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Abstract
In this paperwepresent a comprehensivemechanism for the emergence of strange attractors in
a two-parametric family of differential equations acting on a three-dimensional sphere.When
both parameters are zero, its flow exhibits an attracting heteroclinic network (Bykov network)
made by two 1-dimensional connections and one 2-dimensional separatrix between two
hyperbolic saddles-foci with different Morse indices. After slightly increasing both parame-
ters, while keeping the one-dimensional connections unaltered, we focus our attention in the
case where the two-dimensional invariant manifolds of the equilibria do not intersect. Under
some conditions on the parameters and on the eigenvalues of the linearisation of the vector
field at the saddle-foci, we prove the existence of many complicated dynamical objects, rang-
ing from an attracting quasi-periodic torus to Hénon-like strange attractors, as a consequence
of the Torus-Breakdown Theory. The mechanism for the creation of horseshoes and strange
attractors is also discussed. Theoretical results are applied to show the occurrence of strange
attractors in some analytic unfoldings of a Hopf-zero singularity.
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1 Introduction

1.1 Strange Attractors

Many aspects contribute to the richness and complexity of a dynamical system. One of them
is the existence of strange attractors. Before going further, we introduce the following notion
(adapted to the situation under consideration):

Definition 1 A (Hénon type) strange attractor of a two-dimensional dissipative diffeomor-
phism R defined in a Riemannian manifold, is a compact invariant set � with the following
properties:

• � equals the closure of the unstable manifold of a hyperbolic periodic point;
• the basin of attraction of� contains an open set (and thus has positive Lebesguemeasure);
• there is a dense orbit in � with a positive Lyapounov exponent (exponential growth of

the derivative along its orbit);
• � is not hyperbolic.

A vector field possesses a strange attractor if the first return map to a cross section does.

The rigorous proof of the strange character of an invariant set is a great challenge and
the proof of the persistence (in measure) of such attractors is a very involving task. Based
on [12], Mora and Viana [37] proved the emergence of strange attractors in the process
of creation or destruction of the Smale horseshoes that appear through a bifurcation of a
tangential homoclinic point. In the present paper, rather than exhibit the existence of strange
attractors, we explore a mechanism to guarantee the existence of such complex dynamics in
the unfolding of a Bykov attractor, an expected phenomenon close to a SO(2)-equivariant
system. In the present paper, the abundance of strange attractors is a consequence of the
Torus-breakdown Theory developed in [1,3,4,8]. See also [51].

1.2 The Object of Study

Our starting point is a two-parametric differential equation ẋ = f(A,λ)(x) defined in the three-
dimensional sphere S

3 with two saddle-foci sharing all the invariant manifolds of dimensions
one and two for A = λ = 0, forming an attracting heteroclinic network � with a non-empty
basin of attraction U . We study the global transition of the dynamics from ẋ = f(0,0)(x) to
a smooth two-parameter family ẋ = f(A,λ)(x) that breaks the network (or part of it). Note
that, for small perturbations, the set U is still positively invariant. When A, λ �= 0, we assume
that the one-dimensional connections persist, and the two dimensional invariant manifolds
are generically transverse (either intersecting or not).

When λ > A ≥ 0, the two-dimensional invariant manifolds meet transversely, giving rise
to a complex network, that consists of a union of Bykov cycles [17]. The dynamics in the
maximal invariant set contained in U , contains, but does not coincide with, the suspension of
horseshoes accumulating on the heteroclinic network described in [6,30,33,43,44]. In addi-
tion, close to the organising center, the flow contains infinitely many heteroclinic tangencies
and attracting limit cycles with long periods, coexisting with sets with positive entropy, giv-
ing rise the so called quasi-stochastic attractors. All dynamical models with quasi-stochastic
attractors were found, either analytically or by computer simulations, to have tangencies of
invariant manifolds [24].

Recently, there has been a renewal of interest of this type of heteroclinic bifurcation in
the reversible [21,30,36], equivariant [33,43,44] and conservative [13] contexts.
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The novelty The case A > λ ≥ 0 corresponds to the situation where the two-dimensional
invariant manifolds do not intersect, which has not been yet studied. Although the network
� associated to the equilibria is destroyed, complex dynamics appears near the ghost of it. In
the present article, it is shown that the perturbed system may manifest regular behavior cor-
responding to the existence of a smooth invariant torus, and may also have chaotic regimes.
In the region of transition from regular behavior (attracting torus) to chaotic dynamics (sus-
pended horseshoes), using known results about Arnold tongues, we prove the existence of
lines with homoclinic tangencies to dissipative periodic solutions, responsible for the exis-
tence of persistent strange attractors nearby. This phenomenon has already been observed by
[50,51] in the context of non-autonomous differential equations. Our theoretical results may
be applied in specific unfoldings of the Hopf-zero singularity (Case III of [25]).

1.3 This Article

We study the dynamics arising near a differential equation with a specific attracting hete-
roclinic network (Bykov attractor). We show that, when a two-dimensional connection is
broken with a prescribed configuration, the dynamics undergoes a global transition from
regular to chaotic dynamics.

We discuss the global bifurcations that occur as the parameters (A, λ) vary. We complete
our results by reducing our problem to that of a first return map having an attracting (non-
contractible) curve and we study its generic bifurcations. As we will see in Sect. 9, the
mechanism of the transition from regular dynamics to chaotic dynamics is not so standard
as in [41,53], where just saddle-node, periodic doubling and Newhouse bifurcations were
involved in the the annihilation of hyperbolic horseshoes.

This article is organised as follows. In Sect. 2, after some basic definitions, we describe
precisely our object of study and in Sect. 3we review some literature related to it. In Sect. 4we
state the main results of the article. The coordinates and other notation used in the rest of the
article are presented in Sect. 5. In Sects. 6–8, we prove the main results of the manuscript. In
Sect. 9, we describe generic ways to break an attracting two-dimensional torus, which involve
homoclinic tangencies produced by the stable and unstable manifolds of a dissipative saddle.
These tangencies are the origin of persistent strange attractors. This mechanism is discussed
in Sect. 10 for generic unfoldings of the Hopf-zero singularity (Case III of [25]). For the
reader’s convenience, we have compiled at the end of the paper a list of definitions in a short
glossary.

Throughout this paper, we have endeavoured to make a self contained exposition bringing
together all topics related to the proofs. We have stated short lemmas and we have drawn
illustrative figures to make the paper easily readable.

2 Setting

We will enumerate the main assumptions concerning the configuration of the network and
the intersection of the invariant manifolds of the equilibria. We refer the reader to Appendix
A for precise definitions.
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Fig. 1 Sketch of the Bykov
attractor � satisfying (P1)–(P4)
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2.1 The Organising Center

For ε > 0 small, consider the two-parameter family of C3-smooth differential equations

ẋ = f(A,λ)(x) x ∈ S
3 A, λ ∈ [0, ε] (2.1)

where S
3 denotes the unit three-sphere, endowed with the usual topology. Denote by

ϕ(A,λ)(t, x), t ∈ R, the associated flow,1 satisfying the following hypotheses for A = λ = 0:

(P1) There are two different equilibria, say O1 and O2.

(P2) The spectrum of d fx is:

(P2a) E1 and −C1 ± ω1i where C1 > E1 > 0, ω1 > 0, for x = O1;
(P2b) −C2 and E2 ± ω2i where C2 > E2 > 0, ω2 > 0, for x = O2.

Thus the equilibrium O1 possesses a 2-dimensional stable and 1-dimensional unstable
manifold and the equilibrium O2 possesses a 1-dimensional stable and 2-dimensional unsta-
ble manifold. For M ⊂ S

3, denoting by M the topological closure of M , we also assume
that:

(P3) The manifolds Wu(O2) and Ws(O1) coincide and Wu(O2) ∩ Ws(O1) consists of
a two-sphere (also called the 2D-connection).

and

(P4) There are two trajectories, say γ1, γ2, contained in Wu(O1) ∩Ws(O2), one in each
connected component of S

3\Wu(O2) (also called the 1D-connections).

The two equilibria O1 and O2, the two-dimensional heteroclinic connection from O2 to
O1 referred in (P3) and the two trajectories listed in (P4) build a heteroclinic network we
will denote hereafter by �. This network has two cycles and is illustrated in Fig. 1. This set
has an attracting character [34], this is why it will be called a Bykov attractor.2

1 Since S
3 is a compact set without boundary, the local solutions of (2.1) could be extended to R.

2 The terminology Bykov is a tribute to V. Bykov who has dedicated his latest research activity to heteroclinic
cycles with similar properties to those of �.
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Fig. 2 Illustration of Property
(P5): the saddle-foci O1 and O2
have the same chirality

OO
12

Q

Lemma 2.1 [34] The set � is asymptotically stable.

Therefore, we may find an open neighborhood U of the heteroclinic network � having its
boundary transverse to the flow of ẋ = f(0,0)(x) and such that every solution starting in U
remains in it for all positive time and is forward asymptotic to �.

2.2 Chirality

There are two different possibilities for the geometry of the flow around �, depending on
the direction in which trajectories turn around the one-dimensional heteroclinic connection
from O1 to O2. To make this rigorous, we need some new concepts.

Let V1 and V2 be small disjoint neighborhoods of O1 and O2 with disjoint boundaries
∂V1 and ∂V2, respectively. These neighborhoods will be constructed with detail in Sect. 5.
Trajectories starting at ∂V1\Ws(O1) nearWs(O1) go into the interior of V1 in positive time,
then follow the connection from O1 to O2, go inside V2, and then come out at ∂V2 as in
Fig. 2. Let Q be a piece of trajectory like the one which has been constructed from ∂V1 to
∂V2. Now join its starting point to its end point by a line segment as in Fig. 2, forming a
closed curve, that we call the loop ofQ. The loop ofQ and the network � are disjoint closed
sets.

