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Abstract
The goal of this paper is to construct explicitly the global attractors of parabolic equations
with singular diffusion coefficients on the boundary, as it was done without the singular term
for the semilinear case by Brunovský and Fiedler (1986), generalized by Fiedler and Rocha
(1996) and later for quasilinear equations by Lappicy (2017). In particular, we construct
heteroclinic connections between hyperbolic equilibria, stating necessary and sufficient con-
ditions for heteroclinics to occur. Such conditions can be computed through a permutation
of the equilibria. Lastly, an example is computed yielding the well known Chafee–Infante
attractor.

Keywords Parabolic equations · Singular coefficients · Infinite dimensional dynamical
systems · Global attractor · Sturm attractor

1 Main Results

Consider the scalar quasilinear parabolic differential equation

ut = a(θ, φ, u,∇u)�S2u + f (θ, φ, u,∇u) (1.1)

with initial data u(0, θ, φ) = u0(θ, φ) such that a, f ∈ C2, satisfy the strict parabolicity
condition a(θ, φ, u,∇u) ≥ ε > 0, and �S2 is the Laplace–Beltrami operator on the sphere
S
2. In coordinates, the angle variables are (θ, φ) ∈ [0, π]× [0, 2π]with Neumann boundary

condition in θ and periodic boundary in φ.
Suppose that solutions u(t, θ, φ) are axisymmetric, that is, they are independent of rota-

tions with respect to the angle φ and depend only in θ . Hence, u(t, θ) solves the following
equation

ut = a(θ, u, uθ )

[
uθθ + uθ

tan(θ)

]
+ f (θ, u, uθ ) (1.2)
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with initial data u(0, θ) = u0(θ), where θ ∈ [0, π ] has Neumann boundary. Even though the
equation has a singular coefficient at the boundaries θ = 0 and π , solutions are still regular.

The Eq. (1.2) defines a semiflow denoted by (t, u0) �→ u(t) in a Banach space Xα :=
C2α+β([0, π]). We suppose that 2α+β > 1 so that solutions are at leastC1. The appropriate
functional setting is described in Sect. 2.1.

In order to study the long time behavior of (1.2), we suppose that f satisfies the following
conditions

f (θ, u, 0) · u < 0

| f (θ, u, p)| < f1(u) + f2(u)|p|γ
|aθ |

1+ |p| + |au | + |ap| · [1+ |p|] ≤ f3(|u|)
0 < ε ≤ a(θ, u, p) ≤ δ (1.3)

where the first condition holds for |u| large enough, uniformly in θ , the second for all (θ, u, p)
for continuous f1, f2 and γ < 2, the third for continuous f3 and ε, δ > 0.

Those conditions imply that |u| and |uθ | are bounded. Hence, the semiflow is dissipative:
trajectories u(t) eventually enter a large ball in the phase-space Xα . See Chapter 6, Section
5 in [42]. Also [5,31].

Moreover, these hypotheses guarantee that there exists a nonempty global attractor A
of (1.2), which is the maximal compact invariant set. Equivalently, it is the set of bounded
trajectories u(t) in the phase-space Xα that exist for all t ∈ R. See [5].

The goal of this paper is to decompose A into smaller invariant sets, and describe how
those sets are related.

For the statement of the main theorem that describes the global attractorA, denote by the
zero number z(u∗) the number of strict sign changes of a continuous function u∗(θ). Recall
that theMorse index i(u∗) of an equilibrium u∗ is given by the number of positive eigenvalues
of the linearized operator at such equilibrium, that is, the dimension of the unstable manifold
of u∗.

We say that two different equilibria u−, u+ of (1.2) are adjacent if there does not exist
an equilibrium u∗ between u− and u+ at θ = 0 satisfying

z(u − −u∗) = z(u− − u+). = z(u+ − u∗). (1.4)

This notion was firstly described by Wolfrum [43].
Both the zero number and Morse index can be computed from a permutation of the

equilibria, as it was done in [10,12]. Such permutation is called the Sturm Permutation.
We construct an analogous permutation for the case of boundary singularity in Sect. 2.2, as
in [10]. For such, it is required that the flow of the equilibria equation of (1.2) exists for all
θ ∈ [0, π].
Theorem 1.1 (Sturm attractor) Consider a, f ∈ C2 satisfying the growth conditions (1.3).
Suppose that all equilibria for the Eq. (1.2) are hyperbolic. Then,

1. the global attractorA of (1.2) consists of finitely many equilibria E and their heteroclinic
orbits H.

2. there exists a heteroclinic u(t) ∈ H between u−, u+ ∈ E such that

u(t)
t→±∞−−−−→ u±

if, and only if, u− and u+ are adjacent and i(u−) > i(u+).

123



Journal of Dynamics and Differential Equations (2020) 32:359–390 361

uk+2 ≡ 0

uk+1 uk+3

u2 u2k+2

u1 ≡ −1 u2k+3 ≡ +1

Fig. 1 Global attractor A of Chafee–Infante type

The first claim follows due to the existence of a Lyapunov functional constructed by
Matano [29] and Zelenyak [44]. A modification of such functional for the case of singular
coefficients is done in Sect. 2.1.

The second claim answers the question of which equilibria connect to which other. This
geometric descriptionwas carried out byHale and doNascimento [14] for the Chafee–Infante
problem, by Brunovský and Fiedler [7] for f (u), by Fiedler and Rocha [10] for f (x, u, ux ),
and for quasilinear equations by the author in [22]. Such attractors are known as Sturm
attractors.

Constructing the Sturm attractor for the Eq. (1.2) is problematic due to its singular coef-
ficient. It is the aim of this paper to modify the existing theory for such boundary singularity
and still obtain a Sturm attractor.

In particular, we compute the attractor explicitly for the example of Chafee–Infante type
nonlinearity with singular boundary coefficients. This attractor is used as an application of
the Einstein Hamiltonian equation, as in [21,23].

Corollary 1.2 (Chafee–Infante attractor) Consider f (λ, θ, u, uθ ) = λa(θ, u, uθ )u(1 − u2)
in the Eq. (1.2). Let λ ∈ (λk, λk+1), where λk is the kth eigenvalue of the axisymmetric
Laplacian with k ∈ N0.

Then, there are 2k + 3 hyperbolic equilibria u1, . . . u2k+3 and its attractorA is in Fig. 1,
where arrows denote heteroclinics.

This corollary is proved by constructing a Sturm permutation of the axisymmetric Chafee–
Infante, yielding the same permutation as the usual Chafee–Infante problem. Hence, their
attractors are geometrically (connection-wise) the same and their only difference lies in the
form of the equilibria and the domain of the parameter λ.

The remaining sections are organized as follows.
Wefirstly introduce the functional setting in Sect. 2.1, and construct a Lyapunov functional

for the singular case by modifying Matano’s arguments from [27], and its generalization for
fully nonlinear equations [24]. In particular this implies that the attractor consists of equilibria
and heteroclinics.

Then, we focus on the connection problem. All the necessary information about the adja-
cency, namely the zero numbers and Morse indices, are encoded in a permutation of the
equilibria, which is described in Sect. 2.2. This was done firstly by [12], and here is modified
for the singular case.
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In Sect. 2.4, it is proven the dropping lemma for the singular case, as well as some
consequences. This is a fundamental result for the attractor construction that dates back to
Sturm and is done by modifying arguments of Chen and Polácik [32], where they proved
such result for a singular coefficient at only one boundary value. Then all the previous tools
are put together to construct the attractor in Sect. 2.4, as it was done [10].

Lastly, Sect. 3 gives an example of the developed theory and constructs the attractor for
the axisymmetric Chafee–Infante problem.

2 Proof of Main Result

2.1 Functional Setting

The Banach space used on the upcoming theory consists on subspaces of Hölder continuous
functions Cβ(S2) with β ∈ (0, 1). A more precise description is given below, following
Lunardi [26] for the Euclidean case, and Huang [20] for the case on manifolds. The notation
Cβ for some β ∈ R+ indicates that β = [β]+{β}, where the integer part [β] ∈ N denotes the
[β]-times differentiable functions whose [β]-derivatives are {β}-Hölder, where {β} ∈ [0, 1)
is the fractional part of β.

The Eq. (1.1) is seen as an abstract differential equation on a Banach space,

ut = Au + g(u) (2.1)

where A: D(A) → X̃ is the linearization of the right-hand side of (1.1) at the initial data
u0, and the Nemitskii operator g of the remaining nonlinear part, which takes values in X̃ .
The spaces considered are X̃ := Cβ(S2), and D(A) = C2+β(S2) ⊂ X̃ is the domain of the
operator A, where β ∈ (0, 1).

Weconsider the interpolation spacesC2α+β(S2)between D(A) and X̃ withα ∈ (0, 1) such
that A generates a strongly continuous semigroup inC2α+β(S2), and hence the Eq. (1.1) with
the dissipative conditions (1.3) defines a dissipative dynamical system in X̃α . We suppose
that 2α + β > 1 so that solutions are at least in C1(S2). Moreover, due to the Sobolev
embedding, we know that C2α+β(S2) ⊆ L2(S2), and hence C2α+β(S2) inherits an inner
product, once its functions are considered as L2(S2) functions. Note all these spaces have
metrics depending on the metric of the sphere.

In particular, it settles the theory of existence and uniqueness. For certain qualitative
properties of solutions, such as the existence of invariant manifolds tangent to the linear
eigenspaces, one needs to know the spectrum of A.

Now, we consider the restriction of the flow u(t) in C2α+β(S2) to the invariant subspace
Xα := C2α+β([0, π]) which consists of functions that do not depend on the angle φ. We
now prove Xα is indeed invariant. Consider the projection P: X̃α → Xα . Let w(t) :=
u(t) − Pu(t), where Pu(t) is the restricted flow with the same initial data Pu0 = u0 ∈
C2α+β([0, π]). Note w has initial data w0 ≡ 0 and satisfies a linear PDE. The maximum
principle implies that w(t) ≡ 0, and hence the full flow u(t) is equal to the restricted flow
Pu(t), which do not depend on φ.

Hence, the Eq. (1.2) can be rewritten as an equation in Xα like (2.1) with the restricted
operator A|Xα , where the metric in Xα is the sum of the C [2α+β]-norm and the Hölder
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C {2α+β}-seminorm,

||u(θ)||Xα =
[2α+β]∑
k=0

max
θ∈[0,π ] |∂

k
θ u(θ)| + max

θ1,θ2∈[0,π ]
|∂ [2α+β]

θ u(θ1) − ∂
[2α+β]
θ u(θ2)|

|θ1 − θ2|{2α+β}
arc

where | · | denotes the usual norm in R, ∂kθ denotes the kth-derivative with respect to θ , and

the distance in the axial-arc within the sphere is given by |θ1 − θ2|arc = ∫ θ2
θ1

sin(θ)dθ .

Moreover, Xα ⊆ L2
w([0, π ]), and we also have an induced inner product in Xα given by

||u(θ)||L2
w([0,π ]) =

(∫ π

0
u2(θ) sin(θ)dθ

) 1
2

where the space L2
w([0, π ]) has weight w := sin(θ) that tames the singular term and is

given by the usual spherical metric restricted on the axially symmetric arc within the sphere,
parametrized by the angle θ ∈ [0, π ].

The operator A is a self-adjoint singular Sturm–Liouville operator on the space L2
w([0, π]).

