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Abstract
We study the existence of ground state solutions for a class of discrete nonlinear Schrödinger
equations with a sign-changing potential V that converges at infinity and a nonlinear term
being asymptotically linear at infinity. The resulting problem engages two major difficulties:
one is that the associated functional is strongly indefinite and the other is that, due to the
convergency of V at infinity, the classical methods such as periodic translation technique and
compact inclusion method cannot be employed directly to deal with the lack of compactness
of the Cerami sequence. New techniques are developed in this work to overcome these two
major difficulties. This enables us to establish the existence of a ground state solution and
derive a necessary and sufficient condition for a special case. To the best of our knowledge,
this is the first attempt in the literature on the existence of a ground state solution for the
strongly indefinite problem under no periodicity condition on the bounded potential and the
nonlinear term being asymptotically linear at infinity. Moreover, our conditions can also
be used to significantly improve the well-known results of the corresponding continuous
nonlinear Schrödinger equation.

Keywords Discrete nonlinear Schrödinger equations · Gap solitons · Ground state
solutions · Saturable nonlinearity · Linking theorem · Variational methods

Mathematics Subject Classification 39A12 · 35Q55

1 Introduction

Discrete nonlinear Schrödinger (DNLS) equations are very important nonlinear latticemodels
in the nonlinear science, ranging from condensed matter physics to biology [5,7–9,11,17].
For DNLS equations, one central problem is the existence of gap solitons [2,10,12,19,24,26].
Gap solitons in the DNLS equations are solitary standing waves with temporal frequencies in
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gaps of continuous spectrum which decay to zero at infinity. The main tools in establishing
the existence of gap solitons include the principle of anticontinuity [2,19], centre manifold
reduction [10] and variational methods [24]. Gap solitons observed in the optical pulse
propagation in saturable nonlinear media [7,32,35] can be modelled by the DNLS equations
with a sign-changing potential in the linear term. TheDNLS equations also lead to the discrete
nonlinear Laplacian equations with a potential containing a negative part [3,7,24,32]. The
DNLS equations with sign-changing potentials are not well studied.

In this paper, we consider the following DNLS equation

− �u(m) + V (m)u(m) = f (u(m)), m ∈ Z (1.1)

and establish the existence of a nontrivial solution of (1.1) satisfying the boundary condition

lim|m|→∞ u(m) = 0. (1.2)

In (1.1), the operator � is the discrete Laplacian defined as

�u(m) := u(m + 1) − 2u(m) + u(m − 1), m ∈ Z.

The potential V satisfies the following assumptions:

(V1) 0 < lim|m|→∞ V (m) = V∞ < ∞.
(V2) V (m) ≤ V∞ −C0e−r0|m| for m ∈ Z, where 0 < C0 and 0 < r0 < cosh−1(V∞/2+ 1),

where cosh−1(x) = ln(x + √
x2 − 1), x ∈ [1,∞) is the inverse function of the

hyperbolic cosine cosh(x) := (ex + e−x )/2 for x ∈ [0,∞).
(V3) inf σ(L) < 0, where σ(L) is the spectrum of L := −� + V in l2. Here for 1 ≤ p, l p

is defined by

l p ≡
⎧
⎨

⎩
u = {u(m)}m∈Z : u(m) ∈ R, ‖u‖l p =

(
∑

m∈Z
|u(m)|p

) 1
p

< ∞
⎫
⎬

⎭
,

which exhibits the following property

lq ⊂ l p, ‖u‖l p ≤ ‖u‖lq , 1 ≤ q ≤ p ≤ ∞.

The nonlinear term f ∈ C(R,R) is assumed to satisfy the following conditions:

( f1) f is locally Lipschitz, i.e., for every x ∈ R there exist a neighborhood Ux of x and a
constant Lx such that, for all u, v ∈ Ux , one has

| f (u) − f (v)| ≤ Lx |u − v|.
( f2) limu→0( f (u)/u) = 0 and 0 < lim|u|→∞( f (u)/u) = a < ∞.
( f3) The function u 
→ f (u)/|u| is strictly increasing in u ∈ R\{0}.
( f4) If F(u) := ∫ u0 f (s)ds and F̃(u) := 1

2 f (u)u − F(u), then

lim|u|→∞ F̃(u) = ∞.

It is seen from (V1) that V is bounded and σess(L) = [V∞, V∞ + 4] [34], where σess(L)

is the essential spectrum of L . Hypothesis (V3) implies that

σ− := sup{σ(L) ∩ (−∞, 0)} < 0 < σ+ := inf{σ(L) ∩ (0,∞)}. (1.3)

Thus the potential V is also sign-changing, non-periodic and approaches a limit V∞ at
infinity. Moreover, the assumptions on f show that f is asymptotically linear at infinity.
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Typical functions satisfying hypotheses ( f1) − ( f4) include f (u) = au3/(1 + u2) and
f (u) = au(1 − e−u2), for u ∈ R and a > 0. These functions are also widely used in the
literature. For instance, f (u) = au3/(1 + u2) was used in [32,35] to study the optical pulse
propagation in 1D equidistant nonlinear waveguide arrays.

We point out that mainly using the variational method [23,37,38], the existence of non-
trivial solutions of (1.1) has been studied under different assumptions on the potential V and
the nonlinearity f . For example, Pankov [24] obtained the existence of a nontrivial solu-
tion of the nonautonomous problem with f (u(m)) = f (m, u(m)) in (1.1) and 0 belonging
to a spectral gap of −� + V , and both V and f are periodic in m with f satisfying the
Ambrosseti–Rabinowitz (AR) condition. Later Zhou and Yu [41] improved the classical AR
superlinear condition to a general superlinear one. The existence of a nontrivial solution of
(1.1) with a constant potential V and an asymptotically linear term f , was given by Pankov
and Rothos [25] using the Nehari manifold approach and the mountain pass argument. Fur-
ther, by using themountain pass lemma of [29] in combination with periodic approximations,
Zhou and Yu [40] studied the existence of nontrivial solutions of (1.1) under the assumption
that V and f are both periodic, u 
→ f (m, u)/|u| is strictly increasing for u ∈ R\{0}, and f
is asymptotically linear at infinity. Recently, Chen et al. [3] considered the nonautonomous
problem of (1.1) with the potential V being periodic and f being asymptotically linear at
infinity. When either 0 is a spectral endpoint of −� + V , or it is in a finite spectral gap of
−� + V , the authors obtained the existence of nontrivial solitons by using a generalized
weak linking theorem introduced by Schechter and Zou [30]. In the above mentioned work,
the periodicity assumptions on V and f play an essential role since the periodicity ensures
that (1.1) is invariant under periodic translation. This property is used to overcome the lack
of compactness of a Palais–Smale or Cerami sequence, due to the fact that (1.1) is defined
in Z.

Existence of nontrivial solutions of (1.1) with an unbounded potential V (i.e., lim|m|→∞
V (m) = ∞), has also been studied in the literature. In contrast to the periodic case, (1.1)
with an unbounded potential V is no longer translating-invariant. The unbounded potential V
ensures a compact inclusion from a weighted subspace of l2 into l p (p ≥ 2), which allows us
to be able to handle the lack of compactness of a Palais–Smale or Cerami sequence. Zhang
and Pankov [36] investigated the existence of nontrivial solutions of the nonautonomous
problem with the unbounded potential V and f (m, u) = γm |u|p−2u in (1.1). The method
used theminimizationmethod on theNeharimanifold and the compact embedding technique.
By using the fountain theorem of Zou [42] and the compact inclusion, Zhou and Ma [39]
obtained infinitely many high-energy solutions for the nonautonomous problem with an
unbounded potential V and a suplinear nonlinearity f at infinity. Chen and Schechter [4]
studied the unbounded potential problem of (1.1) with superlinear nonlinearity f at infinity.
By using the weak linking theorem of Schechter and Zou [30], they obtained the existence
of ground state solutions. By using the critical point theory, Pankov and Zhang [27] proved
the existence and multiplicity results for nontrivial solutions for the nonautonomous problem
with an unbounded potential V and a saturable nonlinearity f at infinity. Recently, Lin and
Zhou [16] obtained infinitely many high-energy solutions for the nonautonomous problem
provided that V is unbounded and f is of mixed nonlinearity at infinity, by using the fountain
theorem of Zou [42]. Other related results for (1.1) can be found in [6,12,14,15,18,20,26,33].

Notice that the existence of a nontrivial weak solution for the corresponding continuous
version of (1.1) with indefinite and non-periodic linear part V and asymptotically linear f
was obtained byMaia et al. [21,22]. In [21,22], the authors proved the existence of a nontrivial
weak solution in H1(RN ), N ≥ 3 by employing spectral theory arguments, the geometry
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of the linking theorem, and the interaction between translated solutions of the problem at
infinity. In their celebrated works, f is aC3 function with the following crucial restriction on
f [1,21,22]: There exist C2 > 0 and 1 < p1 ≤ p2 such that p1, p2 < (N + 2)/(N − 2) and
| f (k)(s)| ≤ C2(|s|p1−k+|s|p2−k) for k ∈ {0, 1, 2, 3} and s ∈ R, which plays a crucial role in
their proof. In this paper, we only need f to be locally Lipschitz. Obviously, if f ∈ C1(R,R),
then it is locally Lipschitz. Thus, it is possible to use our condition ( f1) to improve those in
the existing results obtained in [1,21,22] for the continuous nonlinear Schrödinger equations.

