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Abstract
In this paper we develop a Kolmogorov–Arnold–Moser (KAM) theory close to two fixed
points for quasi-periodically forced nonlinear beam equation

ytt + my + yxxxx = y3 + ε f (ωt, x, y), x ∈ [0, π],
where the forcing frequencyω is a small dilatation of a fixed vectorω, i.e.,ω = ξω ∈ R

d with
ξ ∈ O := [1, 2]. We will prove the existence of real analytic quasi-periodic solutions of the
above equations under the hypothesis that the frequencyω is Liouvillean. The quasi-periodic
solutions we obtain are around the equilibria, y(t, x) ≡ ±√

m,∀(t, x) ∈ R× [0, π], of the
system

ytt + my + yxxxx = y3,

and are whiskered, that is the linearized equation around ± √
m owns the hyperbolic direc-

tions (the hyperbolic directions are finitely many, depending onm, and the elliptic directions
are infinitely many in our case). The proof is based on a modified KAM iteration for infinite
dimensional systems with finitely many hyperbolic directions, infinitely many elliptic direc-
tions and Liouvillean forcing frequency. We believe that the approach in this paper can be
applied also to other integrable PDEs. For example, the same strategy should work for the
non-linear wave equations and the non-linear Schrödinger equations.
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1 Introduction andMain Result

Since the pioneering works for the existence of quasi-periodic solutions of one-dimensional
nonlinear wave and Schrödinger equations proved by Kuksin [16] and Wayne [25], many
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progresses have been made concerning KAM theory for nonlinear Hamiltonian PDEs, one
may refer to [4–7,10,12,14,15,17,18,20,21] and see also [8,9] for further developments. With
the development of the KAM theory for PDEs, great attention has been paid to the study
of quasi-periodic solutions for quasi-periodically forced nonlinear Hamiltonian PDEs by
KAM and Nash–Moser theory in the last years. For example, see [19,22,23,30] for one-
dimensional case. In particular, for higher dimensional case, Berti and Bolle [3] and [2]
proved the existence of quasi-periodic solutions for quasi-periodically forced Hamiltonian
wave equations

ytt − �y + V (x)y = ε f (ωt, x, y), x ∈ T
d ,

and Schrödinger equations

iut − �u + V (x)u = ε∂ū H(ωt, x, u), x ∈ T
d .

We note that the above works on forced systems need assume that the forced frequency meets
some Diophantine conditions. That is, there exist γ > 0 and τ > d such that

|〈k, ω〉| ≥ γ

|k|τ , k ∈ Z
d \ {0}

or assume that the forced frequency ω is a small dilatation of a fixed Diophantine vector
ω ∈ R

d , namely

ω = ξω, ξ ∈ O := [1, 2],
where for some γ > 0 and τ > d,

|〈k, ω〉| ≥ γ

|k|τ , k ∈ Z
d \ {0}.

Slightly weaker than the Diophantine conditions can be often required as Brjuno conditions,
which was defined by

∑

n≥0

1

2n
max

0<|k|≤2n , k∈Zd
ln

1

|〈k, ω〉| < ∞.

However, if the forced frequency ω is ‘too close’ to rational vector, the resonance effects
in general destroy the persistence of the invariant torus. Actually, it is difficult to obtain the
persistence of the invariant torus of PDEs even in space one-dimensional cases beyondBrjuno
conditions. If the frequency ω is not Brjuno, we call it is Liouvillean. Recently, Wang–You–
Zhou [28] considered the quasi-periodically forced harmonic oscillators with Liouvillean
frequency vector ω = (1, α) :

ẍ + λ2x = ε f (ωt, x), (1.1)

where λ ∈ O, a closed real interval not containing 0, the forcing term f is real analytic
in (θ, x) ∈ T

2 × R. They proved the existence of response solution of (1.1) by using the
CD-bridge given by Avila–Fayad–Krikorian [1].

The question is that whether it is possible to obtain the persistence of the invariant torus
withLiouvillean frequency for the infinite-dimensional dynamical systemwith quasi-periodic
forcing ?

By applying the ideas in [28], Xu et al. [29] constructed the quasi-periodic solutions of
forced nonlinear Schrödinger equations with the frequency vector ω = (ω̃, ω) and ω̃ =
ξ(1, α) satisfying
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{
β(α) := lim supn>0

ln ln qn+1
ln qn

< ∞,

|〈k, ω̃〉| + |〈l, ω〉| ≥ γ
(|k|+|l|)τ , for k ∈ Z

2, l ∈ Z
d \ {0},

where pn
qn

is the continued fraction approximates to α. In this paper, we consider the d-

dimensional frequency vector ω ∈ R
d satisfying, for a ∈ (0, 1] and any K > 1,

max
0<|k|≤K , k∈Zd

ln
1

|〈k, ω〉| ≤ |K |(ln |K |)−a . (1.2)

It is worth pointing out that the result in [29] only allows ω̃ to be Liouvillean, not to all ω.

Thus, if we allow d > 2, our frequency, defined by (1.2), is much weaker than the frequency
ω in [29]. However, if we restrict our frequency to be 2-dimensional vector, i.e., d = 2, then
the frequency ω̃ = ξ(1, α) in [29] is weaker than the frequency in our paper.

To verify that the frequencies defined in (1.2) include the Liouvillean, we, for example,
can impose the following restriction on the forced frequency

max
K1<|k|≤K2, k∈Zd

ln
1

|〈k, ω〉| ≥ |K1|(ln |K1|)−a, (1.3)

where K2 > K1 > 1. It is easy to see that such ω is Liouvillean. In fact, for any n ∈ N, (1.3)
implies that there exists k ∈ Z

d \ {0} with 2n ≤ |k| ≤ 2n+1 such that

max
2n−1<|k|≤2n , kn∈Zd

ln
1

|〈k, ω〉| ≥ 2n−1(ln 2n−1)−a, a ∈ (0, 1].

It follows that
∑

n≥0

1

2n
max

0<|k|≤2n ,k∈Zd
ln

1

|〈k, ω〉| ≥
∑

n≥0

1

2n
max

2n−1<|k|≤2n ,k∈Zd
ln

1

|〈k, ω〉|

>
∑

n≥0

1

2n
2n−1(ln 2n−1)−a

= 2−1(ln 2)−a
∑

n≥1

(n − 1)−a = ∞, a ∈ (0, 1],

which shows ω defined in (1.2) includes some Liouvillean frequencies.
The goal of this paper is to develop a KAM theory for whiskered tori (i.e., the tori own

the hyperbolic directions) of nonlinear beam equation with Liouvillean frequency vector

ytt + my + yxxxx = y3 + ε f (ωt, x, y), x ∈ [0, π]. (1.4)

We consider the main part of (1.4)

ytt + my + yxxxx = y3. (1.5)

The system (1.5) has three equilibria, y(t, x) ≡ 0,∀(t, x) ∈ R × [0, π], and y(t, x) ≡√
m, y(t, x) ≡ −√

m,∀(t, x) ∈ R × [0, π ]. The main result of the paper will prove that
two solutions u(t, x) ≡ ±√

m of Eq. (1.5) can be continued to solutions of the Eq. (1.4).
More precisely, we look for quasi-periodic solutions

y(t, x) = ε
1
2 u(t, x) ± √

m,

of (1.4), where u(t, x) is a quasi-periodic solution of the following nonlinear beam equations

utt − 2mu + uxxxx = εu3 ± 3ε
1
2
√
mu2 + ε

1
2 f (ωt, x, ε

1
2 u ± √

m). (1.6)
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Throughout this paper, we always assume the following:
(H): f : Td ×[0, π]×R → R is a real analytic function and even on x, and ω is a small

dilatation of a fixed vector ω, namely,

ω = ξω with ξ ∈ O := [1, 2],
m > 0, (2m)

1
4 − [(2m)

1
4 ] ∈ [ 1

100 ,
1
2 ], here [·] denotes the integer part of a real number and

ω satisfies the hypothesis (1.2).
Now we are ready to state our main result.

Theorem 1.1 Assume that the hypothesis (H) holds, then for any 0 < γ � 1, there exist
ε∗ > 0 and Oγ ⊂ O with measOγ > 1 − cγ, such that for any ξ ∈ Oγ the Eq. (1.4)

possesses quasi-periodic solutions of the form y(t, x) = ±√
m + ε

1
2 u(ωt, x) provided that

ε ≤ ε2∗, where u(ωt, x) is the quasi-periodic solution of (1.6).

Let us conclude the introduction with some comments on the result.

1. The reasonwhywe choose beamequation as our object of study in thiswork is that it is one
of the most important equation in mathematical physics besides this equation interesting
by itself. A lot of important works have been done on the study the existence of quasi-
periodic solution withDiophantine frequency for beam equation.We refer to [11–13] and
[24,26]. More recently, a groundbreaking work was made by Eliasson–Grebert–Kuksin
[8], who proved a KAM theorem for beam equation with x ∈ T

d under the Diophantine
conditions. The system we’re considering here is a system with multi-dimensional Liou-
villean forced frequency. Furthermore, since the solutions we obtain are around ± √

m,

the linearization operator will possess the hyperbolic spectrum (eigenvalue), the motion
equation, Hamiltonian and the symplectic form are different from the ones in the papers
mentioned above. To avoid the multiply spectrum we will restrict ourself to the space
that is even about the spacial variable x and take the

√
m as the example.

2. Note that we have to exclude some m such that the spectrum is discrete. Thus we will
introduce another parameter ξ, which belongs to a compact set. This parameter is the
dilatation of the fixed vector ω. We will dig out some bad parameters from this compact
set at each KAM iteration to make sure that the first and second Melnikov’s conditions
are satisfied.

3. Digging out the parameter ξ will make homological equations along the hyperbolic
direction complicated. Since the solution we construct is around the equilibrium

√
m,

the linear operator of the linearized equation possesses the hyperbolic spectrum (the
spectrum whose real part is not zero). Generally, there will be no small divisor in the
homological equation along the hyperbolic directions, so that one solves the equation by
applying the implicit function theorem. However, in this paper, the parameter ξ makes
the implicit function theorem invalid. See the Remark 3.1 for details. Thus we will not
separate the equations along the elliptic directions and the hyperbolic directions.

4. Similar to [27,29], we will also solve, in the KAM iteration, the variable coefficients
homological equation

∂ωu(θ, ξ) + i(� + B(θ, ξ))u(θ, ξ) = f (θ, ξ), 0 �= � ∈ R, ∂ω =
d∑

l=1

ωl∂θl .

Follows the famous Kuksin’s Lemma, we will kill the function B(θ, ξ) by making a
change ũ = e−iBu and f̃ = e−iB f , where

i∂ωB(θ, ξ) = −B(θ, ξ) + [
B(θ, ξ)

]
θ
.
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In [27,29], the authors used the technique ofCD-bridge tomake sure thatB is controllable.
However, the frequency defined in (1.2) is more complicated, for example, there is no
CD-bridge in our work. We will separate the equation above into a series of equations by
using the special structure of B. By carefully choosing the iteration parameters we can
guarantee that B is controllable.

5. If the smallness of the perturbation does not depend on the Diophantine constants of the
frequency ω, we say the result is non-perturbative. We stress that the smallness of the
perturbation in our results is dependent on the Diophantine constants of the frequency

ω. For example, one of the hypotheses on ε∗ is ln ε
−1

40(2τ+1)∗ ≥ 3 exp
{
(e−4s0(48)−1)

−1
a
}
,

where a is the ones in (1.2) and 0 < s0 < 1. Thus our result is perturbative, not like the
result in [27].

2 Preliminaries

In this section, we first give some notations which will be used in the sequel.

2.1 Some Notations

Denote the set Z1 =
{
j ∈ Z : 0 ≤ j ≤ [(2m)

1
4 ]
}
and J = N \ Z1. Let �a,p = {q =

(q j ) j∈J : q j ∈ C} with a ≥ 0, p ≥ 1
2 be the space of complex sequences with inner

product

〈q, q̃〉 :=
∑

j∈J
e2a| j || j |2pq j q̃ j

for any q, q̃ ∈ �a,p. Then
(
�a,p, 〈·, ·〉

)
is a Hilbert space. Let ‖q‖a,p = √〈q, q〉. Similarly,

we also define �̃a,p = {q = (q j ) j∈Z1 : q j ∈ C} with a ≥ 0, p ≥ 1
2 be the space of complex

sequences with inner product

〈q, q̃〉 :=
∑

0 �= j∈Z1

e2a| j || j |2pq j q̃ j + q0q̃0

for anyq, q̃ ∈ �̃a,p.Obviously,
(
�̃a,p, 〈·, ·〉

)
is also aHilbert space.Denote‖q‖a,p = √〈q, q〉.

Let Td = R
d/2πZd (Td

c = C
d/2πZd) be the standard d-dimensional real (complex)

torus and define

u(s) = {
θ : |Imθ | < s

}
, O = [1, 2],

where |·| denotes the supremum norm for the finite-dimensional vectors. Denote the complex
neighborhood of Td × {0} × {0} × {0} × {0} × {0} by
D(s, r) = {(θ, I , z, z, ρ, ρ) : |Imθ | < s, |I | < r2, ‖z‖a,p, ‖z‖a,p, ‖ρ‖a,p, ‖ρ‖a,p < r}

⊂ C
d × C

d × �a,p × �a,p × �̃a,p × �̃a,p := Pa,p.