Its spectrum consists of real and simple eigenvalues λk = k(k+1) for k ∈ N0 with Legendre
polynomials φk = Pk(cos θ) as corresponding eigenfunctions, which form an orthonormal
basis of L2

w([0, π]). Note all φk ∈ Xα , and hence are also a basis of Xα .
These yield the existence of invariant manifolds.

Theorem 2.1 (Filtration of invariant manifolds [30]) Let u∗ be a hyperbolic equilibrium of
(1.2) with Morse index n := i(u∗). Then there exists a filtration of the unstable manifold

Wu
0 (u∗) ⊂ · · · ⊂ Wu

n−1(u∗) = Wu(u∗)

where each Wu
k has dimension k + 1 and tangent space at u∗ spanned by φ0, . . . , φk .

Analogously, there is a filtration of the stable manifold

· · · ⊂ Ws
n+1(u∗) ⊂ Ws

n (u∗) = Ws(u∗)

where each Ws
k has codimension k and tangent space at u∗ space spanned by φk, φk+1, . . ..

Note that the above index labels are not in agreement with the dimension of each subman-
ifold within the filtration, but it is with the number of zeros its corresponding eigenfunction
has. For example, an eigenfunction φk corresponding to the eigenvalue λk > 0 has k simple
zeroes, whereas the dim(Wu

k ) = k + 1.
An important property is the behavior of solutions within each submanifold of the above

filtration of the unstable or stable manifolds.

Theorem 2.2 (Linear asymptotic behavior [1,6,18]) Consider a hyperbolic equilibrium u∗
with Morse index n := i(u∗) and a trajectory u(t) of (1.2). The following holds,

1. If u(t) ∈ Wu
k (u∗)\Wu

k−1(u∗) with k = 0, . . . , i(u∗) − 1, then

u(t) − u∗
||u(t) − u∗||

t→−∞−−−−→ ±φk .

2. If u(t) in Ws
k (u∗)\Ws

k+1(u∗) with k ≥ i(u∗), then

u(t) − u∗
||u(t) − u∗||

t→∞−−−→ ±φk ..
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where the convergence takes place in Xα ⊆ C1, and Wu−1(u∗) = ∅.
The conclusions of 1. and 2. also hold true by replacing the difference u(t) − u∗ with the

tangent vector ut .

The reason this theorem works for both the tangent vector v := ut or the difference
v := u1 − u2 of any two solutions u1 and u2 of the nonlinear equation (1.2) is because they
satisfy a linear equation of the type

vt = a(t, θ)

[
vθθ + vθ

tan(θ)

]
+ b(t, θ)vθ + c(t, θ)v (2.2)

where θ ∈ (0, π) hasNeumann boundary conditions, a(t, θ), b(t, θ) and c(t, θ) are bounded.
Now we show that there exists a Lyapunov function, as it was done by Zelenyak [44]

and Matano [28]. We modify Matano’s construction bearing in mind that the metric on the
sphere induces a space with weighted norms, and this weight should be incorporated into the
construction of the Lyapunov function. Therefore, the flow in Xα is gradient with respect
to the induced inner product of L2

w. As a consequence of the Lyapunov function, bounded
trajectories tend to equilibria.

Lemma 2.3 (Lyapunov function) There exists a Lagrange function L such that

E :=
∫ π

0
L(θ, u, uθ ) sin(θ)dθ (2.3)

is a Lyapunov function for the Eq. (1.2).

Note that in the case that the nonlinearity f does not depend on uθ , then the Lagrange
functional L(θ, u, uθ ) := 1

2u
2
θ − F(θ, u) yields a Lyapunov function E , where F is the

primitive function of f . Indeed,

dE

dt
= −

∫ π

0
|ut |2 sin(θ)dθ ≤ 0.

For nonlinearities of the type f (θ, u, uθ ), we obtain a Lyapunov function such that

dE

dt
:= −

∫ π

0
|ut |2 L pp sin(θ)

a
dθ ≤ 0 (2.4)

where p := uθ and L satisfy the convexity condition L pp > 0. Hence, the case that f does
not depend on uθ is seen as a particular case when L pp = 1.

Proof Let p := uθ and differentiate (2.3) with respect to t ,

dE

dt
=

∫ π

0

[
Luut + L puθ t

]
sin(θ)dθ.

Integrating the second term by parts and noticing that the sin(θ) is 0 at the boundaries,

dE

dt
=

∫ π

0

[
Lu sin(θ) − d

dθ
(L p sin(θ))

]
utdθ

=
∫ π

0

[
(Lu − L pθ − L puuθ − L ppuθθ ) sin(θ) − L p cos θ

]
utdθ.

Substitute (1.2) casted as uθθ sin(θ) = [ut sin(θ) − f sin(θ)]/a − uθ cos(θ),

dE

dt
=

∫ π

0

(
Lu − L pθ − L puuθ + L pp

f

a

)
sin(θ)utdθ
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+
∫ π

0
(L ppuθ − L p) cos(θ)utdθ −

∫ π

0

L pp

a
u2t sin(θ)dθ.

To obtain (2.4), we guarantee that there exists a function L satisfying(
Lu − L pθ − L pu p + L pp

f

a

)
sin(θ) + (L pp p − L p) cos(θ) = 0 (2.5)

for all u, p ∈ R and θ ∈ [0, π ].
Differentiating this equation with respect to p, some of the terms cancel, yielding[

−L ppθ − L ppu p + L ppp
f

a
+ L pp

(
f

a

)
p

]
sin(θ) + (L ppp p) cos(θ) = 0. (2.6)

To make sure that L pp > 0, introduce g = g(θ, u, p) through L pp = exp(g) > 0. Hence,
g satisfies the following linear first order differential equation,[(

gθ + gu p − gp
f

a
−

(
f

a

)
p

)
sin(θ) − (gp p) cos(θ)

]
exp(g) = 0. (2.7)

Or equivalently,[
gθ + gu p + gp

(
− f

a
− p

cos(θ)

sin(θ)

)]
sin(θ) =

(
f

a

)
p
sin(θ).

This can be solved through the method of characteristics: along the solutions of{
uθ = p

pθ = − f
a − p cos(θ)

sin(θ)

the function g must satisfy
dg

dθ
=

(
f

a

)
p
.

Note that characteristics solve the equation for equilibria. If solutions of such equations
exist for all initial conditions (u, p) ∈ R

2 at θ = 0, and all θ ∈ [0, π], we obtain a global
solution g of (2.7) with some initial data, for example, g(0, u, p) ≡ 0.

It is still needed to ascend from a function g satisfying (2.7) to a function L satisfying
(2.5). A choice for L such that L pp = exp(g) can be obtained by integrating this relation
twice with respect to p, yielding a solution of (2.6),

L(θ, u, p) :=
∫ p

0

∫ p1

0
exp(g(θ, u, p2))dp2dp1 + G(θ, u).

To show that such L is also a solution of (2.5), we have to restrict which G are allowed.
Recall that (2.6) was obtained through differentiating (2.5) with respect to p. That means
that the left-hand side of (2.5) is independent of p, since it is equal to 0. Hence it is satisfied
for all p, if it holds for p = 0.

At p = 0, the construction of L yields that L p = L pθ = 0 and Lu = Gu . Plugging it in
the Eq. (2.5) at p = 0, it yields (Gu + L pp f /a) sin(θ) = 0. Hence, Gu + L pp f /a = 0, that
is, Gu = − exp(g) f /a. Integrating in u,

G(θ, u) := −
∫ u

0

f (θ, u1, 0)

a(θ, u1, 0)
exp(g(θ, u1, 0))du1

��
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Note that one can do a similar construction of a Lyapunov function without assuming
that the sin(θ) appears in the integrand, as in (2.3). But such coefficient will appear once the
differential equation is plugged in the Ansatz for the Lyapunov functional.

Moreover,Matano’s construction can be adapted to more general singular Sturm Liouville
operators of the form ∂θ (r(θ)∂θ )

w(θ)
, if the weight sin(θ)within the integrand is replaced byw(θ).

Hence, the Lyapunov function will decay in the L2
w norm with appropriate weighted metric.

Therefore, the LaSalle invariance principle holds and implies that bounded solutions con-
verge to equilibria, and any α, ω-limit set consist of a single equilibrium. See [29]. Moreover,
due to hyperbolicity, equilibria are isolated and due to dissipativity, there are finitely many of
them. Hence, the global attractor consists of finitely many equilibria, and their heteroclinic
connections, yielding the first part of the main result. See [5,18].

2.2 Sturm Permutation

The next step on our quest to find the Sturm attractor is to construct a permutation associated
to the equilibria, which is done using shooting methods. This enables the computation of the
Morse indices and zero number of equilibria. That was firstly done by Fusco and Rocha [12]
using methods also described by Fusco, Hale and Rocha in [11,16,33,34,36].

The equilibria equation associated to (1.2) can be rewritten as

0 = a(θ, u, uθ )

sin(θ)

d

dθ
[uθ sin(θ)] + f (θ, u, uθ ) (2.8)

for θ ∈ [0, π] with Neumann boundary conditions and a > ε > 0.
In order to get rid of the singularities at θ = 0 and π , rescale the system by τ(θ) :=

ln(tan(θ/2)) ∈ (−∞,∞), which maps the singularities at θ = 0, π to τ = ±∞. Also, add
the equation θτ = sin(θ) to obtain an autonomous system,{

0 = a(θ, u, uτ / sin(θ))uττ + f (θ, u, uτ / sin(θ)) sin2(θ)

θτ = sin(θ).

Moreover, reduce the equation to first order system through p := uτ . Hence,⎧⎪⎨
⎪⎩
uτ = p

pτ = − f (θ,u,p/ sin(θ))
a(θ,u,p/ sin(θ))

sin2(θ)

θτ = sin(θ)

(2.9)

where the Neumann boundary condition becomes limτ→±∞ p(τ ) = 0, since the Neumann
boundary in changed coordinates yields

0 = lim
θ→0,π

uθ = lim
τ→±∞ uτ

dτ

dθ
= lim

τ→±∞ p(τ ) cosh(τ ) (2.10)

and limτ→±∞ cosh(τ ) → ∞. This forces exponential decay of p.
Note that the term sin2(θ) cuts off the reaction f , being 1 at the equator and decaying to

0 near the poles. This means that the diffusion near the poles is stronger.
In the nonsingular case, the idea to find equilibria (1.2) is as follows. They must lie in the

line
L0 := {

(θ, u, p) ∈ R
3|(θ, u, p) = (0, d, 0) and d ∈ R

}
due to Neumann boundary at θ = 0. Then, evolve this line under the flow of the equilibria
differential equation and intersect it with an analogous line Lπ at θ = π , so that it also
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satisfies Neumann at θ = π . This reasoning does not work for the singular case, since L0 is
a line of equilibria and is invariant under the shooting flow (2.9). A new approach is needed.

In the singular case, the linearizationof (2.9) at eachpoint in L0 has eigenvaluesλ1 = 1 and
λ2 = λ3 = 0 with respective generalized eigenvectors v1 = (0, 0, 1), v2 = (1, 0, 0), v3 =
(0, 1, 0). Hence, there is an one dimensional unstable direction given by the θ -axis, and two
center directions given by the invariant plane {(u, p, 0) ∈ R

3}.
Furthermore, each point (0, d, 0) ∈ L0 has an one dimensional strong unstable manifold

Wu(0, d, 0), which is locally a graph {(θ, uu(θ, d), pu(θ, d)) ∈ R
3}. See [13]. The collection

of all these strong unstable manifolds defines the unstable shooting manifold Mu ,

Mu :=
⋃
d∈R

Wu(0, d, 0).

