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Abstract
This paper concerns with a reaction–diffusion system modeling the population dynamics
of the predator and prey, in which the predator moves toward the gradient of concentration
of some chemical released by prey instead of moving directly toward the higher density
of prey. The first objective is to investigate the global existence and boundedness of the
unique classical solution. Then we study the asymptotic stabilities of nonnegative spatially
homogeneous equilibria. Moreover, the convergence rates are also studied.
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1 Introduction

In this paper, we consider the following predator–prey model with nonlinear “indirect prey-
taxis”:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = d1�u − ∇ · (uχ(w)∇w) + bug(v) − uh(u), x ∈ �, t > 0,
wt = d2�w − μw + rv, x ∈ �, t > 0,
vt = d3�v + f (v) − ug(v), x ∈ �, t > 0,
∂νu = ∂νw = ∂νv = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), x ∈ �.

(1.1)

In this model, � is a bounded domain in Rn with smooth boundary ∂�, ∂ν = ∂
∂ν

and ν is the
unit outward normal vector of ∂�. Functions u and v are, respectively, population densities
of the predator and prey, and w is the concentration of chemoattractant released by the prey.
Here d1, d2, d3, b, μ, r are positive constants. The decay rate of the chemical w is μ, and
the parameter r is the production rate. The term χ(w) is the chemotactic sensitivity which

This work was supported by NSFC Grant 11771110.

B Mingxin Wang
mxwang@hit.edu.cn

1 School of Mathematics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-019-09778-7&domain=pdf
http://orcid.org/0000-0001-9587-3434


1292 Journal of Dynamics and Differential Equations (2020) 32:1291–1310

depends only upon w. The term uh(u) describes the population kinetic of the predator u.
Function g(v) is the functional response accounting for the intake rate of the predator as a
function of prey density. And f (v) is the growth function of prey.

The system (1.1), which was recently proposed by Tello and Wrzosek [17], describes
“indirect prey-taxis” in the sense that the predator moves following the gradient of some
chemicals which indicate the presence of prey instead of moving directly toward the higher
density of prey. The substance released by the prey, such as pheromones, chemical alarm
cues, sexual signals, can be viewed as the chemoattractant for the foraging predator. The
known example is that the wolf spider Pardosa milvina responses to chemical cues left by
the prey [7]. For the detailed biological background, please refer to [17] and the references
therein. For the special case b = d3 = 0, h(u) = 0 and ug(v) is replaced by vF0(u), where
F0 is positive, bounded, smooth function and satisfies

F0(0) = 0, lim
z→∞ F0(z) = Fm

with positive constant Fm , the global existence of solutions, linearized stability and asymp-
totic behavior of steady states in two dimensional case for (1.1) were established. It was
proved in [17] that the positive constant steady state may be unstable if chemotactic sen-
sitivity or the rate of release of the chemoattractant is big enough. However, to our best
knowledge, no other results are available. Studies concerning the model (1.1) with general
functional responses and nonlinear indirect prey-taxis are required.

In order to better understand the system (1.1), it is worth mentioning some studies for
the prey-taxis system in which the movement of the predator is determined by the prey
density gradient. In the spatial predator–prey interaction, in addition to the random diffusion
of predator and prey, the predator has the tendency to move towards the area with higher
density of prey population. Kareiva andOdell [10] first derived a prey-taxis model to describe
the predator aggregation in high prey density areas. Since then, various reaction–diffusion
models have been proposed to interpret the prey-taxis phenomenon [1,4,15]. The general
predator–prey model with prey-taxis reads as follows

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u − χ0∇ · (u∇v) + bug(v) − uh(u), x ∈ �, t > 0,
vt = d3�v + f (v) − ug(v), x ∈ �, t > 0,
∂νu = ∂νv = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.2)

where the constant χ0 > 0 and the term χ0∇ · (u∇v) describes the tendency of the predator
moving towards the increasing prey gradient direction. This system has been studied bymany
authors. Lee et al. [13] studied the pattern formation of (1.2), they showed that prey-taxis
in most cases tends to stabilize predator–prey interactions, which is an opposite result to
the case of Keller-Segel chemotaxis system (the chemotaxis may lead to the formation of
aggregates or inhomogeneous space patterns [3]). In [12], Lee et al. studied the continuous
travelingwaves for (1.2) and they showed that prey-taxis can reduce the likelihood of effective
biocontrol. Wu et al. [27] investigated the global existence and boundedness of solutions of
(1.2) under a smallness assumption on χ0. Jin and Wang [9] proved the global boundedness
of solution and stabilities of nonnegative spatially homogeneous equilibria of (1.2) in the
two-dimensional case.Recently, Itwas shown in [24] that the prey-taxis destabilizes predator–
prey homogeneity when prey repulsion is present (i.e. χ0 < 0). Moreover, the nonconstant
positive steady states of a wide class of prey-taxis systems with general functional responses
over 1-D domain were obtained in [24]. For more related works, we refer the readers to
[5,16,18,19,25].
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In the present paper, the initial data u0, w0, v0 are supposed to satisfy

u0, w0, v0 ≥, �≡ 0 and u0, w0, v0 ∈ W 1,∞(�).

And we suppose that χ, h, f and g satisfy the following hypotheses [9,19,27]:

(A1) The function χ ∈ C2([0,∞)), χ ≥ 0. The well known examples are

(i) χ(s) = χ1, (ii) χ(s) = χ1

s + ε
, (iii) χ(s) = χ1

(s + ε)2

with positive constants χ1, ε.
(A2) The function g ∈ C2([0,∞)), g(0) = 0, g(s) > 0 in (0,∞). The typical examples

are

(type I) g(s) = γ s, (type II) g(s) = γ s

l + s
,

(type III) g(s) = γ sκ

lκ + sκ
, (Ivlev type) g(s) = γ (1 − e−ls),

where γ, l, κ are positive constants and κ > 1.
(A3) The function h ∈ C2([0,∞)) and there exist two constants a > 0 and θ ≥ 0 such that

h(s) ≥ a and h′(s) ≥ θ in [0,∞). In some sense, the constant a can be regarded as
the minimal death rate of the predator. The typical example is h(s) = a + θs.

(A4) The function f ∈ C2([0,∞)) satisfying f (0) = 0, and there exist two positive
constants η, K such that f (s) ≤ ηs for s ≥ 0, f (K ) = 0 and f (s) < 0 for s > K .
Some examples are

(logistic) f (s) = ηs
(
1 − s

K

)
, (Allee effect) f (s) = η′s

(
1 − s

K

) ( s

N
− 1

)

with 0 < N < K and η′ = 4K N
(K−N )2

η.

