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Abstract
In the current series of two papers, we study the long time behavior of nonnegative solutions
to the following random Fisher—KPP equation,

Uy = uxxy +a@o)u(l —u), x eR, (1

where w € Q, (2, F,P) is a given probability space, 6; is an ergodic metric dynamical
system on €2, and a(w) > 0 for every w € Q. We also study the long time behavior of
nonnegative solutions to the following nonautonomous Fisher—KPP equation,

ur = tyxy +ao®u(l —u), x €R, ()

where aq(¢) is a positive locally Holder continuous function. In this first part of the series, we
investigate the stability of positive equilibria and the spreading speeds. Under some proper
assumption on a(w), we show that the constant solution # = 1 of (1) is asymptotically
stable with respect to strictly positive perturbations and show that (1) has a deterministic
spreading speed interval [2,/a, 24/a], where a and a are the least and the greatest means of
a(-), respectively, and hence the spreading speed interval is linearly determinate. It is shown
that the solution of (1) with a nonnegative initial function which is bounded away from 0
for x « —1 and is O for x > 1 propagates at the speed 2+/a, where a is the mean of a(-).
Under some assumption on ag(-), we also show that the constant solution u = 1 of (2) is
asymptotically stably and (2) admits a bounded spreading speed interval. It is not assumed
that a(w) and ap(t) are bounded above and below by some positive constants. The results
obtained in this part are new and extend the existing results in literature on spreading speeds
of Fisher—KPP equations. In the second part of the series, we will study the existence and
stability of transition fronts of (1) and (2).
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1 Introduction and Statements of the Main Results

The current series of two papers is concerned with the long time behavior of nonnegative
solutions to the following random Fisher—KPP equation,

Uy = tyy +a@o)u(l —u), x €R, (1.1)

where w € @, (2, F, P, {6;};cr) is an ergodic metric dynamical system on @, a : Q —
(0, 00) is measurable, and a®(t) := a(6;w) is locally Holder continuous for every w € Q.
It also considers the long time behavior of nonnegative solutions to the following nonau-
tonomous Fisher—-KPP equation,

U = tyy +ao(Ou(l —u), x € R, (1.2)

where ap : R — (0, 0o) is locally Holder continuous. Among others, (1.1) and (1.2) are
used to model the population growth of a species in biology. In such case, u(z, x) denotes
the population density of the species. Thanks to the biological reason, we are only interested
in nonnegative solutions of (1.1) and (1.2).

Observe that (1.1) [resp. (1.2)] with a(w) = 1 (resp. with ag(z) = 1) becomes

Uy = uyy +u(l —u), xeR. (1.3)

Equation (1.3) is called in literature Fisher—KPP equation due to the pioneering works of
Fisher [13] and Kolmogorov et al. [25] on traveling wave solutions and take-over properties of
(1.3). It is clear that the constant solution # = 1 of (1.3) is asymptotically stable with respect
to strictly positive perturbations. Fisher in [13] found traveling wave solutions u(t, x) =
¢(x — ct) of (1.3) (¢(—00) = 1,¢(c0) = 0, ¢d(s) > 0) of all speeds ¢ > 2 and showed
that there are no such traveling wave solutions of slower speed. He conjectured that the take-
over occurs at the asymptotic speed 2. This conjecture was proved in [25] for some special
initial distribution and was proved in [3] for general initial distributions. More precisely, it is
proved in [25] that for the nonnegative solution u(¢, x) of (1.3) with u(0,x) = 1 forx <0
and u(0,x) = 0 forx > 0, lim,,  u(t,ct) is0if ¢ > 2 and 1 if ¢ < 2. It is proved in [3]
that for any nonnegative solution u(z, x) of (1.3), if at time t = 0, u is 1 near —oo and 0
near 0o, then lim; _, oo u(¢, ct) is 0 if ¢ > 2 and 1 if ¢ < 2. In literature, ¢* = 2 is called the
spreading speed for (1.3).

A huge amount of research has been carried out toward various extensions of traveling
wave solutions and take-over properties of (1.3) to general time and space independent as
well as time and/or space dependent Fisher—KPP type equations. See, for example, [2,3,11,
15,24,41,48], etc., for the extension to general time and space independent Fisher—KPP type
equations; see [4,5,7,14,22,26-29,31,37,38,49,50], and references therein for the extension
to time and/or space periodic Fisher—-KPP type equations; and see [5,8-10,16,21,30,32—
36,43-47,51,52], and references therein for the extension to quite general time and/or space
dependent Fisher—KPP type equations. The reader is referred to [12,17,53], etc. for the study
of Fisher—KPP reaction diffusion equations with time delay.
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All the existing works on (1.1) [resp. (1.2)] assumed inf,cr a®(¢) > Oand a®(-) € L*°(R)
(resp. inf;cr ap(t) > 0 and sup,.g ap(t) < o0). The objective of the current series of
two papers is to study the long time behavior, in particular, the stability of positive con-
stant solutions, the spreading speeds, and the transition fronts of (1.1) [resp. (1.2)] without
the assumption inf;cr a®(t) > 0 and a®(-) € L°°(R) (resp. without the assumption
inf;er ap(t) > 0 and sup, g ao(t) < oo). It will also discuss the applications of the results
established for (1.1) to Fisher—KPP equations whose growth rate and/or carrying capacity
are perturbed by real noises.

In this first part of the series, we investigate the stability of positive constant solutions and
the spreading speeds of (1.1) and (1.2). We first consider the stability of positive constant
solutions and spreading speeds of (1.1) and then consider the stability of positive constant
solutions and spreading speeds of (1.2). In the second part of the series, we will study the
existence and stability of transition fronts of (1.1) and (1.2).

In the following, we state the main results of the current paper. Let

C? +(R) = {u € C(R) | u is bounded and uniformly continuous}

with norm [|u[los = sup,cg [u(x)| for u € C? ..(R). For given up € X := C’ ..(R) and
w € Q,let u(t, x; ug, ) be the solution of (1.1) with u(0, x; ugy, @) = ug(x). Note that, for
ug € X withug > 0, u(t, x; ug, w) exists fort € [0, oo) and u(z, x; ug, w) > Oforall t > 0.

Note also that u = 0 and u = 1 are two constant solutions of (1.1). Let

int (@) = tll_I? _1>I(13£ p—_

t
/a(@ra))dr = lim inf
S

r—>o00t—=s>rt —§

'
/ a(O;w)dt (1.4)

and
t 1 t
Gsup(w) = lim sup / a(@rw)dt ;== lim sup —— a(Brw)drt. (1.5)
t—s—o0 [ — s r=>00 s>t —S Jg
Observe that
Qint (0; ) = dinf(w) and &sup(etw) = &sup(a}), VieR, (1.6)
and that

t t
dinf(w) = liminf L a(@z)dt and dgp(w) =  liminf ! / a(@;)dr.
t,s€Qt—s—oot — 8 Jg t,s€Qt—s—oot — 8 Jg
Then by the countability of the set Q of rational numbers, both @inr(w) and agup(w) are

measurable in w.

Throughout this paper, we assume that the following standing assumption holds.
(H1) 0 < Gjpf(w) < asup(w) < 00 for a.e. w € Q.

Note that (HI) implies that dinf(-), a(-), dsup() € LY(Q, F,P), and that there are
a,a,a € RT and a measurable subset ¢ C Q with P(Q() = 1 such that

0,2 = VteR,

lim; s 400 + [y a(Brw)dT =a Y o € Qo, w7
dinf(@) =a Y o € Qo, '
asp(@) =a Y we Qo

(see Lemma 2.1). Throughout this paper, a is referred to as the mean or average of a(-), and

a and a are referred to as the least mean and the greatest mean of a(-), respectively.

Our main result on the stability of the constant solution u = 1 of (1.1) reads as follows.
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Theorem 1.1 For every ug € Cfinf(R) with inf e uo(x) > 0 and for every € 2, we have
that

lue(t, -5 10, ) — oo < M(ug)e™ Jo 9E@ds (1.8)

)

where M(ug) := max{1, [[uo]loc} - max H1 )

Hence if [~ a(0;w)ds = oo, then

- s
max{l,sup, g uo(x)} |["

lim |Ju(z, -; uo, @) — 1loc = 0.
—00
In particular, if (H1) holds, then for every0 < a < a, everyug € Cfinf(R) withinf, ug(x) >
0, and almost all w € Q, there is positive constant M > 0 such that
(2, 5 10, 0r) — oo < Me™™, V1 >0, 19 € R.

Ifa(@.w) € L' (0, 00), then the constant equilibrium solution, u = 1, of (1.1) is not asymp-
totically stable.

To state our main results on the spreading speeds of (1.1), let
c*=2a, ¢ =2va, and ¢ =2Va. (1.9)
Let
Xj ={ue anif (R) |u > 0, supp(u) is bounded and not empty}.
Definition 1.1 For given w € Q, let

Coup(w) = {c € RT | limsup sup  u(f, x;up, O5w) =0 Y ug € X;‘}

t—>00 seR,|x|>ct

and

Cinf(w) = {c e RT | limsup  sup  |u(t, x; ug, fs0) — 1] =0 YV up € X[}
=00 seR,|x|<ct

Let
Coup(@) = inflc|c € Cap(@)},  cfy(@) = sup{c|c € Cint(w)}.
%

[cis (@), Cqup(@)] is called the spreading speed interval of (1.1) with respect to compactly
supported initial functions.

The following theorem shows that the spreading speed interval of (1.1) with respect to
compactly supported initial functions is deterministic and is linearly determinate, that is,
[cf ¢ (w), c;‘up(a))] = [c*, ¢*] for all w € Q.

Theorem 1.2 Assume that (H1) holds. Then the following hold.
*
sup

(1) Forany w € Q, ¢, (w) = c*.
(il) Forany w € Qo, ci:p(w) = c*.