Definition 2 [34] We say that the two saddle-foci O1 and O2 in � have the same chirality if
the loop of every trajectory (starting near O1) is linked to � in the sense that the two closed
sets cannot be disconnected by an isotopy. Otherwise, we say that O1 and O2 have different
chirality.

Our next assumption is topological and may be written as:

(P5) The saddle-foci O1 and O2 have the same chirality.

For r ≥ 3, denote by Xr (S3), the set of Cr two-parameter families of vector fields on S
3

satisfying Properties (P1)–(P5), endowed with the Cr -topology.

2.3 Perturbing Terms

With respect to the effect of the two parameters A and λ on the dynamics, we assume that:

(P6) For A > λ ≥ 0, the two trajectories within Wu(O1) ∩ Ws(O2) persist.

By Kupka-Smale Theorem, generically the invariant two-dimensional manifoldsWu(O2)

and Ws(O1) are transverse (intersecting or not). Throughout this article, we assume that:
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(P7a) For A > λ ≥ 0, the two-dimensional manifolds Wu(O2) and Ws(O1) do not
intersect.

and

(P8) The transitions along the connections [O1 → O2] and [O2 → O1] are given, in
local coordinates, by the Identity map and by

(x, y) �→ (x, y + A + λ
(x))

respectively, where 
 : S
1 → S

1 is a Morse function with at least two non-degenerate
critical points (S1 = R (mod 2π)). This assumption will be detailed later in Sect. 5.

For the moment, without loss of generality, let us also assume that 
(x) = sin x , x ∈ S
1,

which has exactly two critical points.

2.4 Constants

For future use, we settle the following notation:

δ1 = C1

E1
> 1, δ2 = C2

E2
> 1, δ = δ1 δ2 > 1 (2.2)

and

K = E2 + C1

E1E2
> 0, Kω = E2 ω1 + C1 ω2

E1E2
> 0 and a = λ

A
. (2.3)

3 Overview

In this section, we review some known results about the bifurcation of codimension 2 under
consideration, which are summarized in Table 1 and illustrated in Fig. 3.

3.1 Case 1: A = � = 0

The network � is asymptotically stable (see Lemma 2.1). The two-dimensional manifolds
Wu(O2) and Ws(O1) coincide and the global attractor of f(0,0) is made of the equilibria
O1, O2, and the two trajectories of [O1 → O2] together with a sphere which is both the
stable manifold of O1 and the unstable manifold of O2. See Fig. 1.

This attractor, the so called Bykov attractor, has a finite number of moduli of stability and
the points of its proper basin of attraction have historic behavior [18]. The coincidence of the
two-dimensional invariant manifolds of O1 and O2 prevents visits to both cycles.

3.2 Case 2: A = 0 and � > 0

Let f(A,λ) ∈ Xr (S3) be a two-parameter family of vector fields satisfying (P1)–(P6) and
for which Property (P7a) does not hold. Trajectories within Wu(O1) ∩ Ws(O2) are kept
but the manifolds Wu(O2) and Ws(O1) rearrange themselves, creating either transversal or
tangential intersections. This upheaval causes an explosion of the non-wandering set of the
flow, bringing forth a countable union of suspended horseshoes inside the set of trajectories
that remain for all positive times in U . These horseshoes accumulate at the stable/unstable
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Table 1 Overview of the results

Case(s) Parameters λ = 0 λ > 0

1 and 2 A = 0 Attracting network
[33,35]

Horseshoes + strange
attractors [35] +
homoclinic tangencies
[35,45]

3 0 < A < λ – Horseshoes + strange
attractors [35] +
homoclinic tangencies
[35,45]

4 (new) A > λ Attracting torus Torus or horseshoes +
strange attractors
(additional parameter:
Kω)

Σ

1O

2O

Organizing center

λ

Case 1: A = λ = 0
Σ Σ

0

λ λ
AA

Case 2:  λ > 0 = A

Case 3:   λ > A > 0 Case 4: A > λ > 0
Σ Σ

Fig. 3 Shape of the first hit ofWu(O2)/Ws (O1) to . The set  a cross section to the Bykov attractor � near
the connection Wu(O2) ∩ Ws (O1). The symbol ◦ represents (transverse) heteroclinic connections from O2
to O1; the red line is the graph of 
(x) representing Wu(O2) ∩ ; the grey line is Ws (O1) ∩ ; the double
bars mean that the sides are identified (Color figure online)

manifolds of the equilibria (cf. [17,33]). Furthermore, for a sequence of positive parame-
ters arbitrarily close to zero, say (λ j ) j , the flow associated to f(0,λ j ) exhibits homo and
heteroclinic tangencies, sinks with long periods and strange attractors (cf. [35,37,38]).

3.3 Case 3: � > A > 0

In this case, the manifolds Wu(O2) and Ws(O1) still meet transversely along at least two
connections and thus the results of [33,35,44] still hold. The transverse intersection of the
two-dimensional invariant manifolds of the two equilibria implies that the set of trajectories
that remain for all time in a small neighborhood of theBykov cycle contains a locally-maximal
hyperbolic set admitting a complete description in terms of symbolic dynamics, reminiscent
of the results of [24,47]. An obstacle to the global symbolic description of these trajectories
is the existence of tangencies that lead to the birth of stable periodic solutions, as described
in [23,24,39].
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3.4 Case 4: A > � ≥ 0

As far as we know, the cases A > λ = 0 and A > λ > 0 have not been studied. The goal
of this article is to explore these cases where there are no cycles associated to O1 and O2. In
contrast to Cases 2 and 3,where the involved bifurcations are related to horseshoe destruction,
tangencies and Newhouse phenomena [35,41], in Case 4 the bifurcations are connected with
the Torus-Breakdown Theory [1,3,4,8]. Hence, hereafter, we also assume that:

(P7b) A > λ ≥ 0 (or, equivalently, a = λ
A ∈ [ 0, 1 [ ).

Under hypothesis (P8), one has (P7a) ⇔ (P7b), as noticed in Remark 5.2. When we refer
to (P7) we refer one of the above.

For r ≥ 3, we denote by Xr
Byk(S

3) ⊂ Xr (S3), the set of Cr two-parameter families of

vector fields on S
3 satisfying conditions (P1)–(P8). An explicit example with a two parameter

polynomial differential equation satisfying (P1)–(P7) has been given in §4.1.3.2 of [5].

Digestive remark

Constants A and λ may be interpreted as follows: as depicted in Fig. 3, the first hit of
Wu(O2) and Ws(O1) to  are two closed curves. In Case 4, according to our model, the
distance between the two curves can be written as A + λ
(x), x ∈ S

1, which may be seen
as an approximation of the Melnikov function associated to the two-dimensional invariant
manifolds [25, §4.5]. The constant A gives the averaged distance between the first hit of
Wu(O2) and Ws(O1) in ; the parameter λ describes fluctuations of Wu(O2) in .

4 Main Results

Let T be a neighborhood of the Bykov attractor �, which exists for A = λ = 0. For ε > 0
small, let

(
f(A,λ)

)
(A,λ)∈[0,ε]2 be a two-parameter family of vector fields inX3

Byk(S
3) satisfying

conditions (P1)–(P8).

Theorem A Let f(A,λ) ∈ X3
Byk(S

3). Then, there is ε̃ > 0 (small) such that the first return
map to a given cross section to � may be written (in local coordinates) by:

F(A,λ)(x, y) = [
x − Kω ln(y + A + λ sin x) (mod 2π), (y + A + λ sin x)δ

]+ · · ·
where

(x, y) ∈ D = {x ∈ R (mod 2π), y/ε̃ ∈ [−1, 1] and y + A + λ sin x > 0}
and the ellipsis stand for asymptotically small terms depending on x and y which converge
to zero along their derivatives.

The proof of Theorem A is done in Sect. 6 by composing local and transition maps. Since
δ > 1, for A small enough, the second component of F(A,λ) is contracting and, under an
additional hypothesis, the dynamics of F(A,λ) is dominated by the family of circle maps.

Theorem B Let f(A,λ) ∈ X3
Byk(S

3). For A > 0 small enough, if λ
A < 1√

1+K 2
ω

, then there is

an invariant closed curve C ⊂ D as the maximal attractor for F(A,λ). This closed curve is
not contractible on D.
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Fig. 4 Invariant attracting 2-torus and chaotic regions for the map F(A,λ) with respect to the parameters Kω

and λ
A

The proof of Theorem is performed in Sect. 7 using the Afraimovich’s Annulus Princi-
ple [3]. The curve C is globally attracting in the sense that, for every p ∈ D, there exist a
point p0 ∈ C such that

lim
n→+∞

∣∣∣Fn
(A,λ)(p) − Fn

(A,λ)(p0)
∣∣∣ = 0.

The attracting invariant curve for F(A,λ) is the graph of a smooth map and corresponds to an
attracting two-torus for the flow of (2.1). Thus, in particular:

Corollary C Let f(A,λ) ∈ X3
Byk(S

3). For A > 0 small enough, if either Kω > 0 or λ > 0 are
sufficiently small, then:

(a) there is a persistent two-dimensional torus which is globally attracting.
(b) the dynamics of F(A,λ) induces on C a circle map. In this case, for any given interval
of unit length I , there is a positive measure set � ⊂ I so that the rotation number of
F(A,λ)|C is irrational if and only if a = λ/A ∈ �.

Proof (a) The existence of an invariant torus is a direct corollary of Theorem B. Since
the torus is normally hyperbolic, its persistence follows from the theory for normally
hyperbolic manifolds developed by Hirsch et al. [27].

