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Abstract
Adynamical systemwith a plastic self-organising velocity vector field was introduced in Jan-
son and Marsden (Sci Rep 7:17007, 2017) as a mathematical prototype of new explainable
intelligent systems. Although inspired by the brain plasticity, it does not model or explain
any specific brain mechanisms or processes, but instead expresses a hypothesised princi-
ple possibly implemented by the brain. The hypothesis states that, by means of its plastic
architecture, the brain creates a plastic self-organising velocity vector field, which embodies
self-organising rules governing neural activity and through that the behaviour of the whole
body. The model is represented by a two-tier dynamical system, in which the observable
behaviour obeys a velocity field, which is itself controlled by another dynamical system.
Contrary to standard brain models, in the new model the sensory input affects the velocity
field directly, rather than indirectly via neural activity. However, this model was postulated
without sufficient explication or theoretical proof of its mathematical consistency. Here we
provide a more rigorous mathematical formulation of this problem, make several simplifying
assumptions about the form of the model and of the applied stimulus, and perform its math-
ematical analysis. Namely, we explore the existence, uniqueness, continuity and smoothness
of both the plastic velocity vector field controlling the observable behaviour of the system,
and the of the behaviour itself. We also analyse the existence of pullback attractors and of
forward limit sets in such a non-autonomous system of a special form. Our results verify
the consistency of the problem and pave the way to constructing more models with specific
pre-defined cognitive functions.
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1 Introduction

Artificial intelligence (AI) is nowadayswidely spread [36], has demonstrated very impressive
and sometimes superhuman levels of performance in a range of applications, such as face
recognition [33], medical diagnostics from image analysis [8,15], games of Go [31] and
poker [25], and is often recognised as the most important technology of the future [24].
However, the most advanced modern AI currently possesses two major flaws, namely, lack
of transparency in decision-making referred to as “black-box” problem [6], and the closely
related issue of being prone to mistakes arising unexplainably [26,28,34,39], which render
such AI not trustworthy in applications affecting lives, such as healthcare, security or finance.
For an AI to be truly helpful for societies, it has to be interpretable [24,37].

A popular way to address explainability of a complex system, such as a deep learning
neural network, is to construct its model, which would approximate the original system and
be explainable, for example to build a decision tree [2,7] or to visualise various stages of
data processing [41]. However, such models are often unreliable and can be misleading,
and a more efficient strategy is to engineer intelligent systems, which would be inherently
comprehensible from the outset [30].

Here we analyse a mathematical construct, which was recently proposed in [19] with the
goal to develop AI both explainable and inspired by the brain. Firstly, the proposed model
expresses a hypothesis about a general principle implemented by the brain, albeit crucially
is not intended to explain any of the physico-chemical mechanisms or processes operating in
the brain. Secondly, it represents an attempt to build amathematical prototype for explainable
intelligent machines of a new type based on the hypothesised brain principle. The proposed
construct is a two-tier dynamical system, in which the first tier is a system describing the
observable behaviour, such as neural activity in the brain, namely

dx

dt
= a(x, t). (1)

Here, x ∈ R
d is the observable state of an intelligent system at time t , which in the brain

would be a collection of states of all the neurons, and a, which takes values in R
d , is the

velocity vector field governing the evolution of the state with time t . The second tier is another
dynamical system governing evolution of the whole of the velocity vector field a of (1),

∂a

∂t
= c(a, x, η(t), t). (2)

Here, c is a deterministic vector function taking values inRd , and η(t) ∈ R
m is sensory stimu-

lus or training data, withm ≤ d . Equation (1) considered in isolation reads like a conventional
non-autonomous dynamical system [22]. However, the joint system (1)–(2) is unconventional
because the function a of (1) is not specified or fixed and instead represents a time-evolving
solution of another differential equation (2). Namely, in standard non-autonomous systems
affected by stimuli and described as dx

dt = b(x, η(t)), if the values of t = t1 and η(t1) are
specified, the vector field b at time t1 is automatically known for every possible value of x .
Unlike that, with the same values given, the value of a in (1) does not become automatically
known at any location x . Instead, it depends on the initial condition a(x, 0) and on the whole
history of η(t), 0 ≤ t ≤ t1.
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The explainability of the proposed conceptual model (1)–(2) of an intelligent system
comes from the fact that the form of c would be chosen by, and hence known to, engineers of
the intelligent system. We would thus know exactly how every new value of η modifies the
force a controlling behaviour x(t), i.e., how new information is translated into the adjustment
of the behavioural rules in the process of learning. Therefore, our intelligent system will be
fully interpretable by construction.

