
Journal of Dynamics and Differential Equations (2020) 32:823–847
https://doi.org/10.1007/s10884-019-09739-0

Bifurcation Analysis for a Delayed Diffusive Logistic
Population Model in the Advective Heterogeneous
Environment

Shanshan Chen1 · Junjie Wei1,2 · Xue Zhang1

Received: 20 July 2018 / Revised: 14 February 2019 / Published online: 8 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we investigate a delayed reaction–diffusion–advection equation, which mod-
els the population dynamics in the advective heterogeneous environment. The existence
of the nonconstant positive steady state and associated Hopf bifurcation are obtained. A
weighted inner product associatedwith the advection rate is introduced to compute the normal
forms,which is themain difference betweenHopf bifurcation for delayed reaction–diffusion–
advection model and that for delayed reaction–diffusion model. Moreover, we find that the
spatial scale and advection can affect Hopf bifurcation in the heterogenous environment.

Keywords Reaction–diffusion–advection · Flow · Delay · Hopf bifurcation

1 Introduction

In recent decades, there are extensiveworks on the population dynamics in the advective envi-
ronments. For example, the population may have a tendency towards better quality habitat,
and Belgacem and Cosner [1] proposed the following model

⎧
⎨

⎩

∂u

∂t
= ∇ · [d∇u − au∇m] + u [m(x) − u] , x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(1.1)

where a measures the tendency of the population to move up or down along the gradient
of m(x). We refers to [4,6,10,11,31] and the references therein for results on this type of
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advection. Moreover, in streams and rivers, the unidirectional water flow always exists and
can influence the population dynamics of the river species [30,37–39]. Lou and Zhou [36]
considered the following single species model,

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= duxx − αux + u (r − u) , 0 < x < L, t > 0,

dux (0, t) − αu(0, t) = 0, t > 0,

dux (L, t) − αu(L, t) = −bαu(L, t), t > 0,

(1.2)

where u(x, t) denotes the population density at location x and time t , d > 0 is the diffusion
rate, r > 0 represents the intrinsic growth rate, x = 0, L are the upstreamend anddownstream
ends respectively, α accounts for the advection rate caused by the unidirectional water flow,
and b measures the lose of the species at the downstream end. Equation (1.2) can also model
the population dynamics of a species in a water column, where x runs from the top (x = 0)
to the bottom (x = L). Therefore, α may be positive or negative depending on whether
the density of the species is heavier or lighter than the water [50]. If b → ∞, the hostile
boundary condition at the downstream is obtained, and Speirs and Gurney showed [42] that
the species can persist only when the speed of the flow is slow and the stream is long. If b = 1,
the boundary condition is referred to as the free-flow boundary condition or the Danckwerts
boundary condition, see [45] for detailed analysis on persistence. For more general case, Lou
and Zhou [36] gave the necessary and sufficient condition for the persistence of the species
with respect to b. We also refer to [33–36,49–52] and the references therein for results on
two competing species with this type of advection.

For reaction–diffusion equations without advection term, it is well-known that time delay
can make the constant steady states or nonconstant steady states unstable, and spatial homo-
geneous or nonhomogeneous periodic solutions can occur through Hopf bifurcation, see
[14,16,20,24,27,32,40] and the references therein. Especially, Busenberg and Huang [3]
firstly studied the Hopf bifurcation near the nonconstant positive steady state, and they found
that, for the following single population model,

⎧
⎨

⎩

∂u(x, t)

∂t
= d�u(x, t) + ru(x, t) (1 − u(x, t − τ)) , x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(1.3)

time delay τ can induce Hopf bifurcation, see also [28,43,44,47,48] for some more general
population models. We also refer to [8,9,21–23] for the Hopf bifurcation of models with the
nonlocal delay effect and homogenous Dirichlet boundary conditions. A natural question is
that whether delay can induce instability for reaction–diffusion–advectionmodels. Formodel
(1.1), considering the delay effect, Chen et al. [7] studied the following model
⎧
⎨

⎩

∂u

∂t
= ∇ · [d∇u − au∇m] + u (m(x) − u(x, t − τ)) , x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,
(1.4)

and showed that Hopf bifurcation is more likely to occur when the advection rate increases.
In this paper, we mainly concern whether delay can induce Hopf bifurcation for model

(1.2), and for simplicity we only consider the case of b = 0. Actually, we investigate the
following model for a single species in the advective heterogeneous enviroment
{
ut = duxx − αux + u

(
m(x) − ∫ L0 K (x, y)u(y, t − τ)dy

)
, 0 < x < L, t > 0,

dux (0, t) − αu(0, t) = 0, dux (L, t) − αu(L, t) = 0, t > 0,
(1.5)
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where parameters d ,α and L have the samemeanings as that inmodel (1.2), delay τ represents
the maturation time, and intrinsic growth ratem(x) is spatially dependent and show the effect
of the heterogenous environment. Here K (x, y) accounts for the nonlocality of the species.
We remark that this kind of nonlocal effect is not induced by the time delay, and it represents
the nonlocal interspecific competition of the species for resources. The individuals at different
locations may compete for common resource or communicate either visually or by chemical
means, see [2,19] for the detailed biological explaination. Throughout the paper, unless
otherwise specified, we assume that m(x) satisfies:

(A1) m(x) ∈ L∞((0, L)), and m(x) > 0 on (0, L),

and the following assumption is imposed on the kernel function K (x, y):

(A2) either

K (x, y) = δ(x − y),

or

K (x, y) ∈ L∞((0, L) × (0, L)), K (x, y) ≥ 0 on (0, L) × (0, L),

and L+ := {(x, y) ∈ (0, L) × (0, L) : K (x, y) > 0} has positive Lebesgue measure.

For example, the following kernel function

K (x, y) =
{
0, y > x

1, 0 < y ≤ x
(1.6)

satisfies assumption (A2), and was used to model the nonlocal competition of the phyto-
plankton for light [13,29]. Moreover, if K (x, y) = δ(x − y), then

∫ L

0
K (x, y)u(y, t − τ)dy = u(x, t − τ),

and there is no nonlocal effect.
For the case that advection α = 0 and K (x, y) = δ(x − y), Shi et al. [41] showed that

delay can induce Hopf bifurcation for model (1.5). Our main results extend the results of
[3,41], and show that Hopf bifurcation can also occur at the nonconstant positive steady state
when α �= 0. Moreover, we will show that if m(x) is spatially dependent, then the spatial
scale and advection can affect Hopf bifurcation. For example, Hopf bifurcation can be more
likely to occur when the advection rate increases or decreases for different types ofm(x). This
phenomenon is different from that for model (1.4), where Hopf bifurcation is more likely to
occur when the advection rate increases. We point out that, since the boundary condition is
different, the method and arguments in [8] should be modified to investigate this model.

