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Abstract
In the current series of two papers, we study the long time behavior of nonnegative solutions
to the following random Fisher–KPP equation,

ut = uxx + a(θtω)u(1 − u), x ∈ R, (1)

where ω ∈ �, (�,F,P) is a given probability space, θt is an ergodic metric dynamical
system on �, and a(ω) > 0 for every ω ∈ �. We also study the long time behavior of
nonnegative solutions to the following nonautonomous Fisher–KPP equation,

ut = uxx + a0(t)u(1 − u), x ∈ R, (2)

where a0(t) is a positive locally Hölder continuous function. In this first part of the series, we
investigate the stability of positive equilibria and the spreading speeds. Under some proper
assumption on a(ω), we show that the constant solution u = 1 of (1) is asymptotically
stable with respect to strictly positive perturbations and show that (1) has a deterministic
spreading speed interval [2√a, 2

√
ā], where a and ā are the least and the greatest means of

a(·), respectively, and hence the spreading speed interval is linearly determinate. It is shown
that the solution of (1) with a nonnegative initial function which is bounded away from 0
for x � −1 and is 0 for x � 1 propagates at the speed 2

√
â, where â is the mean of a(·).

Under some assumption on a0(·), we also show that the constant solution u = 1 of (2) is
asymptotically stably and (2) admits a bounded spreading speed interval. It is not assumed
that a(ω) and a0(t) are bounded above and below by some positive constants. The results
obtained in this part are new and extend the existing results in literature on spreading speeds
of Fisher–KPP equations. In the second part of the series, we will study the existence and
stability of transition fronts of (1) and (2).
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1 Introduction and Statements of theMain Results

The current series of two papers is concerned with the long time behavior of nonnegative
solutions to the following random Fisher–KPP equation,

ut = uxx + a(θtω)u(1 − u), x ∈ R, (1.1)

where ω ∈ �, (�,F,P, {θt }t∈R) is an ergodic metric dynamical system on �, a : � →
(0,∞) is measurable, and aω(t) := a(θtω) is locally Hölder continuous for every ω ∈ �.
It also considers the long time behavior of nonnegative solutions to the following nonau-
tonomous Fisher–KPP equation,

ut = uxx + a0(t)u(1 − u), x ∈ R, (1.2)

where a0 : R → (0,∞) is locally Hölder continuous. Among others, (1.1) and (1.2) are
used to model the population growth of a species in biology. In such case, u(t, x) denotes
the population density of the species. Thanks to the biological reason, we are only interested
in nonnegative solutions of (1.1) and (1.2).

Observe that (1.1) [resp. (1.2)] with a(ω) ≡ 1 (resp. with a0(t) ≡ 1) becomes

ut = uxx + u(1 − u), x ∈ R. (1.3)

Equation (1.3) is called in literature Fisher–KPP equation due to the pioneering works of
Fisher [13] andKolmogorov et al. [25] on travelingwave solutions and take-over properties of
(1.3). It is clear that the constant solution u = 1 of (1.3) is asymptotically stable with respect
to strictly positive perturbations. Fisher in [13] found traveling wave solutions u(t, x) =
φ(x − ct) of (1.3) (φ(−∞) = 1, φ(∞) = 0, φ(s) > 0) of all speeds c ≥ 2 and showed
that there are no such traveling wave solutions of slower speed. He conjectured that the take-
over occurs at the asymptotic speed 2. This conjecture was proved in [25] for some special
initial distribution and was proved in [3] for general initial distributions. More precisely, it is
proved in [25] that for the nonnegative solution u(t, x) of (1.3) with u(0, x) = 1 for x < 0
and u(0, x) = 0 for x > 0, limt→∞ u(t, ct) is 0 if c > 2 and 1 if c < 2. It is proved in [3]
that for any nonnegative solution u(t, x) of (1.3), if at time t = 0, u is 1 near −∞ and 0
near ∞, then limt→∞ u(t, ct) is 0 if c > 2 and 1 if c < 2. In literature, c∗ = 2 is called the
spreading speed for (1.3).

A huge amount of research has been carried out toward various extensions of traveling
wave solutions and take-over properties of (1.3) to general time and space independent as
well as time and/or space dependent Fisher–KPP type equations. See, for example, [2,3,11,
15,24,41,48], etc., for the extension to general time and space independent Fisher–KPP type
equations; see [4,5,7,14,22,26–29,31,37,38,49,50], and references therein for the extension
to time and/or space periodic Fisher–KPP type equations; and see [5,8–10,16,21,30,32–
36,43–47,51,52], and references therein for the extension to quite general time and/or space
dependent Fisher–KPP type equations. The reader is referred to [12,17,53], etc. for the study
of Fisher–KPP reaction diffusion equations with time delay.

123



Journal of Dynamics and Differential Equations (2021) 33:1035–1070 1037

All the existingworks on (1.1) [resp. (1.2)] assumed inf t∈R aω(t) > 0 and aω(·) ∈ L∞(R)

(resp. inf t∈R a0(t) > 0 and supt∈R a0(t) < ∞). The objective of the current series of
two papers is to study the long time behavior, in particular, the stability of positive con-
stant solutions, the spreading speeds, and the transition fronts of (1.1) [resp. (1.2)] without
the assumption inf t∈R aω(t) > 0 and aω(·) ∈ L∞(R) (resp. without the assumption
inf t∈R a0(t) > 0 and supt∈R a0(t) < ∞). It will also discuss the applications of the results
established for (1.1) to Fisher–KPP equations whose growth rate and/or carrying capacity
are perturbed by real noises.

In this first part of the series, we investigate the stability of positive constant solutions and
the spreading speeds of (1.1) and (1.2). We first consider the stability of positive constant
solutions and spreading speeds of (1.1) and then consider the stability of positive constant
solutions and spreading speeds of (1.2). In the second part of the series, we will study the
existence and stability of transition fronts of (1.1) and (1.2).

In the following, we state the main results of the current paper. Let

Cb
unif (R) = {u ∈ C(R) | u is bounded and uniformly continuous}

with norm ‖u‖∞ = supx∈R |u(x)| for u ∈ Cb
unif (R). For given u0 ∈ X := Cb

unif (R) and
ω ∈ �, let u(t, x; u0, ω) be the solution of (1.1) with u(0, x; u0, ω) = u0(x). Note that, for
u0 ∈ X with u0 ≥ 0, u(t, x; u0, ω) exists for t ∈ [0,∞) and u(t, x; u0, ω) ≥ 0 for all t ≥ 0.
Note also that u ≡ 0 and u ≡ 1 are two constant solutions of (1.1). Let

âinf (ω) = lim inf
t−s→∞

1

t − s

∫ t

s
a(θτω)dτ := lim

r→∞ inf
t−s≥r

1

t − s

∫ t

s
a(θτω)dτ (1.4)

and

âsup(ω) = lim sup
t−s→∞

1

t − s

∫ t

s
a(θτω)dτ := lim

r→∞ sup
t−s≥r

1

t − s

∫ t

s
a(θτω)dτ. (1.5)

Observe that

âinf (θtω) = âinf (ω) and âsup(θtω) = âsup(ω), ∀ t ∈ R, (1.6)

and that

âinf (ω) = lim inf
t,s∈Q,t−s→∞

1

t − s

∫ t

s
a(θτ )dτ and âsup(ω) = lim inf

t,s∈Q,t−s→∞
1

t − s

∫ t

s
a(θτ )dτ.

Then by the countability of the set Q of rational numbers, both âinf (ω) and âsup(ω) are
measurable in ω.

Throughout this paper, we assume that the following standing assumption holds.
(H1) 0 < âinf (ω) ≤ âsup(ω) < ∞ for a.e. ω ∈ �.

Note that (H1) implies that âinf (·), a(·), âsup(·) ∈ L1(�,F,P), and that there are
â, a, ā ∈ R

+ and a measurable subset �0 ⊂ � with P(�0) = 1 such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θt�0 = �0 ∀ t ∈ R,

limt→±∞ 1
t

∫ t
0 a(θτω)dτ = â ∀ ω ∈ �0,

âinf (ω) = a ∀ ω ∈ �0,

âsup(ω) = ā ∀ ω ∈ �0

(1.7)

(see Lemma 2.1). Throughout this paper, â is referred to as the mean or average of a(·), and
a and a are referred to as the least mean and the greatest mean of a(·), respectively.

Our main result on the stability of the constant solution u ≡ 1 of (1.1) reads as follows.
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Theorem 1.1 For every u0 ∈ Cb
uinf (R) with infx∈R u0(x) > 0 and for every ω ∈ �, we have

that

‖u(t, ·; u0, ω) − 1‖∞ ≤ M(u0)e
− ∫ t

0 a(θsω)ds, (1.8)

where M(u0) := max{1, ‖u0‖∞} · max
{∣∣∣1 − 1

min{1,infx∈R u0(x)}
∣∣∣,

∣∣∣1 − 1
max{1,supx∈R u0(x)}

∣∣∣
}

.

Hence if
∫ ∞
0 a(θsω)ds = ∞, then

lim
t→∞ ‖u(t, ·; u0, ω) − 1‖∞ = 0.

In particular, if (H1) holds, then for every 0 < ã < a, every u0 ∈ Cb
uinf (R) with infx u0(x) >

0, and almost all ω ∈ �, there is positive constant M > 0 such that

‖u(t, ·; u0, θt0ω) − 1‖∞ ≤ Me−ãt , ∀ t ≥ 0, t0 ∈ R.

If a(θ·ω) ∈ L1(0,∞), then the constant equilibrium solution, u ≡ 1, of (1.1) is not asymp-
totically stable.

To state our main results on the spreading speeds of (1.1), let

c∗ = 2
√

a, ĉ∗ = 2
√

â, and c∗ = 2
√

a. (1.9)

Let

X+
c = {u ∈ Cb

unif (R) | u ≥ 0, supp(u) is bounded and not empty}.
Definition 1.1 For given ω ∈ �, let

Csup(ω) = {c ∈ R
+ | lim sup

t→∞
sup

s∈R,|x |≥ct
u(t, x; u0, θsω) = 0 ∀ u0 ∈ X+

c }

and

Cinf (ω) = {c ∈ R
+ | lim sup

t→∞
sup

s∈R,|x |≤ct
|u(t, x; u0, θsω) − 1| = 0 ∀ u0 ∈ X+

c }.

Let

c∗
sup(ω) = inf{c | c ∈ Csup(ω)}, c∗

inf (ω) = sup{c | c ∈ Cinf (ω)}.
[c∗

inf (ω), c∗
sup(ω)] is called the spreading speed interval of (1.1) with respect to compactly

supported initial functions.

The following theorem shows that the spreading speed interval of (1.1) with respect to
compactly supported initial functions is deterministic and is linearly determinate, that is,
[c∗

inf (ω), c∗
sup(ω)] = [c∗, c̄∗] for all ω ∈ �0.

Theorem 1.2 Assume that (H1) holds. Then the following hold.

(i) For any ω ∈ �0, c∗
sup(ω) = c̄∗.

(ii) For any ω ∈ �0, c∗
inf (ω) = c∗.

The above theorem concerns the spreading speeds of solutions of (1.1) with compactly
supported nonnegative initial functions. To consider the spreading speeds of solutions of (1.1)
with front-like initial functions, let

X̃+
c = {u ∈ Cb

unif (R) | u ≥ 0, lim inf
x→−∞ u0(x) > 0, u0(x) = 0 for x � 1}.
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Definition 1.2 For given ω ∈ �, let

C̃sup(ω) = {c ∈ R
+ | lim sup

t→∞
sup

s∈R,x≥ct
u(t, x; u0, θsω) = 0 ∀ u0 ∈ X̃+

c }

and

C̃inf (ω) = {c ∈ R
+ | lim sup

t→∞
sup

s∈R,x≤ct
|u(t, x; u0, θsω) − 1| = 0 ∀ u0 ∈ X̃+

c }.

Let

c̃∗
sup(ω) = inf{c | c ∈ C̃sup(ω)}, c̃∗

inf (ω) = sup{c | c ∈ C̃inf (ω)}.
[c̃∗

inf (ω), c̃∗
sup(ω)] is called the spreading speed interval of (1.1) with respect to front-like

initial functions.

We have the following theorem on the spreading speeds of the solutions with front-like
initial functions.

Theorem 1.3 Assume that (H1) holds. Then the following hold.

(i) For any ω ∈ �0, c̃∗
sup(ω) = c̄∗.

