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Abstract
We study the co-circular central configurations of the n-body problem for which the center
of mass and the center of the common circle coincide. In particular, we prove that there are
no central configurations of this type with all the masses equal except one. This provides
more evidences for the veracity of the conjecture that the regular n-gon with equal masses is
the unique co-circular central configuration of the n-body problem whose center of mass is
the center of the circle. Our result remains valid if we consider power-law potentials.

Keywords Co-circular central configurations · n-Body problem · Regular n-gon

Mathematics Subject Classification 70F07 · 70F15

1 Introduction

A configuration of the Newtonian n-body problem is central if the acceleration vector of
each body is a common scalar multiple of its position vector (with respect to the center of
mass); i.e. if there exists λ independent of i such that

q̈i = −λ (qi − c) , i = 1, . . . , n,

where qi is the position of the mass mi and c = ∑n
i=1 miqi/

∑n
i=1 mi is the center of mass

of the system; or equivalently, if there exists λ such that
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λ (qi − c) =
n∑

j=1, j �=i

m j
qi − q j

r3i j
, i = 1, . . . , n. (1)

Equations (1) can be written as

∇U (q) + λ∇ I (q) = 0,

where
U (q) =

∑

i< j

mim j

ri j
, ri j = ||qi − q j ||, (2)

is the Newtonian potential and

I = 1

2

n∑

i=1

mi ||qi − c||2,

is one half the moment of inertia of the system.
Central configurations play an important role in the study of the n-body problem. They

provide the unique solutions of the n-body problem for n � 3 that are known explicitly, the
homographic solutions for which the configuration formed by the bodies remains similar to
itself for any time; everymotion starting or ending in a total collision and every parabolic scape
to infinity is asymptotic to a central configuration (see for instance [5,29]); the bifurcations
in the topology of the level sets with constant energy and angular momentum are related with
central configurations (see for instance [22,30]).

The equations for central configurations (1) are invariant under homotheties and rotations
with respect to the center of mass. Thus we consider classes of central configurations module
such transformations.

The study of central configurations goes back to Euler and Lagrange in the second part
of the eighteenth century. In 1767 Euler [12] found the three collinear central configurations
of the 3-body problem and 5 years later Lagrange [19] found the two equilateral triangle
central configurations. These five are the only classes of central configurations of the 3-body
problem, see [32]. The set of central configurations of the n-body problem with n > 3
for an arbitrary given set of the masses is not completely known. Over the years many
authors have found several partial results on central configurations of the n-body problem
with n > 3, see for instance [14,22,23,28,32] for a general background. The difficulty of the
problem of finding central configurations of the general n-body problem forces us to consider
some simplifications by imposing restrictions, usually on the masses or the geometry of the
configuration. The most common simplifications are to take some equal masses or some
infinitesimal masses and to impose symmetries or a fixed shape on the configuration, see for
instance [1,3,8–10,16,20,27,33] and the reference therein.

One of the main open questions is about the finiteness of the number of central config-
urations in the plane for fixed positive masses. It was proposed by Wintner [32] and it the
sixth problem of the list of eighteen problems of the twenty-first century by Smale [31]. It
is also collected as Problem 9 in the list of open problems in celestial mechanics compiled
by Albouy, Cabral and Santos [2]. The exact number of central configurations of the n-body
for a given set of masses is only known for n = 3 (there are have five classes of central
configurations, the ones found by Euler and Lagrange) and for the collinear central configu-
rations (Moulton [24] proved that there are n!/2 classes of collinear central configurations).
A lower bound of the number of classes of planar central configurations can be found in [26].
Recently Hampton and Moeckel [18] and Albouy and Kaloshin [4] proved the finiteness of
the number of classes of central configurations for n = 4 for any choice of the masses and
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Albouy and Kaloshin [4] the finiteness of the number of classes of central configurations for
n = 5 for almost any choice of the masses.

In this paper we deal with another of the important open questions related with central
configurations, collected also in [2] as Problem 12 and proposed first by Chencienr in 2004
[7]. The question is

Is there any central configuration of the n-body problem, different from the n-gon with
equal masses, with all the masses lying on a common circle with origin at its center of
mass?

This question arose while Chenciner studied a particular kind of solutions of the n-body
problem, called choreographies, in which all the bodies move on a common path. The n-gon
with equal masses is the simplest choreography of the n-body problem, for more examples
of choreographies see for instance [6,13,25].

It is easy to show than the open question proposed by Chenciner has positive answer for
n = 3. Hampton in [15] proved that the question has positive answer for n = 4. For n = 5
the problem has been studied in [21]. Many other authors have been interested in proving the
positive answer of the question for n > 5. For the planar n-vortex problem, Cors et al. [11]
proved that the regular n-gon with equal-strength circulations is the only co-circular central
configuration whose center of vorticity is located at the center of the circle containing the
vortices. But only few partial results have been found for the Newtonian n-body problem.
Next we give the most important ones. In what follows the central configurations with n
masses lying on a common circle having the center of mass at the center of the circle will be
called, as in [17], centered co-circular central configurations.