Discrete Schrödinger operators of the form −� + V appear in a wide range of fields,
such as the description of random walks, the propagation of waves in crystals, and the the-
ory of nonlinear integrable lattices (see [7,34] and references therein). It can be seen from
[1,21,22] that the exponential decay estimate on eigenfunctions corresponding to eigenvalues
below the essential spectrum for the continuous Schrödinger operators has been thoroughly
established very early. The estimate plays a significant role in establishing the compactness
of Cerami sequences. However, an analogous result for −� + V has not been established
yet. By using the Combes–Thomas method, Smith [31] proved the existence of exponen-
tial decay of eigenfunctions corresponding to eigenvalues below the essential spectrum for
−� + V , and proposed a conjecture on finding upper bounds of exponential decay rate on
these eigenfunctions. Based on Phragmen–Lindelöf principle of pseudodifference equations,
Rabinovich and Roch in [28] obtained an upper bound for −�+ V depending on a bounded
and slowly oscillating potential V . Without the assumption of V being slowly oscillating
and by using elementary method, the upper bound of [28] has been reformulated with some
separate interest to fit in with our setting in this paper (Lemma 2.1).

In this work, one difficulty in problem (1.1) is that the associated functional J (defined in
Sect. 2) is strongly indefinite. To tackle this difficulty, we adapt the classical linking theorem
with a Cerami sequence introduced by Li and Wang [13]. It is convenient to decompose the
functional space l2 into a direct sum of two subspaces H+ and H−, one of them being finite
dimensional. It is possible to prove that the limiting problem

− �u(m) + V∞u(m) = f (u(m)), m ∈ Z, (1.4)

admits a ground state solution u0 in l2. After projecting u0 on the subspace H+, the linking
set M is constructed, under which we do not need to use the minimization method on the
generalized Nehari manifold. Although it is rather intricate to estimate the interactions of the
translations of u0, we are able to find the linking geometry (Lemma 3.6). This allows us to
find a Cerami sequence at level c that is given by the linking minmax structure.

Another difficulty is the lack of compactness of the Cerami sequence. As a result, neither
the periodic translation technique nor the compact inclusion method can be adapted. To
overcome this difficulty, we give exponential decay bounds on eigenfunctions corresponding
to eigenvalues below the essential spectrum of −� + V (Lemma 2.1). Moreover, an upper
bound of the exponential decay rate that depends only on V∞ is also explicitly given. This
bound allows a priori estimate on exponential decay for nontrivial solutions of (1.1) and
(1.4). These new estimates on exponential decay rate are crucial to our proof. Assuming
that u 
→ f (u)/|u| is strictly increasing for u ∈ R\{0}, we can successfully compare the
energy level c of the Cerami sequence with the ground state level c∞ of the limiting problem
(Lemma 3.7). Thus, the concentration-compactness method can be used.

To the best of our knowledge, this is the first attempt to obtain the existence of a ground
state solution of (1.1) with a sign-changing and bounded potential V that does not need to be
periodic, and a nonlinearity f which is asymptotically linear at infinity. Moreover, we also
derive a necessary and sufficient condition on the existence of ground state solutions for a
special case.
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Our main results are stated as follows.

Theorem 1.1 Assume that (V1)−(V3) hold and f ∈ C(R,R) satisfies ( f1)−( f4). If V∞ < a,
then (1.1) has a ground state solution u in l2. Moreover, the solution decays exponentially
at infinity, that is, for any τ ∈ (0, cosh−1(V∞/2 + 1)), there exists a constant C, depending
only on τ and V∞, such that

|u(m)| ≤ C‖u‖l∞e−τ |m|, m ∈ Z. (1.5)

We remark that although for (1.1) with periodic potentials, the existence of nontrivial
solutions which decay exponentially has been extensively studied in [3,18,24,25,33,40,41],
no explicit bounds on the exponential decay rate have been provided. Nevertheless, our
estimate (1.5) explicitly gives an exponential decay bound on a nontrivial solution of (1.1).
Indeed, (1.5) is a byproduct of Lemma 2.1 (given in Sect. 2). Lemma 2.1 can also provide
us more precise information on the upper bound of exponential decay rate of a nontrivial
solution of (1.1) with periodic potentials.

Theorem 1.1 only presents a sufficient condition on the existence of a ground state solution
of (1.1) in l2. We mention that if some of these conditions fail, then (1.1) has no nontrivial
solution in l2.

Proposition 1.2 Assume that (V1) and (V3) hold and f ∈ C(R,R) satisfies ( f2) and ( f3).
If 0 /∈ σ(L) and a ≤ min{σ+, −σ−}, then (1.1) has no nontrivial solution in l2.

Combining Theorem 1.1 and Proposition 1.2, we obtain a necessary and sufficient condi-
tion on the existence of ground state solutions of (1.1).

Theorem 1.3 Under conditions (V1) − (V3) and ( f1) − ( f4), if 0 /∈ σ(L), σ+ = V∞ and

min{V∞ − a, a + σ−} < 0, (1.6)

then (1.1) has at least one ground state solution in l2 if and only if V∞ < a.

We remark that σ+ = V∞ is possible for a class of sign-changing potentials. In fact, if
σ+ < V∞, then λ+

m := sup{σ(L) ∩ (0, V∞)} exists and λ+
m < V∞ provided that V∞ is not a

cluster point of isolated eigenvalues of L . Define a new potential V1 as V −λ+
m −ε for a small

enough ε > 0. Then σ+ = V∞ is satisfied by rewriting L with V1 in the place of V .We should
mention that there is no published result focusing on a necessary and sufficient condition of
(1.1) with a sign-changing potential V going to a limit V∞ at infinity and an asymptotically
linear term f at infinity. Notice that, if V∞ < a, then (1.6) is satisfied automatically. Thus it
follows from Theorem 1.1 that the ground state solution obtained in Theorem 1.3 also shares
the exponential decay estimate (1.5).

We organize the rest of the paper as follows. In Sect. 2 we present some preliminaries
including the variational setting associated with (1.1) and some auxiliary lemmas. In Sect. 3,
we first prove that every Cerami sequence of the corresponding functional J of (1.1) is
bounded, and then we show that J satisfies the linking geometry. We present the proofs of
our main results in Sect. 4.

2 Preliminaries

In this section,webuild the variational setting associatedwith (1.1) andpresent some auxiliary
lemmas which are crucial to the proofs of our main results.
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2.1 Variational Setting

Let E := l2. The energy functional J : E → R associated with (1.1) is given by

J (u) = 1

2
((−� + V )u, u)E −

∑

m∈Z
F(u(m)), u ∈ E,

where (·, ·)E is the inner product in l2. The corresponding norm in E is denoted by ‖ · ‖E .
Then J ∈ C1(E,R) and its derivative is given by

〈J ′(u), v〉 = ((−� + V )u, v)E −
∑

m∈Z
f (u(m))v(m), u, v ∈ E . (2.1)

Thus, (1.1) is the corresponding Euler-Lagrange equation for J . To find nontrivial solutions
of (1.1), we only need to look for nonzero critical points of J in E .

It is known from conditions (V1) and (V3) that the eigenvalue problem

− �u(m) + V (m)u(m) = λu(m), m ∈ Z (2.2)

has a sequence of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk∗ < 0. Denote by ϕi the eigenfunction
corresponding to λi for i ∈ {1, 2, . . . , k∗} in E . Setting E− := span{ϕi : i = 1, 2, . . . , k∗},
we know that dimE− < ∞ since the essential spectrumof−�+V equals [V∞, V∞+4] [34].
Denote E0 := ker(−�+V ). If 0 /∈ σ(−�+V ), then E0 = {0}, if not, then 0 is an eigenvalue
of finite multiplicity. Thus, E0 is finite dimensional. Denote by {ei : i = 1, 2, . . . , k∗∗} the
basis of E0, and if E0 = {0}, then one has ei = 0, i = 1, 2, . . . , k∗∗ for convenience. Setting
E+ := (E− ⊕ E0)⊥, we know that E = E+ ⊕ E− ⊕ E0 and dim(E− ⊕ E0) < ∞. We
call E+ and E− the positive and negative spectral subspaces of −� + V in E , respectively.
Then, we have

((−� + V )u, u)E ≥ σ+‖u‖2E , u ∈ E+, (2.3)

and
− ((−� + V )u, u)E ≥ −σ−‖u‖2E , u ∈ E−, (2.4)

where σ+ and σ− are given by (1.3). For any u, v ∈ E = E+ ⊕ E− ⊕ E0, u = u+ +u− +u0

and v = v+ + v− + v0, we define an equivalent inner product (·, ·) and the corresponding
norm ‖ · ‖ on E by

(u, v) = ((−� + V )u+, v+)E − ((−� + V )u−, v−)E + (u0, v0)E and ‖u‖ = (u, v)
1
2 ,

(2.5)
respectively. Clearly, the decomposition E = E+ ⊕ E− ⊕ E0 is also orthogonal with respect
to both inner products (·, ·) and (·, ·)E . Therefore, J can be written as

J (u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 −

∑

m∈Z
F(u(m))

for each u = u+ + u− + u0 ∈ E . We also have

〈J ′(u), v〉 = (u+ − u−, v) −
∑

m∈Z
f (u(m))v(m)

= ((−� + V )u+, v+)E − ((−� + V )u−, v−)E

−
∑

m∈Z
f (u(m))v(m) (2.6)

for u = u+ + u− + u0 ∈ E and v = v+ + v− + v0 ∈ E .
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Definition 2.1 Assume that the set	 = {u : u ∈ E\{0}, J ′(u) = 0} of all nontrivial critical
points of J is nonempty. A solution u0 ∈ E of (1.1) is called a ground state solution if its
energy level J (u0) > 0 satisfies

J (u0) = inf{J (u) : u ∈ 	}.
For the limiting problem (1.4) with the boundary condition (1.2), the energy functional

associated with (1.4) is given by

J∞(u) = 1

2
((−� + V∞)u, u)E −

∑

m∈Z
F(u(m)), u ∈ E .