(b) The first part of this item follows from (a); the second part, concerning the rotation
number on circle maps, may be found in Boyland [15] and Herman [26]. �
The previous result implies the existence of a set of positive Lebesgue measure (in the

bifurcation parameter (A, λ)) for which the torus has a dense orbit, i.e. the whole torus is a
minimal attractor.
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Theorem D Let f(A,λ) ∈ X3
Byk(S

3). For A > 0 small enough, if

exp
(

6π
Kω

)
− 1

exp
(

6π
Kω

)
− 1/6

<
λ

A
< 1,

then there exists a hyperbolic invariant closed subset � in a cross section to � such that
F(A,λ)|� is topologically conjugate to the Bernoulli shift of two symbols.

Remark 4.1 Under a stronger hypothesis, the conclusion of Theorem Dmay be rephrased as:
F(A,λ)|� is topologically conjugate to the Bernoulli shift of m symbols, with 2 ≤ m ∈ N,
giving rise to rotational horseshoes, a particular type of horseshoes characterized by Passegi
et al. [42]—see Lemma 8.2.

As a corollary of Theorems B and D, in the bifurcation diagram (a, Kω) = (
λ
A , Kω

)
, we

may draw, in the first quadrant, two smooth curves, the graphs of h1 and h2 in Fig. 4, such
that:

(1) h1(Kω) = 1√
1+K 2

ω

and f (Kω) = exp
(

6π
Kω

)
−1

exp
(

6π
Kω

)
−1/6

;

(2) the region below the graph of h1 corresponds to flows having an invariant and attracting
torus with zero topological entropy (regular dynamics);

(3) the region above the graph of h2 corresponds to vector fields whose flows exhibit sus-
pended horseshoes (chaotic dynamics).

The behavior of F(A,λ) is unknown for the parameter range between the graphs of f
and g. Nevertheless, for Kω > 0 fixed (along the red dashed line in Fig. 4), the transition
from the graph of h1 to that of h2 may be explained via Arnold tongues associated to the
torus bifurcations [1,7,8]. In particular, in the bifurcation diagram

(
A, λ

A

)
, there is a set with

positive Lebesgue measure for which the family (2.1) exhibits strange attractors.

Theorem E Fix K 0
ω > 0. In the bifurcation diagram

(
A, λ

A

)
, where (A, λ) is such that

h1(K 0
ω) < λ

A < h2(K 0
ω), there exists a positive measure set � of parameter values, so

that for every a ∈ �, F(A,λ) admits a strange attractor (of Hénon-type) with an ergodic SRB
measure.

The proof of Theorem E is a consequence of the Torus-Breakdown Theory [1,3,4,8] com-
binedwith the results byMora andViana [37]. A discussion of these results will be performed
in Sect. 9.

An Application: Strange Attractors in the Unfolding of a Hopf-Zero Singularity

By applying the previous theory, we may show the occurrence of strange attractors in a
specific case of unfoldings of a Hopf-zero singularity (Type I of [11], Case III of [25]).3

Since the hypotheses are very technical, we decide to postpone the precise result to Sect. 10.

3 Care is needed to compare both works because the constants choice and signs are different.
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Fig. 5 Local cylindrical coordinates inside V1 and V2 and near O1 and O2, respectively

5 Local and TransitionMaps

In this section we will analyze the dynamics near the Bykov attractor � through local maps,
after selecting appropriate coordinates in neighborhoods of the saddle-foci O1 and O2 (see
Fig. 5), as done in [40].

5.1 Local Coordinates

In order to describe the dynamics around the cycles of �, we use the local coordinates near
the equilibria O1 and O2 introduced in [35]. See also Ovsyannikov and Shilnikov [40].

In these coordinates, we consider cylindrical neighborhoods V1 and V2 inR
3 of O1 and O2,

respectively, of radius ρ = ε̃ > 0 and height z = 2ε̃—see Fig. 5. After a linear rescaling of
the variables, we may also assume that ε̃ = 1. Their boundaries consist of three components:
the cylinder wall parametrised by x ∈ R (mod 2π) and |y| ≤ 1 with the usual cover

(x, y) �→ (1, x, y) = (ρ, θ, z)

and two discs, the top and bottom of the cylinder. We take polar coverings of these disks

(r , ϕ) �→ (r , ϕ,±1) = (ρ, θ, z)

where 0 ≤ r ≤ 1 and ϕ ∈ R (mod 2π). The local stable manifold of O1, Ws
loc(O1),

corresponds to the circle parametrised by y = 0. In V1 we use the following terminology
suggested in Fig. 5:

• In(O1), the cylinder wall of V1, consisting of points that go inside V1 in positive time;
• Out(O1), the top and bottom of V1, consisting of points that go outside V1 in positive

time.

We denote by In+(O1) the upper part of the cylinder, parametrised by (x, y), y ∈ ] 0, 1] and
by In−(O1) its lower part.

The cross-sections obtained for the linearisation around O2 are dual to these. The set
Ws

loc(O2) is the z-axis intersecting the top and bottom of the cylinder V2 at the origin of its
coordinates. The set Wu

loc(O2) is parametrised by y = 0, and we use:

• In(O2), the top and bottom of V2, consisting of points that go inside V2 in positive time;

123



1654 Journal of Dynamics and Differential Equations (2022) 34:1643–1677

• Out(O2), the cylinder wall of V2, consisting of points that go inside V2 in negative time,
with Out+(O2) denoting its upper part, parametrised by (x, y), y ∈ ]0, 1] and Out−(O2)

its lower part.

We will denote by Wu
loc(O2) the portion of Wu(O2) that goes from O2 up to In(O1)

not intersecting the interior of V1 and by Ws
loc(O1) the portion of Ws(O1) outside V2 that

goes directly from Out(O2) into O1. The flow is transverse to these cross-sections and
the boundaries of V1 and of V2 may be written as the closure of In(O1) ∪ Out(O1) and
In(O2) ∪Out(O2), respectively. The orientation of the angular coordinate near O2 is chosen
to be compatible with the direction induced by the angular coordinate in O1.

5.2 Local Maps Near the Saddle-Foci

Following [20,40], the trajectory of a point (x, y) with y > 0 in In+(O1), leaves V1 at
Out(O1) at


1(x, y) =
(
yδ1 + S1(x, y; A, λ),−ω1 ln y

E1
+ x + S2(x, y; A, λ)

)

= (r , φ) where δ1 = C1

E1
> 1, (5.1)

where S1, S2 are smooth functions which depend on A, λ and satisfy:
∣∣∣∣

∂k+l+m1+m2

∂xk∂ yl∂λm1∂Am2
Si (x, y; A, λ)

∣∣∣∣ ≤ C yδ1+σ−l . (5.2)

The numbersC ,σ are positive constants and k, l,m1,m2 are non-negative integers. Similarly,
a point (r , φ) in In(O2)\Ws

loc(O2), leaves V2 at Out(O2) at


2(r , ϕ) =
(

−ω2 ln r

E2
+ ϕ + R1(r , ϕ; A, λ), r δ2 + R2(r , ϕ; A, λ)

)
= (x, y)

where δ2 = C2

E2
> 1 (5.3)

and R1, R2 satisfy a condition similar to (5.2). The terms S1, S2, R1, R2 correspond to
asymptotically small terms that vanish when y and r go to zero. A better estimate under a
stronger eigenvalue condition has been obtained in [28, Prop. 2.4].

5.3 The Transitions

The coordinates on V1 and V2 are chosen so that [O1 → O2] connects points with z > 0
(resp. z < 0) in V1 to points with z > 0 (resp. z < 0) in V2. Points in Out(O1) \ Wu

loc(O1)

near Wu(O1) are mapped into In(O2) along a flow-box around each of the connections
[O1 → O2]. Assuming (P8), the transition

�1→2 : Out(O1) → In(O2)

does not depend neither on λ nor A and is the Identity map, a choice compatible with
Hypothesis (P4). Using a more general form for �1→2 would complicate the computations
without any change in the final results. Denote by η the map

η = 
2 ◦ �1→2 ◦ 
1 : In(O1) → Out(O2).
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In(O  )

x0 2π

1

Α

λ

Out(O  )2

x

0 2π

Α
W    (O  )u

loc 2

W    (O  )u
2

W    (O  )s
loc 1

W    (O  )s
loc 1

λ

loc

Fig. 6 Geometry of the global map �
(A,λ)
2→1 . For A > λ ≥ 0, Ws

loc(O1) intersects the wall Out(O2) of the
cylinder V2 and Wu

loc(O2) intersects the wall In(O1) of the cylinder V1 on closed curves given, in local
coordinates, by the graph of a 2π−periodic function of sinusoidal type. Compare with Figure 4 of [22]

Omitting the higher order terms which appear in (5.1) and (5.3), we infer that, in local
coordinates, for y > 0 we have

η(x, y) = (
x − Kω ln y mod 2π, yδ

)
(5.4)

with

δ = δ1δ2 > 1 and Kω = C1ω2 + E2ω1

E1E2
> 0. (5.5)

A similar expression is valid for y < 0, after suitable changes in the sign of y. Using (P7)
and (P8), for A > λ ≥ 0, we still have a well defined transition map

�
(A,λ)
2→1 : Out(O2) → In(O1)

that depends on the parameters λ and A, given by (see Fig. 6)

�
(A,λ)
2→1 (x, y) = (x, y + A + λ sin x) . (5.6)

Remark 5.1 Our study is basedon amodel satisfyingHypothesis (P8). It governs the transition
maps along the heteroclinic connections, being necessary to make precise computations in
Sects. 6–8. The part concerning the transition along [O2 → O1], �

(A,λ)
2→1 , corresponds to

the expected unfolding from the coincidence of the two-dimensional invariant manifolds at
f(0,0); this is also suggested in Figure 4 of [22].