(ii) For any ω ∈ �0, c̃∗
inf (ω) = c∗.

We also have the following theorem on the take-over property of the solutions of (1.1) with
front-like initial functions and with the initial function u∗

0(x) = 1 for x < 0 and u∗
0(x) = 0

for x > 0. Note that u(t, x; u∗
0, ω) exists for all t > 0 (see [25, Theorem 1]).

Theorem 1.4 (i) For a.e. ω ∈ �,

lim
t→∞

x(t, ω)

t
= ĉ∗, (1.10)

where x(t, ω) is such that u(t, x(t, ω); u∗
0, ω) = 1

2 . Moreover,

lim
t→∞ sup

x≥(ĉ∗+h)t
u(t, x; u∗

0, ω) = 0,∀ h > 0, a.e ω (1.11)

and

lim
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u∗

0, ω) = 1,∀ h > 0, a.e ω. (1.12)

(ii) For any u0 ∈ X̃+
c , it holds that

lim
t→∞ sup

x≥(ĉ∗+h)t
u(t, x; u0, ω) = 0,∀ h > 0, a.e ω (1.13)

and

lim
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u0, ω) = 1,∀ h > 0, a.e ω. (1.14)

Consider now (1.2). Define a0 and a0 by

a0 = lim inf
t−s→∞

1

t − s

∫ t

s
a0(τ )dτ, a0 = lim sup

t−s→∞
1

t − s

∫ t

s
a0(τ )dτ. (1.15)

Let (H2) be the following standing assumption.
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(H2) 0 < a0 ≤ a0 < ∞.
The assumption (H2) is the analogue of (H1). We will give some example for a0(·)

satisfying (H2) in Sect. 5. Assume (H2). Let

c̄∗
0 = 2

√
ā0 and c∗

0 = 2
√

a0. (1.16)

For given u0 ∈ Cb
unif (R) with u0 ≥ 0 and s ∈ R, let u(t, x; u0, σsa0) be the solution of

ut = uxx + σsa0(t)u(1 − u), x ∈ R, t > 0,

with u(0, x; u0, σsa0) = u0(x), where σsa0(t) = a0(s + t).
We have the following theorem on the spreading speeds of (1.2).

Theorem 1.5 Assume (H2). Then for every u0 ∈ X+
c ,

lim inf
t→∞ sup

s∈R,|x |≤ct
|u(t, x; u0, σsa0) − 1| = 0, ∀ 0 < c < c∗

0 := 2
√

a0 (1.17)

and

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, σsa0) = 0, ∀ c > c̄∗
0 := 2

√
ā0. (1.18)

We conclude the introduction with the following four remarks.
First, the results in Theorems 1.2–1.5 are new. If a0(t) is periodic with period T , then a0 =

ā0 = â0 := 1
T

∫ T
0 a0(τ )dτ and hence c∗

0 = c̄∗
0 = 2

√
â0. More generally, if a0(t) in globally

Hölder continuous and is uniquely ergodic in the sense that the space H(a0) is compact
and the flow (H(a0), σt ) is uniquely ergodic, where H(a0) = cl{σsa0 | s ∈ R} with open
compact topology and σsa0(·) = a0(· + s), then a0 = ā0 = â0 := limT →∞ 1

T

∫ T
0 a0(τ )dτ

and hence c∗
0 = c̄∗

0 = 2
√

â0. Therefore the existing results on spreading speeds of (1.2) in
the time periodic and time almost periodic cases are recovered. The current paper provides
a new and simpler proof in these special cases.

Second, by Theorems 1.2 and 1.3 ,

[c∗
inf (ω), c∗

sup(ω)] = [c̃∗
inf (ω), c̃∗

sup(ω)] = [c∗, c̄∗]
for any ω ∈ �0. Hence [c∗, c̄∗] is called the spreading speed interval of (1.1), which is
deterministic and is determined by the linearized equation of (1.1) at u ≡ 0. Theorem 1.4
is an extension of the take-over property proved in [3] and [25] for (1.3). In order to prove
Theorem 1.4 we are first led to prove that x(t, ω) is a subadditive process (see Lemma 5.4
for more detail). The fact that x(t, ω) is a subadditive process is interesting. Its proof relies
on comparison between various translation of the solution and on a zero-number argument
enabling to bound the width of the interface. It is our belief that this result will open the way
to other applications in the future.

Third, the results established for (1.1) and (1.2) can be applied to the following general
random Fisher–KPP equation,

ut = uxx + u(r(θtω) − β(θtω)u), (1.19)

where r : ω → (−∞,∞) and β : � → (0,∞) are measurable with locally Hölder continu-
ous sample paths rω(t) := r(θtω) andβω(t) := β(θtω), and to the following nonautonomous
Fisher–KPP equation,

ut = uxx + u(r0(t) − β0(t)u), (1.20)
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where r0 : R → R and β0 : R → (0,∞) are locally Hölder continuous. Note that (1.19)
models the population growth of a species with random perturbations on its growth rate and
carrying capacity, and (1.20) models the population growth of a species with deterministic
time dependent perturbations on its growth rate and carrying capacity.

In fact, under some assumptions on r(ω) and β(ω), it can be proved that

u(t;ω) := Y (θtω) = 1∫ 0
−∞ e− ∫ 0

s r(θτ+t ω)dτ β(θs+tω)ds

is an random equilibrium of (1.19). Let ũ = u
Y (θt ω)

and drop the tilde, (1.19) becomes (1.1)
with a(θtω) = β(θtω) · Y (θtω), and then the results established for (1.1) can be applied to
(1.19). For example, consider the following random Fisher–KPP equation,

ut = uxx + u(1 + ξ(θtω) − u), x ∈ R, (1.21)

where ω ∈ �, (�,F,P, {θt }t∈R) is an ergodic metric dynamical system, ξ : � → R is
measurable, and ξt (ω) := ξ(θtω) is locally Hölder continuous (ξt denotes a real noise or
a colored noise). Let ξ̂inf (ω) and ξ̂sup(ω) be defined as in (1.4) and (1.5) with a(·) being
replaced by ξ(·), respectively. Assume that ξt (·) satisfies the following (H3).
(H3) ξ : � → R is measurable;

∫
�

|ξ(ω)|dP(ω) < ∞ and
∫
�

ξ(ω)dP(ω) = 0; −1 <

ξ̂inf (ω) ≤ ξ̂sup(ω) < ∞ and inf t∈R ξ(θtω) > −∞ for a.e. ω ∈ �; and ξω(t) := ξ(θtω) is
locally Hölder continuous.

Assume (H3). By the arguments of Lemma 2.1, there are ξ, ξ ∈ R such that ξ̂inf (ω) = ξ

and ξ̂sup(ω) = ξ for a.e. ω ∈ �. It can be proved that

Y (ω) = 1∫ 0
−∞ es+∫ s

0 ξ(θτ ω)dτ ds
(1.22)

is a spatially homogeneous asymptotically stable random equilibrium of (1.21) (see Theo-
rem 3.2 and Corollary 3.1). It can also be proved that for any u0 ∈ X+

c ,

lim sup
t→∞

sup
s∈R,|x |≤ct

|u(t, x; u0, θsω)

Y (θt+sω)
− 1| = 0, ∀ 0 < c < 2

√
1 + ξ

and

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω)

Y (θt+sω)
= 0, ∀ c > 2

√
1 + ξ̄ ,

for a.e. ω ∈ �. where u(t, x; u0, θsω) is the solution of (1.21) with ω being replaced by θsω

and u(0, x; u0, θsω) = u0(x) (see Corollary 4.1).
Fourth, it is interesting to study the spreading properties of (1.1) with (H1) being replaced

by the following weaker assumption,
(H1)′ 0 < â := ∫

�
a(ω)dP(ω) < ∞.

We plan to study this general case somewhere else, which would have applications to the
study of the spreading properties of the following stochastic Fisher–KPP equation,

du = (uxx + u(1 − u))dt + σudWt , x ∈ R, (1.23)

where Wt denotes the standard two-sided Brownian motion (dWt is then the white noise). In
fact, let � := {ω ∈ C(R,R) | ω(0) = 0 } equipped with the open compact topology, F be
the Borel σ−field and P be the Wiener measure on (�,F). Let Wt be the one dimensional
Brownian motion on the Wiener space (�,F,P) defined by Wt (ω) = ω(t). Let θtω be
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the canonical Brownian shift: (θtω)(·) = ω(t + ·) − ω(t) on �. It is easy to see that

Wt (θsω) = Wt+s(ω) − Ws(ω). If σ 2

2 < 1, then it can be proved that

Y (ω) = 1∫ 0
−∞ e(1− σ2

2 )s+σ Ws (ω)ds
(1.24)

is a spatially homogeneous stationary solution process of (1.23). Let ũ = u
Y (θt ω)

and drop the
tilde, (1.23) becomes (1.1) with a(θtω) = Y (θtω). The reader is referred to [18–20,23,39,40]
for some study on the front propagation dynamics of (1.24). Note that Theorem 1.4 (i) is an
analogue of [20, Theorem 1].

It is important to note that the authors of the work [10] studied the asymptotic spreading
speeds for space-time heterogeneous equations of the form

ut =
N∑

i, j=1

ai, j (t, x)uxi x j +
N∑

i=1

qi (t, x)uxi + f (t, x, u), x ∈ R
N , (1.25)

where f (t, x, 0) = f (t, x, 1) = 0.We note that Theorem 1.5 improves [10, Proposition 3.9],
since inf t∈R a0(t) = 0 and supt∈R a0(t) = +∞ are allowed here. Moreover, the techniques
developed in the current work are different from the ones in [10]. Certainly, it should be
mentioned that (1.25) is more general than (1.2).

The rest of the paper is organized as follows. In Sect. 2, we present some preliminary
lemmas, which will be used in the proofs of main results of the current paper in later sections.
In Sect. 3, we establish some results about the stability of the positive constant equilibrium
solution u ≡ 1 of (1.1) (resp. (1.2)) and prove Theorem 1.1. In Sect. 4, we study the spreading
properties of solutions of (1.1) with nonnegative and compactly supported initial functions
or front like initial functions and prove Theorems 1.2 and 1.3 . We investigate in Sect. 4 the
take-over property of (1.1) and prove Theorem 1.4.We consider spreading properties of (1.2)
in Sect. 5.

2 Preliminary Lemmas

In this section, we present some preliminary lemmas to be used in later sections of this paper
as well as in the second part of the series.

Lemma 2.1 (H1) implies that âinf (·), a(·), âsup(·) ∈ L1(�,F,P) and that there are a, ā, â ∈
R

+ and a measurable subset �0 ⊂ � with P(�0) = 1 such that θt�0 = �0 for all t ∈ R,
âinf (ω) = a and âsup(ω) = ā for all ω ∈ �0, and limt→±∞ 1

t

∫ t
0 a(θτω)dτ = â for all

ω ∈ �0.

Proof First, let

�n = {ω ∈ � | âsup(ω) ≤ n} ∀ n ∈ N,

and

�∞ = {ω ∈ � | âsup(ω) = ∞}.
Then �∞∪ ∪∞

n=1 �n = �. By (H1), there is n̄ ∈ N such that P(�n̄) > 0. By (1.6),
θt�n = �n for all t ∈ R and n ∈ N. Then by the ergodicity of the metric dynamical system
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(�,F,P, {θt }t∈R), we have P(�n̄) = 1. This implies that âsup(·) ∈ L1(�,F,P), and then
âinf (·) ∈ L1(�,F,P). Moreover, by (1.6),

âinf (ω) = lim
t→∞

1

t

∫ t

0
âinf (θτω)dτ =

∫
�

âinf (ω)dP(ω) for a.e. ω ∈ �,

and

âsup(ω) = lim
t→∞

1

t

∫ t

0
âsup(θτω)dτ =

∫
�

âsup(ω)dP(ω) for a.e. ω ∈ �.

It then follows that there are a, ā ∈ R and a measurable subset �1 ⊂ � with P(�1) = 1
such that θt�1 = �1 for all t ∈ R, and âinf (ω) = a and âsup(ω) = ā for all ω ∈ �1.

Next, for given n ∈ N, let

an(ω) = min{a(ω), n}.
Then an(·) ∈ L1(�,F,P), 0 < a1(ω) ≤ a2(ω) ≤ · · · , and limn→∞ an(ω) = a(ω). By the
ergodicity of the metric dynamical system (�,F,P, {θt }t∈R), we have that for a.e. ω ∈ �,∫

�

an(ω)dP(�) = lim
t→∞

1

t

∫ t

0
an(θτω)dτ ≤ âsup(ω) =

∫
�

âsup(ω)dP(ω).