The above theorem concerns the spreading speeds of solutions of (1.1) with compactly
supported nonnegative initial functions. To consider the spreading speeds of solutions of (1.1)
with front-like initial functions, let

X;" ={ue anif(]R) |u >0, liminf ug(x) > 0, up(x) =0 for x > 1}.
X—>—00

@ Springer



Journal of Dynamics and Differential Equations (2021) 33:1035-1070 1039

Definition 1.2 For given w € Q, let

Caup(®) = {c € R | limsup sup u(t, x;up, 6s0) =0 V¥ ug € X1}
=00 seR,x>ct

and

Cint (@) = {c e RT | limsup sup |u(z, x; ug, fsw) — 1| =0 VY ug € X1}

=00 seR,x<ct

Let

Gp(@) =inflc|c € Cap(@)},  Ep(@) = supfc|c € Cint(@)}.

[Cis (@), CGyp(@)] is called the spreading speed interval of (1.1) with respect to front-like

initial functions.

We have the following theorem on the spreading speeds of the solutions with front-like
initial functions.

Theorem 1.3 Assume that (H1) holds. Then the following hold.

(1) Forany w € Q, E:‘up(u)) = c*.
(ii) Forany w € Qo, ¢;;(w) = c*.

We also have the following theorem on the take-over property of the solutions of (1.1) with
front-like initial functions and with the initial function uj(x) = 1 for x < 0 and ugj(x) =0
for x > 0. Note that u(z, x; ué, w) exists for all t > 0 (see [25, Theorem 1]).

Theorem 1.4 (i) Fora.e. w € L,

fim 209 _ o (1.10)

t—00 t

where x(t, w) is such that u(t, x(t, w); ué, w) = % Moreover,

lim  sup u(t,x;ul,w)=0,Yh>0, ae w (1.11)
1700 v > (@ +h)t

and
lim inf  u(t, x; ué,w) =1,YVh >0, ae w. (1.12)

=00 x<(¢*—h)t

(ii) For anyug € X}, it holds that

lim sup u(t,x;up,w)=0,Vh >0, ae w (1.13)
1700 v > (& +h)t

and
lim inf  u(t, x;up,w) =1,Yh >0, ae w. (1.14)

1—00 x <(&*—h)t

Consider now (1.2). Define a,, and ag by

1 ! 1 !
ag = liminf ao(t)dt, ap = limsup aop(t)dr. (1.15)
f—s—>00  — § 5 — 8 Js

t—s—>o0

Let (H2) be the following standing assumption.
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(H2)0 < gy <ap < 0.
The assumption (H2) is the analogue of (H1). We will give some example for ag(-)
satisfying (H2) in Sect. 5. Assume (H2). Let

& =2Vay and ¢} =2./a,. (1.16)

b (R) withuo > 0and s € R, let u(t, x; uo, osag) be the solution of

For given ug € CJ ;¢

Uy = Uyy +osao0(Hu(l —u), xeR,t >0,

with u(0, x; ug, oyag) = ug(x), where oyag(t) = ap(s + t).
‘We have the following theorem on the spreading speeds of (1.2).

Theorem 1.5 Assume (H2). Then for every ug € X;",

liminf sup |u(t,x;up,05a0) — 1| =0, VO<c< ES =2,/a, (1.17)

=00 seR, |x|<ct

and

limsup sup  u(t, x;ug,05ap) =0, Ve > E(’)‘ = 2+/ag. (1.18)

=00 seR,|x|>ct

We conclude the introduction with the following four remarks.

First, the results in Theorems 1.2—-1.5 are new. If ao (¢) is periodic with period 7', then a, =
ap = ag := % fOT ap(t)dt and hence ¢ = ¢ = 2\/%. More generally, if ag(¢) in globally
Holder continuous and is uniquely ergodic in the sense that the space H(ag) is compact
and the flow (H (ag), o;) is uniquely ergodic, where H(ag) = cl{osap|s € R} with open
compact topology and osap(-) = ag(- + 5), then gy = ag = do = limr_. %fOT ap(t)dt
and hence ¢ = ¢ = 2\/% . Therefore the existing results on spreading speeds of (1.2) in
the time periodic and time almost periodic cases are recovered. The current paper provides
a new and simpler proof in these special cases.

Second, by Theorems 1.2 and 1.3,

(e (@), Chyp(@)] = [Ep (@), T (@)] = [c*, &

for any w € Qp. Hence [c¢*, ¢*] is called the spreading speed interval of (1.1), which is

deterministic and is determined by the linearized equation of (1.1) at u = 0. Theorem 1.4
is an extension of the take-over property proved in [3] and [25] for (1.3). In order to prove
Theorem 1.4 we are first led to prove that x (¢, w) is a subadditive process (see Lemma 5.4
for more detail). The fact that x (¢, w) is a subadditive process is interesting. Its proof relies
on comparison between various translation of the solution and on a zero-number argument
enabling to bound the width of the interface. It is our belief that this result will open the way
to other applications in the future.

Third, the results established for (1.1) and (1.2) can be applied to the following general
random Fisher—KPP equation,

ur = xx + u(r@;w) — p(O;wu), (1.19)

wherer : @ — (—00,00) and 8 : Q — (0, 0o) are measurable with locally Holder continu-
ous sample paths 7 (t) := r(6;w) and $“ () := B(6;w), and to the following nonautonomous
Fisher—KPP equation,

up = txx +u(ro(t) — po(u), (1.20)
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where rp : R — R and By : R — (0, co) are locally Holder continuous. Note that (1.19)
models the population growth of a species with random perturbations on its growth rate and
carrying capacity, and (1.20) models the population growth of a species with deterministic
time dependent perturbations on its growth rate and carrying capacity.
In fact, under some assumptions on r(w) and B(w), it can be proved that
1
0
O el et o w)ds

u(t; w) :=Yw) =

is an random equilibrium of (1.19). Let &t = Y(O ) and drop the tilde, (1.19) becomes (1.1)
with a(6,0) = B(6;w) - Y (6;w), and then the results established for (1.1) can be applied to
(1.19). For example, consider the following random Fisher—KPP equation,

Uy = yy +u(l +£0G,w) —u), x eR, (1.21)

where w € Q, (2, F, P, {6;};er) is an ergodic metric dynamical system, £ :  — R is
measurable, and & (w) := £(6;w) is locally Holder continuous (£, denotes a real noise or
a colored noise). Let .fmt (w) and Ssup(a)) be defined as in (1.4) and (1.5) with a(-) being
replaced by &(-), respectively. Assume that & (-) satisfies the following (H3).
(H3) & : @ — R is measurable; [ |&()|dP(w) < 00 and [o&(@)dP(w) = 0; —1 <
Eint(0) < Eqp(®) < 00 and inf,cg E(Ow) > —00 for a.e. w € Q; and E(1) := £(6w) is
locally Holder continuous.

Assume (H3). By the arguments of Lemma 2.1, there are &, £ e R such that éinf (w)=§&

and ésup (w) = & fora.e. w € Q. It can be proved that

1
fi)oo es+f(‘; £(O-0)dT g

Y (0) = (1.22)

is a spatially homogeneous asymptotically stable random equilibrium of (1.21) (see Theo-
rem 3.2 and Corollary 3.1). It can also be proved that for any ug € X,
u(t, x; uo, Osw)

limsup sup |————F——1]=0, VO<c<2 /1+E&
t—>00 seR,|x|<ct Y (0 450) -

and

limsup sup W =0, Vec>2 1+§,
t—>00 seR,|x|>ct Y(91+sw)

fora.e. w € Q. where u(t, x; ug, 6sw) is the solution of (1.21) with w being replaced by 6w
and u (0, x; ug, 6yw) = up(x) (see Corollary 4.1).

Fourth, it is interesting to study the spreading properties of (1.1) with (H1) being replaced
by the following weaker assumption,
H1) 0 < a := [qa(w)dP(w) < co.
We plan to study this general case somewhere else, which would have applications to the
study of the spreading properties of the following stochastic Fisher—KPP equation,

du = (uyy +u(l —u))dt + oudW,, x eR, (1.23)

where W; denotes the standard two-sided Brownian motion (d W; is then the white noise). In
fact, let Q := {w € C(R, R) | w(0) = 0 } equipped with the open compact topology, F be
the Borel o —field and IP be the Wiener measure on (2, F). Let W, be the one dimensional
Brownian motion on the Wiener space (2, F, P) defined by W;(w) = w(t). Let 6;w be
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the canonical Brownian shift: (;w)(-) = w(t 4+ -) — w(t) on Q. It is easy to see that
W; (Os0) = Wips(w) — W(w). If "72 < 1, then it can be proved that

1
Y () = . (1.24)
IO (1= )s+o Ws(w)ds
—00
is a spatially homogeneous stationary solution process of (1.23). Let iz = W and drop the

tilde, (1.23) becomes (1.1) with a(6;w) = Y (6;w). The reader is referred to [18-20,23,39,40]
for some study on the front propagation dynamics of (1.24). Note that Theorem 1.4 (i) is an
analogue of [20, Theorem 1].

It is important to note that the authors of the work [10] studied the asymptotic spreading
speeds for space-time heterogeneous equations of the form

N N
ue= Y ap (O, + ) gt ug + f@xw), xRV (125)
i,j=1 i=1

where f (¢, x,0) = f(¢, x, 1) = 0. We note that Theorem 1.5 improves [10, Proposition 3.9],
since inf;cr ap(t) = 0 and sup, g ao(t) = 400 are allowed here. Moreover, the techniques
developed in the current work are different from the ones in [10]. Certainly, it should be
mentioned that (1.25) is more general than (1.2).

The rest of the paper is organized as follows. In Sect. 2, we present some preliminary
lemmas, which will be used in the proofs of main results of the current paper in later sections.
In Sect. 3, we establish some results about the stability of the positive constant equilibrium
solutionu = 1 of (1.1) (resp. (1.2)) and prove Theorem 1.1. In Sect. 4, we study the spreading
properties of solutions of (1.1) with nonnegative and compactly supported initial functions
or front like initial functions and prove Theorems 1.2 and 1.3 . We investigate in Sect. 4 the
take-over property of (1.1) and prove Theorem 1.4. We consider spreading properties of (1.2)
in Sect. 5.

2 Preliminary Lemmas

In this section, we present some preliminary lemmas to be used in later sections of this paper
as well as in the second part of the series.