Similarly, each point (0, e, 0) ∈ Lπ has an one-dimensional strong stable manifold given
locally by the graph {(θ, us(θ, e), ps(θ, e)) ∈ R

3}, and its collection defines the stable
shooting manifold Ms ,

Ms :=
⋃
e∈R

Ws(0, e, 0).

We assume that solutions of (2.9) are defined for all θ ∈ [0, π] and any initial data (u, p).
Hence, the shooting manifolds will exist globally and for any initial data.

Denote by Mu
θ the cross-section of Mu for some fixed θ ∈ [0, π]. This is a curve

parametrized by d ∈ R. Similarly, Ms
θ is a curve parametrized by e ∈ R.

We obtain the following characterization of equilibria itsMorse indices and zero numbers,
through the shooting manifolds, similar to [17,33].

Lemma 2.4 (Equilibria through shooting)

1. The set of equilibria E of (1.2) is in one-to-one correspondence with Mu
θ ∩ Ms

θ for any
θ ∈ [0, π].

2. An equilibrium point corresponding to fixed d ∈ R and e ∈ R is hyperbolic if, and only
if, Wu(0, d, 0) intersects Ws(0, e, 0) transversely.

3. If u∗ correspond to a hyperbolic equilibrium of (1.2), then its Morse index is given by
i(u∗) = 1+ � ζ(θ0)

π
� where ζ(θ0) is the angle between Mu and Ms measured clockwise

at their intersection point θ0, and �·� denotes the floor function.

Proof To prove (1), note that a point inMu
θ ∩Ms

θ satisfies the equilibria equation by definition
of the shooting manifolds. Moreover, the Neumann boundary conditions are also satisfied
since solutions are in the appropriate stable/unstable manifolds.

Conversely, consider an equilibrium of (1.2). It must satisfy the Neumann boundary
conditions (2.10), which requires exponential convergence rate to 0. This implies that the
equilibrium must be both in the strong unstable Mu and strong stable Ms manifolds. More-
over, such manifolds intersect for some θ ∈ [0, π ], because the equilibrium is continuous.
By uniqueness and invariance of the shooting manifolds, they must also intersect for all
θ ∈ [0, π].

Due to the uniqueness of the shooting differential equation (2.9), such correspondence
above is one-to-one.

To prove (2), consider an equilibrium u∗ corresponding to d, e ∈ R. We compare the
eigenvalue problem for u∗ and the differential equation satisfied by the angle of the tangent
vectors of the shooting manifold.
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Introducing the τ variable, the eigenvalue problem for u∗ is obtained by linearizing the
right hand side of the equation in order to obtain a linear operator, yielding{

λu sin2(θ) = a∗uττ + b∗u + c∗uτ

θτ = sin(θ)

with boundary conditions limτ→±∞ uτ (τ ) = 0, where

a∗(θ) := a(θ, u∗, ∂τu∗)
b∗(θ) := au(θ, u∗, ∂τu∗) · (u∗)θθ + Du f (θ, u∗, ∂τu∗) sin2(θ)

c∗(θ) := ap(θ, u∗, ∂τu∗) · (u∗)θθ + Dp f (θ, u∗, ∂τu∗) sin2(θ).

Rewriting the above system as a system of first order by p := uτ ,⎧⎪⎨
⎪⎩
uτ = p

pτ = − b∗u+c∗ p−λu sin2(θ)
a∗

θτ = sin(θ)

with boundary conditions limτ→±∞ p(τ ) = 0.
In polar coordinates (u, p) =: (r cos(μ),−r sin(μ)), the angle μ := arctan( p

u ) satisfies
{

μτ = sin2(μ) + b∗u+c∗ p−λu sin2(θ)
a∗ cos2(μ)

θτ = sin(θ)
(2.11)

with limτ=−∞ μ(τ) = 0 and limτ→∞ μ(τ) = kπ for some k ≥ 0.
On the other hand, Mu

θ is parametrized by d ∈ R and its tangent vector (
∂u(θ,d)

∂d ,
∂ p(θ,d)

∂d )

satisfies the following linearized equation,
⎧⎪⎨
⎪⎩

(ud)τ = pd

(pd)τ = − buud+cu pd−λu sin2(θ)
au

θτ = sin(θ)

(2.12)

with initial data limτ→−∞(ud , pd) = (1, 0). Note that the linearization is considered along
the unstable manifold given by the graph {(θ, uu(θ), pu(θ)) ∈ R

3}, and the definition of
au, bu, cu are the same as a∗, b∗, c∗, except they are evaluated in the unstable manifold,
instead of the equilibrium u∗.

In polar coordinates (ud , pd) =: (ρ cos(ν),−ρ sin(ν)), where ν is the clockwise angle
of the tangent vector of Mu

θ with the u-axis,
{

ντ = sin2(ν) + buud+cu pd−λu sin2(θ)
au cos2(ν)

θτ = sin(θ)
(2.13)

with initial data limτ→−∞ ν(τ, d) = 0.
Similarly, the angle ν̃ of the tangent vector of Ms

θ with the u-axis satisfies the Eq. (2.13),
but with initial data limτ→∞ ν(τ, e) = 0.

Note that the Eq. (2.13) that both angles ν and ν̃ of the tangent vector satisfy is the same
equation as the eigenvalue problem in polar coordinates (2.11) with λ = 0, where each ν or
ν̃ encodes the boundary condition at τ = −∞ of ∞.

By hypothesis, the equilibrium u∗ corresponds to the pair of initial data d, e ∈ R. That
means that Mu

θ0
intersects Ms

θ0
for some fixed θ0 ∈ [0, π].
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Suppose that u∗ is not hyperbolic, that is, limτ→∞ μ(τ) = kπ for λ = 0 and some k ∈ N.
We compare this value with the angle between the shooting curves at θ0. More precisely, it
is proven that

lim
τ→∞μ(τ) = ν(θ0) − ν̃(θ0). (2.14)

Indeed, for θ ∈ [0, θ0] the Eqs. (2.11) and (2.13) are the same, since both of them are
linearized at the same orbit u∗, which corresponds to the unstable manifold of (0, d, 0) ∈ R

3.
Since both of them have the same initial data, uniqueness implies

μ(θ0) = ν(θ0).

To obtain a relation betweenμ and ν̃, consider the change of coordinates in the eigenvalue
problem (2.11) as μ̃ := μ − kπ . The Eq. (2.11) is invariant under this transformation,
since sin2(μ̃ + kπ) = sin2(μ̃). But the boundary condition changes at θ = π , namely,
limτ→∞ μ̃(τ ) = 0. Therefore, μ̃ satisfies the same equation as the angle ν̃, for θ ∈ [θ0, π].
Hence, by uniqueness,

μ(θ0) − kπ = μ̃(θ0) = ν̃(θ0).

Subtracting these last two equations yields kπ = ν(θ0) − ν̃(θ0), that is, the intersection
of the shooting manifolds is not transverse at their intersection point θ0.

Conversely, if the shooting manifolds are not transverse at some intersection point for θ0,
then kπ = ν(θ0) − ν̃(θ0).

Concatenate the solution ν from Mu for θ ∈ [0, θ0] and initial data limτ→−∞ ν(τ) = 0,
together with ν̃ from Ms for θ ∈ [θ0, π ] and initial data ν̃(θ0) = ν(θ0) − kπ . Hence,
the previous boundary conditions limτ→∞ ν̃(τ ) = 0 implies that limτ→∞ ν̃(τ ) = kπ , by
considering the new initial data at θ = θ0. Note such concatenated solution satisfy the
Eq. (2.11) for the angle μ of the eigenvalue problem with λ = 0. This implies there exists
a solution μ of (2.11) and hence λ = 0 is an eigenvalue. Thus, the equilibrium u∗ is not
hyperbolic.

To prove (3), consider the solution μ(τ, λ) of the eigenvalue problem in polar coordinates
(2.11). The Sturm oscillation theorem implies that

ψ(λ) := lim
τ→∞μ(τ, λ) (2.15)

is decreasing so that limλ→−∞ ψ(λ) = ∞ and limλ→∞ ψ(λ) = −π/2. Hence, there exists
a decreasing sequence {λk}k∈N to −∞ such that ψ(λk) = kπ for k ∈ N. This implies that
there exists a solution of (2.11) for each λk such that ψ(λk) = kπ , and hence {λk}k∈N are
the eigenvalues.

Recall that theMorse index i(u∗) is the number of positive eigenvalues of the linearization
at u∗, that is

· · · < λi(u∗) < 0 < λi(u∗)−1 < · · · < λ0.

Since ψ(λ) is decreasing and λi(u∗) are eigenvalues, then

i(u∗)π = ψ(λi(u∗)) > ψ(0) > ψ(λi(u∗)−1) = (i(u∗) − 1)π.

Divide the above by π and consider the integer value, yielding that i(u∗) = �ψ(0)
π

�+ 1. It
was noted in (2.14) that ψ(0) = ν(θ0) − ν̃(θ0), which is exactly the angle between Mu and
Ms . ��

Hence, one can obtain a Sturm permutation σ by labeling the intersection points ui ∈
Mu

π
2
∩Ms

π
2
firstly along Mu

π
2
following its parametrization given by ( π

2 , uu( π
2 , d), pu( π

2 , d))
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as d goes from −∞ to ∞. Namely,

u1 < · · · < uN

where N denotes the number of equilibria. Secondly, label the intersection points along Ms
π
2

following its parametrization by e ∈ R,

uσ(1) < · · · < uσ(N )

The Morse indices of equilibria and the zero number of difference of equilibria can be
calculated through the Sturm permutation σ , as in [10,35]. This yields all necessary infor-
mation for adjacency. The main tool for such proofs is the third part of the above Lemma:
the rotation along the shooting curve increases the Morse index.

2.3 Dropping Lemma

Let the zero number zt (u) counts the number of strict sign changes in θ of a C1 function
u(t, θ) �≡ 0, for each fixed t . More precisely,

zt (u) := sup
k

{ ∃ partition {θ j }kj=1 of [0, π] such that
u(t, θ j )u(t, θ j+1) < 0 for all j = 1, . . . , k

}
.

and zt (u) = −1 if u ≡ 0. In case u does not depend on t , we simply write zt (u) = z(u).
A point (t0, θ0) ∈ R × [0, π ] such that u(t0, θ0) = 0 is said to be a simple zero if

uθ (t0, θ0) �= 0 and a multiple zero if uθ (t0, θ0) = 0.
The following result shows that the zero number of certain solutions of (1.2) is nonin-

creasing in time t , and decreases whenever a multiple zero occur. Different versions of this
well known fact are due to Sturm [40], Matano [28], Angenent [2] and others.

Lemma 2.5 (Dropping lemma) Consider v �≡ 0 a solution of the linear equation (2.2) for
t ∈ [0, T ). Then, its zero number zt (v) satisfies

1. zt (v) < ∞ for any t ∈ (0, T ).
2. zt (v) is nonincreasing in time t.
3. zt (v) decreases at multiple zeros (t0, θ0) of v, that is,

zt0−ε(v) > zt0+ε(v)

for any sufficiently small ε > 0.

Recall that both the tangent vector ut and the difference u1 − u2 of two solutions u1, u2
of the nonlinear equation (1.2) satisfy a linear equation as (2.2). Hence, the dropping lemma
deals with the zero number of such solutions.

