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Abstract
In this paper we develop a Kolmogorov—Arnold—Moser (KAM) theory close to two fixed
points for quasi-periodically forced nonlinear beam equation

Vit +my 4 yoxex = ¥° +ef(0t,x,y), x €0, 7],

where the forcing frequency w is a small dilatation of a fixed vector , i.e.,w = £w € R? with
& € O :=[1, 2]. We will prove the existence of real analytic quasi-periodic solutions of the
above equations under the hypothesis that the frequency w is Liouvillean. The quasi-periodic
solutions we obtain are around the equilibria, y(z, x) = +4/m, ¥(t, x) € R x [0, 7], of the
system

Vit + My + Yxxxx = y3,

and are whiskered, that is the linearized equation around + /m owns the hyperbolic direc-
tions (the hyperbolic directions are finitely many, depending on mz, and the elliptic directions
are infinitely many in our case). The proof is based on a modified KAM iteration for infinite
dimensional systems with finitely many hyperbolic directions, infinitely many elliptic direc-
tions and Liouvillean forcing frequency. We believe that the approach in this paper can be
applied also to other integrable PDEs. For example, the same strategy should work for the
non-linear wave equations and the non-linear Schrédinger equations.

Keywords Whiskered tori - KAM theorem - Liouvillean frequency - Real analytic solutions
Mathematics Subject Classification 35R25 - 37L10 - 35Q56 - 34D35
1 Introduction and Main Result

Since the pioneering works for the existence of quasi-periodic solutions of one-dimensional
nonlinear wave and Schrodinger equations proved by Kuksin [16] and Wayne [25], many
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progresses have been made concerning KAM theory for nonlinear Hamiltonian PDEs, one
may refer to [4-7,10,12,14,15,17,18,20,21] and see also [8,9] for further developments. With
the development of the KAM theory for PDEs, great attention has been paid to the study
of quasi-periodic solutions for quasi-periodically forced nonlinear Hamiltonian PDEs by
KAM and Nash-Moser theory in the last years. For example, see [19,22,23,30] for one-
dimensional case. In particular, for higher dimensional case, Berti and Bolle [3] and [2]
proved the existence of quasi-periodic solutions for quasi-periodically forced Hamiltonian
wave equations

Vie — Ay +V(x)y =¢ef(ot,x,y), x € T¢,
and Schrodinger equations
iuy — Au+Vx)u = ¢ H(wt, x,u), x € T?.
We note that the above works on forced systems need assume that the forced frequency meets

some Diophantine conditions. That is, there exist y > 0 and T > d such that

4 d
k, >—, keZ\{0
|k, w)| = & \ {0}
or assume that the forced frequency w is a small dilatation of a fixed Diophantine vector
@e R4, namely

w=%fw, §&c0:=]1,2],
where for some y > 0 and 7 > d,

[{k, w)| > k e 72\ {0}.

e
lk|*”
Slightly weaker than the Diophantine conditions can be often required as Brjuno conditions,
which was defined by

1 1

— max In
2" o<jkj<2n, kezd  |{k, w)]

< Q.

n>0

However, if the forced frequency w is ‘too close’ to rational vector, the resonance effects
in general destroy the persistence of the invariant torus. Actually, it is difficult to obtain the
persistence of the invariant torus of PDEs even in space one-dimensional cases beyond Brjuno
conditions. If the frequency w is not Brjuno, we call it is Liouvillean. Recently, Wang—You—
Zhou [28] considered the quasi-periodically forced harmonic oscillators with Liouvillean
frequency vector w = (1, &) :

¥+ A% = e f(wt, x), (1.1)

where A € O, a closed real interval not containing 0, the forcing term f is real analytic
in (9, x) € T? x R. They proved the existence of response solution of (1.1) by using the
CD-bridge given by Avila—Fayad—Krikorian [1].

The question is that whether it is possible to obtain the persistence of the invariant torus
with Liouvillean frequency for the infinite-dimensional dynamical system with quasi-periodic
forcing ?

By applying the ideas in [28], Xu et al. [29] constructed the quasi-periodic solutions of
forced nonlinear Schrddinger equations with the frequency vector v = (@, @) and @ =
£(1, ) satistying
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B() :=lim supn>01“:2# < oo,
|(k,w>|+|<l,5>|zm, fork€Z2’ ZEZd\{O}’

Pn

where o is the continued fraction approximates to «. In this paper, we consider the d-

dimensional frequency vector w € RY satisfying, fora € (0, 1]and any K > 1,

max In <|K|(In|K)™. (1.2)
0<lk|<K, kezd  |(k, ®)]

It is worth pointing out that the result in [29] only allows @ to be Liouvillean, not to all w.
Thus, if we allow d > 2, our frequency, defined by (1.2), is much weaker than the frequency
o in [29]. However, if we restrict our frequency to be 2-dimensional vector, i.e., d = 2, then
the frequency @ = £(1, @) in [29] is weaker than the frequency in our paper.

To verify that the frequencies defined in (1.2) include the Liouvillean, we, for example,
can impose the following restriction on the forced frequency

max In > |Kq[(In|[K()™, (1.3)
Ki<lk|<Ky, kezd  |{k, @)
where K» > K| > 1. Itis easy to see that such w is Liouvillean. In fact, forany n € N, (1.3)
implies that there exists k € 74\ {0} with 2" < |k| < 2"*! such that

max In > 2" 1 m2""H™* ae(0,1].

-l cjk|<on, kyezd  |(k, w)]

It follows that

1 1 1 1
— max In > — max In
S0 2" o<ki=2nkezd [tk @) T g2t anmlcii<ankezd (K, @)

1
> Z 272"—1 (ln 211—1)—(1

n>0

=2"11n2)~* Z(n — 1) =00, ac(0,1],

n>1

which shows w defined in (1.2) includes some Liouvillean frequencies.
The goal of this paper is to develop a KAM theory for whiskered tori (i.e., the tori own
the hyperbolic directions) of nonlinear beam equation with Liouvillean frequency vector

Vi +my + Yerxxr = V> +ef(wt,x,y), x €0, 7. (1.4)
We consider the main part of (1.4)
Vit +my + Virar = 3. (1.5)

The system (1.5) has three equilibria, y(t,x) = 0,V(t,x) € R x [0, ], and y(t, x) =
Jm, y(t,x) = —/m,¥(t,x) € R x [0, 7]. The main result of the paper will prove that
two solutions u(t, x) = +./m of Eq. (1.5) can be continued to solutions of the Eq. (1.4).
More precisely, we look for quasi-periodic solutions

Yt x) = etu(t,x) £ Jm,
of (1.4), where u (¢, x) is a quasi-periodic solution of the following nonlinear beam equations

Upp — 20U+ Uyyyy = EUS £ 38%\/ﬁu2 + s%f(a)t,x, edu+ Jm). (1.6)
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Throughout this paper, we always assume the following:
H): f: T x [0, 7] x R — Ris areal analytic function and even on x, and w is a small
dilatation of a fixed vector @, namely,

w =& with £ € O :=[1,2],

m >0, (2m)% — [(2m)4l] € [ﬁ, %], here [-] denotes the integer part of a real number and
 satisfies the hypothesis (1.2).
Now we are ready to state our main result.

Theorem 1.1 Assume that the hypothesis (H) holds, then for any 0 < y < 1, there exist
&« > 0and O, C O with measO, > 1 — cy, such that for any § € O, the Eq. (1.4)

possesses quasi-periodic solutions of the form y(t, x) = +./m + e%u(a)t, x) provided that
e < sf, where u(wt, x) is the quasi-periodic solution of (1.6).

Let us conclude the introduction with some comments on the result.

1. Thereason why we choose beam equation as our object of study in this work is thatitis one
of the most important equation in mathematical physics besides this equation interesting
by itself. A lot of important works have been done on the study the existence of quasi-
periodic solution with Diophantine frequency for beam equation. We refer to [11-13] and
[24,26]. More recently, a groundbreaking work was made by Eliasson—-Grebert—Kuksin
[8], who proved a KAM theorem for beam equation with x € T¢ under the Diophantine
conditions. The system we’re considering here is a system with multi-dimensional Liou-
villean forced frequency. Furthermore, since the solutions we obtain are around =+ /m,
the linearization operator will possess the hyperbolic spectrum (eigenvalue), the motion
equation, Hamiltonian and the symplectic form are different from the ones in the papers
mentioned above. To avoid the multiply spectrum we will restrict ourself to the space
that is even about the spacial variable x and take the </m as the example.

2. Note that we have to exclude some m such that the spectrum is discrete. Thus we will
introduce another parameter &, which belongs to a compact set. This parameter is the
dilatation of the fixed vector w. We will dig out some bad parameters from this compact
set at each KAM iteration to make sure that the first and second Melnikov’s conditions
are satisfied.

3. Digging out the parameter £ will make homological equations along the hyperbolic
direction complicated. Since the solution we construct is around the equilibrium +/m,
the linear operator of the linearized equation possesses the hyperbolic spectrum (the
spectrum whose real part is not zero). Generally, there will be no small divisor in the
homological equation along the hyperbolic directions, so that one solves the equation by
applying the implicit function theorem. However, in this paper, the parameter £ makes
the implicit function theorem invalid. See the Remark 3.1 for details. Thus we will not
separate the equations along the elliptic directions and the hyperbolic directions.