Throughout this paper we denote ‖ · ‖p = ‖ · ‖L p(�), and use C and Ci to denote the
generic positive constants.

In contrast to the prey-taxis system (1.2), themodel (1.1) involves chemoattractantwhich is
released by the prey and attracts the predator. A natural question is: Does the chemoattractant
affect the dynamical properties of the predator and prey? Our conclusions show that, in “most
situations”, the chemoattractant does not affect the dynamical properties of the predator
and prey.

The first result of this paper asserts that the solution of the prey-taxis system (1.1) exists
globally and maintains bounded. This property is the same as that of the classical problem
of predator–prey model without prey-taxis:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u + bug(v) − uh(u), x ∈ �, t > 0,
vt = d3�v + f (v) − ug(v), x ∈ �, t > 0,
∂νu = ∂νv = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �.

(1.3)

Theorem 1.1 Let n ≥ 1 and the hypotheses (A1)–(A4) hold. Then (1.1) has a unique non-
negative and bounded global solution (u, w, v), and

u, w, v ∈ C(�̄ × [0,∞)) ∩ C2,1(�̄ × (0,∞)).

Remark 1.1 We note that the solution of (1.2) exists globally in two-dimensional case ([9,
Theorem 1.1]). In the higher dimensional case (n ≥ 3), if χ0 is small and g(v) ≤ c for some
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c > 0, then (1.2) admits a unique nonnegative global bounded solution ([27, Theorem 1.1]).
It remains unknown whether or not the solution of (1.2) blows up in higher dimensional case
when χ0 is large. However, for the system (1.1), Theorem 1.1 claims the global existence
and boundedness of solution of (1.1). This also shows that, compared to the prey-taxis, the
indirect prey-taxis will prevent the growth of the predator to ensure the global existence and
boundedness of the solution.

The second goal of this paper is to understand the role of the indirect prey-taxis in the global
stabilities of nonnegative spatially homogeneous equilibria of (1.1). The global stability of
the prey-taxis system (1.2) has been studied in [9]. Therefore, we are able to compare the
stability results of (1.1) with that of (1.2).

Let ϕ(v) = f (v)/g(v). In order to achieve our aim, we shall need other assumptions [9]:

(A2)′ Function g ∈ C2([0,∞)), g(0) = 0, g(s) > 0 in (0,∞), and g′(s) > 0 in [0,∞).
(A5) Function ϕ ∈ C1([0,∞)), ϕ(0) > 0 and ϕ′(s) < 0 in [0,∞).

Remark 1.2 TheHolling type I, type II and Ivlev type response functions satisfy the condition
(A2)′. Moreover, if f is of logistic type and g is of Holling type I or type II with l > K , then
(A5) is fulfilled. We should mention that (A5) can not be satisfied by the bistable function
f (v) or the Holling type III response function g(v) (see [9]).

Let us first note that the possible homogeneous steady states of the system (1.1) are
given by

(us, ws, vs) =
{

(0, 0, 0), (0, r K/μ, K ) if bg(K ) ≤ a,

(0, 0, 0), (0, r K/μ, K ), (u∗, rv∗/μ, v∗) if bg(K ) > a,

where the positive constants u∗, v∗ are determined by
{
bu∗g(v∗) − u∗h(u∗) = 0,
f (v∗) − u∗g(v∗) = 0.

(1.4)

It is easy to deduce that, if g, h and f take biological meaningful forms like some of those
given in (A2)′, (A3)–(A5), then (u∗, v∗) is uniquely determined and can be explicitly found.
Hence, in what follows, we shall suppose that (1.4) has a unique positive solution (u∗, v∗).
Moreover, if f and g satisfy the assumptions (A2)′ and (A4), then by the second equation of
(1.4) we have v∗ < K , and hence m = max{‖v0‖∞, K } > v∗.

In the case of bg(K ) > a, we shall show that if the chemotactic coefficient χ(w) is small
or one of the diffusion coefficients of the predator and chemical is large then the positive
spatially homogeneous equilibrium (u∗, rv∗/μ, v∗) is globally asymptotically stable.

Theorem 1.2 Assume bg(K ) > a and the hypotheses (A1), (A2)′,(A3)–(A5) are satisfied.
Let (u, w, v) be the unique bounded global solution of (1.1), which is given by Theorem 1.1.
Set

m = max{‖v0‖∞, K }, M = max {‖w0‖∞, rm/μ} ,

and

χ̂ = sup
z∈[0,M]

χ(z), k1 = inf
z∈[0,m] g

′(z), k2 = inf
z∈[0,m] |ϕ

′(z)|.

If

χ̂2

d1d2
<

16μbk1k2
r2u∗

, (1.5)
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then (u∗, rv∗/μ, v∗) is globally asymptotically stable. Furthermore, if we further assume
θ > 0, then (u∗, rv∗/μ, v∗) is exponentially stable, i.e., there exist constants C, λ > 0
such that

‖u − u∗‖∞ + ‖w − rv∗/μ‖∞ + ‖v − v∗‖∞ ≤ Ce−λt , ∀ t > 0. (1.6)

In the case of bg(K ) ≤ a, the following theorem asserts that the semi-trivial spatially
homogeneous equilibrium (0, r K/μ, K ) is globally asymptotically stable.

Theorem 1.3 Let the hypotheses (A1), (A2)′,(A3)–(A5) be satisfied and (u, w, v) be the
unique bounded global solution of (1.1), which is given by Theorem 1.1.

(i) If bg(K ) < a, then (0, r K/μ, K ) is globally asymptotically stable with exponential
rate, i.e., there exist constants C, λ > 0 such that

‖u‖∞ + ‖w − r K/μ‖∞ + ‖v − K‖∞ ≤ Ce−λt , ∀ t > 0. (1.7)

(ii) If bg(K ) = a, then (0, r K/μ, K ) is globally asymptotically stable. Furthermore, if
θ > 0, then (0, r K/μ, K ) is algebraically stable, i.e., there exist constants C, λ > 0
such that

‖u‖∞ + ‖w − r K/μ‖∞ + ‖v − K‖∞ ≤ C(t + 1)−λ, ∀ t > 0. (1.8)

In the conditions (A3) and (A4), constants a and K can be considered as the minimal
death rate of predator and carrying capacity of prey, respectively. Hence, the maximal value
of the predation is g(K ). The cases g(K ) > a/b and g(K ) ≤ a/b can be regarded as the
strong and weak predation, respectively.

In the strong predation case (g(K ) > a/b), under our assumptions, the problem (1.1) has a
unique positive constant steady state (u∗, rv∗/μ, v∗) and it is globally asymptotically stable.
Furthermore, if θ > 0, then (u∗, rv∗/μ, v∗) is also exponentially stable (Theorem 1.2).

