing bound-
ary layer effects on ionic flows by

E1(V b
1 ; σ, ρ) = 0, E2(V b

2 ; σ, ρ) = 0, E3(V b
3 ; σ, ρ) = 0 and Et (V b

t ; σ, ρ) = 0
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from which one gets

V b
1 = ln R1 − ln L1

z
, V b

2 = ln R2 − ln L2

z
, V b

3 = ln(R1 + R2) − ln(L1 + L2)

z
, (4.6)

and V b
t is the unique zero of f̃1 (see the proof in Proposition 4.7).

The following monotonicity results can be established.

Proposition 4.7 Under conditions (4.1) and one of the conditions in Lemma 4.5, for small
ε > 0, one has

(i) E1(V ; σ, ρ) > 0 (resp. E1(V ; σ, ρ) < 0) for V > V b
1 (resp. V < V b

1 ). Furthermore,
E1(V ; σ, ρ) is increasing in the potential V , that is, the boundary layer effects on the
individual flux J1 becomes stronger as V > V b

1 becomes larger.
(ii) E2(V ; σ, ρ) > 0 (resp. E2(V ; σ, ρ) < 0) for V > V b

2 (resp. V < V b
2 ). Furthermore,

E2(V ; σ, ρ) is increasing in the potential V , that is, the boundary layer effects on the
individual flux J2 becomes stronger as V > V b

2 becomes larger.
(iii) E3(V ; σ, ρ) > 0 (resp. E3(V ; σ, ρ) < 0) for V < V b

3 (resp. V > V b
3 ). Furthermore,

E3(V ; σ, ρ) is decreasing in the potential V , that is, the boundary layer effects on the
individual flux J3 becomes weaker as V > V b

3 becomes larger.
(iv) Et (V ; σ, ρ) > 0 (resp. Et (V ; σ, ρ) < 0) for V > V b

t (resp. V < V b
t ), where V

b
t is a

unique potential, such that Et (V b
t ; σ, ρ) = 0. Furthermore, Et (V ; σ, ρ) is increasing in

the potential V , that is, the boundary layer effects on the total flux I becomes stronger
as V > V b

t becomes larger.

Proof From Eq. (4.5), a direct calculation gives

dE1
dV

(V ; σ, ρ) = z2

z − z3

e−zV

(L1 + L2 − (R1 + R2)e−zV )2
g0h̄(V ; L1, L2, R1, R2),

where

h̄(V ; L1, L2, R1, R2) = L1(L1 + L2)e
zV − R1(R1 + R2)e

−zV + z(L2R1 − L1R2)V

+ (L2R1 − L1R2)(ln(L1 + L2) − ln(R1 + R2)) − L1(R1 + R2) − R1(L1 + L2).

It is easy to check that h̄(V ; L1, L2, R1, R2) > 0 for V �= 1
z ln

R1+R2
L1+L2

. Recall that g0 > 0
under one of the conditions in Lemma 4.5. Then statement (i) follows. Statement (ii) can be
established similarly and Statement (iii) is obviously. Statement (iv) can be obtained by the
facts

lim
V→−∞ Et (V ; σ, ρ) = −∞, lim

V→∞ Et (V ; σ, ρ) = ∞,

Et (V ; σ, ρ) = z(D1E1(V ; σ, ρ) + D2E2(V ; σ, ρ)) + z3D3E3(V ; σ, ρ),

and statements (i), (ii) and (iii). 	