For the function f (θ, ξ) defined on u(s) × O with the Fourier expansion

f (θ, ξ) =
∑

k∈Zd

f̂ (k, ξ)ei〈k,θ〉,
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we define the norms ‖ f ‖∗
s,O and ‖ f ‖Ls,O as

‖ f ‖∗
s,O =

∑

k∈Zd

‖ f̂ (k)‖∗
Oe|k|s, ‖ f ‖Ls,O =

∑

k∈Zd

‖ f̂ (k)‖LOe|k|s,

with

‖ f̂ (k)‖∗
O = sup

ξ∈O
| f̂ (k, ξ)|, ‖ f̂ (k)‖LO = sup

ξ1 �=ξ2,ξ1,ξ2∈O
| f̂ (k, ξ1) − f̂ (k, ξ2)|

|ξ1 − ξ2| ,

we also define the norms ‖ f̂ (k)‖O and ‖ f ‖s,O as

‖ f̂ (k)‖O = ‖ f̂ (k)‖∗
O + ‖ f̂ (k)‖LO,

‖ f ‖s,O = ‖ f ‖∗
s,O + ‖ f ‖Ls,O =

∑

k∈Zd

‖ f̂ (k)‖Oe|k|s .

Moreover, we define the truncation operator TK and projection operator RK as

TK f (θ, ξ) =
∑

|k|≤K

f̂ (k, ξ)ei〈k,θ〉, RK f (θ, ξ) =
∑

|k|>K

f̂ (k, ξ)ei〈k,θ〉,

and the average of f (θ, ξ) in θ by

[ f (θ, ξ)]θ = 1

(2π)d

∫

Td
f (θ, ξ)dθ = f̂ (0, ξ).

Denote δ = {δ j , j ∈ J }, β = {β j , j ∈ J }, and α = {α j , j ∈ Z1}, η = {η j , j ∈ Z1}
with finitely many non-zero components δ j , β j , α j , η j ∈ N. For the function P : D(s, r) ×
O → C, which is analytic in variables (θ, I , z, z, ρ, ρ) and Lipschitz on the parameter ξ,

we take the following Taylor–Fourier expansion

P(θ, I , z, z, ρ, ρ, ξ) =
∑

δ,β,α,η

Pδ,β,α,η(θ, I , ξ)zδzβραρη

=
∑

μ,δ,β,α,η,k

P̂δ,β,α,η,μ(k, ξ)ei〈k,θ〉 Iμzδzβραρη,

where zδzβ = � j∈J z
δ j
j z

β j
j and ραρη = � j∈Z1ρ

α j
j ρ

η j
j . We define the norm of P by

‖P‖D(s,r),O = sup
‖z‖a,p,‖z‖a,p,‖ρ‖a,p,‖ρ‖a,p≤r

∑

δ,β,α,η

‖Pδ,β,α,η‖|zδ||zβ ||ρα||ρη|,

where

‖Pδ,β,α,η‖ =
∑

k,μ

‖P̂δ,β,α,η,μ(k)‖Oe|k|sr2|μ|

=
∑

μ

‖Pδ,β,α,η,μ‖s,Or2|μ|.

Moreover, for the function P above we associate a Hamiltonian vector field defined by

XP = (
PI , −Pθ , iPz, −iPz, Pρ, −Pρ

)T
.
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For the vector PY , (Y = z, z) we define

‖PY ‖a,p,D(s,r),O =
⎧
⎨

⎩
∑

j∈J

(‖PYj ‖D(s,r),O
)2
e2aj j2p

⎫
⎬

⎭

1
2

,

and for PY , (Y = ρ, ρ)

‖PY ‖a,p,D(s,r),O =
⎧
⎨

⎩
∑

0 �= j∈Z1

(‖PYj ‖D(s,r),O
)2
e2aj j2p + ‖PY0‖D(s,r),O

)2
⎫
⎬

⎭

1
2

.

We also define the weighted norm

‖XP‖r ,s,r ,O = ∥∥PI
∥∥
D(s,r),O + 1

r2
∥∥Pθ

∥∥
D(s,r),O + 1

r

(‖iPz‖a,p,D(s,r),O

+ ‖iPz‖a,p,D(s,r),O + ‖Pρ‖a,p,D(s,r),O + ‖Pρ‖a,p,D(s,r),O
)
.

In this paper, for k = (k1, . . . , kd) ∈ Z
d , we denote

〈k〉 = max {1, |k|} , |k| := |k1| + · · · + |kd |.

2.2 An Infinite Dimensional KAMTheorem

In this section, we develop an abstract KAM theorem for a general infinite-dimensional
quasi-periodically forced system. As an application of the theoremwe can prove Theorem 1.1
immediately. We consider a more general infinite-dimensional Hamiltonian system

H = 〈ω, I 〉 + 〈�z, z〉 − 〈�ρ, ρ〉 + P(θ, z, z, ρ, ρ, ξ) (2.1)

endowed with symplectic structure dθ ∧ d I + idz ∧ dz + dρ ∧ dρ, where P is real analytic
in the variables (θ, z, z, ρ, ρ) and Lipschitz in parameters ξ. Denote

� = diag(� j , j ∈ J ), |� j | ≥ j2, |� j ± �i | ≥ | j2 ± i2|,
� = diag(� j , j ∈ Z1), 1 ≤ |� j | ≤ 2, |� j ± �i | ≥ 1.

(2.2)

We also identify the above two diagonal matrices as the vectors � = (� j , j ∈ J )T and
� = (� j , j ∈ Z1)

T . The same notions are also for the diagonal matrices B(θ, ξ), W (θ, ξ)

and b(θ, ξ), w(θ, ξ), which will be given later.

Theorem 2.1 Let ω = ξω with ω ∈ R
d satisfying (1.2), and s, r > 0, τ > d + 2. Consider

the real-analytic Hamiltonian H defined in (2.1). Then there exists a ε∗(ω, γ, s, r , τ ) > 0,
for every real analytic perturbation P with

ε = ‖XP‖r ,s,r ,O ≤ ε∗(ω, γ, s, r , τ ),

there exists a nonempty subsetOγ ⊂ O with measOγ > 1−cγ, and for every ξ ∈ Oγ , there
is a real analytic symplectic map � : T

d ×Oγ → Pa,p, such that � casts the Hamiltonian
H defined by (2.1) into

H ◦ � = N∗ + P∗,
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where

N∗(θ, I , z, z, ρ, ρ, ξ) = E∗(θ, ξ) + 〈ω, I 〉 + 〈(� + B∗(θ, ξ))z, z〉
− 〈(� − W∗(θ, ξ))ρ, ρ〉,

P∗(θ, z, z, ρ, ρ, ξ) =
∑

|δ+β|+|α+η|≥3

P∗
δ,β,α,η(θ, ξ)zδzβραρη,

with

‖XE∗‖r∗,s∗,r∗,Oγ < 4ε
1
2 , ‖B∗‖s∗,Oγ ≤ 4ε

1
2 , ‖W∗‖s∗,Oγ ≤ 4ε

1
2 . (2.3)

3 Proof of Theorem 2.1

3.1 Main Ideas of the Proof

An essential idea of Theorem 2.1 is to construct a simplifying transformation, consisting of
infinitely many successive steps (referred to as KAM steps) of iterations, so that after each
step the new perturbation terms of the transformed system are much smaller than the ones
in the previous system. As all KAM steps can be carried out inductively, below, we only
describe one step of KAM iteration in more detail. In this work, one step of iteration will be
finished by a family of subiterations. Moreover, the steps of the subiteration will go to ∞.

Note that the KAM theory is a small divisor problem, since we assume the forcing fre-
quency is Liouvillean, there will be new difficulties appear compared with the classical
KAM theory. The main difficulty is that we can not kill the terms whose small divisor is
〈k, ω〉, k �= 0, such as P(θ, ξ),

∑
i Pi,i (θ, ξ)zi zi and R(θ, ξ)I . We overcome this problem

by putting the first two terms into the normal from. Moreover, we assume that the variable θ

comes form the forcing such that the perturbation will not depend on the action variable I .
Thus, the normal form in our work will be variable coefficients, take the n-step Hamiltonian
for example,

Hn = En(θ, ξ) + 〈ω, I 〉 + 〈[
� + Bn(θ, ξ)

]
z, z̄

〉

− 〈[
� − Wn(θ, ξ)

]
ρ, ρ

〉 + Pn(θ, z, z̄, ρ, ρ, ξ),

where the functions Bn(θ, ξ) and Wn(θ, ξ) own the special structure. Thus the homological
equations in this paper is variable coefficients. The special structure of Bn(θ, ξ) andWn(θ, ξ)

is oneof the key conditionswhenwe try to eliminate the effect takenby Bn(θ, ξ) andWn(θ, ξ).

Moreover, the perturbation Pn(θ, z, z̄, ρ, ρ, ξ) is of size εn .

In the following, we will construct a near-identity symplectic change of variables �n+1,

such that the new Hamiltonian system Hn+1 = Hn ◦ �n+1 possesses the same formula and
satisfies the same estimate as the ones of newHamiltonian system Hn with (n+1) in place of
n. Note that one of the step of iteration will be finished by another a family of subiterations,
that is the Hamiltonian function Hn+1 is the one in the final step of the subiteration. Thus,

the size of the new perturbation Pn+1 is much smaller than ε
5
4
n .

3.2 Homological Equation and Its Approximate Solution

For functions F(θ, I , z, z, ρ, ρ, ξ) and G(θ, I , z, z, ρ, ρ, ξ) with Taylor–Fourier expansion
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F(θ, I , z, z, ρ, ρ, ξ) =
∑

μ,δ,β,α,η,k

F̂δ,β,α,η,μ(k, ξ)ei〈k,θ〉 Iμzδzβραρη,

G(θ, I , z, z, ρ, ρ, ξ) =
∑

μ,δ,β,α,η,k

Ĝδ,β,α,η,μ(k, ξ)ei〈k,θ〉 Iμzδzβραρη,

which are defined on D(s, r) × O, we define the Poisson bracket

{
G, F

} = ∂G

∂θ

∂F

∂ I
− ∂G

∂ I

∂F

∂θ
+ i

∂G

∂z

∂F

∂z
− i

∂G

∂z

∂F

∂z
+ ∂G

∂ρ

∂F

∂ρ
− ∂G

∂ρ

∂F

∂ρ
.

For fixed 0 < ε0 < 1, 0 < s0 < 1 and τ > d + 2, we denote the initial parameter K−1

by

K
1
2−1 = ln ε

−1
40(2τ+1)
0 , i .e., ε0 = exp

{
−40(2τ + 1)K

1
2−1

}
.

We assume that ε0 is small enough such that

K
1
2−1 = ln ε

−1
40(2τ+1)
0 ≥ 3 exp

{
((48)−1e−4s0)

−1
a
}
.

From the above inequality we can see that the smallness of perturbation, ε0, is related to
a, and thus to the Liouvillean frequencyω [see (1.2)]. Then we define the iteration sequences
for i ≥ 0 :

ςi = (i + 2)−2,

Ki = exp

{
K

1
2
i−1

}
, εi+1 = exp

{
−40(2τ + 1)K

1
2
i

}
, ε̃i, j = ε

(
5
4

) j

i ,

si+1 = s0�
i
j=0(1 − ς j )

2, σi, j = 5−1ςiς j si , Ti, j = σ−1
i, j ln ε̃−1

i, j ,

(3.1)

where j = 0, . . . ,Ni − 1, and Ni is the smallest integer number such that ε̃i,Ni ≤ εi+1,

that is ε̃i,Ni ≤ εi+1 < ε̃i,Ni−1.

Obviously, for any n ≥ 0, we know that

e−4s0 < sn ≤ s0.

The inequality above is used in many places, we will not stress the reference about it. More-
over, we will also assume ε0 is small enough such that for the sequence {K j } j≥−1 defined

above, the inequalities like Kn+1 > K 3
n , Kn+1 > 20Kn, ln Kn < K

1
16
n , n ≥ 0, hold.