4. Similar to [27,29], we will also solve, in the KAM iteration, the variable coefficients
homological equation

d
0ou(0,8)+1(2+ B, )u@,8) = f(0,§), 0 ££Q eR, 9, = Zw,ae,.
=1

Follows the fal_nous Kulisin’s Lemma, we will kill the function B(0, §) by making a
change 7 = e~ By and f = 7B f, where

10,B(0,&) = —B(6,&) + [B(©.§)],-
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In [27,29], the authors used the technique of CD-bridge to make sure that 3 is controllable.
However, the frequency defined in (1.2) is more complicated, for example, there is no
CD-bridge in our work. We will separate the equation above into a series of equations by
using the special structure of B. By carefully choosing the iteration parameters we can
guarantee that B is controllable.

5. If the smallness of the perturbation does not depend on the Diophantine constants of the
frequency w, we say the result is non-perturbative. We stress that the smallness of the
perturbation in our results is dependent on the Diophalntine constants of the frequency

w. For example, one of the hypotheses on €, is In e > 3 exp {(e*“so(48)*1)_71 }
where a is the ones in (1.2) and 0 < sg < 1. Thus our result is perturbative, not like the
result in [27].

2 Preliminaries

In this section, we first give some notations which will be used in the sequel.

2.1 Some Notations

Denote the set Z; = {j ez : 0515[(2m)%]} and 7 = N\ Zy. Let £, , = {q =

(Gj)jes : q; € Cywitha > 0,p > % be the space of complex sequences with inner
product

(q.9):=Y_ VjI*rq;q,
jed

for any ¢, ¢ € £, . Then (Za,p, (- ~)) is a Hilbert space. Let ||gll4,p = +/{q, g). Similarly,
we also define Za,p ={g=(j)jez, :qj € C} witha >0, p > % be the space of complex
sequences with inner product

(@.9):= Y NjPPq;q; + q0q,
07 j€Zy

foranygq, q € Fa,,,.ObViously, (Fa,p, (-, -)) isalso aHilbert space. Denote ||¢ |4, ) = +/{(q, q).
Let TY = R4 /ZnZd (’]I‘f = ¢ /ZnZd) be the standard d-dimensional real (complex)
torus and define

u(s) ={0:1Imb| <s}, O0=[1,2],

where |- | denotes the supremum norm for the finite-dimensional vectors. Denote the complex
neighborhood of T¢ x {0} x {0} x {0} x {0} x {0} by

D(s,r) ={0,1,2,%,p,p) : [ImO| < s, 11| < r*, [zla.p> [Zlap: 0llaps 1Plla.p < 1}

cC?x ¢ X La,p X Lap X Lap X Lap:=Pap.

For the function f (6, &) defined on u(s) x O with the Fourier expansion

£0,8) =" Flk,£)e*,

kezd
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we define the norms || f ||} o and ||f|| ‘0 as
1o = D IF®IHS, 1£1Eo = Y IF0IGe ",
kezd kezd
with

|f(k, &) — Flk, &)
£1#£862,61,6,€0 &1 — &

’

I 7% = sup [ Fk, &), 1 FIE =
EecO

we also define the norms ||f(k)||o and || flls,0 as

17 0llo = 1 F &G + 11 Fi) 5,
Ifllo=1flio+1flEo =D 1F®loe".

kezd

Moreover, we define the truncation operator 7x and projection operator R as

T f0.8) = ) Fk& Ref6.6) =Y Fk, &,

lk|<K k|>K

and the average of f(0, &) in 6 by

LF0. 810 / £6.8)d6 = F0.8).

~ @ny

Denote § ={8;, j € J}, B={Bj, je Tl anda ={a;, jeZi},n=1_n;, jeZ}
with finitely many non-zero components §;, 8, o, n; € N. For the function P : D(s,r) x
O — C, which is analytic in variables (0, I, z, Z, p, p) and Lipschitz on the parameter &,
we take the following Taylor—Fourier expansion

PO,1,2,%,0,0,6) = ) Pspay@®, 1,627 p*p"
8.8,

= Y Prpanuk )e®O0 1107005,
w8, B0,k

/

where 7°7f = HJEJZ z and p%p" = H]ezlp pn’ We define the norm of P by

Si1—, —
IPIpE.n.0 = sup > UPs panllP1IZ110%11071,

”ZHa,p» Hz”u.pv ”P”u.pv ”ﬁ”u[l =r 8,B.a.n
where

D. kls .2
1Ps panll =D 1Pspayu®)lloer?H
k.

2
= IPspanullsor™™
o

Moreover, for the function P above we associate a Hamiltonian vector field defined by

Xp=(P;, —Py, iPs, —iP,, P5, —P,)".
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For the vector Py, (Y = z,7) we define

Nl—=

2 24j
1PY la.p. Dm0 = 3 Y (I1Py; I Ds.ry.0) € j2P
jed

and for Py, (Y = p, p)

Nl—

2 24i 2 2
I Pylla,p.Ds.r),0 = E (I1Py; ID(s.r1.0) €Y j7P 4+ 11 Pyy | Ds.r).0)
0#£j€Z)

We also define the weighted norm

1 L, .
IXpllrsro= ” Py ”D(s,r),(f) + ) H Py ”D(s,r),O + ;(Hl%na,p,D(s,r),O
+ ”iPz”a,p,D(s,r),O + ” Pﬁ”a,p,D(s,r),O + ”Pp ”a,p,D(s,r),O)~
In this paper, for k = (ki, ..., kg) € Z%, we denote

(k) = max {1, |k[}, [k|:= [ki|+---+ [kal.

2.2 An Infinite Dimensional KAM Theorem

In this section, we develop an abstract KAM theorem for a general infinite-dimensional
quasi-periodically forced system. As an application of the theorem we can prove Theorem 1.1
immediately. We consider a more general infinite-dimensional Hamiltonian system

H=(wI)+(Qz,2) — (Ap,p)+ P6,2,Z, 0,0, &) 2.1

endowed with symplectic structure d0 AdI +idz AdZ +dp A dp, where P is real analytic
in the variables (9, z, Z, p, p) and Lipschitz in parameters £. Denote

Q=diag(Qj, j €D, 191z /% 19 £l = 1j* £,

2.2
A=diag(Aj, j€Z), 1<|Ajl <2, [Aj£A] =1, 22

We also identify the above two diagonal matrices as the vectors Q = (R2;, j € J )T and
A=A}, jel )T'. The same notions are also for the diagonal matrices B(#, &), W (8, &)
and b(0, &), w(0, &), which will be given later.

Theorem 2.1 Let w = Ew withw € R4 satisfying (1.2), and s, r > 0,t > d + 2. Consider
the real-analytic Hamiltonian H defined in (2.1). Then there exists a e, (w, y, s, r,t) > 0,
for every real analytic perturbation P with

&= ”XP”r,x,r,O =< 5*(5; Y,S,F, f),

there exists a nonempty subset O,, C O withmeasO, > 1—cy, andforevery& € O,, there
is a real analytic symplectic map ® : T¢ x Oy — Py, p, such that O casts the Hamiltonian
H defined by (2.1) into

Ho®d=N,+ P,
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where
No(®.1.2.2.0.7.8) = Ec(0.6) (0. 1) + (@ + Bu(6.£))2.)
- <(A - W*(st))pv ﬁ),
PAO.2Z 0.0 8) = D Pipa,0.9XF 07",
[0+Bl+|e+n|>3
with
1 1 X
IXE,rysore0y <462, [Bills,.0, <427, [IWls, 0, <462, 2.3)

3 Proof of Theorem 2.1
3.1 Main Ideas of the Proof

An essential idea of Theorem 2.1 is to construct a simplifying transformation, consisting of
infinitely many successive steps (referred to as KAM steps) of iterations, so that after each
step the new perturbation terms of the transformed system are much smaller than the ones
in the previous system. As all KAM steps can be carried out inductively, below, we only
describe one step of KAM iteration in more detail. In this work, one step of iteration will be
finished by a family of subiterations. Moreover, the steps of the subiteration will go to co.

Note that the KAM theory is a small divisor problem, since we assume the forcing fre-
quency is Liouvillean, there will be new difficulties appear compared with the classical
KAM theory. The main difficulty is that we can not kill the terms whose small divisor is
(k, w), k # 0, suchas P(0,&), Y, Pii(0,&)z;z; and R(0, £)1. We overcome this problem
by putting the first two terms into the normal from. Moreover, we assume that the variable 6
comes form the forcing such that the perturbation will not depend on the action variable 1.
Thus, the normal form in our work will be variable coefficients, take the n-step Hamiltonian
for example,

Hy = Ey(0,8) + (@, I) +{[Q+ By (0, 6)]z.2)
—([A = Wa(0,8)]p. D)+ Pu(0. 2.2, p.0.6),

where the functions B, (0, £) and W, (6, &) own the special structure. Thus the homological
equations in this paper is variable coefficients. The special structure of B, (6, &) and W, (9, &)
is one of the key conditions when we try to eliminate the effect taken by B, (9, £) and W, (9, &).
Moreover, the perturbation P, (6, z, Z, p, p, &) is of size €,.

