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Abstract
Scalar difference equations xk+1 = f (xk, xk−d) with delay d ∈ N are well-motivated from
applications e.g. in the life sciences or discretizations of delay-differential equations. We
investigate their global dynamics by providing a (nontrivial) Morse decomposition of the
global attractor. Under an appropriate feedback condition on the second variable of f , our
basic tool is an integer-valued Lyapunov functional.

Keywords Delay-difference equation · Global attractor · Morse decomposition · Discrete
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1 Introduction

This paper studies the global dynamics of scalar difference equations

xk+1 = f (xk, xk−d) (1.1)

involving an arbitrary delay d ∈ N, where f fulfills a suitable positive or negative feedback
condition in the second variable. Such problems are of interest not only as time-discretizations
of delay-differential equations, but they also intrinsically arise in a multitude of models in the
life sciences (see [8,9] for references). Particularly in the latter applications, much work so
far concentrated on the problem to provide (sufficient) conditions for the global asymptotic
stability of a positive equilibrium of (1.1) (cf. [9,11,12]). Nevertheless, being a discrete time
model it is no surprise that much more complicated dynamics can be expected.

Under quite natural and frequently met assumptions the delay-difference equation (1.1)
are dissipative. This means their forward dynamics eventually enters a bounded subset of the
state space. Whence, a global attractorA exists, which contains all bounded entire solutions
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and therefore all dynamically relevant objects, like for instance equilibria, periodic solutions,
as well as homo- or heteroclinics. The dynamics on the attractor itself can be highly nontrivial
due to e.g. a cascade of period doubling bifurcations and even chaotic dynamics might arise
[13]. Beyond the pure existence of a global attractor, one is rather interested in an as detailed
as possible picture of its interior structure. An adequate tool for this endeavor is a Morse
decomposition of A due to the following reasons:

• It allows to disassemble an attractor into finitely many invariant, compact subsets (the
Morse sets) and their connecting orbits,

• the recurrent dynamics in A occurs entirely in the Morse sets,
• outside the Morse sets the dynamics of (1.1) on A is gradient-like.

On the one hand, identifying a nontrivialMorse decomposition of the attractor (alongwith the
connecting orbits) provides a more detailed picture of the long-term behavior of (1.1), since
every solution is attracted by exactly one Morse set. On the other hand, obtaining a Morse
decomposition is a difficult task and requires further tools. In our case, this is an integer-
valued (or discrete) Lyapunov functional, which roughly speaking counts the number of sign
changes and decreases along solutions. This allows to quantize solutions to (1.1) in terms of
their oscillation rates. Such a concept is not new and actually turned out to be very fruitful to
understand the global behavior of other finite and infinite dimensional dynamical systems.
For instance, discrete Lyapunov functionals are used to obtain convergence to equilibria in
tridiagonal ODEs [24] and scalar parabolic equations [18], but also a Poincaré–Bendixson
theory for a class of ODEs [14] in R

n , n > 2, reaction-diffusion equations [4] and delay-
differential equations [16]. Finally, a Morse decomposition of global attractors for delay-
differential equations is constructed in [15,19]. In conclusion, the existence of such a discrete
Lyapunov functional imposes a serious constraint on the possible long-term behavior of
various systems.

All the above applications have in common to address problems in continuous time, that is
differential equations. A first approach to tackle difference equations via discrete Lyapunov
functionals is due to Mallet-Paret and Sell [17]. In showing that such an integer-valued
functional V decreases along forward solutions, they lay the foundations of our present work.
Yet, [17] is primarily motivated by time-discretizations of delay-differential equations, while
we are furthermore interested in applications being time-discrete right from the beginning by
means of models originating e.g. in life sciences. Note that [17] prove the decay of V for a
larger class of difference equations than (1.1), which combines (1.1) with (cyclic) tridiagonal
systems (see also our Remark 3.4). Nonetheless, up to our knowledge, this paper is the first
contribution using a discrete Lyapunov functional to actually understand the dynamics of
discrete-time models.