Remark 5.2 We are now in conditions to explain why, under (P8), the hypotheses (P7a)
and (P7b) are equivalent. Indeed, as suggested by Fig. 6, the sets Wu

loc(O2) ∩ Out(O2) and
Ws

loc(O1) ∩ In(O1) are parametrised by y = 0. Assuming (P8), the set

�
(A,λ)
2→1 (Wu

loc(O2) ∩ Out(O2)) ⊂ In(O1)

is the graph of A+λ sin(x), x ∈ S
1. Since A, λ ≥ 0, the two-dimensionalmanifoldsWu

loc(O2)

and Ws
loc(O1) do not intersect if and only if

A + λ sin(x) > 0, x ∈ S
1.

In particular, A > λ ≥ 0 i.e. λ/A ∈ [ 0, 1[.

To simplify the notation, in what follows we will sometimes drop the subscript (A, λ),
unless there is some risk of misunderstanding.
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6 Proof of Theorem A

The proof of Theorem A is straightforward by composing the local and transition maps
constructed in Sect. 5. Let

F(A,λ) = η ◦ �2→1 =: D ⊂ Out(O2) → D ⊂ Out(O2). (6.1)

be the first return map to Out(O2), where D is the set of initial conditions (x, y) ∈ Out(O2)

whose solution returns to Out(O2). Composing η (5.4) with �2→1 (5.6), the analytic expres-
sion of F(A,λ) is given by:

F(A,λ)(x, y) = [−Kω ln [y + A + λ sin x] + x (mod 2π), (y + A + λ sin x)δ
]

=
(
F (A,λ)
1 (x, y),F (A,λ)

2 (x, y)
)

,

and Theorem A is proved.
The following technical result will be useful in the sequel.

Lemma 6.1 For A > 0 small enough, the map F (A,λ)
2 is a contraction in the variable y.

Proof Since δ > 1 and y ∈ [0, 1], we may write:
∣∣∣∣∣
∂F (A,λ)

2 (x, y)

∂ y

∣∣∣∣∣
= ∣∣δ(y + A + λ sin x)δ−1

∣∣ = O(Aδ−1) < 1,

and we get the result. �

7 Proof of Theorem B

To prove the existence of an invariant and attracting smooth closed curve for F(A,λ), we
make use if the Afraimovich Annulus Principle [3,4]. We start by proving the existence of a
flow-invariant annulus in Out+(O2) in Sect. 7.1, then we check the conditions required by
the Annulus Principle (one by one) in Sect. 7.2.

7.1 The Existence of an Annulus

Let

B =
{

(x, y) : Aδ

(
1 − λ

A

)δ

≤ y ≤ 2Aδ

(
1 + λ

A

)δ

and x ∈ R (mod 2π)

}

⊂ Out+(O2)

In what follows, if X ⊂ Out(O2), let
◦
X denote the topological interior of X .

Lemma 7.1 There exists A0 ∈ ] 0, ε [ such that: if A ∈ ] 0, A0 ] and λ ∈ [ 0, A [ then

F(A,λ)(B) ⊆ ◦
B.

Proof If (x, y) ∈ B, we have:

(y + A + λ sin x)δ = Aδ

(
y

A
+ 1 + λ

A
sin x

)δ
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≤ Aδ

(

2Aδ−1
(
1 + λ

A

)δ

+ 1 + λ

A

)δ

+ o(1) yδ

≤ Aδ

((
1 + λ

A

)(

2Aδ−1
(
1 + λ

A

)δ−1

+ 1

))δ

≤ Aδ

(
1 + λ

A

)δ (
O
(
Aδ
)+ 1

)

< 2Aδ

(
1 + λ

A

)δ

,

In particular, there exists A1 > 0 such that:

∀A < A1, ∀λ < A, (y + A + λ sin x)δ < 2Aδ

(
1 + λ

A

)δ

.

Analogously, if (x, y) ∈ B, we may write:

(y + A + λ sin x)δ = Aδ

(
y

A
+ 1 + λ

A
sin x

)δ

≥ Aδ

(

Aδ−1
(
1 − λ

A

)δ

+ 1 − λ

A

)δ

≥ Aδ

((
1 − λ

A

)(

Aδ−1
(
1 − λ

A

)δ−1

+ 1

))δ

≥ Aδ

(
1 − λ

A

)δ (
O
(
Aδ
)+ 1

)δ

> Aδ

(
1 − λ

A

)δ

Therefore, there exists A2 > 0 such that:

∀A < A2, ∀λ < A (y + A + λ sin x)δ > Aδ

(
1 − λ

A

)δ

.

Therefore, the region B is forward invariant for all A ∈ ] 0, A0] and λ ∈ [ 0, A [, where
A0 = min{A1, A2}. �

We recall the annulus principle (version [4]), adapted to our purposes. Let us introduce
the following notation: for a vector-valued or matrix-valued function F(x, y), define

‖F‖ = sup
(x,y)∈B

‖F(x, y)‖,

where ‖�‖ is the standard Euclidian norm.

Theorem 7.2 [4] Let G(x, y) = (x + g1(x, y), g2(x, y)) be a C1 map, with x ∈ R

(mod 2π), defined on the annulus

B = {(x, y) : a ≤ y ≤ b and x ∈ R (mod 2π)} ,
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where 0 < a < b, and satisfying:

(1) g1 and g2 are 2π-periodic in x and smooth;

(2) G(B) ⊆ ◦
B;

(3) 0 <

∥
∥
∥
∥1 + ∂g1

∂x

∥
∥
∥
∥ < 1;

(4)

∥
∥
∥
∥
∂g2
∂ y

∥
∥
∥
∥ < 1 (ie, the map g2 is a contraction in y);

(5) 2

√∥
∥
∥
∥1 + ∂g1

∂x

∥
∥
∥
∥

−2 ∥∥
∥
∥
∂g2
∂x

∥
∥
∥
∥

∥
∥
∥
∥
∂g1
∂ y

∥
∥
∥
∥ < 1 −

∥
∥
∥
∥1 + ∂g1

∂x

∥
∥
∥
∥

−1 ∥∥
∥
∥
∂g2
∂ y

∥
∥
∥
∥;

(6)

∥
∥
∥
∥1 + ∂g1

∂x

∥
∥
∥
∥+

∥
∥
∥
∥
∂g2
∂ y

∥
∥
∥
∥ < 2,

then the maximal attractor in B is an invariant closed curve, the graph of a 2π-periodic, C1

function y = h(x).

7.2 Proof of Theorem B

In this section, we prove Theorem B as an application of Theorem 7.2. Let us define:

g1(x, y) = F (A,λ)
1 (x, y) − x = −Kω ln(y + A + λ sin x)

g2(x, y) = F (A,λ)
2 (x, y) = (y + A + λ sin x)δ

where

Kω = C1ω2 + E2ω1

E1E2
,

whose derivatives may be written as:

∂g1(x, y)

∂x
= −Kω

λ cos x

y + A + λ sin x
,

∂g1(x, y)

∂ y
= −Kω

y + A + λ sin x
,

∂g2(x, y)

∂x
= δλ(y + A + λ sin x)δ−1 cos x,

∂g2(x, y)

∂ y
= δ(y + A + λ sin x)δ−1.

We state and prove an auxiliary result that will be used in the sequel.

Lemma 7.3 If 0 < λ < A√
1+K 2

ω

, the range of
∂F (A,λ)

1
∂x is ] 0, 1 [.

Proof First note that

∂F (A,λ)
1

∂x
= 1 + ∂g1(x, y)

∂x
= 1 − Kω

λ
A cos x

1 + λ
A sin x

+ o(1) y. (7.1)

Taking a = λ
A , we get:

∂2F (A,λ)
1

∂2x
=

∂
(
1 + ∂g1(x,y)

∂x

)

∂x
= ∂

∂x

(
1 − Kω

a cos x

1 + a sin x

)

123



Journal of Dynamics and Differential Equations (2022) 34:1643–1677 1659

= Kω

a sin x(1 + a sin(x)) + a2 cos2(x)

(1 + a sin(x))2

= Kω

a sin x + a2

(1 + a sin(x))2

Therefore
∂2F (A,λ)

1 (x,y)
∂2x

= 0 if and only if a = 0 or sin(x) = −a. Let us define x� ∈
[π, 3π/2] such that sin(x�) = −a. Therefore:

0 < 1 + ∂g1(x�, y)

∂x
< 1 ⇔ 0 < 1 − Kω

a cos x�

1 + a sin x�
< 1

⇔ 0 < 1 − Kωa
√
1 − a2

1 − a2
< 1

⇔ 0 <
Kωa√
1 − a2

< 1

⇔ 1 − a2

a2
> K 2

ω

⇔ a <
1

√
K 2

ω + 1

⇔ λ <
A

√
K 2

ω + 1

�
In order to prove TheoremB, we check one by one the hypotheses of Theorem 7.2, putting

all pieces together.

(1) It is easy to see to see that g1(x, y) = F (A,λ)
1 (x, y) − x and g2(x, y) = F (A,λ)

2 (x, y) are
2π-periodic in the variable x and smooth in B.

(2) This item follows from Lemma 7.1, where a = Aδ
(
1 − λ

A

)δ
and b = 2Aδ

(
1 + λ

A

)δ
.

(3) Using Lemma 7.3, we know that 0 <

∥∥∥1 + ∂g1
∂x

∥∥∥ < 1 if a = λ
A ∈ [0, 1√

1+K 2
ω

[. In

particular, under the same condition, we get
∥∥∥1 + ∂g1

∂x

∥∥∥
−1

< ∞.