In the following, we will construct a near-identity symplectic change of variables ®,,1,
such that the new Hamiltonian system H, | = H, o ®,4 possesses the same formula and
satisfies the same estimate as the ones of new Hamiltonian system H,, with (n+ 1) in place of
n. Note that one of the step of iteration will be finished by another a family of subiterations,
that is the Hamiltonian function H, is the one in the final 5ste:p of the subiteration. Thus,

the size of the new perturbation P, is much smaller than =

3.2 Homological Equation and Its Approximate Solution

For functions F (0, 1,z,z,p,p,&)and G, I, 7, Z, p, p, &) with Taylor—Fourier expansion
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FO,1,2.2.0.0.6)= Y Fspanuk §)e*0 1178 pop7,
w.8.B.a.n.k

GO.1.2.2.0.0.6)= .  Gspanulk,£)e®N 1157 pop0,
w.8,B,a,n.k

which are defined on D(s, r) x O, we define the Poisson bracket

0GoF 0GOJF 0GOF 0GOF 0GOF 0GOF
{G,F}:77—774'177,—17,74‘77,—7,7-
00 a1 ol a6 90z 0z 97 0z ap dp dp dp

For fixed0 < g9 < 1, 0 <s9 < land t > d + 2, we denote the initial parameter K_
by
1 I 1
K2, =Ingy" " ie., g9 = exp {—40(21 + 1)K31} .

We assume that g¢ is small enough such that

1 1 _
K2, =gl > 3exp {((48) e *s0) @ ).

From the above inequality we can see that the smallness of perturbation, &g, is related to
a, and thus to the Liouvillean frequency w [see (1.2)]. Then we define the iteration sequences
fori >0:
Gi=@1+2)77
| 0o,
K; :exp{Kf_l}, i1 :exp{—40(21:+l)Kl.2}, g.j=¢ ', 3.1
_ i 2 _ -1 IS o |
Sivt = soIl_g(1 —¢;)%, 01 j =57 "gigjsi, Ti,j = o; ; Ing; ;.
where j = 0, ..., N; — 1, and A; is the smallest integer number such that €; o < €41,
that is ’5,‘,/\/1. <& < 'Ewi’j\[i_].
Obviously, for any n > 0, we know that

e_4so < 8§, < 50.

The inequality above is used in many places, we will not stress the reference about it. More-
over, we will also assume &g is small enough such that for the sequence {K;};>_ defined
1

above, the inequalities like K, > K;?, Ky+1 > 20K,, nK, < K%, n >0, hold.

Lemma 3.1 For the sequences defined above we have

exp{Ty—3.n, -1} <Ine, ', n>3 (3.2)
and
1
(InlnK,;})™ < 3_16_4S0§n+1, aec0,1], n>0. (3.3)
_(45)/\/” _ 45 Nn—l
Proof Sinces, n;, < €n+1 < €n.N,—1, We know that g, > sn_ll > &, , which
implies

1
(5>Nn _Inely 400t + DK, (5)’““
2V s Mot (3 '
4 e 4004+ k2, 4
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5 4
Note that (%) >e > (%) , by the inequalities above we have

e 4

N, 3
Na (5) " 4027 + K2 1
> 4 > > 7

= T
402t + DK

1
Nt (5)”1 4027 + K2 1
< 4 < <

1
4027 + DK,

that is

4 5
gan,,<Nn<§ann+l. (3.4)

Then by (3.1) we have

T N,—1 = Gr:Jl\/n—l lngnj\/n—l < Ur:}\/n—l In Snii{l
1
=5(n+2)2(N, + 12514027 + DK,

1 3.5
< 180027 + De*sy ' (n +2)*(In K,) K (3-5)

2 2 1
< K} <: exp {gKnQ_l}> ,

the second inequality is from the inequality in the right side of (3.4),1.e., NV;, +1 < % In K, +
2 < 3In K,,. Then we have

1 1 1
Ine, ! =407 + HK2 | =402t + 1) exp {EKH{Z}

2
> exp {Krf_?,} > exp {T,,_3YN"73_1} , n>3,

the last inequality is from (3.5) with (n — 3) in place of n. This is the proof of (3.2).
Now we turn to (3.3). We will use the iteration technique to prove this inequality.
I): n =0 or 1. Note that

1 11 1 1 - -
Inln K, =1n (EK;,I) > In (EKEI) > (37l 007 = Bl Hs0gue) T

1 _
where the inequality above is from K 31 >3 exp{(3’1e’4s0g2)71}. The inequality above
yields

I
(Inlnk?)™ <37 e soguq1, n=0o0r L.
II): n > 2. Assume that n = j > 2, the inequality in (3.3) holds, that is
1 — — —
(lnanjQ) ‘<371, 4s0gj+1,

which implies

e

_1
lnanj > (3_16'_4S0§j+1) a,
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1
Now we let n = j + 1. Note that K| = exp{K jz }, then we have (the first inequality
below is by the inequality above)

1 1
InlnK? anjz—ln2>exp

_1
= (3_1e_4s0§j+1) a } —1In2

L [

_1
> %(3_16_4so§j+1)_ —In2= %(3_16_4“?0)_%;1:2 2

1

_2 _1
(e_4so) a (3_l§j+2) “ —In2 > (3_16_4S0§j+2) a,

A%

which implies

T
(lnln KJ.ZH) ‘< 371674S0§j+2;

that is the inequality in (3.3) holds whenn = j + 1.
By the discussions above we know that the inequality in (3.3) holds for all n > 0.
‘With the similar calculations in (3.5) we also have

4 1
_ -1 ~1 _ 4 ~1 -1 2
ToN,—1 = O N, —1 lnsw\/n_1 = gan,/\/n—l lnenyNn >lne, | > K, 3.6)

[m}

Denote B,(0,&) = (B,lq 6,8 : 1 € 7T be the real analytic vector valued function
defined on u(s,) x O. Assume that Bé (I € J) have the following splitting

n n Ni-i
BL(0,&) =) bl0.&) =) bl (0,8, n>0.
i=0 i=0 j=0
Thus B, (6, £)! also possesses the splitting
n n Ni-i
By(0,6) =) bi(0,6) =) Y b j0,&),n>0, 3.7
i=0 i=0 j=0
where b;(0.£) = (bl(0.&) : 1 € 7)T and b; ;(0.6) = (b ;0.6) 1 1 € DT, j =
0,....,Ni_1, i =0,...,n. Moreover, we also assume
bi j(0,§) = Z bi j(k, £)e %0 by i1l 0 <Eio1j-1. 3.8)
|k|<Ti—1,j-1

Note that there are no functions By := by = foz‘(; bo,j and b, 11,0 in the system (2.1)
and (3.42), thus we set, in (3.7), bo ;(0,£) =0, j =0,...,N_jand b; 9(0,§) =0, i =
0,...,n.

For the sequences {T;—1,;-1}, j =0, ... ,Ni_1, i =n,n — 1, defined in (3.1) we let
Q;’J be the smallest integer number such that exp{3_Q?~f Ti—y,j—1} <In 8;1, that is

exp{37Q;l-fT,»_1,j_1} <In 8;1 < exp{37(Qﬁ-f71)T,'_1,j_1}. (3.9)

! Note that in our work one of the step of iteration will be finished by a series of sub-iteration. Take the i-th
step iteration and j-th step sub-iteration for example, there will a term, which we denote as (b 41, j+12, 2),
been put into the normal form. Thus the function B, (6, &) possesses this special structure.
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Furthermore, we denote

— - A
B 0.6 = > bi,j (k, £)e*?),
3=UDT_y oy <[k|<37ITiy joy
[=0,..., ﬁ,-—l,j:O,...,J\/}_l,i=n,n—1,
~(0} ) —~ .
B, (60,8 = > bijk&) D,
k<3 2Ty

j=0,....,Ni_1, i=n,n—1.

By the discussions above we can rewrite B, (0, &) as

Nio1 91 n—2 N
B,0.6)= > Y. Y Bh@0.6H)+>. > Bi 0.6 (3.10)
i=n,n—1 j=0 [=0 i=0 j=0

with El-,,»(e,g) =b;j0,8, j=0,..., Ni_1,i=0,...,n—2.

The reason that we do not separate b; ;j(0,&) (j =0,...,N;i—1, i =0,...,n—2), into
a sum of a sequence of functions as what we have did with b; ;(0,§), j =0, ..., Ni_y, i =
n,n — 1, is that the inequality in (3.2) guarantees that the solutions to the equations about
these B, (0, &) are controllable. See the dlscuss10ns in the Proposmon 3.1 for the details.
Moreover if n < 2, we know that there is no B, 0,8, j=0,....Ni, i <n-2

(Bo (0, &) =0), so when we consider these terms we means n > 3.

Lemma 3.2 Assume that B, (0, &) is the one defined by (3.7) with the estimate (3.8). Then
Sfor the homological equation

B0, &) = —Bn(0,8) + [Ba (0, §)]o, (3.11)
there is a unique solution B satisfying
IBls.0 < (480) 'Ine; L. (3.12)

Moreover, the function W, (0, &) = (W,l, 0,8): 1 €Z)T has the same decomposition in
(3.7) and satisfies the same estimate in (3.8). Then there is a unique solution to the equation

IW(0,8) = —W,(0,8) +[W,(0,8)]s
satisfying
Wls.o < (480) 'ne, !

