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Abstract
Weconsider amodel ofmulti-species competition in the chemostat that includes demographic
stochasticity and discrete delays. We prove that for any given initial data, there exists a
unique global positive solution for the stochastic delayed system. By employing the method
of stochastic Lyapunov functionals, we determine the asymptotic behaviors of the stochastic
solution and show that although the sample path fluctuate, it remains positive and the expected
time average of the distance between the stochastic solution and the equilibrium of the
associated deterministic delayed chemostat model is eventually small, i.e. we obtain an
analogue of the competition exclusion principle when the noise intensities are relatively
small. Numerical simulations are carried out to illustrate our theoretical results.

Keywords Chemostat · Stochastic system · Discrete delay · Competition exclusion
principle · Asymptotic behavior.

1 Introduction

Analysis of mathematical models of the chemostat has attracted attention from both mathe-
maticians and ecologists. See for example, [1–9]. The basicmodel of exploitative competition
by multi-species for a single substrate in the chemostat takes the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t)

dt
= D(S0 − S(t)) −

n∑

i=1

pi (S(t))xi (t),

dxi (t)

dt
= −Di xi (t) + pi (S(t))xi (t), i = 1, 2, . . . , n.

(1.1)
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Here S(t) is the concentration of the substrate in the culture system at time t . For each
i = 1, 2, . . . , n, xi (t) denotes the concentration of the i-th microbial species that feeds on
the growth-limiting substrate. pi (S) represents the species’ specific nutrient consumption
rate. S0 is the input concentration of nutrient flow into the feed bottle; D is the dilution rate
of the mixture of nutrient and species. Constants Di denotes the removal rate of the i-th
microbial species and is usually regarded as D + εi , where εi is the natural death rate of
microbial species. Parameters S0, D and Di are all positive constants.

The dynamical behavior of model (1.1) has been investigated by many researchers. Butler
andWolkowicz [2] proved that when the removal rates of the species are equal to the dilution
rate (Di = D) in the case of any monotone response functions, the competitive exclusion
principle (CEP, see [10]) holds for model (1.1), stating that when multiple microorganism
compete exploitatively for the single substrate S, only the species with the lowest break-even
concentration will survive and will drive all other species to extinction. Wolkowicz and Lu
[9] relaxed the assumption Di = D and utilized Lyapunov stability theory to prove the CEP
for a general class of monotone response functions and inhibitory response functions. Butler
et al. [11] considered periodic washout rate and proved that although for certain parameters
the CEP still holds for a model of competition in a chemostat, there are other choices of the
parameters for which oscillatory coexistence can occur. Readers can refer to [12–19] and the
references therein for more studies on different forms of chemostat models.

It has long been recognized that there is a delay between the time that nutrient is consumed
and it is subsequently converted to viable biomass. This recognition of a time delay in the
growth process has led to extensive experimental and theoretical studies. Caperon et al. [20],
Thingtad and Langeland [21] introduced a discrete delay into the species growth equation of
the chemostat model with Monod functional response to better fit the observed experimental
data and to describe the effect of delay. Freedman et al. [22] considered a model of two
microbial populations competing for a single nutrient in a chemostat with delay only in the
substrate concentration and predicted that oscillatory coexistence is possible. Ellermeyer
[23] improved the mathematical model of [22] by incorporating discrete delay into the whole
consumption process. Wolkowicz and Xia [24] analyzed the dynamics of this more realistic
modelwithmulti-species and proved theCEP still holds and no sustained oscillatory behavior
is possible. Wang and Wolkowicz [25] subsequently showed that although the CEP still
holds when species specific death rates are included, damped oscillations may occur, as was
observed in the experiments in [3].

Besides discrete delay, many scholars also considered chemostat models with distributed
delay, e.g., [26,27]. For other chemostat models involving delay see [28–37] and the refer-
ences therein.

The model considered in Wolkowicz and Xia [24] has the following form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t)

dt
= D(S0 − S(t)) −

n∑

i=1

pi (S(t))xi (t),

dxi (t)

dt
= −Dxi (t) + e−Dτi pi (S(t − τi ))xi (t − τi ), i = 1, 2, . . . , n,

(1.2)

where the constant τi > 0 stands for the time delay in conversion of nutrient to viable biomass
by the i-th species. Hence, e−Dτi xi (t − τi ) represents the biomass of the microbial species
xi that consumes nutrient at time t − τi and survives so that it can complete the conversion
process of the substrate at time t . The death rates are assumed to be negligible and are ignored,
i.e., Di = D for all i . All of the other variables and parameters have the same interpretation
as in model (1.1).

123



Journal of Dynamics and Differential Equations (2020) 32:849–872 851

The growth response functions pi , i = 1, 2, . . . , n are assumed to satisfy:

pi : [0,∞) → [0,∞) and pi (0) = 0; (1.3)

pi is locally Lipschitz; (1.4)

moreover, for each i there is a unique real number 0 < λi ≤ ∞ such that

eDτi pi (s) < D; if s < λi , (1.5)

eDτi pi (s) > D; if s > λi . (1.6)

We refer to λi as the break-even concentration of the nutrient for the i-th species and note
that it generally depends on delay τi . It plays an important role in determining the surviving
ability of each species. Throughout this paper, we use λi to mean λi (τi ). Clearly, system
(1.2) always has one washout equilibrium E0 = (S0, 0, . . . , 0), and one equilibrium E∗

0 =
(S∗, x∗, 0, . . . , 0), where S∗ = λ1, x∗ = (S0−λ1)D

p1(λ1)
.

Denote r = max{τ1, τ2, . . . , τn}, and let Cn+1+ be the positive cone of the Banach
space Cn+1 = {ϕ = (ϕ0, ϕ1, . . . , ϕn) : [−r , 0] → R

n+1 continous} of continuous
functions with the norm ‖ϕ‖ = sup−r≤θ≤0 |ϕ(θ)|, i.e., Cn+1+ = {ϕ ∈ Cn+1 : ϕi (θ) >

0 for all θ ∈ [−r , 0], i = 0, 1, 2, . . . , n}. In [24], the authors indicated that by using
the method of steps, for each ϕ ∈ Cn+1+ , there is a unique positive solution π(ϕ, t) =
(S(ϕ, t), x1(ϕ, t), . . . , xn(ϕ, t)) ∈ R

n+1+ of (1.2) and π(ϕ; ·)|[−r ,0] = ϕ. They also proved
that if λi ≥ S0 for all i ∈ {1, 2, . . . , n}, then every solution π(ϕ; ·) of (1.2) satisfies

lim
t→∞ π(ϕ; t) = (S0, 0, . . . , 0).

In [24,31] it is also proved that if 0 < λ1 < λ2 ≤ . . . ≤ S0, the solution satisfies

lim
t→∞ π(ϕ; t) = (S∗, x∗, 0, . . . , 0),

i.e., the competition exclusion principle holds for the deterministic delayed chemostat model
(1.2). In other words, only the microorganism with the lowest λi will survive. It also follows
from [24], when Di 	= D for all i , that under some additional technical assumptions, the
same result holds. For example, they showed that if the differential death rates as well as the
time delays are small, the CEP holds and all solutions approach an equilibrium state. More
recently, Liu et al. [31] provided alternative technical conditions under which the CEP holds
in the case of both discrete and distributed delays.

The chemostat models mentioned in the above literatures are described by (delay) differ-
ential equations without noise. This is somewhat unrealistic because real population systems
are always exposed to uncertain environmental factors. Environmental noise will perturb
the steady-states either by effecting the densities of populations or influencing the natural
parameter of bio-systems. Researchers have analyzed different ways to incorporate stochastic
perturbations into a biological model. In general, there are parametric white noise pertur-
bations [38,39], stochastic perturbations around the positive equilibrium of the associated
deterministic models [40,41] and linear system perturbations [42,43]. In particular, Imhof
and Walcher [44] initially established a stochastic model of competition in the chemostat
under linear random perturbation (also called demographic stochasticity). They explored the
species extinction induced by white noise in some cases in which the deterministic model
predicts survival. See also [45] for the necessity and significance on stochastic modelling
of the chemostat. Wang and Jiang [46] introduced demographic stochasticity into chemo-
stat model (1.1) in the case of single-species, and investigated the ergodic property of the

123



852 Journal of Dynamics and Differential Equations (2020) 32:849–872

stochastic chemostat model under regime switching. The authors in [47] further established a
stochastic chemostat model with growth response of the Monod form and suppose the maxi-
mal growth rate is influenced by Brownian motion, and studied the asymptotic properties of
the stochastic system including species death rate.