Below we give two different proofs. The first is an adaptation of Chen and Poláčik [32],
where the dropping lemma was proved for the case of a singular coefficient at one boundary
point. The second by Angenent [2], where this lemma was proved for the case of regular
coefficients. We also note that it is also possible to adapt the Newton polygon method done in
Angenent [4] and Angenent with Fiedler [3], but this is not pursued here, since this assumes
that a, f are analytic.
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2.3.1 Proof 1

This proof adapts Chen and Poláčik [32]. We cut off solutions nearby each boundary point
so that it satisfies a differential equation with only one boundary singularity, and then apply
the dropping lemma for such equations as it was proved in [32].

We say two functions u(t, θ) and v(t, θ) have the same type of zeros if for each fixed t , their
zeros in θ coincide, together with their property of being simple or multiple. Mathematically,
u(t, θ0) = 0 if, and only if v(t, θ0) = 0, for fixed t . Moreover, consider a zero θ0 of u and v

for fixed t , then uθ (t, θ0) = 0 if, and only if vθ (t, θ0) = 0.

Lemma 2.6 Suppose u �≡ 0 is a solution of (2.2). Then, there exists bounded functions v and
d on [t1, t2] × [0, π] satisfying

vt = vθθ + vθ

θ
+ d(t, θ)v (2.16)

where θ ∈ (0, π) has Neumann boundary conditions. Moreover, for a fixed θ1 ∈ (0, π),
the functions u and v have the same type of zeros for θ ∈ [0, θ1], whereas v �= 0 for all
θ ∈ [θ1, π].
Proof The idea is to localize the solution u(t, θ) for each t and θ near the boundary θ = 0, and
cut off whatever is far from it. Vaguely, this defines v(t, θ), and d(t, θ) is chosen accordingly
so that one obtains the desired Eq. (2.16).

Since the solution u �≡ 0, choose a point θ1 such that the solution is not zero at θ1 for a
nonempty small interval of time [t1, t2], by continuity in t . Moreover, due to continuity in θ ,
choose θ2 ∈ (θ1, π) such that u(t, θ) �= 0 for [t1, t2] × [θ1, θ2]. Without loss of generality,
suppose that u is positive for [t1, t2] × [θ1, θ2]. Otherwise, consider u(t, θ) �→ −u(t, θ).

Expand the singular term in power series as 1
tan(θ)

= 1
θ

+ b(θ), where b(θ) =∑∞
n=0 bnθ

2n+1 is analytic in θ ∈ [0, π) and its coefficients bn are related to the Bernoulli
numbers. Plugging this in (2.2), yields

ut = uθθ + uθ

θ
+ b(θ)uθ + c(t, θ)u.

Since b(θ) converges for θ ∈ [0, π) but not for θ = π , this is how the singularity at θ = π

is encoded in the new equation.
In order to get rid of b(θ), rescale the solution for θ ∈ [0, θ2] by ũ(t, θ) :=

exp ( 12

∫ θ

0 b(y)dy)u(t, θ). Note u(t, θ) and ũ(t, θ) have the same type of zeros. The chain
rule implies

ũt = ũθθ + ũθ

θ
+ c̃(t, θ)ũ

for θ ∈ [0, θ2], where c̃(t, θ) := c(t, θ) − b(θ)
2θ + b2(θ)

4 − bθ (θ)
2 . Note the term b(θ)

θ
is not

singular at θ = 0 due to the nature of b(θ), that is, its first order term is b0θ .
Next, the rescaled solution will be cut off. Define the cut off function η: [0, π] → [0, 1]

given by

η(θ) :=

⎧⎪⎨
⎪⎩
1 for θ ∈ [0, θ1]
0 < η(θ) < 1 for θ ∈ (θ1, θ2)

0 for θ ∈ [θ2, π]
which transitions smoothly from 1 to 0.
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Let v: [t1, t2] × [0, π ] → R be defined by

v(t, θ) :=
{

η(θ)[ũ(t, θ) − 1] + 1 for θ ∈ [0, θ2]
1 for θ ∈ (θ2, π].

That is, v(t, θ) = ũ(t, θ) for θ ∈ [0, θ1]. For θ ∈ [θ1, θ2] there is a transition phase from
ũ to the constant function 1. For θ ∈ [θ2, π ], the singularity at θ = π does not play a role
anymore, since v(t, θ) ≡ 1 satisfies a trivial equation.

The chain rule says that v(t, θ) satisfies

vt = vθθ + vθ

θ
− ηθ [ũ − 1]

θ
+ ηc̃ũ − ηθθ [ũ − 1] − 2ηθ ũθ .

Now d(t, θ) is defined so that v(t, θ) satisfies the desired Eq. (2.16). For θ ∈ [0, θ1], the
only term that does not vanish is c̃ũ, since η ≡ 1 and ηθ ≡ 0 ≡ ηθθ . This defines d in this
interval. For θ ∈ (θ1, θ2), define most terms on the right hand side by d(t, θ)v, as below. For
θ ∈ [θ2, π], the function v ≡ 1 and vt = vθθ = vθ

θ
= 0. Hence, it satisfies a trivial equation

and define d := 0. More precisely,

d(t, θ) :=

⎧⎪⎪⎨
⎪⎪⎩
c̃ for θ ∈ [0, θ1]
1
v

[
− ηθ [ũ−1]

θ
+ ηc̃ũ − ηθθ [ũ − 1] − 2ηθ ũθ

]
for θ ∈ (θ1, θ2)

0 for θ ∈ [θ2, π]
is bounded, since all terms ũ, ũθ , η, ηθ , ηθθ , c̃ are bounded for θ ∈ [0, θ2]. Also, note v > 0
for θ ∈ [θ1, θ2] and hence 1

v
is well defined and bounded. Indeed, the solution u is positive in

this interval, and so is ũ, since they have the same type of zeros. If ũ ≥ 1 it is clear that v > 0
by its definition, and if 1 > ũ > 0, one also obtains that v > 0 by noticing that η ∈ [0, 1]
for θ ∈ [0, θ2].

Hence, we have defined v and d satisfying (2.16) such that v and u have the same type of
zeros and v ≡ 1 for θ ∈ [θ2, π ]. ��

In order to apply the dropping lemma to functions v(t, θ) satisfying the Eq. (2.16), as in
[32], one still needs two adaptations. Firstly, the dropping lemma is proved for θ ∈ [0, 1]
and this can be circumvented by stretching the interval through θ �→ πθ . Secondly, in [32]
it is considered Dirichlet boundary condition at the regular boundary θ = 1, but their proof
works similarly for the Neumann case by changing the odd reflection done at the regular
boundary θ = 1 to an even reflection. Such choice of reflections is done explicitly in [2], for
different boundary conditions.

Proof of Lemma 2.5 (dropping lemma) Firstly, we prove that u has finitely many zeros. The
Lemma 2.6 implies that one can construct a v satisfying (2.16) with same type of zeros of
u. Due to the dropping Lemma in [32], v has finitely many zeros and consequently u has
finitely many zeros for θ ∈ [0, θ1].

To conclude that u also has finitely many zeros for θ ∈ [θ1, π], consider the change of
coordinates θ̃ := π − θ . The solution u(t, θ̃ ) satisfies the Eq. (2.16) with θ̃ ∈ [0, π − θ1],
and by the dropping lemma in [32], it also has finitely many zeros for θ̃ ∈ [0, π − θ1].
Equivalently, u has finitely many zeros for θ ∈ [θ1, π ].

Secondly, we prove that multiple zeros must drop. Suppose (t0, θ0) is a multiple zero of
a solution u �≡ 0 of (2.2). By the Lemma 2.6, there is a function v(t, θ) having zeros of the
same type as u(t, θ) for θ ∈ [0, θ1] and some fixed θ1 ∈ (0, π).
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If θ0 ≤ θ1, then the dropping lemma in [32] implies that the number of zeros of v(t, θ)

should drop. Since v(t, θ) is not zero for θ ∈ [θ1, π ], then the zero that dropped should have
occurred for θ ∈ [0, θ1]. This implies that some zero of u(t, θ) must have dropped, since
they have the same type of zeros.

If θ0 > θ1, then consider the change of coordinates θ̃ := π − θ and the same arguments
as above show that the multiple zero of u(t, θ̃ ) must have dropped for θ̃ ∈ [0, π − θ1].

Thirdly, we prove that the zero number is not increasing in time. We already know that
it must drop at multiple zeros. Suppose (t0, θ0) is a simple zero, that is u(t0, θ0) = 0 and
uθ (t0, θ0) �= 0. Hence, the implicit function theorem says that u(t, θ(t)) = 0 for an unique
curve θ(t) in small neighborhood of t0 such that θ(t0) = θ0. Hence, the simple zero persists
and no new zeros are created. ��

2.3.2 Proof 2

This proof is an adaptation of Angenent [2], by rescaling the solution nearby a multiple zero
of multiplicity n and showing that there are n zero curves backwards in time, and less curves
forwards in time. We give a sketch of the proof.

For t0 > 0, the localization of the solution v(t, θ) of (2.2) nearby themultiple zero (t0, θ0),

w(τ, ξ) := e−
ξ2

2 v(t0 − e−2τ , θ0 + 2e−τ ξ)

for τ ≥ − 1
2 log(t0) =: τ0. Due to the properly chosen parabolic rescaling, w(τ, ξ) satisfies

wτ = 1

2
wξξ + 1

2 tan(θ0 + 2e−τ ξ)
wξ − 1

2
(ξ2 − 1)w + q(τ, ξ)w

where (τ, ξ) ∈ (τ0,∞) × R and q(τ, ξ) is bounded and decay with τ .
There are two cases: either the multiple zero is in the interior θ0 ∈ (0, π) or in one of the

boundaries θ0 = 0, π .
In the first case, the tangent term is regular and one can rescale this wξ term out by an

appropriatemultiplyingw by an appropriate exponential. Then the arguments ofAngenent [2]
hold.

In the second case, there is a singular term only at one of the boundaries it is being
zoomed in. One can reflect solutions along the other boundary, which is regular, and rescale
the bounded terms to obtain

wτ = 1

2
wξξ + 1

2ξ
wξ − 1

2
(ξ2 − 1)w + q(τ, ξ)w

for x ∈ R+.
The operator 1

2wξξ + 1
2ξ wξ is self-adjoint in L2

ξ ([0,∞)) with weight ξ . Due to Sturm–
Liouville, the spectrum of such operator consists of simple eigenvalues and respective
eigenfunctions φn(ξ) = e−ξ2/2Ln(ξ), where Ln is a multiple of the nth Laguerre poly-
nomial. This eigenvalue problem is also known in the literature as the quantum harmonic
oscillator in spherical coordinates. One can then follow the proof of Angenent by simply
changing the functional spaces and its basis.

2.3.3 Consequences of the Dropping Lemma

Two results follow by combining the dropping Lemma 2.5 and the asymptotic description in
Theorem 2.2. The first is a result relating the zero number within invariant manifold and the
Morse indices of equilibria. The second is the Morse–Smale property.
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Theorem 2.7 (Zero number within invariant manifolds [6,41]) Consider a equilibria u± ∈ E
and a trajectory u(t) �≡ u± of (1.2). Then,

1. If u(t) ∈ Wu(u−), then i(u−) > zt (u − u−).
2. If u(t) ∈ Ws

loc(u+), then zt (u − u+) ≥ i(u+).
3. If u(t) ∈ Wu(u−) ∩ Ws

loc(u+), then

i(u+) ≤ zt (u − u±) < i(u−).

These results also hold by replacing u(t) − u∗ with the tangent vector ut .

The above theorem implies that (1.2) has no homoclinic orbits. Indeed, if there were any,
then i(u∗) < i(u∗), which is a contradiction.