Proof Rewrite the function B as the one in (3.10). Assume that the functions Bi(li. 0, &) solve

0,80, 8) = —B"(0, &) + (B0, £)ly (3.13)
withl =0, ..., l],j—O L Ni—1, i=n,n—1,and B; j solve
9uBi j(0,6) = —B; j(0,8) + [Bi (0, &)l (3.14)
with j =0,...,N;_1, i =0,..., n—2. Then
Nioy QF n—2Ni—
BO.&= Y. Y Y BY@.6+Y Y Bij©.8)
i=n,n—1 j=0 [=0 i=0 j=0
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solves (3.11). By comparing the Fourier coefficients of (3.11) we have

- Bk.9)
Bk, &) = , k#0
ik, w)
From the equation above and note that O C [1, 2] we obtain

sup [B(k, £)| = sup

s SEOﬂB("’@ < sup | Bk, )| 1tk @)1,

i(k, w) £cO
and
’is‘ck, &) — Bk, &)

E1£62.61,62€0 §1—&

w |l Bikg) Bk&)
f1#6.6.6c0 | Lilk, §lo) ik, §o)

w |l Bik.g)  Bek.&)
166,50 | LIk, o) ik, §1w)

" ‘ [ Bk.&) Bk, &)
§1#&, El &He0 (k, Slw) i(k, &)
’§<k £) — B(k &) I

Je —e7!|

=

Je -]

+

le —e)7|

< sup @)™+ sup [Bek. &Ik, @)
£1#82,81,6€0 5HeO
So
o~ =)
1B®llo < 20B® loltk. )" (3.15)

Forl=0,...,37Q’r‘l~-f,j=0,...,./\/}, i =n,n— 1, we know that

3—17}71,1.71 > 3_Q7n/'T,~,1 jo1 = 3—13_(Q7./_1)7},1’j,1 >3 'nlne,!
1
=3"'In {40(2r + I)Kn 1} >3"'In {KOZ} (3.16)

-1 -1 —4 =1 4 =1
> 37 exp {(3 e 5062) ] > exp {(6’ 5062) @ }
where the second mequahty is by the 1nequahty in the right side of (3.9) and the last but

one inequality is from KO > exp exp{(3 450 gz) a } Note that the function I'(T) =
(ln |T|)_", a € (0, 1], is monotone decreasmg on [exp{(e™ sogz) a }, 00), then by (3.16)
weknowthatl"(?a_lﬂ,l,j,l) are well definedand 0 < 1"(3_17},1,];1) < e_4s0§2 <1,1<
3_Q?J,j <N, i=n,n—1.

Let us consider (3.13) first.
(DI1=0,...,0;;—1.By(1.2) and (3.15) we obtain (5 = s, (1 — gn)).

l ! —
1B .0 = > 1B, (k)| oelklsn =5
3=HDT o <lk| <371y
< 2exp37' Ty ;PG T -} exp(=3" DTy isuca)
2(1) )
> I1B; ; (k)| e

37Dy oy <[k|<371 Ty
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_ _ _ _ ~(
= 2exp(3 ' T, TG Ty -0 exp{=37"Tr-1j-13 7 suc} 1B} ls,.0

_ _ _ 1 — ~(
< 2exp37Tim1 ;DG Ty DY expl=37 Ty 137 e Hsocu} 1B s, 0

U —1,pU
< 2B ,.0 <2Ine, 1B, 0,

where the third inequality follows from the following: First, with the same calculations in
(3.16) we obtain

1
37y 1237 QT > K 1< Qi — 1, j <N i=nn—1,
which implies
1
FG'Tioyjo1) <TnK2 ), [<Qij—1,j<Nii=nn—1 (3.17)
Moreover, from (3.3), (3.17) we have
1
37le 505, > T <1n K,f_]> >TGR i), 1< 0ij— 1,
which implies exp{3_[T,-_1,j_13_16_4s0g,,} > exp{3_[T,-_1,j_1I‘(S_IT,'_Lj_l)}, that is
exp{37 Ty ;o TG sy - )} exp{=37"T;—1 j137 e *s06a) < L.

ami= Q?j. Similarly, we have the following, note that F(3_Q?J Tiq,j-1) <1,

) Q) _
I8,/ ko= >, 1B} ®)loeltntmsw
Wl <3 90Ty
—on. (07 ) _
< S 2exp37 YT _nIB, [ B [loelln )

—o" .
[k]<3 Q"jTi—l.j—l

—o". ~(01 ) (08
=2exp(3” % T - MIB Y Iso < 2Ine 1B, [ s 0

where the last inequality is by the inequality in the left side of (3.9).
Now we consider the homological equation (3.14). Notethat 7; 1 j—1 < T3 A, _3—1, ] =
0,..., Ni_1, i <n—2,and from (3.2) we have
exp{Ti—1.j—1} < exp{Ty—3.n, s—1} <Ing, ', j=0,..., Ni_1, i <n—2.

Moreover, by (3.3) and (3.6) we also have

1
C(Th-3.n, 3—1) < T(Tonp—1) < T <ln KOZ) <37 le™*som <1, n > 3.

Then by the two inequalities above and with the similar discussions in the case II) , we obtain

Iy . .
’ ) — n B ns - —_
Il 1]”3(9 2Ine, || 1]”5 0,j=0,..., N1, i <n—-2.
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The discussions above imply that the function B(0, &), the solution to (3.11), satisfies

Niot Q1 n—=2Ni-1
Bro=| ¥ YY) +Y Y 5,
i=n,n—1 j=0 =0 i=0 j=0 5.0
Nt 97 . n—2Ni_1
= Z ZZ“B() O+ZZ”BUHEO
i=n,n—1 j=0 =0 i=0 j=0
Q” , n—2Ni—
<2lng 'y Y ZZIIB()IIQ,,oJrZZ 13:.il,,.0
i=n,n—1 j=0 =0 i=0 j=0
n Ni-
:21n8;l Z Z ||b,-,j||jmo < 4801n8;1 < (480)711ne;1
i=0 j=0

The discussions about the equation
W0, 8) = —Wn(0,8) +[W,(6.8)]o

are the same as the discussions above since the functions B, and W,, have the same structure
and satisfy the same estimate, we omit the details. O

Assume that the real analytic functions N and R are defined on D(s, r) x O and with
Taylor expansions

N =E©,8) + {0, I) +([Q2+ B, (0,8) + b0, 8)]z,2) — ([A — W, (0,8) —w(®, §)]p, p),
and

R(0.2.%.p.7.£) = > Rs p.an(0, )2 p*p",
0<|8+BI+la+n|=2,6#p,a#n

where B(0, &) is the one defined in (3.7) with the estimate (3.8), and the function W (6, &) =
(W,l, 0,&): 1 e€Z)T has the same decomposition in (3.7) and satisfies the same estimate
in (3.8). Moreover,

b©.6) = b;©.6): jeNT wO.6)=w;O.8): jeLp.
We consider the homological equation on the unknown function F
{F,N}=R. (3.18)
For the homological equation above we have the following proposition.

Proposition 3.1 Assume that b(0, &) and w(0, &) are defined on u(s) x O ( e Y5 <5 <
? = sy (1 — ) sattsfymg Iblls.0, lwlls.0 < &, and for every & € O, the vectors
Q=Q+ [Bn (0, &)] and A=A— [W, (0, &)1 satisfy the Melnikov’s conditions

[k, ) + (£, Q)| = y (k)" keZ¢, 0<|¢] <2, (3.19)
and

(LK) =1, 0<il <2, (3.20)
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where 0 < y < 1, t > d +2. Then for the real analytic function R defined on D(s, r) x O,
(3.18) has a real analytic approximate solution F (0, z, 7z, p, p, &) satisfying

oo < 2T Bl 0 X |

”XF” r,s,r,0O"

Moreover, the error term is

RCD(0,2.7.p.7.6) = > Ry 0.2 0°0" (351
0<[8+B|+la+nl<2.6#p.a#n

with

R, ,(0.8) = dOBBIHam iR, {e—i(é—ﬂ,&—(a—n,W)Ra’ﬁ’a’n(e, £)
—[i(5 = 8,56, ) + (@ — n, w®, )] OFICTIWIE 5 60,6

and the estimate 20 <s, j=0,...,N, — 1)

| X geen

R Tl Dot (3.22)

Proof We consider the case n > 1 first. For the function R(0, z, Z, p, p, &) given above and
function F (0, z, z, p, p, &) with the Taylor expansion
F0.2.2,p,7,6) = > Fs 0,00, 6)2°2° p“p",
0<|84+B|+la4n|<2,8#8,a#n
we denote

Rs puan(0,8) = e OTPBODN WO R, 4 10,8),

Fs pay(®, &) = e O PBOO— WO By (6, ), (3:23)
where 5 and W are the one in Lemma 3.2. From (3.18) we obtain
0w F, 0,&) 4+ {1(6 — Q-+ b0,
5,80 ( E) {its — B, 0,8)) (3.24)

— (@ =1 A —w(®.6)}Fs pan®. &) = Rs p.ay(0.8).