In view of the significance of incorporating delays as well as random noise in modeling
population dynamics, analysis of mathematical models described by stochastic delay dif-
ferential equations is an increasingly active research field. On the basis of an interacting
multi-species Lotka–Volterra model with delay logistic equations, Mao [48] carried over the
theory of stochastic differential equations to stochastic functional differential equations, and
discussed the different dynamical behaviors of three types of stochastic delay population sys-
tems in which the intrinsic growth rate is perturbed by white noise (see also [49]). This kind
of random disturbance belongs to the study of “Environmental Stochasticity”. Particularly,
Ivanov et al. [50] summarized the recent results on stochastic delay differential equations
and discussed the important problems including the existence of the unique solutions of
SDDEs, Markov property of solutions, stochastic stability, numerical approximations and
applications in predator–prey model and dynamics of stock price. Han et al. [51] analyzed
two kinds of delayed stochastic predator–prey systems and explored the permanence property
with respect to average over time. Wei and Wang [52] and Xu et al. [53,54] developed some
basic theoretical results for stochastic functional differential equations including time delay.
By incorporating delay into stochastic chemostat model, Sun and Zhang [55] proposed a
single-species stochastic model with Monod response function. The time delay only appears
in the growth function so the authors obtained the conditions for extinction and persistence in
the mean for the microorganism population. Later on, Sun and Zhang [56] considered non-
monotone response function in the single-species stochastic chemostat model and the time
delay was involved into the whole nutrient conversion process. They analyzed the asymp-
totic behaviors of the stochastic solution around the equilibria of the associated deterministic
system but didn’t discuss the problem about CEP.

Motivated by the research works above, in this paper, we will focus on the asymptotic
behaviors of a stochastic version of the multi-species delayed chemostat model (1.2). By
means of the approach utilized in [44,56,58] to incorporate stochastic perturbations into
deterministic chemostat model, we propose the following stochastic chemostat model with
general growth response and discrete delays:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t) =
⎡

⎣D(S0 − S(t)) −
n∑

i=1

pi (S(t))xi (t)

⎤

⎦ dt + σ0S(t)dB0(t),

dxi (t) = [−Dxi (t) + e−Dτi pi (S(t − τi ))xi (t − τi )]dt + σi xi (t)dBi (t), i = 1, 2, . . . , n.

(1.7)

Bi (t), i = 0, 1, 2, . . . , n are independent standard Brownian motion defined on the com-
plete probability space (	,F, {Ft }t≥0, P). σi (σi > 0) are the corresponding intensities of
Brownian motion.

The global asymptotic behaviors in certain stochastic chemostat models have been proved.
For example, Zhang et al. [57] investigated the competitive exclusion principle in a stochastic
multi-species chemostat with Holling type II functional response and different removal rates.
Xu and Yuan [58] showed that the CEP still holds for the stochastic chemostat model with
linear growth functions and equal removal rates. However, the authors did not consider the
effect of time delays. Due to the existence of demographic stochasticity, system (1.7) with
discrete delays no longer has any equilibrium. Moreover, because of the discrete delays
appears in the species population (i.e. the whole consumption process) it would be therefore
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difficult to rigorously prove the CEP for this SDDE system. Thus it is significant to investigate
the dynamical behaviors around the equilibrium E0 and E∗

0 of the deterministic delayed
chemostat model (1.2) to see whether the competition exclusion occur. Assuming the linear
growth functions of the microorganism species (see also [59]), we explore that under some
restrict conditions for white noise, the expected time average of the distance (or simply the
mean distance) between the stochastic solution and the associated equilibrium is eventually
small. In other words, we demonstrate that an analogue of the CEP holds for the stochastic
delayed chemostat model (1.7).

This paper is organized as follows. In Sect. 2, we prove that the stochastic delayed chemo-
stat model (1.7) has a unique positive solution. In Sect. 3, assuming the growth functions are
linear, we discuss the asymptotic behavior of the solutions for the stochastic delayed system,
and show respectively that the expected time average of the distance between the stochastic
processes and the corresponding steady states E0, E∗

0 of the deterministic delayed chemostat
model are eventually small. Numerical simulations are also presented in Sect. 3 to illustrate
our conclusions. A discussion is given in Sect. 4 summarizing our results. Finally, the proofs
of the main results are provided in Appendix.

2 Existence and Uniqueness of the Positive Solutions

In general, the solution of a population system is not only positive, but also remains bounded
above. Wolkowicz and Xia [24] proved that in the case of the deterministic chemostat model
with discrete delays, with initial data satisfying ϕ ∈ Cn+1+ , the solutions of (1.2) remain
positive and bounded for all t > 0. In order for the stochastic chemostat model we formulate
to make sense, we need to show that the solution of the system of stochastic functional
differential equations (1.7) remains positive and exists globally, i.e. the solution will neither
touch zero nor go to explosion in any finite time.

We consider the stochastic process Xt = {(S(t + θ), x1(t + θ), . . . , xn(t + θ)) : − r ≤
θ ≤ 0} and assume that the initial data satisfies:

{
X0 = (S(θ), x1(θ), . . . , xn(θ)) = ϕ = (ϕ0(θ), ϕ1(θ), . . . , ϕn(θ)),

X0 is a F0 − measurable Cn+1+ -valued random variable and E‖ϕ‖2 < ∞.
(2.1)

Inspired by the method in [38], in this section, our analysis on the existence of the unique
global positive solution for Eq. (1.7) involves using a Lyapunov functional approach. First,
we need a generic assumption: pi (S) ≤ cS, c is a positive constant (see assumption A1 in
[46]) which will be utilized in the following proof.

Theorem 2.1 For any given initial data (2.1), there is a unique solution X(t) =
(S(t), x1(t), x2(t), . . . , xn(t)) on t ≥ −r for the stochastic system (1.7), and the solution
will remain in R

n+1+ with probability 1, namely (S(t), x1(t), x2(t), . . . , xn(t)) ∈ R
n+1+ for

all t ≥ −r almost surely. X(t) is a R
n+1+ -valued Ft -adapted stochastic process.

Proof Since the coefficients of system (1.7) are locally Lipschitz continuous for any given
initial value, there is a unique local solution (S(t), x1(t), x2(t), . . . , xn(t)) on t ∈ [−r , ςe),
where ςe is the blow up time (see more detail in [48], Chapter 5). If we can prove ςe = ∞
a.s., then the solution will be global. Choose k0 ≥ 0 sufficiently large such that S(0), xi (0)
lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time:
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ςk = in f {t ∈ [0, ςe) : min{S(t), x1(t), x2(t), . . . , xn(t)}
≤ 1

k
or max{S(t), x1(t), x2(t), . . . , xn(t)} ≥ k}.

Throughout this paper, we set in f φ = ∞ (φ denotes the empty set). Clearly, ςk is increasing
as k → ∞. Let ς∞ = limk→∞ ςk , where ς∞ ≤ ςe a.s. If we prove that ς∞ = ∞ a.s.,
then ςe = ∞ a.s and (S(t), x1(t), . . . , xn(y)) ∈ R

n+1+ a.s. for all t ≥ 0. In other words, to
complete the proof all we need to show is that ς∞ = ∞ a.s. If not, then there will be one
pair of constants T > 0 and ε ∈ (0, 1) such that

P{ς∞ ≤ T } > ε.