Letting ũ = e(−α/d)xu, t̃ = dt , denoting r̃ = 1/d , α̃ = a/d , τ̃ = dτ , and dropping the
tilde sign, model (1.5) can be transformed as the following equivalent model:
{
ut = e−αx (eαxux )x + ru

(
m(x) − ∫ L0 K (x, y)eαyu(y, t − τ)dy

)
, x ∈ (0, L), t > 0,

ux (0, t) = ux (L, t) = 0, t > 0.
(1.7)

The initial value of model (1.7) is

u(x, s) = η(x, s) ≥ 0, x ∈ (0, L), s ∈ [−τ, 0], (1.8)
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where η ∈ C := C([−τ, 0], Y ) and Y = L2((0, L)). Note that e−αx ∂
∂x

(
eαx ∂

∂x

)
generates

an analytic semigroup T (t) on Y with the domain

D

(

e−αx ∂

∂x

(

eαx ∂

∂x

))

= {ψ ∈ H2((0, L)) : ψx (0) = ψx (L) = 0}. (1.9)

Define F : C → Y by

F(
)(x) = r
(0)

(

m(x) −
∫ L

0
K (x, y)eαy
(−τ)(y)dy

)

. (1.10)

An easy calculation implies that F is locally Lipschitz continuous. Therefore, it follows from
[46] that, for each
 ∈ C , there exists a maximum t
 > 0 such that model (1.7) has a unique
solution u
(t) existing on [−τ, t
). The following eigenvalue problem is crucial for our
further investigation

{
−e−αx (eαxφx )x = λm(x)φ(x), x ∈ (0, L),

φx (0) = φx (L) = 0.
(1.11)

We say that λ is a principle eigenvalue if (1.11) has a positive solution. Denote by λ1 the
principal eigenvalue of problem (1.11), and let φ be the corresponding eigenfunction with
respect to λ1 such that φ(x) > 0. It follows from [36] that

λ1 = inf
0 �=ψ∈W 1,2

∫ L
0 eαxψ2

x dx
∫ L
0 eαxm(x)ψ2dx

= 0, (1.12)

φ is constant, and we choose φ ≡ 1 for simplicity.
The rest of the paper is organized as follows. In Sect. 2, we show the existence of a

nonconstant positive steady state through bifurcation theory, and the Hopf bifurcation near
this nonconstant positive steady state is also investigated. In Sect. 3, we obtain the direction
of the Hopf bifurcation and the stability of the bifurcating periodic orbits. In Sect. 4, the
effect of spatial heterogeneity are obtained, and the spatial scale and advection can affect
Hopf bifurcation in the heterogenous environment. Moreover, some numerical simulations
are given to illustrate our theoretical results. Especially, Eq. (1.5) can model the population
dynamics for a species in a water columnwith nonlocal competition for light.We numerically
show that when advection rate α = 0, the density of the species concentrates on the top of
the water column. However when α is large, the density of the species concentrates on the
bottom of the water column.

For simplicity of the notations, as in [8], we also denote the spaces

X = {ψ ∈ H2((0, L)) : ψx (0) = ψx (L) = 0},

Y = L2((0, L)), C = C([−τ, 0], Y ), and C = C([−1, 0], Y ) throughout the paper. Let the
complexification of a linear space Z be ZC := Z⊕i Z = {x1+i x2| x1, x2 ∈ Z}, and define the
domain of a linear operator T byD(T ), the kernel of T byN (T ), and the range of T byR(T ).

Moreover, for Hilbert space YC, the standard inner product is 〈u, v〉 =
∫ L

0
u(x)v(x)dx .
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2 Stability and Hopf Bifurcation

2.1 Positive Steady States and Eigenvalue Problem

Firstly, we show the existence of positive steady states of Eq. (1.7), which satisfy

{
(eαxux )x + reαxu

(
m(x) − ∫ L0 K (x, y)eαyu(y)dy

)
= 0, x ∈ (0, L),

ux (0) = ux (L) = 0.
(2.1)

Denote

P0 := ∂

∂x

(

eαx ∂

∂x

)

. (2.2)

Then
X = N (P0) ⊕ X1, Y = N (P0) ⊕ Y1,

where

N (P0) = span{φ} = span{1}, X1 =
{

y ∈ X :
∫ L

0
y(x)dx = 0

}

,

Y1 = R (P0) =
{

y ∈ Y :
∫ L

0
y(x)dx = 0

}

.

(2.3)

By the arguments similar to Theorem A.2. of [5], we obtain the existence of positive steady
states in the following.

Theorem 2.1 There exist r1 > 0 and a continuously differentiable mapping r → ur from
[0, r1] to X such that ur is a positive solution of Eq. (2.1) for r ∈ (0, r1], and u0 = c0, where

c0 =
∫ L
0 m(x)eαxdx

∫ L
0

∫ L
0 K (x, y)eαx+αydxdy

> 0. (2.4)

Proof It follows from assumptions (A1) and (A2) that c0 > 0. Define H : R× X1 ×R → Y
by

H(c, w, r) = P0w + reαx (c + w)

(

m(x) −
∫ L

0
K (x, y)eαy(c + w(y))dy

)

.

Letting
u = c + w, c ∈ R, w ∈ X1, (2.5)

and substituting it into Eq. (2.1), we see that (u, r) solves Eq. (2.1), where u ∈ X , r > 0, if
and only if H(c, w, r) = 0 is solvable for some value of c ∈ R, w ∈ X1 and r > 0. Note
that H(c, 0, 0) = 0 for any c ∈ R. An easy calculation implies that

D(w,r)H(c, w, r)[v, σ ] =P0v + rm(x)eαxv − reαx (c + w)

∫ L

0
K (x, y)eαyv(y)dy

− reαxv

∫ L

0
K (x, y)eαy(c + w(y))dy

+ σeαx (c + w)

(

m(x) −
∫ L

0
K (x, y)eαy(c + w(y))dy

)

.
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Here D(w,r)H(c, w, r) is the Fréchet derivative of H(c, w, r) with respect to (w, r). Then,

D(w,r)H(c, 0, 0)[v, σ ] = P0v + σceαx
(

m(x) − c
∫ L

0
K (x, y)eαydy

)

.

Since

−c0e
αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

∈ Y1 = R (P0) ,

there exists a unique v∗ ∈ X1 such that

P0v
∗ = −c0e

αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

,

and consequently,

N (D(w,r)H(c0, 0, 0)) = {(sv∗, s) : s ∈ R}.
A direct computation yields

DcD(w,r)H(c0, 0, 0)[v∗, 1] = m(x)eαx − 2c0e
αx
∫ L

0
K (x, y)eαydy,

where DcD(w,r)H(c0, 0, 0) is the Fréchet derivative of D(w,r)H(c, w, r) with respect to c at
(c0, 0, 0). We claim that

DcD(w,r)H(c0, 0, 0)[v∗, 1] /∈ R
(
D(w,r)H(c0, 0, 0)

)
. (2.6)

Suppose it is not true. Then, there exists (ṽ, σ̃ ) such that

D(w,r)H(c0, 0, 0)[ṽ, σ̃ ] = P0ṽ + σ̃c0e
αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

= m(x)eαx − 2c0e
αx
∫ L

0
K (x, y)eαydy,

(2.7)

which implies that

m(x)eαx − 2c0e
αx
∫ L

0
K (x, y)eαydy ∈ R(P0).

This contradicts the fact that
∫ L

0
m(x)eαxdx − 2c0

∫ L

0

∫ L

0
K (x, y)eαx+αydxdy = −

∫ L

0
m(x)eαxdx �= 0.

Therefore, Eq. (2.6) holds, and it follows from the Crandall–Rabinowitz bifurcation theorem
[12] that the solutions of H(c, w, r) = 0 near (c0, 0, 0) consist precisely by the curves
{(c, 0, 0) : c ∈ R} and

{(c(s), w(s), r(s)) : s ∈ (−δ, δ)},
where (c(s), w(s), r(s)) are continuously differentiable, c(0) = c0, w(0) = 0, r(0) = 0,
w′(0) = v∗, and r ′(0) = 1. Since r ′(0) = 1 > 0, r(s) has a inverse function s(r) for small
s. Noticing that c0 > 0, we see that there exists r1 > 0 such that Eq. (2.1) has a positive
solution ur = c(s(r)) + w(s(r)) for r ∈ (0, r1]. Moreover,

u0 = c(s(0)) + w(s(0)) = c(0) + w(0) = c0.

This completes the proof. ��
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Remark 2.2 It follows from the imbedding theorem that ur ∈ C1+δ([0, L]) for some δ ∈
(0, 1), and limr→0 ur = c0 in C1+δ([0, L]).
Then, we obtain the eigenvalue problem associated with ur . The linearized equation of (1.7)
at ur takes the following form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v

∂t
= e−αx P0v + r

(

m(x) −
∫ L

0
K (x, y)eαyur (y)dy

)

v

− rur
∫ L
0 K (x, y)eαyv(y, t − τ)dy, x ∈ (0, L), t > 0,

vx (x, t) = 0, x = 0, L, t > 0.

