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Abstract
In this paper, we study the delayed reaction–diffusion Schnakenberg systems with Neumann
boundary conditions. Sufficient and necessary conditions for the occurrence of Turing insta-
bility are obtained, and the existence of Turing, Hopf and Turing–Hopf bifurcation for the
model are also established. Furthermore, for Turing–Hopf bifurcation, the explicit formula
of the truncated normal form up to third order is derived. With the aid of these formulas, we
determine the regions on two parameters plane, on which a pair of stable spatially inhomo-
geneous steady states and a pair of stable spatially inhomogeneous periodic solutions exist,
respectively. The theoretical results not only reveals the joint effect of diffusion and delay
on the patterns that the model can exhibit, but also explain the phenomenon that time delay
may induce a failure of Turing instability, found by Gaffney and Monk (Bull Math Biol
68(1):99–130, 2006).

Keywords Diffusive Schnakenberg model with delay · Turing instability · Turing–Hopf
bifurcation · Normal form · Spatiotemporal patterns

1 Introduction

The morphogen is an important concept in developmental biology, because it describes a
mechanism by which the emission of a signal from one part of an embryo can determine
location, differentiation and fate of many surrounding cells [10]. A reaction diffusion model
with Schnakenberg kenetics [26], has been widely used to describe spatial distribution of
morphogen, and to understand how various morphogens interact with cells and patterns. The
Schnakenberg system is chosen as a simple exemplar, given it is representative of the behavior
of many, though certainly not all, two species reaction diffusion systems [22]. Recently, it is
argued in [6] that there is an evidence that time delay in gene expression due to transcription
and translation plays an import role in dynamics of cellular systems. Therefore, a diffusive
Schnakenberg system with time delay is proposed in [17], as follows:
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ut (x, t) = εduxx (x, t) + a − u(x, t) + u2(x, t − τ)v(x, t − τ), x ∈ (0, 1), t > 0,
vt (x, t) = dvxx (x, t) + b − u2(x, t − τ)v(x, t − τ), x ∈ (0, 1), t > 0,
ux (0, t) = ux (1, t) = vx (0, t) = vx (1, t) = 0, t ≥ 0,
u(x, t) = φ(x, t) ≥ 0, v(x, t) = ϕ(x, t) ≥ 0, (x, t)∈[0, 1]×[−τ, 0],

(1.1)

where u(x, t) and v(x, t) are concentrations of activator and inhibitor at (x, t) respectively,
and a, b, d, ε are all positive constants.

For (1.1) with τ = 0, numerous studies have been done. As known to all, Turing’s theory
shows that the diffusion could destabilize a stable steady state of reaction diffusion equation,
and lead to nonuniform spatial patterns [12,20,23,30]. Based on Turing bifurcation analysis,
sufficient conditions for the occurrence of Turing instability of (1.1) is provided in [22,36].
Hopf bifurcation problem of (1.1) with τ = 0 is also investigated in [19,25,34], by using an
intermediate parameter depending on a and b. In addition, Turing–Hopf bifurcation is studied
in [25], where the main idea is to show the existence of time-periodic solutions through Hopf
bifurcation in the first place, and then to prove the Turing instability of the bifurcated periodic
solution, showing the existence of spatially inhomogeneous time-periodic patterns. For more
information on Turing–Hopf bifurcation for other specific models, we refer the readers to
[2,14,18,21,28]. In [32], asymmetric spike patterns for (1.1) are constructed, and explicit
conditions for the existence and stability of these asymmetric patterns are determined.

Due to the factor of time delay,Hopf bifurcation occurs frequently as delaymay destabilize
the steady state and induce a temporally periodic solution, see [3,8,9,24,29,31,35,37]. When
τ �= 0, the detailed stability and Hopf bifurcation analysis is performed for (1.1) in [36],
showing the existence of spatially homogeneous periodic solutions. Aside from this, the
authors also show in [36] that time delay could induce a failure of Turing instability, due
to the Hopf bifurcation at the spatially inhomogeneous steady state (bifurcated from the
constant steady states through Turing bifurcation).

In the present paper, we first carry out detailed analysis on Turing, Hopf and Turing–
Hopf bifurcation for (1.1). Firstly, we obtain an critical curve in (ε, d)-plane that separates
Turing stable and instable regions. The curve is continuous and piecewise smooth, and the
nonsmooth points corresponds to the critical values for Turing-Turing bifurcation. The results
will provide the sufficient and necessary condition for the occurrence of Turing instability,
extending most of the results in the literature [22] as the conditions established there are only
necessary. Other than this, from the explicit expression of this curve, one can easily find the
spatial inhomogeneous steady state in various profiles, depending on the wave number. This
theoretically explains why the spatially inhomogeneous steady-states with high frequency in
space are prone to coexist, when the diffusion rate is small and the size of spatial domain is
fixed. Secondly, we prove that (1.1) will undergoes Hopf bifurcations as time delay τ passes
through a sequence of critical values. Finally, much attention is paid on the interaction of
diffusion rate and time delay. The techniques we used here is combining the center manifold
theorem and normal form theory to study this codimension-two bifurcation directly, which is
distinguished from the two methods that have been extensively used in the existing literature
(the first method is to study the Hopf bifurcation at the spatially inhomogeneous steady
state generated through Turing bifurcation, the other one is to examine the Turing instability
of periodic solution arising from Hopf bifurcation). In [13], within the framework of [4,
5], we already derived a set of explicit formulas for calculating normal forms (up to third
order) of Hopf-steady state bifurcation (including Turing–Hopf bifurcation) for a general
delayed reaction diffusion equation with Neumann boundary condition. By employing these
formulas, we obtain the normal forms of (1.1) when Turing–Hopf bifurcation occurs, where
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the coefficients in the normal form explicitly depend on the original parameter in the system.
From the dynamics of unfolding of the normal form, we theoretically prove the existence
of various spatiotemporal patterns for different parameter values, such as, a pair of spatially
inhomogeneous steady state, a stable spatially homogeneous periodic orbit and two spatially
inhomogeneous periodic orbits.

Turing–Hopf bifurcation for delayed reaction diffusion equation has been covered in
[11,15,27,33] and reference therein. The method employed here is different from the ones
in the literature. It requires a great deal of symbolic manipulation, whereas, its advantages
are also threefold: (1) From the bifurcation set for the unfolding of the normal form, one
can specify what kind of spatiotemporal pattern the model can exhibit for any parameters
near the critical bifurcation values; (2) One can also easily find the curves where periodic
solution undergoes Turing bifurcation or spatially inhomogeneous steady state undergoes
Hopf bifurcation. From this point of view, our approach can be regarded as an integration of
the two methods mentioned above; (3) Through this codimension two bifurcation analysis,
other complex patterns could be theoretically shown, such as spatially inhomogeneous quasi-
periodic solutions (see the cases of V Ia and V I Ia in [7] or [16]), relying on the signs of the
coefficients in the normal form.

The paper is organized as follows. In Sect. 2, by analyzing characteristic equations at the
positive constant steady state, conditions for Turing instability, as well as Hopf bifurcation
and Turing–Hopf bifurcation are established. In Sect. 3, applying the general formula of
normal form for Hopf-steady state bifurcation in [13], explicit formulas for quadratic and
cubic coefficients of normal forms at Turing–Hopf singularity are derived. In Sect. 4, for a
certain set of parameter values, we use the unfolding of normal form to prove the existence of
various spatiotemporal pattern, caused by Turing–Hopf bifurcation. Numerical simulations
are also carried out to support the theoretical findings. We finish our study with conclusions
in Sect. 5. Throughout the paper, N is the set of all positive integers, and N0 = N ∪ {0}
represents the set of all non-negative integers.

2 Turing and Hopf Bifurcation

In this section, Turing instability, Turing bifurcation and Hopf bifurcation for system (1.1)
are investigated.

It is straightforward that the system (1.1) admits a unique positive constant steady state
E∗ = (u∗, v∗), with

u∗ = a + b, v∗ = b

(a + b)2
.