We have

〈J ′∞(u), v〉 = ((−� + V∞)u, v)E −
∑

m∈Z
f (u(m))v(m), u, v ∈ E .

Let u0 ∈ E be a ground state solution of (1.4), that is, J∞(u0) = c∞ > 0 with

c∞ := inf{J∞(u) : u ∈ E\{0}, J ′∞(u) = 0}. (2.7)

The existence of u0 has been proved in [3] as V∞ < a.

2.2 Some Auxiliary Lemmas

To prove the main results, we need some auxiliary lemmas.

Lemma 2.1 Let V ∈ l∞, and u ∈ ker(−� + V − λ) in E for some λ < α :=
lim inf |m|→∞ V (m). Assume β ∈ [λ, α). Then for any μ ∈ (0, cosh−1(1 + (α − β)/2)),
there exists a constant C, depending only on μ and β, such that

|u(m)| ≤ C‖u‖l∞e−μ|m|, m ∈ Z. (2.8)

Proof A simple calculation yields

�e−μ|m| = (eμ + e−μ − 2)e−μ|m|, m ∈ Z\{0}.
Since μ ∈ (0, cosh−1(1 + (α − β)/2)), we have

eμ + e−μ − 2 < α − β.

By the definition of α, there exists an integer N = N (μ, β) > 0 such that

V (m) > β + eμ + e−μ − 2, |m| ≥ N ,

and thus, for all λ ≤ β, we further have

V (m) > λ, λ − V (m) + eμ + e−μ − 2 < 0, |m| ≥ N .

Denote C = eμN . For any u ∈ ker(−� + V − λ)\{0} with λ ≤ β, we define a sequence
w = {w(m)} as

w(m) = u(m) − C‖u‖l∞e−μ|m|, m ∈ Z.

Thenw ∈ l2 andw+ ∈ l2, wherew+ = {w+(m)} is defined byw+(m) = max{w(m), 0} for
m ∈ Z. The definition of C ensures that w(m) ≤ 0 for all |m| ≤ N . Therefore, w+(m) ≡ 0
for |m| ≤ N . Let

A = {m : w+(m) > 0, m ∈ Z} and B = {m ∈ Z : |m| ≤ N }.
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Clearly, A ⊂ D(N ) ≡ Z\B. Denote the forward difference operator ∇ by ∇u(m) = u(m +
1) − u(m). We claim that A = ∅. Otherwise,

∑

m∈Z
|∇w+(m)|2 =

∑

m∈D(N )

(∇w(m)) · ∇w+(m)

= −
∑

m∈D(N )

(�w(m + 1)) · w+(m + 1)

=
∑

m∈A

(−�w(m)) · w(m)

≤
∑

m∈A

(λ − V (m) + eμ + e−μ − 2)C‖u‖l∞e−μ|m|w(m),

since λ − V (m) ≤ 0 and u(m) > C‖u‖l∞e−μ|m| for m ∈ A. However, it is impossible as
u(m) > 0 for m ∈ A ⊂ D(N ) and N is chosen such that

λ − V (m) + eμ + e−μ − 2 < 0, m ∈ D(N ).

This proves the claim. It follows from the claim that w(m) ≤ 0 for all m ∈ Z, that is,
u(m) ≤ C‖u‖l∞e−μ|m| for all m ∈ Z. Replacing u by −u finishes the proof. ��

Next we show that every solution of (1.1) in l2 decays exponentially at infinity.

Proposition 2.2 Under assumptions of Theorem 1.1, any nontrivial solution u ∈ l2 of (1.1)
decays exponentially at infinity, that is, for any τ ∈ (0, cosh−1(V∞/2 + 1)), there exists a
constant C, depending only on τ and V∞, such that (1.5) holds.

Proof Define Ṽ (m) := V (m) − U (m), where U (m) = f (u(m))/u(m) if u(m) �= 0 and
U (m) = 0 if u(m) = 0. Since f (u) = o(u) as u → 0 and lim|m|→∞ u(m) = 0, it follows
that lim|m|→∞ U (m) = 0. Then lim|m|→∞ Ṽ (m) = V∞. By using Lemma 2.1 with Ṽ (m)

for V (m), it is easy to obtain the desired estimate (1.5). ��
Lemma 2.3 Under assumption ( f1), for any C1 > 0, there exists a constant C2 > 0 such
that

|F(u + v) − F(u) − F(v)| ≤ C2|u||v|
for all u, v ∈ R with |u|, |v| ≤ C1.

Proof It is well known that f is locally Lipschitz if and only if it is Lipschitz on every
bounded and closed subset of R. Thus, for any C1 > 0, there is a constant C2 > 0 such that

| f (u) − f (v)| ≤ C2|u − v|
for all u, v ∈ Rwith |u|, |v| ≤ C1. If u = 0 or v = 0, there is nothing to show. Thus assume
0 < |u|, |v| ≤ C1. Then we have

|F(u + v) − F(u) − F(v)|
=
∣
∣
∣
∣

∫ 1

0
[ f (su + v) − f (su)]uds

∣
∣
∣
∣

≤ |u|
∫ 1

0
| f (su + v) − f (su)|ds

≤ C2|u||v|,
which completes the proof. ��
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Lemma 2.4 If μ2 > μ1 ≥ 0, there exists C > 0 such that, for all m1, m2 ∈ Z, one has
∑

m∈Z
e−μ1|m−m1|e−μ2|m−m2| ≤ Ce−μ1|m1−m2|.

Proof It follows from

μ1|m1 − m2| + (μ2 − μ1)|m − m2|
≤ μ1(|m − m1| + |m − m2|) + (μ2 − μ1)|m − m2|
= μ1|m − m1| + μ2|m − m2|,

that
∑

m∈Z
e−μ1|m−m1|e−μ2|m−m2| ≤

∑

m∈Z
e−μ1|m1−m2|e−(μ2−μ1)|m−m2| = Ce−μ1|m1−m2|.

Thus the desired result follows. ��

3 Linking Geometry with a Bounded Cerami Sequence

3.1 Boundedness of a Cerami Sequence

Given a Banach space (E, ‖ · ‖), we say that a functional J ∈ C1(E,R) satisfies the Cerami
condition if every sequence {uk} ⊂ E with |J (uk)| < M , for some constant M > 0, and
‖J ′(uk)‖E∗(1 + ‖uk‖) → 0 has a subsequence ukn → u in E .

Lemma 3.1 Let {uk} ⊂ E be a sequence such that J (uk) → c > 0 and ‖J ′(uk)‖E∗(1 +
‖uk‖) → 0, as k → ∞. Then, {uk} has a bounded subsequence.

Proof Assumptions ( f1) and ( f2) imply that, given ε > 0 and 2 ≤ p, there exists Cε such
that

| f (u)| ≤ ε|u| + Cε|u|p−1 and |F(u)| ≤ ε|u|2 + Cε|u|p (3.1)

for all u ∈ R.
Let B(c, r) be the open ball in a Hilbert space with radius r and center c. If {wk} is a

bounded sequence in E , then it satisfies one of the following cases:

(i) Nonvanishing: there exist constants r , η > 0 and a sequence {nk} ⊂ Z such that
lim supk→∞

∑
m∈B(nk ,r) |wk(m)|2 > η.

(ii) Vanishing: for all r > 0, lim supk→∞ supn∈Z
∑

m∈B(n,r) |wk(m)|2 = 0.

By way of contradiction, we assume that ‖uk‖ → ∞. Setting vk = uk/‖uk‖ yields
‖vk‖ = 1. The sequence {vk} is bounded. We finish the proof with contradictory arguments
to show that neither (i) or (ii) is satisfied by {vk} as follows.
Claim 3.2 Nonvanishing of the sequence {vk} is impossible.
Proof First assume that (i) holds for the sequence {vk}. By equivalence of the norms, there
exist constants c1, c2 > 0 such that

‖u‖ ≤ c1‖u‖E ≤ c2‖u‖, for u ∈ E . (3.2)

Denote

ls0 = {u ∈ ls : {n ∈ Z : |u(n)| > 0} is a finite set, 2 ≤ s}.
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Then l20 is dense in l2. Moreover, for every φ ∈ l20 , there exists m0 ∈ N such that φ(m) = 0
for all |m| > m0. Let {nk} ⊂ Z be the sequence given by (i). Denote φk = {φk(m)} by
φk(m) = φ(m − nk) for any φ = {φ(m)} ∈ l20 . Noting that the sequence {uk} is a Cerami
sequence, we have from (3.2) that

|〈J ′(uk), φk〉| ≤ ‖J ′(uk)‖E∗‖φk‖ ≤ c1‖J ′(uk)‖E∗‖φk‖E
= c1‖J ′(uk)‖E∗‖φ‖E → 0.

Since ‖uk‖ → ∞, the cardinality of the set Ak = {m ∈ Z : |u(m)| > 0} is positive. Let
oν(1) be a quantity that approaches zero as ν goes to infinity. Denote f∞(u) = f (u) − au.
Then,

ok(1) = 1

‖uk‖〈J ′(uk), φk〉 = (v+
k − v−

k , φk) −
∑

m∈Z

f (uk(m))

‖uk‖ φk(m)

= (v+
k − v−

k , φk) −
∑

m∈Z
avk(m)φk(m) −

∑

m∈Z

f∞(uk(m))

‖uk‖ φk(m)

= (v+
k − v−

k , φk) −
∑

m∈Z
avk(m)φk(m) −

∑

m∈Ak

f∞(uk(m))

uk(m)
vk(m)φk(m). (3.3)

Define ṽk(m) = vk(m + nk) and ũk(m) = uk(m + nk). Note that {̃vk} is bounded in E . In
fact, it follows from (3.2) that

‖̃vk‖ ≤ c1‖̃vk‖E = c1‖vk‖E ≤ c2‖vk‖ = c2.