(2.8)

Denote

K̃ (r) := m(x) −
∫ L

0
K (x, y)eαyur (y)dy. (2.9)

From [46], we see that the solution semigroup of Eq. (2.8) has the infinitesimal generator
Aτ (r) defined by

Aτ (r)
 = 
̇ (2.10)

with the domain

D(Aτ (r)) = {
 ∈ CC ∩ C1
C

: 
(0) ∈ XC, 
̇(0) = e−αx P0
(0) + r K̃ (r)
(0)

− rur

∫ L

0
K (x, y)eαy
(−τ)(y)dy

}
,

whereC1
C

= C1([−τ, 0], YC), P0 and K̃ (r) are defined as in Eqs. (2.2) and (2.9) respectively.
Moreover, μ ∈ C is an eigenvalue of Aτ (r), if and only if there exists ψ(�= 0) ∈ XC such
that �(r , μ, τ)ψ = 0, where

�(r , μ, τ)ψ := e−αx P0ψ + r K̃ (r)ψ − rur

∫ L

0
K (x, y)eαyψ(y)dye−μτ − μψ.

(2.11)
Then Aτ (r) has a purely imaginary eigenvalue μ = iν (ν > 0) for some τ ≥ 0, if and only
if

P0ψ + reαx K̃ (r)ψ − rur e
αx
∫ L

0
K (x, y)eαyψ(y)dye−iθ − iνeαxψ = 0 (2.12)

is solvable for some value of ν > 0, θ ∈ [0, 2π), and ψ(�= 0) ∈ XC. The estimates for
solutions of Eq. (2.11) can be derived as follows.

Lemma 2.3 Assume that (μr , τr , ψr ) solves �(r , μ, τ)ψ = 0 with Reμr , τr ≥ 0 and 0 �=
ψr ∈ XC. Then

∣
∣
∣
μr

r

∣
∣
∣ is bounded for r ∈ (0, r1].

Proof Noticing that ur is the principal eigenfunction of P0 +reαx K̃ (r)with principal eigen-
value 0, we have 〈ψ, P0ψ + reαx K̃ (r)ψ〉 ≤ 0 for any ψ ∈ XC. Substituting (μr , τr , ψr )

into �(r , μ, τ)ψ = 0, multiplying it by eαxψr , and integrating the result over (0, L), we
have

〈ψr , P0ψr + reαx K̃ (r)ψr 〉

= r
∫ L

0

∫ L

0
K (x, y)eαx+αyur (x)ψr (x)ψr (y)dxdye

−μr τr + μr

∫ L

0
eαx |ψr |2dx .

(2.13)
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Since Reμr , τr ≥ 0, we see that

0 ≤ Re(μr/r) ≤ 1
∫ L
0 eαx |ψr |2dx

Re

[

−
∫ L

0

∫ L

0
K (x, y)eαx+αyur (x)ψr (x)ψr (y)dxdye

−μr τr

]

≤‖ur‖∞‖K (x, y)‖∞
∫ L

0
eαx dx,

and

|Im(μr /r)| = 1
∫ L
0 eαx |ψr |2dx

∣
∣
∣
∣
∣
Im
[∫ L

0

∫ L

0
K (x, y)eαx+αyur (x)ψr (x)ψr (y)dxdye

−μr τr

]∣
∣
∣
∣
∣

≤‖ur‖∞‖K (x, y)‖∞
∫ L

0
eαxdx .

It follows from the continuity of r → ‖ur‖∞ that
∣
∣
∣
μr

r

∣
∣
∣ is bounded for r ∈ (0, r1]. ��

The following result is similar to Lemma 2.3 of [3] and we omit the proof here.

Lemma 2.4 Assume that z ∈ (X1)C. Then |〈P0z, z〉| ≥ λ2‖z‖2YC , where λ2 is the second
eigenvalue of operator −P0.

For r ∈ (0, r1], ignoring a scalar factor, ψ in Eq. (2.12) can be represented as

ψ = βc0 + r z, z ∈ (X1)C, β ≥ 0,

‖ψ‖2YC = β2c20L + r2‖z‖2YC = c20L,
(2.14)

where c0 is defined as in Eq. (2.4). Then, substituting the first Equation of (2.14) and ν = rh
into Eq. (2.12), we obtain that (ν, θ, ψ) solves Eq. (2.12), where ν > 0, θ ∈ [0, 2π) and
ψ ∈ XC(‖ψ‖2YC = c20L), if and only if the following system:

⎧
⎪⎨

⎪⎩

g1(z, β, h, θ, r) := P0z + eαx K̃ (r)(βc0 + r z) − iheαx (βc0 + r z)

− eαxur
∫ L
0 K (x, y)eαy(βc0 + r z(y))dye−iθ = 0

g2(z, β, r) := (β2 − 1)c20L + r2‖z‖2YC = 0

(2.15)

has a solution (z, β, h, θ), where z ∈ (X1)C, β ≥ 0, h > 0 and θ ∈ [0, 2π). Define
G : (X1)C × R

4 → YC × R by G = (g1, g2). Note that u0 = c0, and we first show that
G(z, β, h, θ, r) = 0 is uniquely solvable for r = 0.

Lemma 2.5 The following equation
{
G(z, β, h, θ, 0) = 0

z ∈ (X1)C, h ≥ 0, β ≥ 0, θ ∈ [0, 2π] (2.16)

has a unique solution (z0, β0, h0, θ0), where

β0 = 1, θ0 = π/2, h0 =
∫ L
0 m(x)eαxdx
∫ L
0 eαxdx

, (2.17)

and z0 ∈ (X1)C is the unique solution of

P0z = −c0e
αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

− ic20e
αx
∫ L

0
K (x, y)eαydy + ih0c0e

αx .

(2.18)
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Proof Obviously, g2(z, β, 0) = 0 if and only if β = β0 = 1. Then, substituting β = β0 into
g1(z, β, h, θ, 0) = 0, we have

P0z = −c0e
αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

+c20e
αx
∫ L

0
K (x, y)eαydye−iθ + ihc0e

αx .

(2.19)
It follows from Eq. (2.4) that

c0

∫ L

0

∫ L

0
K (x, y)eαx+αydxdy =

∫ L

0
m(x)eαxdx .

Then Eq. (2.19) has a solution (z, h, θ), where z ∈ (X1)C, h ≥ 0, θ ∈ [0, 2π], if and only if
{
c0
∫ L
0

∫ L
0 K (x, y)eαx+αydxdy sin θ = h

∫ L
0 eαxdx

∫ L
0 K (x, y)eαx+αydxdy cos θ = 0

(2.20)

has a solution (θ, h) with h ≥ 0 and θ ∈ [0, 2π ], which yields

θ = θ0 = π/2, h = h0 =
∫ L
0 m(x)eαxdx
∫ L
0 eαxdx

. (2.21)

Substituting h = h0 and θ = θ0 into Eq. (2.19), we see that the right side of Eq. (2.19)
belongs to R (P0), which implies that z = z0. ��
Then, we show that G(z, β, h, θ, r) = 0 is also uniquely solvable for small r .

Theorem 2.6 There exist r2 > 0 and a continuously differentiable mapping r →
(zr , βr , hr , θr ) from [0, r2] to (X1)C ×R

3 such that (zr , βr , hr , θr ) is the unique solution of
the following equation

{
G(z, β, h, θ, r) = 0,

z ∈ (X1)C, h > 0, β ≥ 0, θ ∈ [0, 2π),
(2.22)

for r ∈ [0, r2].
Proof Denote the Fréchet derivative of G with respect to (z, β, h, θ) at (z0, β0, h0, θ0, 0) by
T = (T1, T2) : (X1)C × R

3 → YC × R. Then, a direct calculation leads to

T1(χ, κ, ε, ϑ) =P0χ + κc0e
αx
[

m(x) − c0

∫ L

0
K (x, y)eαydy

]

+ iκc20e
αx
∫ L

0
K (x, y)eαydy

− ic0h0κe
αx + ϑc20e

αx
∫ L

0
K (x, y)eαydy − iεc0e

αx ,

T2(κ) =2κc20L.