The linearized equation of system (1.1) at E∗ is given by

ut (x, t) = εduxx (x, t) − u(x, t)+2u∗v∗u(x, t − τ)+u2∗v(x, t − τ), x ∈(0, 1), t>0,

vt (x, t) = dvxx (x, t) − 2u∗v∗u(x, t − τ) − u2∗v(x, t − τ), x ∈(0, 1), t>0,

ux (0, t) = ux (1, t) = vx (0, t) = vx (1, t) = 0, t ≥ 0.

(2.1)

Let μk , k ∈ N0 be the eigenvalues of −� with Neumann boundary condition in one dimen-
sional spatial domain (0, 1). Then, μk = k2π2, and the characteristic equation of (2.1)
is
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Dk(λ, τ, ε) := λ2 + pkλ + rk + (skλ + qk)e
−λτ = 0, k ∈ N0, (2.2)

where

pk � (ε + 1)dk2π2 + 1, rk � εd2k4π4 + dk2π2,

sk � u2∗ − 2u∗v∗, qk � (εu2∗ − 2u∗v∗)dk2π2 + u2∗.
(2.3)

In particular, for τ = 0, (2.2) turns into

Dk(λ, 0, ε) = λ2 + (pk + sk)λ + (rk + qk) = 0, k ∈ N0. (2.4)

Denote DETk := rk + qk and T Rk := −(pk + sk) for k ∈ N0. Then

DETk = εd2k4π4 + (εu2∗ − 2u∗v∗ + 1)dk2π2 + u2∗,
T Rk = −(ε + 1)dk2π2 − 1 − u2∗ + 2u∗v∗,

Throughout this paper, we assume

(N0) u2∗ > 2u∗v∗ − 1 > 0;

By (N0), we know that all eigenvalues of (2.4) with k = 0 have negative real parts. In
the remaining parts, k-mode Turing (Hopf) bifurcation is referred to the corresponding k-th
characteristic equation having a zero root (a pair of purely imaginary roots), and (m, n)-mode
Turing–Hopf bifurcation is related to the fact that (2.2) with m and n have a zero root and a
pair of purely imaginary roots, respectively.

2.1 Turing Bifurcation and Turing Instability

We first determine the feasible region on (ε, d)-plane, on which Turing bifurcation curve
may exist.

Lemma 2.1 For (1.1), the Turing bifurcation point (ε, d) always exist, and (ε, d) ∈ {(ε, d) ∈
R

+
2 , d > 0, 0 < ε < εB(d)} := S, where

εB(d) =
⎧
⎨

⎩

ε1 � 1
u2∗

(
√
2u∗v∗ − 1)2, if 0 < d ≤ d0,

ε2(d) � 2u∗v∗−1
π2d+u2∗

, if d ≥ d0.
(2.5)

Proof For k ∈ R
+, DETk attains its minimum at k2min � 2u∗v∗−εu2∗−1

2dεπ2 . It then can be verified

that min
k∈R+ DETk = u2∗ − (εu2∗−2u∗v∗+1)2

4ε > 0 if and only if ε > ε1. From (N0), we have

T Rk < 0 for any k ∈ N0. Therefore, 0 can not be a zero of (2.4) for any k ∈ N0 as long as
ε > ε1.

When ε < ε2(d), we have kmin > 1√
2
. Consequently, there exists (ε, d), such that

ε < ε2(d) and 0 is a root of (2.4) with such (ε, d) for some k ∈ N. By
√
2u∗v∗ > 1, we know

ε2(0) > ε1. Since ε2(d) is strictly decreasing in d . there is a unique d = d0 � 2u2∗
π2(

√
2u∗v∗−1)

such that ε2(d0) = ε1, ε2(d) > ε1 for d ∈ (0, d0) and ε2(d) < ε1 for d ∈ (d0,+∞). From
the above discussion, we can conclude that the Turing bifurcation point (ε, d) ∈ S. 
�

For any k ∈ N, define

ε∗(k, d) = (2u∗v∗ − 1)dk2π2 − u2∗
dk2π2(dk2π2 + u2∗)

, (2.6)
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Fig. 1 The graph of functions ε = ε1, ε = ε2(d) and ε = ε∗(k, d) for different k in (d, ε) plane

for d > dk � u2∗
k2π2(2u∗v∗−1)

. Obviously, DETk = 0 whenever ε = ε∗(k, d). Using a
geometric argument, we have the following properties for ε∗(k, d).

Lemma 2.2 Suppose that (N0) holds. Then, we have

(a) For any fixed k ∈ N, ε = ε∗(k, d) reaches its maximum ε1 at d = dM (k) �
u2∗

k2π2(
√
2u∗v∗−1)

> dk, and ε∗(k, d) is monotonically decreasing (increasing) in d, for

d > dM (k) (dk < d < dM (k)).
(b) For any k ∈ N, the equation

ε∗(k, d) = ε∗(k + 1, d), d > 0,

has a unique positive root dk,k+1 ∈ (dM (k + 1), dM (k)) for d, which is given by

dk,k+1= u2∗
2π2(2u∗v∗ − 1)

⎡

⎣
1

k2
+ 1

(k + 1)2
+
√
(

1

k2
+ 1

(k+1)2

)2

+ 4(2u∗v∗ − 1)

k2(k+1)2

⎤

⎦ .

(2.7)

Moreover,

ε∗(k, d) > ε∗(k + 1, d) > ε∗(k + 2, d) > · · · , for d > dk,k+1. (2.8)

(c) Let

ε∗(d) := ε∗(k, d), for d ∈ [dk,k+1, dk−1,k), k ∈ N. (2.9)

where d0,1 := +∞. Then, ε∗(d) ≤ εB(d) for 0 < d < +∞, and ε∗(d) = εB(d) if and
only if d = dM (k), k ∈ N.

In Fig. 1, we plot the curves of ε∗(k, d) for different k to illustrate the properties as
presented in Lemma 2.2. We will show that the graph of ε∗(d) is actually the critical curve
of Turing instability.

123



2228 Journal of Dynamics and Differential Equations (2019) 31:2223–2247

Lemma 2.3 Assume that (N0) holds. Then,

(1) If d ∈ (dk1,k1+1, dk1−1,k1) for some k1 ∈ N and ε = ε∗(d), then 0 is a simple root of
(2.2) with k = k1, and all the other roots of (2.2) have strictly negative real parts for
τ = 0. Furthermore, let λ = λ(k1, τ, ε) be the root of (2.2) with k = k1 such that
λ(k1, τ, ε∗(d)) = 0, where (τ, ε) ∈ [0,+∞) × (ε∗(d) − δ, ε∗(d) + δ) for sufficiently
small δ > 0. Then,

dDk1(λ, τ, ε)

dε
|λ=0,ε=ε∗(d) < 0. (2.10)

(2) If d = dk,k+1 and ε = ε∗(dk,k+1), then 0 is a simple root of (2.2) for both k and k + 1,
k ∈ N.

Proof (1) Recall that DETk = 0 if and only if ε = ε∗(k, d) for k ∈ N. Then, for any k ∈ N,
λ = 0 is always a root of (2.2) with such k when ε = ε∗(k, d). By the definition of ε∗(d) and
ε∗(k, d), we know that if d ∈ (dk1,k1+1, dk1−1,k1) for some k1 and ε = ε∗(d), then λ = 0 is
a root of (2.2) with k = k1. Furthermore, λ = 0 is simple, since

dDk1(λ, τ, ε)

dλ
|λ=0 = pk1 + sk1 − τqk1 = −T Rk1 + τrk1 > 0.

Note that the assumption (N0) ensures T Rk < 0, for all k ∈ N0, and DETk > 0 for
k ∈ N, k �= k1. Therefore, all the other roots of (2.2) for τ = 0 has strictly negative real parts
when ε = ε∗(d).

It remains to verify the (2.10). Differentiating (2.2) with respect to ε, we obtain

dDk1(λ, τ, ε)

dε
|λ=0,ε=ε∗(d) = (pk1 + sk1 − τqk1)

dλ(k1, τ, ε∗(d))

dε
+ d2k41π

4+dk21π
2u2∗ = 0.