In [19], themodel (1)–(2) was postulated and solved numericallywith some random inputs
η(t), but the very existence of its solutions, or their uniqueness, have not been addressed.
Also, it was stated that for the system to be useful, the function a(x, t) needs to be smooth
in both variables. However, the conditions on c and η that could ensure the smoothness of
a were not found. Moreover, in the form (1)–(2) this model in principle allows x to affect
evolution of a, although in the special cases analysed this did not happen. Therefore, the
formulation of the model itself was not fully explicit.

For the model to be useful in practice, the function c for (2) would need to be designed
in such a way, that attractors of the desirable types (e.g. fixed points, limit cycles or chaotic
attractors) and other objects (e.g. saddle cycles) would spontaneously form at the desirable
locations in the state space of (1), whichwould depend on the properties of the stimulus η. One
example of c is given in [19], but it has limitations, and new forms of c are needed. However,
before suitable functions c could be developed, it is necessary to resolve the outstanding
issues specified above.

Here, we clarify and slightly simplify the original model, and address its mathematical
consistency. In Sect. 2 we compare the model (1)–(2) with standard brain models while
highlighting the distinctions between them. In Sect. 3 we formulate a mathematical problem
to be solved here. In Sect. 4 we establish the existence and uniqueness of solutions of the
simplified version of (1)–(2), namely of (5)–(6), under the simplifying assumptions on η. In
Sect. 5 we show that the first Eq. (5) of the simplified model has a global non-autonomous
attractor. In Sect. 6 we discuss the results obtained, and in Sect. 7 we give conclusions.

2 Comparison of Conceptual Model with Standard Brain Models

The model (1)–(2) is markedly different from standard brain models in two ways. To explain
this, we point out that either a very rough brain model in the form of the Hopfield neural
network [14], or its numerousmodifications based on spiking neurons [13,17], can be reduced
to the general form

dx

dt
= d(x, w(t), η(t)), (3)

dw

dt
= f (w, x(t)), (4)

where x ∈ R
d is the vector describing the states of all neurons, andw ∈ R

d×d is a vector of all
inter-neuron connections. Firstly, in brainmodels (3)–(4) the velocity field d governing neural
activity x is parametrised by the finite number of inter-neuron connections w. Importantly, a
parametrised function cannot take an arbitrary shape even if its parameters are allowed to take
any values without limitations, and thus has a limited plasticity. On the contrary, in (1)–(2)
the velocity fied a is not parametrised at all, is allowed to take any shape, and therefore in
principle could be fully plastic.

Secondly, in brain models (3)–(4) there are twomechanisms by which sensory stimulus η

causes evolution of d . Namely, η modifies d directly as a term entering the right-hand side of
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(3). In addition, η modifies d indirectly by affecting neural activity x through (3), in response
to which inter-neuron connections w strengthen or weaken usually according to some form
of Hebb-like learning rules coded by (4) [5]. As a result of the change of its parameters w,
the value of the function d is also forced to change.

This complicated combination of brain mechanisms might obscure the key fact that the
neural firings (which in the body coordinatemuscular contractions, which in their turn control
the bodily movements and speech), are governed by the vector field d which, ultimately,
changes with time.Moreover, this change occurs under the influence of sensory stimulus. The
conceptual model (1)–(2) highlights the fact that the velocity field a controlling observable
neural activity x changes in response to stimulus η, and bypasses the complex mechanisms
by which this is achieved in the brain by allowing η to affect a directly and in one way only.
The question of how this can be implemented in a physical system is left outside this purely
conceptual model, which is inspired by the brain plasticity, but does not reproduce brain
mechanisms.

Importantly, in the brain no external engineer sets the values of the connection strengths
or of the parameters of individual neurons at every time instant. These are modified by
themselves, i.e., spontaneously, and therefore it seems plausible to assume that the resultant
velocity field of the brain also changes in a spontaneous, self-organised manner. In [19] it
was hypothesised that self-organised evolution of the velocity field of the brain could be
described by some deterministic laws. The latter is merely a hypothesis and would need an
experimental verification. However, regardless of its validity for the brain, it was suggested
that the existence of appropriate deterministic laws governing evolution of the velocity field
of a dynamical system could underlie cognitive functions. The system (1)–(2) is a math-
ematical expression of an idea of a spontaneously self-organising velocity vector field a,
which represents self-organising rules of behaviour. This idea could form the basis for a
more rigorous definition to the concept of learning as changes in the (hidden) mechanisms
that enable behavioural change [4]. Note that, by analogy with what happens in the brain, the
way the rules a evolve with time are affected, but not fully determined, by sensory stimuli
η. Specifically, a evolves both in the presence of stimulus η as in the process of learning [1],
and in the absense of η. The latter is roughly similar to how the brain consolidates memories
during sleep [32] when sensory stimuli, while still affecting the brain, are processed in a
very different way as compared to the wake state, and much of the time do not seem to be
perceived consciously [27,35].