Thus, passing to a subsequence if necessary, we have

ṽk⇀ṽ in E, and ṽk → ṽ in l20 . (3.4)

Let � = {m ∈ Z : |φ(m)| > 0}. By ( f2) and ( f3), | f (·)|/| · | is a bounded function inR\{0}
with | f (·)|/| · | ≤ a. From (3.4), there exists g ∈ l1 such that |̃vk(m)| ≤ g(m) in �. Thus,
we obtain ∣

∣
∣
∣
f∞(̃uk(m))

ũk(m)
ṽk(m)φ(m)

∣
∣
∣
∣ ≤ 2ag(m)φ(m). (3.5)

We have that ṽ �= 0. In fact, it follows from (i) and (3.4) that
∑

m∈B(0,r)

|̃v(m)|2 = lim sup
k→∞

∑

m∈B(0,r)

|̃vk(m)|2 = lim sup
k→∞

∑

m∈B(nk ,r)

|vk(m)|2 > η > 0.

By ( f2), we have that f∞(u)/u → 0 if |u| → ∞. From (3.5) and the Lebesgue Dominated
Convergence Theorem, it holds that

∑

m∈Z

f∞(uk(m))

uk(m)
vk(m)φk(m)

=
∑

m∈Z

f∞(̃uk(m))

ũk(m)
ṽk(m)φ(m)

=
∑

m∈�

f∞(̃uk(m))

ũk(m)
ṽk(m)φ(m)

=
∑

m∈�

f∞(̃vk(m)‖ũk‖)
ṽk(m)‖ũk‖ ṽk(m)φ(m) → 0. (3.6)
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Since u0k ∈ E0, it follows from (3.3), (3.4) and (3.6) that

ok(1) = 1

‖uk‖〈J ′(uk), φk〉

= (v+
k − v−

k , φk) −
∑

m∈Z
avk(m)φk(m) −

∑

m∈Z

f∞(uk(m))

uk(m)
vk(m)φk(m)

=
∑

m∈Z
[∇v+

k (m) · ∇φ(m − nk) + V (m)v+
k (m)φ(m − nk)]

+
∑

m∈Z
[∇v−

k (m) · ∇φ(m − nk) + V (m)v−
k (m)φ(m − nk)]

−
∑

m∈Z
avk(m)φk(m) − ok(1)

=
∑

m∈Z
[∇ṽ+

k (m) · ∇φ(m) + V (m + nk )̃v
+
k (m)φ(m)]

+
∑

m∈Z
[∇ṽ−

k (m) · ∇φ(m) + V (m + nk )̃v
−
k (m)φ(m)]

+
∑

m∈Z
[∇ṽ0k (m) · ∇φ(m) + V (m + nk )̃v

0
k (m)φ(m)]

−
∑

m∈Z
aṽk(m)φ(m). (3.7)

We distinguish two cases to finish the proof. Case 1. |nk | → ∞. In this case, it follows
from (V1) that V (m + nk) converges to V∞ in Z as k → ∞. From (3.7), we have

ok(1) =
∑

m∈�

[∇ṽ+
k (m) · ∇φ(m) + (V∞ + ok(1))̃v

+
k (m)φ(m)]

+
∑

m∈�

[∇ṽ−
k (m) · ∇φ(m) + (V∞ + ok(1))̃v

−
k (m)φ(m)]

+
∑

m∈�

[∇ṽ0k (m) · ∇φ(m) + (V∞ + ok(1))̃v
0
k (m)φ(m)]

−
∑

m∈�

aṽk(m)φ(m). (3.8)

Taking k → ∞ in (3.8) and noticing that (3.4) holds, then for any φ ∈ l20 , we get

((−� + V∞)̃v, φ)E = (aṽ, φ)E ,

that is, ṽ �= 0 is a solution of the problem−�ṽ(m)+V∞ṽ(m) = aṽ(m) inZ. This contradicts
to the fact that there is no eigenfunction of −� in l2 [34] since V∞ < a.

Case 2. {nk} is a bounded sequence. From (3.2), we have

‖ũk‖ ≥ c1
c2

‖ũk‖E = c1
c2

‖uk‖E ≥ 1

c2
‖uk‖,

which goes to infinity as k → ∞. We see from (3.4) that

0 �= |̃v(m0)| = lim
k→∞ |̃vk(m0)| = lim

k→∞
|̃uk(m0)|

‖ũk‖
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with some m0 ∈ B(0, r). As ‖ũk‖ → ∞, we obtain |̃uk(m0)| → ∞. Thus, combining ( f4)
with Fatou’s Lemma gives

lim inf
k→∞

∑

m∈Z

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

≥
∑

m∈Z
lim inf
k→∞

[
1

2
f (̃uk(m))̃uk(m) − F (̃uk(m))

]

≥ lim inf
k→∞

[
1

2
f (̃uk(m0))̃uk(m0) − F (̃uk(m0))

]

= ∞.

This is impossible since it contradicts with

∑

m∈Z

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

= J (uk) − 1

2
〈J ′(uk), uk〉 = c + ok(1).

In summary, (i) is impossible for the sequence {vk}. ��
Claim 3.3 Vanishing of the sequence {vk} is impossible.
Proof Now we assume that (ii) is true for the sequence {vk}. Since the sequence {vk} is a
Cerami sequence, we have 〈J ′(uk), u+

k 〉 → 0 and 〈J ′(uk), u−
k 〉 → 0. Thus,

ok(1) =
〈

J ′(uk),
u+
k

‖uk‖2
〉

= 1

‖uk‖〈J ′(uk), v+
k 〉

= ‖v+
k ‖2 −

∑

m∈Z

f (uk(m))

uk(m)
vk(m)v+

k (m) (3.9)

and

ok(1) =
〈

J ′(uk),
u−
k

‖uk‖2
〉

= 1

‖uk‖〈J ′(uk), v−
k 〉

= −‖v−
k ‖2 −

∑

m∈Z

f (uk(m))

uk(m)
vk(m)v−

k (m). (3.10)

Subtracting (3.10) from (3.9) gives

ok(1) = ‖v+
k ‖2 + ‖v−

k ‖2 −
∑

m∈Z

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m))

= ‖vk‖2 − ‖v0k‖2 −
∑

m∈Z

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m))

= 1 − ‖v0k‖2 −
∑

m∈Z

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m)).

Since {vk} vanishes, we have v0k⇀0 in l2 as k → ∞. It follows from dimE0 < ∞ that
‖v0k‖ → 0 as k → ∞. Then

∑

m∈Z

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m)) → 1. (3.11)
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By equivalence of the norms, there exists a constant ρ0 > 0 such that

‖u‖2 ≥ ρ0‖u‖2E , u ∈ E . (3.12)

It follows from ( f2) that, given 0 < ε < 1
2ρ0, there exists δ > 0 such that

| f (u)|
|u| ≤ ε for 0 < |u| ≤ δ.

For each k ∈ N, consider the set Bk = {m ∈ Z : |uk(m)| < δ}. By (3.12) and Hölder’s
inequality,

∑

m∈Bk

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m))

≤ ε
∑

m∈Bk
|vk(m)||v+

k (m) − v−
k (m)|

≤ ε(‖vk‖E‖v+
k ‖E + ‖vk‖E‖v−

k ‖E )

≤ 2ε‖vk‖2E ≤ 2ε

ρ0
‖vk‖2 = 2ε

ρ0
< 1.

It also follows from (3.11) that

lim inf
k→∞

∑

m∈Z\Bk

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m)) > 0. (3.13)

Denote |Z\Bk | the cardinality of Z\Bk . We claim that

lim sup
k→∞

|Z\Bk | = ∞. (3.14)

Otherwise,
lim sup
k→∞

|Z\Bk | < ∞.

Then, since the vanishing of {vk} implies vk(m) → 0 in Z as k → ∞, taking into account
the above inequality and the boundedness of f (s)/s for s ∈ R\{0}, we have

lim
k→∞

∑

m∈Z\Bk

f (uk(m))

uk(m)
vk(m)(v+

k (m) − v−
k (m)) → 0.

This contradicts with (3.13) and hence (3.14) holds. Condition ( f3) shows that there exists
R with R > δ > 0 such that if |u| > R then 1

2 f (u)u − F(u) > 1. For each k ∈ N, let
�k = {m ∈ Z : |uk(m)| > R}. Then

c + ok(1)≥
∑

m∈�k

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

> |�k |,

which implies that the sequence {|�k |} is bounded. Let �̃k = {m ∈ Z : δ ≤ |uk(m)| ≤ R}.
Since �̃k = (Z\Bk)\�k , we have |Z\Bk | = |�k | + |�̃k |. It follows from (3.14) and the
boundedness of {|�k |} that

|�̃k | → ∞. (3.15)
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We see from ( f3) that δ0 = infu∈[δ,R]( 12 f (u)u − F(u)) > 0. Hence, from (3.15),
we have

∑

m∈Z

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

≥
∑

m∈�̃k

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

≥ δ0|�̃k | → ∞.

This contradicts with
∑

m∈Z

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

= J (uk) − 1

2
〈J ′(uk), uk〉 = c + ok(1).

Thus we have proved (ii) is impossible for the sequence {vk}. ��
To sum up, we have proved that {uk} has a bounded subsequence. ��

3.2 Linking Geometry

Now we show that the functional J satisfies the geometry of the linking theorem with a
Cerami sequence [13].