Lemma 3.1 For the sequences defined above we have

exp{Tn−3,Nn−3−1} < ln ε−1
n , n ≥ 3 (3.2)

and

(ln ln K
1
2
n )−a < 3−1e−4s0ςn+1, a ∈ (0, 1], n ≥ 0. (3.3)

Proof Since ε̃n,Nn ≤ εn+1 < ε̃n,Nn−1, we know that ε
−
(
5
4

)Nn

n ≥ ε−1
n+1 > ε

−
(
5
4

)Nn−1

n , which
implies

(
5

4

)Nn

≥ ln ε−1
n+1

ln ε−1
n

= 40(2τ + 1)K
1
2
n

40(2τ + 1)K
1
2
n−1

>

(
5

4

)Nn−1

.
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Note that
(
5
4

)5
> e >

(
5
4

)4
, by the inequalities above we have

e
Nn
4 >

(
5

4

)Nn

≥ 40(2τ + 1)K
1
2
n

40(2τ + 1)K
1
2
n−1

> K
1
3
n ,

e
Nn−1

5 <

(
5

4

)Nn−1

<
40(2τ + 1)K

1
2
n

40(2τ + 1)K
1
2
n−1

< K
1
2
n ,

that is

4

3
ln Kn < Nn <

5

2
ln Kn + 1. (3.4)

Then by (3.1) we have

Tn,Nn−1 = σ−1
n,Nn−1 ln ε̃−1

n,Nn−1 < σ−1
n,Nn−1 ln ε−1

n+1

= 5(n + 2)2(Nn + 1)2s−1
n 40(2τ + 1)K

1
2
n

< 1800(2τ + 1)e4s−1
0 (n + 2)2(ln Kn)

2K
1
2
n

< K
2
3
n

(
= exp

{
2

3
K

1
2
n−1

})
,

(3.5)

the second inequality is from the inequality in the right side of (3.4), i.e.,Nn +1 < 5
2 ln Kn +

2 < 3 ln Kn . Then we have

ln ε−1
n = 40(2τ + 1)K

1
2
n−1 = 40(2τ + 1) exp

{
1

2
K

1
2
n−2

}

> exp

{
K

2
3
n−3

}
> exp

{
Tn−3,Nn−3−1

}
, n ≥ 3,

the last inequality is from (3.5) with (n − 3) in place of n. This is the proof of (3.2).
Now we turn to (3.3). We will use the iteration technique to prove this inequality.

I): n = 0 or 1. Note that

ln ln K
1
2
n = ln

(
1

2
K

1
2
n−1

)
≥ ln

(
1

2
K

1
2−1

)
≥ (3−1e−4s0ς2)

−1
a ≥ (3−1e−4s0ςn+1)

−1
a ,

where the inequality above is from K
1
2−1 > 3 exp{(3−1e−4s0ς2)

−1
a }. The inequality above

yields

(
ln ln K

1
2
n
)−a ≤ 3−1e−4s0ςn+1, n = 0 or 1.

II): n ≥ 2. Assume that n = j ≥ 2, the inequality in (3.3) holds, that is

(
ln ln K

1
2
j

)−a ≤ 3−1e−4s0ς j+1,

which implies

ln ln K
1
2
j ≥ (

3−1e−4s0ς j+1
)− 1

a .
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Now we let n = j + 1. Note that K j+1 = exp{K
1
2
j }, then we have (the first inequality

below is by the inequality above)

ln ln K
1
2
j+1 = ln K

1
2
j − ln 2 > exp

{(
3−1e−4s0ς j+1

)− 1
a

}
− ln 2

≥ 1

2

(
3−1e−4s0ς j+1

)− 2
a − ln 2 ≥ 1

2

(
3−1e−4s0

)− 2
a ς

− 1
a

j+2 − ln 2

≥ (
e−4s0

)− 2
a
(
3−1ς j+2

)− 1
a − ln 2 >

(
3−1e−4s0ς j+2

)− 1
a ,

which implies

(
ln ln K

1
2
j+1

)−a ≤ 3−1e−4s0ς j+2,

that is the inequality in (3.3) holds when n = j + 1.
By the discussions above we know that the inequality in (3.3) holds for all n ≥ 0.
With the similar calculations in (3.5) we also have

Tn,Nn−1 = σ−1
n,Nn−1 ln ε̃−1

n,Nn−1 = 4

5
σ−1
n,Nn−1 ln ε̃−1

n,Nn
> ln ε−1

n+1 > K
1
2
n . (3.6)

��
Denote Bn(θ, ξ) = (Bl

n(θ, ξ) : l ∈ J )T be the real analytic vector valued function
defined on u(sn) × O. Assume that Bl

n (l ∈ J ) have the following splitting

Bl
n(θ, ξ) =

n∑

i=0

bli (θ, ξ) =
n∑

i=0

Ni−1∑

j=0

bli, j (θ, ξ), n ≥ 0.

Thus Bn(θ, ξ)1 also possesses the splitting

Bn(θ, ξ) =
n∑

i=0

bi (θ, ξ) =
n∑

i=0

Ni−1∑

j=0

bi, j (θ, ξ), n ≥ 0, (3.7)

where bi (θ, ξ) = (bli (θ, ξ) : l ∈ J )T and bi, j (θ, ξ) = (bli, j (θ, ξ) : l ∈ J )T , j =
0, . . . ,Ni−1, i = 0, . . . , n. Moreover, we also assume

bi, j (θ, ξ) =
∑

|k|≤Ti−1, j−1

b̂i, j (k, ξ)ei〈k,θ〉, ‖bi, j‖sn ,O ≤ ε̃i−1, j−1. (3.8)

Note that there are no functions B0 := b0 = ∑N−1
j=0 b0, j and bn+1,0 in the system (2.1)

and (3.42), thus we set, in (3.7), b0, j (θ, ξ) = 0, j = 0, . . . ,N−1 and bi,0(θ, ξ) = 0, i =
0, . . . , n.

For the sequences {Ti−1, j−1}, j = 0, . . . ,Ni−1, i = n, n − 1, defined in (3.1) we let

Qn
i, j be the smallest integer number such that exp{3−Qn

i, j Ti−1, j−1} ≤ ln ε−1
n , that is

exp{3−Qn
i, j Ti−1, j−1} ≤ ln ε−1

n < exp{3−(Qn
i, j−1)Ti−1, j−1}. (3.9)

1 Note that in our work one of the step of iteration will be finished by a series of sub-iteration. Take the i-th
step iteration and j-th step sub-iteration for example, there will a term, which we denote as 〈bi+1, j+1z, z〉,
been put into the normal form. Thus the function Bn(θ, ξ) possesses this special structure.
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Furthermore, we denote

B̃(l)
i, j (θ, ξ) =

∑

3−(l+1)Ti−1, j−1<|k|≤3−l Ti−1, j−1

b̂i, j (k, ξ)ei〈k,θ〉,

l = 0, . . . , Qn
i, j − 1, j = 0, . . . ,Ni−1, i = n, n − 1,

B̃
(Qn

i, j )

i, j (θ, ξ) =
∑

|k|≤3
−Qn

i, j Ti−1, j−1

b̂i, j (k, ξ)ei〈k,θ〉,

j = 0, . . . ,Ni−1, i = n, n − 1.

By the discussions above we can rewrite Bn(θ, ξ) as

Bn(θ, ξ) =
∑

i=n,n−1

Ni−1∑

j=0

Qn
i, j∑

l=0

B̃(l)
i, j (θ, ξ) +

n−2∑

i=0

Ni−1∑

j=0

B̃i, j (θ, ξ), (3.10)

with B̃i, j (θ, ξ) = bi, j (θ, ξ), j = 0, . . . , Ni−1, i = 0, . . . , n − 2.
The reason that we do not separate bi, j (θ, ξ) ( j = 0, . . . ,Ni−1, i = 0, . . . , n − 2), into

a sum of a sequence of functions as what we have did with bi, j (θ, ξ), j = 0, . . . ,Ni−1, i =
n, n − 1, is that the inequality in (3.2) guarantees that the solutions to the equations about
these B̃i, j (θ, ξ) are controllable. See the discussions in the Proposition 3.1 for the details.
Moreover, if n ≤ 2, we know that there is no B̃i, j (θ, ξ), j = 0, . . . ,Ni , i ≤ n − 2
(B̃0, j (θ, ξ) = 0), so when we consider these terms we means n ≥ 3.

Lemma 3.2 Assume that Bn(θ, ξ) is the one defined by (3.7) with the estimate (3.8). Then
for the homological equation

∂ωB(θ, ξ) = −Bn(θ, ξ) + [Bn(θ, ξ)]θ , (3.11)

there is a unique solution B satisfying

‖B‖̂s,O < (480)−1 ln ε−1
n . (3.12)

Moreover, the function Wn(θ, ξ) = (Wl
n(θ, ξ) : l ∈ Z1)

T has the same decomposition in
(3.7) and satisfies the same estimate in (3.8). Then there is a unique solution to the equation

∂ωW(θ, ξ) = −Wn(θ, ξ) + [Wn(θ, ξ)]θ
satisfying

‖W ‖̂s,O < (480)−1 ln ε−1
n .

Proof Rewrite the function B as the one in (3.10). Assume that the functionsB(l)
i, j (θ, ξ) solve

∂ωB(l)
i, j (θ, ξ) = −B̃(l)

i, j (θ, ξ) + [B̃(l)
i, j (θ, ξ)]θ (3.13)

with l = 0, . . . , Qn
i, j , j = 0, . . . ,Ni−1, i = n, n − 1, and Bi, j solve

∂ωBi, j (θ, ξ) = −B̃i, j (θ, ξ) + [B̃i, j (θ, ξ)]θ (3.14)

with j = 0, . . . ,Ni−1, i = 0, . . . , n − 2. Then

B(θ, ξ) =
∑

i=n,n−1

Ni−1∑

j=0

Qn
i, j∑

l=0

B(l)
i, j (θ, ξ) +

n−2∑

i=0

Ni−1∑

j=0

Bi, j (θ, ξ)
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solves (3.11). By comparing the Fourier coefficients of (3.11) we have

B̂(k, ξ) =
̂̃B(k, ξ)

i〈k, ω〉 , k �= 0.

From the equation above and note that O ⊂ [1, 2] we obtain

sup
ξ∈O

∣∣∣B̂(k, ξ)

∣∣∣ = sup
ξ∈O

∣∣∣
̂̃B(k, ξ)

i〈k, ω〉
∣∣∣ ≤ sup

ξ∈O

∣∣∣̂̃B(k, ξ)

∣∣∣|〈k, ω〉|−1,

and

sup
ξ1 �=ξ2,ξ1,ξ2∈O

∣∣∣
B̂(k, ξ1) − B̂(k, ξ2)

ξ1 − ξ2

∣∣∣

= sup
ξ1 �=ξ2,ξ1,ξ2∈O

∣∣∣
{ ̂̃B(k, ξ1)

i〈k, ξ1ω〉 −
̂̃B(k, ξ2)

i〈k, ξ2ω〉
}
(ξ1 − ξ2)

−1
∣∣∣

≤ sup
ξ1 �=ξ2,ξ1,ξ2∈O

∣∣∣
{ ̂̃B(k, ξ1)

i〈k, ξ1ω〉 −
̂̃B(k, ξ2)

i〈k, ξ1ω〉
}
(ξ1 − ξ2)

−1
∣∣∣

+ sup
ξ1 �=ξ2,ξ1,ξ2∈O

∣∣∣
{ ̂̃B(k, ξ2)

i〈k, ξ1ω〉 −
̂̃B(k, ξ2)

i〈k, ξ2ω〉
}
(ξ1 − ξ2)

−1
∣∣∣

≤ sup
ξ1 �=ξ2,ξ1,ξ2∈O

∣∣∣
̂̃B(k, ξ1) − ̂̃B(k, ξ2)

ξ1 − ξ2

∣∣∣|〈k, ω〉|−1 + sup
ξ2∈O

∣∣∣̂̃B(k, ξ2)
∣∣∣|〈k, ω〉|−1.

So

‖B̂(k)‖O ≤ 2‖̂̃B(k)‖O|〈k, ω〉|−1. (3.15)

For l = 0, . . . , 3−Qn
i, j , j = 0, . . . ,Ni , i = n, n − 1, we know that

3−l Ti−1, j−1 ≥ 3−Qn
i, j Ti−1, j−1 = 3−13−(Qn

i, j−1)Ti−1, j−1 > 3−1 ln ln ε−1
n

= 3−1 ln

{
40(2τ + 1)K

1
2
n−1

}
> 3−1 ln

{
K

1
2
0

}

> 3−1 exp
{
(3−1e−4s0ς2)

−1
a

}
> exp

{
(e−4s0ς2)

−1
a

}
,

(3.16)

where the second inequality is by the inequality in the right side of (3.9) and the last but

one inequality is from K
1
3
0 ≥ exp exp{(3−1e−4s0ς2)

−1
a }. Note that the function �(T ) =

(
ln |T |)−a

, a ∈ (0, 1], is monotone decreasing on [exp{(e−4s0ς2)
−1
a }, ∞), then by (3.16)

we know that�(3−l Ti−1, j−1) are well defined and 0 < �(3−l Ti−1, j−1) < e−4s0ς2 < 1, l ≤
3−Qn

i, j , j ≤ Ni , i = n, n − 1.
Let us consider (3.13) first.