where @ = Q + [B,,(0,8)], and A = A — [W,,(6. £)],-
Os=(¢--,1,---), B=(--,1,---), where 1 is the i-th (/-th) component of the vectors
8 (B),i #1, and “- - - ” stands for zeros, and @ = n = 0. Denote

RVO,2,2,6)= ) R0,8F = Y Rii0,8)z7,

r=5—P ileJ
FDO,2,2.6) = Y F0.87 =) Ri0,6z7,
=6—p ileg

where
Ri1(0,8) = R (8,8) = Rs,p,0,n(0,8), Fi1(8,8) = Fr(0,8) = Fs ga,n(0,8).
Then by the Eq. (3.24) we obtain
00 Fe (6,6) +1(5, 2+ b0, §) Fc (6,6) = Re (6, 8). (3.25)
We solve the truncated system of (3.25), i.e.,

Tr, 00 By + Tr, (10, G+ 0. Fy ) = T, R, T

n,j

F, =F,.
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which is equivalent to, for any |k| < T}, ; (by comparing the Fourier coefficients)

ik o) + (@ DIF kO +i Y (€ bk — ki) Fe ki, &) = Rk ). (3,5

[k11=T,.j
Rewrite (3.26) as
(E + g,DE; )&, F; = &Ry,
where
=diag(--- ,i((k, o) + (£, Q) -+ <1,
i((8. bk — ki, )y ki=T, ;. B =diag(-- ey,
Fo=Fe®) = Fek )lyar, . Re = Re®) = Re k. EDyor, -

From (3.19) we have

E
D=

-1
”E ||¢)p([l) S y Tn Jj’

where op(I') denotes the operator norm associate to the /!-norm, which is defined by |u| o=
ZlkliTn_j |u(k)|, for the vector u = (u (k))\YIZISTn._/' Since [the second inequality below is by

(3.5)]

2 1 1 I
Tn,j < Tn,/\/y,—l < exp {gan_l} < exp{ 2_1} — 5’;‘0(21+1),

we know that

=1
=1 -1 1
IE  Mopary v T <47 6"

By direct calculations we have
m Am-1
I1EsDES Nlopary = 200lls,0 < 2én.

The above two inequalities yield

which implies that E+E s D g ! has a bounded inverse. The above three inequalities yield
IE + &DE; ) opary < 17d + ET'EDET) lopay 1E lopary
-1
<2y T,
It follows that

1B lio= Y IF0IHe " = 18715
[k|<Ty,
< IE + &:DE; ) M pan) | BsRe Il
= I(E + &DE N Mlppan 1 Re 5.0
<2y 'R o
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Moreover,
2 . ~ 2 |-~ —1 >3
17150 < PMO IR} o < P02y 7T IR o
< 2)/_1an, AlBlzo IR I o (3.27)

1
<2y~ TT 8'120 | R¢ ”s O

where the last inequality is from (3.12).
Next we give the estimate of the Lipschitz semi-norm. Denote Ag ¢, 0 = O(-, &) —
0(, &). From (3.26) we have

itk &19) + (6, Q@) ) Ao Fe) +i Y (6, — ki, €0) Mgy Fo ()

[k1|< Ty,

i (6 0+ (6 D) Fete &) +i Y (6 Ay bl — k) Fr it &)
|kl‘§Tn<j

= A-’Zlfzﬁl(k)v k| < Ty, ;.

In the similar way to get (3.27) we obtain,

-1
18e & Fellf 0 < 27T, e ‘2°{|Asl & (E+D)|pan IF I+ [Aa e R [} o)

Dividing || Ag, &, Fr ”f,o by | — &>| and taking supreme over &1 # & € O, (note that Q
does not depending on the parameter &), we have

1FelEo < 2715 67 2T 1P o + | Re | o
< ZJ/_IT,,T’ 120 [4)/_1Tr+l|a)|8,,20 ||R; || Ko + H R; ”v O]
< 2427206 | Ry |

5,0°

where the second inequality is from (3.27). Then by (3.27) and the inequality above we
obtain, note F; ; = Fy, R;; = R,

1Fitllso < 25y T2 @16 | R o (3.28)

n,j

Thus by the inequality above we have

1F b0 = 1Y Fuzillpern.o = sup Y IFiils.olzl

leg IZlla, Pfrlej
-1
5., -272t+1|— .60
<2y 20 @le® sup Y IR0l
IZlla,p=r leT

=20y 2T wle) FIRD s .0,

@ Springer



Journal of Dynamics and Differential Equations (2020) 32:705-739 723

which implies

1 1 1 12 2ai 2
SNF Pl p .m0 = 1 I NF Wb pxoe™ 7
ieJ
1
2 (3.29)
5., —2p2t+1 1 2ai 2
<2y @le® ZIIR( U
ieJ
-1]
22741 —
=22y @le IR lla.p. pis.n.0-
Similarly, we also obtain

21
1 =27 2t+1 |~ 1
SNE lap.peno < 2y T @l IR lap. om0 (330)

Moreover, by Cauchy estimate and (3.27) we obtain

1
215 D600

1 1
= s D Y IED k. ©)ikylloe 151z
lzlla,pNzlla, p=<r ileJ, i#l kezd

1 ~a o
=o' sup Yo S IE )k O)lloe )z

HZ”a P NzZlla, p=r i.leJ.i#l kezd

1
=o' sup S 1EL I olilE] (3.31)
zlla,pIZlla,p<r zlejl;él

1
—1n5, =220 4+1 | — 1)
<o 1 2y7T, @ e = sup > IR ls.0lzilz
lzlla.pslzlla.p<r idedJ . i#l
—1
5. —272t+1— .50 —1 1
=27y T @le’ o rj||R()||D(s,r),O

-1
5. 252041 — ~1
<2’y Tnfj |@|e, o ||XR<‘>||,,S,r,(9’ y=1,...,d.

Thus by (3.29)—(3.31) we obtain

< 28 2T G D o X, 4 o (3.32)

r,s—o,r,0O — n,j

[Xrol

mé=(¢--,1,--), a=(--,1,---), where 1 is the i-th (/-th) component of the vectors
6 (), and “- - -7 stands for zeros, and 8 = 0, n = 0. Denote

RP0,2,0.8) = Y Rsal0,6p"

[8]=la|=1
FOO,2,0,6)= Y Fs54(0,6)p"
16]=lor|=1

where Rs5,o(0,§) = Rs,g,a,n(0,8), F5,a(0,8) = Fs5,8,4,,(0,§). By Eq. (3.18) we get

doFs.0(0,8) + {i(8, R+ b0, 8) — (0, A — w(b,8))} Fs,a(0, &) = R5.0(6, ). (3.33)
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We solve the truncated system of (3.33), i.e.,

1, ;00 Fs.o + T, {[16, @+ b(6, &)
— (o, A — w(o, 5))]1?5,01(9, £} = TT,,JEB,(X: T, ; Fso = Fsq,

which is equivalent to, for any |k| < T}, ; (by comparing the Fourier coefficients)
. . =~ ~ =
it 0) +i6.8) - (@ B | Fath, )

+ 3 [i6. Bk — ki, 8) + (e Dk — ki )] Foaki, §) = Rya(k,£).

k1| <Ty,
Denote
Alk, @, 8,8) = ilk, E@) +i(8, Q) — (o, A). (3.34)
Thus
sup [A" (k, @, 8, )| = sup ! R
tcO B cco |itk, @) +1(8, Q) — (a0, A)| ~ e, A)|

where the last inequality is from (3.20). Then with the similar discussions in case I) we obtain

-1
[Xpol, o0 = 2T @68 o | Xpol, 00

r,s—o,r,0

Me=(¢--,1,---), n=_(--,1,---), where 1 is the i-th (/-th) component of the vectors
a (n), i #1,and “ - - stands for zeros, and § = 0, 8 = 0. Denote { = o — 1 and

RO, 0.7.6)= Y R(6,6)0,6)p"p",
{=a—n

FOWO,p.0.6)= Y F(0.6€)0,8)p"p",

t=a—n
where R;(6,&) = Rs.p.oan(0, &), Fe(0,&) = Fs.p.4.,(0, ). By Eq. (3.18) we obtain

A Fr (0,8) — (¢, A —w(0,8)Fc(0,8) = R (0, §). (3.35)
Note that, by (3.20),

1 1

sup - — ~ < ~— < 1.
geo [itk, E@) — (£, A)| T (¢, A)|

Then with the similar discussions in case II) we know that the homological equation (3.35)
possesses an approximate solution F® satisfying

-1
HXFG) || = 26T”»j|6|8’160 071 HXRG) ||r,s,r,(9’

r.s—o,r,O

With the similar calculations in the cases I)-III) above we can also get the estimate about
the rest terms of the function F'. Thus, we obtain

-1
”XF Hr,s—(r,r,@ = 267/_2Tn2,3+1 |5|8"60 6_1 HXR Hr,s,r,@'

@ Springer



Journal of Dynamics and Differential Equations (2020) 32:705-739 725

Obviously, the error term R") has the formula gave by (3.21). Moreover,

”Rée,g)a n“s—(r,(? <e ~To IZO{HRSﬂan”s O +2€n||F5ﬂar1”s (9}
|
<28n16n ”FS,Bar]”sO

6., —2p2t+1|—
< 2%y Tn.j

|w|8n40 ’gn,j ||R5,ﬂ,a,n IIs,0,

where the last inequality is by (3.28) [note that the estimate in (3.28) is the biggest bounds
for the coefficient function Fs g o ,]. Then with the same calculations to get (3.32) we obtain

X g <27y —2T2r+1

r,s—2o,r,0 — |w|8" 8” ]G HXR Hr,s,r,O'

In the case n = 0, note that By(6, S) =0, Wp,&) = 0, we wi~ll not make the
change Rs g.4.,(0, £) = ¢ HBBOE) TWOENRs pan(®, ) and Fs pan(6,§) =
¢—i(8=BB.E)) lan W .60 Fs g ,0,y(0, &) and deal with the equation between Fj g o, (6, &)
and Rs g o,n(6, &) directly. In this case

R ®.6) =R, [ Ro.pan(0.6) = [i(6 — 8,56, ))

+ (o= 0, w(O. )] Fypan(®. 6.
and the estimates about F and R") also hold. O
Remark 3.1 For the function A(k, «, 8, &) defined by (3.34), with the discussion in case II)
we know that |A~!(k, «, 8)II7, is bounded for all k,  and §. However, A=  (k, 8)||é

may not be bounded. See the calculations below.