Note, that although it has long been acknowledged that the brain can be regarded as a
dynamical system [16], consideration of the brain within the classical framework of the
dynamical systems theory did not fully explain its abilities for cognition and adaptation. As
a possible reason for this, in [10] it has been suggested that the theory of dynamical systems
has not been sufficiently developed, and required extensions directly relevant to cognition.
Making the velocity vector field of a dynamical system evolve with time in a self-organising,
rather than forced, manner, could represent the required extension of the theory of dynamical
systems.

Irrespective of whether the newly proposed dynamical system is related to the brain,
demonstration of how basic cognitive functions emerge in (1)–(2) with a simple example of
c [19] suggests that this model could be helpful in understanding the nature of cognition.
It could also potentially become a mathematical prototype of artificial intelligent devices
of a new type. However, in order to make futher developments of this model possible, it is
necessary to analyse its general mathematical consistency, which is the purpose of the current
paper.

123



Journal of Dynamics and Differential Equations (2022) 34:63–78 67

3 Problem Statement

In [19] the presence of the same variable x in both Eqs. (1) and (2) suggested that potentially
these equations could mutually influence each other, which would make their analysis quite
complicated. In order to simplify the analysis, and in agreement with the fact that the specific
example explored numerically assumed a one-way influence from (2) to (1) only, here we
adopt the same assumption. Also, Eq. (2) has originally been interpreted as a (degenerate)
partial differential equation (PDE). However, for the mathematical analysis in this paper we
will regard (2) as an ordinary differential equation (ODE) for the unknown variable a which
depends on the parameter x , and to write it as da

dt = c(a, x, η(t), t).
For an additional clarity, in order to emphasize that x from (1) is not inserted into the

equation above, in the argument of c we rename x as z. The final form of the system to be
analysed reads

dx(t)

dt
= a(x(t), t) (5)

d

dt
a(z, t) = c(a(z, t), z, η(t), t), z ∈ R

d . (6)

Here, x(t) and a(z, t) take values in R
d . The solution a(z, t) of (6) depends on z ∈ R

d as a
fixed parameter.

Remark 1 We assume that the only component of the model (5)–(6), which could be directly
observed in an experiment, is behaviour x(t) generated by Eq. (5). In the brain, x(t)would be
neural voltages and currents. The “force” a controlling behaviour is not directly measurable,
albeit it could potentially be obtained indirectly through model-building from the first prin-
ciples. Note, that one could measure a(x, t) by calculating the t-derivative of the given phase
trajectory x(t; t0, x0) within the framework of global reconstruction of dynamical systems
from experimental data (overviewed e.g. in Section 2 of [20]). However, this way a would
not be known at any point x outside this trajectory, and would therefore be mostly hidden
from the observer. Moreover, a itself evolves according to the rules c in (6), which are fully
hidden from the observer.

In [19] it was proposed that in (1)–(2) the stimulus η(t) is used both to contribute to the
modification of the vector field a according to (2), and to regularly reset the initial conditions
of (1). Here, we consider a simplified case, in which we allow η(t) only to affect evolution
of a, and we will handle Eq. (5) separately from (6). Essentially, in order to obtain x(t), we
need to first solve Eq. (6) independently of Eq. (5), and then to substitute into (5) the vector
field a obtained from (6).

In [19], the performanceof a simple example of (1)–(2)wasdemonstrated using avariety of
signals η(t), which were either computer-generated realisations of some random processes,
or originated from recorded music. Regarding η, no special assumptions were made, and
Eq. (2) was solved numerically for both continuous and non-continuous η. Here, we make a
simplifying assumption about η by requiring its continuity.

Assumption 1 η : R → R
m is continuous.

For all cases considered, we regard the stimulus as a given and fixed input in the model.
In what follows, we will show that the system (5)–(6) is well posed in the sense that its

solutions globally exist and are unique. We will also consider a long-term behaviour of (5)–
(6), which is usually described by attractors. The concept of an attractor has been successfully

123



68 Journal of Dynamics and Differential Equations (2022) 34:63–78

extended from the autonomous to the standard non-autonomous dynamical systems of the
form dx

dt = g(x, t), where g is some fixed vector field function [22]. However, the existence
of an attractor where the vector field itself evolves spontaneously according to (6) needs to
be proved. We will show that, under a mild dissipativity assumption, the non-autonomous
system generated by (5) has a non-autonomous (or random) attractor.