(I) l = 0, . . . , Qi, j − 1. By (1.2) and (3.15) we obtain (̂s = sn(1 − ςn)),

‖B(l)
i, j ‖̂s,O =

∑

3−(l+1)Ti−1, j−1<|k|≤3−l Ti−1, j−1

‖B̂(l)
i, j (k)‖Oe|k|sn(1−ςn)

≤ 2 exp{3−l Ti−1, j−1�(3−l Ti−1, j−1)} exp{−3−(l+1)Ti−1, j−1snςn}
·

∑

3−(l+1)Ti−1, j−1<|k|≤3−l Ti−1, j−1

‖̂̃B(l)
i, j (k)‖Oe|k|sn
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= 2 exp{3−l Ti−1, j−1�(3−l Ti−1, j−1)} exp{−3−l Ti−1, j−13
−1snςn}‖B̃(l)

i, j‖sn ,O
≤ 2 exp{3−l Ti−1, j−1�(3−l Ti−1, j−1)} exp{−3−l Ti−1, j−13

−1e−4s0ςn}‖B̃(l)
i, j‖sn ,O

≤ 2‖B̃(l)
i, j‖sn ,O < 2 ln ε−1

n ‖B̃(l)
i, j‖sn ,O,

where the third inequality follows from the following: First, with the same calculations in
(3.16) we obtain

3−l Ti−1, j−1 ≥ 3−(Qi, j−1)Ti−1, j−1 > ln K
1
2
n−1, l ≤ Qi, j − 1, j ≤ Ni , i = n, n − 1,

which implies

�(3−l Ti−1, j−1) < �(ln K
1
2
n−1), l ≤ Qi, j − 1, j ≤ Ni , i = n, n − 1. (3.17)

Moreover, from (3.3), (3.17) we have

3−1e−4s0ςn > �

(
ln K

1
2
n−1

)
> �(3−l Ti−1, j−1), l ≤ Qi, j − 1,

which implies exp{3−l Ti−1, j−13−1e−4s0ςn} > exp{3−l Ti−1, j−1�(3−l Ti−1, j−1)}, that is

exp{3−l Ti−1, j−1�(3−l Ti−1, j−1)} exp{−3−l Ti−1, j−13
−1e−4s0ςn} < 1.

(II) l = Qn
i, j . Similarly, we have the following, note that �(3−Qn

i, j Ti−1, j−1) < 1,

‖B(Qn
i, j )

i, j ‖̂s,O =
∑

|k|≤3
−Qn

i, j Ti−1, j−1

‖B̂(Qn
i, j )

i, j (k)‖Oe|k|sn(1−ςn)

≤
∑

|k|≤3
−Qn

i, j Ti−1, j−1

2 exp{3−Qn
i, j Ti−1, j−1}‖̂̃B(Qn

i, j )

i, j (k)‖Oe|k|sn(1−ςn)

= 2 exp{3−Qn
i, j Ti−1, j−1}‖B̃(Qn

i, j )

i, j ‖̂s,O ≤ 2 ln ε−1
n ‖B̃(Qn

i, j )

i, j ‖sn ,O,

where the last inequality is by the inequality in the left side of (3.9).
Nowweconsider the homological equation (3.14).Note thatTi−1, j−1 ≤ Tn−3,Nn−3−1, j =

0, . . . , Ni−1, i ≤ n − 2, and from (3.2) we have

exp{Ti−1, j−1} ≤ exp{Tn−3,Nn−3−1} < ln ε−1
n , j = 0, . . . ,Ni−1, i ≤ n − 2.

Moreover, by (3.3) and (3.6) we also have

�(Tn−3,Nn−3−1) < �(T0,N0−1) < �

(
ln K

1
2
0

)
< 3−1e−4s0η1 < 1, n ≥ 3.

Then by the two inequalities above and with the similar discussions in the case II) , we obtain

‖Bi, j ‖̂s,O ≤ 2 ln ε−1
n ‖B̃i, j‖sn ,O, j = 0, . . . , Ni−1, i ≤ n − 2.
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The discussions above imply that the function B(θ, ξ), the solution to (3.11), satisfies

‖B‖̂s,O =
∥∥∥∥∥∥

∑

i=n,n−1

Ni−1∑

j=0

Qn
i, j∑

l=0

B(l)
i, j +

n−2∑

i=0

Ni−1∑

j=0

Bi, j

∥∥∥∥∥∥̂
s,O

=
∑

i=n,n−1

Ni−1∑

j=0

Qn
i, j∑

l=0

∥∥B(l)
i, j

∥∥̂
s,O +

n−2∑

i=0

Ni−1∑

j=0

∥∥Bi, j
∥∥̂
s,O

≤ 2 ln ε−1
n

⎧
⎨

⎩
∑

i=n,n−1

Ni−1∑

j=0

Qn
i, j∑

l=0

∥∥B̃(l)
i, j

∥∥
sn ,O +

n−2∑

i=0

Ni−1∑

j=0

∥∥B̃i, j
∥∥
sn ,O

⎫
⎬

⎭

= 2 ln ε−1
n

n∑

i=0

Ni−1∑

j=0

∥∥bi, j
∥∥
sn ,O < 4ε0 ln ε−1

n < (480)−1 ln ε−1
n .

The discussions about the equation

∂ωW(θ, ξ) = −Wn(θ, ξ) + [Wn(θ, ξ)]θ
are the same as the discussions above since the functions Bn andWn have the same structure
and satisfy the same estimate, we omit the details. ��

Assume that the real analytic functions N and R are defined on D(s, r) × O and with
Taylor expansions

N = E(θ, ξ) + 〈ω, I 〉 + 〈[� + Bn(θ, ξ) + b(θ, ξ)]z, z〉 − 〈[� − Wn(θ, ξ) − w(θ, ξ)]ρ, ρ〉,
and

R(θ, z, z, ρ, ρ, ξ) =
∑

0<|δ+β|+|α+η|≤2,δ �=β,α �=η

Rδ,β,α,η(θ, ξ)zδzβραρη,

where B(θ, ξ) is the one defined in (3.7) with the estimate (3.8), and the functionW (θ, ξ) =
(Wl

n(θ, ξ) : l ∈ Z1)
T has the same decomposition in (3.7) and satisfies the same estimate

in (3.8). Moreover,

b(θ, ξ) = (b j (θ, ξ) : j ∈ J )T , w(θ, ξ) = (w j (θ, ξ) : j ∈ Z1)
T .

We consider the homological equation on the unknown function F

{F, N } = R. (3.18)

For the homological equation above we have the following proposition.

Proposition 3.1 Assume that b(θ, ξ) and w(θ, ξ) are defined on u(s) × O ( e−4s0 < s <

ŝ := sn(1 − ςn)) satisfying ‖b‖s,O, ‖w‖s,O ≤ εn, and for every ξ ∈ O, the vectors
�̃ = � + [Bn(θ, ξ)]θ and �̃ = � − [Wn(θ, ξ)]θ satisfy the Melnikov’s conditions

∣∣〈k, ω〉 + 〈ζ, �̃〉∣∣ ≥ γ 〈k〉−τ , k ∈ Z
d , 0 < |ζ | ≤ 2, (3.19)

and
∣∣〈l, �̃〉∣∣ ≥ 1, 0 < |l| ≤ 2, (3.20)
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where 0 < γ � 1, τ > d + 2. Then for the real analytic function R defined on D(s, r)×O,

(3.18) has a real analytic approximate solution F(θ, z, z, ρ, ρ, ξ) satisfying

∥∥XF
∥∥
r ,s−σ,r ,O ≤ 26γ −2T 2τ+1

n, j |ω|ε
−1
60
n σ−1

∥∥XR
∥∥
r ,s,r ,O.

Moreover, the error term is

R(er)(θ, z, z, ρ, ρ, ξ) =
∑

0<|δ+β|+|α+η|≤2,δ �=β,α �=η

R(er)
δ,β,α,η(θ, ξ)zδzβραρη

(3.21)

with

R(er)
δ,β,α,η(θ, ξ) = ei〈δ−β,B〉+〈α−η,W〉RTn, j

{
e−i〈δ−β,B〉−〈α−η,W〉Rδ,β,α,η(θ, ξ)

− [
i〈δ − β, b(θ, ξ)〉 + 〈α − η,w(θ, ξ)〉]e−i〈δ−β,B〉−〈α−η,W〉Fδ,β,α,η(θ, ξ)

}

and the estimate (2σ < s, j = 0, . . . ,Nn − 1)

∥∥XR(er)

∥∥
r ,s−2σ,r ,O ≤ 27γ −2T 2τ+1

n, j |ω|ε
−1
40
n ε̃n, jσ

−1
∥∥XR

∥∥
r ,s,r ,O. (3.22)

Proof We consider the case n ≥ 1 first. For the function R(θ, z, z, ρ, ρ, ξ) given above and
function F(θ, z, z, ρ, ρ, ξ) with the Taylor expansion

F(θ, z, z, ρ, ρ, ξ) =
∑

0<|δ+β|+|α+η|≤2,δ �=β,α �=η

Fδ,β,α,η(θ, ξ)zδzβραρη,

we denote

R̃δ,β,α,η(θ, ξ) = e−i〈δ−β,B(θ,ξ)〉−〈α−η,W(θ,ξ)〉Rδ,β,α,η(θ, ξ),

F̃δ,β,α,η(θ, ξ) = e−i〈δ−β,B(θ,ξ)〉−〈α−η,W(θ,ξ)〉Fδ,β,α,η(θ, ξ),
(3.23)

where B and W are the one in Lemma 3.2. From (3.18) we obtain

∂ω F̃δ,β,α,η(θ, ξ) + {
i〈δ − β, �̃ + b(θ, ξ)〉

− 〈α − η, �̃ − w(θ, ξ)〉}F̃δ,β,α,η(θ, ξ) = R̃δ,β,α,η(θ, ξ),
(3.24)

where �̃ = � + [
Bn(θ, ξ)

]
θ
and �̃ = � − [

Wn(θ, ξ)
]
θ
.

(I) δ = (· · · , 1, · · · ), β = (· · · , 1, · · · ), where 1 is the i-th (l-th) component of the vectors
δ (β), i �= l, and “· · · ” stands for zeros, and α = η = 0. Denote

R(1)(θ, z, z, ξ) =
∑

ζ=δ−β

Rζ (θ, ξ)zδzβ =
∑

i,l∈J
Ri,l(θ, ξ)zi zl ,

F (1)(θ, z, z, ξ) =
∑

ζ=δ−β

Fζ (θ, ξ)zδzβ =
∑

i,l∈J
Ri,l(θ, ξ)zi zl ,

where

Ri,l(θ, ξ) = Rζ (θ, ξ) = Rδ,β,α,η(θ, ξ), Fi,l(θ, ξ) = Fζ (θ, ξ) = Fδ,β,α,η(θ, ξ).

Then by the Eq. (3.24) we obtain

∂ω F̃ζ (θ, ξ) + i〈ζ, �̃ + b(θ, ξ)〉F̃ζ (θ, ξ) = R̃ζ (θ, ξ). (3.25)

We solve the truncated system of (3.25), i.e.,

TTn, j ∂ω F̃ζ + TTn, j

{
i〈ζ, �̃ + b(θ, ξ)〉F̃ζ

} = TTn, j R̃ζ , TTn, j F̃ζ = F̃ζ ,
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which is equivalent to, for any |k| ≤ Tn, j (by comparing the Fourier coefficients)

i
[〈k, ω〉 + 〈ζ, �̃〉]̂̃Fζ (k, ξ) + i

∑

|k1|≤Tn, j

〈ζ, b̂(k − k1, ξ)〉̂̃Fζ (k1, ξ) = ̂̃Rζ (k, ξ). (3.26)

Rewrite (3.26) as
(
Ê + �s D̂�−1

s

)
�sFζ = �sRζ ,

where

Ê = diag(· · · , i(〈k, ω〉 + 〈ζ, �̃〉, · · · )|k|≤Tn, j ,

D̂ = i(〈ζ, b̂(k − k1, ξ)〉)|k1|,|k|≤Tn, j , �s = diag(· · · , e|k|s, · · · )|k|≤Tn, j ,

Fζ = Fζ (ξ) = (̂̃Fζ (k, ξ))T|k|≤Tn, j
, Rζ = Rζ (ξ) = (̂̃Rζ (k, ξ))T|k|≤Tn, j

.

From (3.19) we have

‖Ê−1‖op(l1) ≤ γ −1T τ
n, j ,

where op(l1) denotes the operator norm associate to the l1-norm, which is defined by |u|l1 =∑
|k|≤Tn, j

|u(k)|, for the vector u = (u(k))T|k|≤Tn, j
. Since [the second inequality below is by

(3.5)]

Tn, j ≤ Tn,Nn−1 < exp

{
2

3
K

1
2
n−1

}
≤ exp

{
K

1
2
n−1

}
= ε

−1
40(2τ+1)
n ,

we know that

‖Ê−1‖op(l1) ≤ γ −1T τ
n, j < 4−1ε

−1
40
n .

By direct calculations we have

‖�s D̂�−1
s ‖op(l1) ≤ 2‖b‖s,O < 2εn .

The above two inequalities yield

‖Ê−1�s D̂�−1
s ‖op(l1) ≤ 1

2
,

which implies that Ê + �s D̂�−1
s has a bounded inverse. The above three inequalities yield

‖(Ê + �s D̂�−1
s )−1‖op(l1) ≤ ‖(I d + Ê−1�s D̂�−1

s )−1‖op(l1)‖Ê−1‖op(l1)
≤ 2γ −1T τ

n, j .