This last theorem implies that if the semigroup has a finite number of equilibria, in which
all are hyperbolic, then it is aMorse–Smale system in the sense of [15]. Note that this property
can hold even in case the equilibria are not hyperbolic, as in [19].

2.4 Sturm Global Structure

This section gathers all the tools developed in the previous sections in order to construct the
attractor for the parabolic equation with singular coefficients (1.2) and prove the second part
of the main Theorem 1.1.

Its proof is a consequence of two propositions. Firstly, due to the cascading principle, it is
enough to construct all heteroclinics between equilibria such that their Morse indices differ
by 1. Secondly, on one direction, the blocking principle: some conditions imply that there
does not exist a heteroclinic connection; on the other direction, the liberalism principle: if
those conditions are violated, then there exists a heteroclinic.

The cascading and blocking principles follow from the dropping lemma andMorse–Smale
property from Sect. 2.3. There is only a mild modification in the proof of the liberalism
principle in Proposition 2.9.

Proposition 2.8 (Cascading principle [10])There exists a heteroclinic between two equilibria
u± such that n := i(u−) − i(u+) > 0 if, and only if, there exists a sequence (cascade) of
equilibria {vk}nk=0 with v0 := u− and vn := u+, such that the following holds for all
k = 0, . . . , n − 1

1. i(vk+1) = i(vk) + 1
2. There exists a heteroclinic from vk+1 to vk

Proposition 2.9 (Blocking and liberalism principles [10]) There exists a heteroclinic between
the equilibria vk+1 and vk with i(vk+1) = i(vk) + 1 if, and only if,

1. Morse permit z(vk+1 − vk) = i(vk),
2. Zero number permit z(vk+1 − u∗) �= z(vk − u∗) for all equilibria u∗ between vk+1 and

vk along Mu
θ for some θ ∈ [0, π ].

The blocking and liberalism principles assert that theMorse indices i(·) and zero numbers
z(·) construct the global structure of the attractor explicitly. Those numbers can be obtained
through the Sturm permutation, as in Sect. 2.2.

In particular, one can check the zero number blocking for θ = 0 as it is done in [10]. We
prefer to state the condition for some θ ∈ [0, π ] because the Sturm permutation in Sect. 2.2

123



Journal of Dynamics and Differential Equations (2020) 32:359–390 375

labels the equilibria along Mu
θ and Ms

θ for some θ ∈ [0, π]. Moreover, those curves are
computed for θ = π/2 for the Chafee–Infante example in Sect. 3

We now show that u∗ lies in between u− and u+ at θ = 0 if, and only if it is also between
u± along Mu

θ for any θ ∈ [0, π ]. Indeed, due to continuity with respect to the initial data
(0, a, 0) ∈ R

3 of the shooting flow (2.9), the curve Mu
θ for fixed θ ∈ [0, π) is continuous

and the order of a ∈ R induces an order along Mu
θ , hence the parametrization respects its

labeling. At θ = π , continuity also yields an ordering of the equilibria within Mu
θ .

Note one can replace Mu
θ in the zero number blocking by Ms

θ , since similar arguments as
above hold and show that u∗ lies in between u− and u+ at θ = π if, and only if it is also
between u± along Ms

θ for some θ ∈ [0, π ].
The two propositions above yield the existence of heteroclinics between u− and u+ if they

are cascadly adjacent, namely, if there exists a cascade of equilibria {vk}nk=0 with v0 := u−
and vn := u+ such that for all k = 0, ..., n − 1 the following conditions hold:

1. i(vk+1) = i(vk) + 1,
2. z(vk − vk+1) = i(vk+1),
3. z(vk+1 − u∗) �= z(vk − u∗) for all equilibria u∗ between vk+1 and vk along Mu

θ for some
θ ∈ [0, π].
On the other hand, the main Theorem 1.1 yields a result through the notion of adjacency

in the introduction, which does not involve a cascade. These notions of adjacency coincide,
and this is the core of Wolfrum’s ideas in [43].

Proposition 2.10 (Wolfrum’s equivalence) Consider two equilibria u± ∈ E such that n :=
i(u−)− i(u+) > 0. The equilibria u± are adjacent if, and only if they are cascadly adjacent.

The proof of the cascading Proposition 2.8 follows [10] word by word.
For the proof of the liberalism theorem, it is used the Conley index to detect orbits between

u− and u+. We give a brief introduction of Conley’s theory, and how it can be applied in this
context. See Chapters 22–24 in [39] for a brief account of the Conley index, and its extension
to infinite dimensional systems in [37].

Consider the spaceX of all topological spaces and the equivalence relation given byY ∼ Z
for Y , Z ∈ X if, and only if Y is homotopy equivalent to Z , that is, there are continuous
maps f : Y → Z and g: Z → Y such that f ◦ g and g ◦ f are homotopic to idZ and idY ,
respectively. Then, the quotient space X/ ∼ describes the homotopy equivalent classes [Y ]
of all topological spaces which have the same homotopy type. Intuitively, [Y ] describes all
topological spaces which can be continuously deformed into Y .

Suppose � is an invariant isolated set, that is, it is invariant with respect to positive and
negative time of the semiflow, and it has a closed neighborhood N such that � is contained
in the interior of N with � being the maximal invariant subset of N .

Denote ∂eN ⊂ ∂N the exit set of N , that is, the set of points which are not strict ingressing
in N ,

∂eN := {u0 ∈ N |u(t) /∈ N for all sufficiently small t > 0} .

The Conley index is defined as

C(�) := [N/∂eN ]
namely the homotopy equivalent class of the quotient space of the isolating neighborhood
N relative to its exit set ∂eN . Such index is homotopy invariant and does not depend on the
particular choice of isolating neighborhood N .

We compute the Conley index for two examples.

123



376 Journal of Dynamics and Differential Equations (2020) 32:359–390

Firstly, the Conley index of a hyperbolic equilibria u+ with Morse index n. Consider a
closed ball N ⊂ Xα centered at u+ without any other equilibria in N , as isolating neigh-
borhood. The flow provides a homotopy that contracts along the stable directions to the
equilibria u+. Then, N is homotoped to a n-dimensional ball Bn in the finite dimensional
space spanned by the first n eigenfunctions, related to the unstable directions. Note the exit
set ∂e Bn = ∂Bn = S

n−1, since after the homotopy there is no more stable direction and the
equilibria is hyperbolic. Therefore, the quotient of a n-ball and its boundary is an n-sphere,

C(u+) = [N/∂eN ] = [Bn/∂e B
n] = [Bn/Sn−1] = [Sn].

Secondly, the Conley index of the union of two disjoint invariant sets, for example u−
and u+ with respective disjoint isolating neighborhoods N− and N+. Then, N− ∪ N+ is an
isolating neighborhood of {u−, u+}. By definition of the wedge sum

C({u−, u+}) =
[

N− ∪ N+
∂e(N− ∪ N+)

]

=
[

N−
∂eN−

∨ N+
∂eN+

]
= C(u−) ∨ C(u+).

The Conley index can be applied to detect heteroclinics as follows. Construct a closed
neighborhood N such that its maximal invariant subspace is the closure of the set of hetero-
clinics between u±,

� = {u−, u+} ∪ Wu(u−) ∩ Ws(u+).

Suppose, towards a contradiction, that there are no heteroclinics connecting u− and u+,
that is, � = {u−, u+}. Then, the index is given by the wedge sum C(�) = [Sn] ∨ [Sm],
where n,m are the respective Morse index of u− and u+.

If, on the other hand, one can prove that C(�) = [0], where [0] means that the index is
given by the homotopy equivalent class of a point, this would yield a contradiction and there
should be a connection between u− and u+. Moreover, the Morse–Smale structure excludes
connection from u+ to u−, and hence there is a connection from u− to u+.

Hence, there are three ingredients missing in the proof: the Conley index can be applied
at all, the construction of a isolating neighborhood N of � and the proof that C(�) = [0].
Proof of Proposition 2.9 ( �⇒ ) This part is called blocking and has same proof as in [10].

( ⇐� ) This is also called liberalism in [10]. Consider hyperbolic equilibria u−, u+ such
that i(u−) = i(u+)+ 1 and satisfies both the Morse and the zero number permit conditions.
Without loss of generality, assume u−(0) > u+(0).

It is used the Conley index to detect orbits between u− and u+. Note that the semiflow
generated by the Eq. (1.2) on the Banach space Xα is admissible for the Conley index theory
in the sense of [37], due to a compactness property that is satisfied by the parabolic equation
(1.2), namely that trajectories are precompact in phase space. See Theorem 3.3.6 in [18].

As mentioned above, in order to apply the Conley index concepts we need to construct
appropriate neighborhoods and show that the Conley index is [0].

Consider the closed set

K (u±) :=
{
u ∈ Xα | z(u − u−) = i(u+) = z(u − u+)

u+(0) ≤ u(0) ≤ u−(0)

}

Consider also closed ε-balls Bε(u±) centered at u± such that they do not have any other
equilibria besides u±, respectively, for some ε > 0.

Define
Nε(u±) := Bε(u−) ∪ Bε(u+) ∪ K (u±).
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The zero number blocking condition implies there are no equilibria in K (u±) besides
possibly u− and u+. Hence, Nε(u±) also has no equilibria besides u− and u+.

Denote� themaximal invariant subset of Nε .We claim that� is the set of the heteroclinics
from u− to u+ given by Wu(u−) ∩ Ws(u−), and the equilibria themselves.

On one hand, since � is globally invariant, then it is contained in the attractor A, which
consists of equilibria and heteroclinics. Since there are no other equilibria in Nε(u±) besides
u±, then the only heteroclinics that can occur are between them.

On the other hand, Theorem2.7 implies that along a heteroclinic u(t) ∈ H the zero number
satisfies zt (u− u±) = i(u+) for all time, since i(u−) = i(u+)+1. Therefore u(t) ∈ K (u±)

and the closure of the orbit is contained in Nε(u±). Since the closure of the heteroclinic is
invariant, it must be contained in �.

Lastly, it is proven that C(�) = [0] in three steps, yielding the desired contradiction and
the proof of the theorem. We modify the first and second step from [10], whereas the third
remain the same.

In the first step, a model is constructed displaying a saddle-node bifurcation with respect
to a parameter μ, for n := z(u+ − u−) ∈ N fixed,

vt = a(ξ, v, vξ )

[(
vξξ + 1

tan(ξ)
vξ

)
+ λnv

]
+ gn(μ, ξ, v) (2.17)

where ξ ∈ [0, π] has Neumann boundary conditions, λn = n(n + 1) are the eigenvalues of
the axisymmetric Laplacian with the Legendre polynomials Pn(cos(ξ)) as eigenfunctions,
and

gn(μ, ξ, v) := [
v2 − μP2

n

]
Pn .

For μ > 0, the equilibria solution of (2.17) are v± = ±√
μPn(cos(ξ)), since Pn are the

eigenfunctions of the axially symmetric Laplacian. Furthermore, we have

z(v+ − v−) = n (2.18)

since the n intersections of v− and v+ will be at its n zeroes.
Moreover, v± are hyperbolic equilibria for small μ > 0, such that i(v+) = n + 1 and

i(v−) = n. Indeed, parametrize the bifurcating branches by μ = s2 so that v(s, ξ) =
sPn(cos(ξ)), where s > 0 correspond to v+ and s < 0 to v−. Linearizing at the equilibrium
v± yields the following linear operator

Tn(s)v := a(ξ, sPn,−sP ′
n · sin(ξ))

[
vξξ + 1

tan(ξ)
vξ + λnv

]
+ 2svP2

n .