1A ko, )15 =

&1 — &I 7!
£ EQEOEI#Z‘A(k @, 8,€) Al a8, gz)‘

|61 — £2)itk, ®) + (8, Ag, & [Ba(®)]g) + (@ Agy 5y [Wa @) ]p)]IE1 — £2 7
sup
T Ttk 818) + 16, D) — (o, AED)|[ilk, £23) + 106, (&) — (@, AE))]
) .3
= sup - — N = = 3
€0 |itk, @) +i(8, QE)) — (o, AE))]
~ 2(”3" ”s,@ + HW” “:,O)
£€0 |ik, £@) +1(5, &) — (@, A)|?
|k, @)] _4eo
geo (k. &@) + (6, 2) + @ X |A[5
|(k. @)|
> sup — —— =
£cO ((k, @) + (8, Q)" + [(@, A

(3.36)

— 4deg.
)|

Note that for the fixed k with |(k, 6)| > 1, there is § such that
|(k, £@) + (8, )] < 1,
which implies

(k. &@) + (6, )" + (@, K)|* < 2| (e, D) -
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Thus, by the inequality above and (3.36) we obtain

A~ (&, &, 8)II5 > @] —4eg > (k. @]

2 (. B, 8

—4eg

Note that there are k € Z¢ such that |(k, E)| — 00, as |k| goes to oo, which means, together
with the inequality above, for these (k, §, ),

A= (k, &, 8) |15 — oo.

Thatis |[A~!(k, o, 8)||5 is unbounded.

By the discussions above we know that there are (k, §, @) such that 1A=k, o, )| is
unbounded. This is the reason we also make the change in (3.23) to kill the function W (6, &)
and solve the truncated equations for the homological equation (3.18) along the hyperbolic
directions.

3.3 Iteration Lemma

Beside the parameters defined in (3.1), we will also define the sequences, forO <y < 1, 0 <
70 < 1, (W)n=0, (rn)n>0, and (D), >0 in the following manner:

'

rno=7r, Yo=Y, 'n+l :E;J’,lrﬂ? Yn = Y0Sns Dn = D(su,rn), n > 1.

Lemma 3.3 (Iteration Lemma) Suppose that the real analytic Hamiltonian system H, =
H,_10®, = N, + P, defined on D, x O,,, where

Np=En0,8) + (o, I) + (2 + B, (6,6)z,2) — (A — Wy (6, 6)p, p),

Pn = Pn(gs Zy Z» psﬁ»é),

and

Va
(k)

where Q2 and A are the ones defined in (2.2), B, is the one defined in (3.7) and satisfies
the estimates (3.8) and the function W, (0,&) = (W,l, ©,8) :Nl e Z)T have the same
decomposition in (3.7) and satisfy the same estimate in (3.8) with Q2, = Q+[B,1g. Moreover,

onz{seonfl:\(k,w>+<c,§n>|z v0<|;|sz,kezd}

”XE,,fE,,,] ”rn,sn,rn,(?,, = 28}171, (337)
”XP,, ||r,l,s,,,rn,(9n = é&n. (338)

Then there is a subset Op41 C Oy with

Yn+1
(k)T

Oyt = {s € On: |k @) + (¢, Ri1)| = VO < ¢l <2.ke Z"} (3.39)

and a real analytic symplectic change of variables
D11 Dpy1 X Oyt = Dy x Oy

such that H,11 = H, o ®,41 has the analogous form of H, and satisfies the conditions
(3.37) and (3.38) and B, 1 is the one with the formula in (3.7) and satisfies the estimates
(3.8) with (n + 1) in place of n, the function W, has the same decomposition and satisfies
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the same estimate with the ones of the function B, 1. Furthermore, we have the following
estimates

1
1Pnt1 = idllrypy spsrrnst.On < 285 » (3.40)

1
ID®yy1 = 1dllr, sy spirnsr. 00 < 280 - (3.41)

3.4 Proof of Lemma 3.3

In order to prove Lemma 3.3 we let

0 = &n, To =rn, 50 = sy (1 —np), Y =vn. O=0,

~ 1 ~
and deﬁ1.1e 5/' = 8;’/, rj+1‘= 8/'1’/'., Sj'f_l =5;j— So'n,j, ] > 0.
Consider the real analytic Hamiltonian system H, = N, + P, defined on D,, x O,,, we
rewrite it as

Ho=No+ Po=E@©,8) + (0, ) + (R + B, £))z,2)
— (A=W, 6)p, D) + Po(0,2,%,p, B, £)

deﬁnedonﬁg)i(ﬁ, where Dj = DG},7), O= Oy, E= E,, B(6, &)= B,(0,£),W(0,£)=
Wn(0, &) and Py = P,. Obviously,

(3.42)

”Xﬁo ||70,Fo,70,0 f ’gl‘l,o'

Denote ﬁj = ]’\?j + 13}, where

J J
ﬁ,»=E+ZE,,+1,I(9,5)+<w,1>+< Q+ [ B+ by ] 0,6 z,z>

=0 =0
J
_< A=W+ wupis ] 0,6 p,p>, (3:43)
=0
1X5,17,.5,7.0 < Fnj (344

with

Eyi1000.6) =0, bys100.8) = Bl 10.8). i € DT, bur10(0.8) =0,

and
Wnt1,0(0, &) = (Wl (0,8), i € ZDT, wpy100,8) = 0.
Moreover,
buyr1®.8) = Y buyratk, £ byl 0 T, (349)
[k|<Tn,1-1
Wai1 0. 6) = Y Wuyrak. £ wapills_0 <F, (346)
[k1<T1-1
and
IXE, M7 3 7m0 < Eni-t. (3.47)
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Suppose that for j =0, ..., v — 1, there exists real anglytic Fit deﬁrlgd on 5‘,-4_1 x O
such that one gets the real analytic Hamiltonian systems H; | definedin D x O :

- - - -
Hjpr=HjoXp, , =Njr1+ Pj1,

where Nj+1 is the one in (3. 43) and satisfies, together with P]H (3.44)-(3.47) with (j + 1)
in place of j in the domain D j+1 X O. Moreover, the real analytic symplectic map X I

+]
satisfies
1
1 ~2
||XF,-+| id|7415701.51.0 < Ep i (3.48)
1
| 1
”DXF_HI 1d|l7;,1 5j41.711.0 < 8;/ (3.49)

Then, one wants to finds F,y; defined in DU+1 X O such that H,,+1 = ﬁv o Xva+1 =

IVU+] + Fv+1 with ]Vv+1 being the one in (3.43) and satisfies, together with E,Jr], satisfies
(3.44)—(3.47) with (v + 1) in place of j, and F,; satisfies (3.48) and (3.49) with v in place
of j, on the domain 51,_,_1 x O.

In the following we will construct such function F,;. For j = v, by using the Taylor—
Fourier expansion, we separate E,

Py0,2,%,0.0.6) = D Puspank §e®N07F p*p
8,B,a,n,k

into three parts:

ﬁv — pv(el) + Pv(nf) + Pv(Pe)’

where
PDO,2,7,p,p, ) Z Pos.poy k. £)e 60 578 pagn
0<|8+B|+]|a+n|<2
3#BaFEnk
PO, 2,%, 0,0, &) = Z P\0.0.0.0(k, £)elkd
kezd
+ Y Puspantk ©RIP 05

0<[0+B|+|a+n|<2
s=p,a=n, |k|§Tn,v

= Ent10410,8) 4 (bar1.0410, )2, 2) + (Was1.041(0, E)p, D),

PPOO.2.20.0.8)= Y Puspantk )e®00 0%

0<[8+8|+|a+n|<2
d=p,a=n,|k|>T),v

+ Z Pys ok, £)e0) 2028 parn
[8+Bl+la+n>2.k
—. p(pel) +P‘5p€2)
: P, .