Noticing that the condition (1.5) involves the coefficients d2, μ, r . Hence, the chemoat-
tractant plays an important role in the stability of (u∗, rv∗/μ, v∗). It is observed that the
value of k2 also affects the stability of (u∗, rv∗/μ, v∗). Moreover, from the condition (1.5)
we discover that the diffusion rate of the prey does not influence the long time behavior of
solution of (1.1). Since the predator responses to the chemoattractant released by prey rather
than the prey itself, the diffusion of prey may be negligible in this case.

In the weak predation case (g(K ) ≤ a/b), the problem (1.1) has no positive constant
steady state and the semi-trivial constant steady state (0, r K/μ, K ) is globally asymptot-
ically stable (Theorem 1.3). This shows that, in the weak predation case, the presence of
the chemoattractant does not influence the steady states and their stabilities for the problem
(1.1). In contrast to the prey-taxis system (1.2) in such a case, please refer to [9, Theorem
1.3 (1)].

For the asymptotic behavior of solution, in contrast to the classical predator–prey model
(1.3), we have the following assertions:

(i) in the weak predation case, the asymptotic dynamical properties of (1.1) are the same
as those of (1.3).

(ii) in the strong predation case, under the assumption (1.5), the asymptotic dynamical
properties of (1.1) are the same as those of (1.3).

The proofs of Theorems 1.2 and 1.3 rely on two Lyapunov functionals. The construc-
tions of these Lyapunov functionals are inspired by [9]. However, the arguments leading to
Theorems 1.2 and 1.3 are different from that of [9] which are based on LaSalle’s invariant
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principle. Our method depends on an important lemma (see Lemma 3.1) and some basic
arguments which seems friendlier to the readers.

The methods in the proofs of Theorems 1.2 and 1.3 can be applied to the model (1.2). The
case bg(K ) = a and θ = 0 was not considered in [9] for the problem (1.2). Using the method
in the proof of Theorem 1.3 (ii), we can show that the semi-trivial spatially homogeneous
equilibrium (0, K ) is globally asymptotically stable for the problem (1.2) in this case.

The article is organized as follows. Section 2 provides the uniqueness, global existence
and boundedness of the classical solution of (1.1). Section 3 is devoted to proving the global
stability results in Theorems 1.2 and 1.3. In the last section, we present two examples.

2 Existence, Uniqueness, Boundedness and Uniform Estimates of
Global Solution

2.1 Existence and Uniqueness of Local Solution, Some Preliminaries

We first give a claim concerning the local-in-time existence of classical solution to (1.1).

Lemma 2.1 There exists a T̂ ∈ (0,∞] and a unique nonnegative solution (u, w, v) of (1.1)
defined in [0, T̂ ) and satisfies

u, w, v ∈ C(�̄ × [0, T̂ )) ∩ C2,1(�̄ × (0, T̂ )),

and

u, w > 0, 0 < v ≤ m := max{‖v0‖∞, K } in � × (0, T̂ ). (2.1)

Moreover, the “existence time T̂ ” can be chosen maximal: either T̂ = ∞, or T̂ < ∞ and

lim sup
t→T̂

(‖u(·, t)‖∞ + ‖v(·, t)‖∞) = ∞.

Proof The local-in-time existence and uniqueness of classical solution to the problem (1.1)
follow from Amann’s theorem [2, Theorem 7.3 and Corollary 9.3] (cf. [27, Lemma 2.1]).
The estimates (2.1) can be derived by the maximum principle.

Lemma 2.2 The solution component w of (1.1) satisfies

‖w(·, t)‖∞ ≤ M, ∀ t ∈ (0, T̂ ), (2.2)

where M = max {‖w0‖∞, rm/μ}. And for any p ∈ [2,∞), there is K p = K (p) > 0 such
that

‖∇w(·, t)‖p ≤ Kp, ∀ t ∈ (0, T̂ ). (2.3)

Moreover, there exists a positive constant C such that the solution component u of (1.1)
satisfies

‖u(·, t)‖1 < C, ∀ t ∈ (0, T̂ ). (2.4)

Proof By using (2.1) and the maximum principle, one can deduce from the w-equation in
(1.1) that

‖w(·, t)‖L∞(�) ≤ max {‖w0‖∞, rm/μ} =: M, ∀ t ∈ (0, T̂ ).
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In view of the variation-of-constants formula, it yields

w(·, t) = et(d2�−μ)w0 + r
∫ t

0
e(t−s)(d2�−μ)v(·, s)ds, t ∈ (0, T̂ ).

Making use of (2.1) and the well-known semigroup estimates [6,8,26] we have that, for some
λ1, Ci > 0, i = 1, ..., 5,

‖∇w(·, t)‖p ≤ ‖∇et(d2�−μ)w0‖p + r
∫ t

0
‖∇e(t−s)(d2�−μ)v(·, s)‖pds

≤ C1e
−λ1t‖∇w0‖p + rC2

∫ t

0
e−λ1(t−s)(t − s)−

1
2 ‖v(·, s)‖pds

≤ C3‖w0‖W 1,∞(�) + C4

∫ t

0
e−λ1(t−s)(t − s)−

1
2 ds

≤ C3‖w0‖W 1,∞(�) + C5, t ∈ (0, T̂ ).

This implies (2.3).
We next prove (2.4). It follows from the first and third equation in (1.1) that

d

dt

(∫

�

udx + b
∫

�

vdx

)

+
∫

�

uh(u)dx = b
∫

�

f (v)dx, t ∈ (0, T̂ ).

Let N0 = supz∈[0,m] | f (z)|. Recall the assumption (A3) and the estimate for v in (2.1),
it yields

d

dt

(∫

�

udx + b
∫

�

vdx

)

+ a
∫

�

udx +
∫

�

vdx ≤ C6, t ∈ (0, T̂ ), (2.5)

where C6 = (bN0 + m)|�|. Applying the Gronwall’s inequality to (2.5) we have (2.4). ��
Next we provide a lemma which claims that the global existence and L∞-boundedness

of u can be reduced to proving its L p-boundedness for p > n/2 and p ≥ 1.

Lemma 2.3 Let n ≥ 1 and (u, w, v) be the unique solution of (1.1) in � × (0, T̂ ). Suppose
that there exists a number p ≥ 1 and p > n/2 for which

sup
t∈(0,T̂ )

‖u(·, t)‖p < ∞. (2.6)

Then T̂ = ∞ and

sup
t>0

‖u(·, t)‖∞ < ∞. (2.7)

Proof The estimate (2.2) implies

|χ(w)| ≤ ‖χ‖L∞(0,M), ∀ t ∈ (0, T̂ ).