Hence there exists an integer k1 ≥ k0 such that

P{ςk ≤ T } > ε, f or all k ≥ k1. (2.2)

Define a C2-function V : [0,+∞) × R
n+1+ → R by

V (S, x1, . . . , xn) = e−Dτ̂

(

S − a − a log
S

a

)

+
n∑

i=1

(xi − 1 − log xi ) +
n∑

i=1

e−Dτi

∫ t

t−τi

pi (S)xi dr ,

in which τ̂ = min{τ1, τ2, . . . , τn} and a = DeDτ̂

c is a positive constant. The nonnegativity of
this function can be derived from u − 1 − ln u ≥ 0 on u > 0. Using Itô’s formula, we get

dV (S, x1, . . . , xn)

= e−Dτ̂
(
1 − a

S

)
dS + e−Dτ̂ 1

2S2
(dS)2 +

n∑

i=1

(

1 − 1

xi

)

dxi +
n∑

i=1

1

2x2i
(dxi )

2

+
n∑

i=1

e−Dτi pi (S) xi dt −
n∑

i=1

e−Dτi pi (S (t − τi )) xi (t − τi ) dt

= e−Dτ̂
(
1 − a

S

)
{[

D
(
S0 − S

)−
n∑

i=1

pi (S) xi

]

dt + σ0SdB0

}

+ e−Dτ̂ a

2
σ 2
0 dt

+
n∑

i=1

(

1 − 1

xi

){[
−Dxi + e−Dτi pi (S (t − τi )) xi (t − τi )

]
dt + σi xi d Bi (t)

}

+
n∑

i=1

1

2
σ 2
i dt

+
n∑

i=1

e−Dτi pi (S) xi dt −
n∑

i=1

e−Dτi pi (S (t − τi )) xi (t − τi ) dt

= LV (S, x1, . . . , xn) dt + ae−Dτ̂ σ0 (S − 1) dB0 (t) +
n∑

i=1

σi (xi − 1) dBi (t) ,

where LV is the generating operator of system (1.7) and
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LV = e−Dτ̂
(
1 − a

S

)
[D
(
S0 − S

)
−

n∑

i=1

pi (S) xi ] +
n∑

i=1

(

1 − 1

xi

)

[
−Dxi + e−Dτi pi (S (t − τi )) xi (t − τi )

]

+
n∑

i=1

e−Dτi pi (S) xi −
n∑

i=1

e−Dτi pi (S (t − τi )) xi (t − τi ) + e−Dτ̂ a

2
σ 2
0 +

n∑

i=1

1

2
σ 2
i

= e−Dτ̂ DS0 − e−Dτ̂ DS −
n∑

i=1

e−Dτ̂ Pi (S) xi − e−Dτ̂ DaS0

S
+ e−Dτ̂ Da +

n∑

i=1

ae−Dτ̂ pi (S)

S
xi

−
n∑

i=1

Dxi +
n∑

i=1

e−Dτi pi (S (t − τi )) xi (t − τi ) + D −
n∑

i=1

e−Dτi
pi (S (t − τi )) xi (t − τi )

xi

+
n∑

i=1

e−Dτi pi (S) xi −
n∑

i=1

e−Dτi pi (S (t − τi )) xi (t − τi ) + e−Dτ̂ a

2
σ 2
0 +

n∑

i=1

1

2
σ 2
i

= −
n∑

i=1

(
e−Dτ̂ − e−Dτi

)
pi (S) xi +

n∑

i=1

(

ae−Dτ̂ pi (S)

S
− D

)

xi − e−Dτ̂ DS − e−Dτ̂ DaS0

S

−
n∑

i=1

e−Dτi
pi (S (t − τi )) xi (t − τi )

xi
+ e−Dτ̂

(
S0 + a

)
D + D + e−Dτ̂ a

2
σ 2
0 +

n∑

i=1

1

2
σ 2
i

≤ e−Dτ̂
(
S0 + a

)
D + D + e−Dτ̂ a

2
σ 2
0 +

n∑

i=1

1

2
σ 2
i − e−Dτ̂ DS − e−Dτ̂ DaS0

S

−
n∑

i=1

e−Dτi
pi (S (t − τi )) xi (t − τi )

xi

≤ R,

where constant R = e−Dτ̂ (S0 + a)D + D + e−Dτ̂ a
2σ 2

0 +
n∑

i=1

1
2σ

2
i > 0. Therefore

dV (S, x1, . . . , xn) ≤ Rdt + ae−Dτ̂ σ0(S − 1)dB0(t) +
n∑

i=1

σi (xi − 1)dBi (t). (2.3)

Integrating (2.3) from 0 to ςk ∧ T (=min{ςk, T }) and then taking expectation on both sides
imply that

EV (S(ςk ∧ T ), xi (ςk ∧ T ), . . . , xn(ςk ∧ T ))

≤ V (S(0), x1(0), . . . , xn(0)) + E
∫ ςk∧T
0 Rdt

≤ V (S(0), x1(0), . . . , xn(0)) + RT .

(2.4)

Set 	k = {ςk ≤ T } for all k ≥ k1. Then by (2.2) we have P(	k) ≥ ε. Note that for every
ω ∈ 	k , there exists at least one S(ςk, ω) or xi (ςk, ω), i = 1, . . . , n that equals either k or
1
k , and then V (S(ςk), x1(ςk), . . . , xn(ςk)) is no less than

k − 1 − log k or
1

k
− 1 + log k.

Consequently,

V (S(ςk), x1(ςk), . . . , xn(ςk)) ≥ (k − 1 − log k) ∧
(
1

k
− 1 + log k

)

.
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Then combining (2.2) with (2.4), we obtain

V (S(0), x1(0), . . . , xn(0)) + RT ≥ E
[
1	k (ω)V (S(ςk), x1(ςk), . . . , xn(ςk))

]

≥ ε
[
(k − 1 − log k) ∧ ( 1k − 1 + log k

)]
,

where 1	k (ω) is the indicator function of 	k . Letting k → ∞ induces the contradiction that
∞ > V (S(0), x1(0), . . . , xn(0)) + RT = ∞. Thus we have ς∞ = ∞ a.s. The proof is then
complete. ��

3 An Analogue of Competitive Exclusion Principle of the Stochastic
Chemostat Model with Delay

In this section, we will devote our attention on the competitive exclusion principle (CEP) for
a multi-species competition model in a chemostat perturbed by demographic stochasticity.
We assume that the response functions of the microbial species are linear, i.e., pi (S) = mi S,
wheremi is positive constant, then pi (S) is the growth rate of microbial species xi (or called
the consumption rate of nutrient). Therefore the stochastic chemostat model (1.7) with delays
becomes
⎧
⎪⎪⎨

⎪⎪⎩

dS(t)=
[

D(S0 − S(t)) −
n∑

i=1

mi S(t)xi (t)

]

dt + σ0S(t)dB0(t),

dx(t)=[−Dxi (t) + e−Dτi mi S(t − τi )xi (t − τi )]dt + σi xi (t)dBi (t), i = 1, 2, . . . , n.

(3.1)

In model (3.1), when noises are ignored, the delayed break-even concentration for species

xi is given by λi = DeDτi

mi
. The stochastic chemostat model with time delays (3.1) does

not have any equilibria, and due to the delays in the microbial concentrations, restricted
by research technique, it is difficult to rigorously prove that the CEP holds for model (3.1).
Instead, wewill study the asymptotic behaviors of the stochastic solutions around the equilib-
rium E0 and E∗

0 to see how the CEP operates. According to Corollary 2.4 in [24], if λi ≥ S0

for all i ∈ {1, 2, . . . , n}, then every solution π(ϕ, t) of the deterministic chemostat system
(1.2) satisfies

lim
t→∞ π(ϕ; t) = (S0, 0, . . . , 0), (3.2)

i.e. lim
t→∞ S(t) = S0, lim

t→∞ xi (t) = 0. This means that there is competition-independent

extinction for any population xi with λi ≥ S0. Wang and Wolkowicz [25] pointed out that if
for some i ∈ {1, 2, . . . , n}, λi ≥ S0, then species xi is called an inadequate competitor, since
it dies out even in the absence of any other species. Sequentially, for the stochastic system
(3.1), we have the following conclusion:

Theorem 3.1 Let (S(t), x1(t), x2(t), . . . , xn(t)) be the solution of the stochastic chemostat
(3.1) with initial data satisfying (2.1). If λi ≥ S0 for all i ∈ {1, 2, . . . , n}, σ 2

0 < D, and
max
1≤i≤n

{σi }2 < D, then

lim sup
t→∞

1

t
E

∫ t

0
(S(r) − S0)2dr ≤ σ 2

0 (S0)2

D − σ 2
0

, (3.3)

lim sup
t→∞

1

t
E

∫ t

0

n∑

i=1

xi (r)
2dr ≤ 2e−2Dτ̂ σ 2

0 (S0)2

D − max
1≤i≤n

{σi }2
(

1 + 2σ 2
0

D − σ 2
0

)

, (3.4)
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for all i = 1, 2, . . . , n.

According to Theorem 2.2 in [31], we can derive that if the following generic condition
holds,

0 < λ1 < λ2 ≤ · · · ≤ S0, (3.5)

then E∗
0 = (S∗, x∗, 0, . . . , 0)with S∗ = λ1, x∗ = e−Dτ1(S0−λ1) is a globally asymptotically

stable equilibrium of (1.2), i.e., any solutionπ(ϕ; t) of (1.2) with initial data inCn+1+ satisfies

lim
t→∞ π(ϕ; t) = (S∗, x∗, 0, . . . , 0), (3.6)

where limt→∞ S(t) = S∗, limt→∞ x1(t) = x∗, limt→∞ xi (t) = 0 for i = 2, . . . , n. The
adequate microbial competitor x1 survives while the other species will go to extinction due
to the interspecific competition, thus the CEP holds for deterministic chemostat model (1.2).
Therefore, in what follow we assume that λi < S0 for all i ∈ {1, 2, . . . , n} and consider the
asymptotic behavior of the stochastic solutions of (3.1) around the steady state E∗

0 .