This together with the Monotone Convergence Theorem implies that∫
�

a(ω)dP(ω) = lim
n→∞

∫
�

an(ω)dP(ω) ≤
∫

�

âsup(ω)dP(ω).

Therefore, a(·) ∈ L1(�,F,P), and moreover, by the ergodicity of the metric dynamical
system (�,F,P, {θt }t∈R), there are â ∈ R and ameasurable subset�2 ⊂ �withP(�2) = 1
such that θt�2 = �2 for all t ∈ R, and

â = lim
t→∞

1

t

∫ t

0
a(θτω)dτ= lim

t→∞
1

t

∫ 0

−t
a(θτω)dτ =

∫
�

a(ω)dP(ω) for a.e. ω ∈ �.

The lemma thus follows with �0 = �1 ∩ �2. ��
Lemma 2.2 Suppose that b ∈ C(R, (0,∞)) and that 0 < b ≤ b < ∞, where

b = lim inf
t−s→∞

1

t − s

∫ t

s
b(τ )dτ, b = lim sup

t−s→∞
1

t − s

∫ t

s
b(τ )dτ.

Then

b = sup
B∈W 1,∞

loc (R)∩L∞(R)

essinfτ∈R(b(τ ) − B′(τ )). (2.1)

Proof The proof of this lemma follows from a propermodification of the proof of [33, Lemma
3.2]. For the sake of completeness we give a proof here. Let 0 < γ < b. By b < ∞, there is
T > 0 such that

γ <
1

T

∫ s+T

s
b(τ )dτ < 2b, ∀s ∈ R. (2.2)

Define

B(t) =
∫ t

kT

(
b(τ ) − εk

)
dτ, ∀t ∈ [kT , (k + 1)T ] where εk

:= 1

T

∫ (k+1)T

kT
b(τ )ds, ∀ k ∈ Z.
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It is clear that B ∈ W 1,∞
loc (R) ∩ L∞(R) with

εk = b(t) − B ′(t) for t ∈ (kT , (k + 1)T ). (2.3)

Furthermore, it follows from (2.2) that ‖B‖∞ ≤ 2T b and that γ < εk for every k ∈ Z.
Hence (2.3) implies that

γ ≤ sup
B∈W 1,∞

loc (R)∩L∞(R)

essinf t∈R(b(t) − B ′(t)).

Since γ is arbitrarily chosen less than b we deduce that

b ≤ sup
B∈W 1,∞

loc (R)∩L∞(R)

essinf t∈R(b(t) − B ′(t)).

On the other hand for each given B ∈ W 1,∞
loc (R) ∩ L∞(R) and t > s we have

1

t − s

∫ t

s
b(τ )dτ ≥ essinfτ∈R(b(τ ) − B ′(τ )) + (B(t) − B(s))

t − s

≥ essinfτ∈R(b(τ ) − B ′(τ )) − 2‖B‖∞
t − s

.

Hence

b = lim inf
t−s→∞

1

t − s

∫ t

s
b(τ )dτ ≥ essinfτ∈R(b(τ ) − B ′(τ )) ∀B ∈ W 1,∞

loc (R) ∩ L∞(R).

This completes the proof of the lemma. ��
In the following, let b ∈ C(R, (0,∞)) be given and satisfy that 0 < b ≤ b < ∞.

Consider

ut = uxx + b(t)u(1 − u), x ∈ R. (2.4)

For given u0 ∈ Cb
unif (R) with u0 ≥ 0, let u(t, x; u0, b) be the solution of (2.4) with

u(0, x; u0, b) = u0(x).
For every 0 < μ < μ∗ := √

b, x ∈ R, t ∈ R and ω ∈ �, let

c(t; b, μ) = μ2 + b(t)

μ
, C(t; b, μ) =

∫ t

0
c(τ ; b, μ)dτ, (2.5)

and

φμ(t, x; b) = e−μ(x−C(t;b,μ)). (2.6)

Then the function φμ satisfies

φ
μ
t = φμ

xx + b(t)φμ, x ∈ R. (2.7)

Lemma 2.3 Let

φ
μ
+(t, x; b) = min{1, φμ(t, x; b)}.

Then

u(t, x;φ
μ
+(0, ·; b), b) ≤ φ

μ
+(t, x; b) ∀ t > 0, x ∈ R.

Proof It follows directly from the comparison principle for parabolic equations. ��
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Lemma 2.4 For every μ with 0 < μ < μ̃ < min{2μ,μ∗}, there exist {tk}k∈Z with tk < tk+1

and limk→±∞ tk = ±∞, Bb ∈ W 1,∞
loc (R) ∩ L∞(R) with Bb(·) ∈ C1((tk, tk+1)) for k ∈ Z,

and a positive real number db such that for every d ≥ db the function

φμ,d,Bb (t, x) := e−μ(x−C(t;b,μ)) − de
(

μ̃
μ

−1
)

Bb(t)−μ̃(x−C(t;b,μ))

satisfies

φ
μ,d,Bb
t ≤ φμ,d,Bb

xx + b(t)φμ,d,Bb (1 − φμ,d,Bb )

for t ∈ (tk, tk+1), x ≥ C(t, b, μ) + ln d
μ̃−μ

+ Bb(t)
μ

, k ∈ Z.

Proof First of all, for given 0 < μ < μ̃ < min{2μ,μ∗}, let 0 < δ � 1 such that (1 −
δ)b > μ̃μ. It then follows from the arguments of Lemma 2.2 that there exist T > 0 and
Bb ∈ W 1,∞

loc (R) ∩ L∞(R) such that Bb ∈ C1((tk, tk+1)), where tk = kT for k ∈ Z, and

μ̃μ ≤ (1 − δ)b(t) + B ′
b(t) for all t ∈ (tk, tk+1), k ∈ Z.

Next, fix the above δ > 0 and Bb(t). Let d > 1 to be determined later. Let ξ(t, x) =
x − C(t; b, μ). We have

φ
μ,d,Bb
t −

(
φμ,d,Bb

xx + b(t)φμ,d,Bb (1 − φμ,d,Bb )
)

= d
[

− (
μ̃

μ
− 1)B ′

b(t) + μ̃2 − μ̃c(t; b, μ) + b(t)
]
e(

μ̃
μ

−1)Bb(t)−μ̃ξ(t,x)

+ b(t)
[
e−2μξ(t,x) − 2de(

μ̃
μ

−1)Bb(t)−(μ+μ̃)ξ(t,x) + d2e2(
μ̃
μ

−1)Bb(t)−2μ̃ξ(t,x)
]

= d
( μ̃

μ
− 1

)[
μ̃μ − b(t) − B ′

b(t)
]
e(

μ̃
μ

−1)Bb(t)−μ̃ξ(t,x) + b(t)e−2μξ(t,x)

− d
[
2e−μξ(t,x) − de

(
μ̃
μ

−1

)
Bb(t)−μ̃ξ(t,x)]

e

(
μ̃
μ

−1

)
Bb(t)−μ̃ξ(t,x)

= d
( μ̃

μ
− 1

)[
μ̃μ − (1 − δ)b(t) − B ′

b(t)
]
e(

μ̃
μ

−1)Bb(t)−μ̃ξ(t,x)

+
[
e−(2μ−μ̃)ξ(t,x) − dδ

( μ̃

μ
− 1

)
e

(
μ̃
μ

−1

)
Bb(t)]

a(θtω)e−μ̃ξ(t,x)

+ d
[

− 2e−μξ(t,x) + de

(
μ̃
μ

−1

)
Bb(t)−μ̃ξ(t,x)

]
e

(
μ̃
μ

−1

)
Bb(t)−μ̃ξ(t,x)

(2.8)

for t ∈ (tk, tk+1).
Observe now that

dδ
( μ̃

μ
− 1

)
e

(
μ̃
μ

−1

)
Bb(t) ≥ 1, ∀ d ≥ max

{e
−
(

μ̃
μ

−1

)
‖Bb‖∞

δ
(

μ̃
μ

− 1
) , e

(
μ̃
μ

−1

)
‖Bb‖∞}

.

For this choice of d , if φμ,d,Bb (t, x) ≥ 0, which is equivalent to ξ(t, x) = x − C(t; b, μ) ≥
ln d
μ̃−μ

+ Bb(t)
μ

, then ξ(t, x) ≥ 0 and each term in the expression at the right hand side of (2.8)
is less or equal to zero. The lemma thus follows. ��

Recall that u∗
0(x) = 1 for x < 0 and u∗

0(x) = 0 for x > 0. By [25, Theorem 1], the
solution of (2.4) with initial function u∗

0, denoted by u(t, x; u∗
0, b), exists for t > 0.
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Lemma 2.5 Suppose that uε ∈ Cb
unif (R) with uε ≥ 0 and limε→0

∫ ∞
−∞ |uε(x) − u∗

0(x)|dx =
0. Then for each t > 0,

lim
ε→0

‖u(t, ·; uε, b) − u(t, ·; u∗
0, b)‖∞ = 0.

Proof See [25, Theorem 8]. ��
Lemma 2.6 For given ui ∈ Cb

unif (R) with ui ≥ 0 (i = 1, 2), if u1(x) − u2(x) has exactly
one simple zero x0 and u1(x) > u2(x) for x < x0 and u1(x) < u2(x) for x > x0, then for
any t > 0, there is ξ(t) ∈ [−∞,∞] such that

u(t, x; u1, b) =
{

> u(t, x; u2, b) x < ξ(t)

< u(t, x; u2, b) x > ξ(t).

Proof Let v(t, x) = u(t, x; u1, b) − u(t, x; u2, b). Then v(t, x) satisfies

vt = vxx + q(t, x)v, x ∈ R,

where q(t, x) = b(t)−b(t)(u(t, x; u1, b)+u(t, x; u2, b)). Note that v(0, x) has exactly one
simple zero x0 and v(0, x) > 0 for x < x0, v(x) < 0 for x > x0. The lemma then follows
from [1, Theorems A,B]. ��

Let x(t, b) and x+(t, b) be such that

u(t, x(t, b); u∗
0, b) = 1

2
and u(t, x+(t, b);φ

μ
+(0, ·; b), b) = 1

2
.

Lemma 2.7 For any t > 0, there holds

u(t, x + x(t, b); u∗
0, b))

{
≥ u(t, x + x+(t, b);φ

μ
+(0, ·; b), b) x < 0

≤ u(t, x + x+(t, b);φ
μ
+(0, ·; b), b) x > 0.

(2.9)

Proof First, let φn(x) = min{1 − 1
n , φμ(0, x; b)}. Then limn→∞ φn(x) = φ

μ
+(0, x; b) uni-

formly in x ∈ R. Then for any given t > 0,

u(t, x;φ
μ
+(0, ·; b), b) = lim

n→∞ u(t, x;φn, b)

uniformly in x ∈ R. Let xn+(t, b) be such that u(t, xn+(t, b);φn, b) = 1
2 . We have

lim
n→∞ xn+(t, b) = x+(t, b).

Next, for given n ≥ 1, let u∗
ε (x) be a nonincreasing function such that u∗

ε ∈ Cb
unif (R);

u∗
ε (x) = 1 for x � −1 and u∗

ε (x) = 0 for x � 0; u∗
ε (x) −φn(x + h) has exactly one simple

zero for any h ∈ R; and

lim
ε→0

∫ ∞

−∞
|u∗

ε (x) − u∗
0(x)|dx = 0.

Let xε(t, b) be such that

u(t, x; u∗
ε , b) = 1

2
.

By Lemma 2.6, for any t > 0,

u(t, x + xε(t, b), b)

{
> u(t, x + xn+(t, b);φn, b) x < 0

< u(t, x + xn+(t, b);φn, b) x > 0.
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By Lemma 2.5, for any t > 0,

lim
ε→0

‖u(t, ·; u∗
ε , b) − u(t, ·; u∗

0, b)‖∞ = 0 and lim
ε→0

xε(t, b) = x(t, b).

Letting ε → 0, we get

u(t, x + x(t, b); u∗
0, b)

{
≥ u(t, x + xn+(t, b);φn, b) x < 0

≤ u(t, x + xn+(t, b);φn, b) x > 0.