This operator can be seen as a Sturm–Liouville eigenvalue problem in the space L2
w

with appropriate weight w := P2
n (cos(ξ)), namely, Tn(s)v = ηP2

n v. Notice that for v =
Pn(cos(ξ)) the first term vanish, and hence the eigenproblem becomes

2sP2
n v = ηP2

n v.

Hence, for each n fixed, ηn(s) = 2s is an eigenvalue with Pn(cos(ξ)) its correspond-
ing eigenfunction, since the terms inside the brackets yield the eigenvalue problem for the
axisymmetric Laplacian and vanish.

We now use a perturbation argument in Sturm–Liouville theory. For μ = s2 = 0, the
eigenvalues of Ln(0) in L2

w coincidewith the eigenvalues of the usual axisymmetricLaplacian
such that there is one eigenvalue ηn(0) = 0 and n positive eigenvalues. For small μ < 0,
the number of positive eigenvalues persist, and there is no eigenvalue 0, since η(μ) < 0;
whereas for small μ > 0, the number of positive eigenvalues increases by 1, and there is
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no eigenvalue 0, since η(μ) > 0. This yields the desired claim about hyperbolicity and the
Morse index.

Now consider the semilinear parabolic equation such that (2.17) is its equilibria equa-
tion. The equilibria v± together with their connecting orbits of the corresponding evolution
equation form an isolated invariant set

�μ(v±) := Wu(v−) ∩ Ws(v+)

with isolating neighborhood Nε(v±), and the bifurcation parameter can also be seen as
a homotopy parameter. Hence the Conley index is of a point by homotopy invariance as
desired, that is,

C(�μ(v±)) = C(�0(v±)) = [0]. (2.19)

In the second step, the equilibria v− and v+ are transformed respectively into u− and u+
via a diffeomorphism which is not a homotopy.

Recall n = z(v− − v+) = z(u+ − u−). Hence, choose ξ(θ) a smooth diffeomorphism of
[0, π] that maps the zeros of v−(ξ)− v+(ξ) to the zeros of u−(θ)− u+(θ). Therefore, from
now on we suppose that the zeros of v−(ξ(θ)) − v+(ξ(θ)) and u−(θ) − u+(θ) occur in the
same points in θ ∈ [0, π ]. From now on, we write the unknown v as v(θ) when we actually
mean v(ξ(θ)), in order to simplify the notation.

Consider the transformation

L: Xα → Xα

v �→ l(θ)[v(θ) − v−(θ)] + u−(θ)

where l(θ) is defined pointwise through

l(θ) :=
{

u+(θ)−u−(θ)
v+(θ)−v−(θ)

, if v+(θ) �= v−(θ)
∂θ (u+(θ)−u−(θ))
∂θ (v+(θ)−v−(θ))

, if v+(θ) = v−(θ)

such that the coefficientα is smooth andnonzero due to the l’Hôpital rule.Hence, L(v−) = u−
and L(v+) = u+ as desired. Note we supposed 2α + β > 1 so that solutions u± ∈ C1,
hence L is of this regularity as well. Moreover, L is invertible with inverse having the same
regularity. In particular, it is a homeomorphism, and hence a homotopy equivalence.

Moreover, the number of intersections of functions is invariant under the map L ,

z(L(v(ξ) − ṽ(ξ))) = z(v(θ) − ṽ(θ)) (2.20)

and hence K (v±) is mapped to K (u±) under L .
Considerw(t, θ) := L(v(t, ξ)), hence themap Lmodifies theEq. (2.17) into the following

equation

wt = ã(θ, w,wθ )wθθ + b̃(θ, w,wθ )
wθ

tan(θ)
+ f̃ (θ, w,wθ ) (2.21)

where the Neumann boundary conditions are preserved, and the terms ã, b̃, f̃ are

ã(θ, w,wθ ) := θ2ξ

l(θ)
· a(θ, L−1(w), ∂θ L

−1(w))

b̃(θ, w,wθ ) := θξ

l(θ)
· a(θ, L−1(w), ∂θ L

−1(w))

f̃ (θ, w,wθ ) := gn(μ, θ, L−1(w), ∂θ L
−1(w)) + (wθ · θξξ − ∂2ξ u−) − lξξ · (w − u−)ξ

l
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− l∂ξu− + lξ · (w − u−)

l2
+ ∂ξ v− − λa(θ, L−1(w), ∂θ L

−1(w)) · L−1(w).

Note that the equilibria v± are mapped into w± := L(v±) = u±, which are equilibria of
(2.21), with same zero numbers and Morse indices as v± and u±.

The isolated invariant set �μ(v±) is transformed into L(�μ(v±)) = �μ(w±), which is
still isolated and invariant, with invariant neighborhood L(Nε(v±)) = Nε(w±). Moreover,
the Conley index is preserved, since L is a homotopy equivalence,

C(�μ(v±)) = C(L(�μ(v±))) = C(�μ(w±)). (2.22)

Hence, one identifies the equilibria v± in the model constructed (2.17) with the equilibria
w± = u± from the Eq. (1.2), by preserving neighborhoods and the Conley index, since L
is a homotopy equivalence. The identified equilibria u± satisfy the Eq. (2.21), and we still
have to modify it to become (1.2). For such, we perform now a last homotopy between the
solutions w and u.

In the third step, we homotope the diffusion coefficient ã, b̃ and nonlinearity f̃ from the
Eq. (2.21) to be the desired diffusion a and reaction f from the Eq. (1.2). Indeed, consider
the parabolic equation

ut = aτ (θ, u, uθ )uθθ + bτ (θ, u, uθ )
uθ

tan(θ)
+ f τ (θ, u, uθ )

where
aτ := τ ã + (1− τ)a +

∑
i=−, +

χui μui (τ )[u − ui (x)]

bτ (θ) := τ b̃ + (1− τ)a +
∑

i=−, +
χui μui (τ )[u − ui (x)]

f τ (x, u, ux ) := τ f̃ + (1− τ) f +
∑

i=−, +
χui μui (τ )[u − ui (x)]

and χui are cut-offs being 1 nearby ui and zero far away, the coefficients μi (τ ) are zero near
τ = 0 and 1 and shift the spectra of the linearization at u± such that uniform hyperbolicity
of these equilibria is guaranteed during the homotopy. Note that u± have the same Morse
indices, as solutions of both Eqs. (1.2) and (2.21). Therefore, theμi (τ ) only makes sure none
of these eigenvalues cross the imaginary axis.

Consider u± and their connecting orbits during this homotopy,

�τ (u±) := Wu(u−) ∩ Wu(u+).

Note that�τ (u±) ⊆ K (u±), for all τ ∈ [0, 1], since the dropping lemma holds throughout
the homotopy. The equilibria u± do not bifurcate as τ changes, due to hyperbolicity. Choosing
ε > 0 small enough, the neighborhoods Nε(u±) form an isolating neighborhood of �τ (u±)

throughout the homotopy. Indeed,�τ (u±) can never touch the boundary of K (u±), except at
the points u± by the dropping lemma. Once again the Conley index is preserved by homotopy
invariance,

C(�(u±)) = C(�0(u±)) = C(�τ (u±)) = C(�1(u±)) = C(�μ(w±)). (2.23)

Finally, the Eqs. (2.19), (2.22) and (2.23) yield that the Conley index of� is the homotopy
type of a point, and hence the desired result:

C(�(u±)) = C(�μ(w±)) = C(�μ(v±)) = [0]. (2.24)

��
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3 Example: Axisymmetric Chafee–Infante

In this section it is given an example of the theory above, namely, it is constructed the attractor
of the axially symmetric Chafee–Infante problem,

ut = a(θ, u, uθ )

[
uθθ + 1

tan(θ)
uθ + λu[1− u2]

]
(3.1)

where θ ∈ [0, π] has Neumann boundary conditions, a > 0, and initial data u0 ∈ Xα , so
that the equation generates a dynamical system in such space.

We will prove that the Sturm permutation for the axially symmetric case is the same as
the permutation for the regular case in [10]. Hence, both attractors are connection-wise the
same. The only difference lies in the shape of equilibria, and that the parameter λ must lie
between two eigenvalues of the appropriate diffusion operator.

The proof is divided in the upcoming subsections. Following the shooting arguments in
Sect. 2.2, we explicitly construct the shootingmanifolds. Thenwe count howmany times they
intersect, yielding all equilibria, and if such intersections are transverse, yielding hyperbolic-
ity. Lastly those intersection points are labeled accordingly, yielding the Sturm permutation
σ , and hence the attractor A.

The equilibria equation describing the shooting curves is
⎧⎪⎨
⎪⎩
uτ = p

pτ = −λu[1− u2] sin2(θ)

θτ = sin(θ).

(3.2)

Note that solutions of the shooting (3.2) exist for all θ ∈ [0, π] and all initial data
d ∈ L0 := {(0, d, 0) | d ∈ R} or e ∈ Lπ := {(π, e, 0) | e ∈ R}. Indeed, solutions of (3.2)
are bounded, since we can compare solutions of the axially symmetric Chafee–Infante (3.2)
with the usual Chafee–Infante, which is known to have global bounded solutions.

This system possesses two symmetries, namely invariance under

time reversal: τ �→ −τ, (3.3)

reflection: u �→ −u, (3.4)

where both symmetries also changes the sign of p := uτ .

3.1 Construction of the Shooting Curves

The stable shooting manifold Ms is obtained through the time reversal (3.3), which is simply
a reflection in the p-axis of the unstable shooting manifold Mu .

In order to construct the unstable shooting manifold Mu , we analyze four regions for the
initial data (0, d, 0) ∈ R

3 constrained to the trivial equilibria d ≡ −1, 0, 1, for all parameter
values λ > 0.

Note that part of the unstable shooting manifold Mu , namely when d < 0, is obtained
through a rotation by π , fixing the origin, of the piece of the shooting manifold Mu when
d > 0, due to the reflectional symmetry (3.4).

If d > 1, then the corresponding solution remains bigger than 1 for small time by conti-
nuity. Hence, the shooting flow (3.2) implies that pτ > 0 and the shooting manifold Mu |d>1

increases in the p direction as θ increases.
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For d ∈ (0, 1), we will show that the unstable shooting manifold Mu |d∈(0,1) winds around
the trivial equilibrium d ≡ 0. More precisely, the angle and radius of the shooting manifold
in polar coordinates are monotone with respect to its parametrization given by the initial data
d ∈ R.

This was proved in [16] using the Hamiltonian structure of the Chafee–Infante system,
which can not be applied for the system (3.2), since it is nonautonomous. Instead, we adapt
ideas of [25].

Indeed, the shooting flow (3.2) in polar coordinates with the clockwise angle, (u, p) =:
(ρ cos(μ),−ρ sin(μ)), is given by⎧⎪⎨

⎪⎩
ρτ = ρ sin(μ) cos(μ)

[
λ(1− ρ2 cos2(μ)) sin2(θ) − 1

]
μτ = sin2(μ) + λ[1− ρ2 cos2(μ)] sin2(θ) cos2(μ)

θτ = sin(θ)

(3.5)

with limτ=−∞ μ(λ, τ) = 0 describing L0. Note that

μτ > 0 (3.6)

for |ρ| < 1, that is, the angle μ is increasing in τ and each solution within the shooting
manifolds are winding clockwise around the trivial equilibria 0 as τ increases.