Using (N0) and DETk1 = 0 again, we have

pk1 + sk1 − τqk1 = u2∗ − 2u∗v∗ + 1 + (ε∗(d) + 1)dk21π
2 + τrk1 > 0.

Thus,

dλ(k1, τ, ε∗)
dε

= −d2k41π
4 + dk21π

2u2∗
pk1 + sk1 − τqk1

< 0, for τ ≥ 0.

This proves the first statement.
(2) By a similar argument as above, one can show the second assertion. 
�
As a direct consequence of Lemma 2.3, we arrive at the following conclusion on the Turing

bifurcation of (1.1).

Theorem 2.4 Assume that (N0) holds. Then,

(1) For d > 0, if ε > ε∗(d), then the constant steady state (u∗, v∗) of system (1.1) is
asymptotically stable for τ = 0, and if 0 < ε < ε∗(d), then (u∗, v∗) is unstable.

(2) For d ∈ (dk,k+1, dk−1,k), the system (1.1) will undergoes k-mode Turing bifurcation at
ε = ε∗(d), and the bifurcated inhomogeneous steady state near (ε∗(d), u∗, v∗) can be
parameterized as (ε(s), u(s), v(s)) for s ∈ (−δ, δ) with sufficiently small δ, where

ε(s) = ε∗(d) + s, (u(s), v(s)) = (u∗, v∗) + r(s) cos(k1πx)(1, pk1).

and pk1 = 1
u2∗

(1 − 2u∗v∗ − dε∗μk1), r(s) �= 0.

(3) When d = dk,k+1, (k, k+1)-mode Turing-Turing bifurcation occurs at ε = ε∗(dk,k+1).
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Fig. 2 The first Turing bifurcation line T : ε = ε∗(d), d > 0, and Turing–Turing bifurcation point
Tk,k+1, k = 1, 2, 3, . . .

Remark 2.5 The graph of ε = ε∗(d), d > 0 is called the first Turing bifurcation curve in this
context. From Lemma 2.2, we know it is continuous and piecewise smooth on (0,+∞), and
the nonsmooth points of ε∗(d) are exactly the Turing–Turinig bifurcation points Tk.k+1, k ∈
N, see Fig. 2. Since the expression of ε∗(d) explicitly depends on wave number k and
diffusion rate d as in (2.9), we can easily find stable spatial inhomogeneous patterns of (1.1)
with arbitrary wave number, see the numerical simulations in Sect. 4. In addition, if ε is fixed,
then the diffusion coefficient d also has great impact on wave number k, and hence on the
spatial patterns of (1.1)

Remark 2.6 It is also remarked that ε < ε∗(d) is the sharp condition for the occurrence
of Turing instability for (1.1), i.e., (u∗, v∗) is stable for ε > ε∗(d), and will be destabilized
through Turing bifurcation, as ε decreasingly crosses ε∗(d). This extends most of the existing
results in the literature. For instance, it has been shown in [11] that Turing instability will
not happen for ε > ε1, where ε1, defined in (2.5), is independent of d . In Theorem 2.4, we
prove that the steady state (u∗, v∗) is always stable for ε > ε∗(d), which can be viewed an
extension of the results in [11], since ε∗(d) ≤ εB(d) ≤ ε1.

Remark 2.7 If ε ∈ (ε∗(dk̃,k̃+1), ε∗(dk̃+1,k̃+2)) is fixed, for some k̃ ∈ N, from the graph

of ε∗(d), there exists a sequence of d̃i , such that 0 is a root of (2.4) when d = d̃i , i =
1, 2, . . . 2k̃ + 1, and d̃i > d̃ j if j > i . Let λ̃(k∗, τ, d) be the root of (2.4) with some k = k∗
such that λ̃(k∗, τ, d̃i ) = 0. Then, it can be verified that dλ̃(k∗,τ,d)

d |d=d̃i
> 0 and k∗ = i+1

2(
∂λ̃(k∗,τ,d)

∂d |d=d̃i
< 0 and k∗ = i

2

)
for i = 1, 3, 5, . . . , 2k̃ + 1 (i = 2, 4, 6, . . . , 2k̃). This

will implies the stability of (u∗, v∗) interchanges repeatedly as d passes through d̃i , and (1.1)
has a spatially inhomogeneous steady state with wave number i+1

2 for d ∈ (d̃i+1, d̃i ) and
i = 1, 3, 5, . . . , 2k̃ + 1.
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2.2 Hopf Bifurcation

Now, we will study the Hopf bifurcation of (1.1) in the case of ε ≥ ε∗(d), d > 0. Suppose
that λ = ±iωk with ωk > 0 are a pair of purely imaginary roots of (2.2). Then,

Dk(iωk, τ, ε) = rk − ω2
k + qk cos(ωkτ) + skωk sin(ωkτ)

+i[pkωk + skωk cos(ωkτ) − qk sin(ωkτ)] = 0,

for k ∈ N0. Separating the real and imaginary parts, we have

cos(ωkτ) = qk (ω2
k−rk )−pkskω2

k
s2kω2

k+q2k
,

sin(ωkτ) = skωk (ω
2
k−rk )+pkqkωk

s2kω2
k+q2k

.

(2.11)

which yields

ω4
k + (p2k − s2k − 2rk)w

2
k + r2k − q2k = 0. (2.12)

Define

ω±
k :=

√
2

2

(

s2k − p2k + 2rk ±
√

(s2k − p2k + 2rk)2 − 4(r2k − q2k )

)1/2

. (2.13)

Theorem 2.8 Assume that (N0) holds and
2u∗v∗+1

u2∗
≥ ε ≥ ε∗(d) for any d > 0. For (2.12)

with k ∈ N0, the following statements are valid.

(1) When 0 ≤ k < K 0, ω+
k is the unique positive root to (2.12), where

K 0 := 1√
2εdπ

[

(εu2∗ − 2u∗v∗ − 1) +
√

(εu2∗ − 2u∗v∗ − 1)2 + 4εu2∗
] 1

2

. (2.14)

(2) For k ≥ K 0,

(a) if (u2∗ − 2u∗v∗)2(ε2 + 1) < 1, then (2.12) has no positive root;
(b) if (u2∗ − 2u∗v∗)2(ε2 + 1) ≥ 1 and K 0 ≥ K+, where

K+ = 1

π
√

(ε2 + 1)d

(

−ε +
√

(u2∗ − 2u∗v∗)2(ε2 + 1) − 1

)1/2

, (2.15)

then (2.12) also has no positive root for k ≥ K 0;
(c) if (u2∗ − 2u∗v∗)2(ε2 + 1) ≥ 1 and K 0 < K+, there is a K∗ ∈ (K 0, K+), such that

(2.12) has two positive roots ω±
k for k ∈ (K 0, K∗), a positive root ω+

k for k = K 0

or K∗ and and has no positive root for k > K∗.

Proof (1)Obviously, rk+qk = DETk ≥ 0. From ε ≤ 2u∗v∗+1
u2∗

,weknow εu2∗−2u∗v∗−1 ≤ 0.

Hence,

rk − qk = ε(dk2π2)2 − (εu2∗ − 2u∗v∗ − 1)(dk2π2) − u2∗
is strictly increasing in k ∈ R

+ and rk − qk > r0 − q0 = −u2∗. For K 0 defined in (2.14), we
have r2

K 0 − q2
K 0 = 0. This implies

r2k − q2k < 0, for 0 ≤ k < K 0,

r2k − q2k ≥ 0, for k ≥ K 0,
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and therefore, ω+
k is the unique positive root to equation (2.12) for 0 ≤ k < K 0.

(2) If (u2∗ − 2u∗v∗)2(ε2 + 1) < 1, then p20 − s20 − 2r0 = −(u2∗ − 2u∗v∗)2 + 1 > 0. Note
that

p2k − s2k − 2rk = (ε2 + 1)d2k4π4 + 2εdk2π2 − (u2∗ − 2u∗v∗)2 + 1.