Letting n → ∞, the lemma follows. ��
Lemma 2.8 Let F : R × � → R be measurable in ω ∈ � and continuous hemicompact
in x ∈ R (i.e for every ω ∈ �, F(·, ω) is continuous in x and any sequence {xn}n≥1 ⊂ R

with |xn − F(xn, ω)| → 0 as n → ∞ has a convergent subsequence). Then F has a
deterministic fixed point (i.e there is X : � → R such that F(X(ω), ω) = X(ω)) if and
only if F has random fixed point (i.e there is a measurable function X : � → R such that
F(X(ω), ω) = X(ω)).

Proof See [42, Lemma 4.7] ��
Lemma 2.9 Let f : R×� → (0, 1) be a measurable function such that for every ω ∈ � the
function f ω := f (·, ω) : R → (0, 1) is continuously differentiable and strictly decreasing.
Assume that limx→−∞ f ω(x) = 1 and limx→∞ f ω(x) = 0 for every ω ∈ �. Then for every
a ∈ (0, 1) the function � � ω �→ f ω,−1(a) ∈ R is measurable, where f ω,−1 denotes the
inverse function of f ω.

Proof Let a ∈ (0, 1) be given. Note that for every ω ∈ �, we have that f ω,−1(a) is the
unique fixed point of the function

R � x �→ F(x, ω) := f (x, w) + x − a.

Note that

|xn − F(xn, ω)| = | f (xn, w) − a| → 0 as n → ∞ ⇒ |xn − f ω,−1(a)| → 0 as n → ∞.

Hence the function F(x, ω) is hemicompact in x . By Lemma 2.8, the function � � ω �→
f ω,−1(a) is measurable. The lemma is thus proved. ��

3 Stability of Positive Random Equilibrium Solutions

In this section, we establish some results about the stability of the positive constant equi-
librium solution u ≡ 1 of (1.1) (resp. (1.2)). We also study the existence and stability of
positive random equilibria of (1.21). The results obtained in this section will play a role in
later sections for the investigation of spreading speeds and take-over property of solutions of
(1.1) [resp. (1.2)].

3.1 Stability of the Positive Constant Equilibrium Solution u ≡ 1 of (1.1)

In this subsection, we establish some results about the stability of the positive constant
equilibrium solution u ≡ 1 of (1.1) [resp. (1.2)]. Observe that u(t, x) = v(t, x − C(t;ω))

with C(t;ω) being differential in t solves (1.1) if and only if v(t, x) satisfies

vt = vxx + c(t;ω)vx + a(θtω)v(1 − v), (3.1)
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where c(t;ω) = C ′(t;ω). In this subsection, we also study the stability of the positive
constant equilibrium solution u ≡ 1 of (3.1).

We first prove Theorem 1.1.

Proof of Theorem 1.1 First, for given u0 ∈ Cb
uinf (R) with infx∈R u0(x) > 0 and ω ∈ �, let

u0 := min{1, inf x∈R u0(x)} and u0 := max{1, supx∈R u0(x)}. By the comparison principle
for parabolic equations, we have that

u0 ≤ u(t, x; u0, ω) ≤ min{1, u(t, x; u0, ω)}, ∀ x ∈ R, ∀ t ≥ 0 (3.2)

and

max{1, u(t, x; u0, ω)} ≤ u(t, x; u0, ω) ≤ u0, ∀ x ∈ R, ∀ t ≥ 0. (3.3)

Since u0 and u0 are positive numbers, by the uniqueness of solutions of (1.1) and its corre-
sponding ODE with a given initial function, we have that

u(t, x; u0, ω) = u(t, 0; u0, ω) and u(t, x; u0, ω) = u(t, 0; u0, ω) ∀ x ∈ R, ∀t ≥ 0.

Next, let u(t) =
(

1
u(t,0;u0,ω)

− 1
)

e
∫ t
0 a(θsω)ds and u(t) =

(
1 − 1

u(t,0;u0,ω)

)
e
∫ t
0 a(θsω)ds . It

can be verified directly that

d

dt
u = d

dt
u = 0, t > 0.

Hence,

u(t) = u(0) and u(t) = u(0), ∀ t ≥ 0,

which is equivalent to

1 − u(t, x; u0, ω) = u(0)u(t, x; u0, ω)e− ∫ t
0 a(θsω)ds (3.4)

and

u(t, x; u0, ω) − 1 = u(0)u(t, x; u0, ω)e− ∫ t
0 a(θsω)ds . (3.5)

Now, by (3.2)–(3.5), we have that

|u(t, x; u0, ω) − 1| ≤ u0 max{u(0), u(0)}e− ∫ t
0 a(θsω)ds, ∀x ∈ R, t ≥ 0,

which implies that inequality (1.8) holds. Taking u0 to be a positive constantwith 0 < u0 < 1,
it follows from (3.4) that

u(t, x; u0, ω) = 1

1 + ( 1
u0

− 1)e− ∫ t
0 a(θsω)ds

.

If ‖a(θ·ω)‖L1(0,∞) < ∞, then limt→∞ u(t, x; u0, ω) = 1

1+( 1
u0

−1)e
−‖a(θ·ω)‖

L1(0,∞)
< 1, which

completes the proof of the theorem. ��
Remark 3.1 (1) Theorem 1.1 guarantees the exponential stability of the trivial constant

equilibrium solution u ≡ 1 of (1.1) with respect to the solutions u(t, x; u0, ω) with
infx∈Rn u0(x) > 0 provided that (H1) holds. This result will be useful in the later sec-
tions.

(2) Let v(t, x; u0, ω) be the solution of (3.1) with v(0, x; u0, ω) = u0(x). The result in
Theorem 1.1 also holds for v(t, x; u0, ω).
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Let

c(ω) = lim inf
t−s→∞

1

t − s

∫ t

s
c(τ ;ω)dτ, c(ω) = lim sup

t−s→∞
1

t − s

∫ t

s
c(τ ;ω)dτ.

Next, we prove the following theorem about the stability of u ≡ 1.

Theorem 3.1 Assume (H1). Suppose that v(t, x;ω) with 0 < v(t, x;ω) < 1, is an entire
solution of (3.1) which is nonincreaing in x. For given ω ∈ � with 0 < c(ω) ≤ c(ω) < ∞,
if there is x∗ ∈ R such that inf t∈R v(t, x∗;ω) > 0, then limx→−∞ v(t, x;ω) = 1 uniformly
in t ∈ R.

To prove the above theorem, we first prove a lemma.

Lemma 3.1 Let u0, un ∈ Cb
unif (R) be such that 0 ≤ un(x) ≤ u0(x) ≤ 1. Let v(t, x; u0, θt0ω)

(respectively v(t, x; un, θt0ω)) denote the solution of (3.1) with ω being replaced by θt0ω and
with initial function u0 (respectively un). If limn→∞ un(x) = u0(x) locally uniformly in
x ∈ R, then for any fixed t > 0 with −∞ < inf t0∈R

∫ t
0 c(τ + t0;ω) ≤ supt0∈R

∫ t
0 c(τ +

t0;ω) < ∞, we have

lim
n→∞ v(t, x; un, θt0ω) = v(t, x; u0, θt0ω)

uniformly in t0 ∈ R and locally uniformly in x ∈ R.

Proof Fix ω ∈ �. For every n ≥ 1, the function vn(t, x; t0) := v(t, x; u0, θt0ω) −
v(t, x; un, θt0ω) is non-negative and satisfies

vn
t = vn

xx+c(t + t0;ω)vn
x + a(θt0+tω)(1 − (v(t, x; u0, θt0ω) + v(t, x; un, θt0ω)))vn

≤ vn
xx + c(t + t0;ω)vn

x + a(θt0+tω)vn .

It follows that, for every n ≥ 1, ṽn(t, x; t0) := vn(t, x − ∫ t0+t
t0

c(τ ;ω)dτ); t0) satisfies

ṽn(t, x; t0) ≤ ṽn
xx + a(θt+t0ω)ṽn,

By the comparison principle for parabolic equations,

0 ≤ vn(t, ·; t0) ≤ e
∫ t0+t

t0
a(θτ ω)dτ et�vn(0, · +

∫ t

0
c(τ + t0)dτ).

Note that limn→∞
(
e
∫ t0+t

t0
a(θτ ω)dτ et�vn(0, · + ∫ t

0 c(τ + t0)dτ)
)
(x) = 0 locally uniformly in

x ∈ R and uniformly in t0 ∈ R. Hence limn→∞ vn(t, x; t0) = 0 uniformly in t0 ∈ R and
locally uniformly in x ∈ R. ��

We now prove Theorem 3.1.

Proof of Theorem 3.1 Fix ω ∈ � with −∞ < c(ω) ≤ c(ω) < ∞ and assume that there is
x∗ ∈ R such that inf t∈R v(t, x∗;ω) > 0.

Consider the constant function u0 ≡ inf t∈R v(t, x∗;ω). We first note from the hypotheses
of Theorem 3.1 that u0 > 0. Next, let ũ0(·) be uniformly continuous, 0 ≤ ũ0(x) ≤ u0,
ũ0(x) = u0 for x ≤ x∗ − 1, and ũ0(x) = 0 for x ≥ x∗. For any R > 0, it holds that
ũ0(x −n) = u0 for every |x | ≤ R and n ≥ R+1+|x∗|. This shows that limn→∞ ũ0(x −n) =
u0 locally uniformly in x ∈ R. By (H1) and the arguments of Theorem 1.1,

lim
t→∞ v(t, x; u0, θt0ω) = 1
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uniformly in t0 ∈ R and x ∈ R. Hence, for any ε > 0, there is T > 0 such that

−∞ < inf
t0∈R

∫ T

0
c(τ + t0;ω) ≤ sup

t0∈R

∫ T

0
c(τ + t0;ω) < ∞

and

1 > v(T , x; u0, θt0ω) > 1 − ε ∀ t0 ∈ R, x ∈ R.

By Lemma 3.1, there is N > 1 such that

1 > v(T , 0; ũ0(· − N ), θt0ω) > 1 − 2ε ∀ t0 ∈ R.

This implies that

1 > v(T ,−N ; ũ0, θt0ω) > 1 − 2ε ∀ t0 ∈ R.

Note that

v(t − T , x;ω) ≥ ũ0(x) ∀ t ∈ R, x ∈ R

and

v(t, x;ω) = v(T , x; v(t − T , ·), θt−T ω).

Hence

1 > v(t, x;ω) = v(T , x; v(t − T , ·), θt−T ω) > 1 − 2ε ∀ t ∈ R, x ≤ −N .

The theorem thus follows. ��

3.2 Existence and Stability of Positive Random Equilibria of (1.21)

In this subsection, we first study the existence and stability of positive random equilibria of
(1.21), and then show that (1.21) can be transferred to (1.1).

To this end, we consider the following corresponding ODE,

u̇ = u(1 + ξ(θtω) − u). (3.6)

Throughout this subsection, we assume that (H3) holds. For given u0 ∈ R, let u(t; u0, ω) be
the solution of (3.6) with u(0; u0, ω) = u0. It is known that

u(t; u0, ω) = u0et+∫ t
0 ξ(θτ ω)dτ

1 + u0
∫ t
0 es+∫ s

0 ξ(θτ ω)dτ ds
.

Theorem 3.2 Y (ω) = 1∫ 0
−∞ es+∫ s

0 ξ(θτ ω)dτ ds
is a random equilibrium of (3.6), that is,

u(t; Y (ω), ω) = Y (θtω) for t ∈ R and ω ∈ �.
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Proof First, we note that

u(t; Y (ω), ω) = Y (ω)et+∫ t
0 ξ(θτ ω)dτ

1 + Y (ω)
∫ t
0 es+∫ s

0 ξ(θτ ω)dτ ds

= et+∫ t
0 ξ(θτ ω)dτ

∫ 0
−∞ es+∫ s

0 ξ(θτ ω)dτ ds + ∫ t
0 es+∫ s

0 ξ(θτ ω)dτ ds

= et+∫ t
0 ξ(θτ ω)dτ

∫ t
−∞ es+∫ s

0 ξ(θτ ω)dτ ds
.

Second, note that

Y (θtω) = 1∫ 0
−∞ es+∫ s

0 ξ(θt+τ ω)dτ ds
= 1∫ t

−∞ e(s−t)+∫ s−t
0 ξ(θt+τ ω)dτ ds

= et+∫ t
0 ξ(θτ ω)dτ

∫ t
−∞ es+∫ s

0 ξ(θτ ω)dτ ds
.