Cors et al. in [11] proved the following result for the family of power-law potentials of
the form

Uα(q) =
∑

i< j

mim j

rα
i j

. (3)

Notice that α = 1 corresponds to the Newtonian potential (2).

Theorem 1 For any α > 0 and given a set of positive masses, for each ordering of the bodies
on the unit circle, there exist a unique centered co-circular central configuration.

As a corollary of Theorem 1 (see again [11]), if all the masses are equal then for any α > 0
the regular n-gon is the only centered co-circular central configuration.

Hampton in [17] proved that the regular n-gon with equal masses is isolated among the
set of centered co-circular central configurations of the Newtonian n-body problem (i.e.
α = 1); in other words, small perturbations of the masses and of the positions of the regular
n-gon with equal masses does not provide centered co-circular central configurations. He
also proved that there are no centered co-circular central configurations of the n + 1-body
problem formed by n equal masses on a regular n-gon plus one infinitesimal mass.

In this paper we givemore evidences than the question proposed by Chenciner has positive
answer for all n. In particular we go a step further than Hampton and we prove that there are
no centered co-circular central configurations with n − 1 equal masses and an arbitrary non
equal mass, not necessarily small. We extend the result to general power-law potentials, and
we get the following result.

Theorem 2 For any α > 0, there are no centered co-circular central configurations of the
n-body problem with power law potentials (3) having all the masses equal except one.

The paper is structured as follows. In Sect. 2 we give the equations of the centered co-
circular central configurations. In Sect. 3 we give the proof of Theorem 2.
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2 Equations for the Centered Co-circular Central Configurations

In this paper wewill use the equations derived in [11], which are summarized in the following
result.

Theorem 3 Let

Vα =
n∑

i< j

mim j

rα
i j

with ri j =
√
2 − 2 cos(θ j − θi ) = 2 sin

( |θ j − θi |
2

)

,

and let q = (q1, . . . ,qn) with qi = (cos θi , sin θi ) and θi ∈ [0, 2π) for i = 1, . . . , n be a
centered co-circular central configuration with masses m1, . . . ,mn. Then there exists λ ∈ R

such that the angles θi and the masses mi satisfy the 2n equations

1

αmi
· ∂Vα

∂θi
= −

n∑

j �=i

δi jm j cos
(

θ j−θi
2

)

rα+1
i j

= 0, for i = 1, . . . , n, (4)

n∑

j �=i

m j

rα
i j

= 2λ

α
, for i = 1, . . . , n, (5)

where

δi j =
{

1 if θi > θ j ,

−1 if θi < θ j .

Let θ = (θ1, . . . , θn) and m = (m1, . . . ,mn). We consider the function

F(θ ,m, λ) = Vα − 2λ

α

n∑

i=1

mi =
∑

i< j

mim j

rα
i j

− 2λ

α

n∑

i=1

mi .

It is easy to check that Eqs. (4) and (5) are equivalent, respectively, to the vectorial equations

∇θ F = 0 and ∇mF = 0. (6)

Therefore the centered co-circular central configurations are solutions of (6).
Our aim is to analyze the solutions with all the masses equal except one. Without loss of

generality we can take the unit of mass such that all the equal masses be equal to 1. Due
to the invariance of central configurations under rotations, we can assume that the different
mass ism1 and that θ1 = 0. It is not restrictive to assume that the bodies are arranged so that

0 = θ1 < θ2 < · · · < θn < 2π,

this corresponds to ordering the masses (m1, . . . ,mn) counterclockwise around the circle.
We define Ω̃ = {θ̃ ∈ [0, 2π)n−1 : 0 < θ2 < · · · < θn < 2π} and F̃ : Ω̃ ×R×R −→ R

where

F̃(θ2, . . . , θn,m1, λ) = F(0, θ2, . . . , θn,m1, 1, . . . , 1, λ)

and we consider the system of equations

∇m1 F̃ = 0 and ∇θi F̃ = 0 for i = 2, . . . , n. (7)

We observe that a solution of the centered co-circular central configurations, that is, of
∇θ F = 0 and ∇mF = 0 with θ1 = 0 and m j = 1 for j = 2, . . . , n if it exists, must in
particular satisfy (7).
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3 Proof of Theorem 2

We start giving some preliminary results that will be useful in the proof of our main result.

Lemma 1 The solutions of system (6) satisfy F(θ ,m, λ/2) = 0.

Proof By simple algebra it can be shown that

F(θ,m, λ/2) = 1

2
m · ∇mF(θ ,m, λ),

so the solutions of ∇mF = 0 are zeroes of F(θ ,m, λ/2). ��
Lemma 2 Assume that θ̃ = (θ2, . . . , θn) for i = 2, . . . , n is a solution of ∂ F̃/∂θ j = 0 for
j = 2, . . . , n. Then θ j = θ j (m1) is an analytic function of the variable m1 for j = 2, . . . , n.
Moreover, we have ⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2 F̃

∂θ2∂m1
...