It follows that

‖F̃ζ ‖∗
s,O =

∑

|k|≤Tn, j

‖̂̃Fζ (k)‖∗
Oe|k|s = ‖�sFζ ‖∗

O

≤ ‖(Ê + �s D̂�−1
s )−1‖op(l1)‖�sRζ ‖∗

O
= ‖(Ê + �s D̂�−1

s )−1‖op(l1)‖R̃ζ ‖∗
s,O

≤ 2γ −1T τ
n, j‖R̃ζ ‖∗

s,O.
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Moreover,

‖Fζ ‖∗
s,O ≤ e2‖B‖s,O‖F̃ζ ‖∗

s,O ≤ e2‖B‖̂s,O2γ −1T τ
n, j‖R̃ζ ‖∗

s,O
≤ 2γ −1T τ

n, j e
4‖B‖̂s,O‖Rζ ‖∗

s,O

≤ 2γ −1T τ
n, jε

−1
120
n ‖Rζ ‖∗

s,O,

(3.27)

where the last inequality is from (3.12).
Next we give the estimate of the Lipschitz semi-norm. Denote �ξ1,ξ2Q = Q(·, ξ1) −

Q(·, ξ2). From (3.26) we have

i
(
〈k, ξ1ω〉 + 〈ζ, �̃(ξ1)〉

)
�ξ1,ξ2

̂̃Fζ (k) + i
∑

|k1|≤Tn, j

〈ζ, b̂(k − k1, ξ1)〉�ξ1,ξ2
̂̃Fζ (k1)

+ i�ξ1,ξ2

(
〈k, ω〉 + 〈ζ, �̃〉

)̂̃Fζ (k, ξ2) + i
∑

|k1|≤Tn, j

〈ζ,�ξ1,ξ2 b̂(k − k1)〉̂̃Fζ (k1, ξ2)

= �ξ1,ξ2
̂̃Rζ (k), |k| ≤ Tn, j .

In the similar way to get (3.27) we obtain,

‖�ξ1,ξ2Fζ ‖∗
s,O ≤ 2γ −1T τ

n, jε
−1
120
n

{∣∣�ξ1,ξ2

(
Ê + D̂

)∣∣
op(l1)‖Fζ ‖∗

s,O + ∥∥�ξ1,ξ2 Rζ

∥∥∗
s,O

}
.

Dividing ‖�ξ1,ξ2Fζ ‖∗
s,O by |ξ1 − ξ2| and taking supreme over ξ1 �= ξ2 ∈ O, (note that �

does not depending on the parameter ξ ), we have

‖Fζ ‖Ls,O ≤ 2γ −1T τ
n, jε

−1
120
n

{
2Tn, j |ω|‖Fζ ‖∗

s,O + ∥∥Rζ

∥∥L
s,O

}

≤ 2γ −1T τ
n, jε

−1
120
n

{
4γ −1T τ+1

n, j |ω|ε
−1
120
n ‖Rζ ‖∗

s,O + ∥∥Rζ

∥∥L
s,O

}

≤ 24γ −2T 2τ+1
n, j ε

−1
60
n |ω|∥∥Rζ

∥∥
s,O,

where the second inequality is from (3.27). Then by (3.27) and the inequality above we
obtain, note Fi,l = Fζ , Ri,l = Rζ ,

‖Fi,l‖s,O ≤ 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n
∥∥Ri,l

∥∥
s,O. (3.28)

Thus by the inequality above we have

‖F (1)
zi ‖D(s,r),O = ‖

∑

l∈J
Fi,l zl‖D(s,r),O = sup

‖z‖a,p≤r

∑

l∈J
‖Fi,l‖s,O|zl |

≤ 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n sup

‖z‖a,p≤r

∑

l∈J
‖Ri,l‖s,O|zl |

= 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n ‖R(1)

zi ‖D(s,r),O,
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which implies

1

r
‖F (1)

z ‖a,p,D(s,r),O = 1

r

⎧
⎨

⎩
∑

i∈J
‖F (1)

zi ‖2D(s,r)×Oe2ai i2p

⎫
⎬

⎭

1
2

≤ 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n

1

r

⎧
⎨

⎩
∑

i∈J
‖R(1)

zi ‖2D(s,r),Oe2ai i2p

⎫
⎬

⎭

1
2

= 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n

1

r
‖R(1)

z ‖a,p,D(s,r),O.

(3.29)

Similarly, we also obtain

1

r
‖F (1)

z ‖a,p,D(s,r),O ≤ 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n

1

r
‖R(1)

z ‖a,p,D(s,r),O. (3.30)

Moreover, by Cauchy estimate and (3.27) we obtain

1

r2
‖F (1)

θy
‖D(s−σ,r),O

= 1

r2
sup

‖z‖a,p,‖z‖a,p≤r

∑

i,l∈J ,i �=l

∑

k∈Zd

‖F̂ (1)
i,l (k, ξ)iky‖Oe|k|(s−σ)|zi ||zl |

≤ σ−1 1

r2
sup

‖z‖a,p,‖z‖a,p≤r

∑

i,l∈J ,i �=l

∑

k∈Zd

‖F̂ (1)
i,l (k, ξ)‖Oe|k|s |zi ||zl |

= σ−1 1

r2
sup

‖z‖a,p,‖z‖a,p≤r

∑

i,l∈J ,i �=l

‖F (1)
i,l ‖s,O|zi ||zl |

≤ σ−125γ −2T 2τ+1
n, j |ω|ε

−1
60
n

1

r2
sup

‖z‖a,p,‖z‖a,p≤r

∑

i,l∈J ,i �=l

‖R(1)
i,l ‖s,O|zi ||zl |

= 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n σ−1 1

r2
‖R(1)‖D(s,r),O

≤ 25γ −2T 2τ+1
n, j |ω|ε

−1
60
n σ−1‖XR(1)

∥∥
r ,s,r ,O, y = 1, . . . , d.

(3.31)

Thus by (3.29)–(3.31) we obtain

∥∥XF (1)

∥∥
r ,s−σ,r ,O ≤ 26γ −2T 2τ+1

n, j |ω|ε
−1
60
n σ−1

∥∥XR(1)

∥∥
r ,s,r ,O. (3.32)

(II) δ = (· · · , 1, · · · ), α = (· · · , 1, · · · ), where 1 is the i-th (l-th) component of the vectors
δ (α), and “· · · ” stands for zeros, and β = 0, η = 0. Denote

R(2)(θ, z, ρ, ξ) =
∑

|δ|=|α|=1

Rδ,α(θ, ξ)zδρα,

F (2)(θ, z, ρ, ξ) =
∑

|δ|=|α|=1

Fδ,α(θ, ξ)zδρα,

where Rδ,α(θ, ξ) = Rδ,β,α,η(θ, ξ), Fδ,α(θ, ξ) = Fδ,β,α,η(θ, ξ). By Eq. (3.18) we get

∂ω F̃δ,α(θ, ξ) + {
i〈δ, �̃ + b(θ, ξ)〉 − 〈α, �̃ − w(θ, ξ)〉}F̃δ,α(θ, ξ) = R̃δ,α(θ, ξ). (3.33)
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We solve the truncated system of (3.33), i.e.,

TTn, j ∂ω F̃δ,α + TTn, j

{[
i〈δ, �̃ + b(θ, ξ)〉

− 〈α, �̃ − w(θ, ξ)〉]F̃δ,α(θ, ξ)
} = TTn, j R̃δ,α, TTn, j F̃δ,α = F̃δ,α,

which is equivalent to, for any |k| ≤ Tn, j (by comparing the Fourier coefficients)

{
i〈k, ω〉 + i〈δ, �̃〉 − 〈α, �̃〉

}̂̃Fδ,α(k, ξ)

+
∑

|k1|≤Tn, j

[
i〈δ, b̂(k − k1, ξ)〉 + 〈α, ŵ(k − k1, ξ)〉]̂̃Fδ,α(k1, ξ) = ̂̃Rδ,α(k, ξ).

Denote

A(k, α, δ, ξ) = i〈k, ξω〉 + i〈δ, �̃〉 − 〈α, �̃〉. (3.34)

Thus

sup
ξ∈O

|A−1(k, α, δ, ξ)| = sup
ξ∈O

1∣∣i〈k, ξω〉 + i〈δ, �̃〉 − 〈α, �̃〉∣∣ ≤ 1

|〈α, �̃〉| < 1,

where the last inequality is from (3.20). Thenwith the similar discussions in case I) we obtain

∥∥XF (2)

∥∥
r ,s−σ,r ,O ≤ 26Tn, j |ω|ε

−1
60
n σ−1

∥∥XR(2)

∥∥
r ,s,r ,O.

(III) α = (· · · , 1, · · · ), η = (· · · , 1, · · · ),where 1 is the i-th (l-th) component of the vectors
α (η), i �= l, and “· · · ” stands for zeros, and δ = 0, β = 0. Denote ζ = α − η and

R(3)(θ, ρ, ρ, ξ) =
∑

ζ=α−η

Rζ (θ, ξ)(θ, ξ)ραρη,

F (3)(θ, ρ, ρ, ξ) =
∑

ζ=α−η

Fζ (θ, ξ)(θ, ξ)ραρη,

where Rζ (θ, ξ) = Rδ,β,α,η(θ, ξ), Fζ (θ, ξ) = Fδ,β,α,η(θ, ξ). By Eq. (3.18) we obtain

∂ω F̃ζ (θ, ξ) − 〈ζ, �̃ − w(θ, ξ)〉F̃ζ (θ, ξ) = R̃ζ (θ, ξ). (3.35)

Note that, by (3.20),

sup
ξ∈O

1∣∣i〈k, ξω〉 − 〈ζ, �̃〉∣∣ ≤ 1

|〈ζ, �̃〉| < 1.

Then with the similar discussions in case II) we know that the homological equation (3.35)
possesses an approximate solution F (3) satisfying

∥∥XF (3)

∥∥
r ,s−σ,r ,O ≤ 26Tn, j |ω|ε

−1
60
n σ−1

∥∥XR(3)

∥∥
r ,s,r ,O.

With the similar calculations in the cases I)–III) above we can also get the estimate about
the rest terms of the function F . Thus, we obtain

∥∥XF
∥∥
r ,s−σ,r ,O ≤ 26γ −2T 2τ+1

n, j |ω|ε
−1
60
n σ−1

∥∥XR
∥∥
r ,s,r ,O.
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Obviously, the error term R(er) has the formula gave by (3.21). Moreover,

‖R(er)
δ,β,α,η‖s−σ,O ≤ e−Tσ ε

1
120
n

{
‖Rδ,β,α,η‖s,O + 2εn‖Fδ,β,α,η‖s,O

}

≤ 2̃εn, jε
1

120
n ‖Fδ,β,α,η‖s,O

< 26γ −2T 2τ+1
n, j |ω|ε

−1
40
n ε̃n, j‖Rδ,β,α,η‖s,O,

where the last inequality is by (3.28) [note that the estimate in (3.28) is the biggest bounds
for the coefficient function Fδ,β,α,η]. Then with the same calculations to get (3.32) we obtain

∥∥XR(er)

∥∥
r ,s−2σ,r ,O ≤ 27γ −2T 2τ+1

n, j |ω|ε
−1
40
n ε̃n, jσ

−1
∥∥XR

∥∥
r ,s,r ,O.

In the case n = 0, note that B0(θ, ξ) = 0, W0(θ, ξ) = 0, we will not make the
change R̃δ,β,α,η(θ, ξ) = e−i〈δ−β,B(θ,ξ)〉−〈α−η,W(θ,ξ)〉Rδ,β,α,η(θ, ξ) and F̃δ,β,α,η(θ, ξ) =
e−i〈δ−β,B(θ,ξ)〉−〈α−η,W(θ,ξ)〉Fδ,β,α,η(θ, ξ) and deal with the equation between Fδ,β,α,η(θ, ξ)

and Rδ,β,α,η(θ, ξ) directly. In this case

R(er)
δ,β,α,η(θ, ξ) = RTn, j

{
Rδ,β,α,η(θ, ξ) − [

i〈δ − β, b(θ, ξ)〉
+ 〈α − η,w(θ, ξ)〉]Fδ,β,α,η(θ, ξ)

}
,

and the estimates about F and R(er) also hold. ��

Remark 3.1 For the function A(k, α, δ, ξ) defined by (3.34), with the discussion in case II)
we know that ‖A−1(k, α, δ)‖∗

O is bounded for all k, α and δ. However, ‖A−1(k, α, δ)‖LO
may not be bounded. See the calculations below.