Proposition 4.8 Under conditions (4.1) and one of the conditions in Lemma 4.6, for small
ε > 0, one has

(i) E1(V ; σ, ρ) > 0 (resp. E1(V ; σ, ρ) < 0) for V < V b
1 (resp. V > V b

1 ). Furthermore,
E1(V ; σ, ρ) is decreasing in the potential V , that is, the boundary layer effects on the
individual flux J1 becomes weaker as V > V b

1 becomes larger.
(ii) E2(V ; σ, ρ) > 0 (resp. E2(V ; σ, ρ) < 0) for V < V b

2 (resp. V > V b
2 ). Furthermore,

E2(V ; σ, ρ) is decreasing in the potential V , that is, the boundary layer effects on the
individual flux J2 becomes weaker as V > V b

2 becomes larger.
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(iii) E3(V ; σ, ρ) > 0 (resp. E3(V ; σ, ρ) < 0) for V > V b
3 (resp. V < V b

3 ). Furthermore,
E3(V ; σ, ρ) is increasing in the potential V , that is, the boundary layer effects on the
individual flux J3 becomes stronger as V > V b

3 becomes larger.
(iv) Et (V ; σ, ρ) > 0 (resp. Et (V ; σ, ρ) < 0) for V < V b

t (resp. V > V b
t ), where V

b
t is a

unique potential, such that Et (V b
t ; σ, ρ) = 0. Furthermore, Et (V ; σ, ρ) is decreasing

in the potential V , that is, the boundary layer effects on the total flux I becomes weaker
as V > V b

t becomes larger.

4.2 Competitions Between Cations with Boundary Layers

We now consider the competition between two positively charged ion species with boundary
layer effects, which is closely related to selectivity phenomena. For convenience, we define
E1,2(V ; σ, ρ) as

E1,2(V ; σ, ρ) =D1

(
J1(V ; σ, ρ) − J EN

1 (V ; 1, 1)
)

− D2

(
J2(V ; σ, ρ) − J EN

2 (V ; 1, 1)
)

= z

z − z3
f1(L1, L2, R1, R2; V )g0(L1, L2, R1, R2; σ, ρ)

×
(
D1L1 − D2L2 − (D1R1 − D2R2)e

−zV
)

.

(4.7)

It follows directly from (4.7) that

Proposition 4.9 Under condition (4.1) and one of the conditions stated in Lemma 4.6, one
has

(i) if D1R1 − D2R2 = 0, then E1,2(V ; σ, ρ) and D1L1 − D2L2 have the opposite sign;
(ii) if D1R1 − D2R2 > 0 and D1L1 − D2L2 ≤ 0, then E1,2(V ; σ, ρ) > 0 for all V ;
(iii) if D1R1 − D2R2 < 0 and D1L1 − D2L2 ≥ 0, then E1,2(V ; σ, ρ) < 0 for all V ;
(iv) if (D1R1 − D2R2)(D1L1 − D2L2) > 0, then E1,2(V ; σ, ρ) has the opposite sign as

that of (D1R1 − D2R2)(V − Vd) where

Vd = 1

z
ln

D1R1 − D2R2

D1L1 − D2L2
. (4.8)

Proof The result follows directly from Lemmas 4.3 and 4.6. 	


We next study the monotonicity of E1,2(V ; σ, ρ) with respect to the potential V for fixed
boundary concentrations.

Theorem 4.10 Under condition (4.1), one of the conditions stated in Lemma 4.6, and D1
D2

>
R2
R1

, for small ε > 0, one has

(i) For D1
D2

> L2
L1
, E1,2(V ; σ, ρ) is decreasing in potential V , and E1,2(V ; σ, ρ) = 0 has a

unique solution Vd defined in (4.8);
(ii) For D1

D2
< L2

L1
, E1,2(V ; σ, ρ) decreases in the potential V if V < V d

1 and increases in

V if V > V d
1 , where V

d
1 is uniquely defined by dE1,2

dV (V d
1 ; σ, ρ) = 0.
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Proof We only provide a detailed proof for the first statement. A similar argument leads to
statement (ii) directly. From (4.7), we obtain

dE1,2(V ; σ, ρ)

dV
= zg0

(L1 + L2 − (R1 + R2)e−zV )2

[
(D1L1 − D2L2 − (D1R1 − D2R2)e

−zV )

× (L1 + L2 − (R1 + R2)e
−zV ) + e−zV (ln(L1 + L2) − ln(R1 + R2) + zV )

× (R1L1 − L1R2)(D1 + D2)

]
.