Hence u(t; Y (ω), ω) = Y (θtω) and then Y (ω) is a random equilibrium of (3.6). ��
Observe that 0 < Y (ω) < ∞. Let ũ = u

Y (θt ω)
and drop the tilde. We have

ut = uxx + Y (θtω)u(1 − u). (3.7)

Clearly, (3.7) is of the form (1.1) with a(ω) = Y (ω). Let Ŷinf (ω) and Ŷsup(ω) be defined as
in (1.4) and (1.5) with a(·) being replaced by Y (·), respectively.
Lemma 3.2 Y (ω) satisfies the following properties.

(1) For a.e. ω ∈ �, 0 < inf t∈R Y (θtω) ≤ supt∈R Y (θtω) < ∞.
(2) For a.e. ω ∈ �, limt→∞ ln Y (θt ω)

t = 0.

(3) For a.e. ω ∈ �, limt→∞
∫ t
0 Y (θsω)ds

t = 1.

(4) Ŷinf (ω) = 1 + ξ > 0, and Ŷsup(ω) = 1 + ξ < ∞ for a.e. ω ∈ �.

Proof (1) First, note that

1

Y (θtω)
=

∫ −T

−∞
es−∫ 0

s ξ(θτ+t ω)τ ds +
∫ 0

−T
es−∫ 0

s ξ(θτ+t ω)τ ds, ∀T > 0,∀ t ∈ R. (3.8)

By (H3), for every λ ∈ (0, 1) and a.e. ω ∈ � there is Tλ � 1,

λξ ≤ 1

T

∫ T

0
ξ(θx+τω)dτ ≤ ξ

λ
, ∀ x ∈ R,∀ T ≥ Tλ.

It then follows that∫ −Tλ

−∞
e(1+ ξ

λ
)sds ≤

∫ −Tλ

−∞
es−∫ 0

s ξ(θτ+t ω)τ ds ≤
∫ −Tλ

−∞
e(1+λξ)sds.

That is,

e−(1+ ξ
λ
)Tλ

(1 + ξ
λ
)

≤
∫ −Tλ

−∞
es−∫ 0

s ξ(θτ+t ω)τ ds ≤ e−(1+λξ)Tλ

(1 + λξ)
. (3.9)
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The first inequality of (3.9) combined with (3.8) yields that

1

Y (θtω)
≥ e−(1+ ξ

λ
)Tλ

(1 + ξ
λ
)

.

Hence

Y (θtω) ≤ (1 + ξ

λ
)e(1+ ξ

λ
)Tλ , ∀ t ∈ R. (3.10)

Next, let ξinf (ω) = inf t∈R ξ(θtω). Observe that
∫ 0

−Tλ

es−∫ 0
s ξ(θτ+t ω)τ ds ≤

∫ 0

−Tλ

es−∫ 0
s ξinf (ω)dτ ds =

∫ 0

−Tλ

es(1+ξinf (ω))ds.

This combined with the second inequality in (3.9) yield that

1

Y (θtω)
≤ e−(1+λξ)Tλ

(1 + λξ)
+

∫ 0

−Tλ

es(1+ξinf (ω))ds, ∀ t ∈ R, a.e. ω ∈ �. (3.11)

It easily follows from (3.10) and (3.11) that

0 < inf
t∈R Y (θtω) ≤ sup

t∈R
Y (θtω) < ∞, a.e. ω ∈ �.

The result (1) then follows.
(2) It follows from (1).
(3) Note that

Ẏ (θtω)

Y (θtω)
= 1 + ξ(θtω) − Y (θtω).

Integrating both sides with respect to t , we obtain that

1

t − s

∫ t

s
Y (θσ ω)dσ + ln(Y (θtω)) − ln(Y (θsω))

t − s
= 1 + 1

t − s

∫ t

s
ξ(θσ ω)dσ. (3.12)

The result (3) follows from (2) and the fact that limt→∞ 1
t

∫ t
0 ξ(θsω)ds = 0 for a.e. ω ∈ �.

(4) Observe that (3.12) implies that

1 + ξ ≤Ŷinf (ω) + lim sup
t−s→∞

ln(Y (θtω)) − ln(Y (θsω))

t − s

and

1 + ξ ≥Ŷinf (ω) + lim inf
t−s→∞

ln(Y (θtω)) − ln(Y (θsω))

t − s

for a.e. ω ∈ �. It follows from (1) that

lim inf
t−s→∞

ln(Y (θtω)) − ln(Y (θsω))

t − s
= lim sup

t−s→∞
ln(Y (θtω)) − ln(Y (θsω))

t − s
= 0 for a.e. ω ∈ �.

Hence we have that Ŷinf (ω) = 1 + ξ > 0 for a.e. ω ∈ �. Similar arguments yield that

Ŷsup(ω) = 1 + ξ for a.e. ω ∈ �. ��
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Corollary 3.1 For given u0 ∈ Cb
uinf (R) with infx u0(x) > 0, for a.e. ω ∈ �,

lim
t→∞ ‖u(t, ·; u0, θt0ω)

Y (θtθt0ω)
− 1‖∞ = 0

uniformly in t0 ∈ R, where u(t, x; u0, θt0ω) is the solution of (1.21) with u(0, x; u0, θt0ω) =
u0(x).

Proof It follows from Theorems 1.1, 3.2, and Lemma 3.2. ��

4 Deterministic and Linearly Determinate Spreading Speed Interval

In this section, we discuss the spreading properties of solutions of (1.1) with nonempty
compactly supported initials or front like initials and prove Theorems 1.2 and 1.3 .

We first prove some lemmas.

Lemma 4.1 Let ω ∈ �0. If there is a positive constant c(ω) > 0 such that

lim inf
t→∞ inf

s∈R,|x |≤c(ω)t
u(t, x; u0, θsω) > 0, ∀ u0 ∈ X+

c (4.1)

then c∗
inf (ω) ≥ c(ω). Therefore it holds that

c∗
inf (ω) = sup{c ∈ R

+ | lim inf
t→∞ inf

s∈R,|x |≤ct
u(t, x; u0, θsω) > 0, ∀ u0 ∈ X+

c }. (4.2)

Proof Let ω ∈ �0 and c(ω) satisfy (4.1). Let 0 < c < c(ω) and u0 ∈ X+
c be given. Choose

c̃ ∈ (c, c(ω)). It follows from (4.1) that

mc̃ := lim inf
t→∞ inf

s∈R,|x |≤c̃t
u(t, x; u0, θsω) > 0.

There is T � 1 such that
mc̃

2
≤ min

|x |≤c̃t
u(t, x; u0, θsω), ∀ s ∈ R, t ≥ T . (4.3)

Suppose by contradiction that there is (sn, tn, xn) ∈ R×R
+ ×Rwith |xn | ≤ ctn for every

n ≥ 1 and tn → ∞ such that

0 < δ := inf
n≥1

|u(tn, xn; u0, θsn ω) − 1|. (4.4)

Let 0 < ε < 1 be fixed. By (H1), Theorem 1.1 implies that there is T̃ε > T such that

‖u(t, ·; mc̃

2
, θsω) − 1‖∞ + ‖u(t, ·; ‖u0‖∞, θsω) − 1‖∞ ≤ ε, ∀t ≥ T̃ε, ∀ s ∈ R.

(4.5)

Observe that (c̃ − c)(tn − T̃ε) − 2cT̃ε → ∞ as n → ∞. Then there is nε such that

(c̃ − c)(tn − T̃ε) − 2cT̃ε ≥ T , ∀ n ≥ nε.

For every n ≥ nε, let u0n ∈ Cb
unif (R) with ‖u0n‖∞ ≤ mc̃

2 and

u0n(x) =
{

mc̃
2 , |x | ≤ (c̃ − c)(tn − T̃ε) − 2cT̃ε,

0, |x | ≥ (c̃ − c)(tn − T̃ε) − cT̃ε.
(4.6)

123



1054 Journal of Dynamics and Differential Equations (2021) 33:1035–1070

Since |x | ≤ (c̃ − c)(tn − T̃ε) − cT̃ε implies that |x + xn | ≤ c̃(tn − T̃ε) for every n ≥ nε,
it follows from (4.3) to (4.6) that

u0n(x) ≤ u(tn − T̃ε, x + xn; u0, θsn ω), ∀ x ∈ R, ∀ n ≥ nε.

By the comparison principle for parabolic equations, we have

u(t, x; u0n, θs̃n ω) ≤ u(t + tn − T̃ε, x + xn; u0, θsn ω), ∀ x ∈ R, t > 0, n ≥ nε,

(4.7)

where s̃n = sn + tn − T̃ε .
Observe from the definition of u0n that u0n(x) → mc̃

2 as n → ∞ locally uniformly in
x ∈ R. It then follows from Lemma 3.1 that for every t > 0,

|u(t, x; u0n, θs̃n ω) − u(t, x; mc̃

2
, θs̃n ω)| → 0 as n → ∞ locally uniformly in x ∈ R.

(4.8)

By (4.5), we have that

1 − ε ≤ u(T̃ε, x; mc̃

2
, θs̃n ω), ∀ x ∈ R,∀ n ≥ 1.

This combined with (4.7) and (4.8) yields that

1 − ε ≤ lim inf
n→∞ u(T̃ε, 0; u0n, θs̃n ω) ≤ lim inf

n→∞ u(tn, xn; u0, θsn ω). (4.9)

On the other hand, since ‖u0(· + xn)‖∞ = ‖u0‖∞ for every n ≥ 1, it follows from the
comparison principle for parabolic equations that

u(tn, x; ‖u0‖∞, θsn ω) ≥ u(tn, x; u0(· + xn), θsn ω),

= u(tn, x + xn; u0, θsn ω), ∀ x ∈ R, t > 0, n ≥ 1.

This together with (4.5) implies that

lim sup
n→∞

u(tn, xn; u0, θsn ω) ≤ lim sup
n→∞

‖u(tn, ·; ‖u0‖∞, θsn ω)‖∞ ≤ 1 + ε,

which combined with (4.9) yields that

1 − ε ≤ lim sup
n→∞

u(tn, xn; u0, θsn ω) ≤ lim sup
n→∞

u(tn, xn; u0, θsn ω) ≤ 1 + ε,∀ ε > 0.

Letting ε → 0, we obtain that

lim
n→∞ |u(tn, xn; u0, θsn ω) − 1| = 0,

which contradicts to (4.4). Thus we have that

lim
t→∞ sup

s∈R,|x |≤ct
|u(t, x; u0, θsω) − 1| = 0, ∀u0 ∈ X+

c , ∀0 < c < c(ω).

This implies that c∗
inf (ω) ≥ c(ω).

Therefore, we have that

c∗
inf (ω) ≥ sup{c ∈ R

+ | lim inf
t→∞ inf|x |≤ct,s∈R u(t, x; u0, θsω) > 0, ∀ u0 ∈ X+

c }.

On the other hand, it is clear from the definition of C∗
sup(ω) that

c∗
inf (ω) ≤ sup{c ∈ R

+ | lim inf
t→∞ inf|x |≤ct,s∈R u(t, x; u0, θsω) > 0, ∀ u0 ∈ X+

c }.
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The lemma is thus proved. ��
Lemma 4.2 Let b > 0 be a positive number and v0 ∈ X+

c . Let v(t, x; v0, b) be the solution
of {

vt = vxx + bv(1 − v), x ∈ R

v(0, x) = v0(x), x ∈ R.

Then

lim
t→∞ min|x |≤ct

v(t, x; v0, b) = 1, ∀ 0 < c < 2
√

b.

Proof It follows from [3, Page 66, Corollary 1]. ��
Lemma 4.3 Assume (H1). Then for every ω ∈ �0,

lim inf
t→∞ inf

s∈R,|x |≤ct
u(t, x; u0, θsω) > 0, ∀ 0 < c < 2

√
a, ∀ u0 ∈ X+

c . (4.10)

Therefore, c∗
inf (ω) ≥ 2

√
a, ∀ ω ∈ �0.

Proof First, fix ω ∈ �0 and u0 ∈ X+
c . Let 0 < c < 2

√
a be given. Choose b > c and

0 < δ < 1 such that c < 2
√

b < 2
√

δa. By the proof of Lemma 2.2, there are {tk}k∈Z with

tk < tk+1, tk → ±∞ as k → ±∞ and A ∈ W 1,∞
loc (R) ∩ L∞(R) such that A ∈ C1(tk, tk+1)

for every k and

b ≤ δa(θtω) − A′(t), for t ∈ (tk, tk+1), k ∈ Z.