‖A−1(k, α, δ)‖LO = sup
ξ1,ξ2∈O,ξ1 �=ξ2

∣∣∣
1

A(k, α, δ, ξ1)
− 1

A(k, α, δ, ξ2)

∣∣∣|ξ1 − ξ2|−1

= sup
ξ1,ξ2

∣∣(ξ1 − ξ2)i〈k, ω〉 + i〈δ, �ξ1,ξ2

[
Bn(θ)

]
θ
〉 + 〈α, �ξ1,ξ2

[
Wn(θ)

]
θ
〉∣∣|ξ1 − ξ2|−1

∣∣i〈k, ξ1ω〉 + i〈δ, �̃(ξ1)〉 − 〈α, �̃(ξ1)〉
∣∣∣∣i〈k, ξ2ω〉 + i〈δ, �̃(ξ2)〉 − 〈α, �̃(ξ2)〉

∣∣

≥ sup
ξ∈O

∣∣〈k, ω〉∣∣
∣∣i〈k, ξω〉 + i〈δ, �̃(ξ)〉 − 〈α, �̃(ξ)〉∣∣2

− sup
ξ∈O

2
(∥∥Bn

∥∥
s,O + ∥∥Wn

∥∥
s,O

)

∣∣i〈k, ξω〉 + i〈δ, �̃〉 − 〈α, �̃〉∣∣2

> sup
ξ∈O

∣∣〈k, ω〉∣∣
(〈k, ξω〉 + 〈δ, �̃〉)2 + ∣∣〈α, �̃〉∣∣2

− 4ε0∥∥�̃
∥∥2O

> sup
ξ∈O

∣∣〈k, ω〉∣∣
(〈k, ξω〉 + 〈δ, �̃〉)2 + ∣∣〈α, �̃〉∣∣2

− 4ε0.

(3.36)

Note that for the fixed k with
∣∣〈k, ω〉∣∣ > 1, there is δ such that

∣∣〈k, ξω〉 + 〈δ, �̃〉∣∣ < 1,

which implies

(〈k, ξω〉 + 〈δ, �̃〉)2 + ∣∣〈α, �̃〉∣∣2 < 2
∥∥〈α, �̃〉∥∥2O.
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Thus, by the inequality above and (3.36) we obtain

‖A−1(k, α, δ)‖LO >

∣∣〈k, ω〉∣∣
2
∥∥〈α, �̃〉∥∥2O

− 4ε0 >

∣∣〈k, ω〉∣∣
8

− 4ε0.

Note that there are k ∈ Z
d such that

∣∣〈k, ω〉∣∣ → ∞, as |k| goes to ∞, which means, together
with the inequality above, for these (k, δ, α),

‖A−1(k, α, δ)‖LO → ∞.

That is ‖A−1(k, α, δ)‖LO is unbounded.
By the discussions above we know that there are (k, δ, α) such that ‖A−1(k, α, δ)‖O is

unbounded. This is the reason we also make the change in (3.23) to kill the functionW (θ, ξ)

and solve the truncated equations for the homological equation (3.18) along the hyperbolic
directions.

3.3 Iteration Lemma

Beside the parameters defined in (3.1), wewill also define the sequences, for 0 < γ < 1, 0 <

r0 < 1, (γn)n≥0, (rn)n≥0, and (Dn)n≥0 in the following manner:

r0 = r , γ0 = γ, rn+1 = ε
4
3
n+1rn, γn = γ0ςn, Dn = D(sn, rn), n ≥ 1.

Lemma 3.3 (Iteration Lemma) Suppose that the real analytic Hamiltonian system Hn =
Hn−1 ◦ �n = Nn + Pn defined on Dn × On, where

Nn = En(θ, ξ) + 〈ω, I 〉 + 〈� + Bn(θ, ξ)z, z̄〉 − 〈� − Wn(θ, ξ)ρ, ρ〉,
Pn = Pn(θ, z, z̄, ρ, ρ, ξ),

and

On =
{
ξ ∈ On−1 : ∣∣〈k, ω〉 + 〈ζ, �̃n〉

∣∣ ≥ γn

〈k〉τ , ∀0 < |ζ | ≤ 2, k ∈ Z
d
}

where � and � are the ones defined in (2.2), Bn is the one defined in (3.7) and satisfies
the estimates (3.8) and the function Wn(θ, ξ) = (Wl

n(θ, ξ) : l ∈ Z1)
T have the same

decomposition in (3.7) and satisfy the same estimate in (3.8)with �̃n = �+[Bn]θ .Moreover,

‖XEn−En−1‖rn ,sn ,rn ,On ≤ 2εn−1, (3.37)

‖XPn‖rn ,sn ,rn ,On ≤ εn . (3.38)

Then there is a subset On+1 ⊂ On with

On+1 =
{
ξ ∈ On : ∣∣〈k, ω〉 + 〈ζ, �̃n+1〉

∣∣ ≥ γn+1

〈k〉τ , ∀0 < |ζ | ≤ 2, k ∈ Z
d
}

(3.39)

and a real analytic symplectic change of variables

�n+1 : Dn+1 × On+1 → Dn × On

such that Hn+1 = Hn ◦ �n+1 has the analogous form of Hn and satisfies the conditions
(3.37) and (3.38) and Bn+1 is the one with the formula in (3.7) and satisfies the estimates
(3.8) with (n + 1) in place of n, the function Wn+1 has the same decomposition and satisfies
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the same estimate with the ones of the function Bn+1. Furthermore, we have the following
estimates

‖�n+1 − id‖rn+1,sn+1,rn+1,On ≤ 2ε
1
2
n , (3.40)

‖D�n+1 − I d‖rn+1,sn+1,rn+1,On ≤ 2ε
1
2
n . (3.41)

3.4 Proof of Lemma 3.3

In order to prove Lemma 3.3 we let

ε̃0 = εn, r̃0 = rn, s̃0 = sn(1 − ηn), γ = γn, O = On

and define δ̃ j = ε̃
1
3
n, j , r̃ j+1 = δ̃ j r̃ j , s̃ j+1 = s̃ j − 5σn, j , j ≥ 0.

Consider the real analytic Hamiltonian system Hn = Nn + Pn defined on Dn × On, we
rewrite it as

H̃0 = Ñ0 + P̃0 = E(θ, ξ) + 〈ω, I 〉 + 〈(� + B(θ, ξ))z, z̄〉
− 〈(� − W (θ, ξ))ρ, ρ〉 + P̃0(θ, z, z̄, ρ, ρ, ξ)

(3.42)

definedon D̃0×O,where D̃ j = D(̃s j , r̃ j ),O= On, E= En, B(θ, ξ)= Bn(θ, ξ),W (θ, ξ)=
Wn(θ, ξ) and P̃0 = Pn . Obviously,

‖X P̃0 ‖̃r0 ,̃s0 ,̃r0,O ≤ ε̃n,0.

Denote H̃ j = Ñ j + P̃j , where

Ñ j = E +
j∑

l=0

Ẽn+1,l(θ, ξ) + 〈ω, I 〉 +
〈⎡

⎣� +
⎛

⎝B +
j∑

l=0

bn+1,l

⎞

⎠ (θ, ξ)

⎤

⎦ z, z̄

〉

−
〈⎡

⎣� −
⎛

⎝W +
j∑

l=0

wn+1,l

⎞

⎠ (θ, ξ)

⎤

⎦ ρ, ρ

〉
, (3.43)

‖X P̃j
‖̃r j ,̃s j ,̃r j ,O < ε̃n, j (3.44)

with

Ẽn+1,0(θ, ξ) = 0, bn+1,l(θ, ξ) = (bin+1,l(θ, ξ), i ∈ J )T , bn+1,0(θ, ξ) = 0,

and

wn+1,l(θ, ξ) = (wi
n+1,l(θ, ξ), i ∈ Z1)

T , wn+1,0(θ, ξ) = 0.

Moreover,

bn+1,l(θ, ξ) =
∑

|k|≤Tn,l−1

b̂n+1,l(k, ξ)ei〈k,θ〉, ‖bn+1,l ‖̃sl−1,O ≤ ε̃n,l−1, (3.45)

wn+1,l(θ, ξ) =
∑

|k|≤Tn,l−1

ŵn+1,l(k, ξ)ei〈k,θ〉, ‖wn+1,l ‖̃sl−1,O ≤ ε̃n,l−1, (3.46)

and

‖XẼn+1,l
‖̃rl−1 ,̃sl−1 ,̃rl−1,O < ε̃n,l−1. (3.47)
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Suppose that for j = 0, . . . , ν − 1, there exists real analytic Fj+1 defined on D̃ j+1 × O
such that one gets the real analytic Hamiltonian systems H̃ j+1 defined in D̃ j+1 × O :

H̃ j+1 = H̃ j ◦ X1
Fj+1

= Ñ j+1 + P̃j+1,

where Ñ j+1 is the one in (3.43) and satisfies, together with P̃j+1, (3.44)–(3.47) with ( j + 1)
in place of j in the domain D̃ j+1 × O. Moreover, the real analytic symplectic map X1

Fj+1

satisfies

‖X1
Fj+1

− id ‖̃r j+1 ,̃s j+1 ,̃r j+1,O < ε̃
1
2
n, j , (3.48)

‖DX1
Fj+1

− I d ‖̃r j+1 ,̃s j+1 ,̃r j+1,O < ε̃
1
2
n, j . (3.49)

Then, one wants to finds Fν+1 defined in D̃ν+1 × O such that H̃ν+1 = H̃ν ◦ X1
Fν+1

=
Ñν+1 + P̃ν+1 with Ñν+1 being the one in (3.43) and satisfies, together with P̃j+1, satisfies
(3.44)–(3.47) with (ν + 1) in place of j, and Fν+1 satisfies (3.48) and (3.49) with ν in place
of j, on the domain D̃ν+1 × O.

In the following we will construct such function Fν+1. For j = ν, by using the Taylor–
Fourier expansion, we separate P̃ν

P̃ν(θ, z, z̄, ρ, ρ, ξ) =
∑

δ,β,α,η,k

̂̃Pν,δ,β,α,η(k, ξ)ei〈k,θ〉zδ z̄βραρη

into three parts:

P̃ν = P(el)
ν + P(n f )

ν + P(pe)
ν ,

where

P(el)
ν (θ, z, z̄, ρ, ρ, ξ)

∑

0<|δ+β|+|α+η|≤2
δ �=β,α �=η,k

̂̃Pν,δ,β,α,η(k, ξ)ei〈k,θ〉zδ z̄βραρη,

P(n f )
ν (θ, z, z̄, ρ, ρ, ξ) =

∑

k∈Zd

̂̃Pν,0,0,0,0(k, ξ)ei〈k,θ〉

+
∑

0<|δ+β|+|α+η|≤2
δ=β,α=η,|k|≤Tn,ν

̂̃Pν,δ,β,α,η(k, ξ)ei〈k,θ〉zδ z̄βραρη

= Ẽn+1,ν+1(θ, ξ) + 〈bn+1,ν+1(θ, ξ)z, z̄〉 + 〈wn+1,ν+1(θ, ξ)ρ, ρ〉,
P(pe)

ν (θ, z, z̄, ρ, ρ, ξ) =
∑

0<|δ+β|+|α+η|≤2
δ=β,α=η,|k|>Tn,ν

̂̃Pν,δ,β,α,η(k, ξ)ei〈k,θ〉zδ z̄βραρη

+
∑

|δ+β|+|α+η|>2,k

̂̃Pν,δ,β,α,η(k, ξ)ei〈k,θ〉zδ z̄βραρη

=: P(pe1)
ν + P(pe2)

ν .

(3.50)

Shorten the notations δ̃ν , r̃ν, s̃ν, σn,ν , Tn,ν as δ̃, r̃ , s̃, σ and T , respectively. Obviously,

‖X
P(el)

ν
‖̃r ,̃s ,̃r ,O, ‖X

P(n f )
ν

‖̃r ,̃s ,̃r ,O ≤ ‖X P̃ν
‖̃r ,̃s ,̃r ,O, (3.51)

and

‖X
P(pe1)

ν
‖δ̃̃r ,̃s−σ,4̃δ̃r ,O ≤ e−Tσ δ̃−1‖X P̃ν

‖̃r ,̃s ,̃r ,O < δ̃−1‖X P̃ν
‖2r̃ ,̃s ,̃r ,O.
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For P(pe2)
ν we have

‖X
P(pe2)

ν
‖δ̃̃r ,̃s,4̃δ̃r ,O ≤ δ̃‖X P̃ν

‖̃r ,̃s ,̃r ,O = ‖X P̃ν
‖

4
3
r̃ ,̃s ,̃r ,O.

The discussions above yield

‖X
P(pe)

ν
‖δ̃̃r ,̃s−σ,4̃δ̃r ,O < 2‖X P̃ν

‖
4
3
r̃ ,̃s ,̃r ,O. (3.52)

We rewrite H̃ν as H̃ν = Ñν+1 + P(el)
ν + P(pe)

ν , where

Ñν+1 = Ñν + P(n f )
ν

=: E (θ, ξ) +
ν+1∑

l=0

Ẽn+1,l (θ, ξ) + 〈ω, I 〉 +
〈[

� +
(
B +

ν+1∑

i=0

bn+1,i

)
(θ, ξ)

]
z, z̄

〉

−
〈[

� −
(
W +

ν+1∑

i=0

wn+1,i

)
(θ, ξ)

]
ρ, ρ

〉
.