Obviously, T is a bijection from (X1)C × R
3 to YC × R. It follows from the implicit

function theorem that there exist r2 > 0 and a continuously differentiable mapping
r → (zr , βr , hr , θr ) from [0, r2] to XC × R

3 such that G(zr , βr , hr , θr , r) = 0. Now,
we show the uniqueness, and only need to prove that if zr ∈ (X1)C, βr ≥ 0, hr > 0,
θr ∈ [0, 2π) satisfy G(zr , βr , hr , θr , r) = 0, then (zr , βr , hr , θr ) → (z0, β0, h0, θ0) as
r → 0 in XC × R

3. From Lemma 2.3 and Eq. (2.15), we obtain that {hr }, {βr } and {θr }
are bounded for r ∈ [0, r1]. Multiplying the first equation of (2.15) by zr , and integrating
the result over (0, L), we obtain that there exist positive constants M1 and M2 such that
λ2‖zr‖2YC ≤ |〈zr , P0zr 〉| ≤ M1‖zr‖YC + M2r‖zr‖2YC for r ∈ (0, r2], where λ2 is defined
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as in Lemma 2.4. Then, for sufficiently small r2, {zr } is bounded in YC for r ∈ [0, r2].
Note that P0 : (X1)C → (Y1)C has a bounded inverse P−1

0 . Then, {zr } is also bounded in
(X1)C, and {(zr , βr , hr , θr ) : r ∈ (0, r2]} is precompact in YC ×R

3. Therefore, there exists
a subsequence {(zrn , βrn , hr

n
, θr

n
)}∞n=1 such that

(zr
n
, βrn , hr

n
, θr

n
) → (z0, β0, h0, θ0) in YC × R

3,

and rn → 0 as n → ∞. Taking the limit of the equation

P−1
0 g1(z

rn , βrn , hr
n
, θr

n
, rn) = 0

as n → ∞, we see that

(zr
n
, βrn , hr

n
, θr

n
) → (z0, β0, h0, θ0) in XC × R

3,

as n → ∞, and (z0, r0, h0, θ0) is also a solution of Eq. (2.16), which leads to

(z0, r0, h0, θ0) = (z0, β0, h0, θ0).

This completes the proof. ��
Finally, from Theorem 2.6, we derive the following result.

Theorem 2.7 For r ∈ (0, r2], (ν, τ, ψ) solves
{

�(r , iν, τ )ψ = 0,

ν > 0, τ ≥ 0, ψ(�= 0) ∈ XC,

if and only if

ν = νr = rhr , ψ = aψr , τ = τn = θr + 2nπ

νr
, n = 0, 1, 2, · · · , (2.23)

whereψr = βr c0+r zr , a is a nonzero constant, and (zr , βr , hr , θr ) is defined as in Theorem
2.6.

2.2 Distribution of the Eigenvalues and Hopf Bifurcation

In this subsection, we will show the distribution of the eigenvalues of Aτ (r) and the exis-
tence of the Hopf bifurcation for model (1.7). Throughout this subsection, unless otherwise
specified, we always assume r ∈ (0, r2], and the value of r2 may be chosen smaller than
the one in Theorem 2.6, since further perturbation arguments are used. Firstly, we show the
distribution of the eigenvalues of Aτ (r) for τ = 0.

Theorem 2.8 For r ∈ (0, r2], all the eigenvalues of Aτ (r) have negative real parts when
τ = 0.

Proof To the contrary, there exists a sequence {rn}∞n=1 such that lim
n→∞ rn = 0, and for n ≥ 1,

rn > 0, and corresponding eigenvalue problem
{
P0ψ + rneαx K̃ (rn)ψ − rneαxurn

∫ L
0 K (x, y)eαyψ(y)dy = μeαxψ, x ∈ (0, L)

ψx (0) = ψx (L) = 0
(2.24)

has an eigenvalue μrn with Reμrn ≥ 0, where P0 and K̃ (r) are defined as in Eqs. (2.2)
and (2.9) respectively. Ignoring a scalar factor, we assume that the associated eigenfunction
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ψrn with respect to μrn satisfies ‖ψrn‖2YC = c20L , and ψrn can be represented as ψrn =
βrn c0 + rnzrn , where βrn ≥ 0, zrn ∈ (X1)C and c0 is defined as in Eq. (2.4). As in Sect. 2.1,
μrn can also be represented as μrn = rnhrn , and it follows from Lemma 2.3 that |hrn | is
bounded for r ∈ [0, r2]. Then, substituting ψ = ψrn = βrn c0 + rnzrn and μ = rnhrn into
the first equation of Eq. (2.24), we see that (zrn , βrn , hrn ) satisfies the following system

H1(z, β, h, rn) := P0z + eαx K̃ (rn)(βc0 + rnz)

− eαxurn
∫ L

0
K (x, y)eαy[βc0 + rnz(y)]dy − heαx (βc0 + rnz) = 0,

H2(z, β, rn) = (β2 − 1)c20L + (rn)2‖z‖2YC = 0.

(2.25)

Using the arguments similar to Theorem 2.6, we see that (zrn , βrn , hrn ) is bounded in YC ×
R × C. Since the operator P0 : (X1)C → (Y1)C has a bounded inverse P−1

0 , by applying
P−1
0 on

H1(zrn , βrn , hrn , r
n) = 0,

we find that {zrn }∞n=1 is also bounded in (X1)C, and consequently {(zrn , βrn , hrn )}∞n=1 is pre-
compact in YC ×R×C. Therefore, there is a subsequence {(zrnk , βrnk , hrnk )}∞k=1 convergent
to (z∗, β∗, h∗) as k → ∞ in the norm of YC × R × C, where β∗ = 1, z∗ ∈ YC and h∗ ∈ C

with Reh∗ ≥ 0. Taking the limit of the equation

P−1
0 H1(zrnk , βrnk , hrnk ) = 0

as k → ∞, we see that z∗ ∈ (X1)C and (z∗, β∗, h∗) satisfies

P0z
∗ + c0e

αx
(

m(x) − c0

∫ L

0
K (x, y)eαydy

)

− c20e
αx
∫ L

0
K (x, y)eαydy − h∗c0eαx = 0.

Therefore,

−c0

∫ L

0

∫ L

0
K (x, y)eαx+αydxdy = h∗

∫ L

0
eαxdx,

which leads to h∗ < 0. This contradicts the fact that Reh∗ ≥ 0. ��
Then, we show the distribution of the eigenvalues of Aτ (r) for τ > 0. As in [8], one needs
to study the adjoint operator �̃(r , iν, τ ) of eαx�(r , iν, τ ), which takes the following form:

�̃(r , iν, τ )ψ̃ = P0ψ̃ + reαx K̃ (r)ψ − reαx
∫ L

0
K (y, x)ur (y)e

αyψ̃(y)dyeiντ + iνeαx ψ̃.

(2.26)
It follows that

〈ψ̃, eαx�(r , iν, τ )ψ〉 = 〈�̃(r , iν, τ )ψ̃, ψ〉, (2.27)

for any ψ̃, ψ ∈ XC, and

σp(e
αx�(r , iν, τ )) = σp(�̃(r , iν, τ )).

Now, we consider the corresponding adjoint equation

P0ψ̃ + reαx K̃ (r)ψ̃ − reαx
∫ L

0
K (y, x)eαyur (y)ψ̃(y)dyei θ̃ + i ν̃eαx ψ̃ = 0, 0 �= ψ̃ ∈ XC.

(2.28)
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Note that if Eq. (2.28) is solvable for some value of ν̃ > 0, θ̃ ∈ [0, 2π) and ψ̃(�= 0) ∈ XC,
then

�̃(r , i ν̃, τ̃n)ψ̃ = 0, where τ̃n = θ̃ + 2nπ

ν̃
, n = 0, 1, 2, · · · .