Lemma 2.1 (H1) implies that Ging (), a(-), dsup(-) € LY (Q, F,P) and that there are a, a, & €
R* and a measurable subset Qo C Q with P(Q0) = 1 such that 6;Q = Qq forall t € R,
Qinf(w) = a and agp(w) = a for all w € Qo, and lim;_, 100 % fot a(@rw)dt = a for all
w € Q.

Proof First, let
Q, ={w e Qlasp(w) <n} VneN,
and
Qoo = {w € Q| dgyp(w) = 00}.

Then QU U, Q, = Q. By (H1), there is 7 € N such that P(Q2;) > 0. By (1.6),

n=1

0;2, = 2, forall t € R and n € N. Then by the ergodicity of the metric dynamical system
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(2, F, P, {6;};er), we have P(Q27) = 1. This implies that dgp(-) € LY(Q, F,P), and then
ainf (-) € LY(Q, F, P). Moreover, by (1.6),

1 t
dinf (@) = lim 7/ Ainf Oz w)dT :/ dinf (0)dP(w) for a.e. w € Q,
t—oo t Jy Q
and
1 t
Asup(@) = lim f/ Qsup (Orw)dT = / asup(w)dP(w) for a.e. w e Q.
t—oo t 0 Q

It then follows that there are a, a € R and a measurable subset 2; C 2 with P(R21) = 1
such that 6,Q1 = @ forall # € R, and Ginf(w) = a and agyp(w) = a for all w € Q.
Next, for given n € N, let

a, (w) = min{a(w), n}.

Then a,(-) € L'(Q, F,P),0 < a1(w) < ar(w) < ---, and lim,_ o0 an (@) = a(w). By the
ergodicity of the metric dynamical system (2, F, P, {6;};cr), we have that for a.e. w € Q,

1 t
/ an(w)dP(Q) = lim 7/ an(Brw)dt < agup(w) = / Gsup(0)dP(w).
Q —00 t 0 Q
This together with the Monotone Convergence Theorem implies that
/ a(w)dP(w) = lim / a, (w)dP(w) < / sup(@)dP(w).
Q n—00 Q Q
Therefore, a(-) € L! (2, F,P), and moreover, by the ergodicity of the metric dynamical

system (2, F, P, {0;};cr), there are a € R and a measurable subset 2, C Q with P(2;) = 1
such that 6,2, = Q, for all ¢+ € R, and

1 t 1 0
a = lim f/ a(Orw)dt= lim 7/‘ a(O:w)dt :/a(w)dIP’(w) for a.e. w e Q.
ot Jy t—oot J_, Q

The lemma thus follows with Qo = 2 N Q5. m]

Lemma 2.2 Suppose that b € C(R, (0, 00)) and that 0 < b < b < oo, where

1 ! — 1 !
b = liminf / b(t)dt, b = limsup / b(t)dr.
t—s—oof —§ 5 —s Js

t—s—00

Then

b= sup essinfrecr (b(7) — B'(7)). 2.1
BeW,5® (R)NL>®(R)

Proof The proof of this lemma follows from a proper modification of the proof of [33, Lemma
3.2]. For the sake of completeness we give a proof here. Let 0 < y < b. By b < o0, there is
T > 0 such that

1 s+T _
y < ?/ b(t)dt < 2b, Vs € R. 2.2)
N
Define

t
B(t) :/ (b(r)—ek)dr, Vi € [KT. (k+ D)T] where &
kT
1 (k+1)T

= = b(t)ds, Vkel.
T Jir
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It is clear that B € W,u>°(R) N L®(R) with
ex = b(t) — B'(t) for 1 € (KT, (k + 1)T). 2.3)

Furthermore, it follows from (2.2) that || B|lcc < 2Th and that y < & for every k € Z.
Hence (2.3) implies that

y < sup essinf;cr (b(t) — B'(1)).
BeW.L®®NL®(R)

Since y is arbitrarily chosen less than b we deduce that

b < sup essinf;er (b(t) — B'(1)).
BeWL > ®R)NL®(R)

On the other hand for each given B € Wllo’cOO (R) N L°°(R) and ¢ > s we have

t _
%/ b(t)dt > essinfrer (b(t) — B'(7)) + (BM) — B(s)
—5 /),

t—s
> essinfcr(b(7) — B'(1)) — 2|t|€”;o'
Hence
b= liminf ~— / b(r)dt > essinfrep (b(x) — B'(1) VB € WL®R) N L¥(R).

This completes the proof of the lemma. O

In the following, let b € C(R, (0, 00)) be given and satisfy that 0 < b < b < oo.
Consider

Uy = txy +b(Ou(l —u), x eR. 2.4)

For given up € Cfl’nif(R) with ug > 0, let u(t, x; ug, b) be the solution of (2.4) with
u(0, x; uo, b) = up(x).
Forevery 0 < <E* = \/E,x eR,reRandw € , let

2 b(t t
cboy = PO i = / c(t; b, wydx, (2.5)
1 0
and
Pr (1, x; b) = e HITCUD), (2.6)

Then the function ¢* satisfies
P =@l +b(t)p", x eR. .7
Lemma2.3 Let
@' (¢, x; b) = min{1, " (¢, x; b)}.
Then
u(t,x; ¢4 0,5 b),b) <Pt x;0) V1>0, xeR.

Proof Tt follows directly from the comparison principle for parabolic equations. O
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Lemma 2.4 Forevery pu withQ < p < i < min{2u, u*}, there exist {ty }rez with ty < tr41

and limg_, 400 1y = £00, By € WI})’COO(]R) N L®(R) with By(-) € C'((tx. try1)) for k € Z,
and a positive real number dj, such that for every d > dj, the function

BB (g ) 1 o hG=Cb ) _ g (F1) BoO—=Cibp)
satisfies
d)tu,d,Bb < ¢);Cj,x,d,B;, +b(t)¢“’d’3”(1 _¢/L,d,Bh)
fort € (i, tr1), x = C(t, by ) + 24 + B0 ez,

Proof First of all, for given 0 < u < ji < min{2u, u*}, let 0 < § < 1 such that (1 —
8)b > (. It then follows from the arguments of Lemma 2.2 that there exist 7 > 0 and
By € WI]O’COO(R) N L*®(R) such that B, € C'((tx, tx+1)), where 1y = kT for k € Z, and

ap < (1 -=8Db@)+ B;(t) forall t € (t, tx+1), k € Z.

Next, fix the above § > 0 and Bj(t). Let d > 1 to be determined later. Let £(¢, x) =
x — C(t; b, u). We have

PP — (B b P (1 - gt
= d = (5 DBy + 2 = fictus b ) + bio) ol VPO

n b(t)[e_zusu,x) _ 2d DB Ot E ) dzeﬂ%—1>Bb<t>—2;1§<t.x>]
= d(% = 1)~ b0) — By e FTIB O -2t
w
—d|:2e_“§(”x) _de(fj—1)Bb(r>—ﬂe<r,x)]e(ﬁ—l)&(r)—ﬁf(u)
— d(ﬁ _ 1)[[m — (1= 8)b(t) — BI;(t)]e<%—1)3b<r)—ﬁs<t,x>
w
+ [e‘eu—ﬂ)fw) - d(s(E - 1)e(5_I)Bb(’)]a(etw)e—ﬂ‘f(”)
"

( : —I)Bha)—;zs(r,x)]e(ﬁ— )Bbm—ﬁé(t,x)

i
n d[ — 2o HEWN) | g\ n (2.8)

fort € (t, txt+1)-
Observe now that

_ (&71)3 " e—(ﬁ—l)umnw (Ll)”B |
as(® ) )OS s e [ L Ly
w 5(& _ 1)
"
For this choice of d, if ¢“'d'Bb (t, x) > 0, which is equivalent to £(¢, x) = x — C(t; b, u) >

% + %, then £ (¢, x) > 0 and each term in the expression at the right hand side of (2.8)

is less or equal to zero. The lemma thus follows. O

Recall that ufj(x) = 1for x < 0 and uj(x) = 0 for x > 0. By [25, Theorem 1], the
solution of (2.4) with initial function ué, denoted by u(t, x; uzg, b), exists for t > 0.
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Lemma 2.5 Suppose that u. € Cllfmf(R) with ue > 0 and lim¢_, ¢ ffooo [ue(x) —uj(x)|dx =
0. Then for each t > 0,

lim [lu(t, - ue, b) — u(t, - ug, b)|loo = 0.
e—0

Proof See [25, Theorem 8]. O

Lemma 2.6 For given u; € ch RY withu; > 0 (G = 1,2), if u1(x) — uz(x) has exactly

unif
one simple zero xo and uy(x) > u>(x) for x < xg and uy(x) < uz(x) for x > xo, then for
anyt > 0, there is £(t) € [—00, 00] such that
t,x;u2, b !
Wt x . b) = > u(t, x;u2,b) x <&(1)
<u(t,x;uy,b) x> &(t).
Proof Let v(t,x) = u(t,x;uy,b) —u(t,x;uy, b). Then v(¢, x) satisfies
v = Uy +q(t, x)v, x €R,

where g (t, x) = b(t) —b(t)(u(t, x; ui, b)+u(t, x; ua, b)). Note that v(0, x) has exactly one
simple zero xg and v(0, x) > 0 for x < xg, v(x) < 0 for x > xg. The lemma then follows
from [1, Theorems A,B]. m]

Let x(¢, b) and x (¢, b) be such that
1 1
u(t, x(t,b); ug, b) = 3 and u(t, x4 (1,b);: ¢4 (0,1 b), b) = 7

Lemma 2.7 Foranyt > O, there holds

> u(t,x +x4(1,0); ¢10, 5 b),b) x <0

M (2.9)
<u(t,x +x4(t,0); ¢ (0,-;b),b) x > 0.

u(t, x + x(t, b); ug, b))

Proof First, let ¢, (x) = min{l — % @"(0, x; b)}. Then lim,—, 0 ¢ (x) = q&f_(O, x; b) uni-
formly in x € R. Then for any given ¢t > 0,

M(I, X3 ¢i(07 S b)s b) = hm u(tsX; ¢n7b)
n—o0

uniformly in x € R. Let x} (¢, b) be such that u(z, x} (t, b); ¢, b) = % We have

nl_i)ngoxi(t, b) = x4(t,Db).