4 Existence and Uniqueness of Solutions

Since the Eqs. (5)–(6) represent a non-autonomous or a random system, we need to consider
them on the entire time axis t ∈ R (see the discussion in Sect. 6 for when this does not
hold). In particular, the vector field a should be defined for all values of time t ∈ R. Note,
that the existence and uniqueness of solutions of Eqs. (5) and (6) require at least a local
Lipschitz property of the right-hand sides a and c in the corresponding state variable, while
the existence of an attractor in (5) requires a dissipativity property.

4.1 Existence and Uniqueness of the Observable Behaviour x(t) of (5)

We start from requiring continuity of both a and its gradient ∇xa(x, t) with respect to the
state vector.

Assumption 2 a : R
d × R → R

d and ∇xa : R
d × R → R

d×d are continuous in both
variables (x, t) ∈ R

d × R.

This assumption ensures that the vector field a is locally Lipschitz in x . Hence, by standard
theorems (see Walter [40, Chapter 2]), there exists a unique solution x(t) = x(t; t0, x0) of
the ODE (5) for each initial condition x(t0) = x0, at least for a short time interval. Next, we
require dissipativity of a.

Assumption 3 a : Rd × R → R
d satisfies the dissipativity condition 〈a(x, t), x〉 ≤ −1 for

‖x‖ ≥ R∗ for some R∗.

(Here ‖a‖ =
√∑d

i=1 a
2
i is the Euclidean norm on R

d and 〈a, b〉 = ∑d
i=1 aibi is the corre-

sponding inner product, for vectors a, b ∈ R
d .)

This assumption (which may be stronger than we really need, but avoids assumptions
about the specific structure of a) ensures that the ball B := {x ∈ R

d : ‖x‖ ≤ R∗ + 1} is
positive invariant. This follows from the estimate

d

dt
‖x(t)‖2 = 2〈x(t), a(x(t), t)〉 ≤ −1 if ‖x(t)‖ ≥ R∗

and in turn ensures that the solution of the ODE (5) exists for all future times t ≥ t0. We thus
formulate the following theorem.

Theorem 1 Suppose that Assumptions1,2and3hold. Then for every initial condition x(t0) =
x0, the ODE (5) has a unique solution x(t) = x(t; t0, x0), which exists for all t ≥ t0.
Moreover, these solutions are continuous in the initial conditions, i.e., themapping (t0, x0) �→
x(t; t0, x0) is continuous.
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4.2 Existence and Uniqueness of the Vector Field a(x, t) as a Solution of (6)

The ODE (6) for the velocity field a(x, t) is independent of the solution x(t; t0, x0) of the
ODE (5). We need the following assumption to provide the existence and uniqueness of
a(x, t) for all future times t > t0 and to ensure that this solution satisfies Assumptions 2 and
3.

Assumption 4 c : Rd × R
d × R

m × R → R
d and ∇ac : Rd × R

d × R
m × R → R

d×d are
continuous in all variables.

This assumption ensures the vector field c is locally Lipschitz in a. Hence, by standard
theorems (see Walter [40, Chapter 2]), there exists a unique solution a(t; t0, a0) of the ODE
(6) for each initial condition a(t0) = a0, at least for a short time interval. This solution also
depends continuously on the parameter x ∈ R

d . To ensure that the solutions can be extended
for all future times t , we need a growth bound such as in the following assumption.

Assumption 5 There exist constants α and β (which need not be positive) such that
〈a, c(a, x, y, t)〉 ≤ α‖a‖2 + β for all (x, y, t) ∈ R

d × R
m × R.

The next assumption ensures that the solution of the ODE (6), which we now write as
a(x, t), is continuously differentiable and hence locally Lipschitz in x , provided that the
initial value a(x, t0) = a0(x) is continuously differentiable.

Assumption 6 ∇x c : Rd × R
d × R

m × R → R
d×d is continuous in all variables.

The above statement then follows from the properties of the linear matrix-valued variational
equation

d

dt
∇xa = ∇ac∇xa + ∇x c,

which is obtained by taking the gradient ∇x of both sides of the ODE (6).
Finally, we need to ensure that the solution a(x, t) satisfies the dissipativity property as

in Assumption 3.

Assumption 7 There exist R∗ such that

〈c(a, x, y, t), x〉 ≤ 0 for ‖x‖ ≥ R∗, (a, y, t) ∈ R
d × R

m × R.

To show this we write Eq. (6) in integral form

a(x, t) = a0(x) +
∫ t

t0
c (a(x, s), x, η(s), s) ds

and then take the scalar product on both sides with a constant x , which gives

〈a(x, t), x〉 = 〈a0(x), x〉 + 〈
∫ t

t0
c (a(x, s), x, η(s), s) ds, x〉

= 〈a0(x), x〉 +
∫ t

t0
〈c (a(x, s), x, η(s), s) , x〉 ds

≤ −1 + 0 = −1 for ‖x‖ ≥ R∗.