Note that (bug(v) − uh(u))+ ≤ bug(v) and

b‖ug(v)‖p ≤ bN‖u‖p, t ∈ (0, T̂ ),

where N = supz∈[0,m] g(z). Thanks to (2.1), (2.3) and (2.4), similar to the proof of [9, Lemma

3.1] (see also [3, Lemma 3.2]), one can deduce that T̂ = ∞ and (2.7) holds. ��
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2.2 Proof of Theorem 1.1

Let n ≥ 2 and p > n/2. Clearly, p > 1. Note that

pn − n

2 − n + pn
∈ (0, 1).

Hence, we can choose q > p such that

β := pn − pn/q

2 − n + pn
∈ (0, 1) and

qβ

p
∈ (0, 1). (2.8)

Let

χ̂ = sup
z∈[0,M]

χ(z), N = sup
z∈[0,m]

g(z).

Multiplying the first equation of (1.1) by u p−1 and integrating the results over �, we obtain

1

p

d

dt

∫

�

u pdx = −(p − 1)
∫

�

u p−2|∇u|2dx + (p − 1)
∫

�

u p−1χ(w)∇u · ∇wdx

+ b
∫

�

u pg(v)dx −
∫

�

u ph(u)dx

≤ − p − 1

2

∫

�

u p−2|∇u|2dx + p − 1

2

∫

�

u pχ2(w)|∇w|2dx

+ b
∫

�

u pg(v)dx −
∫

�

u ph(u)dx

≤ − p − 1

2

∫

�

u p−2|∇u|2dx + (p − 1)χ̂2

2

∫

�

u p|∇w|2dx

+ (bN − a)

∫

�

u pdx

= −2(p − 1)

p2

∫

�

|∇u
p
2 |2dx + (p − 1)χ̂2

2

∫

�

u p|∇w|2dx

+ (bN − a)

∫

�

u pdx, t ∈ (0, T̂ ), (2.9)

where we have used Young’s inequality, (2.1) and (2.2) and the assumption (A3). By use of
Young’s inequality again and (2.3), it yields

(p − 1)χ̂2

2

∫

�

u p|∇w|2dx ≤ 1

2

∫

�

uqdx + C1, ∀ t ∈ (0, T̂ ) (2.10)

with some C1 > 0, and there is C2 > 0 such that

bN
∫

�

u pdx ≤ 1

2

∫

�

uqdx + C2, ∀ t ∈ (0, T̂ ). (2.11)

Inserting (2.10) and (2.11) into (2.9) gives

1

p

d

dt

∫

�

u pdx + a
∫

�

u pdx + 2(p − 1)

p2

∫

�

|∇u
p
2 |2dx ≤

∫

�

uqdx + C3 (2.12)
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for all t ∈ (0, T̂ ), where C3 = C1 +C2. Note that (2.8). Taking advantage of the Gagliardo-
Nirenberg inequality and (2.4) firstly, and using the Young’s inequality secondly, we have

∫

�

uqdx = ‖u p/2‖2q/p
2q/p ≤ C4(‖∇u p/2‖2qβ/p

2 ‖u p/2‖2q(1−β)/p
2/p + ‖u p/2‖2q/p

2/p )

≤ C5(‖∇u p/2‖2qβ/p
2 + 1)

≤ 2(p − 1)

p2
‖∇u p/2‖22 + C6

= 2(p − 1)

p2

∫

�

|∇u
p
2 |2dx + C6, ∀ t ∈ (0, T̂ ). (2.13)

Combined (2.13) with (2.12) allows us to deduce

1

p

d

dt

∫

�

u pdx + a
∫

�

u pdx ≤ C7, ∀ t ∈ (0, T̂ ).

Thus we have, by the Gronwall inequality,

‖u(·, t)‖p ≤ C8, t ∈ (0, T̂ ). (2.14)

Using (2.4) and Lemma 2.3 with p = 1 when n = 1, and using (2.14) and Lemma 2.3 when
n ≥ 2, we can get the conclusion of Theorem 1.1 immediately.

2.3 Uniform Estimates of the Global Solution

Theorem 2.1 Let (u, w, v) be the unique global bounded classical solution of (1.1), which
is given by Theorem 1.1. Then for any given 0 < α < 1, there exists C(α) > 0 such that

‖u, w, v‖
C2+α,1+ α

2 (�̄×[1,∞))
≤ C(α). (2.15)

Proof This proof is based on the standard parabolic regularity for parabolic equations (cf.
[20, Theorem 2.1], [21, Theorem 2.1] and [23, Theorem 2.2]). For the reader’s convenience,
we sketch the proof here. Applying the interior L p estimate ([14, Theorems 7.30 and 7.35])
to the equations of w and v firstly and using the Sobolev embedding theorem secondly
we have

‖w, v‖
W 2,1

p

(
�×

[
i+ 1

4 ,i+3
]) + ‖w, v‖

C1+α, 1+α
2

(
�̄×

[
i+ 1

4 ,i+3
]) ≤ C1, ∀ i ≥ 0,

and hence

‖w, v‖
C1+α, 1+α

2
(
�̄×

[
1
4 ,∞

)) ≤ C2. (2.16)

Note that w satisfies
⎧
⎨

⎩

wt − d2�w + μw = rv, x ∈ �, t > 0,
∂νw = 0, x ∈ ∂�, t > 0,
w(x, 0) = w0(x), x ∈ �.

By use of the interior Schauder estimate [11] and (2.16),

‖w‖
C2+α,1+ α

2
(
�̄×

[
i+ 1

3 ,i+3
]) ≤ C3, ∀ i ≥ 0,
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which implies

‖w‖
C2+α,1+ α

2
(
�̄×

[
1
3 ,∞

)) ≤ C4. (2.17)

Rewrite the equation of u in (1.1) as
⎧
⎨

⎩

ut − d1�u + χ(w)∇w · ∇u = G(x, t), x ∈ �, t > 0,
∂νu = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), x ∈ �,

(2.18)

where

G(x, t) = −uχ ′(w)|∇w|2 − uχ(w)�w + bug(v) − uh(u).

Due to (2.16), (2.17) and the boundedness of (u, w, v), we see that ‖G‖L∞(�×[i+ 1
3 ,i+3]) ≤ C5

and ‖χ(w)∇w‖L∞(�×[i+ 1
3 ,i+3]) ≤ C5 for all i ≥ 0. Applying the interior L p estimate to

(2.18) we have ‖u‖W 2,1
p (�×[i+ 1

2 ,i+3]) ≤ C6 for all i ≥ 0. Then the embedding theorem gives

‖u‖
C1+α, 1+α

2
(
�̄×

[
i+ 1

2 ,i+3
]) ≤ C7, ∀ i ≥ 0. (2.19)

It then follows that

‖bug(v) − uh(u)‖
Cα, α

2
(
�×

[
i+ 1

2 ,i+3
]) ≤ C8, ∀ i ≥ 0.