Next, for given n > 1, let u*(x) be a nonincreasing function such that u} € Cf,’nif(R);
uf(x) = 1forx <« —1and u}(x) = 0forx > 0; u}(x) — ¢, (x + h) has exactly one simple
zero for any i € R; and

oo

lim luZ(x) — ug(x)ldx = 0.
=0 ) _no

Let x. (¢, b) be such that
1
u(t,x;ul,b) = X
By Lemma 2.6, for any ¢ > 0,

>u(t,x +x(t,b); ¢p, b) x <0

t’ t,b 7b
b )[<u(z,x+x$(t,b);¢n,b) x>0
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By Lemma 2.5, for any ¢ > 0,

lirrb (e, 5 ul, by —u(t, ; uj, b)lloo =0 and lin})xe(t,b) =x(t,b).
€—> €—>
Letting € — 0, we get

>u(t,x +x(t,b); ¢y, b) x <0

t,x +x(t,b);uj, b
ult, x (b g ){SM(t,erxi(t,b);%b) x> 0.

Letting n — oo, the lemma follows. O

Lemma28 Let F : R x Q — R be measurable in € Q2 and continuous hemicompact
inx € R (i.e for every w € Q, F(-, w) is continuous in x and any sequence {x,},>1 C R
with |x, — F(x,,w)] — 0 as n — oo has a convergent subsequence). Then F has a
deterministic fixed point (i.e there is X : Q — R such that F(X(w), w) = X(w)) if and
only if F has random fixed point (i.e there is a measurable function X : Q — R such that
F(X(w),w) = X(w)).

Proof See [42, Lemma 4.7] O

Lemma29 Let f: R x Q — (0, 1) be a measurable function such that for every w € 2 the
SJunction f® = f(-,w) : R — (0, 1) is continuously differentiable and strictly decreasing.
Assume that limy_, _~ f®(x) = 1 and limy_, , f®(x) = 0 for every w € Q2. Then for every
a € (0, 1) the function Q > w — f*~(a) € R is measurable, where f® =1 denotes the
inverse function of f®.

Proof Let a € (0, 1) be given. Note that for every w € 2, we have that £2~1(a) is the
unique fixed point of the function

Roxr F(x,w) = f(x,w)+x —a.
Note that
[xn — F(xp, o) = | f(xp,w) —al > 0asn — oo = |xn—f“’”l(a)| — Qasn — oo.

Hence the function F(x, @) is hemicompact in x. By Lemma 2.8, the function 2 > w >
f®~(a) is measurable. The lemma is thus proved. O

3 Stability of Positive Random Equilibrium Solutions

In this section, we establish some results about the stability of the positive constant equi-
librium solution u = 1 of (1.1) (resp. (1.2)). We also study the existence and stability of
positive random equilibria of (1.21). The results obtained in this section will play a role in
later sections for the investigation of spreading speeds and take-over property of solutions of
(1.1) [resp. (1.2)].

3.1 Stability of the Positive Constant Equilibrium Solution u = 1 of (1.1)

In this subsection, we establish some results about the stability of the positive constant
equilibrium solution # = 1 of (1.1) [resp. (1.2)]. Observe that u(z, x) = v(t, x — C(t; w))
with C(¢; w) being differential in ¢ solves (1.1) if and only if v(¢, x) satisfies

VU = Uyy + c(t; w)vy + a(B;w)v(l —v), 3.1)
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where ¢(t; ) = C'(t; w). In this subsection, we also study the stability of the positive
constant equilibrium solution # = 1 of (3.1).
We first prove Theorem 1.1.

Proof of Theorem 1.1 First, for given ug € Cé’inf (R) with inf,cr up(x) > 0 and w € Q, let
uq = min{l, inf,cr uo(x)} and up := max{1, sup, g uo(x)}. By the comparison principle
for parabolic equations, we have that

ug < u(t, x;ug, ) <min{l, u(t, x; up,w)}, vxeR, V>0 (3.2)
and

max{l, u(t, x; ug, w)} < u(t,x;ug,w) <ug, YxeR, Vi>0. 3.3)

Since u, and u are positive numbers, by the uniqueness of solutions of (1.1) and its corre-
sponding ODE with a given initial function, we have that

u(t, x;ug, ) =u(t,0;uy, w) and u(t, x;ug, w) = u(t,0;up,w) Yx eR, Ve >0.

Next, let u(t) = (m — 1) )efg as0)ds 1

can be verified directly that

efot“(es“’)ds and u(t) = (1

1
T u(t,0;up,0)

Hence,
u(t) =u(0) and u() =u(0), V=0,

which is equivalent to

1 —u(t, x; uy, w) = u@ult, x; ug, w)e_f(; a(Bsw)ds (3.4
and

u(t, x; o, ) — 1 = WO, x; Wy, wye o 4E:w)ds. (3.5)

Now, by (3.2)—(3.5), we have that
lu(t, x; 1o, ) — 1] < g max{ii(0), u(0)}e™ Jo 2@)s  wy ¢ R, ¢ >0,

which implies that inequality (1.8) holds. Taking u¢ to be a positive constant with0 < ug < 1,
it follows from (3.4) that
1

u(t, x; ugy, ) = - .
1+ (i _ l)effo a(Bsw)ds

If la@.0)llL1(0,00) < 00, then limy—, oo u(t, x; 1y, @) = < 1, which

1
] —la@o), |
I+H(&—De £10.09)
completes the proof of the theorem. O

Remark 3.1 (1) Theorem 1.1 guarantees the exponential stability of the trivial constant

equilibrium solution # = 1 of (1.1) with respect to the solutions u(¢, x; ug, ) with
infycprn ug(x) > 0 provided that (H1) holds. This result will be useful in the later sec-
tions.

(2) Let v(t, x; ug, w) be the solution of (3.1) with v(0, x; ug, ) = ug(x). The result in
Theorem 1.1 also holds for v(z, x; ug, ).
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1 t
/ c(t; w)dr.
t—s Js

Next, we prove the following theorem about the stability of u = 1.

Let

1 t
c(w) = liminf / c(t; w)dt, ¢(w)=limsup
t—s—>o0t —§ J¢ 1—5—00

Theorem 3.1 Assume (H1). Suppose that v(t, x; w) with 0 < v(t, x; w) < 1, is an entire
solution of (3.1) which is nonincreaing in x. For given w € Q with 0 < c(w) < ¢(w) < 00,
if there is x* € R such that inf;cg v(t, x*; @) > 0, then limy—, _oo v(¢, x; @) = 1 uniformly
int e R

To prove the above theorem, we first prove a lemma.

Lemma3.1 Letug, u, € Cﬁnif(R) be suchthat0 < u,(x) < uo(x) < 1. Letv(t, x; ug, 61,®)

(respectively v(t, X; uy, 0;,)) denote the solution of (3.1) with w being replaced by 6, and
with initial function uq (respectively uy). If lim;,_, o un(x) = uo(x) locally uniformly in
x € R, then for any fixed t > 0 with —o0 < infycr f(; c(t + 10; @) < sup, g fot c(t +
to; w) < 00, we have

lim v(t, x; u,, Oyw) = v(t, x; ug, Oy yw)
n—oQ
uniformly in ty € R and locally uniformly in x € R.

Proof Fix w € K. For every n > 1, the function v"(t, x; 7o) := v(t, x; ug, O yw) —
v(t, x; Uy, O,w) is non-negative and satisfies

O = Vet + 105 ) + @y i0) (1= O, X3 10, 6ig) + (T, Xy, By)))"
<V, A et + 105 )V 4 a(B )",

fo+t

It follows that, for every n > 1, 0" (¢, x; tp) := v"(t, x — o

c(t; w)dt); ty) satisfies
0(t, x5 t0) < Uy, + a(Opgq@)0",

By the comparison principle for parabolic equations,

10+t t
0 <01, 1 19) < eho @EDdT 1Ay +f c(t + t9)d7).
0

o+t
Note that lim,,_, o0 (ej’(? aleo)dr jrayn . 4 f(; ¢(t +19)dt))(x) = 0 locally uniformly in
x € R and uniformly in 79 € R. Hence lim,_, o, v" (¢, x; o) = O uniformly in 75 € R and
locally uniformly in x € R. |

We now prove Theorem 3.1.

Proof of Theorem 3.1 Fix w € Q with —o0 < ¢(w) < ¢(w) < oo and assume that there is
x* € R such that inf,cg v (7, x*; @) > 0.

Consider the constant function uy = inf;cg v(¢, x*; ). We first note from the hypotheses
of Theorem 3.1 that ug > 0. Next, let ip(-) be uniformly continuous, 0 < #g(x) < uo,
to(x) = ug for x < x* — 1, and sip(x) = 0 for x > x*. For any R > 0, it holds that
iio(x —n) = ug forevery |x| < Randn > R+ 1+ |x™*|. This shows that lim,_,  lo(x —n) =
uo locally uniformly in x € R. By (H1) and the arguments of Theorem 1.1,

lim v(¢, x; ug, Oyw) =1
—00
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uniformly in 7o € R and x € R. Hence, for any € > 0, there is T > 0 such that

T T
—o0 < inf / c(t+ 1, w) < sup/ c(t + ty; w) < 0
0 0

1peR ek
and
1>v(T,x;up,6ppw) >1—€ VipeR, xeR.
By Lemma 3.1, there is N > 1 such that
1>v(T,0;u0(- — N),b0yw) >1—2¢ ViypeR.
This implies that

1> v(T,—N;ip, b6pw) >1—2¢ Vel

Note that
vt —T,x;w) >ugx) VteR, xeR
and
vit,x;w) =v(T,x;v(t—=T,"),0_7w).
Hence

l>vt,x;0)=v(T,x;v@t—T,),0_7w) >1—2¢ YVteR, x <-—N.