Lemma 3.4 (Linking Theorem with a Cerami sequence [13]) Let H = H+ ⊕ H− be a
Banach space with dimH− < ∞. Let R > ρ > 0, and let u ∈ H+ be a fixed element such
that ‖u‖ = ρ. Define

M := {w = tu + v− : ‖w‖ ≤ R, t ≥ 0, v− ∈ H−},
M0 := {w = tu + v− : v− ∈ H−, ‖w‖ = R, t ≥ 0 or ‖w‖ ≤ R, t = 0},
Nρ := {w ∈ H+ : ‖w‖ = ρ}.

Let J ∈ C1(H ,R) be such that

b := inf
Nρ

J > a := max
M0

J .

Then, c ≥ b, and there exists a Cerami sequence at level c for the functional J with

c := inf
γ∈�

max
w∈M J (γ (w)), � := {γ ∈ C(M, H) : γ |M0 = Id}.

To simplify the notation, givenw ∈ E and n ∈ Z, we respectively letw+(·−n),w−(·−n)

and w0(· − n) be the projections in E+, E− and E0 of the translation w(· − n).

Remark 3.5 If u, v ∈ l2, then
∑

m∈Z
u(m − n)v(m) → 0 as |n| → ∞.

Let u0 ∈ E be a ground state solution of the limiting Eq. (1.4) such that J∞(u0) = c∞ > 0
where c∞ is given by (2.7). For R > 0 and n ∈ Z, consider

M := {w = tu+
0 (· − n) + v− + v0 : ‖w‖ ≤ R, t ≥ 0, v− + v0 ∈ E− ⊕ E0}

and

M0 := {w = tu+
0 (· − n) + v− + v0 : v− + v0 ∈ E− ⊕ E0,

‖w‖ = R, t ≥ 0 or ‖w‖ ≤ R, t = 0} .
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Lemma 3.6 There exist R > 0 and n ∈ Z, with R and |n| sufficiently large, such that
J |M0 ≤ 0.

Proof The subset M0 can be written as a disjoint union of M1 and M2 where

M1 := {w = tu+
0 (· − n) + v− + v0 : v− + v0 ∈ E− ⊕ E0, ‖w‖ ≤ R, t = 0}

and

M2 := {w = tu+
0 (· − n) + v− + v0 : v− + v0 ∈ E− ⊕ E0, ‖w‖ = R, t > 0}.

As M1 ⊂ E− ⊕ E0, we have J (w) ≤ 0 for any w ∈ M1. Let R > 0 and w ∈ M2 with
‖w‖ = R. Writing

w = ‖w‖w/‖w‖ = ‖w‖uw = ‖w‖(λwu
+
0 (· − n) + v−

w + v0w),

we have

J (w) = J (‖w‖uw)

= 1

2
‖w‖2λ2w‖u+

0 (· − n)‖2 − 1

2
‖w‖2‖v−

w‖2 −
∑

m∈Z
F(‖w‖uw(m))

= 1

2
‖w‖2

{

λ2w‖u+
0 (· − n)‖2 − ‖v−

w‖2 − 2
∑

m∈Z

F(Ruw(m))

|Ruw(m)|2 |uw(m)|2
}

.

To simplify the notation, we write λ, u, v− and v0 instead of λw , uw , v−
w and v0w , respectively.

By ( f2) and ( f3), we have lim|s|→∞(F(s)/s2) = a/2 and |F(s)/s2| < a/2 for all s �= 0,
which ensure

|F(Ru(m))|
|Ru(m)|2 |u(m)|2 ≤ a

2
|u(m)|2.

By the Lebesgue Dominated Convergence Theorem,

lim
R→∞

∑

m∈Z

(
a

2
− F(Ru(m))

|Ru(m)|2
)

|u(m)|2 = 0 (3.16)

for all u ∈ E with ‖u‖ = 1. Since M2 is contained in a finite-dimensional subspace of
E , for w = ‖w‖u ∈ M2 with ‖u‖ = 1, we claim that the limit in (3.16) is uniform in u.
Let ∂B1 be the boundary of B(0, 1) in a finite-dimensional space generated by the terms
u+
0 (· − n), ϕ1, . . . , ϕk∗ , e1, . . . , ek∗∗ . It is sufficient to prove that (3.16) holds uniformly for

u ∈ ∂B1. In fact, for each R = j ∈ N, consider J j : ∂B1 → R with

J j (u) =
∑

m∈Z

[a

2
− F( ju(m))/| ju(m)|2

]
|u(m)|2.

From the continuity of the function F , we see that J j is a continuous functional for each
fixed j . By equivalence of the norms, ( f2) shows that there exists a constant C > 0 such
that

0 ≤ J j (u) =
∑

m∈Z

[a

2
− F( ju(m))/| ju(m)|2

]
|u(m)|2 ≤ a‖u‖2E ≤ C

for all u ∈ ∂B1. Since J j is continuous in the compact set ∂B1, for each fixed j , J j reaches its
maximum at some u j ∈ ∂B1. Let {u j } be the sequence of these maxima. Since ‖u j‖ equals 1
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for each j in the finite-dimensional space spanned by u+
0 (· − n), ϕ1, . . . , ϕk∗ , e1, . . . , ek∗∗ ,

there exists u ∈ ∂B1 such that, passing to a subsequence if needed,

‖u j − u‖ → 0 as j → ∞. (3.17)

For all u ∈ ∂B1 and for each j , we have 0 ≤ J j (u) ≤ J j (u j ), that is,

0 ≤
∑

m∈Z

[a

2
− F( ju(m))/| ju(m)|2

]
|u(m)|2

≤
∑

m∈Z

[a

2
− F( ju j (m))/| ju j (m)|2

]
|u j (m)|2. (3.18)

Note that u j (m) → u(m) in Z as j → ∞ for some u(m). If u(m) �= 0, then | ju(m)| → ∞
as j → ∞. Thus, ( f2) implies that

[a

2
− F( ju j (m))/| ju j (m)|2

]
|u j (m)|2 → 0 (3.19)

as j → ∞. If u(m) = 0, we also have (3.19). It follows from (3.17) that there exists h ∈ l1

such that, passing to a subsequence if necessary,

0 ≤
[a

2
− F( ju j (m))/| ju j (m)|2

]
|u j (m)|2 ≤ a|u j (m)|2 ≤ ah(m). (3.20)

Finally, by using (3.19), (3.20) and the LebesgueDominated Convergence Theorem,we have

lim
j→∞

∑

m∈Z

[a

2
− F( ju j (m))/| ju j (m)|2

]
|u j (m)|2 = 0.

Thus, taking j → ∞ in (3.18) produces

lim
j→∞

∑

m∈Z

[a

2
− F( ju(m))/| ju(m)|2

]
|u(m)|2 = 0

uniformly for u ∈ ∂B1. This proves the claim.
Recalling that E = E+ ⊕ E− ⊕ E0 is orthogonal with respect to (·, ·)E , we have

J (w) = 1

2
‖w‖2

{

λ2‖u+
0 (· − n)‖2 − ‖v−‖2 − a

∑

m∈Z
|u(m)|2 + oR(1)

}

= 1

2
‖w‖2

{

λ2‖u+
0 (· − n)‖2 − ‖v−‖2 − aλ2

∑

m∈Z
|u+

0 (m − n)|2

−a
∑

m∈Z
|v−(m)|2 − a

∑

m∈Z
|v0(m)|2 + oR(1)

}

≤ 1

2
‖w‖2

{

λ2

[

‖u+
0 (· − n)‖2 − a

∑

m∈Z
|u+

0 (m − n)|2
]

+ oR(1)

}

. (3.21)

Define another norm in E by

‖u‖V∞ := ((−� + V∞)u, u)
1
2
E , u ∈ E .

It is easy to check that the three norms, ‖ · ‖E , ‖ · ‖ and ‖ · ‖V∞ , are equivalent. It follows
from (V1) and (V2) that
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‖u+
0 (· − n)‖2 = ((−� + V )u+

0 (· − n), u+
0 (· − n))E

≤ ((−� + V∞)u+
0 (· − n), u+

0 (· − n))E

= ‖u+
0 (· − n)‖2V∞ ≤ ‖u0(· − n)‖2V∞ . (3.22)

Since J∞ is translation invariant, it is true that u0 and u0(· − n) are critical points of J∞.
Thus, 〈J ′∞(u0(· − n)), u0(· − n)〉 = 0, that is,

‖u0(· − n)‖2V∞ =
∑

m∈Z
f (u0(m − n))u0(m − n). (3.23)

In terms of (3.22) and (3.23), we have

‖u+
0 (· − n)‖2 ≤

∑

m∈Z
f (u0(m − n))u0(m − n). (3.24)

Subtracting (3.24) into (3.21) gives us

J (w) ≤ 1

2
‖w‖2

{

λ2

[
∑

m∈Z
f (u0(m − n))u0(m − n)

−a
∑

m∈Z
|u+

0 (m − n)|2
]

+ oR(1)

}

= 1

2
‖w‖2

{

λ2

[
∑

m∈Z
f (u0(m − n))u0(m − n) − a

∑

m∈Z
|u0(m − n)|2

+ a
∑

m∈Z
[|u0(m − n)|2 − |u+

0 (m − n)|2]
]

+ oR(1)

}

= 1

2
‖w‖2

{

λ2

[
∑

k∈Z
f (u0(k))u0(k) − a

∑

k∈Z
|u0(k)|2

+ a
∑

m∈Z
[|u0(m − n)|2 − |u+

0 (m − n)|2]
]

+ oR(1)

}

. (3.25)