Theorem 3.2 Let (S(t), x1(t), x2(t), . . . , xn(t)) be the solution of the stochastic chemo-
stat model (3.1) with initial date given in (2.1). Assume that condition (3.5) holds. Denote

constants A = m1S∗x∗
D(D−σ 2

0 )
K1, B = 2K2

D−2σ 2
1
, C = 2K3e2D(τ1−τ̂ )

D−max2≤i≤n{σi }2 . If σ 2
0 < D, σ 2

1 < D
2 ,

max2≤i≤n{σi }2 < D, and

max{A, B,C} < d(E∗
0 , E0) =

√
(S∗ − S0)2 + (x∗)2,

then

lim sup
t→∞

1

t
E

∫ t

0
(S(r) − S∗)2dr ≤ A, (3.7)

lim sup
t→∞

1

t
E

∫ t

0
(x1(r) − x∗)2dr ≤ B, (3.8)

lim sup
t→∞

1

t
E

∫ t

0

n∑

i=2

xi (r)
2dr ≤ C . (3.9)

Here, E∗
0 = (S∗, x∗, 0, . . . , 0) is an equilibrium of the associated model (1.2). K1, K2, K3

are all positive constants defined by

K1 = σ 2
1 (D + m1x∗)
2m1e−Dτ1

+ 1

2
σ 2
0

(
S∗)2 + Dσ 2

0 S
∗

m1x∗ ,

K2 = K1
e−2Dτ1

(
D + σ 2

0

)
m1S∗x∗

D
(
D − σ 2

0

) + e−2Dτ1σ 2
0

(
S∗)2 + σ 2

1

(
x∗)2 ,

K3 = K1
e−2Dτ1m1S∗x∗ (5D + σ 2

0

)

D
(
D − σ 2

0

) + K2
7 + 2σ 2

1

D − 2σ 2
1

+ e−2Dτ1σ 2
0

(
S∗)2 + σ 2

1

(
x∗)2 .

Theproofs are deferred in “AppendixA” and “AppendixB”.Theorems3.1 and3.2 state that
under the same conditions for break-even concentrations, the stochastic delayed competition
chemostat model (3.1) behaves similarly to the corresponding deterministic delayed system
in the sense of (3.3), (3.4) and (3.7)–(3.9) when the intensities of white noise are relatively
small. In other words, the expected time average of the distance between stochastic solution
(S(t), x1(t), . . . , xn(t)) and the equilibrium E0 and E∗

0 will eventually bounded in a small
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region.Moreover, themeandistance between (S(t), x1(t), . . . , xn(t)) and E0 (or E∗
0 ) depends

on noise density. If we converge the intensity σ0 to zero, then we conclude that when λi ≥ S0

and max
1≤i≤n

{σi }2 < D for all i ∈ {1, 2, . . . , n},

lim sup
t→∞

1
t E
∫ t
0 (S(r) − S0)2dr = 0, a.s.

lim sup
t→∞

1
t E
∫ t
0

n∑

i=1
xi (r)2dr = 0, a.s.

(3.10)

Similarly, converge σ0, σ1 to zero, then if 0 < λ1 < λ2 ≤ . . . ≤ S0 and max2≤i≤n{σi }2 < D,
we have

lim sup
t→∞

1
t E
∫ t
0 (S(r) − S∗)2dr = 0, a.s.

lim sup
t→∞

1
t E
∫ t
0 (x1(r) − x∗)2dr = 0, a.s.

lim sup
t→∞

1
t E
∫ t
0

n∑

i=2
xi (r)2dr = 0, a.s.

(3.11)

Consequently, we deduce an analogue of CEP for stochastic competition delayed chemostat
(3.1) in the sense of (3.10) and (3.11), under the sameconditions for break-even concentrations
of the deterministic system. Therefore, our theoretical results improve the researches about
CEP in [24,58] to a more general case.

Remark 3.1 According to Fubini’s theorem, the order of integral operation and expectation
can be exchanged. Taking Theorem 3.1 for example, we can re-write the conclusion as

lim supt→∞ 1
t

∫ t
0 E|S(r)− S0|2dr ≤ σ 2

0 (S0)2

D−σ 2
0
. Therefore, we show that the average over time

of the second moments of stochastic processes {S(t) − S0}t≥0, {xi (t)}t≥0 are bounded. This
is also an important analytical property of stochastic differential equations (see more detail
in Chapter 11, [48]).

Remark 3.2 For deterministic delayed chemostat model (1.2), if 0 < λ2 < λ1 ≤ λ3 ≤ · · · ≤
λn ≤ S0, then there will be an asymptotically stable equilibrium E2 = (λ2, 0, e−Dτ2(S0 −
λ2), 0, . . . , 0), i.e. microbial species x2 will survive through the competition and drives all
the other species to extinction. In this case, equilibrium E∗

0 vanishes. This means only the
microbial species with the lowest break-even concentration, i.e. λi < λ j , i 	= j , will win
the competition. Review (1.5) and (1.6), we know that delay can make a difference to the
break-even concentrations of the delayed chemostat model (without stochasticity) versus the
nondelayed chemostat model (without stochasticity). Therefore one can reverse the outcome
of the competition by changing the length of delay. Similar to the discussion in Theorem 3.2,
we can also study the asymptotic property of the stochastic solution for system (3.1) around
equilibrium E2. Here we omit the details for this discussion and verify our inference via the
simulations in Fig. 3.

To illustrate the theoretical results obtained in this paper, we consider the case of two
competing microbial species and do numerical simulations via Matlab. We use the method
in [60], to produce numerical solutions of the stochastic delayed chemostat model (3.1). We
compare these solutions with the corresponding deterministic solutions of model (1.2). The
choices for parameters are referred to [61].

First we verify the asymptotic behavior of the stochastic process given by system (3.1)
around the equilibrium E0 of the deterministic system (1.2). Time is measured in hours.
Supposing the micro-organisms follows: dilution rate D = 1.0 h−1; growth constants m1 =

123



Journal of Dynamics and Differential Equations (2020) 32:849–872 859

1.2 h−1, m2 = 1.4 h−1. Inflowing substrate concentration is in medium of S0 = 1.6 g/L.
Setting time delays τ1 = 0.8 h, τ2 = 1.0 h. We assume the initial concentrations are ϕ(t) =
(S(t), x1(t), x2(t)) = (0.8 g/L, 1.2 g/L, 1.0 g/L), t ∈ [−1, 0]. A simple calculation shows
that the deterministic break-even concentrations for system (1.2) are:

λ1 = 1.8546, λ2 = 1.9416,

so λi > S0, i = 1, 2. Hence both competitors are inadequate competitors. In this case, the
solution of the deterministic delayed chemostat satisfies

lim
t→∞(S(t), x1(t), x2(t)) = (1.6, 0, 0)

.= E0,

i.e., both species are eliminated from the chemostat.We take noise intensities to be σ0 = 0.15
andσ1 = σ2 = 0.1, so thatσ 2

0 < D andmax{σ 2
0 , σ 2

1 , σ 2
2 } = 0.0225 < D = 1. It then follows

from Theorem 3.1 that the stochastic solution fluctuates, but the mean distance between
(S(t), x1(t), x2(t)) and steady state E0 is eventually small. Simulation outcomes are shown
in Fig. 1, where the blue, green and red curves represent the concentrations of the nutrient
S, and the microbial species x1 and x2, respectively. We note that the two sub-figures both
show that the microbial populations die out due to the insufficiency of the input nutrient.
In subfigure (b), the density of substrate S(t) in the stochastic model fluctuates at the level
of 1.6 g/L, while species x1 and x2 tend to extinction. As predicted the stochastic model
behaves like the deterministic model when the intensities of the noise are relatively small.