Our detailed setting is as follows: The right-hand side f : J 2 → J of (1.1) is assumed
to be of class C1 with a closed interval J ⊆ R. Since (1.1) is equivalent to the first order
difference equation

yk+1 = F(yk), F(y(0), . . . , y(d)) :=

⎛
⎜⎜⎜⎝

y(1)
y(2)

...

f (y(d), y(0))

⎞
⎟⎟⎟⎠ , (1.2)

the natural state space for (1.1) is the Cartesian product J d+1 ⊆ R
d+1. Indeed, the mapping

F : J d+1 → J d+1 generates a discrete semi-dynamical system via its iterates Fk , k ≥ 0. It
is one-to-one, if and only if
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f (x, ·) : J → R is injective for all x ∈ J , (1.3)

and F : J d+1 → J d+1 is onto, if every f (x, ·) : J → J , x ∈ J , has this property. An entire
solution to (1.2) is a sequence (yk)k∈Z in J d+1 satisfying the identity yk+1 ≡ F(yk) on Z,
and we speak of an entire solution through η ∈ J d+1, provided also y0 = η holds.

Under appropriate conditions on the function f , the equation (1.2) is dissipative, i.e. there
exists a bounded subset A ⊆ J d+1 (the absorbing set) such that for every bounded B ⊆ J d+1

there exists a K = K (B) ≥ 0 with

Fk(B) ⊆ A for all k ≥ K .

The global attractor A ⊆ A for (1.2), is a compact, invariant and nonempty set attracting
all bounded B ⊆ J d+1. In our case, the existence of the global attractor is equivalent to
the existence of a bounded absorbing set [22]. The global attractor is unique and allows the
dynamical characterization

A =
{
ξ ∈ J d+1 : there is a bounded entire solution of (1.2) through ξ

}

(cf. [22, Lemma 2.18]). It is invariantly connected (cf. [22, Proposition 2.20]). In case J = R,
the state space R

d+1 of (1.2) is a Banach space, A is connected (cf. [22, Proposition 2.19])
and contains a fixed point (cf. [22, Theorem 2.29]).

The bounded entire solutions constituting the global attractor A are uniquely determined
by the initial state ξ ∈ A under the injectivity condition (1.3) and thus the continuous bijection
F |A : A → A is a homeomorphism on the compact set A. Hence, the iterates F |kA, k ∈ Z,
are a dynamical system on A and for each ξ ∈ A the corresponding α- and ω-limit sets are
denoted by α(ξ), ω(ξ) ⊆ A. In the general, non-invertible case, for a bounded entire solution
(yk)k∈Z of (1.2), we introduce the α-limit set of y, defined by

α(y) = {ξ ∈ A : there exists kn → −∞, such that ykn → ξ, as n → ∞}.
Coming to our central notion, following [1], a Morse decomposition of the global attractor

A is a finite ordered collection

M1 < M2 < · · · < Mm

of pairwise disjoint, compact and invariant Morse sets M1, . . . ,Mm ⊆ A such that for all
ξ ∈ A and all bounded entire solution (yk)k∈Z through ξ it holds that there exist i ≥ j with

(m1) α(y) ⊆ Mi and ω(ξ) ⊆ M j ,
(m2) i = j ⇒ ξ ∈ Mi (thus, yk ∈ Mi for every k ∈ Z).

The connecting orbits constitute the connecting sets

Ci
j := {

ξ ∈ A : α(y) ⊆ Mi and ω(ξ) ⊆ M j
}

for all j < i .

Together with the Morse sets M1, . . . ,Mm they form a partition of the global attractor A.
Moreover, since A includes every limit point of an equation, due to (m1) indeed the Morse
sets contain all limit sets.

A simple illustration is given in the following example:

Example 1.1 Consider the scalar difference equation (without delay)

xk+1 = f (xk), f (x) := 2x√
1 + 3x2
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f (x)

x

0 1−1

1

0

−1

x

0 1−1

1

0

−1

g(x)

Fig. 1 The mappings f and g from Example 1.1

having the equilibria −1, 0, 1 and the global attractor [−1, 1]. Using graphical iteration (see
Fig. 1 (left)) or from the explicit solution representation f k(x) = 2k x√

1+(4k−1)x2
one readily

obtains the Morse sets and connecting sets

M1 = {−1, 1} , M2 = {0} , C21 = (−1, 0) ∪ (0, 1).