This combined with (2.17) yields

‖G‖
Cα, α

2
(
�̄×

[
i+ 1

2 ,i+3
]) + ‖χ(w)∇w‖

Cα, α
2

(
�̄×

[
i+ 1

2 ,i+3
]) ≤ C9, ∀ i ≥ 0.

Applying the interior Schauder estimate to (2.18) we have ‖u‖
C2+α,1+ α

2 (�̄×[i+1,i+3]) ≤ C10

for all i ≥ 0. Thus,

‖u‖
C2+α,1+ α

2 (�̄×[1,∞))
≤ C11. (2.20)

Similarly, thanks to (2.16) and (2.19), we can apply the interior Schauder estimate to the
equation of v and get

‖v‖
C2+α,1+ α

2 (�̄×[1,∞))
≤ C12. (2.21)

Then (2.15) follows from (2.17), (2.20) and (2.21). The proof is complete. ��

3 Global Stability

Throughout this section we always assume that (u, w, v) is a bounded global solution of
(1.1). We shall prove Theorems 1.2 and 1.3 by constructing suitable Lyapunov functionals.
Let us first recall two basic results.

Lemma 3.1 ([22, Lemma 1.1]) Let τ ≥ 0, c > 0 be constants, ψ(t) ≥ 0,
∫ ∞
τ

ρ(t)dt < ∞.
Assume that ϕ ∈ C1([τ,∞)), ϕ is bounded from below and satisfies

ϕ′(t) ≤ −cψ(t) + ρ(t) in [τ,∞).

If either ψ ∈ C1([τ,∞)) and ψ ′(t) ≤ k in [τ,∞) for some constant k > 0, or
ψ ∈ Cα([τ,∞)) and ‖ψ‖Cα([τ,∞)) ≤ k for some constants 0 < α < 1 and k > 0,
then limt→∞ ψ(t) = 0.
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Lemma 3.2 ([9, Lemma 4.1]) Let g satisfy the conditions in (A2)′ and (u, w, v) be a solution
of (1.1). Define

ζ(v) =
∫ v

k

g(s) − g(k)

g(s)
ds

for the constant k > 0. Then ζ is a convex function and ζ ≥ 0 on [0,∞). Furthermore, if
v → k as t → ∞, then there exists a constant T0 > 0 such that for all t ≥ T0 there holds

g′(k)(v − k)2

4g(k)
≤ ζ(v) ≤ g′(k)(v − k)2

g(k)
. (3.1)

3.1 Global Stability of (u∗, rv∗/�, v∗): Proof of Theorem 1.2

In this subsection we always assume that bg(K ) > a and (1.5) holds. The constant K is given
in the assumption (A4), and (u∗, v∗) is given by (1.4). For the convenience, let w∗ = rv∗/μ.
Due to (1.5), we fix a constant δ such that

u∗χ̂2

4d1d2
< δ <

4μbk1k2
r2

, (3.2)

where χ̂ , k1, k2 are given by Theorem 1.2.

Lemma 3.3 Let δ be given by (3.2). Let the conditions in Theorem 1.2 hold. Then there is
ε > 0 such that functions E1(t), F1(t) defined by

E1(t) =
∫

�

[(

u − u∗ − u∗ ln
u

u∗

)

+ δ

2
(w − w∗)2 + b

∫ v

v∗

g(s) − g(v∗)
g(s)

ds

]

dx,

F1(t) = θ

∫

�

(u − u∗)2dx + ε

∫

�

[
(v − v∗)2 + (w − w∗)2 + |∇u|2]dx

satisfy

E ′
1(t) ≤ −F1(t), t > 0. (3.3)

Proof For the convenience, we set

A1(t) =
∫

�

(

u − u∗ − u∗ ln
u

u∗

)

dx,

B1(t) = δ

2

∫

�

(w − w∗)2dx,

D1(t) = b
∫

�

∫ v

v∗

g(s) − g(v∗)
g(s)

dsdx .

Evidently, A1(t), B1(t), D1(t) ≥ 0. Let χ̂ = supz∈[0,M] χ(z), where M is given by (2.2).
Since (u, w, v) is the global bounded solution to (1.1), there is c > 0 such that

‖u(·, t)‖∞ ≤ c for all t ∈ [0,∞). (3.4)
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Let us recall from the assumption (A3) that h′(s) ≥ θ for s ∈ [0,∞). The straightforward
calculation gives

A′
1(t) = −d1u∗

∫

�

|∇u|2
u2

dx + u∗
∫

�

χ(w)∇u · ∇w

u
dx + b

∫

�

(u − u∗)[g(v) − g(v∗)]dx

−
∫

�

(u − u∗)(h(u) − h(u∗))dx

≤ −d1u∗
∫

�

|∇u|2
u2

dx + u∗χ̂
∫

�

∣
∣
∣
∣
∇u

u
· ∇w

∣
∣
∣
∣ dx + b

∫

�

(u − u∗)[g(v) − g(v∗)]dx

−θ

∫

�

(u − u∗)2dx,

and

B ′
1(t) = −δd2

∫

�

|∇w|2dx − δμ

∫

�

(w − w∗)2dx + δr
∫

�

(w − w∗)(v − v∗)dx,

as well as

D′
1(t) = b

∫

�

g(v) − g(v∗)
g(v)

vtdx

= b
∫

�

g(v) − g(v∗)
g(v)

[d3�v + f (v) − ug(v)]dx

= − bd3g(v∗)
∫

�

g′(v)

g2(v)
|∇v|2dx + b

∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− u

)

= − bd3g(v∗)
∫

�

g′(v)

g2(v)
|∇v|2dx − b

∫

�

[g(v) − g(v∗)](u − u∗)dx

+ b
∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− u∗

)

dx

≤ − b
∫

�

[g(v) − g(v∗)](u − u∗)dx + b
∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− u∗

)

dx .

Thus we have

E ′
1(t) ≤ I1(t) + I2(t), (3.5)

where

I1(t) = − d1u∗
∫

�

|∇u|2
u2

dx + u∗χ̂
∫

�

∣
∣
∣
∣
∇u

u
· ∇w

∣
∣
∣
∣ dx − δd2

∫

�

|∇w|2dx,

I2(t) = − θ

∫

�

(u − u∗)2dx − δμ

∫

�

(w − w∗)2dx + δr
∫

�

(w − w∗)(v − v∗)dx

+ b
∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− u∗

)

dx . (3.6)

We first deal with I1(t). An application of the Young inequality yields

u∗χ̂
∫

�

∣
∣
∣
∣
∇u

u
· ∇w

∣
∣
∣
∣ dx ≤ u2∗χ̂2

4δd2

∫

�

|∇u|2
u2

dx + δd2

∫

�

|∇w|2dx .