The theorem thus follows. ]

3.2 Existence and Stability of Positive Random Equilibria of (1.21)

In this subsection, we first study the existence and stability of positive random equilibria of
(1.21), and then show that (1.21) can be transferred to (1.1).
To this end, we consider the following corresponding ODE,

i=u(l +E@,0) —u). (3.6)

Throughout this subsection, we assume that (H3) holds. For given ug € R, let u(¢; ug, w) be
the solution of (3.6) with u(0; ug, @) = ug. It is known that

1+ [y O 0)dT

« ) upe
u(t; up, w) = 5 .
0 1+ ug f(; Stlo E@0)dT g
Theorem3.2 Y(w) = ——————— is a random equilibrium of (3.6), that is,

f() gx+f8 E(Gra))drd‘v

u(t: Y(w), w) = Y(O,0) fort € Rand w € Q.
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Proof First, we note that
Y (w)e! +o s ds
1+ Y (o) [ et E@oudt g
oo EOrw)dr

- fi)oo oS+l Grwdr gg 4 f(; STl o) g

u(t; Y (), w)

et+f(; £, w)dT
[T et Sy
Second, note that
Y (6,0) 1 1
1w) = s = -
[0 st O g [t et "EOrr)dT g
et+f(; £(O: w)dT
- fioo S EGr)dT g
Hence u(t; Y (w), ®) = Y (6;w) and then Y () is a random equilibrium of (3.6). ]

Observe that 0 < Y (w) < oo. Letu = % and drop the tilde. We have
Uy = uxy + Y OGr0)u(l — u). 3.7
Clearly, (3.7) is of the form (1.1) with a(w) = ¥ (w). Let ¥in () and Yyyp(w) be defined as
in (1.4) and (1.5) with a(-) being replaced by Y (-), respectively.
Lemma 3.2 Y (w) satisfies the following properties.

(1) Fora.e we R, 0 < inf;cr Y (6;0) < sup,cg Y (6;@) < 00.
) Forae o € Q, lim, o 202 —

t
(3) Fora.e we Q, lim;_, M =1.

@) Yint(@) = 1 +& > 0, and Yyp(w) = 1 +& < 00 fora.e. w € Q.

Proof (1) First, note that

-T 0
b / S E ot gg | / S ECo g YT S0 VieR,  (3.8)
Y(@,a)) —00 —-T

By (H3), for every A € (0, 1) and a.e. w € Q there is T; > 1,
1 (7 £
AE < T EOy1rw)dT < T VxeR VT >T,.
- 0

It then follows that

=Ty H =Ty 0 =Ty
/ S5 g 5/ oS E O )T g E/ L85 g
_ oo _

o0 o0
That is,

o~ (HAOT

—a+5Hr -y
e </ G0 g (3.9)

(1+5) o T O+RE)
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The first inequality of (3.9) combined with (3.8) yields that

1 (DT

> —.
Y = 145

Hence
Y(60) < (1 + %)e“*%m, VieR. (3.10)

Next, let & (w) = inf,cr £(6;w). Observe that
0 o 0 o 0
/ I EOo g < / o5 BT g _ / St @) g
-1 -1 -1
This combined with the second inequality in (3.9) yield that

St @ gs Vi eR, ge.weQ. (3.11)

1 o~ (IHAET: 0
=< — +/
Y@~ 1+ )
It easily follows from (3.10) and (3.11) that
0<infY(byw) <supY(B;w) <00, a.e. we .
teR teR

The result (1) then follows.
(2) It follows from (1).
(3) Note that

Y (6,0)
Y (6;w)

=1+ £@60) — Y(6).

Integrating both sides with respect to 7, we obtain that

In(Y (6;w)) —In(Y (Os0))

1 t
—/ Y (O ,w)do +
t—s J t—s

t
I+ ; i p f £(O,w)do. (3.12)

The result (3) follows from (2) and the fact that lim;_, o, % fot £(Osw)ds =0 forae. w € Q.
(4) Observe that (3.12) implies that

14+ £ <Ping(@) + lim sup In(Y (6;w)) — In(Y (b))

t—5—>00 r—s

and

1+ § Zf]inf(w) + lhm inf In(Y (6;w)) — In(Y (6,0))

—5—>00 r—s

for a.e. w € Q. It follows from (1) that

.. In(Y(Grw) —In(Y (Os0)) . In(Y (6, w)) — In(Y (6;w))
lim inf = lim sup

f—s—>00 t—s f—5—>00 r—s

=0 fora.e we Q.

Hence we have that f}inf(a)) =1+& > 0 for ae. w € Q. Similar arguments yield that
)A’sup(a)) =1+4£&forae we Q. ]
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Corollary 3.1 For given ug € Cfinf(R) with inf; ug(x) > 0, for a.e. w € Q,

. u(t, s uo, O
lim ||g

~ 1l =0
100" Y (6,6,®) oo

uniformly in ty € R, where u(t, x; uq, 6;y) is the solution of (1.21) with u(0, x; ug, 6;,@) =
ug(x).

Proof 1t follows from Theorems 1.1, 3.2, and Lemma 3.2. O

4 Deterministic and Linearly Determinate Spreading Speed Interval

In this section, we discuss the spreading properties of solutions of (1.1) with nonempty
compactly supported initials or front like initials and prove Theorems 1.2 and 1.3 .
We first prove some lemmas.

Lemma 4.1 Let w € Q. If there is a positive constant c(w) > 0 such that

liminf inf  u(r,x;u0, 6w) >0, Vuge XS @D
=0 seR,|x|<c(w)t

then ci;(w) > c(w). Therefore it holds that

cie(w) =sup{c € RY | liminf inf  u(t,x;up,6s0) >0, Yupe XS} (4.2)
t—=00 seR,|x|<ct

Proof Let w € Q¢ and c(w) satisfy (4.1). Let 0 < ¢ < c(w) and ug € Xj be given. Choose
¢ € (c, c(w)). It follows from (4.1) that

mg = liminf inf  wu(z, x; ug, Osw) > 0.
=00 seR,|x|<ct

There is T >> 1 such that

¢ < min u(t, x; ug, bsw), VseR, t>T. 4.3)
2 |x|<ér

Suppose by contradiction that there is (s, £, X,) € R x R* x R with |x,| < ct, for every
n > 1and t, — oo such that

0 < 8 := inf |u(ty, xu; ug, 05, ) — 11 “4.4)
n>1

Let0 < & < 1 be fixed. By (H1), Theorem 1.1 implies that there is f‘g > T such that

mg -
lut, -5 =7, Os@) = oo + lu(t, -5 luollo, ) = 1lloo <&, V1 =T, Vs €R.

2
4.5)
Observe that (¢ — ¢)(t, — fa) — ZCfa — 00 as n — 00. Then there is n, such that
C—)ty—T)—2cT. =T, YV n>ne.
For every n = ne, let uon € Cyip(R) with ugy oo < %5° and
wor ) = | T+ KIS @= 0t = T) = 2T, “6)

0, |x|>@—0c)ta —Tp) —cTy.
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Since |x| < (¢ —o)(t, — 7~}) — cf’g implies that |x + x,| < ¢(t, — fg) for every n > ng,
it follows from (4.3) to (4.6) that

uon (x) < uty — Te, X + xn3 10, 5,0), Vx €R, Vn > ne.
By the comparison principle for parabolic equations, we have

u(t, x; ton, 05,0) < u(t +ty — T, x + Xp; ug, b5,0), Yx€R, >0, n>n,,
4.7

where s, = s, + 1, — Tg.
Observe from the definition of uq, that ug,(x) — % as n — oo locally uniformly in
x € R. It then follows from Lemma 3.1 that for every ¢ > 0,

lu(t, x; uop, 05,0) — u(t, x; %, 05,w)] — 0asn — oo locally uniformly in x € R.

4.8)
By (4.5), we have that
1 —¢ <u(f, x; %,6@@, VxeR,Vn>l.
This combined with (4.7) and (4.8) yields that
1 — & < liminf u(Ty, 0; uon, 65, @) < liminf u(ty, x,; uo, s, ®). (4.9)
n—oo n—oo
On the other hand, since |lug(- + x,)|looc = lltollcc for every n > 1, it follows from the

comparison principle for parabolic equations that
u(tn, x5 luolloc, bs, @) = ultn, x; uo(- + xn), 05, ),
= u(ty, x + xp; ug, 05,0), VxeR, t>0,n>1
This together with (4.5) implies that

lim sup u(t,, xp; ug, Os,w) < imsup [[u(t,, -; uolloc, Os, @) oo < 1 + ¢,
n—oo n—oo

which combined with (4.9) yields that

1 — e < limsupu(t,, xn; uog, s, w) < limsup u(t,, x,; ug, Os,w) < 14+¢,Ve > 0.
n—00 n—0o0

Letting ¢ — 0, we obtain that
lim |u(ty, xp; ug, 65,0) — 1] =0,
n—oo

which contradicts to (4.4). Thus we have that

lim  sup |u(t, x;up,O0sw) — 1| =0, Vug e Xj, V0 < ¢ < c(w).
tﬁooseR,\xlfct
This implies that ¢} ;(w) > c(w).
Therefore, we have that

cii(w) > sup{c € RY | liminf  inf  u(t, x; uo, 6s@) > 0, Vuge X[}
t—00 |x|<ct,s€R

On the other hand, it is clear from the definition of C ;"up

(w) that

cii(w) < sup{c € RY | liminf inf  u(t, x;uo, 6s@) > 0, Vuge X[}
=00 |x|<Zct,seR
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The lemma is thus proved. O

Lemma4.2 Let b > 0 be a positive number and vy € Xj’. Let v(t, x; vg, b) be the solution

of

vy = Vxy +bv(l —v), xR
v(0,x) = vo(x), xeR.

Then
lim min v(t, x;v9,b) =1, VO<c < 2vb.
t—00 |x|<ct
Proof Tt follows from [3, Page 66, Corollary 1]. O

Lemma 4.3 Assume (H1). Then for every w € Q,
liminf  inf  u(t,x;up,650) >0, YO0 <c<2a, Yupe X/ (4.10)

t—00 seR,|x|<ct
Therefore, cip(w) > 2. /a, Y w € Q.
Proof First, fix w € Qp and ug € Xj' Let 0 < ¢ < 2,/a be given. Choose b > ¢ and

0 < 8 < 1such that ¢ < 2/ < 2,/3a. By the proof of Lemma 2.2, there are {# }xez with

tx < txy1,tx = £ooask — +ooand A € Wllo’coo(R) N L% (R) such that A € Cl(#, te+1)
for every k and

b < da(B,w) — A'(t), fort e (&, try1), k € Z.