Let σ = (1−δ)e−‖A‖∞
‖u0‖∞+1 and v(t, x; b) = v(t, x; u0, b). By Lemma 4.2, we have that

lim inf
t→∞ min|x |≤ct

v(t, x; b) = 1. (4.11)

Next, for given s ∈ R, let ṽ(t, x; s) = σeA(t+s)v(t, x; b). By the comparison principle
for parabolic equations, we have that

0 < v(t, x; b) ≤ max{‖u0‖∞, 1} < ‖u0‖∞ + 1, ∀ x ∈ R, t ≥ 0.

Hence, it follows from the definition of σ that

0 < ṽ(t, x; s) ≤ σe‖A‖∞(‖u0‖∞ + 1) = 1 − δ, ∀ x ∈ R, t ≥ 0,

s ∈ R.

Thus for any s ∈ R,

ṽt − ṽxx − a(θs+tω)ṽ(1 − ṽ) = (
A′(s + t) + b(1 − v) − a(θs+tω)(1 − ṽ)

)
ṽ(t, x)

≤ (
A′(s + t) + b(1 − v) − δa(θs+tω)

)
ṽ(t, x)

≤ (
A′(s + t) + b − δa(θs+tω)

)
ṽ(t, x)

≤ 0, t ∈ (tk, tk+1) ∩ [0,∞), x ∈ R.

Note that

ṽ(0, x; s) = σeA(s)u0(x) ≤ u0(x), ∀ x ∈ R.

By the comparison principle for parabolic equations again, we have that

σe−‖A‖∞v(t, x, b) ≤ ṽ(t, x; s) ≤ u(t, x; u0, θsω), ∀ x ∈ R, s ∈ R, t ≥ 0.
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This combined with (4.11) yields that

0 < σe−‖A‖∞ ≤ lim inf
t→∞ inf

s∈R|x |≤ct
u(t, x; u0, θsω), ∀ 0 < c < 2

√
a.

Hence (4.10) holds. By (4.10) and Lemma 4.1, we have c∗
inf (ω) ≥ 2

√
a, ∀ ω ∈ �0. ��

Now, we prove Theorem 1.2.

Proof of Theorem 1.2 (i) We first prove c∗
sup(ω) ≤ 2

√
a for all ω ∈ �0.

Suppose that supp(u0) ⊂ (−R, R). For every μ > 0, let Cμ(t, s) = ∫ s+t
s

μ2+a(θτ ω)
μ

dτ

and φμ(x) = ‖u0‖∞e−μ(x−R) and φ̃
μ
±(t, x; s) = φμ(±x − Cμ(t, s)) for every x ∈ R and

t ≥ 0. Then

∂t φ̃
μ
± − ∂xx φ̃

μ
± − a(θs+tω)φ̃

μ
±(1 − φ̃

μ
±) = a(θs+tω)

(
φ̃

μ
±
)2 ≥ 0, x ∈ R, t > 0.

and

u0(x) ≤ φ̃
μ
±(0, x; s), ∀x ∈ R, ∀ s ∈ R.

By the comparison principle for parabolic equations, we have

u(t, x; u0, θsω) ≤ φ̃
μ
±(t, x; s) = ‖u0‖∞e−μ(±x−R−Cμ(t,s)), ∀ x, s ∈ R,∀t > 0,∀μ > 0.

This implies that

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω) = 0 ∀ μ > 0, c >
μ2 + ā

μ
.

For any c > c̄∗ = 2
√

ā = infμ>0
μ2+√

ā
μ

, choose μ > 0 such that c >
μ2+√

ā
μ

> c̄∗. By
the above arguments, we have

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω) = 0.

Hence for any ω ∈ �0,c∗
sup(ω) ≤ 2

√
a.

Next, we prove that c∗
sup(ω) ≥ 2

√
a for all ω ∈ �0. We prove this by contradiction.

Assume that there is ω ∈ �0 such that c∗
sup(ω) < 2

√
a. Then there is 0 < δ < 1 such that

c∗
sup(ω) < 2

√
δa.

Note that

lim sup
t−s→∞

1

t − s

∫ t

s
a(θτω)dτ = ā > δā.

Then there is 0 < δ
′
< 1 and {tn}, {sn} such that limn→∞ tn − sn = ∞ and

δ
′ 1

tn − sn

∫ tn

sn

a(θτω)dτ > δā. (4.12)

Choose c ∈ (c∗
sup(ω), 2

√
δa). Set L = 2π√

4āδ−c2
and

w+(x) = e− c
2 x sin

(√
4āδ − c2

2
x
)
.
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Then w+(x) satisfies {
w+

xx + cw+
x + āδw+ = 0, 0 < x < L,

w+(0) = w+(L) = 0,
(4.13)

and 0 < w+(x) < 1 for 0 < x < L .
For any given u0 ∈ X+

c , by the assumption that c > c∗
sup(ω),

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω) = 0. (4.14)

Hence there is T > 0 such hat

u(t, x; u0, θsω) < 1 − δ
′ ∀ t ≥ T , |x | ≥ ct, s ∈ R,

and then

u(t, x; u0, θsω)(1 − u(t, x; u0, θsω)) > δ
′
u(t, x; u0, θsω) ∀ t ≥ T , |x | ≥ ct, s ∈ R.

(4.15)

Observe that u(t, x; u0, θsω) ≥ u(t, x; u0
1+‖u0‖∞ , θsω) and

ut (t, x; u0

1 + ‖u0‖∞
, θsω) ≥ uxx (t, x; u0

1 + ‖u0‖∞
, θsω), x ∈ R.

This implies that

α := inf
s∈R,0≤x≤L

u(T , x + cT ; u0, θsω) ≥ inf
s∈R,0≤x≤L

u(T , x + cT ; u0

1 + ‖u0‖∞
, θsω) > 0.

(4.16)

Let v(t, x; s) = u(t, x + ct; u0, θs−T ω). By (4.15),

vt ≥ vxx + cvx + δ
′
a(θs−T +tω)v, t ≥ T , x ≥ 0.

Let w(t, x; s) = e− ∫ s−T +t
s

(
δ
′
a(θτ ω)−δā

)
dτ

v(t, x; s). Then

wt ≥ wxx + cwx + δāw, t ≥ T , x ≥ 0.

By (4.16) and the comparison principle for parabolic equations, we have

v(t, x; s) ≥ αe
∫ s−T +t

s

(
δ
′
a(θτ ω)−δā

)
dτ

w+(x), t ≥ T , 0 ≤ x ≤ L.

This implies that for 0 ≤ x ≤ L ,

u(tn − sn + T , x + c(tn − sn + T ); u0, θsn−T ω) ≥ αe
∫ tn

sn

(
δ
′
a(θτ ω)−δā

)
dτ

w+(x)

≥ αw+(x) (by (4.12)). (4.17)

By (4.14),

lim sup
n→∞

sup
0≤x≤L

u(tn − sn + T , x + c(tn − sn + T ); u0, θsn−T ω) = 0,

which contradicts (4.17). Therefore, c∗
sup(ω) ≥ c̄∗ and then c∗

sup(ω) = c̄∗ for any ω ∈ �0. (i)
thus follows.
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(ii) By Lemma 4.3, c∗
inf (ω) ≥ c∗ for every ω ∈ �0. It then suffices to prove that c∗

inf (ω) ≤
c∗ for every ω ∈ �0. We prove this by contradiction.

Assume that there is ω ∈ �0 such that c∗
inf (ω) > c∗. Choose c ∈ (c∗, c∗

inf (ω)) and δ > 1
such that c > 2

√
δa. Then

lim inf
t−s→∞

1

t − s

∫ t

s
a(θτω)dτ < δa.

Hence there are {tn} and {sn} such that limn→∞ tn − sn = ∞ and

1

tn − sn

∫ tn

sn

a(θτ )dτ < δa ∀ n ≥ 1.

Let μ = √
δa. Then

2
√

δa = δa + μ2

μ
< c. (4.18)

Choose u0 ∈ X+
c such that

0 ≤ u0(x) < 1, u0(x) ≤ e−μx‖u0‖∞ ∀ x ∈ R.

By the assumption that c < c∗
inf (ω), there is T > 0 such that for any t ≥ T and s ∈ R,

inf|x |≤ct
u(t, x; u0, θsω) ≥ ‖u0‖∞.

This implies that for any n ≥ 1 with tn − sn ≥ T ,

inf|x |≤c(tn−sn)
u(tn − sn, x; u0, θsn ω) ≥ ‖u0‖∞. (4.19)

Observe that u(t, x; u0, θsn ω) satisfies

ut = uxx + a(θsn+tω)u(1 − u) ≤ uxx + a(θsn+tω)u.

It then follows from the comparison principle for parabolic equations that

u(t, x; u0, θsn ω) ≤ e
−μ

(
x− 1

μ

∫ sn+t
sn

(a(θτ ω)+μ2)dτ

)
‖u0‖∞

and then for x = c(tn − sn), we have

u(tn − sn, x; u0, θsn ω) ≤ e
−μ

(
x− 1

μ

∫ tn
sn

(a(θτ ω)+μ2)dτ

)
‖u0‖∞

≤ e
−μ

(
x− 1

μ
(δa+μ2)(tn−sn)

)
‖u0‖∞

= e
−μ

(
c− 1

μ
(δa+μ2)

)
(tn−sn)‖u0‖∞

< ‖u0‖∞ (by(4.18)),

which contradicts to (4.19). Therefore c∗
inf (ω) ≤ c∗ for any ω ∈ �0 and (ii) follows. ��

The following corollary follows directly from Lemma 3.2 and Theorem 1.2.
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Corollary 4.1 Assume (H3). Let Y (ω) be the random equilibrium solution of (1.21) given in
(1.22). Then for any u0 ∈ X+

c ,

lim sup
t→∞

sup
s∈R,|x |≤ct

|u(t, x; u0, θsω)

Y (θt+sω)
− 1| = 0, ∀ 0 < c < 2

√
1 + ξ

and

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω)

Y (θt+sω)
= 0, ∀ c > 2

√
1 + ξ̄

for a.e. ω ∈ �. where u(t, x; u0, θsω) is the solution of (1.21) with ω being replaced by θsω

and u(0, x; u0, θsω) = u0(x).

Finally, we prove Theorem 1.3.

Proof (i) It is clear that c̃∗
sup(ω) ≥ c∗

sup(ω) = c̄∗ for any ω ∈ �0. It then suffices to prove
that c̃∗

sup(ω) ≤ c̄∗ for any ω ∈ �0.

To this end, fix ω ∈ �0. For every μ > 0, let Cμ(t, s) = ∫ s+t
s

μ2+a(θτ ω)
μ

dτ and

φ̃
μ
+(t, x; s) = e−μ(x−Cμ(t,s)) for every x ∈ R and t ≥ 0. Note that for any u0 ∈ X̃+

c ,
there is M0 > 0 such that

u0(x) ≤ M0φ̃
μ
+(0, x; s), ∀x ∈ R, ∀ s ∈ R.

Note also that

∂t M0φ̃
μ
+ − ∂xx M0φ̃

μ
+ − a(θs+tω)M0φ̃

μ
+(1 − M0φ̃

μ
+) = a(θs+tω)M2

0

(
φ̃

μ
+
)2

≥ 0, x ∈ R, t > 0.

Hence, by the comparison principle for parabolic equations, we have that

u(t, x; u0, θsω) ≤ M0φ̃
μ
+(t, x; s) = M0e−μ(x−Cμ(t,s)), ∀ x, s ∈ R,∀t > 0,∀μ > 0.

This implies that

lim sup
t→∞

sup
s∈R,x≥ct

u(t, x; u0, θsω) = 0 ∀ μ > 0, c >
μ2 + ā

μ
.

For any c > c̄∗ = 2
√

ā = infμ>0
μ2+√

ā
μ

, choose μ > 0 such that c >
μ2+√

ā
μ

> c̄∗. By
the above arguments, we have

lim sup
t→∞

sup
s∈R,x≥ct

u(t, x; u0, θsω) = 0.

Hence for any ω ∈ �0, we have c̃∗
sup(ω) ≤ 2

√
a. (i) thus follows.

(ii) First, it is clear that c̃∗
inf (ω) ≥ c∗

inf (ω) = c∗. It then suffices to prove that c̃∗
inf (ω) ≤ c∗

for any ω ∈ �0. This can be proved by the similar arguments as those in Theorem 1.2 (ii). ��
The following corollary follows directly from Lemma 3.2 and Theorem 1.3.