123



Journal of Dynamics and Differential Equations (2020) 32:1291–1310 1303

Consequently,

I1(t) ≤ −
(

u∗d1 − u2∗χ̂2

4δd2

) ∫

�

|∇u|2
u2

dx := −ε0

∫

�

|∇u|2
u2

dx .

It follows from (3.2) that ε0 > 0, and hence by (3.4),

I1(t) ≤ −ε0

c2

∫

�

|∇u|2dx := −ε1

∫

�

|∇u|2dx . (3.7)

We next handle I2(t). It follows from the second equation of (1.4) that u∗ = f (v∗)/g(v∗).
Thanks to the definitions of k1, k2, the last term in the right hand side of (3.6) can be
estimated as

b
∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− u∗

)

dx

= b
∫

�

[g(v) − g(v∗)]
(

f (v)

g(v)
− f (v∗)

g(v∗)

)

dx

= b
∫

�

[g(v) − g(v∗)][ϕ(v) − ϕ(v∗)]dx

= b
∫

�

g′(ξ1)ϕ′(ξ2)(v − v∗)2dx ≤ −bk1k2

∫

�

(v − v∗)2dx, (3.8)

where ξ1, ξ2 are between v and v∗, and k1, k2 come from Theorem 1.2. Insert (3.8) into
(3.6) yields

I2(t) ≤ −θ

∫

�

(u − u∗)2dx − δμ

∫

�

(w − w∗)2dx + δr
∫

�

(w − w∗)(v − v∗)dx

− bk1k2

∫

�

(v − v∗)2dx . (3.9)

Note that bk1k2 > δr2/(4μ) by (3.2), we can choose ε2 > 0 small such that

δμ − ε2 > 0, ε3 := bk1k2 − δ2r2

4(δμ − ε2)
> 0.

Again, by Young’s inequality, there holds

δr
∫

�

(w − w∗)(v − v∗)dx ≤ (δμ − ε2)

∫

�

(w − w∗)2dx + δ2r2

4(δμ − ε2)

∫

�

(v − v∗)2dx .

This combined with (3.9) allows us to derive

I2(t) ≤ −θ

∫

�

(u − u∗)2dx − ε2

∫

�

(w − w∗)2dx − ε3

∫

�

(v − v∗)2dx . (3.10)

Finally, according to (3.5), (3.7) and (3.10), by choosing ε = min{ε1, ε2, ε3} we then
get (3.3). ��
Lemma 3.4 Under the conditions of Theorem 1.2, for any 0 < α < 1, the following holds:

‖u − u∗‖C2+α(�̄) + ‖w − w∗‖C2+α(�̄) + ‖v − v∗‖C2+α(�̄) → 0 as t → ∞. (3.11)

Proof Let E1(t), F1(t) be given Lemma 3.3. Clearly, E1(t) ≥ 0 as g′(s) > 0 in [0,∞).
Thanks to (2.15), it is easy to see that F1(t) ∈ Cα/2([1,∞)) and‖F1‖Cα/2([1,∞)) ≤ k in [1,∞)
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for some constant k > 0. Recall (3.3), we can apply Lemma 3.1 to deduce lim
t→∞ F1(t) = 0.

That is,

lim
t→∞

(‖w − w∗‖2 + ‖v − v∗‖2 + ‖∇u‖2
) = 0,

and

lim
t→∞ ‖u − u∗‖2 = 0 if θ > 0.

Take 0 < α < α′ < 1. According to Theorem 2.1, in the space C2+α′
(�̄), u(·, t), w(·, t) and

v(·, t) are bounded for t ≥ 1. Using the compact arguments and uniqueness of limits we can
show that (3.11) holds when θ > 0, and

lim
t→∞

(‖w − w∗‖C2+α(�̄) + ‖v − v∗‖C2+α(�̄)

) = 0 (3.12)

when θ = 0.
In the following we consider the case θ = 0. Define f̄ = 1

|�|
∫

�
f dx for f ∈ L1(�). It

follows from the third equation of (1.1) that

v̄′(t) = 1

|�|
∫

�

[ f (v) − ug(v)]dx

= 1

|�|
∫

�

[ f (v) − f (v∗)]dx − 1

|�|
∫

�

u[g(v) − g(v∗)]dx

−g(v∗)
|�|

∫

�

(u − u∗)dx

= : J1(t) + J2(t) + J3(t), ∀ t ∈ (0,∞). (3.13)

It follows from (3.12) that lim
t→∞[J1(t)+J2(t)] = 0.Recall (2.15),we have‖v̄′‖Cα/2([1,∞)) ≤ k

for some positive constant k. This combined with (3.12) yields v̄′(t) → 0 as t → ∞.
Therefore, in view of (3.13), there holds J3(t) → 0 as t → ∞, i.e.,

ū(t) → u∗ as t → ∞. (3.14)

Making use of the Poincaré inequality ‖u−ū‖2 ≤ C‖∇u‖2 withC > 0, we have ‖u−ū‖2 →
0 as t → ∞. This combined with (3.14) implies

‖u − u∗‖2 ≤ ‖u − ū‖2 + ‖ū − u∗‖2 → 0 as t → ∞.

Similar to the above we can prove (3.11). This completes the proof. ��
Proof of (1.6) Let θ > 0. For the given positive constant y∗, we define h(y) = y− y∗ ln y for
y > 0. By L’Hôpital’s rule, one can easily check that

lim
y→y∗

h(y) − h(y∗)
(y − y∗)2

= lim
y→y∗

h′(y)
2(y − y∗)

= 1

2y∗
.

Remember the limit (3.11) and (3.1), it follows that there is t0 > 1 such that

1

4u∗

∫

�

(u − u∗)2dx ≤
∫

�

(

u − u∗ − u∗ ln
u

u∗

)

dx ≤ 1

u∗

∫

�

(u − u∗)2dx, (3.15)

g′(v∗)
4g(v∗)

∫

�

(v − v∗)2dx ≤
∫

�

∫ v

v∗

g(s) − g(v∗)
g(s)

dsdx ≤ g′(v∗)
g(v∗)

∫

�

(v − v∗)2dx (3.16)
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for all t > t0. Recall the definitions of E1(t) and F1(t), it follows from the right inequalities
in (3.15)–(3.16) that E1(t) ≤ C1F1(t) for all t > t0 and some C1 > 0. Inserting this into
(3.3) we get

E ′
1(t) ≤ −F1(t) ≤ − 1

C1
E1(t) for t > t0.