By the monotonicity of p2k − s2k − 2rk with respect to k, it concludes that p2k − s2k − 2rk > 0
for all k ∈ R

+. If (u2∗ − 2u∗v∗)2(ε2 + 1) ≥ 1, then K+ in (2.15) is well-defined, and is the
unique nonnegative root of p2k −s2k −2rk = 0 with respect to k. Therefore, p2k −s2k −2rk > 0
for k > K+ in this case. On the other hand, it follows form (1) that r2k − q2k > 0 for k > K 0.
Therefore, both ω+

k and ω−
k can not be positive under the assumptions of (a) or (b) in (2),

which proves the first and second assertion.
For the case of K 0 < K+, let

�(k) := (s2k − p2k + 2rk)
2 − 4(r2k − q2k ).

Then, �(K 0) = (s2
K 0 − p2

K 0 + 2rK 0)2 > 0 and �(K+) = −4(r2K+ − q2K+) < 0. So there

exist K∗ ∈ (K 0, K+) such that �(K∗) = 0, and �(k) > 0, r2k − q2k > 0 for k ∈ (K 0, K∗).
Accordingly, equation (2.12) has two positive roots ω±

k for k ∈ (K 0, K∗). When k = K 0,
(s2k − p2k + 2rk)2 > 0 and r2k − q2k = 0. Therefore, ω−

K 0 = 0 and ω+
K 0 is the unique positive

root of (2.12). For k = K∗, from �(K∗) = 0 and (s2K∗ − p2K∗ + 2rK∗)
2 > 0, we have

ω+
K∗ = ω−

K∗ > 0. This proves the third statement in (2). 
�

Corollary 2.9 Suppose that (N0) holds, and
2u∗v∗+1

u2∗
≥ ε ≥ ε∗(d), for d > 0. Let

K ∗ :=

⎧
⎪⎨

⎪⎩

K 0, for (u2∗ − 2u∗v∗)2(ε2 + 1) < 1

K 0, for (u2∗ − 2u∗v∗)2(ε2 + 1) ≥ 1 and K 0 ≥ K+,

K∗, for (u2∗ − 2u∗v∗)2(ε2 + 1) ≥ 1 and K 0 < K+,

(2.16)

Then, equation (2.12) has at least a positive root ω+
k for 0 ≤ k < K ∗ and k ∈ N0.

Suppose that ω+
k is a positive root of (2.12). Let τk be the root of (2.11) with ωk = ω+

k in
(0, 2π]. Then, we can define the critical values for τ by

τ
( j)
k = τk + 2π j

ω+
k

, j, k = 0, 1, 2, . . . , 0 ≤ k < K ∗. (2.17)

at which±iω+
k are pure imaginary roots of (2.2). Denote by λ(τ) = α(τ)+ iω(τ) the root of

(2.2) near τ = τ
( j)
k satisfying α(τ

( j)
k ) = 0, ω(τ

( j)
k ) = ω+

k , for k ∈ N0, 0 ≤ k < K ∗. Then,

Theorem 2.10 Suppose that (N0) holds,
2u∗v∗+1

u2∗
≥ ε ≥ ε∗(d), d > 0 and 0 ≤ k < K ∗.

Then,

dα(τ)

dτ
|
τ

( j)
k

> 0.

Proof The proof is similar to the proof of Theorem 2.2 in [36], and hence omitted here. 
�
Let k2 ∈ [0, K ∗) be an integer such that

τk2 = min
k∈N0,k∈[0,K ∗)

τk . (2.18)
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Theorem 2.11 Suppose that (N0) holds, and
2u∗v∗+1

u2∗
≥ ε > ε∗(d), d > 0. Then

(1) The steady states (u∗, v∗) of (1.1) is locally asymptotically stable for τ ∈ [0, τk2). When
τ = τk2 , Dk2(λ, τ, ε) = 0 has a pair of pure imaginary roots for λ, with all other roots
of (2.2) having strictly negative real parts for any k ∈ N0.

(2) At τ = τ
( j)
k with 0 ≤ k < K ∗ and j, k ∈ N0, (1.1) undergoes k-mode Hopf bifurcation

near (u∗, v∗), and the bifurcating periodic solutions near (τ
( j)
k , u∗, v∗) can be parame-

terized as (τ (s), u(s), v(s)), for s ∈ (−δ, 0) (or s ∈ (0, δ)), where δ > 0 is sufficiently
small,

τ(s) = τ
( j)
k + s, (u(s), v(s)) = (u∗, v∗) + [r1(s)(1, p0k )eiτkω

+
k θ

+ r2(s)(1, p0k )e
−iτkω

+
k θ ] cos(kπx)

for −1 ≤ θ ≤ 0, and p0k = 1
u2∗

(1 − 2u∗v∗e−iτkω
+
k − dε∗μk + iω+

k )eiτkω
+
k , r1(s)

or r2(s) �= 0.

Remark 2.12 If ω−
k is also a positive root of (2.12), one can compute τ−

k ∈ (0, 2π] such that
τ−
k is a root of (2.11) with ωk = ω−

k , and define

τ
( j−)
k = τ−

k + 2π j

ω−
k

, j, k = 0, 1, 2, . . . , K 0 ≤ k < K∗, (2.19)

The tranversality condition is now described as:

dReλ(τ)

dτ
|
τ

( j−)
k

< 0.

Therefore, τk2 < min
K 0≤s<K∗,s∈N0

τ−
s . This implies τk2 is always the first Hopf bifurcation value

no matter if ω−
k exists or not.

3 Turing–Hopf Bifurcation

In this part, we will study the Turing Hopf bifurcation for (1.1), based on the conclusions of
Turing bifurcation and Hopf bifurcation in previous section. It has been shown in Theorems
2.4 and 2.11 that Hopf-steady state bifurcation of (1.1) will never happen, in either case of
τ > 0 and d = 0 or τ = 0 and d > 0. Using Theorems 2.4 and 2.11, one can easily prove
the existence of Turing–Hopf bifurcation, induced by the joint effect of diffusion rate d and
delay τ .

Theorem 3.1 Suppose that (N0) holds. Given k1 ∈ N. Then, for d ∈ (dk1,k1+1, dk1−1,k1),
system (1.1) undergoes (k1, k2)-mode Turing–Hopf bifurcation near (u∗, v∗) at (τ, ε) =
(τk2 , ε∗(d)) := (τk2 , ε∗), where k2 is determined by (2.18).

For the purpose of determining the spatiotemporal patterns, which can be induced by
Turing Hopf bifurcation, we shall derive the third-order normal forms of system (1.1) for
(k1, k2)-mode Turing–Hopf bifurcation, with (τ, ε) near the bifurcation point (τk2 , ε∗). In
order to use the formula, derived for the normal form of Hopf-steady state bifurcation in [13],
we normalize the delay τ in system (1.1) by time-scaling t → t/τ , and translate (u∗, v∗)
into origin. Then, system (1.1) becomes

∂u
dt = τ

(
εduxx + a − (u(t, x) + u∗) + (u(t − 1, x) + u∗)2(v(t − 1, x) + v∗)

)
,

∂v
dt = τ

(
dvxx + b − (u(t − 1, x) + u∗)2(v(t − 1, x) + v∗)

)
.