Corollary 4.2 Assume (H3). Let Y (ω) be the random equilibrium solution of (1.21) given in
(1.22). Then for any u0 ∈ X̃+

c ,

lim sup
t→∞

sup
s∈R,x≤ct

|u(t, x; u0, θsω)

Y (θt+sω)
− 1| = 0, ∀ 0 < c < 2

√
1 + ξ
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and

lim sup
t→∞

sup
s∈R,x≥ct

u(t, x; u0, θsω)

Y (θt+sω)
= 0, ∀ c > 2

√
1 + ξ̄

for a.e. ω ∈ �. where u(t, x; u0, θsω) is the solution of (1.21) with ω being replaced by θsω

and u(0, x; u0, θsω) = u0(x).

5 Take-Over Property

In this section, we investigate the take-over property of (1.1) and prove Theorem 1.4. We first
prove some lemmas.

Recall that

u∗
0(x) =

{
1, x ≤ 0

0, x > 0

and that, for t > 0, x(t, ω) ∈ R is such that

u(t, x(t, ω); u∗
0, ω) = 1

2
.

Note that, by Lemma 2.9, for each t > 0, x(t, ω) is measurable in ω. Note also that for
ω ∈ �, the mapping (t, t0) � (0,∞) × R → u(t, ·; u∗

0, θt0ω) ∈ Cb
unif (R) is continuous and

hence x(t, θt0ω) is continuous in (t, t0) ∈ (0,∞) × R.
Suppose that (H1) holds. Let ω ∈ �0, and 0 < μ < μ̃ < min{2μ,μ∗} be given, where

μ∗ = √
a. Let b(t) = a(θtω). Put

c(t;ω,μ) = c(t; b, μ), C(t;ω,μ) = C(t; b, μ),

and

Aω(t) = Bb(t), dω = db,

where c(t; b, μ) and C(t; b, μ) are as in (2.5), and Bb and db are as in Lemma 2.4. Note that
we can choose dθt0ω = dω and Aθt0ω(t) = Aω(t + t0) for any t0 ∈ R. Let

xω(t) = C(t;ω,μ) + ln dω + ln μ̃ − lnμ

μ̃ − μ
+ Aω(t)

μ
. (5.1)

Note that for any given t ∈ R,

φμ,dω,Aω (t, xω(t)) = sup
x∈R

φμ,dω,Aω (t, x) = e−μ
(
ln dω
μ̃−μ

+ Aω(t)
μ

)
e−μ

ln μ̃−lnμ
μ̃−μ

(
1 − μ

μ̃

)
.

We introduce the following function

φ
μ
−(t, x; θt0ω) =

{
φ

μ,dω,Aθt0ω (t, x), if x ≥ xθt0ω(t),

φ
μ,dω,Aθt0ω (t, xθt0ω(t)), if x ≤ xθt0ω(t).

(5.2)

It is clear from Lemma 2.4, and the comparison principle for parabolic equations, that

0 < φ
μ
−(t, x; θt0ω) < u(t, x;φ

μ
+(·, x; θt0ω), θt0ω) ≤ 1,∀ t ∈ R, x ∈ R, t0 ∈ R. (5.3)
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Lemma 5.1 For every ω ∈ �0, limx→−∞ u(t, x + C(t, θt0ω,μ);φ
μ
+(0, ·; θt0ω), θt0ω) = 1

uniformly in t > 0 and t0 ∈ R, and limx→∞ u(t, x +C(t, θt0ω,μ);φ
μ
+(0, ·; θt0ω), θt0ω) = 0

uniformly in t > 0 and t0 ∈ �.

Proof First, it follows from Lemma 2.3 that

sup
t>0,t0∈R

u(t, x + C(t, θt0ω,μ);φ
μ
+(0, ·; θt0ω), θt0ω) ≤ e−μx → 0 as x → ∞.

Second, define v(t, x; θt0ω) = u(t, x + C(t, θt0ω,μ);φ
μ
+(0, ·; θt0ω), θt0ω) and

x∗ = ln dω + ln μ̃ − lnμ

μ̃ − μ
− ‖Aω‖∞

μ
.

It follows from (5.1) and (5.3) that

0 < (1 − μ

μ̃
)e

−μ
(
ln dω+ln μ̃−lnμ

μ̃−μ
+ ‖Aω‖∞

μ

)
≤ inf

t>0,t0∈R
v(t, x∗;φ

μ
+(0, ·; θt0ω), θt0ω).

Moreover, x �→ v(t, x; θt0ω) is decreasing and

vt = vxx + c(t; θt0ω,μ)vx + a(θtθt0ω)v(1 − v),

where c(t;ω,μ) = C ′(t;ω,μ). By the arguments of Theorem 3.1, we have that

v(t, x; θt0ω) → 1 as x → −∞
uniformly in t > 0, t0 ∈ R. ��
Lemma 5.2 For each t > 0, there is m(t) ≤ n(t) ∈ R such that

m(t) ≤ x(t, ω) ≤ n(t) for a.e ω ∈ �,

and hence x(t, ω) is integrable in ω.

Proof First, let

u∗
0n(x) = u∗

0(x − n), x ∈ R, n ∈ N.

We have that 0 ≤ u∗
0n(x) ≤ 1 and u∗

0n(x) → 1 as n → ∞. By Lemma 3.1, for every ω ∈ �0

and t > 0

u(t, x; u∗
0n, θt0ω) → 1 as n → ∞

uniformly in t0 ∈ R and locally uniformly in x ∈ R. Observe that

u(t, x; u∗
0n, θt0ω) = u(t, x − n; u∗

0, θt0ω)

and the mapping R � x �→ u(t, x; u∗
0, θt0ω) is decreasing. Thus, there is N (t, ω) ∈ N such

that

u(t, x; u∗
0, θt0ω) ≥ 3

4
, ∀x ≤ −N (t, ω), ∀ t0 ∈ R.

This implies that

−N (t, ω) ≤ inf
t0∈R

x(t, θt0ω).

Let

m(t, ω) := inf
t0∈R

x(t, θt0ω) = inf
t0∈Q

x(t, θt0ω).
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We have that �0 � ω �→ m(t, ω) ∈ R
+ is measurable and m(t, θτω) = m(t, ω) for any

τ ∈ R. By the ergodicity of the metric dynamical system (�0,F, {θt }t∈R), we have that
m(t, ω) = m(t) for a.e in ω.

Next, let ũ∗
0n(x) = u∗

0(x + n). We have that 0 ≤ u∗
0n(x) ≤ 1 and ũ∗

0n(x) → 0 as n → ∞.
By Lemma 3.1 again, for every ω ∈ �0 and t > 0,

u(t, x; ũ∗
0n, θt0ω) → 0 as n → ∞

uniformly in t0 ∈ R and locally uniformly in x ∈ R. Observe that

u(t, x; ũ∗
0n, θt0ω) = u(t, x + n; u∗

0, θt0ω)

and the mapping R � x �→ u(t, x; u∗
0, θt0ω) is decreasing. Thus, there is Ñ (t, ω) ∈ N such

that

u(t, x; u∗
0, θt0ω) ≤ 1

4
, ∀x ≥ Ñ (t, ω), ∀ t0 ∈ R.

This implies that

N (t, ω) ≥ sup
t0∈R

x(t, θt0ω) (5.4)

Let

n(t, ω) := sup
t0∈R

x(t, θt0ω) = sup
t0∈Q

x(t, θt0ω).

By (5.4), we have that −∞ < x(t, ω) ≤ n(t, ω) ≤ N (t, ω) < ∞. Hence �0 � ω �→
m(t, ω) ∈ R

+ is measurable and m(t, θτω) = m(t, ω) for any τ ∈ R. By the ergodicity of
the metric dynamical system (�0,F, {θt }t∈R), we have that m(t, ω) = m(t) for a.e in ω.

��
Let x+(t, ω, μ) be such that

u(t, x + x+(t, ω, μ) + C(t, ω, μ);φ
μ
+(0, ·;ω), ω) = 1

2
.

Lemma 5.3 For any t > 0, there holds

u(t, x+x(t;ω); u∗
0, ω))

{
≥u(t, x + x+(t, ω, μ)+C(t, ω, μ);φ

μ
+(0, ·;ω), ω) x <0

≤u(t, x + x+(t, ω, μ)+C(t, ω, μ);φ
μ
+(0, ·;ω), ω) x >0.

(5.5)

Proof It follows from Lemma 2.7. ��
Lemma 5.4 There is M̂ > 0 such that

x(t, ω) + x(s, θtω) ≤ x(t + s, ω) + M̂

for all t, s ≥ 0 and a.e. ω ∈ �.

Proof First, let x̃(t, ω) and x̃+(t, ω) be such that

u(t, x̃(t, ω); u∗
0, ω) = 1

4
and u(t, x̃+(t, ω, μ) + C(t, ω, μ);φ

μ
+(0, ·;ω), ω) = 1

4
,

respectively. Since the function x �→ u(t, x; u0, ω) is decreasing, we have

x̃(t, ω) > x(t, ω). (5.6)
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Moreover, for each t > 0, x̃(t, ω) is measurable in ω, and for each ω ∈ �, x̃(t, θt0ω) is
continuous in (t, t0) ∈ (0,∞) × R. By Lemma 5.3,

x̃(t, ω) − x(t, ω) ≤ (x̃+(t, ω, μ) − C(t, ω, μ)) − (x+(t, ω, μ) − C(t, ω, μ))

= x̃+(t, ω, μ) − x+(t, ω, μ), ∀ t > 0. (5.7)

Let

M(ω) = sup
t>0,t0∈R

(
x̃(t, θt0ω) − x(t, θt0ω)

) = sup
t∈(0,∞)∩Q,t0∈Q

(
x̃(t, θt0ω) − x(t, θt0ω)

)
.

Note that

1

2
= u(t, x+(t, θt0ω,μ) + C(t, θt0ω,μ);φ

μ
+(·, ·; θt0ω), θt0ω), ∀ t > 0,∀ t0 ∈ R,

and

1

4
= u(t, x̃+(t, θt0ω,μ) + C(t, θt0ω,μ);φ

μ
+(·, ·; θt0ω), θt0ω), ∀ t > 0,∀ t0 ∈ R.

By Lemma 5.1, there is a positive constant K (ω) such that

|x+(t, θt0ω,μ)| ≤ K (ω) and |x̃+(t, θt0ω,μ)| ≤ K (ω), ∀ t > 0,∀ t0 ∈ R. (5.8)

This combined with (5.7) implies that M(ω) < ∞.
Note that the function�0 � ω �→ M(ω) ∈ R

+ is measurable and invariant. By the ergod-
icity of the metric dynamical system (�0,F, {θt }t∈R), we have that there are an invariant
measurable set �̃ with P(�̃) = 1 and a positive constant M̂ such that

M(ω) = M̂, ∀ ω ∈ �̃. (5.9)

Second, note that

u∗
0(x) ≤ 2u(t, x + x(t, ω); u∗

0, ω)

Hence,

u(s, x; u∗
0, θtω) ≤ u(s, x; 2u(t, · + x(t, ω); u∗

0, ω), θtω)

≤ 2u(s, x; u(t, · + x(t, ω); u∗
0, ω), θtω)

= 2u(s, x + x(t, ω); u∗
0, ω).

This implies that

u(s, x(s, θtω) + x(t, ω); u∗
0, ω) ≥ 1

4
.

It then follows from (5.9) that

x(s, θtω) + x(t, ω) ≤ x̃(t + s, ω) ≤ x(t + s, ω) + M̂ .

The lemma follows. ��
We now prove Theorem 1.4.

Proof of Theorem 1.4 (i) We first prove that there is c∗ such that (1.10) holds with ĉ∗ being
replaced by c∗. To this end, let y(t, ω) = −x(t, ω) + M̂ where M̂ is given by Lemma 5.4.
Then, by Lemma 5.4

y(t + s, ω) = −x(t + s, ω) + M̂ ≤ −x(t, ω) − x(s, θtω) + 2M̂ = y(t, ω) + y(s, θtω)
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a.e in ω. By Lemma 5.2, y(t, ·) ∈ L1(�). It then follows from the subadditive ergodic
theorem that there is c∗ ∈ R such that

lim
t→∞

y(t, ω)

t
= c∗ for a.e. ω ∈ �.