Thus, E1(t) ≤ C2e−σ t for t > t0 and some C2, σ > 0. In view of the left inequalities in
(3.15)–(3.16), there exist C3, C4 > 0 such that

∫

�

(u − u∗)2dx +
∫

�

(v − v∗)2dx +
∫

�

(w − w∗)2dx ≤ C3E1(t) ≤ C4e
−σ t , t > t0.

Recall that u(·, t), w(·, t) and v(·, t) are bounded in W 1,∞(�) for t > 1. Thanks to the
Gagliardo-Nirenberg inequality (with Cgn > 0)

‖ψ‖∞ ≤ Cgn‖ψ‖
n

n+2

W 1,∞(�)
‖ψ‖

2
n+2
2 , ∀ ψ ∈ W 1,∞(�), (3.17)

we can find C, λ > 0 such that

‖u − u∗‖∞ + ‖v − v∗‖∞ + ‖w − w∗‖∞ ≤ Ce−λt , t > t0.

Thus (1.6) holds, and the proof is complete. ��

3.2 Global Stability of (0, rK/�, K): Proof of Theorem 1.3

Throughout this subsection we always assume that bg(K ) ≤ a. For the convenience, we
denote K̂ = r K/μ.

Lemma 3.5 Assume that bg(K ) ≤ a. Let k1, k2 be as in Theorem 1.2 and 0 < δ1 <

(2μbk1k2)/(r2). Then functions E2(t), F2(t) defined by

E2(t) =
∫

�

(

u + δ1

2
(w − K̂ )2 + b

∫ v

K

g(s) − g(K )

g(s)
ds

)

dx,

F2(t) = (a − bg(K ))

∫

�

udx + θ

∫

�

u2dx + ε4

(∫

�

(w − K̂ )2dx +
∫

�

(v − K )2dx

)

satisfy

E ′
2(t) ≤ −F2(t), t > 0, (3.18)

where ε4 = min{δ1μ/2, bk1k2 − δ1r2/(2μ)} > 0.

Proof In view of the assumption (A3), we have h(u) ≥ a + θu, which implies that

d

dt

∫

�

udx =
∫

�

u(bg(v) − h(u))dx

= b
∫

�

u(g(v) − g(K ))dx +
∫

�

u(bg(K ) − a)dx +
∫

�

u(a − h(u))dx

≤ b
∫

�

u(g(v) − g(K ))dx + (bg(K ) − a)

∫

�

udx − θ

∫

�

u2dx .
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Similar to the proof of Lemma 3.3, by a series of calculations we can get

δ1

2

d

dt

∫

�

(w − K̂ )2dx = − δ1d2

∫

�

|∇w|2dx − δ1μ

∫

�

(w − K̂ )2dx

+ δ1r
∫

�

(w − K̂ )(v − K )dx,

and

b
d

dt

∫

�

∫ v

K

g(s) − g(K )

g(s)
dsdx ≤ − b

∫

�

u(g(v) − g(K ))dx

+ b
∫

�

[g(v) − g(K )]
(

f (v)

g(v)
− f (K )

g(K )

)

dx .

Hence, there holds

E ′
2(t) ≤ (bg(K ) − a)

∫

�

udx − θ

∫

�

u2dx + I3(t), (3.19)

where

I3(t) = − δ1μ

∫

�

(w − K̂ )2dx + δ1r
∫

�

(w − K̂ )(v − K )dx

+ b
∫

�

[g(v) − g(K )][ϕ(v) − ϕ(K )]dx (3.20)

with ϕ(v) = f (v)/g(v) and ϕ(K ) = f (K )/g(K ). The last term in the right hand side of
(3.20) can be estimated as

b
∫

�

[g(v) − g(K )][ϕ(v) − ϕ(K )]dx = b
∫

�

g′(ξ3)ϕ′(ξ4)(v − K )2dx

≤ − bk1k2

∫

�

(v − K )2dx, (3.21)

where ξ3 and ξ4 are between v and K , and k1, k2 come from Theorem 1.2. Inserting (3.21)
into (3.20) and applying the Young’s inequality to derive that

I3(t) ≤ −δ1μ

∫

�

(w − K̂ )2dx + δ1r
∫

�

(w − K̂ )(v − K )dx − bk1k2

∫

�

(v − K )2dx

≤ −δ1μ

2

∫

�

(w − K̂ )2dx −
(

bk1k2 − δ1r2

2μ

) ∫

�

(v − K )2dx

:= −ε4

(∫

�

(w − K̂ )2dx +
∫

�

(v − K )2dx

)

,

where ε4 = min{δ1μ/2, bk1k2 − δ1r2/(2μ)} > 0. This combined with (3.19) gives (3.18).
��

Proof of Theorem 1.3 (i) Assume that bg(K ) < a. Let E2(t) and F2(t) be given in Lemma 3.5,
then E ′

2(t) ≤ −F2(t). Clearly, F2(t) ≥ 0. Similar to the arguments in the proof of Lemma3.4,
one can deduce that, for any 0 < α < 1,

‖u‖C2+α(�̄) + ‖w − K̂‖C2+α(�̄) + ‖v − K‖C2+α(�̄) → 0 as t → ∞. (3.22)

��
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According to (3.22) and Lemma 3.2, there exists t0 > 1 such that

g′(K )

4g(K )

∫

�

(v − K )2dx ≤
∫

�

∫ v

K

g(s) − g(K )

g(s)
dsdx

≤ g′(K )

g(K )

∫

�

(v − K )2dx, t > t0. (3.23)

In view of the definitions of E2(t), F2(t) and the right inequality in (3.23), we get

E2(t) ≤ C1F2(t), t > t0.

It follows that

E ′
2(t) ≤ −F2(t) ≤ − E2(t)

C1
, t > t0.

This implies that there exist C2, σ > 0 such that E2(t) ≤ C2e−σ t for t > t0. By the left
inequality in (3.23) we have

∫

�

udx +
∫

�

(w − K̂ )2dx +
∫

�

(v − K )2dx ≤ C3E2(t) ≤ C4e
−σ t , t > t0. (3.24)

In light of (3.22), in the spaceW 1,∞(�), u(·, t), w(·, t) and v(·, t) are bounded for t > 1.
Making use of the Gagliardo–Nirenberg inequality

‖ψ‖∞ ≤ C5‖ψ‖
n

n+1

W 1,∞(�)
‖ψ‖

1
n+1
1 , ∀ ψ ∈ W 1,∞(�)

and (3.24), we have

‖u‖∞ ≤ C5‖u‖
n

n+1

W 1,∞(�)
‖u‖

1
n+1
1 ≤ C6e

− σ t
n+1 , t > t0. (3.25)

Similarly, it follows from the Gagliardo–Nirenberg inequality (3.17) and (3.24) that

‖w − K̂‖∞ ≤ Cgn‖w − K̂‖
n

n+2

W 1,∞(�)
‖w − K̂‖

2
n+2
2 ≤ C7e

− σ t
n+2 , t > t0, (3.26)

‖v − K‖∞ ≤ Cgn‖v − K‖
n

n+2

W 1,∞(�)
‖v − K‖

2
n+2
2 ≤ C8e

− σ t
n+2 , t > t0. (3.27)

Thanks to (3.25)–(3.27), the statement in Theorem 1.3 (i) is followed immediately.