The components of M1 and C21 are invariant; M1 is not minimal. The slightly modified
difference equation (see Fig. 1 (right))

xk+1 = g(xk), g(x) := −2x√
1 + 3x2

has the same global attractor, Morse and connecting sets. Now the Morse set M1 is a 2-
periodic orbit, while (−1, 0), (0, 1) fail to be invariant.

The paper is organized as follows: In many cases the discrete Lyapunov functional is
applied to a variational equation. This allows to argue that it decreases along the difference
of two solutions. Hence, the next two sections include both preparatory work and crucial
related results on linear difference equations; for instance Lemma 2.1 provides a description
of the eigenvalue distribution for the linearized equation. In Sect. 3 we formulate our main
assumptions, the feedback conditions and introduce an integer-valued Lyapunov functional,
whose properties are given by Proposition 3.2 and Theorem 3.3. Our main result is Theo-
rem 4.1, which yields a Morse decomposition of the global attractor of (1.2) (and in turn
(1.1)) under appropriate assumptions on the right-hand side f . Some of the arguments are
given only in the negative feedback case, which seems to havemore applications and requires
slightly more involved proofs. For the convenience of the reader, the proofs for positive feed-
back are given in the Appendix. Section 5 contains applications of the theory, mainly from the
life sciences, which underline that both the positive and negative feedback case are relevant.
Finally some open questions and perspectives are addressed in Sect. 6.

We conclude with our notation: A discrete interval I is the intersection of a real interval
with the integers and I

′ := {k ∈ I : k + 1 ∈ I}. Special cases are the positive half-axis
Z+ := {k ∈ Z : k ≥ 0} and the negative half-axis Z− := {k ∈ Z : k ≤ 0}.
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2 Spectrum of the Linearization

Let us consider an autonomous linear delay-difference equation

xk+1 = axk + bxk−d (2.1)

with real coefficients a > 0, b 
= 0. Our further analysis requires a detailed understanding
of the associated characteristic equation

λd+1 − aλd − b = 0, (2.2)

whose solutions occur as complex-conjugated pairs λ j , λ j , where for real roots, clearly
λ j = λ j . By convention, suppose that Im λ j ≥ 0.

The subsequent lemma thoroughly describes the distribution of the roots of (2.2) based
on the following sectors of the complex plane:

S+
j :=

{
z ∈ C : (2 j − 1)π

d
< arg z <

2 jπ

d + 1

}
for j ∈ N, j <

d + 1

2

and

S−
j :=

{
z ∈ C : 2 jπ

d
< arg z <

(2 j + 1)π

d + 1

}
for j ∈ N0, j <

d

2
.

Lemma 2.1 (Huszár [6]) Let m0 := − dd
( a

d+1

)d+1
.

(a) If b > 0, then for all j ∈ N, j < d+1
2 , there exists exactly one pair of characteristic

roots λ j , λ j of (2.2) with λ j ∈ S+
j , and all other roots are real. For even d there exists a

unique real root, namely λ+ > 0 and for odd d there exist exactly two real roots, namely
λ− < 0 < λ+.

(b) If b < 0, then for all j ∈ N, j < d
2 , there exists exactly one pair of characteristic roots

λ j , λ j of (2.2), such that λ j ∈ S−
j .

(1) If m0 ≤ b < 0, then all other roots are real. Exactly two of those are positive and
they are denoted by 0 < λ+,2 ≤ λ+,1.

(2) If b < m0, then there is also a pair of complex roots λ0, λ0, such that λ0 ∈ S−
0 , and

then there exists no positive characteristic root.
(3) If d is odd, then there is no negative real root, otherwise there is exactly one, which

is denoted by λ−.

(c) If b 
= 0, and z1 = r1eiϕ1 and z2 = r2eiϕ2 are two distinct roots of (2.2) such that
0 ≤ ϕ1 < ϕ2 ≤ π holds, then r1 > r2.

Note that the above lemma also implies that the only possible multiple (at most double)
rootwhich possibly occurs, is the pair of two positive rootsλ+,1 andλ+,2 whichmay coincide.
All the other roots are simple. We refer to Figs. 2 and 3, in which the number and sign of the
real roots of (2.2) is presented for all possible cases.