Next, we claim that (1.11) and (1.12) hold with ĉ∗ being replaced by c∗. In fact, by (5.5),
(5.8), and Lemma 5.1,

0 ≤ sup
x≥(c∗+h)t

u(t, x; u∗
0, ω) ≤u(t, (c∗ + h)t; u0∗, ω)

≤ u(t, (c∗ + h)t − x(t;ω) + x+(t, ω, μ)

+ C(t, ω, μ);φ
μ
+(0, ·;ω), ω)

→ 0 as t → ∞, ∀h > 0,

and

1 ≥ inf
x≤(c∗−h)t

u(t, x; u0, ω) ≥u(t, (c∗ − h)t; u0, ω)

≥u(t, (c∗ − h)t − x(t;ω)

+ x+(t, ω, μ) + C(t, ω, μ);φ
μ
+(0, ·;ω), ω)

→1 as t → ∞, ∀h > 0.

Therefore, (1.11) and (1.12) hold with ĉ∗ being replaced by c∗.
Now, we prove that c∗ = ĉ∗. By the comparison principle for parabolic equations,

u(t, x; u∗
0, ω) ≤ e−μ(x− 1

μ

∫ t
0 (μ2+a(θτ ω)dτ))

,∀ t, μ > 0,∀ x ∈ R.

Hence

1

2
≤ e−μ(x(t,ω)− 1

μ

∫ t
0 (μ2+a(θτ ω)dτ))

, ∀ t, μ > 0.

This implies that

x(t, ω)

t
− ln(2)

tμ
≤ 1

tμ

∫ t

0
(μ2 + a(θτω)dτ).

Letting t → ∞, we obtain that

c∗ ≤ μ2 + â

μ
, ∀ μ > 0.

Taking μ = √
â, we obtain that

c∗ ≤ ĉ∗ = 2
√

â.

It then remains to prove that

c∗ ≥ ĉ∗ = 2
√

â.

We prove this by contradiction.
Assume that c∗ < ĉ∗ = 2

√
â. Then there are h > 0 and 0 < δ < 1 such that

c∗ < c := c∗ + h < 2
√

δâ.
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By (1.11), for a.e. ω ∈ �,

lim
t→∞ sup

x≥ct
u(t, x; u∗

0, ω) = 0.

Fix such ω. There are 0 < δ
′
< 1 and T > 0 such that

δ
′ 1

t

∫ t

0
a(θτω)dτ > δâ

and

u(t, x; u∗
0, ω) ≤ 1 − δ

′ ∀ t ≥ T , x ≥ ct .

As in the proof of Theorem 1.2(i), let L = 2π√
4âδ−c2

and

w+(x) = e− c
2 x sin

(√
4âδ − c2

2
x
)
.

By the similar arguments as those in Theorem 1.2(i), we have

u(t, x + ct; u∗
0, ω) ≥ αe

∫ t
T (δ

′
a(θτ ω)−δâ)dτw+(x)

= αe− ∫ T
0 (δ

′
a(θτ ω)−δâ)dτ e

∫ t
0 (δ

′
a(θτ ω)−δâ)dτw+(x)

≥ αe− ∫ T
0 (δ

′
a(θτ ω)−δâ)dτw+(x)

for 0 ≤ x ≤ L and t ≥ T , where α = sup0≤x≤L u(T , x + cT ; u∗
0, ω). This implies that

lim
t→∞ sup

x≥ct
u(t, x; u∗

0, ω) > 0,

which is a contradiction. Hence c∗ = ĉ∗ = 2
√

â.
(ii) For any given u0 ∈ X̃+

c , there are 0 < α ≤ 1 ≤ β and x− < x+ such that

αu∗
0(x + x+) ≤ u0(x) ≤ βu∗

0(x + x−) ∀ x ∈ R.

By the comparison principle for parabolic equations, we have

αu(t, x; u∗
0(· + x+), ω) ≤ u(t, x; u0, ω) ≤ βu(t, x; u∗

0(· + x−), ω) ∀ t ≥ 0, x ∈ R.

This together with (1.11) implies that there is a measurable set �1 ⊂ � with P(�1) = 1
such that

lim
t→∞ sup

x≥(ĉ∗+h)t
u(t, x; u0, ω) = 0, ω ∈ �1, ∀ h > 0,

and

lim inf
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u0, ω) ≥ α, ω ∈ �1, ∀ h > 0. (5.10)

We claim that

lim inf
t→∞ inf

x≤(c∗−h)t
u(t, x; u0, ω) = 1 for ω ∈ �1, ∀ h > 0. (5.11)

Indeed, let ω ∈ �1 and h > 0 be fixed. Let {xn} and {tn} with tn → ∞ and xn ≤ (ĉ∗ − h)tn
be such that

lim inf
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u0, ω) = lim

n→∞ u(tn, xn; u0, ω). (5.12)
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For every 0 < ε � 1
2 , Theorem 1.1 implies that there is Tε > 0 such that

1 − ε ≤ u(t, x; α

2
, θsω), ∀ x ∈ R, s ∈ R, t ≥ Tε. (5.13)

Consider a sequence of u0n ∈ Cb
unif (R) satisfying that

u0n(x) =
{

α
2 , x ≤ 1

2htn − 2(ĉ∗ − 1
2h)Tε

0, x ≥ 1
2htn − (ĉ∗ − 1

2h)Tε.

Note that

x ≤ 1

2
htn −

(
ĉ∗ − 1

2
h

)
Tε ⇒ x + xn ≤

(
ĉ∗ − 1

2
h)(tn − Tε

)
.

By (5.10), there is N1 � 1 such that

u(tn − Tε, x + xn; u0, ω) ≥ u0n(x), ∀ x ∈ R, n ≥ N1.

By the comparison principle for parabolic equations, we then have that

u(t + tn − Tε, x + xn; u0, ω) ≥ u(t, x; u0n, θtn−Tεω), ∀x ∈ R,∀ t ≥ 0.

In particular, taking t = Tε and x = 0, we obtain

u(tn, xn; u0, ω) ≥ u(Tε, x; u0n, θtn−Tεω). (5.14)

Note that u0n(x) → α
2 as n → ∞. Letting t → ∞ in (5.14), it follows from (5.13) and

Lemma 3.1 that

lim
n→∞ u(tn, xn; u0, ω) ≥ 1 − ε.

Letting ε → 0 in the last inequality, it follows from (5.12) that

lim inf
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u0, ω) ≥ 1, for ω ∈ �1, ∀ h > 0.

It is clear that

lim inf
t→∞ inf

x≤(ĉ∗−h)t
u(t, x; u0, ω) ≤ 1, for ω ∈ �1, ∀ h > 0.

The Claim thus follows and (ii) is proved. ��
The following corollary follows directly from Lemma 3.2 and Theorem 1.4.

Corollary 5.1 Assume (H3). Let Y (ω) be the random equilibrium solution of (1.21) given in
(1.22) and let U∗

0 (x;ω) = Y (ω) for x < 0 and U∗
0 (x;ω) = 0 for x > 0. Then,

lim
t→∞

X(t, ω)

t
= 2 for a.e ω ∈ �,

where X(t, ω) is such that u(t, X(t, ω); U∗
0 (·;ω), ω) = 1

2Y (ω), and

lim
t→∞ sup

x≥(2+h)t

u(t, x; U∗
0 (·;ω), ω)

Y (θtω)
= 0, ∀ h > 0, a.e ω ∈ �,

and

lim
t→∞ inf

x≤(2−h)t

u(t, x; U∗
0 (·;ω), ω)

Y (θtω)
= 1, ∀ h > 0, a.e ω ∈ �,

where u(t, x; U∗
0 (·;ω), ω) is the solution of (1.21) with u(0, x; U∗

0 (·;ω), ω) = U∗
0 (x;ω).
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6 Spreading Speeds of Nonautonomous Fisher–KPP Equations

In this section we consider the nonautonomous Fisher–KPP equation (1.2) and prove Theo-
rem 1.5.

Proof of Theorem 1.5 First, we prove (1.17). To this end, for given 0 < c < 2
√

a0, choose
b > c and 0 < δ < 1 such that c < 2

√
b < 2

√
δa0. By the proof of Lemma 2.2, there

are {tk}k∈Z with tk < tk+1, tk → ±∞ as k → ±∞ and A ∈ W 1,∞
loc (R) ∩ L∞(R) such that

A ∈ C1(tk, tk+1) for every k and

b ≤ δa0(t) − A′(t), for t ∈ (tk, tk+1), k ∈ Z.

Let σ = (1−δ)e−‖A‖∞
‖u0‖∞+1 and v(t, x; b) be the solution of the PDE

{
vt = vxx + bv(1 − v), x ∈ R, t > 0,

v(0, x) = u0(x), x ∈ R.

By Lemma 4.2, we have that

lim inf
t→∞ min|x |≤ct

v(t, x; b) = 1. (6.1)

For given s ∈ R, let ṽ(t, x; s) = σeA(t+s)v(t, x; b). By the similar arguments to those in
Lemma 4.3, it can be proved that

σe−‖A‖∞v(t, x, b) ≤ ṽ(t, x; s) ≤ u(t, x; u0, σsa0), ∀ x ∈ R, s ∈ R, t ≥ 0.

This combined with (6.1) yields that

0 < σe−‖A‖∞ ≤ lim inf
t→∞ inf

s∈R,|x |≤ct
u(t, x; u0, σsa0), ∀ 0 < c < 2

√
a0.

By the arguments in Lemma 4.1, it can be proved that

lim
t→∞ inf

s∈R,|x |≤ct
|u(t, x; u0, σsa0) − 1| = 0, ∀u0 ∈ X+

c , ∀0 < c < 2
√

a0.

(1.17) then follows.
Next, we prove (1.18). To this end, for any given u0 ∈ X+

c , suppose that supp(u0) ⊂
(−R, R). For every μ > 0, let Cμ(t, s) = ∫ s+t

s
μ2+a0(τω)

μ
dτ and φμ(x) = ‖u0‖∞e−μ(x−R)

and φ̃
μ
±(t, x; s) = φ

μ
±(±x − Cμ(t, s)) for every x ∈ R and t ≥ 0. It is not difficult to see

that

∂t φ̃
μ
± − ∂xx φ̃

μ
± − a0(s + t)φ̃μ

±(1 − φ̃
μ
±) = a0(s + t)

(
φ̃

μ
±
)2 ≥ 0, x ∈ R, t > 0,

and

u0(x) ≤ φ̃
μ
±(0, x; s), ∀x ∈ R, ∀ s ∈ R.

By the comparison principle for parabolic equations, we then have that

u(t, x; u0, σsa0) ≤ φ̃
μ
±(t, x; s) = ‖u0‖∞e−μ(±x−R∓Cμ(t,s)), ∀ x, s ∈ R,∀t > 0,∀μ > 0.

This implies that

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, σsa0) = 0 ∀ μ > 0, c >
μ2 + ā0

μ
.
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For any c > 2
√

ā0 = infμ>0
μ2+√

ā0
μ

, choose μ > 0 such that c >
μ2+√

ā0
μ

> c̄∗, we have

lim sup
t→∞

sup
s∈R,|x |≥ct

u(t, x; u0, θsω) = 0.

(1.18) then follows. ��
We conclude this section with some example of explicit function a0(t) satisfying (H2).
Define the sequences {ln}n≥0 and {Ln}n≥0 inductively by

l0 = 0, Ln = ln + 1

22(n+1)
, ln+1 = Ln + n + 1, n ≥ 0. (6.2)

Define a0(t) such that a0(−t) = a0(t) for t ∈ R and

a0(t) =
{

fn(t) if t ∈ [ln, Ln]
gn(t) if t ∈ [Ln, ln+1] (6.3)

for n ≥ 0, where g2n(t) = 1 and g2n+1(t) = 2 for n ≥ 0, and f0(t) = 1, for n ≥ 1, fn is
Hölder’s continuous on [ln, Ln], fn(ln) = gn(ln), fn(Ln) = gn(Ln), and satisfies

1 ≤ f2n(t) ≤ 2n, max
t∈[l2n ,L2n ] f2n(t) = 2n, f2n(t)dt = 1

2n+3

and

1

2n+1 ≤ f2n+1(t) ≤ 2, min
t∈[l2n+1,L2n+1]

f2n+1(t) = 2−(n+1).

It is clear that a0(t) is locally Hölder’s continuous, inf t∈R a0(t) = 0, and supt∈R a0(t) = ∞.
Moreover, it can be verified that

a0 = 1 and a0 = 2.

Hence a0(t) satisfies (H2).
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