Note that

‖bn+1,ν+1‖̃s,O, ‖wn+1,ν+1‖̃s,O ≤ ‖X
P(n f )

ν
‖̃r ,̃s ,̃r ,O ≤ ‖X P̃ν

‖̃r ,̃s ,̃r ,O < ε̃n,ν ,

and

‖XEn+1,ν+1 ‖̃r ,̃s ,̃r ,O ≤ ‖X P̃ν
‖̃r ,̃s ,̃r ,O ≤ ε̃n,ν .

Thus, Ñν+1 owns the formula in (3.43) and satisfies (3.45)–(3.47) with j = ν + 1.
The change of variables we need is the time-1-map of the flow Xt

Fν+1

∣∣
t=1. Using Taylor

formula to expand H̃ν ◦ Xt
Fν+1

∣∣
t=1, we obtain

H̃ν ◦ X1
Fν+1

= Ñν+1 ◦ X1
Fν+1

+ P(el)
ν ◦ Xt

Fν+1
+ P(pe)

ν ◦ X1
Fν+1

= Ñν+1 + P(el)
ν +

∫ 1

0

{
P(el)

ν , Fν+1
} ◦ Xt

Fν+1
dt + P(pe)

ν ◦ X1
Fν+1

+ {
Ñν+1, Fν+1

} +
∫ 1

0
(1 − t)

{{
Ñν+1, Fν+1

}
, Fν+1

} ◦ Xt
Fν+1

dt .

We want to find Fν+1 such that

{Fν+1, Nν+1} = P(el)
ν .

From Proposition 3.1 we know that the homological equation above have a real analytic
approximate solution Fν+1 and satisfies

∥∥XFν+1

∥∥̃
r ,̃s−σ,̃r ,O ≤ 26γ −2T 2τ+1|ω|ε

−1
60
n σ−1‖X

P(el)
ν

‖̃r ,̃s ,̃r ,O. (3.53)
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Moreover, the error term P(er)
ν of the homological equation above satisfies

∥∥X
P(er)

ν

∥∥
δ̃̃r ,̃s−2σ,4̃δ̃r ,O ≤ δ̃−1

∥∥X
P(er)

ν

∥∥̃
r ,̃s−2σ,̃r ,O

≤ 27δ̃−1γ −2T 2τ+1|ω|ε
−1
40
n σ−1ε̃2n,ν

≤ 27γ −2T 2τ+2|ω|ε
−1
40
n ε̃

5
3
n,ν

≤ 27γ −2ε
−1
40
n |ω|ε

−1
40
n ε̃

5
3
n,ν

= 27γ −2
0 (n + 2)2(ν + 2)2|ω|ε

−1
40
n ε

−1
40
n ε̃

5
3
n,ν ≤ ε̃

3
2
n,ν ,

(3.54)

where the third inequality is by σ−1 = T
(
ln ε̃−1

n,ν

)−1
< T , the last but one inequality is from

the following [the third inequality below is from (3.5)]

T 2τ+2 < T 2τ+3 ≤ T̃ 2τ+3
n,Nn−1 < exp

{
2(2τ + 3)

3
K

1
2
n−1

}

≤ exp

{
1

40
(40(2τ + 1))K

1
2
n−1

}
= ε

−1
40
n .

By (3.53) and Cauchy estimate and with the similar calculations above we have

∥∥DXFν+1

∥∥̃
r ,̃s−2σ,̃r ,O ≤ 26γ −2T 2τ+1|ω|ε

−1
60
n σ−2̃εn,ν ≤ ε̃

6
7
n,ν . (3.55)

From (3.53) and (3.55) we also obtain
∥∥XFν+1

∥∥̃
r ,̃s−σ,̃r ,O ≤ ε̃

6
7
n,ν . (3.56)

Then the flow Xt
Fν+1

of the vector field XFν+1 exists on D(̃s−3σ, r̃
2 ) for 0 ≤ t ≤ 1 and takes

this domain into D(̃s − 2σ, r̃). Similarly, it takes D(̃s − 4σ, r̃
4 ) into D(̃s − 3σ, r̃

2 ). Thus by
Gronwall’s inequality and the inequalities (3.55) and (3.56) we obtain

‖Xt
Fν+1

− id‖δ̃̃r ,̃s−5σ,̃δ̃r ,O ≤ c̃δ−1
∥∥XFν+1

∥∥̃
r ,̃s−2σ,̃r ,O < ε̃

1
2
n,ν , 0 ≤ t ≤ 1,

‖DXt
Fν+1

− I d‖δ̃̃r ,̃s−5σ,̃δ̃r ,O ≤ c̃δ−1
∥∥DXFν+1

∥∥̃
r ,̃s−2σ,̃r ,O < ε̃

1
2
n,ν , 0 ≤ t ≤ 1.

Also in the same way to obtain (20.7) in [15], for any vector field Y we obtain

‖(X1
Fν+1

)∗Y‖δ̃̃r ,̃s−5σ,̃δ̃r ,O ≤ c‖Y‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O. (3.57)

By the definition of X1
Fν+1

and from (3.54) and (3.57) we know that

H̃ν ◦ X1
Fν+1

= Ñν+1 + P̃ν+1

= Ñν+1 +
∫ 1

0
t
{
P(el)

ν , Fν+1
} ◦ Xt

Fν+1
dt + P(pe)

ν ◦ X1
Fν+1

+ P(er)
ν +

∫ 1

0
(1 − t)

{
P(er)

ν , Fν+1
} ◦ Xt

Fν+1
dt

(3.58)

is well defined on D(̃sν+1, r̃ν+1) × O. Moreover,

X P̃ν+1
=
∫ 1

0
(Xt

Fν+1
)∗[X

t P(el)
ν

, XFν+1 ]dt + (X1
Fν+1

)∗X
P(pe)

ν

+ X
P(er)

ν
+
∫ 1

0
(Xt

Fν+1
)∗[X

(1−t)P(er)
ν

, XFν+1 ]dt,
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where [X
t P(el)

ν
, XFν+1 ] is the commutator of the two vector fields X

t P(el)
ν

, XFν+1 . In view of
(3.51), (3.55), (3.56) and Cauchy estimate, we get

‖[X
t P(el)

ν
, XFν+1 ]‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O

≤ ‖DX
tP(el)

ν
‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O‖XFν+1‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O

+ ‖DXFν+1‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O‖X
t P(el)

ν
‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O

≤ 2̃δ−1σ−1‖XFν+1 ‖̃r ,̃s−σ,̃r ,O‖X
P(el)

ν
‖̃r ,̃s ,̃r ,O

≤ 2̃δ−1σ−1̃ε
13
7
n,ν .

(3.59)

Then, by (3.57) and (3.59), we obtain

‖(Xt
Fν+1

)∗[X
t P(el)

ν
, XFν+1 ]‖δ̃̃r ,̃s−5σ,̃δ̃r ,O

≤ c‖[XP(el) , XFν+1 ]‖δ̃̃r ,̃s−3σ,4̃δ̃r ,O

< c2̃δ−1σ−1̃ε
13
7
n,ν <

ε̃
5
4
n,ν

4
= ε̃n,ν+1

4
.

With (3.52) and (3.54), we can also obtain the same bound for the rest three terms of X P̃ν+1
,

we omit the details. Then we arrive at the estimate

‖X P̃ν+1
‖̃rν+1 ,̃sν+1 ,̃rν+1,O < ε̃n,ν+1.

Once we reach the Nn-th step, we terminate the above iteration. Denote

Hn+1 := H̃Nn = Hn ◦ �n+1 = ÑNn + P̃Nn = Nn+1 + Pn+1,

defined on D(sn+1, rn+1) × On+1 and

�n+1 = X1
F1 ◦ X1

F2 ◦ · · · ◦ X1
FNn

where

Nn+1 = En+1 + 〈ω, I 〉 + 〈[� + Bn+1(θ, ξ)]z, z̄〉 − 〈[� − Wn+1(θ, ξ)]ρ, ρ〉,
Pn+1 = P̃Nn , sn+1 = s̃Nn , rn+1 = r̃Nn ,

and On+1 is the one defined by (3.39) with

En+1 = En +
Nn∑

i=0

En+1,i , Bn+1 = Bn +
Nn∑

i=0

bn+1,i , Wn+1 = Wn +
Nn∑

i=0

wn+1,i .

Recall that

r̃ j+1 = ε̃
1
3
n, j r̃ j , s̃ j+1 = s̃ j − 5σ j .

Since

�
Nn−1
j=0 ε̃

1
3
n, j = �

Nn−1
j=0 ε̃

1
3

(
5
4

) j

n,0 = ε̃

4
3 [
(
5
4

)Nn−1]
n,0 > ε

4
3
n+1,

where the last inequality is from ε̃n,Nn−1 > εn+1 and ε̃
−4
3

n,0 = ε
−4
3

n � 1, which implies

rn+1 = r̃Nn = rn�
Nn−1
j=0 ε̃

1
3
j ≥ rnε

4
3
n+1.
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Moreover,

sn+1 = s̃Nn = s̃0 − 5
Nn−1∑

j=0

σn, j = s̃0 − s̃0ςn

Nn−1∑

j=0

ς j ≥ s̃0 − ςn s̃0 = sn(1 − ςn)
2.

As for the estimates about the change of variables �n+1, with the standard calculations in
the KAM iteration and the inequalities (3.48) and (3.49) we know that �n+1 satisfies (3.40)
and (3.41). We omit the details.

The above estimates imply that Hn+1 is well defined on D(rn+1, sn+1)×On+1.Moreover,
Bn+1 owns the formula in (3.7) and satisfies the estimates in (3.8), the functions En+1 and
Pn+1 satisfy the estimates in (3.37) and (3.38), respectively, with n in place of (n + 1). The
vector Wn+1 = (Wl

n+1 : l ∈ Z1)
T has the same decomposition and the satisfies the same

estimates as the ones of Bn+1. ��

4 Proof of Main Results

4.1 Convergence and the Proof of Theorem 2.1

Consider the Hamiltonian system H (2.1) defined on D(s, r) × O where ω = ξω, � and �

are the ones defined in (2.2) and

‖XP‖r ,s,r ,O∗ ≤ ε,

with

O∗ =
{
ξ ∈ [1, 2] : |〈k, ω〉 + 〈ζ,�〉| ≥ γ

〈k〉τ , 0 < |ζ | ≤ 2, k ∈ Z
d
}

.

Set s0 = s, r0 = r , γ0 = γ,O0 = O∗, and assume that ε0 = ε ≤ ε∗ with ln ε
−1

40(2τ+1)∗ ≥
3 exp

{
(3−1e−4s0ς2)

−1
a
}
. Obviously, E0(θ, ξ) = 0, B0(θ, ξ) = 0 and W0(θ, ξ) = 0, and it

is easy to check that system (2.1) satisfies all hypotheses of Lemma 3.3 with n = 0. Note
that

s∞ = s0�
∞
n=0(1 − ςn)

2 ≥ s0�
∞
n=0(1 − 2ςn) = s0�

∞
n=0[1 − 2(n + 2)−2]

= s0 exp

{ ∞∑

n=0

ln[1 − 2(n + 2)−2]
}

≥ s0 exp

{ ∞∑

n=0

−4(n + 2)−2

}

= s0e
−2 := s∗.

Moreover,

r∞ = r0�
∞
n=0ε

4
3
n+1 = 0 := r∗,

then

D(s0, r0) ⊃ D(s1, r1) ⊃ · · · ⊃ D(s∞, r∞) ⊃ D(s∗, r∗).

Let �n = �1 ◦ �2 ◦ · · · ◦ �n . Then

Hn = H ◦ �n = Nn + Pn

is the one in Lemma 3.3. Denote Oγ = ∩∞
j=0O j . Note that � does not depend on the

parameter ξ, then by the definitions ofO j , j ≥ 0, we know that the calculations to estimate
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the measures of set O j , j ≥ 0, are the same with the ones in the proof of Lemma 5.2, we
omit the details. By Lemma 5.2 we have

measOγ ≥ 1 − cγ.

From Lemma 3.3 we know that Hn, Nn, Pn,�n and D�n converge uniformly on
D(s∗, r∗) × Oγ . Let the limits be H∗, N∗, P∗,� and D� respectively. Moreover, by (3.40)
and (3.41) we know that

‖� − id‖r∗,s∗,r∗,Oγ ≤ 4ε
1
2
0 ,

‖D� − I d‖r∗,s∗,r∗,Oγ ≤ 4ε
1
2
0 .

(4.1)

Then

N∗ = E∗(θ, ξ) + 〈ω, I 〉 + 〈(� + B∗(θ, ξ))z, z〉 − 〈(� − W∗(θ, ξ))ρ, ρ〉,
P∗ =

∑

|δ+β|+|α+η|≥3

P∗
δ,β,α,η(θ, ξ)zδzβραρη.

Moreover, from Sect. 3.4 we know that two inequalities in (2.3) hold.