Summarising from the above, we can formulate the following theorem.
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Theorem 2 Suppose that Assumptions 1 and 4–7 hold. Further, suppose that a0(x) is contin-
uously differentiable and satisfies the dissipativity condition in Assumption 3. Then the ODE
(6) has a unique solution a(x, t) for the initial condition a(x, t0) = a0(x), which exists for
all t ≥ t0 and satisfies Assumptions 2 and 3.

Thus, we have obtained a theorem for the existence, uniqueness, continuity and dissipativity
of the velocity vector field a governing the behaviour of (5).

5 Asymptotic Behaviour

Herewe consider the conditions for the existence of two kinds of nonautonomous attractors of
the nonautonomous system generated by Eq. (5), which describes the observable behaviour of
the system (5)–(6) with a plastic velocity field. It is the dynamics of this subsystem generated
by Eq. (5) that is directly observable.

The ODE (5) is non-autonomous and its solution mapping generates a non-autonomous
dynamical system on the state space R

d expressed in terms of a 2-parameter semi-group,
which is often called a process (see Kloeden and Rasmussen [22]). Define

R
+≥ = {(t, t0) ∈ R × R : t ≥ t0} .

Definition 1 A process is a mapping φ : R+≥ × R
d → R

d with the following properties:

(i) Initial condition: φ(t0, t0, x0) = x0 for all x0 ∈ R
d and t0 ∈ R;

(ii) 2-Parameter semi-group property: φ(t2, t0, x0) = φ(t2, t1, φ(t1, t0, x0)) for all t0 ≤
t1 ≤ t2 in R and x0 ∈ R

d ;
(iii) Continuity: the mapping (t, t0, x0) �→ φ(t, t0, x0) is continuous.

The 2-parameter semi-group property is an immediate consequence of the existence and
uniqueness of solutions of the non-autonomous ODE: the solution starting at (t1, x1), where
x1 = φ(t1, t0, x0), is unique so must be equal to φ(t, t0, x0) for t ≥ t1.

5.1 Pullback Attractors in Eq. (5)

Time in an autonomous dynamical systems is a relative concept since such systems depend on
the elapsed time t − t0 only and not separately on the current time t and initial time t0, which
means that limiting objects exist all the time and not just in the distant future. In contrast,
non-autonomous systems depend explicitly on both t and t0, which has a profound affect on
the nature of limiting objects (see [9,22]).

In particular, the appropriate concept of a non-autonomous attractor involves a family
A = {A(t) : t ∈ R} of nonempty compact subsets A(t) ofRd , which is invariant in the sense
that A(t) = φ(t, t0, A(t0)) for all t ≥ t0.

Two types of convergence, which coincide in the autonomous case, are possible: the usual
(1) forward attraction

lim
t→∞ distRd (φ(t, t0, B), A(t)) = 0 for all bounded subsets B of Rd with t0 fixed,

and the less usual
(2) pullback attraction

lim
t0→−∞ distRd (φ(t, t0, B), A(t)) = 0 for all bounded subsets B of Rd with t fixed.
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If the invariant familyA is attracting in the forward sense, it is called a forward attractor, and
if it is attracting in the pullback sense, it is called a pullback attractor. Pullback attractors
have been called snapshot attractors in the physics literature [29].

In pullback attractors the starting time t0 is pulled further and further back into the past,
while the convergence takes place at each fixed time instant t . The dynamics then moves
forwards in time from this starting time t0 to the present time t . Essentially, the pullback
attractor takes into account the past history of the system, what we know about the system
until the present time, so we cannot expect it to say much about the future.

The existence and uniqueness of a global pullback attractor for a non-autonomous dynam-
ical system on R

d is implied by the existence of a positive invariant pullback absorbing set,
which often has a geometrically simpler shape such as a ball.

Definition 2 A nonempty compact set B of Rd is called a pullback absorbing set for a
process φ if for each t ∈ T and every bounded set D there exists a Tt,D ∈ T

+ such that

φ (t, t0, D) ⊆ B for all t0 ≤ t − Tt,D .

Such a set B is said to be φ-positive invariant if

φ (t, t0, B) ⊆ B for all t ≥ t0.

The following theorem is adapted from [22, Theorem 3.18].

Theorem 3 Suppose that a non-autonomous dynamical system φ onRd has a positive invari-
ant absorbing set B. Then it has a unique pullback attractor A = {A(t) : t ∈ R} with
component sets defined by

A(t) =
⋂
t0≤t

φ (t, t0, B) , t ∈ R.