(4) The proof of this item follows from Lemma 6.1. Indeed,
∥∥∥∥
∂g2(x, y)

∂ y

∥∥∥∥ = sup
(x,y)∈B

|δ(y + A + λ sin x)δ−1| = O(Aδ−1) < 1.

(5) Since

∂g1(x, y)

∂ y
= −Kω

y + A + λ sin x
= O

(
1

A

)
and

∂g2(x, y)

∂x
= δλ(y + A + λ sin x)δ−1 cos x

≤ δA(y + A + λ sin x)δ−1

= O
(
Aδ
)
,
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η
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Fig. 7 Illustration of Theorem B: for A > 0 small enough, if λ < A√
1+K 2

ω

, then there is an invariant closed

curve C ⊂ Out+(O2) as the maximal attractor of F(A,λ)

this implies that:

√∥
∥
∥∥1 + ∂g1

∂x

∥
∥
∥∥

−2 ∥∥
∥∥
∂g2
∂x

∥
∥
∥∥

∥
∥
∥∥
∂g1
∂ y

∥
∥
∥∥ =

∥
∥
∥∥1 + ∂g1

∂x

∥
∥
∥∥

−1

O(Aδ/2) O(A−1/2) = O
(
A

δ−1
2

)
.

Combining now

1 −
∥∥∥∥1 + ∂g1

∂x

∥∥∥∥

−1 ∥∥∥∥
∂g2
∂ y

∥∥∥∥ = 1 − O
(
Aδ−1)

with

√∥∥∥∥1 + ∂g1
∂x

∥∥∥∥

−2 ∥∥∥∥
∂g2
∂x

∥∥∥∥

∥∥∥∥
∂g1
∂ y

∥∥∥∥ = O
(
A

δ−1
2

)
,

item (5) follows for A > 0 sufficiently small.
(6) Using again Lemmas 6.1 and 7.3, we get:

∥∥∥∥1 + ∂g1
∂x

∥∥∥∥+
∥∥∥∥
∂g2
∂ y

∥∥∥∥ < 1 + O(Aδ−1) < 2

This ends the proof of the existence of an attracting curve for the dynamics of F(A,λ),
provided A > 0 is sufficiently small and λ

A < 1√
1+K 2

ω

. This curve, shown is Fig. 7, is not

contractible because it is the graph of a C1-smooth map h.

Geometric Interpretation

Condition λ < A√
1+K 2

ω

implies that the image of the annulus B under F(A,λ) is also an

annulus bounded by two curves without folds. The subsequent image of this annulus is self-
alike too, and so on. As a result, we obtain a sequence of embedded annuli; the contraction
in the y-variable (Lemma 6.1) guarantees that these annuli intersect in a single and smooth
attracting closed curve.
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8 Proof of TheoremD

In this section, under an appropriate hypothesis, we prove the existence of two rectangles
whose image under F(A,λ) overlaps with Out(O2) at least twice. Therefore, we obtain a
construction similar to the hyperbolic Smale horseshoe: a small tubular neighborhood of
y = 0 (in Out(O2)) is folded and mapped into itself.

8.1 Stretching the Angular Component

The first technical result, illustrated in Fig. 8, says that the image underF (A,λ)
1 of the segment

parametrised by
{
(x, y) ∈ D : π

2
< x <

3π

2
and y = y0

}

(y0 ∈ [0, 1]) is monotonic, meaning that there are no folds. Here we use the hypothesis that
the map 
(x) = sin x has non-degenerate critical points.

Lemma 8.1 For any y0 ∈ [0, 1], the angular map F (A,λ)
1 (x, y0) is an increasing map for

x ∈ ]π/2, 3π/2 [.
Proof Let y0 ∈ [0, 1]. One knows that:

∂F (A,λ)
1

∂x
(x, y0) = 1 − Kω

λ cos x

y0 + A + λ sin x

= 1 − Kω

λ
A cos x

y0
A + 1 + λ

A sin x

≈ 1 − Kω

λ
A cos x

1 + λ
A sin x

Since λ
A � 1 and λ

A cos x < 0 in ]π/2, 3π/2 [, we may conclude that:

∀x ∈ ]π/2, 3π/2 [, ∂F (A,λ)
1

∂x
(x, y0) > 0

and the result follows. �
From now on, for n ∈ N\{1}, let θn = π + arcsin(cn) where cn = 1

2(n+1) . It is easy to see
that θn ∈ ]π, 3π/2 [ and sin(θn) = sin(π + arcsin(cn)) = −cn < 0.

Therefore, for all y ∈ [0, 1] and δ ∈ [ 0, 3π/2 − θn [ ⊂ ] 0, π/2 [, we have:
F (A,λ)
1 (3π/2 − δ, y) − F (A,λ)

1 (θn, y)

= −Kω ln[y + A + λ sin(3π/2 − δ)] + (3π/2 − δ)

+ Kω ln(y + A + λ sin θn) − θn

= (3π/2 − δ − θn) + Kω ln

[
y + A + λ sin θn

y + A + λ sin(3π/2 − δ)

]
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y=y 0
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R

Fig. 8 For y0 ∈ [0, 1], the image under F(A,λ) of the segment [π, 3π/2] × {y0} is a curve (without folds)
intersecting twice the rectangle R = [π, 3π/2] × [−1, 1] ⊂ Out(O2). There are two sub-segments (I1 and
I2) which are stretched by F(A,λ) along R

= (3π/2 − δ − θn) + Kω ln

[
1
A y + 1 + λ

A sin θn
1
A y + 1 + λ

A sin(3π/2 − δ)

]

= (3π/2 − δ − θn) + Kω ln

[
1 − λ cn

A

1 − λ
A cos(δ)

]

+ o(1) y (8.1)

For each n ∈ N\{1}, δ ∈ ] 0, π/2 [, a = λ
A ∈ [0, 1[ and A �= 0, define the map

P (δ, a) := Kω ln

[
1 − a cn

1 − a cos(δ)

]
. (8.2)

Lemma 8.2 For n ∈ N\{1}, λ
A >

exp
(

π
Kω cn

)
−1

exp
(

π
Kω cn

)
−cn

if and only if P
(
0, λ

A

)
> π

cn
.

Proof Taking a = λ/A, we may write:

P(0, a) >
π

cn
⇔ Kω ln

(
1 − a cn

1 − a cos 0

)
>

π

cn

⇔ ln

(
1 − a cn
1 − a

)
>

π

Kω cn

⇔ 1 − a cn
1 − a

> exp

(
π

Kω cn

)

⇔ 1 − a cn > (1 − a) exp

(
π

Kω cn

)

⇔ 1 − a cn > exp

(
π

Kω cn

)
− a exp

(
π

Kω cn

)

⇔ a

(
exp

(
π

Kω cn

)
− cn

)
> exp

(
π

Kω cn

)
− 1

⇔ a >
exp

(
π

Kω cn

)
− 1

(
exp

(
π

Kω cn

)
− cn

)

�
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Using Lemma 8.2, by continuity of P with respect to δ, there exists δ0 < 3π/2− θn such
that

λ

A
>

exp
(

π
Kω cn

)
− 1

(
exp

(
π

Kω cn

)
− cn

) ⇒ P

(
δ0,

λ

A

)
>

π

cn
= 2(n + 1)π. (8.3)

Taking into account (8.1), the condition 3π/2 − δ − θn ∈ [0, π/2], and (8.3), we conclude
that there exists δ0 < 3π/2 − θn such that

F (A,λ)
1 (3π/2 − δ0, y) − F (A,λ)

1 (θn, y) > 2nπ + 3π

2
.

Then, as suggested in Fig. 8, the image, under F(A,λ), of the segment [π, 3π/2] × {y0} is a
curve (without folds) intersecting n times the rectangle

R = [π, 3π/2] × [−1, 1] ⊂ Out(O2).

In particular, we may find n disjoint intervals defined by In = [x2n−1, x2n] such that

π < θn < x1 < x2 < · · · < x2n−1 < x2n <
3π

2
− δ0, (8.4)

for which we define n non-empty compact and disjoint subsets Hn , on which the map
F(A,λ)|H1∪···∪Hn is topologically conjugate to a Bernoulli shift with n symbols. The con-
struction of this horseshoe (n = 2) is the goal of the Sect. 8.2.

8.2 The Construction of the Topological Horseshoe

We now recall the main steps of the construction of the horseshoes (with n = 2) which
are F(A,λ)–invariant. The argument uses the generalized Conley-Moser conditions [25,32,

46,52] to ensure the existence for λ
A >

exp
(

π
Kω c2

)
−1

exp
(

π
Kω c2

)
−c2

, of an invariant set � ⊂ Out+(O2)

topologically conjugated to a Bernoulli shift with 2 symbols. As suggested in Fig. 9 (right),
in this subsection, we decided to flip coordinates (x, y) ↔ (y, x) in D ⊂ Out(O2) because
doing so, we get a high similarity of the present situation to that of [44,52], where we address
the reader for details.

Given a rectangular regionR in Out(O2), parameterised by a rectangle [w1, w2]×[z1, z2],
a horizontal strip in R is a set

H = {(y, x) : x ∈ [u1(y), u2(y)] y ∈ [w1, w2]}
where u1, u2 : [w1, w2] → [z1, z2] are Lipschitz functions such that u1(y) < u2(y).
The horizontal boundaries of a horizontal strip are the graphs of the maps ui ; the vertical
boundaries are the lines {wi } × [u1(wi ), u2(wi )]. In an analogous way, we define a vertical
strip across Out(O2), a vertical rectangle, with the roles of x and y reversed.

We may deduce (by construction) that:

(1) For i = 1, 2, as suggested in Fig. 9, the horizontal strip

Hi = {(y, x) ∈ D : x ∈ Ii }.
is mapped (homeomorphically) by F(A,λ) into a vertical strip across R ⊂ Out(O2).