In what follows, we will estimate
∑

k∈Z
f (u0(k))u0(k) − a

∑

k∈Z
|u0(k)|2 (3.26)

and ∑

m∈Z

[|u0(m − n)|2 − |u+
0 (m − n)|2] . (3.27)

Since u0 �= 0 is bounded, the function f (u0(·))/u0(·) assumes its maximum at somem0 ∈ Z.
Thus, since | f (s)/s| < a for all s ∈ R\{0}, we have

∑

k∈Z
f (u0(k))u0(k) − a

∑

k∈Z
|u0(k)|2

=
∑

k∈Z

(
f (u0(k))

u0(k)
− a

)

|u0(k)|2

≤
(

f (u0(m0))

u0(m0)
− a

)

‖u0‖2E < −γ,
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where γ = 1
2 (a − f (u0(m0))/u0(m0))‖u0‖2E > 0. This means that there exists γ > 0 such

that ∑

k∈Z
f (u0(k))u0(k) − a

∑

k∈Z
|u0(k)|2 < −γ. (3.28)

For (3.27), as u+
0 (· − n), u−

0 (· − n) and u00(· − n) are orthogonal with respect to (·, ·)E , we
get

∑

m∈Z

[|u0(m − n)|2 − |u+
0 (m − n)|2]

=
∑

m∈Z

[|u+
0 (m − n) + u−

0 (m − n) + u00(m − n)|2 − |u+
0 (m − n)|2]

=
∑

m∈Z

[|u+
0 (m − n)|2 + |u−

0 (m − n)|2 + |u00(m − n)|2 − |u+
0 (m − n)|2]

=
∑

m∈Z

[|u−
0 (m − n)|2 + |u00(m − n)|2] .

We claim that
∑

m∈Z
[|u−

0 (m − n)|2 + |u00(m − n)|2] → 0 as |n| → ∞. In fact, since
{ϕ1, . . . , ϕk∗ } and {e1, . . . , ek∗∗ } are respectively the bases for the subspaces E− and E0,
(V1), (V2) and Remark 3.5 indicate that, given ε > 0, for each i ∈ {1, . . . , k∗}, there exists
Ni > 0 such that if |n| ≥ Ni , then

(u0(· − n), ϕi )

= −
∑

m∈Z
[∇u−

0 (m − n) · ∇ϕi (m)] −
∑

m∈Z
V (m)u−

0 (m − n)ϕi (m) < ε,

and for each j ∈ {1, . . . , k∗∗}, there exists K j > 0 such that if |n| ≥ K j , then

(u0(· − n), e j ) =
∑

m∈Z
u00(m − n)e j (m) < ε.

Taking N∗ = max{N1, . . . , Nk∗ , K1, . . . , Kk∗∗ } gives us that, for i ∈ {1, . . . , k∗} and j ∈
{1, . . . , k∗∗},

(u0(· − n), ϕi ) < ε and (u0(· − n), e j ) < ε, if |n| ≥ N∗. (3.29)

Since u−
0 (·− n)+u00(·−n) ∈ E− ⊕ E0 is a linear combination of ϕ1, . . . , ϕk∗ , e1, . . . , ek∗∗ ,

that is,

u−
0 (· − n) + u00(· − n) =

k∗∑

i=1

ai (n)ϕi +
k∗∗∑

j=1

b j (n)e j ,

it follows from (3.29) that there exists N∗ > 0 such that, if |n| ≥ N∗, then

‖u−
0 (· − n) + u00(· − n)‖2
= (u0(· − n), u−

0 (· − n) + u00(· − n))

=
⎛

⎝u0(· − n),

k∗∑

i=1

ai (n)ϕi +
k∗∗∑

j=1

b j (n)e j

⎞

⎠

< ε(k∗ + k∗∗)max{|a1(n)|, . . . , |ak∗(n)|, |b1(n)|, . . . , |bk∗∗(n)|}. (3.30)
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In the following, we show that there exists a constant C > 0 that does not depend on n, such
that

max{|a1(n)|, . . . , |ak∗(n)|, |b1(n)|, . . . , |bk∗∗(n)|} < C for n ∈ Z. (3.31)

Indeed, as dim(E− ⊕ E0) < ∞, by equivalence of the norms in a finite-dimensional space,
there exists D > 0, which does not depend on n, such that

∥
∥
∥
∥
∥
∥

k∗∑

i=1

ai (n)ϕi +
k∗∗∑

j=1

b j (n)e j

∥
∥
∥
∥
∥
∥

2

V∞
≥ D(max{|a1(n)|, . . . , |ak∗(n)|, |b1(n)|, . . . , |bk∗∗(n)|})2.

Thus, we obtain

‖u0‖2V∞ ≥ ‖u−
0 (· − n) + u00(· − n)‖2V∞ =

∥
∥
∥
∥
∥
∥

k∗∑

i=1

ai (n)ϕi +
k∗∗∑

j=1

b j (n)e j

∥
∥
∥
∥
∥
∥

2

V∞
≥ D(max{|a1(n)|, . . . , |ak∗(n)|, |b1(n)|, . . . , |bk∗∗(n)|})2. (3.32)

This implies (3.31) by taking C = ‖u0‖2V∞/
√
D > 0. Substituting (3.31) into (3.30) yields

‖u−
0 (· − n) + u00(· − n)‖2 < ε(k∗ + k∗∗)C for |n| ≥ N∗. By equivalence of ‖ · ‖ and ‖ · ‖V∞

in E , we have that ‖u−
0 (· − n) + u00(· − n)‖V∞ → 0 as |n| → ∞. Thus,

∑

m∈Z

[|u−
0 (m − n)|2 + |u00(m − n)|2]

≤ 1

V∞
‖u−

0 (· − n) + u00(· − n)‖2V∞ → 0 as |n| → ∞. (3.33)

Substituting (3.28) and (3.33) into (3.25), we see that

J (w) ≤ 1

2
‖w‖2 {λ2[−γ + o|n|(1)] + oR(1)

}
(3.34)

for |n| and R sufficiently large.
Now, we are in a position to finish the proof of the lemma. Indeed, assume by contradiction

that there exists w j = ‖w j‖u j = ‖w j‖(λ j u
+
0 (· − n) + v−

j + v0j ) such that

0 ≤ J (w j )

‖w j‖2 = 1

2
(λ2j‖u+

0 (· − n)‖2 − ‖v−
j ‖2) −

∑

m∈Z

F(w j (m))

|w j (m)|2 |u j (m)|2 (3.35)

for all j and ‖w j‖ → ∞ as j → ∞. Since ‖λ j u
+
0 (· − n) + v−

j + v0j‖2 = 1, it follows

that λ2j‖u+
0 (· − n)‖2 + ‖v−

j ‖2 + ‖v0j‖2 = 1. Thus, noting that F is a nonnegative function

according to ( f3), we have ‖v−
j ‖2 ≤ λ2j‖u+

0 (· − n)‖2 = 1 − ‖v−
j ‖2 − ‖v0j‖2 and therefore

(1 − ‖v0j‖2)/2 ≤ λ2j‖u+
0 (· − n)‖2 ≤ 1. (3.36)

Passing to a subsequence if necessary, we may assume that u j⇀u = λ20u
+
0 (·−n)+ v− + v0

in E . We claim that there exists a constant b0 > 0 such that ‖v0j‖ < b0 < 1 for j sufficiently

large. If not, we may assume that ‖v0j‖ → 1 as j → ∞. Then

λ2j‖u+
0 (· − n)‖2 − ‖v−

j ‖2 ≤ λ2j‖u+
0 (· − n)‖2 + ‖v−

j ‖2 = 1 − ‖v0j‖2 → 0
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as j → ∞. It follows from dimE0 < ∞ that v0j → v0 �= 0 as j → ∞, which implies

u = λ20u
+
0 (·−n)+v− +v0 �= 0. Thus, there existsm∗ ∈ Z such that u j (m∗) → u(m∗) �= 0

and |w j (m∗)| = ‖w j‖|u j (m∗)| → ∞ as j → ∞. Then by ( f2) and ( f3), we have

F(w j (m∗))
|w j (m∗)|2 |u j (m∗)|2 → a

2
|u(m∗)|2 > 0

as j → ∞. This contradicts with (3.35), since F is a nonnegative function and λ2j‖u+
0 (· −

n)‖2 −‖v−
j ‖2 → 0 as j → ∞. Thus ‖v0j‖ < b0 < 1 for j sufficiently large. By equivalence

of the norms and translation invariance of ‖ ·‖V∞ , there exists C > 0, which does not depend
on n, such that 2‖u+

0 (· − n)‖2 ≤ C‖u0‖2V∞ . It follows from (3.36) that

0 < k0 := 1 − b20
C‖u0‖2V∞

≤ λ2j

for j sufficiently large. Considering (3.34), if λ2 ≥ k0, we take n ∈ Z with |n| sufficiently
large such that −γ + o|n|(1) < −γ /2. Thus, (3.34) becomes

J (w) ≤ 1

2
‖w‖2

[

−λ2γ

2
+ oR(1)

]

.

Since −λ2 ≤ −k0 and since R does not depend on n according to the uniform convergence
in u in (3.16), taking R sufficiently large such that −k0γ /2 + oR(1) < 0, we obtain

J (w) ≤ 1

2
‖w‖2

[

−λ2γ

2
+ oR(1)

]

≤ 1

2
‖w‖2

[

−k0γ

2
+ oR(1)

]

< 0.

Letting λ = λ j and w = w j in the above inequality leads to a contradiction to (3.35). Thus
the proof of the lemma is complete. ��

Lemma 3.7 For c∞ given in (2.7) and c given in Lemma 3.4, one has c < c∞.