Now we increase the inflowing substrate concentration to medium of S0 = 4 g/L, set the
noise intensities to σi = 0.1, i = 0, 1, 2, and keep the other growth parameters and time
delays unchanged. Initial concentrations for organisms are ϕ(t) = (S(t), x1(t), x2(t)) =
(0.8 g/L, 1.2 g/L, 1.0 g/L), t ∈ [−1, 0]. We compute that in the deterministic delayed
chemostat model (1.2), λ2 < λ1 < S0, then the solution satisfies

lim
t→∞(S(t), x1(t), x2(t)) = (1.8546, 0.9640, 0)

.= E∗
0 ,
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Fig. 1 a The solution converges to the equilibrium E0 of the deterministic delayed two-species competition
chemostat model (1.2). b The typical sample path of stochastic process (S(t), x1(t), x2(t)) for the stochastic
delayed chemostat model (3.1). Under small noise intensities σ0 = 0.15 and σ1 = σ2 = 0.1, the stochastic
solution fluctuates close to E0 and both species eventually die out due to the insufficiency of the input nutrient.
Time is measured in hours. Input concentration S0 = 1.6 g/L, time delays τ1 = 0.8 h, τ2 = 1 h, dilution rate
D = 1.0 h−1, growth constants m1 = 1.2 h−1, m2 = 1.4 h−1. Initial biomass ϕ(t) = (S(t), x1(t), x2(t)) =
(0.8 g/L, 1.2 g/L, 1.0 g/L), t ∈ [−1, 0] (Color figure online)
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Fig. 2 The same parameter values are used as used in Fig. 1 except noise intensity σi = 0.1, i = 0, 1, 2 and
the concentration of the input flow is increased to S0 = 4g/L. Population x1 survives and drives population
x2 to extinction for both the deterministic delayed model and the stochastic model. a The solution of the
deterministic chemostat model (1.2) converges to E∗

0 = (1.8546 g/L, 0.9640 g/L, 0 g/L). bA typical sample
path for the stochastic process (S(t), x1(t), x2(t)) of the stochastic delayed model (3.1) fluctuates about the
steady state E∗

0 (Color figure online)

i.e., species x1 survives and will stable at the biomass of 0.9640 g/L while x2 dies out. In
Fig. 2a, it is simulated that the solution trajectories of (1.2) will eventually converges to the
equilibrium E∗

0 , the competition exclusion occurs. Moreover, the noise intensities satisfy the
conditions in Theorem 3.2, system (3.1) predicts that the stochastic process will fluctuate
around the equilibrium E∗

0 , species x1 survives (even though oscillating) while drives species
x2 to die out. The simulation result is presented in Fig. 2b. The two delayed competition
models behave similarly under small noise intensities. Furthermore, after iterating 10,000
times, our computations show that as time goes,

1

t
E

∫ t

0
(S(r) − S∗)2dr → 0.0191 (< A = 0.1154),

1

t
E

∫ t

0
(x1(r) − x∗)2dr → 0.0166 (< B = 0.0803),

1

t
E

∫ t

0
x22 (r)dr → 0.0014 (< C = 0.8439),

through the approximate solutions of the discretization equations in algorithm. This provides
a clear illustration of our conclusions in Theorem 3.2.

According to [23], for delayed chemostat model (1.2) with two competitors, when 0 <

λ1 < λ2 < S0, then equilibrium E∗
0 = (λ1, e−Dτ1(S0 − λ1), 0) is asymptotically stable,

species x1 is thewinner of the competition and drive species x2 to be extinct; if 0 < λ2 < λ1 <

S0, then equilibrium E2 = (λ2, 0, e−Dτ2(S0 −λ2)) is asymptotically stable, species x2 is the
winning competitor and leads to the extinction of species x1. Break-even concentrations for
deterministic chemostatmodel (1.2) depend on the time delay, the outcome of the competition
can be reversed by changing only the length of the delay for one of the competing species.
This should also be true for the corresponding stochastic delayed chemostat model (3.1).
Thus in what follows, we make one more simulation in Fig. 3. Increasing the length of delay
τ1 to 1.2 h, and keeping all the other parametric values and delay τ2 unchanged, we obtain

1.9416 = λ2 < λ1 = 2.7668 < S0.
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Fig. 3 Increasing the delay τ1 to 1.2 h while keeping all of the other parameter values the same as in Fig. 2,
there is a reversal of the outcome of the competition. Species x2 survives and drives species x1 to extinction
for solutions of both the deterministic and stochastic delayed chemostat models (Color figure online)

Consequently, microbial species x2 wins the competition and the concentration is stable at
0.7572 g/L, while x1 goes to extinction (see Fig. 3a). Under small noise intensities σi = 0.1,
i = 0, 1, 2, stochastic process (S(t), x1(t), x2(t))will oscillate around E2, stochastic delayed
chemostat model (3.1) exhibits the same outcome of the competition as in model (1.2) (see
Fig. 3b).

Furthermore, we denote, for example lim sup
t→∞

1
t E
∫ t
0 (S(r) − S0)2dr , as the ”average dif-

ference between S(t) and S0”. For better understanding the theoretical results, we make
simulations in Fig. 4. It shows that all the curves are approaching to zero, which exhibits
that the expected mean distance between stochastic solution (S(t), x1(t), x2(t)) and E0 (or
E∗
0 ) will converge close to zero, the two chemostat systems have similar asymptotical prop-

erties. In conclusion, the simulations reveal that an analogue of CEP holds for the stochastic
delayed competition chemostat (3.1) in the sense that the expected time average of the dis-
tance between stochastic process (S(t), x1(t), x2(t)) and E0, E∗

0 remains bounded.

4 Discussion

In this paperwe study a stochastic time delaymathematicalmodel ofmulti-species competing
for a single growth-limiting substrate in a chemostat under demographic stochasticity. With
reference to the existing conclusions, our main contributions are:

(1) Random noise and discrete delays are initially introduced simultaneously into a multi-
species competition model in a chemostat.

(2) We prove that the stochastic delayed chemostat model with general response (1.7) has a
unique global positive solution,which confirms the rationality of the stochastic population
model.

(3) In the case of linear growth response functions, we obtain the asymptotic properties of
the solutions for stochastic delayed system (3.1) around the equilibrium E0 and E∗

0 of
the corresponding deterministic model, respectively.

(4) Our conclusions show that under some restrictions on noise densities, the stochastic
solutions will behave similarly to the solutions of the associated deterministic delayed
chemostat in the sense that although they fluctuate but the expected time average of
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Fig. 4 Three curves in (a) are simulations about 1
t E
∫ t
0 (S(r) − S0)2dr , 1

t E
∫ t
0 x21 (r)dr and 1

t E
∫ t
0 x22 (r)dr ,

respectively. Three curves in (b) are simulations about 1
t E
∫ t
0 (S(r) − S∗)2dr , 1

t E
∫ t
0 (x1(r) − x∗)2dr and

1
t E
∫ t
0 x22 (r)dr , respectively. Noise intensities σi = 0.1, i = 0, 1, 2 (Color figure online)

the distance between the stochastic solution and the respective equilibria E0 or E∗
0 will

eventually remain small. The mean distances depend on noise densities. The smaller the
white noise, the closer the mean distances tending to 0. In other words, an analogue of the
competitive exclusion principle holds for the stochastic delayed competition chemostat
model.

(5) We show numerically that although the solutions of both the delayed deterministic and
stochastic models predict that the competitive exclusion principle holds, the values of the
delays can influence which species wins the competition and drives the other population
to extinction (see Remark 3.2, Figs. 2 and 3).

It should be pointed out that even though we have extended the theorem on the existence
of a unique positive solution of the deterministic model (1.2) to the stochastic version (see
Theorem 2.1), for technical reasons, we can only obtain the asymptotic behavior of the
stochastic delayed chemostat model (3.1) with linear functional response at present. If we
introduce environmental noise into the delayed chemostat model established by Freedman et
al. in [22], we can try to obtain the competitive exclusion principle according to the research
method in [55,58]. We will defer it for future research.
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and the fundamental Research Funds for the Central Universities (No. 15CX08011A) in China University of
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5 Appendix A: Proof of Theorem 3.1

Since λi ≥ S0, e−Dτi mi S0 − D ≤ 0 for all i ∈ {1, 2, . . . , n}. Hence, the deterministic
delayed chemostat model has a nonnegative washout equilibrium (S0, 0, . . . , 0). It follows
that for system (3.1),
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dS (t) =
[

D
(
S0 − S

)−
n∑

i=1
mi Sxi

]

dt + σ0S (t) dB0 (t)

=
[

−D
(
S − S0

)−
n∑

i=1
mi S0xi −

n∑

i=1
mi
(
S − S0

)
xi

]

dt + σ0S (t) dB0 (t) ,

(5.1)

and

dxi (t + τi ) = [−Dxi (t + τi ) + e−Dτi mi Sxi ]dt + σi xi (t + τi )dBi (t)

= [e−Dτi mi (S − S0)xi + D(xi − xi (t + τi )) + (e−Dτi mi S
0 − D)xi ]dt

+σi xi (t + τi )dBi (t)

≤ [e−Dτi mi (S − S0)xi + D(xi − xi (t + τi ))]dt + σi xi (t + τi )dBi (t).