Further,

d2E1,2(V ; σ, ρ)

dV 2 = − z2g0e−2zV (R1L2 − L1R2)(D1 + D2)

(L1 + L2 − (R1 + R2)e−zV )3
H(V ; L1, L2, R1, R2),

(4.9)

where H = H(V ; L1, L2, R1, R2) is given by

H =(L1 + L2)e
zV (zV + ln(L1 + L2) − ln(R1 + R2) − 2)

+ (R1 + R2)(zV + ln(L1 + L2) − ln(R1 + R2) + 2).

It follows that

dH

dV
= z(L1 + L2)e

zV (zV + ln(L1 + L2) − ln(R1 + R2) − 1) + z(R1 + R2),

d2H

dV 2 = z2(L1 + L2)e
zV (zV + ln(L1 + L2) − ln(R1 + R2)).

Therefore, if V > V b
3 = 1

z ln
(
R1+R2
L1+L2

)
, d2H

dV 2 > 0, that is, dH
dV is increasing on V ∈

(V b
3 ,+∞). Note that dH

dV → 0 as V → V b
3 . and hence, for V > V b

3 , we have dH
dV > 0,

which implies that H is increasing on V ∈ (V b
3 ,+∞). It follows from H → 0 as V → V b

3
that H > 0 on the interval (V b

3 ,+∞). Similarly, one can prove that H < 0 on the interval
(−∞, V b

3 ).

From the above analysis and (4.9), we conclude that d2E1,2(V ;σ,ρ)

dV 2 > 0 (resp.
d2E1,2(V ;σ,ρ)

dV 2 < 0) if R1
R2

< L1
L2

(resp. R1
R2

> L1
L2
). Either way, one has dE1,2(V ;σ,ρ)

dV is monotone.

Note that, under the conditions D1
D2

> R2
R1

and D1
D2

> L2
L1
,

lim
V→−∞

dE1,2(V ; σ, ρ)

dV
< 0 and lim

V→∞
dE1,2(V ; σ, ρ)

dV
< 0.

Therefore, one has E1,2(V ; σ, ρ) is decreasing in potential V and the uniqueness of solutions
of E1,2(V ; σ, ρ) = 0 follows immediately from

lim
V→−∞ E1,2(V ; σ, ρ) = −∞, and lim

V→∞ E1,2(V ; σ, ρ) = +∞.

	

Similarly, one has

Theorem 4.11 Under condition (4.1), one of the conditions stated in Lemma 4.6, and D1
D2

<
R2
R1

, for small ε > 0, one has

(i) For D1
D2

< L2
L1
, E1,2(V ; σ, ρ) increases in potential V , and E1,2(V ; σ, ρ) = 0 has a

unique solution Vd defined as in Lemma 4.8;
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(ii) For D1
D2

> L2
L1
, E1,2(V ; σ, ρ) increases in the potential V if V < V d

2 and decreases in

V if V > V d
2 , where V

d
2 is uniquely defined by

dE1,2(V d
2 ;σ,ρ)

dV = 0.

Theorem 4.12 Under condition (4.1) and one of the conditions stated in Lemma 4.6, for
small ε > 0, one has

(i) For D1
D2

= L2
L1
, E1,2(V ; σ, ρ) increases (resp. decreases) in the potential V if D1

D2
< R2

R1

(resp. D1
D2

> R2
R1
).

(ii) For D1
D2

= R2
R1
, E1,2(V ; σ, ρ) increases (resp. decreases) in the potential V if D1

D2
< L2

L1

(resp. D1
D2

> L2
L1
).