Proof Note that the set M defined in Lemma 3.4 is bounded and closed, and is contained in
the finite-dimensional space E− ⊕ E0 ⊕ Ru+

0 (· − n). Thus, M is a compact set. Since J is
a continuous functional, for all n ∈ Z, there exists wn = v−

n + v0n + tnu
+
0 (· − n) ∈ M with

max
w∈M J (w) = J (v−

n + v0n + tnu
+
0 (· − n)).

We claim that there are A1, A2 ∈ R, independent of n, such that 0 < A1 ≤ tn ≤ A2 for |n|
sufficiently large.

Proof On the one hand, since wn = v−
n + v0n + tnu

+
0 (· − n) ∈ M , and since the number

R > 0 given by Lemma 3.6 does not depend on n, we have that

R2 ≥ ‖wn‖2 = ‖v−
n + v0n‖2 + t2n‖u+

0 (· − n)‖2
≥ t2n (‖u0(· − n)‖2 − ‖u−

0 (· − n) + u00(· − n)‖2).
As shown in (3.33), we can take |n| large enough such that

‖u−
0 (· − n) + u00(· − n)‖2 ≤ C

2
‖u0‖2V∞ ,

123



Journal of Dynamics and Differential Equations (2020) 32:527–555 547

where C > 0 does not depend on n and satisfies ‖u0(· − n)‖2 ≥ C‖u0‖2V∞ . Thus,

R2 ≥ t2n (‖u0(· − n)‖2 − ‖u−
0 (· − n) + u00(· − n)‖2) ≥ t2nC

2
‖u0‖2V∞ .

In other words, we have

t2n ≤ A2
2 := 2R2/(C‖u0‖2V∞).

On the other hand, by (3.1) with 2 < p, for each ε > 0, there exists Cε > 0 such that, if
u ∈ E+ with ‖u‖ = ρ > 0, then

J (u) = 1

2
‖u‖2 −

∑

m∈Z
F(u(m)) ≥ 1

2
ρ2 − ε‖u‖2E − Cε‖u‖p

l p . (3.37)

By equivalence of the norms, there are C1, C2 > 0 such that

J (u) ≥ 1

2
ρ2 − εC1‖u‖2 − C2‖u‖p =

(
1

2
− εC1

)

ρ2 − C2ρ
p.

Let ε > 0 satisfy Dε := 1/2 − εC1 > 0. Take ρ > 0 sufficiently small such that ρ0 :=
Dερ

2 − C2ρ
p > 0, that is, 0 < ρ < (Dε/C2)

1/(p−2). Then J (u) ≥ ρ0 > 0 for all u ∈ E+
with ‖u‖ = ρ.

In fact, note that ρ0 does not depend on n. Thus, by taking t0 > 0, which does not
depend on n, sufficiently small such that ‖t0u+

0 (· − n)‖ ≤ ρ < R, we can prove that
I (t0u

+
0 (· − n)) ≥ ρ0 > 0. Therefore,

J (v−
n + v0n + tnu

+
0 (· − n)) = max

w∈M J (w) ≥ I (t0u
+
0 (· − n)) ≥ ρ0,

that is,

t2n
2

‖u+
0 (· − n)‖2 − 1

2
‖v−

n ‖2 −
∑

m∈Z
F(v−

n (m) + v0n(m) + tnu
+
0 (m − n))

= J (v−
n + v0n + tnu

+
0 (· − n)) ≥ ρ0.

By the nonnegativity of F , we have

t2n
2

‖u+
0 (· − n)‖2 ≥ ρ0,

which indicates that

t2n ≥ A2
1 := 2ρ0

C‖u0‖2V∞
,

where C > 0 does not depend on n and satisfies ‖u+
0 (· − n)‖2 ≤ C‖u0‖2V∞ . This proves the

claim. ��
Now, for simplicity,we denote u0,n(·) := u0(·−n), and denoteC a positive constant,which

may not necessarily be the same in every situation. Since F is nonnegative, we see from
definitions of J and J∞ that

J (v−
n + v0n + tnu

+
0,n)

= −
∑

m∈Z
F(v−

n (m) + v0n(m) + tnu
+
0,n(m)) + t2n

2
‖u+

0,n‖2 − 1

2
‖v−

n ‖2
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≤
∑

m∈Z
[F(tnu0,n(m)) − F(v−

n (m) + v0n(m) + tnu
+
0,n(m))]

+ t2n
2

‖u0,n‖2 −
∑

m∈Z
F(tnu0,n(m)) − t2n

2
‖u−

0,n + u00,n‖2

≤
∑

m∈Z
[F(v−

n (m) + v0n(m) − tn(u
−
0,n(m) + u00,n(m)))

+ F(tnu0,n(m)) − F(v−
n (m) + v0n(m) + tnu

+
0,n(m))]

+ J∞(tnu0,n) + t2n
2

∑

m∈Z
(V (m) − V∞)|u0,n(m)|2. (3.38)

We firstly estimate the first term in the last inequality of (3.38). Taking w∗
n = v−

n + v0n −
tn(u

−
0,n + u00,n), we want to estimate

Jn =
∣
∣
∣
∣
∣

∑

m∈Z
[F(w∗

n(m)) + F(tnu0,n(m)) − F(w∗
n(m) + tnu0,n(m))]

∣
∣
∣
∣
∣
.

Since w∗
n ∈ M, ‖w∗

n‖2 ≤ R2, and hence we may repeat the estimates in (3.32) with w∗
n

replacing u−
0,n + u00,n , and use the claim just proved to show that there is a constant C > 0,

not depending on n, such that

|w∗
n(m)| ≤ C

k∗∑

i=1

|ϕi (m)| + C
k∗∗∑

j=1

|e j (m)|

≤ D := C
k∗∑

i=1

sup
m∈Z

|ϕi (m)| + C
k∗∗∑

j=1

sup
m∈Z

|e j (m)|, (3.39)

for all m ∈ Z. Without loss of generality, we may take D with |u0,n(m)| ≤ D for all m ∈ Z

since u0,n ∈ l∞. Thus, in terms of ( f1) and Lemma 2.3, we conclude that there exists a
constant C > 0 such that

Jn ≤ Ctn
∑

m∈Z
|w∗

n(m)||u0,n(m)|. (3.40)

Since u0 in l2 is a nontrivial solution of (1.4), given by Lemma 2.1, we have that

|u0(m)| ≤ Ce−μ1|m|, m ∈ Z,

for some μ1 ∈ (r0, cosh−1(V∞/2 + 1)), where r0 is given by (V2). Now, with β = λi <

0 < V∞ in Lemma 2.1, any eigenfunction ϕi , i = 1, . . . , k∗, satisfies

|ϕi (m)| ≤ Ce−μ2|m|, m ∈ Z,

for someμ2 ∈ (μ1, cosh−1(V∞/2+1)). Similarly, it is ture that e j , j = 1, . . . , k∗∗, satisfies

|e j (m)| ≤ Ce−μ2|m|, m ∈ Z.

Thus, from the first inequality in (3.39), one has for |n| sufficiently large that

|w∗
n(m)| ≤ Ce−μ2|m|, m ∈ Z.

123



Journal of Dynamics and Differential Equations (2020) 32:527–555 549

It follows from Lemma 2.4 that
∑

m∈Z
|w∗

n(m)||u0,n(m)| ≤ C
∑

m∈Z
e−μ2|m|e−μ1|m−n| ≤ Ce−μ1|n|. (3.41)

The above, together with (3.40), yields

Jn ≤ Ce−μ1|n|, (3.42)

where C > 0 does not depend on n, since tn is uniformly bounded by the claim.
Now, we estimate the term

t2n
2

∑

m∈Z
(V (m) − V∞)|u0,n(m)|2.

It follows from (V2) that

t2n
2

∑

m∈Z
(V (m) − V∞)|u0,n(m)|2 = t2n

2

∑

m∈Z
(V (m + n) − V∞)|u0(m)|2

≤ − t2n
2

∑

m∈Z
C0e

−r0|m+n||u0(m)|2

≤ − t2n
2
C0

∑

m∈Z
e−r0|n|e−r0|m||u0(m)|2

= −Ce−r0|n|,

for |n| sufficiently large, where C > 0 does not depend on n.
Thus, (3.38) combined with (3.42) gives

J (v−
n + v0n + tnu

+
0,n) ≤ J∞(tnu0,n) − Ce−r0|n| + Ce−μ1|n|.

Since 0 < r0 < μ1, we see from the above inequality that

J (v−
n + v0n + tnu

+
0,n) < max

t≥0
J∞(tu0),

for |n| sufficiently large. Since u0 is ground state solution of (1.4), it is seen from ( f3) that
maxt≥0 J∞(tu0) is attained exactly at t = 1. In fact, assume that maxt≥0 J∞(tu0) is attained
at some t = t0. Obviously, t0 �= 0 and

∂ J∞(tu0)

∂t

∣
∣
∣
∣
t=t0

= t0((−� + V∞)u0, u0) −
∑

m∈Z
f (t0u0(m))u0(m) = 0.

Since u0 is a nontrivial critical point of J∞, we have

((−� + V∞)u0, u0) −
∑

m∈Z
f (u0(m))u0(m) = 0.

Denote �0 = {m ∈ Z : |u0(m)| > 0}. Then combining the two equations above gives us
that

∑

m∈�0

[
f (u0(m))

u0(m)
− f (t0u0(m))

t0u0(m)

]

|u0(m)|2 = 0.
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Thus, it follows from ( f3) that t0 = 1. Since u0 is a ground state solution for (1.4), it follows
from the definition of c > 0 that

c ≤ max
w∈M J (w) = J (v−

n + v0n + tnu
+
0,n) < c∞,

and the lemma is proved. ��

4 Proofs of Main Results

In this section, we present the proofs of our main results of this paper.