(5.2)

Let V1 = (S−S0)2

2 . We apply Itô’s formula to obtain

LV1 = (S − S0
) [−D

(
S − S0

)−
n∑

i=1
mi S0xi −

n∑

i=1
mi
(
S − S0

)
xi ] + σ 2

0
2 S2

≤ −D
(
S − S0

)2 −
n∑

i=1
mi S0

(
S − S0

)
xi −

n∑

i=1
mi
(
S − S0

)2
xi

+σ 2
0

(
S − S0

)2 + σ 2
0

(
S0
)2

≤ − (D − σ 2
0

) (
S − S0

)2 −
n∑

i=1
mi S0

(
S − S0

)
xi + σ 2

0

(
S0
)2

.

(5.3)

Here, we used the inequality (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. Set

V2 = eDτi [xi (t + τi ) + D
∫ t+τi

t
xi (r)dr ].

Then,

LV2 ≤ eDτi [e−Dτi mi (S − S0)xi + D(xi − xi (t + τi )) + D(xi (t + τi ) − xi )]
= eDτi e−Dτi mi (S − S0)xi
= mi (S − S0)xi .

(5.4)

Define V̄ = V1 + S0
n∑

i=1
V2. Using (5.3) and (5.4),

LV̄ ≤ −(D − σ 2
0 )(S − S0)2 −

n∑

i=1
mi S0(S − S0)xi + σ 2

0 (S0)2 + mi (S − S0)xi

= −(D − σ 2
0 )(S − S0)2 + σ 2

0 (S0)2.
(5.5)

Integrating (5.5) from 0 to t and then taking the expected value of both sides yields,

EV̄ (t) − EV̄ (0) ≤ −(D − σ 2
0 )E

∫ t

0
(S(r) − S0)2dr + σ 2

0 (S0)2t .

Consequently,

lim sup
t→∞

1

t
E

∫ t

0
(S(r) − S0)2dr ≤ σ 2

0 (S0)2

D − σ 2
0

.

Next, define

V3 = 1

2

[

e−Dτ̂
(
S − S0

)+
n∑

i=1

xi (t + τi )

]2

.
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Then,

LV3 =
[

e−Dτ̂ (S − S0) +
n∑

i=1

xi (t + τi )

][

De−Dτ̂ (S0 − S) −
n∑

i=1

e−Dτ̂mi Sxi n

−D
n∑

i=1

xi (t + τi ) +
n∑

i=1

e−Dτi mi Sxi

]

+ 1

2
e−2Dτ̂ σ 2

0 (S − S0 + S0)2 + 1

2

n∑

i=1

σ 2
i x

2
i (t + τi )

≤
[

e−Dτ̂ (S − S0) +
n∑

i=1

xi (t + τi )

][

De−Dτ̂ (S0 − S) − D
n∑

i=1

xi (t + τi )

−(e−Dτ̂ − e−Dτi )

n∑

i=1

mi Sxi

]

+ e−2Dτ̂ σ 2
0 (S − S0)2 + e−2Dτ̂ σ 2

0 (S0)2

+ 1

2
max
1≤i≤n

{σi }2
(

n∑

i=1

xi (t + τi )

)2

≤ −De−2Dτ̂ (S − S0)2 − 2De−2Dτ̂ (S − S0)
n∑

i=1

xi (t + τi ) − D

(
n∑

i=1

xi (t + τi )

)2

+ e−2Dτ̂ σ 2
0 (S − S0)2 + e−2Dτ̂ σ 2

0 (S0)2 + 1

2
max
1≤i≤n

{σi }2
(

n∑

i=1

xi (t + τi )

)2

≤ e−2Dτ̂ (D + σ 2
0 )(S − S0)2 − 1

2
(D − max

1≤i≤n
{σi }2)

(
n∑

i=1

xi (t + τi )

)2

+ e−2Dτ̂ σ 2
0 (S0)2. (5.6)

In the above calculations, we used the Young inequality

−2De−2Dτ̂ (S − S0)
n∑

i=1

xi (t + τi ) ≤ 2De−2Dτ̂ (S − S0)2 + D

2

(
n∑

i=1

xi (t + τi )

)2

.

Set

Ṽ = e−2Dτ̂ (D + σ 2
0 )

D − σ 2
0

V̄ + 1

2
(D − max

1≤i≤n
{σi }2)

n∑

i=1

∫ t+τi

t
x2i (r)dr + V3.

Substituting (5.5)–(5.6) into LṼ , we obtain

LṼ ≤ 1
2 (D − max

1≤i≤n
{σi }2)

(
n∑

i=1
x2i (t + τi ) −

n∑

i=1
x2i (t)

)

− 1
2 (D − max

1≤i≤n
{σi }2)

(
n∑

i=1
xi (t + τi )

)2

+ e−2Dτ̂ σ 2
0 (S0)2(D+σ 2

0 )

D−σ 2
0

+ e−2Dτ̂ σ 2
0 (S0)2

≤ 1
2 (D − max

1≤i≤n
{σi }2)

(
n∑

i=1
xi (t + τi )

)2

− 1
2 (D − max

1≤i≤n
{σi }2)

n∑

i=1
x2i

− 1
2 (D − max

1≤i≤n
{σi }2)

(
n∑

i=1
xi (t + τi )

)2

+ (1 + 2σ 2
0

D−σ 2
0
)e−2Dτ̂ σ 2

0 (S0)2

≤ − 1
2 (D − max

1≤i≤n
{σi }2)

n∑

i=1
x2i + (1 + 2σ 2

0
D−σ 2

0
)e−2Dτ̂ σ 2

0 (S0)2.

(5.7)

Integrating (5.7) from 0 to t and then taking the expected value of both sides yields,

EṼ (t) − EṼ (0) ≤ −1

2
(D − max

1≤i≤n
{σi }2)E

∫ t

0

n∑

i=1

xi (r)
2dr + (1 + 2σ 2

0

D − σ 2
0

)e−2Dτ̂ σ 2
0 (S0)2t .
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Therefore,

lim sup
t→∞

1

t
E

∫ t

0

n∑

i=1

xi (r)
2dr ≤ 2e−2Dτ̂ σ 2

0 (S0)2

D − max
1≤i≤n

{σi }2
(

1 + 2σ 2
0

D − σ 2
0

)

.

The proof of Theorem 3.1 is thus complete. ��

6 Appendix B: Proof of Theorem 3.2

Since E∗
0 is the equilibrium of (1.2), then

m1S
∗ = DeDτ1 , DS0 = DS∗ + m1S

∗x∗;
and

e−Dτi mi S
∗ − D < 0, f or i = 2, . . . , n.

Setting

V1 = S − S∗ − S∗ ln S

S∗ ,

using Itô’s formula, it follows that

LV1 =
(
1 − S∗

S

)
[D (S0 − S

)−
n∑

i=1
mi Sxi ] + 1

2σ
2
0 S

∗

= DS0 − DS −
n∑

i=1
mi Sxi − DS0S∗

S + DS∗ + S∗
S

n∑

i=1
mi Sxi + 1

2σ
2
0 S

∗

= DS∗
(
2 − S

S∗ − S∗
S

)
+ m1S∗x∗

(
2 − S∗

S − S
S∗
)

+ m1S∗x∗ ( S
S∗ + x1

x∗

− Sx1
S∗x∗ − 1

)
−

n∑

i=2
mi Sxi +

n∑

i=2
mi S∗xi + 1

2σ
2
0 S

∗

= − (D + m1x∗) (S−S∗)2
S − m1 (S − S∗) (x1 − x∗) −

n∑

i=2
mi (S − S∗) xi + 1

2σ
2
0 S

∗.