Similarly, ignoring a scalar factor, ψ̃ in Eq. (2.28) can also be represented as

ψ̃ = β̃c0 + r z̃, z̃ ∈ (X1)C, β̃ ≥ 0,

‖ψ̃‖2YC = β̃2c20L + r2‖z̃‖2YC = c20L,
(2.29)

where c0 is defined as in Eq. (2.4). Then, substituting the first equation of (2.29) and ν̃ = r h̃
into Eq. (2.28), we obtain that (ν̃, θ̃ , ψ̃) solves Eq. (2.28), where ν̃ > 0, θ̃ ∈ [0, 2π) and
ψ̃ ∈ XC(‖ψ̃‖2YC = c20L), if and only if the following system:

⎧
⎪⎨

⎪⎩

g̃1(z̃, β̃, h̃, θ̃ , r) := P0 z̃ + eαx K̃ (r)(β̃c0 + r z̃) + i h̃e
αx

(β̃c0 + r z̃)

− eαx
∫ L
0 K (y, x)eαyur (y)(β̃c0 + r z̃(y))dyei θ̃ = 0

g2(z̃, β̃, r) := (β̃2 − 1)c20L + r2‖z̃‖2YC = 0

(2.30)

has a solution (z̃, β̃, h̃, θ̃ ), where z̃ ∈ (X1)C, β̃ ≥ 0, h̃ > 0, and θ̃ ∈ [0, 2π). Define
G̃ : (X1)C × R

4 → YC × R by G̃ = (g̃1, g̃2). By the arguments similar to Lemma 2.5, we
obtain that G(z̃, β̃, h̃, θ̃ , 0) = 0 is also uniquely solvable.

Lemma 2.9 The following equation
{
G̃(z̃, β̃, h̃, θ̃ , 0) = 0

z̃ ∈ (X1)C, h̃ ≥ 0, β̃ ≥ 0, θ̃ ∈ [0, 2π] (2.31)

has a unique solution (z̃0, β̃0, h̃0, θ̃0), where

β̃0 = 1, θ̃0 = π/2, h̃0 = h0, (2.32)

and z̃0 ∈ (X1)C is the unique solution of

P0z = −c0e
αx
[

m(x) − c0

∫ L

0
K (x, y)eαydy

]

+ ic20e
αx
∫ L

0
K (y, x)eαydy − ic0h0e

αx .

(2.33)

The following results can also be proved similarly as in Theorems 2.6 and 2.7.

Theorem 2.10 (I) There exists a continuously differentiable mapping

r → (z̃r , β̃r , h̃r , θ̃r )

from [0, r2] to (X1)C×R
3 such that (z̃r , β̃r , h̃r , θ̃r ) is the unique solution of the following

equation {
G̃(z̃, β̃, h̃, θ̃ , r) = 0,

z̃ ∈ (X1)C, h̃ > 0, β̃ ≥ 0, θ̃ ∈ [0, 2π),
(2.34)

for r ∈ [0, r2].
(II) For r ∈ [0, r2], the eigenvalue problem

�̃(r , i ν̃, τ̃ )ψ̃ = 0, ν̃ > 0, τ̃ ≥ 0, 0 �= ψ̃ ∈ XC
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has a solution (ν̃, τ̃ , ψ̃) if and only if

ν̃ = ν̃r = r h̃r , ψ̃ = aψ̃r , τ̃ = τ̃n = θ̃r + 2nπ

ν̃r
, n = 0, 1, 2, · · · , (2.35)

where a is a nonzero constant, ψ̃r = β̃r c0 + r z̃r , and z̃r , β̃r , h̃r , θ̃r are defined as in Part
(I ).

For later application, we give a remark on (h̃r , θ̃r , ν̃r ).

Remark 2.11 By the arguments similar to Remark 2.8 of [8], we see that hr = h̃r , θr =
θ̃r , νr = ν̃r and τn = τ̃n . Therefore, in the following, we will always use (hr , θr , νr , τn)
instead of the ones with tilde. Moreover, we remark that the corresponding solution ψr of
�(r , iνr , τn)ψ = 0 may be different from ψ̃ .

Now, we show that iνr is simple.

Theorem 2.12 Assume that r ∈ (0, r2]. Then μ = iνr is a simple eigenvalue of Aτn (r) for
n = 0, 1, 2, · · · , where iνr and τn are defined as in Theorem 2.7.

Proof From Theorem 2.7, we obtain that N [Aτn (r) − iνr ] = Span[eiνr θψr ], where θ ∈
[−τn, 0] and ψr is defined as in Theorem 2.7. If φ1 ∈ N [Aτn (r) − iνr ]2, then

[Aτn (r) − iνr ]φ1 ∈ N [Aτn (r) − iνr ] = Span[eiνr θψr ],
which implies that there exists a constant a such that

[Aτn (r) − iνr ]φ1 = aeiνr θψr .

It follows that

φ̇1(θ) = iνrφ1(θ) + aeiνr θψr , θ ∈ [−τn, 0],

φ̇1(0) = e−αx P0φ1(0) + r K̃ (r)φ1(0) − rur

∫ L

0
K (x, y)eαyφ1(−τn)(y)dy.

(2.36)

The first equation of Eq. (2.36) yields

φ1(θ) = φ1(0)e
iνr θ + aθeiνr θψr ,

φ̇1(0) = iνrφ1(0) + aψr .
(2.37)

Then, it follows from Eqs. (2.36) and (2.37) that

eαx�(r , iνr , τn)φ1(0)

= P0φ1(0) − iνr e
αxφ1(0) + reαx K̃ (r)φ1(0) − re−iθr eαxur

∫ L

0
K (x, y)eαyφ1(0)(y)dy

= aeαx
(

ψr − re−iθr τnur

∫ L

0
K (x, y)eαyψr (y)dy

)

.

(2.38)

Multiplying the above equation by ψ̃r (x) and integrating the result over (0, L), we see from
Eq. (2.27) and Remark 2.11 that

0 =
〈
�̃(r , i ν̃, τ̃n)ψ̃r , φ1(0)

〉
=
〈
�̃(r , iν, τn)ψ̃r , φ1(0)

〉
=
〈
ψ̃r , e

αx�(r , iν, τn)φ1(0)
〉

= a

(∫ L

0
eαx ψ̃rψr dx − rτne

−iθr

∫ L

0

∫ L

0
ur (x)K (x, y)eαx+αyψ̃r (x)ψr (y)dxdy

)

:= aSn(r).
(2.39)
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It follows from Theorems 2.6, 2.7 and 2.10 that θr → π/2, rτn →
(π

2
+ 2nπ
)

/h0,

ψr , ψ̃r → c0 in XC as r → 0. Therefore,

lim
r→0

Sn(r) = c20

[
1 + i
(π

2
+ 2nπ
)] ∫ L

0
eαxdx �= 0, (2.40)

which yields a = 0. Therefore,

N [Aτn (r) − iνr ] j = N [Aτn (r) − iνr ], j = 2, 3, · · · , n = 0, 1, 2, · · · ,

and μ = iνr is a simple eigenvalue of Aτn for n = 0, 1, 2, · · · . ��

Noticing that μ = iνr is a simple eigenvalue of Aτn , from the implicit function theorem,
we see that there are a neighborhood On × Dn × Hn ⊂ R × C × XC of (τn, iνr , ψr ) and a
continuously differential function (μ(τ), ψ(τ)) : On → Dn × Hn such that μ(τn) = iνr ,
ψ(τn) = ψr , and for each τ ∈ On , the only eigenvalue of Aτ (r) in Dn is μ(τ), and

eαx�(r , μ(τ), τ )ψ(τ) = P0ψ(τ) + reαx K̃ (r)ψ(τ) − μ(τ)eαxψ(τ)

− rur e
αx
∫ L

0
K (x, y)eαyψ(τ)(y)dye−μ(τ)τ = 0.

(2.41)

A direct calculation can lead to the transversality condition, and here we omit the proof.