Consider the Lipschitz map F(λ, θ, ρ, μ): R4 → R3, where each coordinate Fi corre-
spond to the i th line of the right-hand side in (3.5).

We show the monotonicity of the angle μ with respect to the initial data d ∈ (0, 1), that
is, the angle μ decreases as d increases. This means that the bigger the initial data d ∈ (0, 1),
smaller the angle, hence outer orbits rotate slower than inner orbits.

Lemma 3.1 Let (ρ, μ) and (ρ̃, μ̃) be solutions of (3.5) with different initial data given
by limτ→−∞(ρ(λ, τ ), μ(λ, τ)) = (d, 0) and limτ→−∞(ρ̃(λ, τ ), μ̃(λ, τ )) = (d̃, 0) with
ordering 0 < d < d̃ < 1. Then

μ(λ, τ) > μ̃(λ, τ ) (3.7)

and
ρ(λ, τ) < ρ̃(λ, τ ) (3.8)

for all τ ∈ R. Moreover, if λ > λ̃ in (3.5), then

μ(λ, τ) > μ(λ̃, τ ) (3.9)

for all τ ∈ R and fixed initial data d ∈ (0, 1).

From now on, we abuse the notation and suppress one of the coordinates of μ(λ, τ),
remarking only the one of importance in such equation, namely either μ(λ) or μ(τ), even
though μ still depends on those two variables.

Proof Firstly we show a weaker version of (3.7) with a non strict inequality, namely

μ(τ) ≥ μ̃(τ ) (3.10)

for all τ ∈ (−∞,∞).
Suppose, towards a contradiction, that

μ(τ1) < μ̃(τ1) (3.11)

for some τ1 ∈ (−∞,∞).
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We show this inequality (3.11) also holds for τ ∈ (τ2, τ1] for some τ2 < τ1. Note that for
τ large and negative, the flow of the angle in (3.5) is given by its linearization,

μτ = sin2(μ) + λ fu(d, 0) sin2(θ) cos2(μ) (3.12)

where fu(d, 0) = 1− 3d2. The angle μ̃ satisfies a similar equation with linearization given
by fu(d̃, 0) = 1− 3d̃2.

Indeed, nearby a non-hyperbolic fixed point, the flow (3.2) is topologically equivalent to a
decoupled systemas in [38],where the first equation describes the flowon the centermanifold,
and the second describes the linear hyperbolic dynamics. If the equilibria is hyperbolic, there
is no center manifold and this breaks down to the Hartman–Grobman theorem. Since the
shooting manifolds are the strong unstable and stable manifolds, there is no center direction
within them, and the flow is topological equivalent to its corresponding hyperbolic part of the
linearization. Therefore,we linearize (3.2) at (0, d, 0) ∈ L0, then change to polar coordinates,
yielding (3.12).

Note that fu(d, 0) > fu(d̃, 0), since 0 < d < d̃ < 1. By the comparison theorem in [8],
one obtains that for such linearizations,

μ(τ) > μ̃(τ) (3.13)

for all τ ∈ (−∞, τ ∗) with τ ∗ negative and large such that τ ∗ < τ1, that is, so that the
nonlinear system (3.5) for μ is topological equivalent to the linear one (3.12).

By the intermediate value theorem, there exists τ2 ∈ (−τ ∗, τ1) such that μ(τ2) = μ̃(τ2).
We choose the biggest of those values, due to continuity of μ up to τ1, yielding

μ(τ) < μ̃(τ) (3.14)

for τ ∈ (τ2, τ1], which extends the inequality (3.11) as claimed.
On the other hand, the integral formulation of (3.5) yields that

μ(τ) − μ(τ2) =
∫ τ

τ2

F2(λ, θ, ρ, μ)ds (3.15)

for any τ ∈ (τ2, τ1]. Similarly for μ̃.
Consider the difference μ̃ − μ of the above representation. Notice that μ(τ2) = μ̃(τ2)

and F2 is Lispchitz in μ and ρ, while λ and θ are fixed,

|μ̃(τ ) − μ(τ)| ≤ c(λ, θ)

∫ τ

τ2

√
|ρ̃ − ρ|2 + |μ̃ − μ|2ds.

Note that the square root of a sum is less than the sum of the square roots. Moreover, the
solutions ρ, ρ̃ of (3.2) are bounded, hence |ρ̃ − ρ| is bounded, say by M . Lastly, one can get
rid of the norms in |μ̃ − μ|, due to (3.14). These considerations yield

μ̃(τ ) − μ(τ) ≤ c · M
∫ τ

τ2

ds + c
∫ τ

τ2

(μ̃ − μ)ds. (3.16)

The mean value theorem for definite integrals guarantees there is a τ3 ∈ (τ2, τ ) so that
τ −τ2 = ∫ τ

τ2
(μ̃−μ)ds/(μ̃(τ3)−μ(τ3)), where the denominator is well defined due to (3.14).

Moreover, for ε > 0 sufficiently small, we letmε := infs∈[τ2+ε,τ1] μ̃(s)−μ(s), which is well
defined and bounded since μ̃, μ are continuous and the interval is compact. Also, mε > 0
due to the definition of τ2 and (3.14). We plug in τ − τ2 from such mean value formula
together with the bound 1/(μ̃(τ3) − μ(τ3)) ≤ 1/mε into (3.16), yielding

μ̃(τ ) − μ(τ) ≤
[
c · M
mε

+ c

] ∫ τ

τ2

(μ̃ − μ)ds (3.17)
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for any τ ∈ [τ2 + ε, τ1].
The integral Grönwall inequality implies that μ̃(τ ) − μ(τ) ≤ 0 for any τ ∈ [τ2 + ε, τ1].

In particular for τ1, which contradicts the definition of τ1 in (3.11) and proves the non strict
inequality (3.10).

Nowwe show the strict inequality (3.7). Suppose on the contrary that there exists a τ4 ∈ R

such that μ(τ4) = μ̃(τ4).
Choose τ ∗ < τ4 as before, such that the strict inequality (3.13) holds for τ ∈ (−∞, τ ∗].

Due to the non-strict inequality (3.10), we know μ(τ) ≥ μ̃(τ ) for τ ∈ (τ ∗, τ4). Integrate
backwards from τ4 to τ ∗, by reversing the orientation of τ ∈ [τ ∗, τ4] through τ̃ := −τ , so
that τ̃ ∈ [τ4, τ ∗]. The integral formulation of the ODE yields

μ(τ ∗) − μ(τ3) =
∫ τ∗

τ3

F2(λ, θ, ρ, μ)d τ̃

with similar equation for μ̃.
Hence, the same methods from Eqs. (3.15) and (3.17) can be applied for the difference

μ(τ ∗)− μ̃(τ ∗), yielding the inequality μ(τ ∗)− μ̃(τ ∗) ≤ 0, which contradicts the definition
of τ ∗. This proves the inequality (3.7).

Analogously, the above arguments can be used to prove the monotonicity in the radial
coordinate. There are two mild adaptations in the proof. Firstly, one does not need to study
the linearized flow for the radius, since the initial data is already ordered by d < d̃ . Secondly,
to obtain (3.16), one needed to bound |ρ̃ − ρ|. Here, we need to bound |μ̃ − μ|, which is
a continuous function on the compact interval [τ2, τ1] and hence attains a maximum. Then,
the mean value theorem is used for |ρ̃ − ρ|.

The monotonicity in the parameter λ is seen by comparing the flow (3.2) as λ increases. ��

3.2 Intersection of Shooting Curves: Finding Equilibria

The shooting curves Mu
π/2 and Ms

π/2 intersect at the constant equilibria d ∈ {−1, 0, 1}.
If d > 1, the shooting curves Mu

π/2 and Ms
π/2 are monotone in the initial data d and e,

respectively. Indeed, the former increase in the p direction as θ increases, whereas the latter
decreases in the p direction, for any λ ∈ R+. Hence, they do not intersect. Analogously for
d < 1.

Consider the case that |d| < 1. We show that intersections of the shooting curves only
occur either at the u or p-axis. Then we show how many intersections there are with those
axis.

Lemma 3.2 Mu ∩ Ms ⊆ {(θ, u, p) ∈ R
3 | p = 0 or u = 0}.

Proof Towards a contradiction, suppose there is an intersection point (u, p) ∈ Mu ∩ Ms

which is not in these axis.
If (u, p) ∈ Mu , then (−u,−p) ∈ Mu , due to reflection symmetry (3.4). Similarly, if

(u, p) ∈ Ms , then (−u,−p) ∈ Ms . Therefore,

(−u,−p) ∈ Mu ∩ Ms .

Also, if (u, p) ∈ Mu , then (u,−p) ∈ Ms , due to the construction of Ms , which is done
by the time reversal (3.3) of Mu . Similarly, if (u, p) ∈ Ms , then (u,−p) ∈ Mu , i.e.

(u,−p) ∈ Mu ∩ Ms .
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Fig. 2 Shooting curves of (3.2) for λ ∈ (0, λ1)

The same arguments in the above two paragraph using both the time reversal (3.3) and
reflection symmetry (3.4) yield

(−u, p) ∈ Mu ∩ Ms .

Therefore there are four points with the same radius in the intersection Mu ∩Ms and none
of those lie in the u or p-axis. The pigeon hole principle guarantees that at least two of those
four points were constructed with initial data d either in (0, 1) or (− 1, 0), contradicting the
monotonicity of the radius (3.8), and proving the lemma. ��

The next step is to find exactly how many intersections there are between the stable and
unstable shooting curves, for each λ ∈ R+. As λ increases, the shooting curves change due
to the continuous dependence on the parameter, yielding a different attractor. See [18] for
the dependence of the attractor on parameters.

There are always three trivial equilibria 0,±1 in the intersection of the shooting curves.
A new pair of equilibria appears when λ crosses an eigenvalue of the spherical Laplacian λk .
This characterizes the pitchfork bifurcations that occur at each λk and gives a different proof
of such results, as in [9].

Lemma 3.3 Consider λ ∈ (λk, λk+1), where λk is the kth eigenvalue of the axially symmetric
Laplacian with k ∈ N0.

Then there are 2k + 3 intersections of Mu ∩ Ms, and the angle of the tangent vector of
the unstable shooting curve at (0, 0) ∈ Mu

π/2 is given by μ(λk+1) = π
2 (k + 1).

Proof The proof follows by induction on k ∈ N0. For the basis of induction, k = 0, it is
proved that there are three equilibria for λ ∈ (0, λ1) and that μ(λ1) = π

2 at (0, 0) ∈ Mu
π/2.

Consider the angle μ (λ, d) of the tangent vector of the unstable shooting curve Mu
π
2
with

initial data d ∈ [0, 1] and λ ∈ R+.
For λ0 = 0, the shooting flow (3.2) implies that p ≡ 0 and hence the unstable shooting

manifold is given by the u-axis. Therefore μ(0) = 0. By continuous dependence on λ, this
curve changes a little for λ small. Moreover, due to the monotonicities (3.6), (3.7) and (3.8)
for d ∈ (0, 1), the unstable shooting manifold spirals clockwise towards the trivial equilibria
0. Considering the appropriate reflections through Symmetries 1 and 2, one obtains the full
unstable and stable curves as below, for small λ.