(2) F(A,λ)(H1) ∩ F(A,λ)(H2) = ∅ because F(A,λ) is a diffeomorphism, where it is well
defined.
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R

Fig. 9 Two rectangles whose image underF(A,λ) overlaps with Out(O2) at least twice, giving rise to a Smale
horseshoe—see Fig. 10d

(3) F(A,λ)(H1) andF(A,λ)(H2) have full intersectionswith H1 and H2 (i.e. the vertical bound-
aries of F(A,λ)(H1) and F(A,λ)(H2) cross both the horizontal and vertical boundaries of
H1 and H2) because of Lemma 8.2 and subsequent remark;

(4) For i, j = 1, 2, defining Vji := F(A,λ)(Hi )∩Hj , Hi j := F−1
(A,λ)(Vji ) = Hi ∩F−1

(A,λ)(Hj )

and denoting by ∂vVji the vertical boundaries of Vji , we get, by construction, that:

(1) ∂vVji ⊂ ∂vF(A,λ)(Hi );
(2) the map F(A,λ) maps Hi j homomorphically onto Vji ;
(3) F−1

(A,λ)(∂vVji ) ⊂ ∂vHi .

Using [52], we may conclude that there exists a F(A,λ)−invariant set of initial conditions

� =
⋂

n∈Z
Fn

(A,λ)(H1 ∪ H2)

on which the map F(A,λ)|� is topologically conjugate to a Bernoulli shift with two symbols.

8.3 Hyperbolicity

To prove the hyperbolicity of�with respect to the mapF(A,λ), we apply the following result
due to Afraimovich et al. [2].

Theorem 8.3 [2] Let H : U → R
2 be a C1 map where U is an open convex subset of R

2

such that H(x, y) := (F1(x, y), F2(x, y)), where x, y ∈ R. If:

(1)
∥∥∥ ∂F2

∂ y

∥∥∥ < 1

(2)

∥∥∥∥
(

∂F1
∂x

)−1
∥∥∥∥ < 1;

(3) 1 −
∥∥∥ ∂F2

∂ y

∥∥∥
∥∥∥∥
(

∂F1
∂x

)−1
∥∥∥∥ > 2

√
∥∥∥ ∂F2

∂x

∥∥∥
∥∥∥ ∂F1

∂ y

∥∥∥
∥∥∥∥
(

∂F1
∂x

)−1
∥∥∥∥

(4)
(
1 −

∥∥∥ ∂F2
∂ y

∥∥∥
)(

1 −
∥∥∥ ∂F1

∂x

∥∥∥
−1
)

>

∥∥∥ ∂F2
∂x

∥∥∥
∥∥∥( ∂F1

∂x )−1
∥∥∥
∥∥∥ ∂F1

∂ y

∥∥∥,

then any compact invariant set � ⊂ U is hyperbolic.
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To finish the proof of Theorem D, we check one by one the hypotheses of Theorem 8.3,
when applied to the compact set � ⊂ Out+(O2), where F1 = F (A,λ)

1 and F2 = F (A,λ)
2 .

(1) The proof follows from Lemma 6.1.
(2) One knows that:

∥
∥
∥
∥

(
∂F1
∂x

)∥∥
∥
∥ = sup

(x,y)∈�

∣
∣
∣
∣

(
∂F1
∂x

)∣∣
∣
∣

= sup
(x,y)∈�

∣
∣
∣
∣∣
1 − Kω

λ
A cos x

1 + λ
A sin x

+ o(1) y

∣
∣
∣
∣∣
> 1

The last inequality follows from the fact that π < x < 3π
2 (see (8.4)) in � ⊂ H1 ∪ H2.

(3) By Lemma 6.1, it follows that:

1 −
∥
∥
∥
∥
∂F2
∂ y

∥
∥
∥
∥

∥
∥
∥
∥
∥

(
∂F1
∂x

)−1
∥
∥
∥
∥
∥

= 1 − O(Aδ−1)

∥
∥
∥
∥
∥

(
∂F1
∂x

)−1
∥
∥
∥
∥
∥

On the other hand, we may write:

2

√√√√
∥∥∥∥
∂F2
∂x

∥∥∥∥

∥∥∥∥
∂F1
∂ y

∥∥∥∥

∥∥∥∥∥

(
∂F1
∂x

)−1
∥∥∥∥∥

= 2

√√√√
∥∥∥∥∥

(
∂F1
∂x

)−1
∥∥∥∥∥
O(A

δ−1
2 )

(4) Similarly, we write:

(
1 −

∥∥∥∥
∂F2
∂ y

∥∥∥∥

)(

1 −
∥∥∥∥
∂F1
∂x

∥∥∥∥

−1
)

= (1 − O(Aδ))

(

1 −
∥∥∥∥
∂F1
∂x

∥∥∥∥

−1
)

and
∥∥∥∥
∂F2
∂x

∥∥∥∥

∥∥∥∥∥

(
∂F1
∂x

)−1
∥∥∥∥∥

∥∥∥∥
∂F1
∂ y

∥∥∥∥ = O(Aδ)

∥∥∥∥∥

(
∂F1
∂x

)−1
∥∥∥∥∥
O(A−1)

Geometric Interpretation

Condition a = λ
A >

exp
(

π
Kω c2

)
−1

exp
(

π
Kω c2

)
−c2

provides enough expansion in the x-variable (angular

coordinate) within the region R ⊂ Out(O2). It means that there are at least two rectangles
whose image under F(A,λ) overlaps with R ⊂ Out(O2) at least twice, giving rise to a
suspended horseshoe. Hyperbolicity is obtained by considering rectangles whose vertical
boundaries do not have reversals of orientation.

Remark 8.4 The dynamics of � is mainly governed by the geometric configuration of the
global invariant manifold Wu(O2).

9 Proof of Theorem E

In the bifurcation diagram
(

λ
A , Kω

)
, we may draw two smooth curves in the first quadrant,

the graphs of h1 and h2, such that:
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(b)(a) (d)(c)

η

Fig. 10 Image of η(Wu(O2) ∩ In(O1)) for different values of
λ
A with K 0

ω fixed. Transition from an invariant

and attracting curve (a) to a horseshoe (d) for a fixed K 0
ω > 0 and λ/A increasing. One observes the “breaking

of the wave” which accompanies the break of the invariant circle C. In d, a neighborhood of y = 0 is folded
and mapped into itself, leading to the formation of horseshoes—see Fig. 9

(1) h1(Kω) = 1√
1+K 2

ω

and h2(Kω) = exp
(

6π
Kω

)
−1

exp
(

6π
Kω

)
−1/6

;

(2) the region below the graph of h1 corresponds to flows having an invariant and attracting
torus with zero topological entropy (regular dynamics);

(3) the region above the graph of h2 corresponds to vector fields whose flows exhibit chaos
(chaotic dynamics).

For A, Kω > 0 fixed, as λ increases, one observes the “breaking of the wave” which accom-
panies the break of the invariant circle C. As suggested in Fig. 10, the attracting curve C
(whose existence is ensured by Theorem B) starts to disintegrate into a finite collection of
periodic saddles and sinks, a phenomenon occurring within an Arnold tongue. Once the
horseshoes develop, they persist.

In what follows, we describe generic mechanisms to break an attracting two-dimensional
torus which involves the onset of homoclinic tangencies produced by the stable and unstable
manifolds of a dissipative saddle.4 These tangencies are the source of strange attractors.
We address the reader to [1,3,4,8] for more information on the subject. A comprehensive
description of these phenomena has been given by Shilnikov et al. [48].

4 Note that, for small A, λ > 0, the first return map F(A,λ) is still contracting.
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Fig. 11 In theArnold tongueTk , there are three lines corresponding to the emergence of a homoclinic tangency
associated to a dissipative periodic point. Left: homoclinic tangency of third class which occurs along Sk ;
right: homoclinic tangencies which occur along the lines Homk

1, Hom
k
2. Center: B

1
k and B2

k : saddle-node

bifurcations; Dk : period doubling bifurcation (torus-breakdown); M1
k , M2

k : above these points, the maximal
invariant set is not homeomorphic to a circle; Qk : saddle; Pk : sink. Source: [8,48]

9.1 Dissecting an Arnold Tongue

For ε > 0 small, the choice of parameters in Sect. 2 (ε > A > λ ≥ 0) lets us to build the
bifurcation diagram of Fig. 11, in the domain

{0 ≤ − ln A, 0 < λ/A < 1} ⊂ [0,+∞[ × [0, 1].

We suggest that the reader follows this subsection observing Fig. 11.
Within the region above, for each k ∈ N, we may define an Arnold tongue (or resonance

wedge), denoted by Tk , adjoining the horizontal axis at a point Ak = (exp(−2πk), 0).
Parameters within this wedge correspond to Poincaré maps with at least a pair of fixed
points; one of the fixed points is always of saddle-type (say Qk); the other point is a sink (say
Pk). We suppose just one pair of fixed points for the following analysis (as shown in Fig. 11).

The borders of the Arnold tongue Tk are the bifurcation curves Bk
1 and Bk

2 on which the
fixed points merge to a saddle-node. The curve Bk

2 continue up to the line λ/A = 1, while
the curve Bk

1 bends to the left staying below λ/A = 1. Eventually these curves may touch
the corresponding curves of other tongue, meaning that there are parameter values for which
the periodic points of periods k and m coexist, m, k ∈ N.

The points Mk
1 and Mk

2 correspond to pre-wiggles: below these points, in Bk
1 and Bk

2 , the
limit set of Wu(Qk) is the saddle-node itself and is homeomorphic to a circle. Above this
point, the maximal invariant set is not homeomorphic to a circle. There is also a curve, say
Dk , above which the invariant torus (or the curve C) no longer exists due to period doubling
bifurcation process [7].