(3.1)
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The corresponding characteristic equations are now given by

λ2 + τ pk(ε)λ + τ 2rk(ε) + (τ skλ + τ 2qk(ε))e
−λ = 0, k ∈ N0, (3.2)

Rewrite τ = τk2 + α1, ε = ε∗ + α2, and let U (t) = (u(t), v(t)) Then, system (3.1) can be
written as

d

dt
U (t) = L0(Ut ) + D0�U (t) + 1

2
L1(α)Ut + 1

2
D1(α)�U (t) + 1

2!Q(Ut ,Ut )

+ 1

3!C(Ut ,Ut ,Ut ) + · · · , (3.3)

where

D0 = dτk2

(
ε∗ 0
0 1

)

, D1(α) = 2d

(
α1ε∗ + α2τk2 0

0 α1

)

,

L0ϕ = τk2

(−ϕ(1)(0) + 2u∗v∗ϕ(1)(−1) + u2∗ϕ(2)(−1)
−(2u∗v∗ϕ(1)(−1) + u2∗ϕ(2)(−1))

)

,

L1(α)ϕ = 2α1

(−ϕ(1)(0) + 2u∗v∗ϕ(1)(−1) + u2∗ϕ(2)(−1)
−(2u∗v∗ϕ(1)(−1) + u2∗ϕ(2)(−1))

)

,

Q(ϕ, ϕ) = 2τk2ϕ
(1)(−1)[v∗ϕ(1)(−1) + 2u∗ϕ(2)(−1)]

(
1

−1

)

,

C(ϕ, ϕ, ϕ) = 3!τk2ϕ(1)2(−1)ϕ(2)(−1)

(
1

−1

)

.

with ϕ = (
ϕ(1), ϕ(2)

)T
. The phase space of (3.3) is chosen as C = C([−1, 0]; X), with

X = {
(u, v) : u, v ∈ W 2,2(�) : u′(0) = u′(1) = v′(0) = v′(1) = 0

}
. Thus, the symmetric

multilinear forms Q and C can be written as

Qxy = 2τk2{v∗x1(−1)y1(−1) + u∗(x1(−1)y2(−1) + x2(−1)y1(−1))}
(

1
−1

)

,

Cxyz = 2τk2 [x1(−1)y1(−1)z2(−1) + x1(−1)y2(−1)z1(−1)

+ x2(−1)y1(−1)z1(−1)]
(

1
−1

)

,

for x =
(
x1
x2

)

, y =
(
y1
y2

)

, z =
(
z1
z2

)

.

For α = (α1, α2) in a small neighbourhood of (0, 0), it follows from [13] that the normal
forms of (3.3) for � = (0, lπ) for any l > 0, up to the third order, are

ż1 = a1(α)z1 + a11z
2
1 + a23z2 z̄2 + a111z

3
1 + a123z1z2 z̄2 + h.o.t .,

ż2 = iω0z2 + b2(α)z2 + b12z1z2 + b112z
2
1z2 + b223z

2
2 z̄2 + h.o.t ..

˙̄z2 = − iω0 z̄2 + b2(α)z̄2 + b12z1 z̄2 + b112z
2
1 z̄2 + b223z2 z̄

2
2 + h.o.t .,

(3.4)

In order to represent the explicit formula for the coefficients in (3.4), we introduce the
following notations, see [13, (2.4),(2.6)–(2.9)] .

φ1(θ) ≡ φ1(0), φ2(θ) = φ2(0)e
iω0θ ,

ψ1(s) ≡ ψ1(0), ψ2(s) = ψ2(0)e
−iω0s

(3.5)
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for θ ∈ [−r , 0], s ∈ [0, r ], where φ1(0), ψ1(0), φ2(0), ψ2(0) are determined by

�k1(0)φ1(0) = 0, ψ1(0)�k1(0) = 0,

�k2(iω0)φ2(0) = 0, ψ2(0)�k2(iω0) = 0,

(ψi , φi )ki = 1, i = 1, 2.

(3.6)

Here, �k(·) and (·, ·)k are given by

�k(λ) = λI − μk D0 − L0(e
λ· I ), (3.7)

(ψ, ϕ)k = ψ(0)ϕ(0) −
∫ 0

−r

∫ θ

0
ψ(ξ − θ)dηk(θ)ϕ(ξ)dξ,

ψ ∈ C∗ � C([0, r ]; C
m∗), ϕ ∈ C, (3.8)

with μk = k2/l2, k ∈ N0. And, ηk ∈ BV ([−r , 0],Cm) for k ∈ N0 satisfies

− μk D0ψ(0) + L0ψ =
∫ 0

−r
dηk(θ)ψ(θ), ψ ∈ C � C([−r , 0],Cm). (3.9)

From [13], we have the following conclusion on the normal form (3.4), in the case of
k2 = 0, k1 �= 0 (which is referred to Turing–Hopf bifurcation of Hopf-pitchfork type).

Lemma 3.2 ([13]) For k2 = 0, k1 �= 0, the parameters a1(α), b2(α), a11, a23, a111, a123,
b12, b112 and b223 in (3.4) are given by

a1(α) = 1

2
ψ1(0)(L1(α)φ1 − μk1D1(α)φ1(0)),

b2(α) = 1

2
ψ2(0)(L1(α)φ2 − μk2D1(α)φ2(0)),

a11 = a23 = b12 = 0,

a111 = 1

4
ψ1(0)Cφ1φ1φ1 + 1

ω0
ψ1(0)Re(iQφ1φ2ψ2(0))Qφ1φ1+ψ1(0)Qφ1

(

h0200+
1√
2
h2k1200

)

,

a123 = ψ1(0)Cφ1φ2φ̄2
+ 2

ω0
ψ1(0)Re(iQφ1φ2ψ2(0))Qφ2φ̄2

+ψ1(0)

[

Qφ1

(

h0011 + 1√
2
h2k1011

)

+ Qφ2h
k1
101 + Qφ̄2

hk1110

]

,

b112 = 1

2
ψ2(0)Cφ1φ1φ2 + 1

2iω0
ψ2(0){2Qφ1φ1ψ1(0)Qφ1φ2 + [−Qφ2φ2ψ2(0)

+Qφ2φ̄2
ψ̄2(0)]Qφ1φ1 } + ψ2(0)

(
Qφ1h

k1
110 + Qφ2h

0
200

)

b223 = 1

2
ψ2(0)Cφ2φ2φ̄2

+ 1

4iω0
ψ2(0)

{
2

3
Qφ̄2φ̄2

ψ̄2(0)Qφ2φ2 +
[

− 2Qφ2φ2ψ2(0)

+ 4Qφ2φ̄2
ψ̄2(0)

]
Qφ2φ̄2

}
+ ψ2(0)(Qφ2h

0
011 + Qφ̄2

h0020). (3.10)

where

h0200(θ) = −1

2

[∫ 0

−r
dη0(θ)]−1Qφ1φ1 + 1

2iω0
(φ2(θ)ψ2(0) − φ̄2(θ)ψ̄2(0))

]

Qφ1φ1 ,

h2k1200(θ) ≡ − 1

2
√
2

[∫ 0

−r
dη2k1(θ)

]−1

Qφ1φ1 ,
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h0011(θ) = −
[∫ 0

−r
dη0(θ)]−1Qφ2φ̄2

+ 1

iω0
(φ2(θ)ψ2(0) − φ̄2(θ)ψ̄2(0))

]

Qφ2φ̄2
,

h2k1011(θ) = 0,

h0020(θ) = 1

2

[

2iω0 I −
∫ 0

−r
e2iω0θdη0(θ)

]−1

Qφ2φ2e
2iω0θ − 1

2iω0

[

φ2(θ)ψ2(0)

+1

3
φ̄2(θ)ψ̄2(0)

]

Qφ2φ2 ,

hk1110(θ) =
[

iω0 I −
∫ 0

−r
eiω0θdηk1(θ)

]−1

Qφ1φ2e
iω0θ − 1

iω0
φ1(0)ψ1(0)Qφ1φ2 ,

h0002(θ) = h0020(θ), hk1101(θ) = hk1110(θ), (3.11)

θ ∈ [−r , 0]. φ1, φ2, ψ1(0), ψ2(0) and ηk are denoted by (3.5), (3.6) and (3.9), respectively.