4.2 Proof of Theorem 1.1

Denote ut = v, then the system (1.6) becomes the following system, take the
√
m as the

example,
⎧
⎨

⎩

ut = v,

vt = 2mu − uxxxx + g(ε, ωt, x, u),

(4.2)

where

g(ε, ωt, x, u) = εu3 + 3ε
1
2
√
mu2 + ε

1
2 f (ωt, x,

√
m + ε

1
2 u).

The Hamiltonian of the above system is

H = 1

2
〈v, v〉 + 1

2
〈Au, u〉 +

∫ π

0
G(ε, ωt, x, u)dx, (4.3)

with the symplectic form du ∧ dv on the space H2([0, π]) × L2([0, π]), where
A = −2m + ∂4xxxx , ∂uG(ε, ωt, x, u) = −g(ε, ωt, x, u).

We assume that the function u is even in x ∈ [0, π], which implies that we restrict the
function u in the space spanned by {ψ j (x) := √

2π−1 cos j x} j≥0. Note that ψ j (x), j ≥ 0,

is the eigenfunction of the operator A
1
2 belonging to the eigenvalue

√
2m − j4, j ≥ 0. Thus

we make the assumption

u(t, x) =
∑

j∈J

1√
λ j

q j (t)ψ j (x) +
∑

j∈Z1

1√
λ j

p j (t)ψ j (x),

v(t, x) =
∑

j∈J

√
λ j q̃ j (t)ψ j (x) +

∑

j∈Z1

√
λ j p̃ j (t)ψ j (x),

(4.4)
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where

λ j =
⎧
⎨

⎩

√
2m − j4, j ∈ Z1,

√
j4 − 2m, j ∈ J .

Then the Hamiltonian defined in (4.3) is changed into

H = 1

2

∑

j∈J
λ j (q

2
j + q̃2j ) + 1

2

∑

j∈Z1

λ j ( p̃
2
j − p2j ) + R(ωt, q, p) (4.5)

with symplectic form dq ∧ dq̃ + dp ∧ d p̃ on the space �a,p × �a,p × �̃a,p × �̃a,p, and

R =
∫ π

0
G(ωt, x,

∑

j∈J

1√
λ j

q j (t)ψ j (x) +
∑

j∈Z1

1√
λ j

p j (t)ψ j (x))dx .

Moreover, we make the change of variables

z j = 1√
2
(q j − ĩq j ), z̄ j = 1√

2
(q j + ĩq j ), j ∈ J ,

ρ j = 1√
2
(p j − p̃ j ), ρ j = 1√

2
(p j + p̃ j ), j ∈ Z1.

Note that ρ is not the complex conjugate of ρ. Then (4.5) is changed into

H = 〈ω, I 〉 +
∑

j∈J
λ j |z j |2 −

∑

j∈Z1

λ jρ jρ j + P(θ, z, z̄, ρ, ρ) (4.6)

where θ = ωt, the added variable I ∈ C
d is canonically conjugate to θ ∈ T

d
c with symplectic

form dθ ∧ d I + idz ∧ dz + dρ ∧ dρ on the space Cd × C
d × �a,p × �a,p × �̃a,p × �̃a,p.

Moreover,

P(θ, z, z̄, ρ, ρ) = R

(
θ,

z + z̄√
2

,
ρ + ρ√

2

)
.

The motion equation of the Hamiltonian function defined by (4.6) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = ω,

ż j = i{λ j z j + ∂z̄ j P(θ, z, z̄, ρ, ρ)}, j ∈ J ,

˙̄z j = −i{λ j z̄ j + ∂z j P(θ, z, z̄, ρ, ρ)}, j ∈ J ,

ρ̇ j = −λ jρ j + ∂ρ j P(θ, z, z̄, ρ, ρ), j ∈ Z1,

ρ̇ j = −{−λ jρ j + ∂ρ j P(θ, z, z̄, ρ, ρ)}, j ∈ Z1.

(4.7)

Denote

� = diag(� j = λ j , j ∈ J ), � = diag(� j = λ j , j ∈ Z1).

Consider the linear operator of (4.7),whichwedenote asA, i.e.,A = diag(i�, −i�, −�, �).

The spectrum of A has the decomposition

Spec(A) = σs ∪ σc ∪ σu,
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where

σs = {−� j , j ∈ Z1
}
, σc = {±i� j , j ∈ J

}
, σu = {

� j , j ∈ Z1
}
.

We call the spectrum belong to σs ∪σu and σc as the hyperbolic spectrum and the center spec-
trum, respectively. Obviously, the hyperbolic spectrum is finite and the following Lemma 5.1
implies that the hyperbolic spectrum is well separated from the center spectrum.

Set r = 1, 0 < s < 1, and

O =
{
ξ ∈ [1, 2] : ∣∣〈k, ω〉 + 〈l,�(ξ)〉| ≥ γ

〈k〉τ , 0 < |l| ≤ 2, ∀k ∈ Z
d
}
.

By (H) we know that the function P in (4.6) satisfies

‖XP‖r ,s,r ,O ≤ ε
1
2 .

We set r0 = r = 1, s0 = s < 1, O0 = O and ε0 := ε
1
2 ≤ ε∗ with ε∗ being the one in

Theorem 2.1. Then by the inequality above we know that the Hamiltonian (4.6) satisfies all
the hypotheses in Theorem 2.1. Thus by Theorem 2.1 we know that the sympletic change of
variables � defined in D(s∗, r∗) × Oγ casts Hamiltonian system H defined (4.6) into H∗.
The motion equation of H∗ is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = ω,

İ = −∂θ H∗,

ż = i(� + B∗)z + i∂z̄ P∗,

˙̄z = −i(� + B∗)z̄ − i∂z P∗,

ρ̇ = (−� + W∗)ρ + ∂ρ P∗,

ρ̇ = −(−� + W∗)ρ − ∂ρ P∗.

(4.8)

Equation (4.8) possesses invariant tori

θ = ωt, I∗ = I∗(θ, ξ), z = z̄ = 0, ρ = ρ = 0.

Let (θ(t), I (θ, ξ), z(t), z̄(t), ρ(t), ρ(t)) = �(θ∗(0) + ωt, I∗(θ, ξ), 0, 0, 0, 0). Then (omit
the added variable I )

(θ(t), z(t), z̄(t), ρ(t), ρ(t))

= (θ∗(0) + ωt, X(θ∗(0) + ωt), X(θ∗(0) + ωt), Y (θ∗(0) + ωt), Y (θ∗(0) + ωt))

is a solution of (4.2), where

X(θ∗(0) + ωt) = (X j (θ∗(0) + ωt) ∈ C, j ∈ J ) ∈ �a,p,

X(θ∗(0) + ωt) = (X j (θ∗(0) + ωt) ∈ C, j ∈ J ) ∈ �a,p,

X(θ∗(0) + ωt) is the complex conjugate of X(θ∗(0) + ωt) and ‖X‖a,p ≤ 4ε
1
4 . Moreover,

Y (θ∗(0) + ωt) = (Y j (θ∗(0) + ωt) ∈ R, j ∈ Z1) ∈ �̃a,p,

Y (θ∗(0) + ωt) = (Ỹ j (θ∗(0) + ωt) ∈ R, j ∈ Z1) ∈ �̃a,p,
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Y (θ∗(0) + ωt) is conjugate (not the complex conjugate) to Y (θ∗(0) + ωt) and ‖Y‖a,p ≤
4ε

1
4 , ‖Y‖a,p ≤ 4ε

1
4 . Then

u(x, t) =
∑

j∈Z1

1√
2λ j

(Y j + Y j )(θ∗(0) + ωt)ψ j (x)

+
∑

j∈J

1√
2λ j

(X j + X j )(θ∗(0) + ωt)ψ j (x).

Thus the solution of (1.4) we obtain is y = √
m + ε

1
2 u(x, t).

5 Appendix

Lemma 5.1 Assume 2m > 1, (2m)
1
4 − [(2m)

1
4 ] ∈ [ 1

100 ,
1
2 ], then the following conclusions

hold:

(i) | ± � j | ≥ j3/2

2 , |� j − �i | ≥ | j2 − i2|, i, j ∈ J , i �= j . (ii) (2m)
1
4

10 < |� j | ≤√
2m, |� j − �i | >

| j2−i2|
2m , i, j ∈ Z1, i �= j .

Proof Consider � j = λ j = √
j4 − 2m, j ∈ J . It follows that

|� j |2 = j4 − 2m = ( j2 + √
2m)( j + (2m)

1
4 )( j − (2m)

1
4 ) > j3

{
j −

([
(2m)

1
4

]
+ 1

2

)}

>
1

2
j3 >

j3

4

as j ≥ 1 + [(2m)
1
4 ]. Thus, we have |� j | >

j3/2

2 . Moreover,

|� j − �i | = (i2 + j2)(i2 − j2)√
j4 − 2m

√
i4 − 2m

> | j2 − i2|.

This proves the conclusion (i).

For � j = λ j = √
2m − j4, j ∈ Z1, in view of j ≤ [(2m)

1
4 ] and (2m)

1
4 − [(2m)

1
4 ] ∈

[ 1
100 ,

1
2 ], one has

|� j |2 = 2m − j4 =
(√

2m + j2
) (

(2m)
1
4 + j

) (
(2m)

1
4 − j

)

≥
(√

2m + j2
) (

(2m)
1
4 + j

)([
(2m)

1
4

]
+ 1

100
− j

)

≥
√
2m

100
.

Thus, |� j | ≥ (2m)
1
4

10 , and, obviously, |� j | ≤ √
2m. Moreover,

|� j − �i | = (i2 + j2)(i2 − j2)√
2m − j4

√
2m − i4

>
| j2 − i2|

2m
.

This proves the conclusion (ii). ��
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Lemma 5.2 Assume the frequency vector ω = ξω with ω being the one defined in (1.2).
For B(ξ) = (Bj (ξ), j ∈ J ) with ‖B(ξ)‖O ≤ cε, denote �̃(ξ) = � + B(ξ), where
� = (� j , j ∈ J ) is the one defined in (2.2). Define the set

O∗ =
{
ξ ∈ O : ∣∣〈k, ω〉 + 〈l, �̃(ξ)〉| ≥ γ

〈k〉τ , 0 < |l| ≤ 2, ∀k ∈ Z
d
}
.

Then for 0 < γ � 1 and τ > d + 2, we have measO∗ ≥ 1 − cγ.

Proof By Lemma 5.1 we know that that
∣∣〈k, ω〉 + 〈l, �̃(ξ)〉∣∣ = ∣∣〈l, �̃(ξ)〉∣∣ >

∣∣〈l,�〉∣∣ − 2‖B‖O > 1, k = 0.

In the following we assume k �= 0. Denote

O∗∗ =
{
ξ ∈ O : ∣∣〈k, ω〉 + 〈l, �̃(ξ)〉

ξ
| ≥ γ

〈k〉τ , 0 < |l| ≤ 2, ∀k ∈ Z
d
}
,

R(γ ) =
⋃

k∈Zd ,0<|l|≤2

Rk,l(γ )

with

Rk,l(γ ) =
{
ξ ∈ O : ∣∣gk,l

∣∣ <
γ

〈k〉τ
}

and

gk,l := 〈k, ω〉 + 〈l, �̃(ξ)〉
ξ

.

Obviously, O∗∗ ⊂ O∗ and O∗∗ = O \ R(γ ).

Case one: |〈l,�〉| ≥ 5|k||ω|. Then
∣∣〈k, ω〉 + 〈l, �̃(ξ)〉

ξ

∣∣ ≥
∣∣∣∣
〈l, �̃(ξ)〉

ξ

∣∣∣∣ − |k||ω|
≥ 2−1|〈l, �̃(ξ)〉| − |k||ω|
≥ 2−1|〈l,�〉| − |〈l, B(ξ)〉| − |k||ω|
≥ 2−1|〈l,�〉| − 2|k||ω|
≥ (10)−1|k||ω|,

that is Rk,l(γ ) = ∅.

Case two: |〈l,�〉| < 5|k||ω|. For ξ ∈ O, we have

∣∣∣
d

dξ
gk,l

∣∣∣ =
∣∣∣
〈l, �̃〉

ξ2
− ∂ξ 〈l, �̃〉

ξ

∣∣∣

=
∣∣∣
〈l,�〉 + 〈l, B〉

ξ2
− ∂λ〈l, B〉

ξ

∣∣∣

≥ |〈l,�〉|
4

− 2‖〈l, B〉‖O ≥ |〈l,�〉|
8

.

Therefore,

measRk,l(γ ) ≤ c
γ

〈k〉τ .
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Then,

meas
⋃

0 �=k∈Zd

⋃

|〈l,�〉|<5|k||ω|,|l|≤2

Rk,l(γ )

≤
∑

0 �=k∈Zd

∑

|〈l,�〉|<5|k||ω|,|l|≤2

c
γ

|k|τ

≤ 125|ω|2γ
∑

0 �=k∈Zd

1

|k|τ−2 ≤ Cγ, (τ > d + 2),

where C is a constant depending on ω and τ. This implies that measR ≤ Cγ, which means
measO∗∗ ≥ 1 − Cγ. Thus,

measO∗ ≥ 1 − Cγ.

��
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