In the next subsection we will emphasise the role played by the lines Homk
1, Hom

k
2 and

Sk , also depicted in Fig. 11.
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9.2 Strange Attractors

Continuing the process of dissecting an Arnold tongue, the authors of [1,7] describe generic
mechanisms by which the invariant and attracting torus is destroyed. Two of them are revived
in the next result and involve homoclinic tangencies—routes [PA] and [PB] of [7].

Theorem 9.1 ([1,7], adapted) For K 0
ω > 0 fixed, in the bifurcation diagram

(− ln A, λ
A

)
,

within Tk:
(1) there are two curvesHomk

1 andHom
k
2 corresponding to a homoclinic tangency associated

to a dissipative periodic point of the first return map F(A,λ).
(2) there is one curve Sk corresponding to a homoclinic tangency (of third class) associated

to a dissipative periodic point of the first return map F(A,λ).

Along the bifurcation curves Homk
1 and Homk

2, one observes a homoclinic contact of
the components Ws(Qk) and Wu(Qk), where Qk is a dissipative saddle, as illustrated in
Fig. 11(right). The curves Homk

1 and Hom
k
2 divide the region above D

k into two regions with
simple and complex dynamics. In the zone above the curves Homk

1 and Hom
k
2, there is a fixed

point Qk exhibiting a transverse homoclinic intersection, and thus the corresponding map
F(A,λ) exhibits nontrivial hyperbolic chaotic sets. Other stable points of large period exist in
the region above the curves Homk

1 and Hom
k
2 since the homoclinic tangencies arising in these

lines are generic [19,39]. The curve Sk corresponds to a homoclinic tangency of third class
meaning that there are tangencies associated to the fixed points which have emerged from
the period-doubling bifurcation at Dk (see the meaning of Dk in Sect. 9.1). Again, above
these curves, in the parameter space (− ln A, λ

A ), there is a dense set of parameters for which
the map F(A,λ) has infinitely many sinks. The next result will be used to finish the proof of
Theorem E:

Theorem 9.2 [37] Let ( fμ)μ a one-parameter family of diffeomorphisms on a surface S
and suppose that for fμ0 has a homoclinic tangency associated to a dissipative periodic
point q ∈ S. Then, under generic conditions, there is a positive Lebesgue measure set E
of parameter values near μ0 such that for all μ ∈ E, the diffeomorphism fμ exhibits a
Hénon-like strange attractor near the orbit of tangency (with an ergodic SRB measure).

By Theorem 9.1, the existence of Homk
1, Hom

k
2 and Sk shows that there are curves in

the space of parameters
(
A, λ

A

)
for which the corresponding first return map has a quadratic

(generic) homoclinic tangency associated to a dissipative periodic point of the first return
map F(A,λ). Using now Theorem 9.2, there exists a positive measure set � of parameter
values, so that for every a ∈ �, F(A,λ) admits a strange attractor of Hénon-type with an
ergodic SRB measure. This completes the proof of Theorem E.

Remark 9.3 In this type of result, the number of connected components with which the
strange attractors intersect the section Out(O2) is not specified nor is the size of their basins
of attraction.

Remark 9.4 In (P4)we have asked for the existence of two 1D-connections. Nevertheless the
statements of Theorems B, D and E still hold if (P4) is replaced by:

(P4a) There is one trajectory contained in Wu(O1) ∩ Ws(O2),

provided themap�
(A,λ)
2→1 sends the lineWu

loc(O2) ∩ Out(O2) into the connected component of
In(O1)\Ws

loc(O1) where solutions follow the 1D-connection. This remark will be important
in Sect. 10.

123



Journal of Dynamics and Differential Equations (2022) 34:1643–1677 1669

10 An Application: Hopf-Zero Singularity Unfolds Strange Attractors

In this section, we prove the existence of strange attractors in particular analytic unfoldings
of a Hopf-zero singularity. In order to improve the readability of the paper, we recall to the
reader the most important steps about unfoldings of a Hopf-zero singularity.

From now on, we consider Hopf-Zero singularities, that is, three-dimensional vector fields
f ∗ in R

3 such that:

• O ≡ (0, 0, 0) is an equilibrium of f �;
• the spectrum of d f ∗(0, 0, 0) is {±iω, 0}, with ω > 0.

Without loss of generality, we can assume that:

Df ∗(0, 0, 0) =
⎡

⎣
0 ω 0

−ω 0 0
0 0 0

⎤

⎦ . (10.1)

Observe that the lowest codimension singularities in R
3 with a three-dimensional center

manifold are the ones whose linear part is linearly conjugated to (10.1).

10.1 The Normal Form

The normal form of a degenerate jet with linear part given by

⎡

⎣
0 ω 0

−ω 0 0
0 0 0

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ may be

written in cylindrical coordinates (r , θ, z) by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = a1r z + a2r3 + a3r z2 + O(|r , z|4)

θ̇ = ω + O(|r , z|2)

ż = b1r2 + b2z2 + b3r2z + b4z3 + O(|r , z|4)

(10.2)

where ω > 0 and a1, a2, a3, b1, b2, b3, b4 ∈ R\{0}. Normal form can be chosen in such a
way that, up to arbitrarily high k ∈ N, the truncation of order k contains no θ -dependent
terms [25]. Ultimately, one has to restore the tail which, generically, contains no θ -dependent
terms.5 Truncating (10.2) at order 2 and removing the angular coordinate θ , we obtain:

⎧
⎨

⎩

ṙ = a1r z

ż = b1r2 + b2z2.
(10.3)

Setting rnew = −√|b1b2| r , znew = −b2z, and dropping the superscripts “new”, we get
the differential equation:

⎧
⎨

⎩

ṙ = arz

ż = br2 − z2
(10.4)

where a = −a1/b2 and b = ±1. The phase diagram of (10.4) for a > 0 and b = −1 is
shown in Fig. 12a.

5 The author is grateful to one of the reviewers for pointing out this remark.
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r

z

O

p
1

p

z(a) (b)

2

Fig. 12 a Phase diagram of (10.4) for a > 0 and b = −1. b Stable heteroclinic cycle associated to O1 and
O2 for the differential equation (10.5) with μ1 = 0

Takens [49] proved that there are six topological types for the normal form (10.4), but
from now on, we are only interested in the one characterized by the conditions b = −1 and
a > 0 (Type I of [11]; Case III of [25]). The line defined by r = 0 (z-axis) is flow-invariant.
According to [25], any generic unfolding of (10.4), truncated at second order, may be written
as:

⎧
⎨

⎩

ṙ = μ1r + arz

ż = μ2 − r2 − z2
(10.5)

whose flow satisfy the following properties (for μ2 ≥ 0 and μ2 >
μ2
1

a2
):

• there are two equilibria of saddle-type, say p1 = (0,
√

μ2), p2 = (0,−√
μ2), whose

eigenvalues of d f � at the equilibria are μ1 ± a
√

μ2 and ∓2
√

μ2;

• there is another equilibrium given by

(√

μ2 − μ2
1

a2
,−μ1

a

)

which is a center;

• for μ1 = 0, there is a heteroclinic cycle associated to p1 and p2;

• forμ1 = 0, ifG(r , z) = a
2 r

2
a

(
μ2 − r2

1+a − z2
)
then the Lie derivative ofG with respect

to the vector field associated to (10.5) satisfies the equality:

Lv G ≡ 0,

meaning that there is a family of non-trivial periodic solutions limiting the inner part of
the planar heteroclinic cycle associated to p1 and p2. This cycle is Lyapunov stable—see
Fig. 12b.

The truncated normal formof order 2 is not enough to our purposes because the heteroclinic
cycle is not asymptotically stable.
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Fig. 13 Bifurcation diagram for the differential equation (10.8) when 3c + e > d + 3 f and
3(3c + e) + d + 3 f < 0. (H): Hopf bifurcation; (AHC): attracting heteroclinic cycle. The grey region is
the wedge shaped regionW where Proposition 10.1 is valid

10.2 Truncating at Order 3

Truncating at third order any generic unfolding of (10.4) with a > 0 and b = −1, we obtain:
⎧
⎨

⎩

ṙ = μ1r + arz + cr3 + drz2

ż = μ2 − r2 − z2 + er2z + f z3.
(10.6)

Assuming that the new parameters c, d, e, f ∈ R satisfy the open conditions:

3c + e > d + 3 f and 3(3c + e) + d + 3 f < 0, (10.7)

the flow of (10.6) exhibits a heteroclinic cycle associated to

p̃1 ≈ (0,
√

μ2 + f /2) and p̃2 ≈ (0,−√
μ2 + f /2)

at all points (μ1, μ2) lying at the line AHC defined by

AHC : μ2 = −4μ1

3(3c + e) + d + 3 f
+ O(

√
μ2).

This cycle has a non-empty basin of attraction [25,31]. Line AHC is depicted in Fig. 13.

10.3 General Perturbations

Adding the angular coordinate θ to Eq. (10.6), we define a SO(2)-equivariant vector field,
say f(μ1,μ2). Its flow has cycle associated to the lift of p̃1 and p̃2, say O1 and O2 with non-
empty basin of attraction. This cycle is made by one 1D and one 2D heteroclinic connections
associated to two hyperbolic saddles-foci with different Morse indices. The coincidence of
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the invariant manifolds of the hyperbolic saddle-foci is exceptional and they are expected to
split.