Proof By means of the variable change λ = ax one transforms the characteristic equation
(2.2) into the trinomial equation

xd+1 − xd + p = 0, p := − b
ad+1 .

Then one applies [6, 1. §] to obtain the parts of statements (a) and (b) concerning the distri-
bution of complex roots. Moreover, according to 8. § of the same paper there is no multiple
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b > 0 b < m0 < 0m0 ≤ b < 0

S+
1

S+
2 S−

1

S−
0

S−
1S−

2

λ+ λ− λ+,2 λ+,1 λ−

0 < λ+ λ− < 0 < λ+,2 < λ+,1 λ− < 0

d even

Fig. 2 Roots of (2.2) (dots) and sectors (gray) from Huszár’s Lemma 2.1 for even delays d

b > 0 m0 ≤ b < 0

S−
2

λ− < 0 < λ+ 0 < λ2,+ < λ1,+

λ− λ+ λ+,2 λ+,1

d odd

S+
1

S+
2

S−
1

S−
2

b < m0 < 0

S−
1

S−
0

Fig. 3 Roots of (2.2) (dots) and sectors (gray) from Huszár’s Lemma 2.1 for odd delays d

complex root. This determines also the number of real roots (counting multiplicity) in each
case. Then applying Descartes’ sign rule yields immediately our conclusion about real roots.
From [6, 2. §] we readily have statement (c). ��

3 A Lyapunov Functional

Our overall analysis is based on the following assumptions on the right-hand side f : J ×J →
J of (1.1):

(H1) f is continuously differentiable and 0 is an inner point of J ;
(H2) D1 f (xd , x0) > 0 for all xd , x0 ∈ J ;

moreover there exists a δ∗ ∈ {−1, 1}, fixed from now on, such that:

(H3) δ∗ D2 f (0, 0) > 0, δ∗ f (0, x0)x0 > 0 for all x0 ∈ J \ {0}.
Note that for δ∗ = 1 one speaks of positive feedback, while δ∗ = −1means negative feedback
in (1.1).

It is central to have an ambient integer-valued Lyapunov functional for a variational equa-
tion along solutions to (1.1) at hand. For sequences (ak)k∈Z, (bk)k∈Z in R we consider the
nonautonomous linear delay-difference equation

xk+1 = ak xk + bk xk−d , (3.1)
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as well as the associated first order system

yk+1 = Ak yk, Ak :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
bk 0 · · · 0 ak

⎞
⎟⎟⎟⎟⎟⎠

, (3.2)

or equivalently, ⎛
⎜⎜⎜⎜⎜⎝

yk+1(0)
yk+1(1)

...

yk+1(d − 1)
yk+1(d)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

yk(1)
yk(2)

...

yk(d)

ak yk(d) + bk yk(0)

⎞
⎟⎟⎟⎟⎟⎠

. (3.3)

Remark 3.1 The assumptions (H1)–(H3) allow to write every nonlinear difference equation
(1.1) in the form (3.1) with

ak =
∫ 1

0
D1 f (hxk, xk−d) dh, bk =

∫ 1

0
D2 f (0, hxk−d) dh.

Moreover, for an entire solution (xk)k∈Z of (1.1), ak > 0 holds for all k ∈ Z (for which ak is
defined), and as bk = f (0, xk−d)/xk−d for any xk−d 
= 0 and bk = D2 f (0, 0) for xk−d = 0,
one has δ∗bk > 0 for all k ∈ Z.

Analogously, every equation (1.2) can be rewritten in the form (3.2) with

ak =
∫ 1

0
D1 f (hyk(d), yk(0)) dh, bk =

∫ 1

0
D2 f (0, hyk(0)) dh, (3.4)

where ak > 0, δ∗bk > 0 hold for all k ∈ Z from the domain of the solution y.

Before proceeding, we abbreviate R
n∗ := R

n \ {0} for n ∈ N. It is crucial to note that
R

d+1∗ is positively invariant under the matrix (3.2) provided ak > 0 and δ∗bk > 0 hold on
Z. Let us also define the function

sc :
⋃

n∈N0

R
n+1∗ → N0,

where sc y is the number of sign changes in y = (y(0), y(1), . . . , y(n)) ∈ R
n+1∗ , that is

sc y := max
{

 ∈ N | ∃ 0 ≤ i0 < · · · < i
 ≤ n : y(i j−1)y(i j ) < 0 ∀ 1 ≤ j ≤ 


}
.