(6.1)

Then, defining

V2 = x1 − x∗ − x∗ ln x1
x∗ + m1S

∗x∗e−Dτ1

∫ t

t−τ1

(
Sx1
S∗x∗ − ln

Sx1
S∗x∗ − 1

)

dr ,

we obtain

LV2 =
(
1 − x∗

x1

) [−Dx1 + m1e−Dτ1 S (t − τ1) x1 (t − τ1)
]+ 1

2σ 2
1 x

∗

+m1e−Dτ1 S∗x∗
(

Sx1
S∗x∗ − ln Sx1

S∗x∗ − S(t−τ1)x1(t−τ1)
S∗x∗ + ln S(t−τ1)x1(t−τ1)

S∗x∗
)

= −Dx1 + m1e−Dτ1 S (t − τ1) x1 (t − τ1) + Dx∗ − m1e−Dτ1 x∗S (t − τ1x)
x1(t−τ1)

x1
+ 1

2σ 2
1 x

∗

+m1e−Dτ1 S∗x∗
(

Sx1
S∗x∗ − ln Sx1

S∗x∗ − S(t−τ1)x1(t−τ1)
S∗x∗ + ln S(t−τ1)x1(t−τ1)

S∗x∗
)

= m1e−Dτ1 S∗x∗
(
S(t−τ1)x1(t−τ1)

S∗x∗ − x1
x∗ − S(t−τ1)x1(t−τ1)

S∗x1 + 1
)

+ 1
2σ 2

1 x
∗

+m1e−Dτ1 S∗x∗
(

Sx1
S∗x∗ − ln Sx1

S∗x∗ − S(t−τ1)x1(t−τ1)
S∗x∗ + ln S(t−τ1)x1(t−τ1)

S∗x∗
)

≤ m1e−Dτ1 S∗x∗
(
S(t−τ1)x1(t−τ1)

S∗x∗ − x1
x∗ − ln x∗

x1
− ln S(t−τ1)x1(t−τ1)

S∗x∗
)

+ 1
2σ 2

1 x
∗

+m1e−Dτ1 S∗x∗
(

Sx1
S∗x∗ − ln Sx1

S∗x∗ − S(t−τ1)x1(t−τ1)
S∗x∗ + ln S(t−τ1)x1(t−τ1)

S∗x∗
)

= m1e−Dτ1 S∗x∗
(
− x1

x∗ − ln x∗
x1

)
+ m1e−Dτ1 S∗x∗( Sx1

S∗x∗ − ln Sx1
S∗x∗ ) + 1

2σ 2
1 x

∗,
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where in the second and fourth inequalities we use the facts that Dx∗ = m1e−Dτ1 S∗x∗,
Dx1 = m1e−Dτ1 S∗x∗ x1

x∗ , and 1 − y < − ln y, for y > 0, respectively. Then,

LV2 ≤ m1e−Dτ1 Sx1 − m1e−Dτ1 S∗x∗ ln S
S∗ − m1e−Dτ1 S∗x∗ ln x1

x∗ + 1
2σ

2
1 x

∗
= m1e−Dτ1

(
Sx1 − Sx∗ − S∗x∗ ln x1

x∗ + S∗x∗ + Sx∗ − S∗x∗ − S∗x∗ ln S
S∗
)+ 1

2σ
2
1 x

∗
= m1e−Dτ1 S∗x∗ ( S

S∗ − 1
) ( x1

x∗ − 1
)+ m1e−Dτ1 S∗x∗ ( S

S∗ − 1 − ln S
S∗
)+ 1

2σ
2
1 x

∗.

By using S
S∗ − 1 − ln S

S∗ = S
S∗ − 1 + ln S∗

S ≤ S
S∗ + S∗

S − 2 = (S−S∗)2

SS∗ , it follows that

LV2 ≤ m1e
−Dτ1

(
S − S∗) (x1 − x∗)+ m1e

−Dτ1 x∗ (S − S∗)2

S
+ 1

2
σ 2
1 x

∗. (6.2)

Define V3 = (S−S∗)2

2 . Then,

LV3 = (S − S∗) [D (S0 − S
)−

n∑

i=1
mi Sxi ] + 1

2σ 2
0 S

2

= (S − S∗)
(

DS∗ + m1S∗x∗ − DS − m1Sx1 −
n∑

i=2
mi Sxi

)

+ 1
2σ 2

0 S
2

≤ (S − S∗)
[

− D (S − S∗) − m1S∗ (x1 − x∗) − m1 (S − S∗) x1

−
n∑

i=2
mi (S − S∗) xi −

n∑

i=2
mi S∗xi

]

+ σ 2
0 (S − S∗)2 + σ 2

0 (S∗)2

≤ − (D − σ 2
0

)
(S − S∗)2 − m1S∗ (S − S∗) (x1 − x∗) −

n∑

i=2
mi (S − S∗) xi + σ 2

0 (S∗)2 .

(6.3)

Moreover, for i = 2, . . . , n,

d (xi (t + τi )) =
[
−Dxi (t + τi ) − e−Dτi mi Sxi

]
dt + σi xi (t + τi ) dBi (t)

=
[
e−Dτi mi

(
S − S∗) xi + D (xi − xi (t + τi )) + e−Dτi mi

(
S∗ − D

)
xi
]
dt

+ σi xi (t + τi ) dBi (t)

≤
[
e−Dτi mi

(
S − S∗) xi + D (xi − xi (t + τi ))

]
dt + σi xi (t + τi ) dBi (t) .

Therefore,

L
(

e−Dτi

[

(xi (t + τi )) + D
∫ t+τi

t
xi (r) dr

])

≤ mi
(
S − S∗) xi . (6.4)

Define

V4 = V3 +
n∑

i=2

S∗{e−Dτi

[

(xi (t + τi )) + D
∫ t+τi

t
xi (r) dr

]

}.

Substituting (6.3) into (6.4) to obtain

LV4 ≤ −(D − σ 2
0 )(S − S∗)2 − m1S

∗(S − S∗)(x1 − x∗) + σ 2
0 (S∗)2. (6.5)

Similarly, set

V5 = V1 +
n∑

i=2

S∗
{

e−Dτi

[

(xi (t + τi )) + D
∫ t+τi

t
xi (r) dr

]}

.
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Then, it follows from (6.1) and (6.4) that

LV5 ≤ − (D + m1x
∗) (S − S∗)2

S
− m1

(
S − S∗) (x1 − x∗)+ 1

2
σ 2
0 S

∗. (6.6)

Now define

V̄ = (D + m1x∗)
m1e−Dτ1x∗ V2 + D

m1S∗x∗ V4 + V5.

Substituting (6.2), (6.5) and (6.6) into LV̄ , it follows that

LV̄ ≤ −D(D − σ 2
0 )

m1S∗x∗ (S − S∗)2 + K1. (6.7)

Integrating (6.7) from 0 to t and then taking the expected value on both sides gives,

EV̄ (t) − EV̄ (0) ≤ −D(D − σ 2
0 )

m1S∗x∗ E

∫ t

0
(S(r) − S∗)2dr + K1t .

It then follows that

lim sup
t→∞

1

t
E

∫ t

0
(S(r) − S∗)2dr ≤ m1S∗x∗

D(D − σ 2
0 )

K1.

Next, we study the asymptotic behavior of the competitor species x1(t) around x∗. Apply-
ing Itô’s formula, we have

d
[
e−Dτ1 S (t) + x1 (t + τ1)

]

=
[

e−Dτ1D
(
S0 − S

)− e−Dτ1m1Sx1 −
n∑

i=2
e−Dτ1mi Sxi − Dx1 (t + τ1)

+e−Dτ1m1Sx1
]
dt + σ0e−Dτ1 S (t) dB0 (t) + σ1x1 (t + τ1) dB1 (t)

≤ [e−Dτ1DS∗ − e−Dτ1m1S∗x∗ − e−Dτ1DS − Dx1 (t + τ1)
]
dt

+σ0e−Dτ1 S (t) dB0 (t) + σ1x1 (t + τ1) dB1 (t)
= [−De−Dτ1 (S − S∗) − D (x1 (t + τ1) − x∗)

]
dt

+e−Dτ1σ0S (t) dB0 (t) + σ1x1 (t + τ1) dB1 (t) .

(6.8)

Define the Lyapunov function V6 = 1
2 [e−Dτ1(S(t) − S∗) + x1(t + τ1) − x∗]2. In virtue of

(6.8),

LV6 ≤ − [e−Dτ1 (S − S∗) + x1 (t + τ1) − x∗] [De−Dτ1 (S − S∗) + D (x1 (t + τ1) − x∗)
]

+ 1
2σ 2

0 e
−2Dτ1 S2 + 1

2σ 2
1 x

2
1 (t + τ1)

≤ −De−2Dτ1 (S − S∗)2 − 2De−2Dτ1 (S − S∗) (x1 (t + τ1) − x∗) − D (x1 (t + τ1) − x∗)2
+ 1

2σ 2
0 e

−2Dτ1 S2 + 1
2σ 2

1 x
2
1 (t + τ1) .