—8)e Al
Leto = L2 —= and v(r, x; b) = v(t, x; uo, b). By Lemma 4.2, we have that

liminf min v(¢, x; b) = 1. 4.11)

t—00 |x|<ct

Next, for given s € R, let v(t, x; 5) = aeA(t‘H)v(t, x; b). By the comparison principle
for parabolic equations, we have that

0 <v(t, x; b) <max{fluollec, 1} < luolleo +1, VxeR, t>0.
Hence, it follows from the definition of o that
0<9@t,x;5) <oelMo(uplleo+1)=1-8, VxeR, t>0,
s eR.
Thus for any s € R,
U — Uxx — @B )0(1 — 0) = (A'(s + 1) + b(1 — v) — a(By 1 w)(1 — D)) U(t, x)
<(A'(s + 1)+ b(1 —v) — da(Oyw)) (1, x)
<(A'(s+1) + b —8a(Bs4,)) V(t, x)
<0, €t trr1)N[0,00), x €R.
Note that

A(S)uo(x) <up(x), VxeR.

(0, x;5) =0e
By the comparison principle for parabolic equations again, we have that

oe Mloy(r, x, by < B(t, x15) <ult,x;up, bw), YxeR, seR, t>0.
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This combined with (4.11) yields that

0 <oe Mo <liminf inf  u(r, x; uo, fyw), VO <c <2./a.
=00 seR|x|<ct

Hence (4.10) holds. By (4.10) and Lemma 4.1, we have cj; ; (o) > 2/a, Yoey. m]

Now, we prove Theorem 1.2.

Proof of Theorem 1.2 (i) We first prove ¢, (w) < 2@ forall w € Q.

sup

2
Suppose that supp(up) C (—R, R). For every pu > 0, let C, (1, 5) = f;” %dr

and ¢ (x) = [lugllooe ¥R and @ (1, x;5) = ¢*(£x — C,u(t, )) for every x € R and
t > 0. Then

Btfl;;lf: - axx(z’i - a(9s+tw)¢~5i(l - Qgi) = a(bs+10) <(l~5i)2 >0, xeR, t>0.
and
uop(x) < @0, x;5), VxeR, VseR.
By the comparison principle for parabolic equations, we have
ut, x5 uo, B50) < L (1, x5 5) = Jugllooe "E"R=CullN vy x s e RVt > 0,V > 0.
This implies that
wr+a

limsup sup u(t,x;up,6sw) =0 Vu=>0,c>
=00 seR,|x|>ct

2, /7 0 s ~
For any ¢ > ¢* = 24/a = inf ;- £ ;*/';, choose i > 0 such that ¢ > %‘/E > ¢*. By
the above arguments, we have
limsup sup u(t, x; ug, O;0) = 0.
t—00 seR,|x|>ct
Hence for any w € Qo,c:up(a)) <24a.
Next, we prove that ¢§, (@) > 2+/a for all w € Q. We prove this by contradiction.

Assume that there is @ € Qq such that ¢, () < 2+/a. Then there is 0 < § < 1 such that

cap(@) < 2V8a.

Note that

t
lim sup / a(B;w)dt =a > da.
5

t—s—oo I —§
Then there is 0 < § < 1 and {t.}, {sn} such that lim,,—, o t, — 5, = 00 and

’

8

n
/ ayw)dr > 8a. (4.12)
Sn

ty — Sp
Choose ¢ € (c;kup(a)), 2+/8a). Set L = \/% and

m)
—X).

) = e sin
w(x)=e sin >
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Then wt (x) satisfies

wh 4+ cwt +aswt =0, 0<x<L, “13)
wt(0) =wt (L) =0, '
and 0 < wt(x) < 1for0<x < L.
For any given ug € X}, by the assumption that ¢ > c;*up (w),
limsup sup u(t, x; up, Osw) = 0. (4.14)

100 seR,|x|>ct
Hence there is T > 0 such hat

ut, x;up, 0sw) <1 -8 Yt>T, x| >ct, s €R,
and then

u(t, x; ug, Osw)(1 — u(t, x; ug, Oyw)) > S/I/l(l‘, x;ug, 0sw) YVt >T, |x|>ct, s €R.

(4.15)
Observe that u(t, x; ug, fs@) > u(t, x; 1+||77¢0on f,w) and
uo uo
u(t, x; ————, 0,0) > Uy (t,x; ———, yw), x € R.
U+ uollee” T fuollee”
This implies that
o = inf u(T,x +cT;ug, Oyw) > inf u(T,x +cT; L,st) > 0.
seR,0<x<L s€R,0<x<L I+ lluolloo
(4.16)

Letv(t, x;5) = u(t, x + ct; ugp, Os_rw). By (4.15),

Ur = Uyyx +CUx + 8’61(95,7‘4,,(1))1), t>T, x>0.

s—T+t ¢/ -
Let w(z, x;5) = el (s “(G’M)faa)dfv(t, x;s). Then

Wy > Wyy +cwy +8aw, t>T, x >0.

By (4.16) and the comparison principle for parabolic equations, we have

s—=T+t (¢ -
v(t, x;8) > aels (‘s a(efw)_aa)drw+(x), t>T,0<x<L.

This implies that for0 < x < L,

“tn

u(ty —sp +T,x +c(ty — s, +T); ug, by, —Tw) > Olej“” (8 a<61w)_6&)d7w+(x)
>awt(x) (by (4.12)). 4.17)
By (4.14),

limsup sup u(t, —sp +7T,x +c(ty — sy +T); ug, bs,—7w) =0,

n—00 0<x<L

which contradicts (4.17). Therefore, c;‘up (w) > ¢* and then c;“up (w) = ¢* forany w € Q. (i)
thus follows.
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(i)) By Lemma 4.3, ¢ s (w) > c* for every w € Q. It then suffices to prove that ¢} (w) <
c* for every o € Qo. We prove this by contradiction.
Assume that there is w € Qg such that ¢ .(w) > c¢*. Choose ¢ € (c*, ¢} ((w)) and § > 1

such that ¢ > 2,/8a. Then

lim inf
t—s—>o0  — §

!
/ a(B:w)dt < éa.

Hence there are {#,,} and {s,} such that lim,_, » t, — s, = 00 and

t"
/ a(@y)dt <da Y n=>1.
Sn

Iy — Sp

Let u = /da. Then
— <. (4.18)

Choose ug € X such that
0<ug(x) <1, upx) <e ®uglloc VY xeR.
By the assumption that ¢ < ci”‘nf (w), there is T > 0 such that forany > 7 and s € R,

inf u(t, x; uo, Osw) > |luolloo-
[x|<ct

This implies that for any n > 1 witht, —s, > T,

inf  u(ty — sn, x; U0, 05,0) = lluolloo- (4.19)
[x|<c(tn—sn)

Observe that u(t, x; uo, 05, w) satisfies
ur = uxx + aO,+r0)u(l —u) < uxy + a(Os,+rw)u.

It then follows from the comparison principle for parabolic equations that

u(x—i “"*’<a<01w>+g2>dr)

= w Jsp

u(t, x; ug, b5, w) < e lluoll oo

and then for x = c¢(t,, — s,,), we have

—ﬁ(x—if;;’ (a(9rw)+gz)df)
u(ty — Sp, X; ug, by, ) < e L lluoll oo
—ﬁ(x—%l(ég"'&z)(tn_sn))
<e “ 120/l 0o
—ﬁ(C—L(5£+&2)> (th—sn)
< lluolleo (by(4.18)),
which contradicts to (4.19). Therefore ¢} (w) < ¢* for any w € Qp and (ii) follows. o

The following corollary follows directly from Lemma 3.2 and Theorem 1.2.
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Corollary 4.1 Assume (H3). Let Y (w) be the random equilibrium solution of (1.21) given in
(1.22). Then for any ug € X7,
. u(t, x; ug, Oyw)
limsup sup |—— —1]1=0, VO<c<2,/1+4+¢
>0 seR,|x|<ct Y (Or4s0) =

and
u(t, x; ug, gyw) z

limsup sup ————— =0, Ve>2y/1+¢
=00 seR,|x|>ct Y (0r450)

fora.e. w € Q. where u(t, x; ug, 6;w) is the solution of (1.21) with w being replaced by 6;w
and u(0, x; ug, Oyw) = ug(x).
Finally, we prove Theorem 1.3.

Proof (i) It is clear that E;‘up (w) > c;‘up(a)) = ¢* for any w € Q. It then suffices to prove

that E:up(a)) < ¢* forany w € Q.

To this end, fix w € . For every u > 0, let C,.(t,s) = sz+1 Wdr and

(Z)_‘i(t,x; §) = e HO=Cult5) for every x € R and r > 0. Note that for any ug € Xj,
there is My > 0 such that

uo(x) < Mod (0, x;5), VxeR, VseR.
Note also that

= = = = =102
O Modll — dxx Mod!! — a(Bs110)Modli (1 — Modl) = a(Os0) MG ()
>0, xeR, t>0.

Hence, by the comparison principle for parabolic equations, we have that
u(t, x; ug, Osw) < Mo@!(t, x;5) = Moe O ~Cnt) -y x s e RVt > 0,V > 0.

This implies that

2 -
. +a
limsup sup u(t,x;up,0s0) =0 Vu>0, ¢c> e .
t—00 geR,x>ct 1%
2 = 2 =
For any ¢ > ¢* = 24/a = inf,~o & T/‘; choose i > 0 such that ¢ > %‘/E > ¢*. By

the above arguments, we have

limsup sup u(t, x; ug, Osw) = 0.
t—00 seR,x>ct

Hence for any w € ¢, we have E;‘up (w) < 2+/a. (i) thus follows.
(ii) First, it is clear that ¢} ; (w) > cii;(w) = ¢*. It then suffices to prove that ¢}/ ; () < c*
for any w € 2. This can be proved by the similar arguments as those in Theorem 1.2 (ii). O

The following corollary follows directly from Lemma 3.2 and Theorem 1.3.