4.1 Proof of Theorem 1.1

Recall that a functional I is said to be weakly sequentially lower semi-continuous if for
any u j⇀u in E , one has I (u) ≤ lim inf j→∞ I (u j ), and I ′ is said to be weakly sequentially
continuous if lim j→∞ < I ′(u j ), v >=< I ′(u), v > for each v ∈ E . By a standard argument,
one checks easily the following.

Lemma 4.1 Under assumptions of Theorem 1.1, the functional

I (u) :=
∑

m∈Z
F(u(m))

in E is non-negative, weakly sequentially lower semi-continuous, and I ′ is weakly sequen-
tially continuous.

Remark 4.2 Since � : E → R with �(u) = ‖u‖2 is a functional of class C1 and � ′ is
weakly sequentially continuous, by the above lemma and by equivalence of the norms in E ,
we obtain that both J ′ and J ′∞ are weakly sequentially continuous.

According to Sect. 3, we deduce that there exists a bounded sequence {uk} ⊂ E satisfying

J (uk) → c > 0 and ‖J ′(uk)‖E∗(1 + ‖uk‖) → 0 as k → ∞.

Thus, there exists a constant C > 0 such that ‖uk‖ ≤ C . Passing to a subsequence if
necessary, we have uk⇀u in E . Next we show that u �= 0.

Arguing by contradiction, suppose that u = 0, i.e., uk⇀0 in E , and so uk → 0 in ls0,
2 ≤ s and uk(m) → 0 in Z. By (V1), (V2) and ( f2), it is easy to show that

lim
k→∞

∑

m∈Z
(V (m) − V∞) |uk(m)|2 = 0, lim

k→∞
∑

m∈Z
F(uk(m)) = 0, u ∈ E

and

lim
k→∞

∑

m∈Z
(V (m) − V∞) uk(m)v(m) = 0, lim

k→∞
∑

m∈Z
f (uk(m))v(m) = 0, u, v ∈ E .

Note that

J∞(u) = J (u) − 1

2

∑

m∈Z
(V (m) − V∞) |u(m)|2, u ∈ E
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and

〈J ′∞(u), v〉 = 〈J ′(u), v〉 −
∑

m∈Z
(V (m) − V∞) u(m)v(m), u, v ∈ E .

Thus, we have

J∞(uk) → c and ‖J ′∞(uk)‖E∗(1 + ‖uk‖V∞) → 0, as k → ∞.

We claim that there exist δ > 0 and mk ∈ Z such that |uk(mk)| ≥ δ. If not, then uk → 0
in l∞ as k → ∞. Since dimE0 < ∞, we have u0k → 0 in E , that is, ‖u0k‖ → 0, as k → ∞.
For p > 2, we have

‖uk‖p
l p ≤ ‖uk‖p−2

l∞ ‖uk‖2E .

It follows from boundedness of {uk} and equivalence of the norms in E that uk → 0 in l p

for all p > 2. In terms of (3.1) and (3.2), we have
∣
∣
∣
∣
∣

∑

m∈Z
f (uk(m))(u+

k (m) − u−
k (m))

∣
∣
∣
∣
∣

≤ ε
∑

m∈Z
|uk(m)||u+

k (m) − u−
k (m)| + Cε

∑

m∈Z
|uk(m)|p−1|u+

k (m) − u−
k (m)|

≤ ε‖uk‖E (‖u+
k ‖E + ‖u−

k ‖E ) + Cε‖uk‖p−1
l p (‖u+

k ‖l p + ‖u−
k ‖l p )

≤ 2ε‖uk‖2E + Cε‖uk‖p−1
l p (‖u+

k ‖l p + ‖u−
k ‖l p )

≤ 2εc22
c21

‖uk‖2 + Cε‖uk‖p−1
l p (‖u+

k ‖l p + ‖u−
k ‖l p ).

Take a small enough ε with 1 − 2εc22/c
2
1 > 0, which together with J ′(uk) → 0, ‖u0k‖ → 0

and

‖uk‖2 = 〈J ′(uk), u+
k − u−

k

〉− ‖u0k‖2 +
∑

m∈Z
f (uk(m))(u+

k − u−
k (m)),

indicates that uk → 0 in E as k → ∞. This further implies that c = 0, a contradiction.
As J∞ and J ′∞ are invariant under translation, writing vk = {vk(m)} with vk(m) =

uk(m + mk), we have ‖vk‖V∞ = ‖uk‖V∞ , J∞(vk) = J∞(uk), J ′∞(vk) = J ′∞(uk), and
|vk(0)| ≥ δ for each k. Thus {vk} is also a bounded Cerami sequence at level c, that is,

J∞(vk) → c and ‖J ′∞(vk)‖E∗(1 + ‖vk‖V∞) → 0, as k → ∞. (4.1)

Passing to a subsequence if necessary, we have vk⇀v in E , and vk → v in ls0, 2 ≤ s and
vk(m) → v(m) in Z as k → ∞. Obviously, v �= 0 and J ′∞(v) = 0 according to Remark 4.2.
This shows that J∞(v) ≥ c∞ since c∞ is the least energy level. On the other hand, by using
(4.1), we have

c∞ > c = lim
k→∞

[

J∞(vk) − 1

2
〈J ′∞(vk), vk〉

]

= lim
k→∞

∑

m∈Z

[
1

2
f (vk(m))vk(m) − F(vk(m))

]

≥
∑

m∈Z
lim
k→∞

[
1

2
f (vk(m))vk(m) − F(vk(m))

]
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=
∑

m∈Z

[
1

2
f (v(m))v(m) − F(v(m))

]

= J∞(v) − 1

2
〈J ′∞(v), v〉 = J∞(v) ≥ c∞.

This contradiction implies that u �= 0. By a standard argument, we can verify that J ′(u) = 0.
This shows that u ∈ E is a nontrivial solution of (1.1).

Now we try to find a ground state solution of (1.1). In fact, let

	 = {u : u ∈ E\{0}, J ′(u) = 0}
be the set of all nontrivial critical points of J and

c∗ = inf{J (u) : u ∈ 	}.
From ( f2) and ( f3), we have

1

2
f (s)s − F(s) >

1

2
f (s)s − f (s)

s

∫ s

0
tdt = 0, s �= 0. (4.2)

Therefore, for any u ∈ 	, we have

J (u) = J (u) − 1

2
〈J ′(u), u〉 =

∑

m∈Z

[
1

2
f (u(m))u(m) − F(u(m))

]

> 0.

Thus 0 ≤ c∗ ≤ J (u). Suppose that there exists {uk} ⊂ 	 such that J (uk) → c∗ as k → ∞.
Then {uk} is a Cerami sequence at level c∗. By Lemma 3.1, {uk} is bounded in E . Up to
a subsequence if necessary, we have uk⇀u∗ in E . Repeating the previous procedure in
obtaining the compactness of the Cerami sequence of J , we can prove that u∗ is a nontrivial
critical point of J . Therefore, by (4.2) and Fatou’s lemma, we have

c∗ = lim
k→∞

[

J (uk) − 1

2
〈J ′(uk), uk〉

]

= lim
k→∞

∑

m∈Z

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

≥
∑

m∈Z
lim
k→∞

[
1

2
f (uk(m))uk(m) − F(uk(m))

]

=
∑

m∈Z

[
1

2
f (u∗(m))u∗(m) − F(u∗(m))

]

= J (u∗) − 1

2
〈J ′(u∗), u∗〉 = J (u∗) ≥ c∗.

Hence J (u∗) = c∗ > 0. In other words, u∗ ∈ E is a ground state solution of (1.1). Estimate
(1.5) follows from Proposition 2.2. This completes the proof.

4.2 Proofs of Proposition 1.2 and Theorem 1.3

We first prove Proposition 1.2.
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Proof By way of contradiction, we assume that (1.1) has a nontrivial solution u = {u(m)}
in l2. Then u is a nonzero critical point of J , that is, 〈J ′(u), u〉 = 0. We see from (2.6), ( f2)
and ( f3) that

((−� + V )u+, u+)E − ((−� + V )u−, u−)E

=
∑

m∈Z
f (u(m))(u+(m) − u−(m))

≤
∑

m∈Z

∣
∣
∣
∣
f (u(m))

u(m)

∣
∣
∣
∣ |(u+(m) + u−(m))(u+(m) − u−(m))|

< a
∑

m∈Z
||u+(m)|2 − |u−(m)|2| ≤ a

∑

m∈Z
(|u+(m)|2 + |u−(m)|2)

= a‖u+‖2E + a‖u−‖2E ≤ σ+‖u+‖2E − σ−‖u−‖2E .

This is impossible since it follows from (2.3) and (2.4) that

((−� + V )u+, u+)E − ((−� + V )u−, u−)E ≥ σ+‖u+‖2E − σ−‖u−‖2E .

Thus the proof of Proposition 1.2 is complete. ��
Finally we prove Theorem 1.3.

Proof Note that σ+ = V∞. The proof of Theorem 1.3 consists of the following two steps.
(i) Assume that V∞ < a. Then (1.6) is satisfied automatically in this case. Thus it follows
from Theorem 1.1 that (1.1) has a ground state solution u in l2. (ii) Assume that (1.1) has a
ground state solution u in l2. Then we need to show that a > V∞. By way of contradiction,
we assume that a ≤ V∞. It follows from (1.6) that a + σ− < 0, which further includes that
a ≤ min{σ+, −σ−}. Thus, by virtue of Proposition 1.2, we know that (1.1) has no nontrivial
solution in l2. This contradicts with our assumptions. The proof is complete. ��
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