Theorem 2.13 For r ∈ (0, r2], dRe[μ(τn)]
dτ

> 0, n = 0, 1, 2, · · · .
Then, from Theorems 2.7, 2.8, 2.12 and 2.13, we obtain the distribution of eigenvalues of

Aτ (r).

Theorem 2.14 For r ∈ (0, r2], the infinitesimal generator Aτ (r) has exactly 2(n + 1) eigen-
values with positive real parts when τ ∈ (τn, τn+1], n = 0, 1, 2, · · · .

Finally, we obtain the stability of the positive steady state ur , and the existence of the asso-
ciated Hopf bifurcation.

Theorem 2.15 For r ∈ (0, r2], the positive steady state ur obtained in Theorem 2.1 is locally
asymptotically stable when τ ∈ [0, τ0), and unstable when τ ∈ (τ0,∞). Moreover, when
τ = τn, (n = 0, 1, 2, · · · ), system (1.7) occurs Hopf bifurcation at the positive steady state
ur .

3 The Properties of the Hopf Bifurcation

In this section, we obtain the direction of the Hopf bifurcation of Eq. (1.7) and the stability
of the bifurcating periodic solutions, the methods used are motivated by [15,17,18,26]. Here,
unless otherwise specified, we also assume r ∈ (0, r2] throughout this section, and the value
of r2 may be chosen smaller than the one in Sect. 2, since further perturbation arguments are
also used. Letting U (t) = u(·, t) − ur , t = τ t̃ , τ = τn + γ , and dropping the tilde sign,
system (1.7) can be transformed as follows:

dU (t)

dt
= τne

−αx P0U (t) + τn P1Ut + J (Ut , γ ), (3.1)
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where Ut ∈ C = C([−1, 0], Y ), P0 is defined as in Eq. (2.2), and

P1Ut := r K̃ (r)U (t) − rur

∫ L

0
K (x, y)eαyU (t − 1)(y)dy,

J (Ut , γ ) := γ e−αx P0Ut + γ P1Ut − (γ + τn)rU (t)
∫ L

0
K (x, y)eαyU (t − 1)(y)dy.

Then Eq. (3.1) occurs Hopf bifurcation near the zero equilibriumwhen γ = 0. The linearized
equation of (3.1) for γ = 0 is

dU (t)

dt
= τne

−αx P0U (t) + τn P1Ut . (3.2)

Denote byAτn the infinitesimal generator of the solution semigroup for Eq. (3.2). From [46],
we have

Aτn
 =
̇,

D(Aτn ) =
{

 ∈ CC ∩ C1

C
: 
(0) ∈ XC, 
̇(0) = τne

−αx P0
(0) + τn P1Ut

}
,

where C1
C

= C1([−1, 0], YC), and the abstract form of Eq. (3.1) is

dUt

dt
= AτnUt + X0 J (Ut , γ ), (3.3)

where

X0(θ) =
{
0, θ ∈ [−1, 0),

I , θ = 0.

In order to compute the normal forms, we need to introduce a weighted inner product for
YC:

〈u, v〉1 =
∫ L

0
eαxu(x)v(x)dx for u, v ∈ YC.

Here the weight function is concerned with advection rate α, YC is also a Hilbert space with
this product, for α ≥ 0,

〈v, v〉 ≤ 〈v, v〉1 ≤ eαL 〈v, v〉,
and for α < 0,

eαL 〈v, v〉 ≤ 〈v, v〉1 ≤ 〈v, v〉.
Following the methods of [17,44], we introduce the formal duality 〈〈·, ·〉〉 in C by

〈〈
̃,
〉〉 = 〈
̃(0),
(0)〉1−rτn

∫ 0

−1

〈


̃(s + 1), ur

∫ L

0
K (·, y)eαy
(s)(y)dy

〉

1
ds, (3.4)

for 
 ∈ CC and 
̃ ∈ C∗
C

:= C([0, 1], YC). As in [25], we can compute the formal adjoint
operator A∗

τn
of Aτn with respect to the formal duality. We remark that A∗

τn
is referred to as

the formal adjoint operator of Aτn , if

〈〈A∗
τn


̃,
〉〉 = 〈〈
̃,Aτn
〉〉 (3.5)

for any 
 ∈ D(Aτn ) and 
̃ ∈ D(A∗
τn

).
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Lemma 3.1 The formal adjoint operator A∗
τn

of Aτn is defined by

A∗
τn


̃(s) = − ˙̃

(s)

with the domain

D(A∗
τn

) =
{

̃ ∈ C∗

C
∩ (C∗

C
)1 : 
̃(0) ∈ XC,− ˙̃


(0) = τne
−αx P0
̃(0)

+ rτn K̃ (r)
̃(0) − rτn

∫ L

0
K (y, x)eαyur (y)
̃(1)(y)dy

}
,

where (C∗
C
)1 = C1([0, 1], YC).

Proof For 
 ∈ D(Aτn ) and 
̃ ∈ D(A∗
τn

),

〈〈
̃,Aτn
〉〉

=
〈

̃(0), (Aτn
)(0)

〉

1
− rτn

∫ 0

−1

〈


̃(s + 1), ur

∫ L

0
K (x, y)eαy
̇(s)(y)dy

〉

1
ds

=
〈

̃(0), τne

−αx P0
(0) + τn P1

〉

1

− rτn

[〈


̃(s + 1), ur

∫ L

0
K (x, y)eαy
(s)(y)dy

〉

1

]0

−1

+ rτn

∫ 0

−1

〈
˙̃

(s + 1), ur

∫ L

0
K (x, y)eαy
(s)(y)dy

〉

1
ds

=
〈
(A∗

τn

̃)(0),
(0)

〉

1
− rτn

∫ 0

−1

〈

− ˙̃

(s + 1), ur

∫ L

0
K (x, y)eαy
(s)(y)dy

〉

1
ds

= 〈〈A∗
τn


̃,
〉〉.
This completes the proof. ��
It follows fromTheorem 2.14 thatAτn has only one pair of simple purely imaginary eigenval-
ues ±iνr τn , and the associated eigenfunction with respect to iνr τn (respectively, −iνr τn) is
ψr eiνr τnθ (respectively, ψr e−iνr τnθ ) for θ ∈ [−1, 0], where ψr is defined as in Theorem 2.7.
Similarly, it follows from Theorem 2.10, Remark 2.11 and Lemma 3.1 that the operator A∗

τn
also has only one pair of simple purely imaginary eigenvalues ±iνr τn , and the correspond-
ing eigenfunction with respect to −iνr τn (respectively, iνr τn) is ψ̃r (x)eiνr τns (respectively,

ψ̃r (x)eiνr τns) for s ∈ [0, 1], where ψ̃r is defined in Theorem 2.10. From [46], we see that the
center subspace of Eq. (3.1) is P = span{p(θ), p(θ)}, where p(θ) = ψr eiνr τnθ is the eigen-
function ofAτn with respect to iνrτn , and the formal adjoint subspace of P with respect to the
bilinear form (3.4) is P∗ = span{q(s), q(s)}, where q(s) = ψ̃r eiνr τns is the eigenfunction of

A∗
τn

with respect to −iνr τn . Denote �I = (p(θ), p(θ)), 
I = 1

Sn(r)
(q(s), q(s))T , where

Sn(r) is defined as in Eq. (2.39), and then 〈〈
I ,�I 〉〉 = I , where I is the identity matrix in
R
2×2.
Note that formulas for the direction and stability of Hopf bifurcation are all relative to

γ = 0 only, let γ = 0 in Eq. (3.1), and we obtain a center manifold as follows

w(z, z) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ O(|z|3). (3.6)
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The solution semi-flow of Eq. (3.1) on the center manifold is

Ut = �I (z(t), z(t))
T + w(z(t), z(t)),

where z(t) satisfies

ż(t) = d

dt
〈〈q(s),Ut 〉〉

= iνrτnz(t) + 1

Sn(r)

〈
q(0), J

(
�I (z(t), z(t))

T + w(z(t), z(t)), 0
)〉

1
.