(3.50)

Shorten the notations gy, 7oy Sus Onvs Ty as 8. 7. 5. 0and T, respectively. Obviously,
IX pen 757,05 1Xpon llFsro = 1Xp, 7570, (3.51)
and

~ ~ —To5—1 RTINS 1 2
||va(pel)||5?57(;,457,o <e 9% ||va||r,a 7,0 < 8 ||XP ||7§?
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For P.7*? we have

RITOTS

1X 0o I3z5.457.0 < SIX 5, Irs7.0 = 1X5, 1357 -

The discussions above yield

(3.52)

4
7 ~ ~ 13
1X perer 57 5—o.37.0 < 21X, 57,0

We rewrite H, as H, = Nyy1 + PO 1 PP where

1’\7\)+] = ﬁv + Pv(nf)

v+l v+1
S EO.6)+ Y Brers 0,6)+ (0, 1) + <[sz + (B n me,,-) @, s>} 2 z>

=0 i=0
v+1
— <|:A — (W + an+1,i> o, é)j| ;0,/)> .
i=0
Note that
1bnr1v+1ll5,00 lwprrvrillzo < ||va(nf) 7570 < 1X5, 7570 < €,
and
1XE, 100 7570 < 1Xp, 7570 < €y

Thus, ﬁwl owns the formula in (3.43) and satisfies (3.45)—(3.47) with j = v + 1.

The change of variables we need is the time-1-map of the flow X }Hl | .- Using Taylor

formula to expand H, o X }M | we obtain

t=1’
HyoXp  =NyoXp  +PPoxy +PPoXp,

1

1

= Nyj1 + PP +/ {PCD, Fyr}o Xy dt+ PP o Xp
0
1

+ {Nv+17 Fv+1} +/O (- t){{NV'H’ FV‘H}’ FV'H} °© Xth+1dt'

We want to find F,4 such that
{For1. Ny} = PSP,

From Proposition 3.1 we know that the homological equation above have a real analytic
approximate solution F, 4 and satisfies

-1
6, ~2 241 | -1
1XFii 55070 < 2°v 2T @l 07X peen 7570 (3.53)
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Moreover, the error term P\ of the homological equation above satisfies

-1
pe 5252050 =8 1 X pen |33 20 7.0
<278 y 2T2‘L'+1|w|840 lerzlyv
< 27y—2T2f+2|w|ﬂE,§,v (3.54)
7 2 =1 5
<2y 10|w|8n 6nv
; 2 15 3
=27y 21+ 20 + 2 @le,” 8n4°8;3v<8nv,
where the third inequality is by 0 ! = ( In%, )7 < T, the last but one inequality is from

the following [the third inequality below is from (3.9)]
~ 22 3) 1
T2 _ 243 o T’zm{] <exp{ 2t + )an_l}

1 1 -1
<exp [%(40(21 + 1))Kn2_1} =g,

By (3.53) and Cauchy estimate and with the similar calculations above we have

6. —2 72041 = G —2~ 8
7.5-20,7,0 =2°y°T |wley” 0™ €ny < €n v (3.55)

From (3.53) and (3.55) we also obtain

| DXk,

6
||XFv+l ”r F—o 70 = 8n v (3.56)

Then the flow X }M of the vector field X r,,, exists on D(5 — 30, g ) for 0 <t < 1 and takes

this domain into D — 20, 7). Similarly, it takes D — 40, &) into D& — 30, 1). Thus by
Gronwall’s inequality and the inequalities (3.55) and (3.56) we obtain

1
. - - -1 ~7
X%, —idlg5_sesro = |XFulpz 2070 <Fiw 0=t =1,

1
~ ~ -1 =2
IDX% = 1dl55ss57.0 < €8 | DXF, | <Ti, 0<t<l

7,5-20,7,0
Also in the same way to obtain (20.7) in [15], for any vector field ¥ we obtain

IXh Y 5 5-505.0 = 1Y 55530457, 0- (3.57)

By the definition of X va+1 and from (3.54) and (3.57) we know that
ﬁu o X}?Hl = ﬁv+] + ﬁu-&-l

1
= Now1 + /0 P, Popi}o Xip dt + PO o Xp (355

+P(e’)+f (A =0fP", Fopi} o Xi, | di

is well defined on D (5,41, Fy+1) x O. Moreover,

Xp,, = / (X%, )" [X, ptens Xp,)dt + (X, ) X poo

+XP\§"’> +/ (XFV+1)*[X(1 P XrF,,, 1dt,
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where [ X (P XF,,,]1s the commutator of the two vector fields X (Pl XF,,, - In view of
(3.51), (3.55), (3.56) and Cauchy estimate, we get

X, pens X £y 37 530,457, 0
= IDX, pen 37 530,457, 0 1 X Fuy 157 536,457 0
FIDXF, 137530457, 01 X, pev 157 536,457 0 (3.59)

R

<207 0" Xk F5—orol X pen 7570
13

<2516~ ,,7V

Then, by (3.57) and (3.59), we obtain
NG 1K, e XFoi W50
= clltX pens Xr, 4 575-30.457.0

5
~_ = En,v En,v+1
<287 o™ 18,,7V ny _ cnvtl
4 4

With (3.52) and (3.54), we can also obtain the same bound for the rest three terms of X Prir
we omit the details. Then we arrive at the estimate

IX 3, 171 Soat For 1,0 < Enposi
Once we reach the N, -th step, we terminate the above iteration. Denote
Hyp1 = Hy, = Hy 0 ®py1 = Nx;, + Py, = Nust + Posr,
defined on D(s;41, rnt1) X Opy1 and
®py1 = Xp o Xp oo Xp,
where
Nyt = Epq1 + {0, I) + ([Q + Buy1(6, 61z, 2) — ([A — Wup1(6, §)1p, ).
Post = Prys Suit =505 Fntl = TN
and O, is the one defined by (3.39) with

NYL '/\/;1 Nn
En+l = En + Z Ell+1,i7 Bn+1 = Bn + an+],is Wn+] = Wn + Z Wpn+1,i-
i=0 i=0 i=0
Recall that
1 ~ ~
I‘/+1—8 n.j Tj, Sj+1=5; —50j.
Since
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Moreover,
Np—1 Ny—1
~ ~ ~ o~ ~ ~ 2
Sn+l = SN, =50 — 5 Z On,j =580 — S0Gn Z Sj =80 — snSo =sp(1 —cp)".
Jj=0 Jj=0

As for the estimates about the change of variables ®,4, with the standard calculations in
the KAM iteration and the inequalities (3.48) and (3.49) we know that &, satisfies (3.40)
and (3.41). We omit the details.

The above estimates imply that H, 1 is well defined on D (7,41, Syp4+1) X Op41. Moreover,
B,,+1 owns the formula in (3.7) and satisfies the estimates in (3.8), the functions E, 4 and
P, 41 satisfy the estimates in (3.37) and (3.38), respectively, with n in place of (n + 1). The
vector W11 = (W,ﬁ L1 le Z1)T has the same decomposition and the satisfies the same
estimates as the ones of B, 4. O

4 Proof of Main Results
4.1 Convergence and the Proof of Theorem 2.1
Consider the Hamiltonian system H(2.1) defined on D(s, r) x O where w = £w, Q and A
are the ones defined in (2.2) and
IXp “r,s,r,O* <e,
with

Y
(k)

O*:{ée[l, 2] : [k, ®) + (¢, Q)] > 0<|§|§2,keZd}.

—1
Setso=s, ro=r,y0 =y, Oy = Oy, and assume that &g = ¢ < &, withIng,;"""" >
=1
3exp{(3'e*5052) @ ). Obviously, Eo(6, §) = 0, Bo(9, &) = 0 and Wo(6, £) = 0, and it
is easy to check that system (2.1) satisfies all hypotheses of Lemma 3.3 with n = 0. Note
that

Soo = 50T (1 — ) = soT1% 0 (1 — 26,) = soT1S%o[1 — 2(n +2)72]

= 50 exp {Zln[l —2n+ 2)—2]} > s0exp !Z —4(n + 2)—2>

n=0 n=0

= soe_z 1= S

Moreover,

I

roo =102, | =0 :1=ry,
then
D(s,r0) D D(s1,71) D+ D D(Scc, Foo) D D (sx, ).
Let " =P odPro0---0D,. Then
Hy,=Hod®"=N,+ P,

is the one in Lemma 3.3. Denote O, = ﬂ?ozo(’) ;. Note that &2 does not depend on the
parameter &, then by the definitions of O;, j > 0, we know that the calculations to estimate
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the measures of set O;, j > 0, are the same with the ones in the proof of Lemma 5.2, we
omit the details. By Lemma 5.2 we have

measO, > 1 —cy.

From Lemma 3.3 we know that H,, N,, P,, ®" and D®" converge uniformly on
D(sy, r¢) x O, . Let the limits be H, N, Py, ® and D® respectively. Moreover, by (3.40)
and (3.41) we know that

”q) - ld”r*s* 7,0y < 4'5()7

1 4.1
ID® — Id|y, 5.0, <45
Then
N = Eo(0.8) + {0, 1) + (@ + Bu(0.£)2.3) — (A — W(0.£))p. D).
Po= Y Pipa,0.62°7 p%p".

[6+B]+latn|=3

Moreover, from Sect. 3.4 we know that two inequalities in (2.3) hold.