For (3.1), m = 2, r = 1, l = 1. Now, we can see that it remains to compute
φ1, φ2, ψ1(0), ψ2(0) and Qφiφ j , Cφiφ jφl , for i, j, l = 1, 2. Note that ω0 = τk2ω

+
k2

we
have that

φ1(θ) =
(

1
p01

)

, φ2(θ) =
(

1
p02

)

e
iτk2ω+

k2
θ
, − 1 ≤ θ ≤ 0 (3.12)

and

ψ1(0) = 1

N1

(
1, q01

)
, ψ2(0) = 1

N2

(
1, q02

)
, (3.13)

where

q01 = − 1

2u∗v∗
(1 − 2u∗v∗ − dε∗μk1),

p01 = 1

u2∗
(1 − 2u∗v∗ − dε∗μk1),

q02 = − 1

2u∗v∗
(1 − 2u∗v∗e−iτk2ω+

k2 − dε∗μk2 + iω+
k2

)e
iτk2ω+

k2 ,

p02 = 1

u2∗
(1 − 2u∗v∗e−iτk2ω+

k2 − dε∗μk2 + iω+
k2

)e
iτk2ω+

k2 ,

N1 = 1 + p01q
0
1 + τk2u∗(2v∗ + u∗ p01)(1 − q01 ),

N2 = 1 + p02q
0
2 + τk2u∗(2v∗ + u∗ p02)(1 − q02 )e

−iτk2ω+
k2 . (3.14)

Therefore, the coefficient a1(α) and b2(α) in the normal form are

a1(α) = 1

N1
[−1 + u∗(2v∗ + u∗ p01)(1 − q01 ) − dk21π

2(ε∗ + p01q
0
1 )]α1 − 1

N1
dk21π

2τk2α2,

b2(α) = 1

N2
[−1 + u∗(2v∗ + u∗ p02)(1 − q02 )e

−iτk2ω+
k2 − dk22π

2(ε∗ + p02q
0
2 )]α1

− 1

N2
dk22π

2τk2α2. (3.15)
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Furthermore,

Qφ1φ1 = 2τk2(v∗ + 2u∗ p01)(1, −1)T ,

Qφ1φ2 = 2τk2e
−iτk2ω+

k2 [v∗ + u∗(p01 + p02)](1, −1)T ,

Qφ1φ̄2
= 2τk2e

iτk2ω+
k2 [v∗ + u∗(p01 + p02)](1, −1)T ,

Qφ2φ2 = 2τk2e
−2iτk2ω+

k2 (v∗ + 2u∗ p02)(1, −1)T ,

Qφ2φ̄2
= 2τk2(v∗ + u∗(p02 + p02))(1, −1)T ,

Qφ̄2φ̄2
= 2τk2e

2iτk2ω+
k2 (v∗ + 2u∗ p02)(1, −1)T

(3.16)

and

Cφ1φ1φ1 = 6τk2 p
0
1(1, −1)T ,

Cφ1φ2φ̄2
= 2τk2(p

0
1 + p02 + p02)](1, −1)T ,

Cφ1φ1φ2 = 2τk2e
−iτk2ω+

k2 (2p01 + p02)(1, −1)T ,

Cφ2φ2φ̄2
= 2τk2(2p

0
2 + p02)e

−iτk2ω+
k2 (1, −1)T .

(3.17)

Substituting (3.12), (3.13), (3.16) and (3.17) into (3.11), one can get

h0200(θ) = (v∗ − 2u∗ p01)

⎡

⎣
1

u2∗

(
0

−1

)

+ 2

ω+
k2

⎛

⎝
Re(

1−q02
iN2

e
iτk2ω+

k2
θ
)

Re(
(1−q02 )p02

iN2
e
iτk2ω+

k2
θ
)

⎞

⎠

⎤

⎦ ,

h2k1200(θ) = − 1√
2
(v∗ + 2u∗ p01)

1

q2k1 (ε∗) + r2k1 (ε∗)

( −(2k1)2π2d
1 + (2k1)2π2dε∗

)

h0011(θ) = 2[v∗ + u∗(p02 + p02)]
⎡

⎣
1

u2∗

(
0

−1

)

+ 2

ω+
k2

⎛

⎝
Re(

1−q02
iN2

e
iτk2ω+

k2
θ
)

Re(
(1−q02 )p02

iN2
e
iτk2ω+

k2
θ
)

⎞

⎠

⎤

⎦ ,

h2k1011(θ) = 0,

h0020(θ) = (v∗ + 2u∗ p01)
e
iτk2ω+

k2
(θ−2)

D0(2iω+
k2

, τk2 , ε∗)

(
2iω+

k2−2iω+
k2

− 1

)

− (v∗ + 2u∗ p01)
iω+

k2

(

e
iτk2ω+

k2
(θ−2) (1 − q02 )

N2

(
1
p02

)

+ 1

3
e
−iτk2ω+

k2
(θ+2) (1 − q02 )

N2

(
1

p02

))

h0002(θ) = h0020(θ),

hk1110(θ) = 2[v∗ + u∗(p01 + p02)]eiτk2ω+
k2

(θ−1) 1

Dk1 (iω+
k2

, τk2 , ε∗)

(
iω+

k2
+ dk21π

2

−iω+
k2

− ε∗dk21π2 − 1

)

− 2[v∗ + u∗(p01 + p02)]e−iτk2ω+
k2

(1 − q01 )

iω+
k2
N1

(
1
p01

)

,

hk1101(θ) = hk1110(θ).

(3.18)

which, together with (3.16), (3.17), (3.18) and (3.10), will yield all the other expressions of
a111, a123, b112 and b223 in the normal form.

Theorem 3.3 Assume that (N0) holds. Let d ∈ (dk1,k1+1, dk1−1,k1) for some k1 �= 0, and k2 =
0. If a111 �= 0, a123 �= 0, Reb112 �= 0, Reb223 �= 0 and a111Reb223 − a123Reb112 �= 0, then
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Table 1 The twelve unfoldings of (3.19), see [7]

Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d0 + 1 + 1 + 1 + 1 + 1 + 1 − 1 − 1 − 1 − 1 − 1 − 1

b0 + + + − − − + + + − − −
c0 + + − + − − + − − + + −
d0 − b0c0 + − + + + − − + − + − −

Turing–Hopf bifurcation of (1.1) is non-degenerate. Moreover, the cylindrical coordinate
equation, associated with (3.4), is

ṙ = r(ε1(α) + r2 + b0z2),
ż = z(ε2(α) + c0r2 + d0z2),

(3.19)

where ε1(α) = Reb2(α)sign(Reb223), ε2(α)= a1(α)sign(Reb223) , b0 = Reb112|a111| sign(Reb223),
c0 = a123|Reb223| sign(Reb223) and d0 = sign(a111Reb223).

According to the standard theory on (3.19) in [7], we know that there are twelve distinct
unfoldings for (3.19), depending on the signs of b0, c0, d0 and d0 − b0c0, as presented in
Table 1. In addition, each of these unfoldings will have different bifurcation scenario with
respect to bifurcation parameters. With the aid of the dynamical behavior of (3.19), one can
determine what kind of spatiotemporal patterns that (1.1) can exhibit as (τ, ε) varies within
a small neighbourhood of (τk2 , ε∗). See [1] for the possible spatiotemporal patterns near the
Turing–Hopf bifurcation point.

4 Pattern Formation

In this section, we will illustrate how to use the results in Sects. 2 and 3 to show the existence
of various spatiotemporal patterns for (1.1) with a certain set of fixed parameter values,
such as, spatially inhomogeneous steady state (induced by Turing bifurcation), temporally
periodical solutions with homogeneous or inhomogeneous spatial variables (through Hopf
bifurcation), and other mixed patterns (caused by Turing–Hopf bifurcations).

Set a = 0.1, b = 0.9. Then, it can be calculated that

(u∗, v∗) = (1, 0.9), ε1 = 0.1167, d0 = 0.5931, K 0 = 0.2721,

Moreover, (N0) is also satisfied. Given k1 ∈ N, for d ∈ (dk1,k1+1, dk1−1,k1), we have

ε∗ = ε∗(d) = ε∗(k1, d) = 4dk21π
2 − 5

5dk21π
2(dk21π

2 + 1)
.

From Theorem 2.4, k1-mode Turing bifurcation of (1.1) will take place at ε = ε∗ for any
fixed d ∈ (dk1,k1+1, dk1−1,k1).