(3.7)

Denote

g(z, z) = 1

Sn(r)

〈
q(0), J

(
�I (z(t), z(t))

T + w(z(t), z(t)), 0
)〉

1

=
∑

2≤i+ j≤3

gi j
i ! j ! z

i z j + O(|z|4). (3.8)

As in [8], we derive

g20 = − 2rτn
Sn(r)

e−iνr τn

∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyψr (y)dxdy,

g11 = − rτn
Sn(r)

eiνr τn
∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyψr (y)dxdy

− rτn
Sn(r)

e−iνr τn

∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyψr (y)dxdy,

g02 = − 2rτn
Sn(r)

eiνr τn
∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyψr (y)dxdy,

g21 = − 2rτn
Sn(r)

∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyw11(−1)(y)dxdy

− rτn
Sn(r)

∫ L

0

∫ L

0
ψ̃r (x)ψr (x)K (x, y)eαx+αyw20(−1)(y)dxdy

− rτn
Sn(r)

eiνr τn
∫ L

0

∫ L

0
ψ̃r (x)w20(0)(x)K (x, y)eαx+αyψr (y)dxdy

− 2rτn
Sn(r)

e−iνr τn

∫ L

0

∫ L

0
ψ̃r (x)w11(0)(x)K (x, y)eαx+αyψr (y)dxdy,

(3.9)

where w20(θ) and w11(θ) are needed to be computed.
Note that w(z(t), z(t)) satisfies

ẇ = Aτnw + X0 J (�I (z, z)
T + w(z, z), 0)

− �I 〈〈
I , X0 J (�I (z, z)
T + w(z, z), 0)〉〉

= Aτnw + H20
z2

2
+ H11zz + H02

z2

2
+ O(|z|3),

(3.10)

where H20, H11 and H02 satisfy

X0 J (�I (z, z)
T + w(z, z), 0) − �〈〈
, X0 J (�I (z, z)

T + w(z, z), 0)〉〉

= H20
z2

2
+ H11zz + H02

z2

2
+ O(|z|3).
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By using the chain rule, we see that w also satisfies

ẇ = ∂w(z, z)

∂z
ż + ∂w(z, z)

∂z
ż.

Therefore, {
(2iνr τn − Aτn )w20 = H20,

−Aτnw11 = H11.
(3.11)

Note that for θ ∈ [−1, 0),

H20(θ) = −(g20 p(θ) + g02 p(θ)),

H11(θ) = −(g11 p(θ) + g11 p(θ)).
(3.12)

Then, from Eq. (3.11) and (3.12), w20 and w11 can be expressed as

w20(θ) = ig20
νr τn

p(θ) + i g02
3νr τn

p(θ) + Ere
2iνr τnθ , (3.13)

and

w11(θ) = − ig11
νr τn

p(θ) + i g11
νrτn

p(θ) + Fr . (3.14)

Noticing that

H20(0) = − (g20 p(0) + g02 p(0)
)− 2rτne

−iνr τnψr

∫ L

0
K (x, y)eαyψr (y)dy,

we see from From Eqs. (3.10) and (3.11) with θ = 0 that Er satisfies

(2iνr τn − Aτn )Ere
2iνr τnθ
∣
∣
∣
∣
θ=0

= −2rτne
−iνr τnψr

∫ L

0
K (x, y)eαyψr (y)dy,

that is,

�(r , 2iνr , τn)Er = 2re−iνr τnψr

∫ L

0
K (x, y)eαyψr (y)dy. (3.15)

From Corollary 2.7, we have that 2iνr is not the eigenvalue of Aτn (r), and hence

Er = 2re−iνr τn�(r , 2iνr , τn)
−1
(

ψr

∫ L

0
K (x, y)eαyψr (y)dy

)

.

Similarly,

Fr = r�(r , 0, τn)
−1
(

eiνr τnψr

∫ L

0
K (x, y)eαyψr (y)dy

)

+ r�(r , 0, τn)
−1
(

e−iνr τnψr

∫ L

0
K (x, y)eαyψr (y)dy

)

.

(3.16)

Then, Er and Fr can be derived in the following.

Lemma 3.2 For r ∈ (0, r2], let Er and Fr be defined as in (3.15) and (3.16). Then

Er = br c0 + φr , (3.17)

where c0 is defined as in Eq. (2.4), φr ∈ (X1)C, and br , φr satisfy

lim
r→0

br = 2i

2i − 1
, lim

r→0
‖φr‖YC = 0,

and limr→0 ‖Fr‖YC = 0.
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Proof We only prove the estimate for Er , and Fr can be derived similarly. Substituting Eq.
(3.17) in to Eq. (3.15), we have

1

r
P0φr = −eαx K̃ (r)(br c0 + φr ) + ur e

αx
∫ L

0
K (x, y)eαy[br c0 + φr (y)]dye−2iνr τn

+ 2ihr e
αx (br c0 + φr ) + 2e−iνr τnψr e

αx
∫ L

0
K (x, y)eαyψr (y)dy,

(3.18)
where hr is defined as in Theorem 2.6. Integrating Eq. (3.18) over (0, L), and noticing
that |hr |, ‖ur‖∞ and ‖ψr‖∞ are bounded for r ∈ (0, r2], we see that there exist constants
M0, M1 > 0 such that

|br | ≤ M0‖φr‖YC + M1, (3.19)

for any r ∈ (0, r2]. Multiplying Eq. (3.18) by φr , and integrating the result over (0, L), we
see from Lemma 2.4 and Eq. (3.19) that there exist constants M2, M3 > 0 such that

λ2‖φr‖2YC ≤ rM2‖φr‖2YC + rM3‖φr‖YC ,

for any r ∈ (0, r2], where λ2 is defined as in Lemma 2.4. This leads to limr→0 ‖φr‖YC = 0.
Then, integrating Eq. (3.18) over (0, L), and taking the limit of the equation at both sides as
r → 0, we obtain

(2i − 1)

(

lim
r→0

br

)∫ L

0
m(x)eαxdx = 2i

∫ L

0
m(x)eαxdx,

which leads to limr→0 br = 2i
2i−1 . Similarly, we can prove that limr→0 ‖Fr‖YC = 0. ��

Therefore, by similar arguments similar to [8], one can also derive

lim
r→0

g11 = 0 and lim
r→0

Re[g21] < 0. (3.20)

It follows from [26,46] thatC1(0)determines the direction and stability of bifurcating periodic
orbits, where

C1(0) = i

2νr τn

(

g11g20 − 2|g11|2 − |g02|2
3

)

+ g21
2

.

Then, Eq. (3.20) implies limr→0 Re[C1(0)] < 0. Hence we have the following result.

Theorem 3.3 Assume that r ∈ (0, r2], where 0 < r2 � 1. Let {τn(r)}∞n=0 be the Hopf
bifurcation points of Eq. (1.7) obtained in Theorem 2.15. Then, for each n ∈ N ∪ {0}, the
direction of the Hopf bifurcation at τ = τn is forward and the bifurcating periodic solutions
from τ = τ0 is orbitally asymptotically stable.

4 The Effect of Spatial Heterogeneity

In this section, wewill consider the effect of spatial heterogeneity onHopf bifurcation values.
It follows from Lemma 2.5, Theorems 2.14 and 2.15 that the first Hopf bifurcation value τ0
of Eq. (1.7) depends on r , α, L , and satisfies:

τ0(r , α, L) = θr (α, L)

rhr (α, L)
, lim

r→0
θr (α, L) = π

2
,

lim
r→0

hr (α, L) =h0(α, L) =
∫ L
0 m(x)eαxdx
∫ L
0 eαxdx

.