Using Young’s inequality,

−2De−2Dτ1(S − S∗)(x1(t + τ1) − x∗) ≤ 2De−2Dτ1(S − S∗)2 + D

2
(x1(t + τ1) − x∗)2,

and the inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we obtain

LV6 ≤ −( D2 − σ 2
1 )(x1(t + τ1) − x∗)2 + e−2Dτ1(D + σ 2

0 )(S − S∗)2

+e−2Dτ1σ 2
0 (S∗)2 + σ 2

1 (x∗)2.
(6.9)
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For Ṽ = V6 + e−2Dτ1 (D+σ 2
0 )m1S∗x∗

D(D−σ 2
0 )

V̄ + 1
2 (D − σ 2

0 )
∫ t
0 (x1(r) − x∗)2dr , by using (6.7) and

(6.9), we obtain

LṼ ≤ − 1
2 (D − 2σ 2

1 )(x1(t + τ1) − x∗)2 + e−2Dτ1σ 2
0 (S∗)2 + σ 2

1 (x∗)2 + e−2Dτ1 (D+σ 2
0 )m1S∗x∗

D(D−σ 2
0 )

K1

+ 1
2 (D − 2σ 2

1 )(x1(t + τ1) − x∗)2 − 1
2 (D − 2σ 2

1 )(x1 − x∗)2
= − 1

2 (D − 2σ 2
1 )(x1 − x∗)2 + K2.

(6.10)

Integrating this inequality from 0 to t and then taking the expected value on both sides yields,

EṼ (t) − EṼ (0) ≤ −1

2
(D − 2σ 2

1 )E

∫ t

0
(x1(r) − x∗)2dr + K2t .

Therefore,

lim sup
t→∞

1

t
E

∫ t

0
(x1(r) − x∗)2dr ≤ 2K2

D − 2σ 2
1

.

Now we investigate the long-time behavior of the other competitors xi (t), i = 2, . . . , n.
Using calculations similar to those used for V3, first, we observe that

d

[

e−Dτ1 S (t) + x1 (t + τ1) + e−Dτ1

n∑

i=2

eDτi xi (t + τi )

]

=
[

e−Dτ1D
(
S0 − S

)− e−Dτ1m1Sx1 − e−Dτ1

n∑

i=2

mi Sxi − Dx1 (t + τ1) + e−Dτ1m1Sx1

−e−Dτ1

n∑

i=2

DeDτi xi (t + τi ) + e−Dτ1

n∑

i=2

mi Sxi

]

dt + e−Dτ1σ0SdB0 (t)

+ σ1x1 (t + τ1) dB1 (t) + −e−Dτ1

n∑

i=2

σi e
Dτi xi (t + τi ) dBi (t)

≤
[

−De−Dτ1
(
S − S∗)− D

(
x1 (t + τ1) − x∗)− De−Dτ1

n∑

i=2

eDτi xi (t + τi )

]

dt

+ e−Dτ1σ0SdB0 (t) + σ1x1 (t + τ1) dB1 (t) + e−Dτ1

n∑

i=2

σi e
Dτi xi (t + τi ) dBi (t) .

Define V7 = 1
2 [e−Dτ1(S − S∗) + (x1(t + τ1) − x∗) + e−Dτ1

n∑

i=2
eDτi xi (t + τi )]2. Then,

LV7 ≤
[

e−Dτ1(S − S∗) + (x1(t + τ1) − x∗) + e−Dτ1

n∑

i=2

eDτi xi (t + τi )

]

×
[

−De−Dτ1(S − S∗) − D(x1(t + τ1) − x∗) − De−Dτ1

n∑

i=2

eDτi xi (t + τi )

]

+ 1

2
e−2Dτ1σ 2

0 S
2 + 1

2
σ 2
1 x

2
1 (t + τ1) + 1

2
e−2Dτ1

n∑

i=2

σ 2
i e

2Dτi x2i (t + τi )

≤ −De−2Dτ1(S − S∗)2 − D(x1(t + τ1) − x∗)2 − De−2Dτ1

(
n∑

i=2

eDτi xi (t + τi )

)2
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− 2De−Dτ1(S − S∗)(x1(t + τ1) − x∗) − 2De−2Dτ1(S − S∗)
(

n∑

i=2

eDτi xi (t + τi )

)

− 2De−Dτ1(x1(t + τ1) − x∗)
(

n∑

i=2

eDτi xi (t + τi )

)

+e−2Dτ1σ 2
0 (S − S∗)2 + e−2Dτ1σ 2

0 (S∗)2

+ σ 2
1 (x1(t + τ1) − x∗)2 + σ 2

1 (x∗)2 + 1

2
e−2Dτ1

n∑

i=2

σ 2
i e

2Dτi x2i (t + τi )

≤ −(D − σ 2
0 )e−2Dτ1(S − S∗)2 − e−2Dτ1(D − max

2≤ j≤n
{σ j }2)

(
n∑

i=2

eDτi xi (t + τi )

)2

− 2De−2Dτ1(S − S∗)
(

n∑

i=2

eDτi xi (t + τi )

)

×
(

n∑

i=2

eDτi xi (t + τi )

)

− (D − σ 2
1 )(x1(t + τ1) − x∗)2

−2De−Dτ1(S − S∗)(x1(t + τ1) − x∗) + e−2Dτ1σ 2
0 (S∗)2 + σ 2

1 (x∗)2

≤ −1

2
e−2Dτ1(D − max

2≤ j≤n
{σ j }2)

(
n∑

i=2

eDτi xi (t + τi )

)2

+ e−2Dτ1(5D + σ 2
0 )(S − S∗)2

+ (3.5D + σ 2
1 )(x1(t + τ1) − x∗)2 + e−2Dτ1σ 2

0 (S∗)2 + σ 2
1 (x∗)2, (6.11)

where in the second inequality we use the fact that for all a, b ∈ R, (a + b)2 ≤ 2a2 + 2b2,
and in the fourth inequality, we use the following three Young inequalities

−2De−Dτ1(S − S∗)(x1(t + τ1) − x∗) ≤ 2De−2Dτ1(S − S∗)2 + 1

2
D(x1(t + τ1) − x∗)2;

−2De−2Dτ1(S − S∗)
(

n∑

i=2

eDτi xi (t + τi )

)

≤ 4De−2Dτ1(S − S∗)2

+1

4
De−2Dτ1

(
n∑

i=2

eDτi xi (t + τi )

)2

;

−2De−Dτ1(x1(t + τ1) − x∗)
(

n∑

i=2

eDτi xi (t + τi )

)

≤ 4D(x1(t + τ1) − x∗)2

+1

4
De−2Dτ1

(
n∑

i=2

eDτi xi (t + τi )

)2

.

Next, define the Lyapunov function

V8 = V7 + e−2Dτ1 m1S∗x∗(5D+σ 2
0 )

D(D−σ 2
0 )

V̄ + 7D+2σ 2
1

D−2σ 2
1

[V6 + e−2Dτ1 (D+σ 2
0 )m1S∗x∗

D(D−σ 2
0 )

V̄ ]
+ 1

2e
−2Dτ1(D − max

2≤ j≤n
{σ j }2)

n∑

i=2

∫ t+τi
t (eDτi xi (r))2dr .

123



870 Journal of Dynamics and Differential Equations (2020) 32:849–872

Then,

LV8 ≤ − 1
2e

−2Dτ1(D − max
2≤ j≤n

{σ j }2)
(

n∑

i=2
eDτi xi (t + τi )

)2

+ K3

+ 1
2e

−2Dτ1(D − max
2≤ j≤n

{σ j }2)
(

n∑

i=2
e2Dτi x2i (t + τi ) −

n∑

i=2
e2Dτi x2i (t)

)

≤ − 1
2e

−2Dτ1(D − max
2≤ j≤n

{σ j }2)
(

n∑

i=2
eDτi xi (t + τi )

)2

+ K3

+ 1
2e

−2Dτ1(D − max
2≤ j≤n

{σ j }2)
[(

n∑

i=2
eDτi xi (t + τi )

)2

−
n∑

i=2
e2Dτi x2i (t)

]

= − 1
2e

−2Dτ1(D − max
2≤ j≤n

{σ j }2)
n∑

i=2
e2Dτi x2i (t) + K3.

(6.12)

Integrating (6.12) from 0 to t and then taking expectation of both sides, we obtain that

EV8(t) − EV8(0) ≤ −1

2
e−2Dτ1(D − max

2≤ j≤n
{σ j }2)

n∑

i=2

E

∫ t

0
e2Dτi x2i (r)dr + K3t,

which implies that

lim sup
t→∞

1

t
E

∫ t

0

n∑

i=2

xi (r)
2dr ≤ 2K3e2D(τ1−τ̂ )

D − max
2≤i≤n

{σi }2 .

The proof is then complete. ��
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