Proof of Theorem 1.3 (ii) We first consider the case bg(K ) = a and θ > 0. Let E2(t) and
F2(t) be given in Lemma 3.5, then E ′

2(t) ≤ −F2(t). Clearly, F2(t) ≥ 0. In the present
situation,

F2(t) = θ

∫

�

u2dx + ε4

∫

�

(w − K̂ )2dx + ε4

∫

�

(v − K )2dx, t > 0.
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Similarly to the above, we can show that (3.22) holds. Let t0 > 1 be as in the proof of
Theorem 1.3 (i). Using (3.23), the Cauchy-Schwarz inequality and boundedness of (u, w, v)

we can find C9 > 0 such that

E2(t) ≤
∫

�

udx + δ1

2

∫

�

(w − K̂ )2dx + g′(K )

g(K )

∫

�

(v − K )2dx

≤ C9

(∫

�

u2dx

)1/2

+ C9

(∫

�

(w − K̂ )2dx

)1/2

+ C9

(∫

�

(v − K )2dx

)1/2

≤ √
3C9

(∫

�

[
u2 + (w − K̂ )2 + (v − K )2

]
dx

)1/2

= C9

√
3F2(t), t > t0.

��

This combined with E ′
2(t) ≤ −F2(t) leads us to E ′

2(t) ≤ −C10E2
2(t) for t > t0. Thus,

E2(t) ≤ C11
t+1 for t > t0. Recall the definition of E2(t) and the left inequality in (3.23), we

can have
∫

�

[
u + (w − K̂ )2 + (v − K )2

]
dx ≤ C12E2(t) ≤ C13

t + 1
, t > t0.

By the similar arguments in the proof of Theorem 1.3 (i), there exist C > 0 and λ > 0
such that

‖u‖∞ + ‖w − K̂‖∞ + ‖v − K‖∞ ≤ C(t + 1)−λ, t > t0.

This implies (1.8).
Now we consider the case bg(K ) = a and θ = 0. In this case,

F2(t) = ε4

∫

�

(w − K̂ )2dx + ε4

∫

�

(v − K )2dx, t > 0.

Similarly to the above it can be shown that

‖w − K̂‖C2+α(�̄) + ‖v − K‖C2+α(�̄) → 0 as t → ∞. (3.28)

Integrating the equation of v in (1.1) we have

d

dt

∫

�

vdx =
∫

�

f (v)dx −
∫

�

ug(v)dx

=
∫

�

f (v)dx +
∫

�

u(g(K ) − g(v))dx − g(K )

∫

�

udx . (3.29)

Noticing f (K ) = 0, the limit (3.28) implies
∫

�
f (v)dx+∫

�
u(g(K )−g(v))dx → 0 as t →

∞. We have known lim
t→∞

d
dt

∫

�
vdx = 0 (see the proof of Lemma 3.4). It follows from (3.29)

that lim
t→∞ ‖u‖1 = 0. Similarly to the above (compact arguments and uniqueness of limits),

we can show (3.22), which implies the globally asymptotically stability of (0, r K/μ, K ).
Theorem 1.3 (ii) is proved.
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4 Two Examples

To better understand our stability results, we shall use Theorems 1.2 and 1.3 to study two
examples which are of biologically meaningful.

Let us first consider the Lotka-Volterra predator–prey systemwith indirect prey-taxis, i.e.,

χ(w) = χ0, h(u) = a + θu, g(v) = v, f (v) = qv(1 − v/K ),

where the constants χ0, a, η, K > 0 and θ ≥ 0. Note that g′(v) = 1, g(K ) = K and

ϕ(v) = f (v)/g(v) = η(1 − v/K ), ϕ(0) = η > 0, ϕ′(v) = −η/K < 0.

It is easy to see that (A5) is satisfied, and if bK > a then the positive constant steady
state reads

(u∗, rv∗/μ, v∗) =
(

η(bK − a)

bK + θη
,
r K (a + θη)

μ(bK + θη)
,
K (a + θη)

bK + θη

)

.

According to Theorems 1.2 and 1.3, we have

• If bK > a and

χ2
0

d1d2
<

16μb(bK + θη)

r2K (bK − a)
,

then (1.1) admits a unique positive steady state (u∗, rv∗/μ, v∗).
• If bK ≤ a, then the steady state (0, r K/μ, K ) is globally asymptotically stable. This

implies that the problem (1.1) has no positive steady state.

We next study the Rosenzweig-MacArthur predator–prey system with indirect prey-taxis,
i.e.,

χ(w) = χ0, h(u) = a, g(v) = v/(L + v), f (v) = qv
(
1 − v

K

)
,

where the constantsχ0, a, L, η, K > 0 and L > K . Note that g′(v) = L/(L+v)2, g(K ) =
K/(L + K ) and

ϕ(v) = f (v)

g(v)
= η(L + v)(1 − v/K ), ϕ(0) = qL > 0, ϕ′(v) = η(1 − L/K − 2v/K ) < 0.

Then,

k1 = inf
z∈[0,m] g

′(z) = L

(L + m)2
, k2 = inf

z∈[0,m] |ϕ
′(z)| = η

(
L

K
− 1

)

,

where m = max{‖v0‖∞, K }. It is easy to see that (A5) is satisfied and if bK/(L + K ) > a,
then

(u∗, rv∗/μ, v∗) =
(
bqL[(b − a)K − aL]

K (b − a)2
,

raL

μ(b − a)
,

aL

b − a

)

.

Thanks to Theorems 1.2 and 1.3, we have

• If bK/(L + K ) > a, L > K and

χ2
0

d1d2
<

16μ(L − K )(b − a)2

r2(L + m)2[(b − a)K − aL] ,
then (1.1) admits a unique positive steady state (u∗, rv∗/μ, v∗).

• If bK/(L + K ) ≤ a, then the steady state (0, r K/μ, K ) is globally asymptotically
stable. This shows that the problem (1.1) has no positive steady state.
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