We comment that the significance of Theorems 4.10, 4.11 and 4.12 is that as the potential
V changes under different nonlinear interplays of (D1, D2), (σ, ρ), (L1, L2) and (R1, R2),
the ion channel will eventually prefer one cation (positively charged ion species) over the
other. More precisely, the individual flux of one cations becomes stronger as the potential
changes compared to the other. For example, in Theorem4.10, the individual fluxJ1 becomes
stronger as the potential decreases under the condition D1

D2
> L2

L1
and some conditions stated

in Lemma 4.6. In other words, the ionic flow through membrane channels with given protein
structures can be controlled through boundary potentials while boundary concentrations and
diffusion coefficients satisfy certain conditions. This could potentially provide an efficient
way to control and affect some biological functions.

4.3 Numerical Simulations

To further examine the boundary layer effects on ionic flows of interest, we conduct the
following three numerical experiments to system (2.2)–(2.3) with small ε > 0.

(i) Numerically detect the so-called reversal potential V0 (resp. V EN
0 ) for the total flow

rate of charges, namely, the potential that satisfies I (V0) = 0 (resp. I EN (V EN
0 ) = 0),

with (resp. without) boundary layers (see Fig. 2);
(ii) Numerically investigate the difference of the individual fluxes and I–V relations

with/without boundary layers, that is, Ek(V ; σ, ρ) = Jk(V ; σ, ρ) − J EN
k (V ; 1, 1)

and Et (V ; σ, ρ) = I (V ; σ, ρ) − I EN (V ; 1, 1) (see Fig. 3).
(iii) Numerically study the competitions between two cations with boundary layers, that is,

E1,2(V ; σ, ρ) = D1E1(V , σ, ρ) − D2E2(V ; σ, ρ) (see Fig. 4).

To be specific, in our numerical simulations, we take

L1 = 20, L2 = 8; σ = 1.02, ρ = 0.95; z1 = z2 = 1, z3 = −1, ε = 0.001

and distinct values for (D1, D2, D3) and (R1, R2) illustrated in Figures 2, 3 and 4.
To end this section, we comment that the choice of above parameters corresponds to case

(iv) in Lemma 4.6 with x̃∗
2 = 18.4580, and other cases can be studied in a similar way. It turns

out that our numerical results are consistent with the analytical ones (see Proposition 4.8 and
Theorems 4.10, 4.11 and 4.12 for details). Taking the upper left figure in Figure 3 for example,
our numerical result shows clearly that E1(V ; σ, ρ) > 0 (resp. E1(V ; σ, ρ) < 0) for V > V b

1
(resp. V < V b

1 ), where V
b
1 is defined as that in (4.6) but for small ε; furthermore, due to the

fact that dE1(V ;σ,ρ)
dV < 0, one has E1(V ; σ, ρ) is decreasing in V . This corresponds to the first

statement in Proposition 4.8. In particular, in our first numerical experiment, we identified
two critical potentials, V0, the reversal potential of the total flow rate of chargeswith boundary
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Fig. 2 Reversal potentials of the total flow rate of charges. The left figure shows the reversal potential without
electroneutrality boundary conditions while the right one identifies the reversal potential with neutral boundary
conditions
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Fig. 3 Difference of individual fluxes Ek (V ; σ, ρ)) = Jk (V ; σ, ρ) − J EN
k (V ; σ, ρ) and total flow rate of

charges Et (V ; σ, ρ) = I (V ; σ, ρ) − I EN (V ; σ, ρ) under different set-ups

layers, and V EN
0 , the one without boundary layers. Under our set-ups, V0 > V EN

0 , and the
dynamics of the total flow rate of charges over the interval (V EN

0 , V0) are quite different,more
precisely, I (V ) < 0 on (V EN

0 , V0)while I EN > 0 over (V EN
0 , V0). The difference is caused

by the violation of electroneutrality boundary conditions, which produces totally different
dynamics of ionic flows. This again indicates the interest and significance of the study of
effects on ionic flows from boundary layers. More careful analysis along this direction for
more realistic PNP type models, such as the PNP system for more ion species with nonzero
permanent charges and finite ion sizes, will be carried out in our future studies.
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figure corresponds to the first statement in Theorem 4.10, Upper right one corresponds to the first statement
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