4.2 Proof of Theorem 1.1

Denote u;, = v, then the system (1.6) becomes the following system, take the ./m as the
example,

ur=v,
4.2)
U = 2mu — uyxxx + g(6, t, x, u),
where
gle,wt, x,u) = cu’ + 38%\/ﬁu2 + E%f(a)t, X, A/m + séu).
The Hamiltonian of the above system is
1 1 T
H = E(v, v) + E(Au, uy + G(e, wt, x, u)dx, 4.3)
0

with the symplectic form du A dv on the space H2([0, 7]) x L2([0, ]), where

A=—2m+d* 0,G(e,wt, x,u) = —g(e, wt, x, u).

XXXX?

We assume that the function « is even in x € [0, 7], which implies that we restrict the
function u in the space spanned by {y;(x) := 21 cos Jx}j=0. Note that ¥ (x), j >0,

is the eigenfunction of the operator A2 belonging to the eigenvalue v/2m — j4, j > 0. Thus
we make the assumption

u(t, ) =3 — qj<r)1/f,<x)+z rp](t)w](m

]6_'7 JEZy (4.4)
vt x) = g Ovi) + Y A0V (),
jed J€Zy
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where

Vzm_j4a jezlv
i —2m, jed.

Then the Hamiltonian defined in (4.3) is changed into

Aj =

1 - 1 ~
H=23 2@ +3)+5 ) %P5 —p)+ Rt q, p) (4.5)

jEJ j€Z|
with symplectic form dg A dg + dp A dp on the space £y, X £q,p X Za,p X Za,p, and
T
R= / G(ot, x, Z N Y+ Y ﬁp] (O (x))dx.
0 jed JEZy
Moreover, we make the change of variables
Zj =

1 1
—=(q; —1ig)), —(qj +1iq;), j € J,
ﬁQJ qj ﬁ‘b qj)s J

1

o o
pj = 7§(pj —-Dpj) Pj= E(Pj‘i‘l’j)’ Jj €Ly

Zj =

Note that p is not the complex conjugate of p. Then (4.5) is changed into
H= (o, 1)+ Y Azl = Y Ajpjp;+ P©.2,% p.p) (4.6)
j€\7 jEZ]

where § = wt, the added variable / € C is canonically conjugate to 6 € ’]I‘d with symplectic
formd9/\dl+1dz/\dz+d,o/\d,oonthespaceCd x C4 x Lap X Lap % Ea,, X Za,,
Moreover,

- z+z p+p
P@®,z,zZ,p, =R<9, 7)
0, P) 5

The motion equation of the Hamiltonian function defined by (4.6) is

6 =w,
zj =i{rjzj +0;,P0,2,2,0,0)}, j€JT,
zj = —i{A;z; +0;;P(0,2,2,p,0)}, j €T, @7

pj=—Xjp;j +3§/-P(9,Z,Z,P,ﬁ), Jj €7y,

0j = =P+, PO.2.2.0. D)), j€ZLi
Denote
Q=diag(Q; =1;, jeJ), A=diag(A; =1, jeZ).

Consider the linear operator of (4.7), which we denote as A, i.e., A = diag(i2, —i2, —A, A).
The spectrum of A has the decomposition

Spec(A) = o5 Uo.Uoy,
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where
os ={—-Aj. jeli}, o-={£iQ;. jeT}. on={Aj, jel}.

We call the spectrum belong to oy Uy, and o, as the hyperbolic spectrum and the center spec-
trum, respectively. Obviously, the hyperbolic spectrum is finite and the following Lemma 5.1
implies that the hyperbolic spectrum is well separated from the center spectrum.

Setr =1, 0<s <1, and

r
(k)

By (H) we know that the function P in (4.6) satisfies

0= {s e[l 21: |(k, w) + (I, &) = 0<|l|<2, Vke Zd}.

1
”XP ”r,s,r,@ <e2.

Wesetrg=r=1,so=s <1, Oy = O and gy := 8% < g, with &, being the one in
Theorem 2.1. Then by the inequality above we know that the Hamiltonian (4.6) satisfies all
the hypotheses in Theorem 2.1. Thus by Theorem 2.1 we know that the sympletic change of
variables @ defined in D(s4, ) x O, casts Hamiltonian system H defined (4.6) into H.
The motion equation of H, is

0 =0,

I = —dH,,

2 =1(Q + By)z + 10z Py,

_ (4.8)
z=—1(Q+ B,z —10; Px,

p=(=A+Wop + 3P,

p=—(—A+W)p— 0P
Equation (4.8) possesses invariant tori
0=owt, I, =1,0,§), z=2z2=0, p=p=0.

Let (0(2), 1(0, &), z(t),z(1), p(t), p(t)) = P(04(0) + wt, 1.(0, &), 0,0, 0,0). Then (omit
the added variable 1)

0(1), 2(1), 2(1), p(1), P(1))
= (0:(0) + 1, X(0+(0) + w1), X(0:(0) + w1), Y (6+(0) + w1), Y (0:(0) + wr))
is a solution of (4.2), where
X(0+(0) + 1) = (X;(0:(0) + 1) € C, j €T) € Ly,p,
X(040) + wt) = (X (0:(0) + wt) € C, j € T) € Ly p,
X (6,(0) + wt) is the complex conjugate of X (8,(0) + wt) and 1 Xla,p < et Moreover,

Y (05(0) + 1) = (Y;(0(0) + wt) € R, j € Zy) € Ly p,
Y(0,00) + ) = (V;(6.0) + o) €R, j € Zy) € by p,
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Y (64(0) + wt) is conjugate (not the complex conjugate) to ¥ (64(0) + wt) and Y lla,p <
4%, |[V|la, < 4e+. Then

u(x,t) = Z F(Y + Y )(0:0) + )y (x)

J€Zy

+ Z (X + X )(0:(0) + 00 (x).
jGJ

Thus the solution of (1.4) we obtain is y = /m + a%u(x, t).

5 Appendix

Lemma 5.1 Assume 2m > 1, (2m)4 — [(2m)4] € [W %], then the following conclusions
hold:
/2

-3
0 1+ > L~ |sz —Qi|z|jz—i2|,zjejz#;(n)”’"” < |Aj] <
V2m, |Aj — A|>|, A i j e, i # ).

2m

Proof Consider Q; = Aj =/ j* —2m, j € J. It follows that
1
2512 = j* = 2m = (2 4+ V2m)(j + @)D — @m)F) > {j - <[<2m)%] + 5)}

Bl
4
3/2
asj > 1+ [(2m)£]. Thus, we have || > % Moreover,

CH+AE=2 o
12; - Qil = > 172 =17
m

Vi =2mi% —

This proves the conclusion (i).

For Aj = Aj = v/2m — j%, j € Zy, in view of j < [(2m)3]and 2m)i — [2m)i] €
[ﬁ, %], one has

A2 =2m = j* = (Vom + 7) (@m)i + ) (@m)E - j)
> (Vam + 12) (@m)i + ) <[<2m)%] T J)
_ Ym
~ 100 °

Thus, |Aj| > (2'")4 , and, obviously, |A ;| < +/2m. Moreover,

@+ 6 - - 1j2 —i%|
V2m = jA2m — i3 2m

This proves the conclusion (ii). O

|Aj — Ai| =

@ Springer



Journal of Dynamics and Differential Equations (2020) 32:705-739 737

Lemma 5.2 Assume the frequency vector w = §w with @ being the one defined in (1.2).
For B(§) = (Bj(§), j € J) with ||Bé)llo = ce, denote Q(§) = Q + B(§), where
Q= (R, j €J) is the one defined in (2.2). Define the set

(kyt”
Then for0 <y < land t > d 4 2, we have measO, > 1 — cy.

O, = {g €O |(kw)+(1.3E) > 2= 0< i <2, VkeZd}.

Proof By Lemma 5.1 we know that that
|k, @) + (1. Q©)| = 1. Q@) > [ Q)] = 2Bllo > 1. k=0.
In the following we assume k # 0. Denote

({1, (&) y
+ — | > 7

O**==§GO:|(k,a) - 0< il <2, Vkezd},

R= |J R

kezd 0<|i|<2

with

Rii(y) = {E €0 : g < (lz/)f}
and

1,Q
e = (k@) + 0,

Obviously, O, C Oy and Oy = O\ R(y).
Case one: |{l, Q)| > 5|k||w|. Then
{1, Q) > ‘ {1, 2))
£ £
> 271, Q@) — Ikl@]
> 27, ) - [, BE))| — kl|@]
> 2711, )| - 2lk||@|
> (10)7' |k,

|(k, @) +

‘— Ikl

thatis Ry (y) = 0.
Case two: |{l, Q)| < 5|k||w|. For § € O, we have

d (,9Q) 8, Q)
Egk,z\ﬂ el |
_ ‘u,m +(L.B) ol B)‘
g2 &
[{l, )] {1, )]

> — 2|, B >
> I, B)lo =
lherefore,

measRRg (y) < C(Iz/)f'
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Then,

meas U U Ri,1(v)

0s£kezd [(1,2)|<5]kl|o], || <2

S

07£kezd |{1,Q)| <5kl[], [1]<2

<1250y )

0+£kezd

1
WSC% (t >d+2),

where C is a constant depending on w and 7. This implies that measR < Cy, which means
measQO, > 1 — Cy. Thus,

measQ, > 1 —Cy.
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