An important characterization [22, Lemma 2.15] of a pullback attractor is that it con-
sists of the entire bounded solutions of the system, i.e., χ : R → R

d for which χ(t) =
φ(t, t0, χ(t0)) ∈ A(t) for all (t, t0) ∈ R

+≥.
In particular, under the above assumptions, the ODE (5) describing the observable

behaviour of themodel of a cognitive system generates a non-autonomous dynamical system,
which has a global pullback attractor. Summarising, we formulate the following theorem.

Theorem 4 Suppose that Assumptions 1, 2 and 3 hold. Then the non-autonomous dynamical
system generated by the ODE (5) describing the observable behaviour has a global pullback
attractor A = {A(t) : t ∈ R}, which is contained in the absorbing set B.

Thus, Theorem 4 specifies the conditions under which the global pullback attractor exists in
a dynamical system with plastic spontaneously evolving velocity vector field.

Generally, in non-autonomous systems, pullback and forward attractors are independent
objects, and the existence of one of them does not imply the existence of the other. However, if
they both exist, then they coincide as in the example in section 6.4. For practical applications,
that would be an ideal situation. However, forward attractors do not always exist. Whether
the forward attractor exists or not, in a dissipative system there will always exist a forward
limit set, which provides additional useful information about the behaviour of the system in
the distant future.
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5.2 Forward Limit Sets in Eq. (5)

The concepts of pullback attraction and pullback attractors assume that the system exists for
all time, in particular past time. This is obviously not true in many biological systems, though
an artificial “past” can some times be usefully introduced (see the final section).

The above definition of a non-autonomous dynamical system can be easily modified to
hold only for (t, t0) ∈ R

+≥(T ∗) = {(t, t0) ∈ R × R : t ≥ t0 ≥ T ∗} for some T ∗ > −∞.
When the system has a nonempty positive invariant compact absorbing set B, as in the

situation here, the forward omega limit set

Ω(t0) =
⋂
τ≥t0

⋃
t≥τ

φ (t, t0, B), t0 ∈ R,

exists for each t0 ≥ T ∗, where the upper bar denotes the closure of the set under it. The set
Ω(t0) is thus a nonempty compact subset of the absorbing set B for each t0 ∈ R.

Moreover, these sets are increasing in t0, i.e., Ω(t0) ⊂ Ω(t ′0) for t0 ≤ t ′0, and the closure
of their union

Ω∗ :=
⋃

t0≥T ∗
Ω(t0) ⊂ B

is a compact subset of B, which attracts all of the dynamics of the system in the forward
sense, i.e.,

lim
t→∞ distRd

(
φ(t, t0, D),Ω∗) = 0

for all bounded subsets D of Rd , t0 ≥ T ∗.
Vishik [38] calledΩ∗ the uniform attractor,1 although strictly speakingΩ∗ do not form an

attractor since it need not be invariant and the attraction need not be uniform in the starting
time t0. Nevertheless, Ω∗ does indicate where the future asymptotic dynamics ends up.
Moreover, Kloeden [23] showed that Ω∗ is asymptotically positive invariant, which means
that the later the starting time t0, the more andmore it looks like an attractor as conventionally
understood.

Definition 3 A set A is said to be asymptotically positive invariant for a process φ on R
d if

for every ε > 0 here exists a T (ε) such that

φ (t, t0, A) ⊂ Bε (A) , t ≥ t0, (7)

for each t0 ≥ T (ε), where Bε (A) := {x ∈ R
d : distRd (x, A) < ε}.

In [23] Ω∗ was called the forward attracting set.
Summarising from the above, we formulate the following theorem.

Theorem 5 Suppose that Assumptions 1, 2 and 3 hold. Then the non-autonomous dynamical
system generated by the ODE (5) describing the observable behaviour of the system has a
forward attracting set Ω∗, which is contained in the absorbing set B.

Theorem 5 expresses the conditions under which a forward attracting set exists in a
dynamical system (5) with a plastic velocity vector field evolving according to (6).

1 He required the system to be defined in the whole past and the convergence to be uniform in t0 ∈ R.
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6 Discussion

In the previous sections we explicated the formulation of, and analysed mathematically, the
dynamical system whose velocity vector field evolves spontaneously under the influence of
stimulus, which was originally introduced in [19] as an alternative conceptual model of an
intelligent system. For clarity, we made some simplifying assumptions about the properties
of the right-hand sides of this model and of the external stimulus.

If the model discussed here is to be used for the description of the cognitive function
similar to that of a biological brain, one needs to take into account the different timescales at
which different processes occur. It is known that the observable dynamics of neurons is much
faster than the rate of change of the inter-neuron connections. Hence, the velocity vector field
governing the dynamics of neurons in the brain should evolve at a much slower rate than the
neural states. A realistic application of our model should take this into account.