4.1 (1, 0)-Mode Turing–Hopf Bifurcation

If we set k1 = 1, then from (2.7), we have d1,2 = 0.1765. Fix d = 0.5 ∈ (d1,2, +∞). Then,
ε∗(0.5) = 0.1007, and 1-mode Turing bifurcation of (1.1) will occur at ε∗(0.5) = 0.1007,
see Fig. 3.
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Fig. 3 The line d = 0.5 and d = 0.05 intersect with Turing bifurcation line T at ε∗(1, 0.5) = 0.1007 and
ε∗(3, 0.05) = 0.1056, respectively

When ε > 0.1007, according to (1) in Theorem 2.8, we assert that (2.12) has a unique
positive root ω+

k = 0.9144 when 0 ≤ k < K 0, and k2 = 0. Therefore, the first critical value
τ∗ for the occurrence of Hopf bifurcation is τ∗ = 0.2171. Thus, by Theorems 2.11 and 3.1,
we can conclude that

Corollary 4.1 For parameters a = 0.1, b = 0.9 and d = 0.5, we have

(1) The equilibrium (u∗, v∗) = (1, 0.9) of system (1.1) with τ ∈ [0, 0.2171) is asymptoti-
cally stable for ε > 0.1007, and unstable for 0 < ε < 0.1007.

(2) System (1.1) undergoes (1, 0)-mode Turing–Hopf bifurcation near the constant steady
states (u∗, v∗) = (1, 0.9) at τ = 0.2171, ε = 0.1007.

Now, we compute the coefficients in the normal form associated with Turing Hopf bifur-
cation. From (2.3) and (3.14), we have

q01 = 0.16837, q02 = 0.55554 − 0.60759i, p01 = −0.30307, p02 = −0.99997 + 1.0937i,

N1 = 1.2192, N2 = 1.0848 + 1.4353i,

rk2 = 0, qk2 = 1, pk2 = 1,

rk1 = 7.3859, qk1 = −7.3859, pk1 = 6.4359,

r2k1 = 58.9574, q2k1 = −32.5438, p2k1 = 22.7260.

By (3.18), we also obtain that

h0200(0) =
(

0.0084241
−0.0079706

)

, h200(−1) =
(−0.097808

0.088523

)

,

h2200(0) = h2200(−1) =
(

0.31035
−0.046975

)

,

h0011(0) =
(−0.031531

0.029834

)

, h0011(−1) =
(

0.36609
−0.33134)

)

,
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h0020(0) =
(

0.0020659 + 0.069984i
−0.0021214 − 0.066282i

)

, h0020(−1) =
(−0.08515 − 0.80808i
0.082398 + 0.73077i

)

,

h1110(0) =
(−0.0043069 + 0.10203i

0.0073407 − 0.25347i

)

, h1110(−1) =
(

0.03495 − 0.24323i
−0.048564 − 0.14565i

)

,

h1101 = h1110, h0002 = h0020, h2011 = 0.

Substituting these values into (3.10) and (3.15), we can get all the coefficients in normal
form,

a1(α) = −0.00018873α1 − 0.8787α2,

b2(α) = (0.07723 + 0.83252i)α1,

a11 = a23 = b12 = 0,

a111 = −0.1399, b112 = −0.0906 + 0.0967i,

a123 = −0.1966, b223 = −0.1675 − 0.0489i.

(4.1)

In addition, the coefficients in cylindrical coordinate equation (3.19) are

ε1(α) = −0.07723α1, ε2(α) = 0.00018873α1 + 0.8787α2,

b0 = 0.6476, c0 = 1.1737, d0 = 1, d0 − b0c0 = 0.2399
(4.2)

which implies the case of Ia in Table 1. Since sign(Reb223) = −1, we know from [7] that
the complete bifurcation set for (1.1) in (τ, ε)-plane should be the one, as shown in Fig. 4a.
In Fig. 4a, the critical bifurcation lines are expressed by

L1 : τ = τ∗, ε > ε∗,
L2 : ε = ε∗ − 0.00021478(τ − τ∗), τ > τ∗,
L3 : ε = ε∗ − 0.1034(τ − τ∗), τ > τ∗,
L4 : ε = ε∗ − 0.1359(τ − τ∗), τ > τ∗,
L5 : τ = τ∗, ε < ε∗,
L6 : ε = ε∗ − 0.00021478(τ − τ∗), τ < τ∗.

The regions divided by those lines are denoted by Di , i = 1, 2, . . . , 6, respectively. For
instance, D1 is the area enclosed by the lines L1 and L6 (but not including L1 and L6), i.e,
D1 = {(τ, ε) ∈ R

2 : ε > ε∗ − 0.00021478(τ − τ∗), τ < τ∗}. For (τ, ε) in different region
Di , i = 1, 2, · · · 6, the dynamical behaviors of (3.19), with its coefficients given by (4.2),
are shown in Fig. 4b.

Theorem 4.2 For system (1.1) with a = 0.1, b = 0.9, d = 0.5, there are six possible
dynamics of (1.1) for (τ, ε) sufficiently close to (τ∗, ε∗), depending on the region Di that
(τ, ε) lies in, i = 1, 2, . . . , 6. More specifically,

(1) The steady state (u∗, v∗) is asymptotically stable for (τ, ε) ∈ D1, and 0-mode Hopf
bifurcation near (u∗, v∗) occurs at (τ, ε) ∈ L1.

(2) For (τ, ε) ∈ D2, (u∗, v∗) becomes unstable and there exists a stable spatially homo-
geneous periodic orbit through Hopf bifurcation at (u∗, v∗), as (τ, ε) crosses L1 from
left-hand side. On the line L2, 1-mode Turing bifurcation occurs near the unstable
steady state (u∗, v∗).

(3) If (τ, ε) ∈ D3, then there are two unstable spatially inhomogeneous steady states, which
are bifurcated from the steady state (u∗, v∗) on L2, and the spatially homogeneous
periodic solution still remains. Moreover, on the line L3, 1-mode Turing bifurcation
occurs near the spatially homogeneous periodic orbit.
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Fig. 4 a The bifurcation set for (1.1) in (τ, ε) plane and b phase portraits of (3.19) and (4.2), in the case of
Ia. Here, a = 0.1, b = 0.9, d = 0.5

(4) In region D4, (1.1) possesses two stable spatially inhomogeneous periodic orbit, bifur-
cated from unstable spatially homogeneous periodic solution on the line L3. The linear
parts of these two periodic solutions are

E∗ + ρφ2(0)e
iτ∗ω∗t + ρ̄φ̄2(0)e

−iτ∗ω∗t ± hφ1(0) cos(πx),

where ρ and h are constants. In addition, 0-mode Hopf bifurcations occur near the two
stable inhomogeneous steady-states at (τ, ε) ∈ L4. It is remarked that the two unstable
inhomogeneous steady states in D3 still persist for (τ, ε) ∈ D4.

(5) For (τ, ε) ∈ D5, the two stable spatially inhomogeneous periodic orbits vanish (due
to Hopf bifurcation on L4), and there are two stable inhomogeneous steady-states for
(1.1). Aside from these solutions, (1.1) also has another unstable spatially homogeneous
periodic orbit, bifurcated through Hopf bifurcation at (u∗, v∗) on the line L5.

(6) If (τ, ε) ∈ D6, then (u∗, v∗) is unstable, and two stable spatially inhomogeneous steady
states will be bifurcated from (u∗, v∗) at L6. (The unstable spatially homogeneous
periodic orbit disappears, due to the occurrence of Hopf bifurcation as (τ, ε) passes
through L5).

where τ∗ = 0.2171, ε∗ = 0.1007, ω∗ = 0.9144 and (u∗, v∗) = (1, 0.9).

We carry out numerical simulations for (1.1), to detect its solution patterns for different
choice of (τ, ε), as stated in Theorem 4.2.

(i) Let (τ, ε) = (τ∗, ε∗)+(−0.05, 0.05). Then (τ, ε) ∈ D1, and (u∗, v∗) is asymptotically
stable, see Fig. 5.

(ii) Set (τ, ε) = (τ∗, ε∗) + (0.05, 0.05). Then (τ, ε) ∈ D2. From (2) of Theorem 4.2, one
can observe an asymptotically stable spatially homogeneous periodic orbit for (1.1),
see Fig. 6. Furthermore, if (τ, ε) ∈ D3, there still exists an spatially homogeneous
periodic orbit, which is consistent with the assertions (3) of Theorem 4.2.