(4.1)
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If m(x) ≡ m0, where m0 is a positive constant, then

h0(α, L) = m0 and lim
r→0

rτ0(r , α, L) = π

2m0

for any α ∈ (−∞,∞) and L > 0, and hence τ0(r , α, L) ≈ π

2rm0
for small r . It seems that

the value of τ0(r , α, L) has no significant change as advection α or spatial scale L changes,
when m(x) is spatially homogeneous.

Then we consider the case that m(x) is spatially heterogeneous. We find that Hopf bifur-
cation is more likely to occur as spatial scale L increases, if m(x) achieve its maximum at
boundary x = L .

Proposition 4.1 Suppose that m(x) is non-constant, m(L) = maxx∈[0,L] m(x), α ∈
(−∞,∞), and L1 > L2 > 0. Then there exists r̃ > 0, depending on L1, L2 and α,
such that τ0(r , α, L1) < τ0(r , α, L2) for t ∈ (0, r̃ ].
Proof Since

∂h0(α, L)

∂L
= eαL

∫ L
0 [m(L) − m(x)] eαxdx
(∫ L

0 eαxdx
)2 > 0,

we see that, for any fixed α ∈ (−∞,∞), h0(α, L) is strictly increasing for L ∈ (0,∞). Note
that

τ0(r , α, L) = θr (α, L)

rhr (α, L)
and lim

r→0
rτ0(r , α, L) = π

2h0(α, L)
.

It follows that there exists r̃ > 0, depending on L1, L2 and α, such that τ0(r , α, L1) <

τ0(r , α, L2) for t ∈ (0, r̃ ]. ��
In the following we will choose different types of m(x) to show the effect of spatial hetero-
geneity.

Example 4.2 Choose
m(x) = x . (4.2)

In this case,

h(α, L) =αLeαL − eαL + 1

α(eαL − 1)
, h0(0, L) = L

2
,

∂h0(α, L)

∂a
=
∫ L
0 x2eαxdx

∫ L
0 eαxdx −

(∫ L
0 xeαxdx

)2

(∫ L
0 eαxdx

)2 > 0,

∂h0(α, L)

∂L
=eαL
(
eαL − αL − 1

)

(
eαL − 1

)2 > 0.

Consequently, if we choose
m(x) = m0 − x, (4.3)

where m0 is a constant and m0 > L , then

∂h0(α, L)

∂a
< 0,

∂h0(α, L)

∂L
< 0.

Then we have the following two statements on the effect of advection α.
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1. Assume that L ∈ (0,∞), m(x) = x and α1 > α2. Then there exists r̃ > 0, depending
on α1, α2 and L , such that τ0(r , α1, L) < τ0(r , α2, L) for r ∈ (0, r̃ ].

2. Assume that L ∈ (0,∞),m(x) = m0−x , wherem0 > L , andα1 > α2. Then there exists
r̃ > 0, depending on α1, α2 and L , such that τ0(r , α1, L) > τ0(r , α2, L) for r ∈ (0, r̃ ].

Therefore, Hopf bifurcation is more likely to occur when the advection rate increases (respec-
tively, decreases) for m(x) = x (respectively, m(x) = m0 − x , where m0 > L). Similarly,
we have the following two statements on the effect of spatial scale L .

1. Assume that α ∈ (−∞,∞),m(x) = x and L1 > L2. Then there exists r̃ > 0, depending
on L1, L2 and α, such that τ0(r , α, L1) < τ0(r , α, L2) for r ∈ (0, r̃ ].

2. Assume that α ∈ (−∞,∞), m(x) = m0 − x , where m0 > L , and L1 > L2. Then
there exists r̃ > 0, depending on L1, L2 and α, such that τ0(r , α, L1) > τ0(r , α, L2) for
r ∈ (0, r̃ ].

Therefore, Hopf bifurcation is more likely to occur when spatial scale L increases (respec-
tively, decreases) for m(x) = x (respectively, m(x) = m0 − x , where m0 > L).

Example 4.3 Choose

m(x) = sin
πx

L
. (4.4)

In this case,

h(α, L) = παL
(
eαL + 1

)

(
π2 + α2L2

)
(eαL − 1)

, h0(0, L) = 2

π
.

Therefore, if αL > π , then

∂h0(α, L)

∂a
< 0 and

∂h0(α, L)

∂L
< 0.

Consequently, we have the following two statements on the effects of advection α and spatial
scale L .

1. Assume that α1 > α2 > π/L . Then there exists r̃ > 0, depending on α1, α2 and L , such
that τ0(r , α1, L) > τ0(r , α2, L) for r ∈ (0, r̃ ].

2. Assume that L1 > L2 > π/α. Then there exists r̃ > 0, depending on L1, L2 and α, such
that τ0(r , α1, L1) > τ0(r , α2, L2) for r ∈ (0, r̃ ].

Therefore, Hopf bifurcation is more likely to occur when advection rate α > π/L decreases
or spatial scale L > π/α decreases.

5 Numerical Simulations

Finally, some numerical simulations are given to support our obtained theoretical results in
Sects. 2 and 3. For simplicity, we only give the numerical results when m(x) is spatially
homogeneous. Firstly, we assume that kernel K (x, y) satisfies Eq. (1.6), and model (1.5)
with this kernel takes the following form:
⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= duxx − αux + ru

(

1 −
∫ x

0
u(y, t − τ)dy

)

, 0 < x < L, t > 0,

dux (0, t) − αu(0, t) = 0, t > 0,

dux (L, t) − αu(L, t) = 0, t > 0.

(5.1)
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We see that when τ is small, the solution converges to a positive steady state, and when τ is
large, Hopf bifurcation can occur and the solution converges to a positive periodic solution,
see Fig. 1 for α = 0 and Fig. 2 for α = 0.45. In some sense, Eq. (5.1) can also model
the population dynamics for a river species in a water column, where x = 0 and x = L
represent the top and the bottom of the water column respectively, and the individuals at
location x only compete with the ones in [0, x]. There are some examples of this type of
nonlocal competition, such as the competition for the oxygen or the light [29]. Numerically,
we find that when advection rate α = 0, the density of the species concentrates on the top
of the water column, see Fig. 1. However, when α becomes large, the density of the species
concentrates from the top to the bottom of the water column, see Figs. 1 and 2.

Then we consider the case that K (x, y) = δ(x − y), and model (1.5) with this kernel
takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= duxx − αux + ru (1 − u(x, t − τ)) , 0 < x < L, t > 0,

dux (0, t) − αu(0, t) = 0, t > 0,

dux (L, t) − αu(L, t) = 0, t > 0.

(5.2)

Similarly, we see that when τ is small, the solution converges to a positive steady state, and
when τ is large, Hopf bifurcation can occur and the solution converges to a positive periodic

Fig. 1 Equation (5.1) occurs Hopf bifurcation with advection α = 0. Here d = 1, L = 4π and r = 0.5.
(Left): τ = 1; (Right): τ = 4

Fig. 2 Equation (5.1) occurs Hopf bifurcation with advection α = 0.45. Here d = 1, L = 4π and r = 0.5.
(Left): τ = 1; (Right): τ = 4
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Fig. 3 Equation (5.2) occurs Hopf bifurcation with advection α = 0. Here d = 1, L = 4π and r = 0.5.
(Left): τ = 1; (Right): τ = 4

Fig. 4 Equation (5.2) occurs Hopf bifurcation with advection α = 0.2. Here d = 1, L = 4π and r = 0.5.
(Left): τ = 1; (Right): τ = 4

solution, see Fig. 3 for α = 0 and Fig. 4 for α = 0.2. Moreover, the steady state and periodic
solution are spatially homogeneous for α = 0 and spatially nonhomogeneous for α = 0.2.
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