Even the simplified cases studied here raise a number of questions, in particular about
the relevance of pullback attractors for such models. These and some further issues will be
briefly discussed here.

6.1 Use of Pullback Attractors

Pullback convergence requires the dynamical system to exist in the distant past, which is
often not a realistic assumption in biological systems. Pullback attractors can nevertheless
be used in such situations by inventing an artificial past. This and other aspects are discussed
in [21,22].

The simplest way to do this for this model is to set the vector field a(x, t) ≡ a0(x) for
t ≤ T ∗ for some finite time T ∗, which could be the desired starting time t0. In this case
a0(x) would be the desired initial velocity vector field of the model of a cognitive system,
which could be zero or contain some initial features representing previous memories. Then
the ODE (1) should be replaced by the switching system

dx

dt
=

{
a0(x) : t ≤ t0
a(x, t) : t ≥ t0

, (8)

where a(x, t) evolves according to the ODE (2) for t ≥ t0 with the parameterised initial
value a0(x). If a0(x) satisfies the dissipativity condition inAssumption (3), then the switching
system (8) will also be dissipative and have a pullback attractor with component sets A(t) =
A∗ for t ≤ t0 and A(t) = φ(t, t0, A∗) for t ≥ t0, where A∗ is the global attractor of
the autonomous dynamical system generated by the autonomous ODE with the vector field
a0(x).

6.2 Random Stimulus Signals

The stimulus signal η(t) in Assumption 1 is a deterministic function. When this signal is
random, itwould be a single sample pathη(t, ω)of a stochastic processwithω ∈ Ω ,whereΩ

is the sample space of the underlying probability space(Ω,F,P). The above analysis holds,
which is otherwise deterministic, for this fixed sample path. For emphasis,ω could be included
in the system and the pullback attractor as an additional parameter, i.e., φ(t, t0, x0, ω) and
A = {A(t, ω) : t ∈ R}. Cui et al. [11,12] call these objects non-autonomous random
dynamical systems and random pullback attractors, respectively.
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This is the appropriate formulation for vector fields a generated by the ODE (6), which
potentially has two sources of non-autonomity in its vector field c, namely, indirectly through
the stimulus signal η(t) and directly through the independent variable t . TheODE (6) is then a
randomODE (RODE), see [18]. Note, that without this additional independent variable t , the
theory of random dynamical systems (RDS) in Arnold [3] could be used. It is also a pathwise
theory with a random attractor defined through pullback convergence, but requires additional
assumptions about the nature of the driving noise process, which is here represented in the
stimulus signal.

Until nowwe considered the stimulus signal η(t)with continuous sample paths. The above
results remain valid when η(t) has only measurable sample paths, such as for a Poisson or
Lévy process, but the RODE must now be interpreted pathwise as a Carathéodory ODE, see
[18].

6.3 Relevance of Pullback Attractors

Assuming, by nature or artifice, that the system does have a pullback attractor, what does this
actually tell us about the asymptotic dynamics of the observable behaviour.

As mentioned above, a pullback attractor consists of the entire bounded solutions of
the system, which is useful information. Such solutions include steady state and periodic
solutions. This characterisation is also true of attractors of autonomous systems, for which
pullback and forward convergence are equivalent due to the fact that only the elapsed time
is important in such systems.

In general, a pullback attractor need not be forward attracting. This is easily seen in the
following switching system

dx

dt
=

{ −x : t ≤ 0
x

(
1 − x2

) : t > 0
,

for which the set B = [−2, 2] is positively invariant and absorbing. The pullback attractor
A has identical component subsets At ≡ {0}, t ∈ R, corresponding to the zero entire
solution, which is the only bounded entire solution of this switching system. This zero
solution is obviously not forward asymptotically stable. The forward attracting set here is
Ω∗ = [−1, 1]. It is not invariant (though it is positive invariant in this case), but contains all
of the forward limit points of the system.

Nevertheless, a pullback attractor indicates where the system settles down to when more
and more information of its past is taken into account. In particular, it depends only on the
past behaviour of the system. This is very useful in a system which is itself evolving in time,
as in the model under consideration, for which the future input stimulus is not yet known.

Interestingly, a random attractor for the RDS (5)–(6) in the sense of [3] is pullback attract-
ing in the pathwise sense and also forward attracting in probability, see [9].

6.4 Vector Field from a Potential Function

In a special case of the system (5)–(6) investigated numerically in [19], the vector field a
was generated from a potential function U as a = − 1

t ∇xU . Componentwise, ai = − 1
t

∂U
∂xi

,
so the existence of such a potential requires

∂ai
∂x j

= −1

t

∂2U

∂x j∂xi
= −1

t

∂2U

∂xi∂x j
= ∂a j

∂xi
.
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From Eq. (6) this implies

∂ai
∂x j

= ∂a j

∂xi
.