Generic analytic unfoldings of the Hopf-zero singularities were considered in [21]; the
authors introduced an extra parameter ε = √

μ2 and obtained a singular perturbation problem
with a pure rotation when ε = 0 or a family with rotation speed tending to +∞ as ε → 0.
Since the imaginary part of the eigenvalues of the vector field at the equilibria has the form
O(1/ε), this means that Kω → 0; details in Section 3 of [21]. In the present work, we are
interested in particular unfoldings of a Hopf-zero singularity.

Definition 3 A Gaspard-type unfolding of a Hopf-zero singularity f � (with a > 0 and
b = −1 in (10.4)) has the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = μ1r + arz + cr3 + drz2 + O(ε)H1(r , z)

θ̇ = 1 + O(ε)H2(r , z)

ż = μ2 − r2 − z2 + er2z + f z3 + O(ε)H3(r , z)

, (10.8)

whereH1,H2,H3 are arbitrary smooth functions of degree greater than three in the variables
r and z (i.e. they have the form of equations (2.15) and (2.16) of Gaspard [22]).

Proposition 10.1 Let f � be a Hopf-zero singularity (with a > 0 and b = −1 in (10.4)). Then
there exists an analytic curve S in the parameter space (μ1, μ2) and a domainW contained
in a wedge shaped neighborhood of S such that: if (μ1, μ2) ∈ W then any Gaspard-type
unfolding of f � contains strange attractors (of Hénon-type) with an ergodic SRB measure.

In the following proof, Hypothesis (P8) is implicit; it corresponds to the expected unfold-
ing from the coincidence of the two-dimensional invariant manifolds of the equilibria; see
Remark 5.1.

Proof We apply Theorem E to prove Proposition 10.1. Indeed, if (μ1, μ2) ∈ AHC =: S,
then the flow of f(μ1,μ2) satisfies:

• there are two hyperbolic saddle-foci O1 and O2 satisfying (P1)–(P2);
• the manifolds Wu(O2) and Ws(O1) coincide and one branch of Wu(O1) coincide with

Ws(O2)—see Remark 9.4. In particular, there is a heteroclinic cycle associated to O1

and O2 with non-empty basin of attraction, meaning that (P3)–(P4a) are satisfied;
• by construction on the way the angular coordinate is acting on (10.6), the saddle-foci

have the same chirality—(P5) is valid;
• by hypothesis, we perturb f(μ1,μ2) in such a way that the manifoldsWu(O2) andWs(O1)

do not intersect and the one-dimensional manifolds are preserved, emerging an attracting
2-torus. The dynamics on it exhibits intervals of frequency locking and irrational flow as
the rotation number varies. This perturbation correspond to (P6)–(P7).

Adding the O(ε)-terms will correspond to generic perturbations (without symmetry) that
break the attracting two-dimensional torus [25]. Observe that limε→0 Kω = +∞ since the
imaginary part of the eigenvalues of the vector field at the equilibria has the form O(1/ε)
(cf. pp. 4444 of [21]). By Theorem E, the result follows, where the parameter ε plays the role
of λ. �
Remark 10.2 Besides the break of the two-dimensional attracting torus, adding generic O(ε)-
terms to f(μ1,μ2) may imply that the 1D-connection is also broken. This does not affect the
proof of Proposition 10.1 since the existence of strange attractors has been obtained via
Torus-breakdown phenomena, which occur even when the 1D-connection is broken.
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Theorem E cannot be applied directly for generic unfoldings of the Hopf-zero singularity
because there is no chance to express a generic Hopf-zero singularities as perturbations of a
vector field whose flow has an attracting heteroclinic cycle.

10.4 Discussion and Conjecture

Following Bonckaert and Fontich [14], when the scaling parameters defined in [21] tend
to 0, the invariant manifolds have a limit position given by the invariant manifolds of the
equilibria at the 2-jet of the singularity when z > 0. Therefore, for any generic unfolding of
the Hopf-zero singularity (Type I of [11]), the splitting distance is well defined for the 1D
and 2D-connections. The first case was obtained in [9]—the distance S1 between the 1D
invariant manifolds is exponentially small with respect to ε > 0 and the coefficient in front
of the dominant term depends on the full jet of the singularity. The splitting function for the
2D invariant manifolds, say S2, has been obtained in [10].

When the manifolds Wu(O2) and Ws(O1) intersect transversely, conclusive results are
given in [11]: any generic analytic unfolding of a Hopf-zero singularity exhibits Shilnikov
bifurcations and strange attractors [16,28].

When the two-dimensional manifolds of the saddle-foci do not intersect (see [10] and case
σ � O(ε) of [11]6), there exist trapping regions which prevent the existence of Shilnikov
homoclinic cycles. In particular, the route Shilnikov bifurcations ⇒ Strange attractors is not
possible. With that configuration (the invariant manifolds of the saddle-foci do not inter-
sect), the existence of suspended horseshoes may be ensured by our Theorem D provided its
hypotheses are satisfied—see Remark 9.4. Distances S1 ([9]) and S2 ([10]) have to be intro-
duced in the definition of the transition maps. We conjecture that generic analytic unfoldings
of a Hopf-zero singularity also include strange attractors created by the Torus-breakdown
mechanism. We defer this task for a future work.

Acknowledgements Special thanks to Santiago Ibáñez (Univ. Oviedo) and Isabel Labouriau (Univ. Porto) for
fruitful discussions. The author is also grateful to the three referees for the constructive comments, corrections
and suggestions which helped to improve the readability of this manuscript.

A Glossary

For ε > 0 small, consider the two-parameter family of C3-smooth autonomous differential
equations

ẋ = f(A,λ)(x) x ∈ S
3 A, λ ∈ [0, ε] (A.1)

Denote by ϕ(A,λ)(t, x), t ∈ R, the associated flow.

A.1 Symmetry

Given a group G of endomorphisms of S
3, we will consider two-parameter families of vector

fields ( f(A,λ)) under the equivariance assumption f(A,λ)(γ x) = γ f(A,λ)(x) for all x ∈ S
3,

γ ∈ G and (A, λ) ∈ [0, ε]2. For an isotropy subgroup G̃ < G, we will write Fix(G̃) for the

6 The condition σ � O(ε) does not refer to a class of unfoldings, but to a region in the parameter space
associated to the unfolding.
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vector subspace of points that are fixed by the elements of G̃. Observe that, for G−equivariant
differential equations, the subspace Fix(G̃) is flow-invariant.

A.2 Attracting Set

Asubset� of a topological spaceM forwhich there exists a neighborhoodU ⊂ M satisfying
ϕ(t,U ) ⊂ U for all t ≥ 0 and

⋂
t ∈R+ ϕ(t,U ) = � is called an attracting set by the flow

ϕ, not necessarily connected. Its basin of attraction, denoted by B(�) is the set of points
in M whose orbits have ω−limit in �. We say that � is asymptotically stable (or that �

is a global attractor) if B(�) = M. An attracting set is said to be quasi-stochastic if it
encloses periodic solutions with different Morse indices, structurally unstable cycles, sinks
and saddle-type invariant sets.

A.3 Heteroclinic Structures

Suppose that O1 and O2 are two hyperbolic saddle-foci of f(A,λ) with differentMorse indices
(dimension of the unstable manifold). There is a heteroclinic cycle associated to O1 and O2

if Wu(O1) ∩ Ws(O2) �= ∅ and Wu(O2) ∩ Ws(O1) �= ∅. For i, j ∈ {1, 2}, the non-empty
intersection of Wu(Oi ) with Ws(Oj ) is called a heteroclinic connection between Oi and
Oj , and will be denoted by [Oi → Oj ]. Although heteroclinic cycles involving equilibria
are not a generic feature within differential equations, they may be structurally stable within
families of systems which are equivariant under the action of a compact Lie group G ⊂ O(n),
due to the existence of flow-invariant subspaces [25].

A.4 Bykov Cycle

A heteroclinic cycle between two hyperbolic saddle-foci of different Morse indices, where
one of the connections is transverse (and so stable under small perturbations) while the other
is structurally unstable, is called a Bykov cycle. A Bykov network is a connected union of
heteroclinic cycles, not necessarily in finite number. We refer to [29] for an overview of
heteroclinic bifurcations and substantial information on the dynamics near different kinds of
heteroclinic cycles and networks.

A.5 Suspended Horseshoe

Given (A, λ) ∈ [0, ε]2, suppose that there is a cross-section Sλ to the flow ϕ(A,λ) such that
S(A,λ) contains a compact setK(A,λ) invariant by the first returnmapF(A,λ) to S(A,λ). Assume
also that F(A,λ) restricted to K(A,λ) is conjugate to a full shift on a finite alphabet. Then the

suspended horseshoe associated to K(A,λ) is the flow-invariant set K̃(A,λ) = {ϕλ(t, x) : t ∈
R, x ∈ K(A,λ)}.

A.6 SRBMeasure

Given an attracting set � for a continuous map R : M → M of a compact manifold M,
consider the Birkhoff average with respect to the continuous function T : M → R on the
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R-orbit starting at x ∈ M:

L(T , x) = lim
n∈N

1

n

n−1∑

i=0

T ◦ Ri (x). (A.2)

Suppose that, for Lebesgue almost all points x ∈ B(�), the limit (A.2) exists and is
independent on x . Then L is a continuous linear functional in the set of continuous maps
from M to R (denoted by C(M, R)). By the Riesz Representation Theorem, it defines a
unique probability measure μ such that:

lim
n∈N

1

n

n−1∑

i=0

T ◦ Ri (x) =
∫

�

T dμ (A.3)

for all T ∈ C(M, R) and for Lebesgue almost all points x ∈ B(�). If there exists an ergodic
measure μ supported in � such that (A.3) is satisfied for all continuous maps T ∈ C(M, R)

for Lebesgue almost all points x ∈ B(�), where B(�) has positive Lebesgue measure, then
μ is called a SRB measure and � is a SRB attractor.
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