We now show this shape persists as λ is increased up to λ1 (Fig. 2).
Recall that the angle μ is monotone in λ for fixed d ∈ R as in (3.9). Moreover,

limλ→∞ μ(λ, d) = ∞, for any τ ∈ R and d ∈ (−1, 1). Indeed, it follows by combin-
ing that (2.15) is increasing in λ, and (2.14) with the symmetry (3.3), which implies that the
stable angle is minus the unstable angle.
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Fig. 3 Shooting curves of (3.2) for λ ∈ (λ1, λ2)

Therefore, there is a λ∗ > 0 such that μ(λ∗, 0) = π
2 . We have to prove that λ∗ = λ1 and

that there are no new equilibria for λ ∈ (0, λ∗).
For fixed λ, the angle monotonicity (3.7) implies that the biggest value that μ attains is at

d = 0. Together with the monotonicity in λ, we have that

μ(λ, d) < μ(λ∗, d) < μ(λ∗, 0) = π

2
(3.18)

for λ < λ∗ and d ∈ (0, 1). Hence, there is no intersection of the unstable shooting curve with
the negative p-axis, described by the angle π/2 in polar coordinates.

Therefore, there is also no intersection of the unstable shooting curve with the nega-
tive u-axis (given by π in polar coordinates). This occurs since the angle μ is continuous
and monotone, hence the shooting curve would have to cross the negative p-axis at polar
angle π/2, which was shown that does not occur in (3.18). Similarly for the positive p-axis
(described by the angle 3π/2 in polar coordinates), and positive u-axis (at polar angle 0 or
2π).

The construction of the remaining part of the unstable manifold Mu
π/2 for d ∈ (−1, 0),

through symmetry (3.4), implies there is no intersection of this piece of the unstable shooting
curve with the u or p-axis. Hence, the only intersection points of the unstable shooting curve
with the u or p-axis lie in the trivial equilibria d = −1, 0, 1.

Moreover, due to symmetry (3.3) and the construction of the shooting stable manifold
Ms

π/2, there are no intersection points of the shooting stable manifold with the u or p-axis,
except at the equilibria with initial data e = −1, 0, 1.

This proves there are no other equilibria for λ ∈ (0, λ∗). We now show λ∗ = λ1.
Due to the symmetry (3.3), the angle of the tangent of the manifold Ms

π/2 at e = 0 will
be−μ(λ∗, 0) = −π

2 . Hence, the angle between those tangent vectors is π , as in (2.14). This
occurs exactly when λ∗ = λ1, as the definition of the eigenvalue λ1 through the eigenvalue
problem in polar coordinates (2.11). This proves the basis of induction.

For the induction step, suppose that for λ ∈ (λk−1, λk), there are 2(k − 1) + 3 equilibria
and μ(λk) = π

2 k. Note the last condition informs how many times the unstable shooting
curve has crossed the u and p axis. We shall prove that for λ ∈ (λk, λk+1), there are 2k + 3
equilibria, μ(λk+1) = π

2 (k + 1) and λk+1 is the (k + 1)th eigenvalue.
There exists a λ∗ > λk such that μ(λ∗, 0) = π

2 (k + 1), due to the monotonicity in λ

as (3.9). The arguments to show that λ∗ = λk+1 and that two new equilibria appear for
λ ∈ (λk, λ

∗) are analogous as the basis of induction.
There are two cases, depending on the parity of k. This influences which axis the shooting

curve intersects and where the new equilibria appear, as λ crosses λk .
If k is odd, then the new equilibria appear in the p-axis. We illustrate such case in the

Fig. 3, when λ crosses λ1.
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This can be proved as follows. By the induction hypothesis, we knowμ(λk) = π
2 k, which

means that the tangent of the shooting Mu
π/2 at d = 0 is parallel to the p-axis for odd k. Since

μ is increasing in λ and the shooting curve is continuous, then the shooting curve nearby
d = 0 moves from the quadrants {p > 0, u < 0} and {p < 0, u > 0} to its compliment, as λ

crosses λk . This creates two new intersections of the unstable shooting curve with the p-axis.
Due to the construction of the stable shooting curve Ms

π/2, it also intersects the p-axis in the
same points.

Then, one repeat the arguments in the induction step in order to show there is no intersection
of the shooting curves with the u-axis.

The only remaining claim to be proven is that equilibria can’t disappear, after they appear.
The only possibility for this to happen is if two equilibria within the u or p axis collide. Note
that neighboring equilibria come from different parts of the initial data: either d is in (0, 1)
or (−1, 0). Hence, if they collide, it contradicts uniqueness of the shooting flow (3.2), since
their initial data is different.

Analogously, the case when k is even yields new equilibria in the u-axis. We illustrate this
in the example below, as λ crosses λ2 and two new equilibria appear in the u-axis (Fig. 4). ��

3.3 Hyperbolicity: All Intersections are Transverse

It is enough to check that the unstable and stable manifolds Mu and Ms are not tangent
to the u or p-axis. Indeed, Mu is tangent to u-axis if, and only if Ms is also, since one
is obtained from the other through to the reflection p �→ −p. Similarly, Mu is tangent to
p-axis if, and only if there is another tangency of Mu with the p-axis, due to the rotation
(u, p) �→ (−u,−p). Moreover, Ms is obtained from Mu through the reflection p �→ −p,
hence Ms is also tangent to the p-axis at the same points.

Recall that the tangent vector of the unstable shooting manifold is given by (ud , pd) and
satisfies the Eq. (2.12). Hence, this vector is tangent to the p-axis if it is vertical, that is, if the
coordinate ud = 0. On the other hand, the coordinate in polar coordinates is u = ρ cos(μ),
and the chain rule implies

0 = ud = (ρ cos(μ))d = ρd cos(μ) − ρ sin(μ)μd .

Algebraic manipulation yields μ = arctan(ρd/(ρμd)). Note that the monotonicity prop-
erties (3.7) and (3.8) implies ρd andμd are nonzero with different signs, for both cases that d
is either in (0, 1) or (−1, 0). Moreover, the radius ρ > 0. Therefore, the argument ρd/(ρμd)

is strictly negative, and hence μ ∈ (−π/2, 0). That is, the point where the tangency occurs
is neither at the u, nor the p-axis, because those in polar coordinates are given by μ = π

2 k.
This contradicts that intersections must occur at the p-axis.

Similarly a tangency occurs at the u-axis, if the vector is horizontal, namely pd = 0. In
polar coordinates p = −ρ sin(μ), the tangency condition and the chain rule implies that
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Fig. 5 Labeling of equilibria for λ < λk with k odd

μ = arctan(−ρd/(ρμd)). By a similar analysis as above, the argument is strictly positive
and hence μ ∈ (0, π/2). That is, the intersection does not occur in the u-axis, yielding a
contradiction.

Therefore, all nontrivial equilibria are hyperbolic. The only equilibrium that can be non-
hyperbolic is the trivial one when d = 0, because in this case ρ = 0 and hence the tangent
is parallel to the u or p-axis. Indeed, this was proved to be the case in Lemma 3.3, whenever
λ = λk for all k ∈ N0.

3.4 Obtaining the Permutation

We construct the Sturm permutation for λ ∈ (λk, λk+1) by induction on k ∈ N0. The idea is
to label the intersections of the unstable and stable manifolds, firstly along Mu following its
parametrization given by the initial data d from−∞ to∞, and secondly along Ms following
its parametrization given by e from −∞ to ∞.

For k = 0, that is, λ ∈ (λ0, λ1), there are no other intersections of the shooting curves,
except the trivial equilibria d = −1, 0, 1. Noticing how the shooting curve was constructed
before, this is exactly their order along both Mu and Ms following their parametrization d, e
from−∞ to∞. Hence, the permutation is the identity σ = id , since their order is the same
along both Mu and Ms .

For the induction step, we find the permutation for λ ∈ (λk, λk+1), with k ≥ 1, supposing
that the permutation for λ ∈ (λk−1, λk) is given by

σ = (2, 2k)(4, 2k − 2) . . . (3.19)

where ( j, l) is a transposition in the group of permutations SN with appropriate N .
For k ≥ 1 and λ < λk with small |λ − λk |, there are N = 2k + 1 equilibria as in

Lemma 3.3, and hence �k/2 transpositions in the Sturm permutation, where �· denotes the
ceiling function. Note σ contains all even numbers less or equal N = 2k + 1.

There are two cases: either k is even or odd. The previous construction of the shooting
curve implies that it rotates clock-wise around the trivial equilibria 0. The parity of k tells
how the shooting curve behaves for λ < λk , in particular, if the equilibria nearby the trivial
equilibria 0 is obtained by an intersection with the u or p axis.

Suppose k is odd. Labeling the equilibria alongMu andMs forλ < λk , the trivial equilibria
0 is labeled k + 1, since there are k equilibria before it along the unstable manifold. Hence,
the nearby equilibria are labeled by k for the equilibria before, and k + 2 for the equilibria
after it. Moreover, the last transposition in the permutation (3.19) is (k + 1, k + 1), since
k + 1 is even (Fig. 5).

The labeling within the unstable manifold for the equilibria labeled less than k + 1 will
not change. Moreover, as λ cross λk , two new equilibria appear, one on each side along the
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Fig. 6 Labeling of equilibria for λ > λk with k odd

unstable manifold. The trivial equilibria 0, which was labeled k + 1 for λ < λk , will be
shifted by 1, yielding k + 2 for λ > λk . All other having label bigger than k + 1 will be
shifted by two. See the Fig. 6.

Similarly occur a change of labeling along the stable manifold.
One only has to check what happens to the permutation σ as λ crosses λk : a new trans-

position (k + 1, k + 3) is added in the permutation. Note k is odd, and hence both k + 1 and
k + 3 are even. Moreover, the transposition, which was (k + 1, k + 1) must be shifted to
(k + 2, k + 2), yielding the identity transposition and not changing (3.19).

Therefore, the number of transpositions �k/2 does not change. The only difference is
the relabeling of equilibria within the permutation, described above, yielding the desired
permutation. The casewhen the orientation of the unstablemanifold is reversed have identical
arguments.

For k even, the above argument can be adapted. Notice that there are 2k + 1 equilibria,
and again the trivial equilibria 0 is labeled by k + 1. As λ crosses λk , there are two new
equilibria along the unstable manifold. Hence, the ones before k should not be relabeled, the
origin k+ 1 for λ < λk should be relabeled by k+ 2 for λ > λk , and all equilibria with label
bigger than k + 1 should be shifted by 2.

Again, since the stable manifold is obtained by the reflection of the unstable manifold
with respect to the u-axis, then one can see that the new permutation that should be added
is (k, k + 4). Notice those are even numbers. Again, the transposition of the origin does not
change (3.19), since it yields the identity transposition given by (k + 2, k + 2). Similarly
when the orientation of the unstable manifold is reversed.

3.5 Obtaining the Attractor

The permutation obtained above is the same as the regular Chafee–Infante problem. Hence,
the attractors are connection-wise the same, since the conditions for the existence of hetero-
clinics are the same.

4 Discussion

The shooting method used to construct the attractor generalizes the bifurcation result in
[9] for radially symmetric solutions in the disk. Indeed, not only we are able to prove the
existence of bifurcating equilibria, but can also compute secondary bifurcations that might
occur, hyperbolicity of all equilibria, their Morse indices and how they fit together in the
attractor, by computing heteroclinic trajectories.
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After the construction of the Sturm attractor for the parabolic equation with singular
coefficients, we see that if the Sturm permutation for the singular case coincide with the
permutation for the case of regular coefficients, then the attractors for both cases coincide.
This happens since they are both constructed in the same way, yielding the same necessary
and sufficient conditions for heteroclinics to exist, regarding the zero numbers and Morse
indices.

The construction of the Sturm attractor in the case of general singular diffusion is not
proved here, but the above arguments can be replicated without severe modifications.
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