A differential equation was constructed for the evolution of U , rather than of a, namely, U
satisfied a scalar parameterised ordinary differential equation

d

dt
U (x, t) = −kU (x, t) − g(x − η(t)), (9)

where k ≥ 0, g was shaped like a Gaussian function

g(z) = 1√
2πσ 2

e− z2

σ2 ,

and η(t) was the given input, which was assumed to be defined for all t ∈ R. Here, we
analyse this case under the assumption of continuity of η(t).

The gradient ∇xU of U satisfies the scalar parameterised ordinary differential equation

d

dt
∇xU (x, t) = −k∇xU (x, t) − G(x − η(t)), (10)

where

G(x − η(t)) = ∇x g(x − η(t)) = − 2

σ 2
√
2πσ 2

(x − η(t)) e
− (x−η(t))2

σ2 .

The linear ODE (10) has an explicit solution

∇xU (x, t) = ∇xU (x, t0)e
−k(t−t0) −

∫ t

t0
e−k(t−s)G(x − η(s))ds.

Taking the pullback limit as t0 → −∞ gives

∇xŪ (x, t) = −
∫ t

−∞
e−k(t−s)G(x − η(s))ds.

This solution is asymptotically stable and forward attracts all other solutions, since
∣∣∇xU (x, t) − ∇xŪ (x, t)

∣∣ ≤ ∣∣∇xU (x, t0) − ∇xŪ (x, t0)
∣∣ e−k(t−t0)

for every x and any solution ∇xU (x, t) �= ∇xŪ (x, t).
Finally, the asymptotic dynamics of this example systemwith a plastic vector field satisfies

the scalar ODE

dx(t)

dt
= −1

t
∇xŪ (x(t), t) = 1

t

∫ t

−∞
e−k(t−s)G(x(t) − η(s))ds. (11)

Since G in the integrand is uniformly bounded, it follows that
∣∣∣ dx(t)dt

∣∣∣ ≤ C
t → 0 as t → ∞.

From numerical simulations, the system (5) with a(x, t) = − 1
t ∇xU (x, t) appears to have a

forward attracting set.
From the argument presented above, Eq. (6) for the vector field a has a pullback attractor

consisting of singleton set, i.e., a single entire solution, which is also Lyapunov forward
attracting. This implies that starting from an arbitrary smooth initial vector field a(x, t0), the
solution a(x, t) of (6) converges to a time-varying function ā(x, t) = − 1

t ∇xŪ (x, t).
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Remark 2 The example considered in [19] actually involved a random forcing term η(t),
which was the stochastic stationary solution (essentially its random attractor) of the scalar
Itô stochastic differential equation (SDE)

dη(t) = h(η(t))dt + 0.5dW (t), (12)

where W (t) was a two-sided Wiener process. For the function h(u) = 3(u − u3)/5 used in
[19], the representative potential function had two non-symmetric wells of different depths
and widths. In such cases, the solutions of (5)–(6) depend on the sample path η(t, ω) of
the noise process, and the convergences are pathwise, and random versions of the theorems
formulated above apply. In particular, the random pullback attractor consists of singleton
sets, i.e., it is essentially a stochastic process. Moreover, it is Lyapunov asymptotically stable
in probability.

7 Conclusion

To conclude, we reconsidered the problem from [19] from the perspective of recent devel-
opments in non-autonomous dynamical systems. In particular, we considered the pullback
attractor and forward attracting sets of such systems. The pullback attractor is based on infor-
mation from the system’s behaviour in the past, which is all we know at the present time. In
contrast, the forward attracting set tells us where the future dynamics ends up. However, in
our model the future sensory signal η(t), and hence the future vector field a(x, t), are not
yet known, so there is no way for us to determine the forward attracting set at the moment
of observation. Nevertheless, the pullback attractor provides partial information about what
may happen in the future.

In order to further develop modelling of information processing by means of dynamical
systems with plastic self-organising vector fields, we needed to show that the problem was
well-posed mathematically, which is one of the results of this paper obtained under some
simplifying assumptions. We formulated the conditions under which the vector fields in
question remain smooth. At the same time, we have shown that asymptotic dynamics can
be formulated in terms of non-autonomous and/or random attractors. This provides us with
a firm foundation for a deeper understanding of the potential capabilities of systems with
plastic adaptable rules of behaviour.

The model presented here offers many interesting mathematical challenges, such as the
rigorous analysis of parameteter-free bifurcations occurring as a result of spontaneous evo-
lution of the velocity field of the dynamical system. The necessary background theory is yet
to be developed.
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