∂2 F̃

∂θn∂m1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= −A

⎛

⎜
⎜
⎜
⎜
⎝

∂θ2

∂m1
...

∂θn

∂m1

⎞

⎟
⎟
⎟
⎟
⎠

(8)

where A = (ai j )2≤i, j≤n with

aii = ∂2F

∂θ2i
, ai j = a ji = ∂2F

∂θ j∂θi
. (9)

Proof The theorem follows readily from the implicit function theorem together with the fact
that the Hessian matrix A = (ai j )2≤i, j≤n given in (9) coincides with the Hessian matrix of
Vα with respect to the variables θ j for j = 2, . . . , n with θ1 = 0 and so det A �= 0 (it was
proved by Cors et al. in [11] that if θ1 = 0, then uT Au > 0 for all u �= 0). ��

Note that the solutions θ j = θ j (m1) for j = 2, . . . , n given by Lemma 2 do not depend
on λ and that we can rewrite (8) as

∂2 F̃

∂θ j∂m1
= −

n∑

i=2

∂2 F̃

∂θ j∂θi

∂θi

∂m1
, j = 2, . . . , n. (10)

Proof of Theorem 2 Assume that θ̃ = (θ2(m1), . . . , θn(m1)) is the unique solution of∇θi F̃ =
0 for i = 2, . . . , n given by Lemma 2. From equation ∇m1 F̃ = 0 we get

∂ F̃

∂m1
=

n∑

j=2

1

rα
1 j

− 2λ

α
= 0.

Isolating λ we have

λ = λ(m1) = α

2

n∑

j=2

1

rα
1 j

.

So, given m1 there exist unique θ j (m1) and λ(m1) for j = 2, . . . , n which are a solution of
∇θi F̃ = 0 and ∇m1 F̃ = 0.
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Note that if θ j (m1) is constant for j = 2, . . . , n then λ(m1) is also constant. Substituting
this solution into equation ∂F/∂m2 = 0 we find a unique solution m1. So system (6) has
at most one solution and since the n-gon with equal masses is a solution of system (6), the
possible solution that we have found is in fact a solution of (6) and it is the n-gon.

Assume now that not all the functions θ j (m1) are constant and we compute ∂λ/∂m1.
Clearly

∂λ

∂m1
= α

2

n∑

j=2

∂

∂θ j

( 1

rα
1 j

) ∂θ j

∂m1
.

Since

∂2 F̃

∂m1∂θ j
= ∂

∂θ j

( 1

rα
1 j

)
,

using (10) and (8) we have that

∂λ

∂m1
= α

2

n∑

j=2

∂2 F̃

∂m1∂θ j

∂θ j

∂m1

= −α

2

n∑

j=2

n∑

i=2

∂2 F̃

∂θ j∂θi

∂θ j

∂m1

∂θi

∂m1

= −α

2

( ∂θ2

∂m1
· · · ∂θn

∂m1

)
A

⎛

⎜
⎜
⎝

∂θ2
∂m1
...

∂θn
∂m1

⎞

⎟
⎟
⎠ < 0

(11)

because the matrix A is positive definite.
Since any centered co-circular central configuration is a zero of F(θ ,m, λ/2) (see

Lemma 1), the unique solution θ j (m1) and λ(m1) for j = 2, . . . , n of ∇θi F̃ = 0 and
∇m1 F̃ = 0 defined above should be a zero of the function

F(m1) = Vα − λ

α

n∑

i=1

mi = m1

n∑

j=2

1

rα
1 j

+
∑

2< j

1

rα
i j

− λ

α
(n − 1 + m1).

Note that F(m1) is a function in the variable m1. We want to show that

dF(m1)

dm1
> 0.

This will clearly imply that F(m1) at most has one solution. As above, since the n-gon with
equal masses is a solution of system (6), the possible solution that we have found is in fact a
solution of (6) and it is the n-gon, so the proof will follow.
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Clearly,

dF

dm1
=

n∑

j=2

∂Vα

∂θ j

∂θ j

∂m1
+ ∂Vα

∂m1
+ ∂F

∂λ

∂λ

∂m1
− λ

α

= ∂Vα

∂m1
+ ∂F

∂λ

∂λ

∂m1
− λ

α

=
n∑

j=2

1

rα
1 j

− λ

α
+ ∂F

∂λ

∂λ

∂m1

= 2λ

α
− λ

α
− 1

α
(n − 1 + m1)

∂λ

∂m1

= λ

α
− 1

α
(n − 1 + m1)

∂λ

∂m1
> 0

in view of (11). Recall that, from (4), ∂Vα/∂θ j evaluated at the solution θ j (m1) and λ(m1)

for j = 2, . . . , n is zero. This concludes the proof. ��
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