Corollary 4.2 Assume (H3); Let Y (w) be the random equilibrium solution of (1.21) given in
(1.22). Then for any ug € X7,

t,x; up, 0
limsup sup |w—l|=0, VO<c<2/14E&
t—>00 seR,x<ct Y(91+sw) -

@ Springer



1060 Journal of Dynamics and Differential Equations (2021) 33:1035-1070

and
u(t, x; ug, yw) -

limsup sup —— =0, Vec>2y/1+¢&
t—00 seR,x>ct Y (0r450)

fora.e. w € Q. where u(t, x; ug, 6sw) is the solution of (1.21) with w being replaced by 65w
and u(0, x; ug, Osw) = ug(x).

5 Take-Over Property

In this section, we investigate the take-over property of (1.1) and prove Theorem 1.4. We first
prove some lemmas.
Recall that

1, x<
ué(x)={0 x>0

and that, for r > 0, x(¢, w) € R is such that

1
u(t, x(t, w); uy, w) = X

Note that, by Lemma 2.9, for each t > 0, x(¢, w) is measurable in w. Note also that for
w € 2, the mapping (¢, tp) > (0, 00) x R — u(t, -; ué, Oryw) € anif(R) is continuous and
hence x (¢, 6;,) is continuous in (¢, #p) € (0, 00) x R.

Suppose that (H1) holds. Let w € Q¢, and 0 < u < i < min{2u, u*} be given, where
W= /a.Letb(t) = a(b;w). Put a

ct;w, ) =c(t;b, 1), Ct;w, 1) =C(t; b, 1),
and
Au(t) = Bp(t), dy, =dp,

where c(¢; b, ) and C(t; b, ) are as in (2.5), and Bj, and dj, are as in Lemma 2.4. Note that
we can choose dg,ow =d, and A%w(t) = Ay (t + 1) for any 79 € R. Let

Ind, +Infi —Inp n Ay(t)

Xo(t) = C(t; o, u) + 5.D
o= 2
Note that for any given 7 € R,
_(mdo | Aw®)) _, Iji-lnp
¢M’d‘*”A“’(l,xw(l)) = sup ¢M,dw,Aw (t,x)=e /}“(ﬁ—u+ m )e w g,ul (1 . g)
xeR 2
We introduce the following function
M-dw-AG;Ow t f > t
Bt x: ) = 1 (20, 13 2 Xa,0(0), (52)

o, gy .
¢/L %o (t, x0,0a)(t))a ifx < x@,()w([)~
It is clear from Lemma 2.4, and the comparison principle for parabolic equations, that

0 < @¢"(t, x; 0h0) < u(t,x; L (-, x; 0p0), 0p0w) <1,V1 €R, x €R, 1o e R. (5.3)
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Lemma 5.1 For every w € Qq, limy_, oo u(t, x + C(t, 6,0, 1); (bf_(O, 5 Ow), b)) =1
uniformlyint > Oandty € R, andlimy_, 0o u(t, x +C(t, Oy, |1); ¢_’¢(0, 5 0w), Bfyw) =0
uniformly int > 0 and ty € Q.

Proof First, it follows from Lemma 2.3 that

sup u(t, x + C(t, Oy, 1); ¢ (0, -5 05 ), O 0) < e " — 0as x — oo.
t>0,10eR

Second, define v(¢, x; O;yw) = u(t, x + C(t, Oyw, 1); ¢>fﬁ(0, -5 O w), 1) and
e Ind, +Inji —Inp [ Aullos

= p 0
It follows from (5.1) and (5.3) that
_ Indy+Inji—Inp | [[Aplloc
0<(— i)e “( TR ) < inf v, x*; ¢%0, s Oy ), o).
n t>0,tpeR

Moreover, x — v(t, x; 04, w) is decreasing and
Uy = Uxx + ¢(t; Oy, vy + a(0;0,w)v(1 —v),
where ¢(t; w, u) = C'(t; w, 1). By the arguments of Theorem 3.1, we have that
v(t, x; 0yw) — lasx — —o0

uniformly inz > 0, #p € R. O
Lemma5.2 Foreacht > 0, there is m(t) < n(t) € R such that

m(t) < x(t,w) <n(t) forae we 2,
and hence x(t, w) is integrable in w.
Proof First, let

up,(x) =uf(x —n), xR, neN.

We have that 0 < uén(x) < 1and u(’gn(x) — lasn — oo. By Lemma 3.1, for every w € Q
andr > 0

u(t, x; up,, O,w) - 1 asn — oo
uniformly in 7y € R and locally uniformly in x € R. Observe that
u(t, x5 ugy,, o) = u(t, x —n; ugs, Ow)

and the mapping R > x — u(t, x; ué, 0;,) is decreasing. Thus, there is N(f, w) € N such
that

u(t, x;ug, Opw) > =, V¥x < —N(t,w), VieR.

W

This implies that

—N(t,w) < inf x(t, O w).
toeR

Let

m(t, w) := inf x(¢, Oyw) = inf x(¢, O yw).
foeR t0eQ
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We have that Qy 3 @ — m(t,w) € RT is measurable and m(z, 6;w) = m(t, w) for any
7 € R. By the ergodicity of the metric dynamical system (2o, F, {6;};cr), we have that
m(t, w) = m(t) for a.ein w.
Next, let i, (x) = u§(x +n). We have that 0 < ufj, (x) < 1 and i, (x) — Oasn — oo.
By Lemma 3.1 again, for every w € Qo and ¢t > 0,
u(t, x; iy, pw) = 0 asn — 0o
uniformly in 7y € R and locally uniformly in x € R. Observe that

u(t, x5 gy, Opw) = u(t, x + n; ug, Ow)

and the mapping R 5 x > u(¢, x; ufj, 6, ) is decreasing. Thus, there is N(t, w) € N such
that

Vx > N(t,w), YiyeR.

" 1
u(t, x; ugy, Oyw) < T

This implies that

N(t, w) > sup x(t, O,w) 5.4)
toeR

Let

n(t, w) := sup x(t, 6,w) = sup x(t, O w).
tpeR 10eQ

By (5.4), we have that —oo < x(f,w) < n(t,w) < N(t,w) < oo. Hence Q¢ > w +—
m(t, w) € RT is measurable and m(t, 6;w) = m(t, w) for any T € R. By the ergodicity of
the metric dynamical system (2o, F, {6;}:er), we have that m(t, ) = m(t) for a.e in w.

O

Let x4 (¢, w, ) be such that
1
u(t, x +x4.(1, 0, ) + Ct, @, 1); p4 0, s w), w) = 3
Lemma 5.3 Foranyt > 0, there holds

>t x + x4 (1 0, )+ Ct, 0, 1): $(0, - @), @) x <0
<ult,x +x1(t,0, W +C(t, o, n); $4(0, s ), w) x>0.
(5.5)

ut, x+x(t; w); uy, w))

Proof 1t follows from Lemma 2.7. O
Lemma 5.4 There is M > 0 such that

x(t, w) + x(s,00) <x(t+s,w)+ M
forallt,s > 0anda.e. w € Q.

Proof First, let X(¢, w) and X4 (¢, ®) be such that

1 1
M(t,i(t,a));ué,a)): Z and u(tﬂi‘i‘(tﬂ w, M)+C(taw7 M);(bi(ov;w)aw):Zv
respectively. Since the function x +— u(z, x; ug, ) is decreasing, we have

it w) > x(t, o). (5.6)

@ Springer



Journal of Dynamics and Differential Equations (2021) 33:1035-1070 1063

Moreover, for each ¢ > 0, X(¢, ) is measurable in w, and for each w € @, x(¢, O, w) is
continuous in (¢, fp) € (0, c0) x R. By Lemma 5.3,

Xt ) —x(t,w) < (X4 (1, 0, ) = Ct, 0, w) — (x4 (1, 0, ) — C(t, @, 1)

=xXi(t, 0, n) — x4 (t,w, ), Yt > 0. 5.7
Let
M) = sup (%(t,6y0) —x(t,0,0)) = sup (X1, O 0) — x(1, Opyw)).
t>0,1peR 1€(0,00)NQ,1peQ
Note that

1
E = M(t, X+(t, 9[0‘”7 /J/) + C(ta gtows ,LL), ¢_/"’:(, - 9[06()), etgw)5 Vi> 07 v Ip € R»

and
% = u(t, 34 (t, Oy, 1) + C(t, Oy, 1); ¢ (-, 5 Oyw), Opyw), Vi >0,V eR.
By Lemma 5.1, there is a positive constant K (w) such that
|x4(t, 00, n)| < K(w) and [Xi(t, Oy, )| < K(w), Yt>0,VipeR. (58)

This combined with (5.7) implies that M (w) < oo.

Note that the function Qp > w — M (w) € R* is measurable and invariant. By the ergod-
icity of the metric dynamical system (29, F, {6;};er), we have that there are an invariant
measurable set Q with P(Q2) = 1 and a positive constant M such that

M@)=M, Yowe. (5.9)
Second, note that
up(x) < 2u(t, x + x(t, w); uj, )
Hence,

u(s, x; uf, o) < uls, x; 2u(t, -+ x(t, ); uj, w), )
< 2u(s, x;u(t, -+ x(t, ®); ug, o), 6w)

=2u(s, x + x(f, w); uy, w).

This implies that

u(s, x(s, 6;0) + x(t, 0); ug, @) > %
It then follows from (5.9) that
x(s,0;0) +x(t,w) <x(t+s,0) <x(t+s, )+ M.
The lemma follows. O

We now prove Theorem 1.4.

Proof of Theorem 1.4 (i) We first prove that there is ¢* such that (1.10) holds with ¢* being
replaced by c¢*. To this end, let y(¢, w) = —x (¢, ) + M where M is given by Lemma 5.4.
Then, by Lemma 5.4

Yi+s,0)=—x(t+5,0) +M < —x(t,0) = x(5, 60) + 2M = y(t, ©) + ¥ (s, 6,0)
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a.e in w. By Lemma 5.2, y(¢,-) € LY (). It then follows from the subadditive ergodic
theorem that there is ¢* € R such that

2
tim &9 _

1—00 t

Next, we claim that (1.11) and (1.12) hold with ¢* being replaced by ¢*. In fact, by (5.5),
(5.8), and Lemma 5.1,

for a.e. w € Q.