(iii) For (τ, ε) = (τ∗, ε∗) + (0.05,−0.0063) ∈ D4. If we assign two different initial
functions for (1.1), i.e.,

(u1(x, t), u2(x, t)) = (1 − 0.1 cos(πx), 1 − 0.1 cos(πx))

(u2(x, t), u2(x, t)) = (1 + 0.1 cos(πx), 1 + 0.1 cos(πx))
(4.3)

for (x, t) ∈ [0, 1] × [−0.2671, 0], then it is found that the solutions with these two
functions will approach distinct periodic orbits, indicating the co-existence of two
spatially inhomogeneous periodic solutions, see Fig. 7.
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Fig. 5 A solution of (1.1) tends to the steady state (u∗, v∗) as t → ∞ for (τ, ε) ∈ D1. The initial functions
are (u(x, t), v(x, t)) = (1 + 0.1 cos(πx), 1 + 0.1 cos(πx), for (x, t) ∈ [0, 1] × [−0.1671, 0]. a u(t, x) and
b v(t, x)

Fig. 6 An asymptotically stable spatially homogeneous periodic orbit for (1.1) in the case of (τ, ε) ∈ D2. The
initial functions are the same as the ones for (x, t) ∈ [0, 1] × [−0.2671, 0] in Fig. 5. a u(t, x) and b v(t, x)

(iv) Choose (τ, ε) = (τ∗, ε∗)+ (0.05,−0.03) ∈ D5. Then the solutions of (1.1), equipped
with the following two initial functions:

(u1(x, t), u2(x, t)) = (0.9, 1.1)

(u2(x, t), u2(x, t)) = (1 + 0.1 cos(πx), 1 + 0.1 cos(πx))
(4.4)

for (x, t) ∈ [0, 1] × [−0.2671, 0], will converge to different steady states, as shown
in Fig. 8. Similarly, for (τ, ε) ∈ D6, a pair of stable spatially inhomogeneous steady
state solutions can be also simulated.

4.2 (3, 0)-Mode Turing–Hopf Bifurcation

In this part, we choose k1 = 3 and d = 0.05, and all the other parameters are the same
as before. Then, d3,4 = 0.0255, d2,3 = 0.0525, d ∈ (d3,4, d2,3) and ε∗ = ε∗(3, 0.05) =
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Fig. 7 The coexistence of two stable spatially inhomogeneous periodic orbits of (1.1) for (τ, ε) ∈ D4. a
u(t, x), b v(t, x), c u(t, x) and d v(t, x)

0.1056. The system (1.1) will undergoes 3-mode Turing bifurcation at ε∗, see Fig. 3. More-
over, we have k2 = 0, ω+

k = 0.9144 and τ∗ = 0.2171.

Corollary 4.3 For parameters a = 0.1, b = 0.9, d = 0.05, we have that

(1) The steady state (u∗, v∗) is asymptotically stable for τ ∈ [0, 0.2171) and 0.1056 < ε <

0.1079, and unstable for 0.0600 < ε < 0.1056.
(2) System (1.1) undergoes (3, 0)-mode Turing–Hopf bifurcation near (u∗, v∗) = (1, 0.9)

at τ = 0.2171, ε = 0.1056.

For the parameters in (3.19), one can compute ε1(α) = −0.07723α1, ε2(α) =
0.00018873α1 + 0.8787α2, b0 = 0.6476, c0 = 1.1737, d0 = 1, d0 − b0c0 = 0.2399,
sign(Reb223) = −1. Therefore, the Case Ia in Table 1 holds again, and the critical bifurca-
tion lines in Fig. 4a are now given by

L1 : τ = τ∗, ε > ε∗,
L2 : ε = ε∗ + 0.00020177(τ − τ∗), τ > τ∗,
L3 : ε = ε∗ − 0.1154(τ − τ∗), τ > τ∗,
L4 : ε = ε∗ − 0.1231(τ − τ∗), τ > τ∗,
L5 : τ = τ∗, ε < ε∗,
L6 : ε = ε∗ + 0.00020177(τ − τ∗), τ < τ∗.

123



Journal of Dynamics and Differential Equations (2019) 31:2223–2247 2243

Fig. 8 For (τ, ε) ∈ D5, two stable spatially inhomogeneous steady state solutions of (1.1) coexist a u(t, x),
b v(t, x), c u(t, x) and d v(t, x)

When (τ, ε) = (τ∗, ε∗) + (0.05,−0.0063) ∈ D4, it follows from Theorem 4.2 that
two stable spatially inhomogeneous periodic solutions also coexist, However, the patterns
are different from the ones in (i i i), in that the solutions oscillate with respect to spatial
variable x , see Fig. 9. If (τ, ε) = (τ∗, ε∗) + (0.05,−0.03) ∈ D5, then there are two stable
inhomogeneous steady states, which is also periodic in x , for (1.1), see Fig. 10.

5 Conclusion

In this paper, we studied the Turing bifurcation(instability), Hopf bifurcation and Turing–
Hopf bifurcation for a delayed reaction–diffusion Schnakenberg system, combining char-
acteristic equation analysis, center manifold theorem and normal form theory. An explicit
expression of ε∗(d) for the first Turing bifurcation curve has been derived. The constant
steady state (u∗, v∗) is stable for (ε, d) on one side of this curve, while Turing instability
occurs for (ε, d) on the other side. For (ε, d) in the Turing instability region, a pair of stable
spatially inhomogeneous steady states are bifurcated from (u∗, v∗). The first Turing bifur-
cation curve is continuous and piecewise smooth, and its non-smooth points correspond to
the critical values at which (1.1) undergoes Turing-Turing bifurcation. Owing to the explicit
expression of ε∗(d), it is easy to find the spatially inhomogeneous steady state with arbitrary
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Fig. 9 For (τ, ε) ∈ D4, two spatially inhomogeneous periodic orbits with different initial functions in (4.3)
are plotted. a u(t, x), b v(t, x), c u(t, x) and d v(t, x)

wave number. In addition, if we choose d as varying parameter for Turing bifurcation, then
the phenomenon of stability switches of (u∗, v∗) is observed, which will induce spatially
inhomogeneous steady state with various wave number.

Under the condition for avoiding Turing instability, we studied the Hopf bifurcation near
(u∗, v∗), by using time delay τ as varying parameter. It turns out that only spatially homoge-
neous periodic solution will be bifurcated from (u∗, v∗) for (1.1) with Neumann boundary
condition, as τ crosses a sequence of critical values.

We further investigate the Turing–Hopf bifurcation to explore the joint effect of diffusion
rate ε and time delay τ . For Turing–Hopf bifurcation, the truncated normal forms up to 3rd
order has been derived in [13] for a general partial functional differential equations. Applying
these formula to (1.1), we compute the normal form of the model in a special (but most
interesting) case of k1 �= 0 and k2 = 0, when Turing–Hopf bifurcation occurs. Moreover,
the coefficients in the normal form are expressed explicitly by the original parameters in
the model. The complete bifurcation diagram for the derived normal form are given in [33],
from which one can show (1.1) may have various spatiotemporal patterns as the (τ, ε) are
changed. In particular, we prove that two spatially inhomogeneous periodic solutions of (1.1)
coexist, caused by the joint effect of ε and τ . Numerical simulations help us to detect all the
spatiotemporal patterns as expected from theoretical analysis.
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Fig. 10 Two stable spatially inhomogeneous steady states of (1.1), for (τ, ε) ∈ D5. The initial functions are
given by (4.4). a u(t, x), b v(t, x), c u(t, x) and d v(t, x)

In [6], it is numerically observed that time delay could induce a failure of Turing instability.
This phenomenon is later explained in [36] from Hopf bifurcation point of view. In Turing–
Hopf bifurcation analysis, we have shown that the spatially inhomogeneous steady states,
generated through Turing bifurcation, will lose its stability as delay τ varies, and spatially
inhomogeneous periodic solutions are induced by Hopf bifurcation. This provides another
interpretation of failure of Turing instability caused by delay.
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