0< sup u(t,x;up o) <u(t, (c*+ h)t; up*, )
x>(c*+h)t

<u(t, (" + )t —x(t;w) +xp (1, 0, 1)
+ C(t, 0, n); ¢L(0, s w), w)
— 0 as t - o0, Vh >0,

and

1> inf  wu(t, x; ug, @) >u(t, (c* — h)t; ug, )
x<(c*—h)t

>u(t, (c* — h)t —x(t; )
+ x4t w, 1) + Ct, 0, 1); ¢(0, - »), ®)
—1 as t — oo, Vi > 0.

Therefore, (1.11) and (1.12) hold with ¢* being replaced by ¢*.
Now, we prove that ¢* = ¢*. By the comparison principle for parabolic equations,

_ _Lorre2
u(t, x;up, o) <e =g fo HaG)dD) g uw>0VxeR.
Hence

<e o, w)—f Jo(ue +a(01w)dr)) Vi, 0.

(S

This implies that

x(t, w) ln(2)
t t

/ (1 + a(Brw)d7).

Letting ¢t — 00, we obtain that

Taking u = /a, we obtain that

It then remains to prove that

We prove this by contradiction.
Assume that ¢* < ¢* = 24/4. Then there are h > 0 and 0 < § < 1 such that

c*<ci=c"+h <2Véa.
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By (1.11), fora.e. w € ,

lim sup u(t, x; ug, w) = 0.
100 y>¢t

Fix such . There are 0 < 8 < 1and T > 0 such that

1 t
/ a(@;w)dt > Sa

5,
t Jo

and

u(t,x;up,w) <1—-8 Vi>T, x>ct.

. . _ 27T
As in the proof of Theorem 1.2(i), let L = T3 and

4as — c? )

—x).
2

By the similar arguments as those in Theorem 1.2(i), we have

c .
wh(x) = e 2% sin (

u(t, x + ct; uy, ) > aej;(s/”(efw)_‘s‘i)dfw+(x)
— we fOT(B/a(erw)f&i)dref(;(S/a(er)fzﬁ&)drw#»(x)

> qe™ fOT(S/a(Qrw)f(S&)drer(x)

forO<x < Landt>T, where o = supy,; u(T,x +cT; uy, ). This implies that

lim sup u(t, x; ug, w) > 0,
100 y>¢t

which is a contradiction. Hence ¢* = ¢* = 2/a.
(ii) For any given ug € Xj, there are 0 < o < 1 < B and x_ < x4 such that

aud(x +x4) <up(x) < Buj(x +x-) VxekR
By the comparison principle for parabolic equations, we have
oau(t, x; uy(- + x4), ) < u(t, x;ug, ) < Bult, x;uj(- +x-),w) YVt >0, x €eR.

This together with (1.11) implies that there is a measurable set 2; C Q with P(21) = 1
such that

lim  sup u(t,x;up, ) =0, we, Vhi>0,
1= 00 4> (& +h)t

and

liminf inf  u(z, x; ug, ®) > «, we R, Yh >0. (5.10)

=00 x<(¢*—h)t
We claim that

liminf inf ) u(t,x;up,w) =1 for w e Q, Vh > 0. (5.11)
!

=00 x<(c*—h

Indeed, let w € ©; and & > 0 be fixed. Let {x,,} and {z,} with z,, — oo and x,, < (¢* — h)t,
be such that

liminf inf  wu(t, x; ug, ) = lim u(t,, x,; ug, w). (5.12)
=00 x<(&*—h)t n—o0o
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Forevery 0 < ¢ « %, Theorem 1.1 implies that there is 7, > 0 such that
o
1—8§u(t,x;§,9sa)), VxeR, seR, t >T. (5.13)
Consider a sequence of ug, € anif (R) satisfying that

X < Shty —2(E* = AT,

o
12
“on () {o, x> Lht, — @ = Im..

Note that
< 1ht ¥ lh T, =>x+x,<|(c* lh)(t T,
x < <ht,—|¢" — = X +x ¢t — = — .
— 2 n 2 & n = 2 n &€

By (5.10), there is N1 >> 1 such that
u(ty — Tg, x + x5 Uy, @) > upp(x), Yx eR,n>Nj.
By the comparison principle for parabolic equations, we then have that
u(t +ty — Te, X 4 X5 ug, @) > u(t, x; uop, 0y,—1,0), Vx € R,Vt>0.
In particular, taking = T, and x = 0, we obtain
u(ty, xn; ug, ) = u(Ty, x; uon, O, —1,0). (5.14)

Note that ug,(x) — % as n — oo. Letting t — oo in (5.14), it follows from (5.13) and
Lemma 3.1 that

Iim wu(t,, x,; ug, w) >1—e.
n—0o0

Letting & — 0 in the last inequality, it follows from (5.12) that

liminf inf  wu(z, x; ug,w) >1, for we Ly, Vh > 0.
=00 x<(¢*—h)t

It is clear that

liminf inf  wu(z, x;ug,w) <1, for we 2Ly, Vh > 0.
=00 x<(¢*—h)t

The Claim thus follows and (ii) is proved. ]
The following corollary follows directly from Lemma 3.2 and Theorem 1.4.

Corollary 5.1 Assume (H3). Let Y (@) be the random equilibrium solution of (1.21) given in
(1.22) and let Ug (x; @) = Y (@) for x < 0 and Uj(x; w) = 0 for x > 0. Then,

. X(t, w)
lim

—00 t
where X (t, w) is such that u(t, X (¢, w); Uj (-; o), ) = 1Y(w), and

u(t, x; Ui (5 w), )

=2 foraewe 2,

lim  sup =0, Vh>0, aewe,
[=00 x> 2+h)t Y (6;w)
and
t,x; UG (5 o),
fim it CE U@ b eweq.

1—00 x<(2—h)t Y (6;w)

where u(t, x; Uj (-; w), w) is the solution of (1.21) with u(0, x; U§ (:; o), w) = U (x; o).
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6 Spreading Speeds of Nonautonomous Fisher-KPP Equations

In this section we consider the nonautonomous Fisher—KPP equation (1.2) and prove Theo-
rem 1.5.

Proof of Theorem 1.5 First, we prove (1.17). To this end, for given 0 < ¢ < 2, /a,, choose
b > cand0 < § < 1 such that c < 2/b < 2,/8ay. By the proof of Lemma 2.2, there

are {t; }rez With fr < tyy1, t — £ooask — Fooand A € WI]U’SO(R) N L>®(R) such that
A e Cly, tr+1) for every k and

b < 8ag(t) — A'(t), fort e (t,try1), k € Z.

Leto — (1—8)e14llo

ol T and v(t, x; b) be the solution of the PDE

vy = vy +bv(l —v), xeR,t>0,
v(0,x) =up(x), xekR.

By Lemma 4.2, we have that
liminf min v(z, x; b) = 1. 6.1

=00 |x|<ct

For given s € R, let v(t, x; 5) = aeA(’“)v(t, x; b). By the similar arguments to those in
Lemma 4.3, it can be proved that

Ge*”A”oov(t’x’b) < f)(t,x; s) < u(t, x;ug, osag), Vxe R, seR, t>0.
This combined with (6.1) yields that

0 <oe Ml <liminf inf  u(r, x; ug, o5ap), VO <c <2 /ay.
t—00 seR,|x|<ct s =0

By the arguments in Lemma 4.1, it can be proved that

lim inf u(t, x; ug, ogap) — 1| =0, VYuge X', VO <c <2 /a,.
fﬁOOse]R,\xlch ( s ) | ¢ =0

(1.17) then follows.
Next, we prove (1.18). To this end, for any given ug € X[, suppose that supp(ug) C

2
(=R, R). Forevery u > 0,let C,, (¢, s) = [** %W‘“)dr and ¢* (x) = ||ug|looe HER

s
and q}i(r, X;8) = ¢i(:l:x — Cu(t,s)) for every x € R and ¢ > 0. It is not difficult to see
that

NPl — dxxdlt — ao(s + PL(L — @) = ag(s +1) (q?i)z >0, xeR, >0,
and
uop(x) < @0, x;5), VxeR, Vs eR.
By the comparison principle for parabolic equations, we then have that
u(t, x; uo, osap) < Qi (t, x;8) = |luollooe HETRFCUED) v x s e RVt > 0, > 0.
This implies that

u? + ao

limsup sup u(t,x;up,05a0) =0 Vu=>0, c>
t—=00 seR,|x|>ct
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12+ w2 +/G

For any ¢ > 24/ap = inf 50 5 choose 1 > 0 such that ¢ > —r > c*, we have
limsup sup u(t, x; ug, Osw) = 0.
=00 seR,|x|>ct
(1.18) then follows. O

We conclude this section with some example of explicit function ag(¢) satisfying (H2).
Define the sequences {/,,},>0 and {L,},>0 inductively by

1
Z():O, Ln:ln+m, ln+1:L,,+n+1, I’IZO (62)

Define ag(t) such that ag(—t) = ag(t) for t € R and

w0 el L ©3)

gn(t)  ift € [Ly, lpt1]

for n > 0, where g2,() = 1 and g2,4+1(t) =2 forn > 0, and fo(r) = 1,forn > 1, f, is
Holder’s continuous on [I,, L], fu(ln) = gn(ln), fu(Ln) = gn(Ly), and satisfies

1
Ls fn@) =2%, max  fo,(1) =27, fon()dt = 53

t€llon,Lon]

and

< fons1(t) <2, min ]f2n+1(t) =2+,

2n+1 t€[ln+1,Lan+1

It is clear that ao(¢) is locally Holder’s continuous, inf;cg ao(¢) = 0, and sup, g ap(t) = oo.
Moreover, it can be verified that

ay=1 and ap=2.
Hence ag(t) satisfies (H2).
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