Also, by definition, set sc y := 0, if there is no such 
. Based on this, we define the integer-
valued functions

V + : R
d+1∗ → 2N0, V +(y) :=

{
sc y, if sc y is even,

sc y + 1, if sc y is odd,

and

V − : R
d+1∗ → 2N0 + 1, V −(y) :=

{
sc y, if sc y is odd,

sc y + 1, if sc y is even.
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Finally we introduce the sets R+ resp. R− of regular points via

R± :=
{

y ∈ R
d+1

∣∣∣ y(i) = 0 ⇒ y(i − 1)y(i + 1) < 0 for 0 ≤ i ≤ d
with y(d + 1) := δ∗y(0) and y(−1) := δ∗y(d)

}

for the positive (resp. negative) feedback case.
The subsequent Proposition 3.2 and Theorem 3.3 give some nice properties of the func-

tionals V ± that will be essential in the proof of ourmain result.We state them for both positive
and negative feedback, however, we only present the proofs for the negative feedback case
δ∗ = −1. For positive feedback, the proofs are rather similar to the ones presented below,
and require only straightforward modifications in the arguments (cf. Appendix).

Proposition 3.2 If (yn)n∈N is a sequence in R
d+1∗ with limit y ∈ R

d+1∗ , then the following
statements hold:

(a) V ±(y) ≤ lim infn→∞ V ±(yn),
(b) V ±(y) = limn→∞ V ±(yn), if y ∈ R±.

Proof (a) follows from the lower semi-continuity of the function sc on R
d+1∗ .

(b) is shown only in the negative feedback case, since the positive feedback case can be
handled by straightforward modifications in the argument.
First note that there exists n0 ∈ N such that for n > n0, yn( j) has the same sign as y( j),

where j ∈ {0, . . . , d} is an index for which y( j) 
= 0. Moreover, from y ∈ R− it follows
that for j ∈ {1, . . . , d − 1} with y( j) = 0,

sgn y( j − 1) = sgn yn( j − 1) = − sgn y( j + 1) = − sgn yn( j + 1) 
= 0

and

sc(y( j − 1), y( j), y( j + 1)) = sc(yn( j − 1), yn( j), yn( j + 1)) = 1

holds for all n > n0. This in turn yields that for n > n0 and 0 ≤ i < j ≤ d such that
y(i) 
= 0 
= y( j) one has

sc(y(i), y(i + 1), . . . , y( j)) = sc(yn(i), yn(i + 1), . . . , yn( j)), (3.5)

which in particular means that sc yn = sc y and thus also V −(y) = V −(yn) hold whenever
y(0) 
= 0 
= y(d).

Since y ∈ R− excludes the possibility of y(0) and y(d) both being 0 at once, there remains
the case when exactly one of them is 0. We may assume y(d) = 0 (the case y(0) = 0 is
analogous). Again, by regularity of y we have that y(0)y(d − 1) > 0, which together with
(3.5) yields that on the one hand

sc(y(0), y(1), . . . y(d − 1)) = sc(yn(0), yn(1), . . . yn(d − 1))

holds for n > n0 and on the other hand this number is even, say 2m. It is now clear that
sc y = 2m ≤ sc yn ≤ 2m + 1 and therefore V −(y) = V −(yn) is satisfied for all n > n0,
which completes the proof. ��
Theorem 3.3 If (yk)k∈I is a solution of (3.2) with ak > 0 and δ∗bk > 0 for all k ∈ I, then

(a) V ±(yk+1) ≤ V ±(yk) holds for any k ∈ I
′,

(b) if k ∈ I is such that k + 4d + 2 ∈ I and moreover yk 
= 0 and V ±(yk) = V ±(yk+4d+2)

hold, then yk+4d+2 ∈ R±.
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According to Remark 3.1 this applies to solutions of (1.2) as well. We additionally remark
that Theorem 3.3 remains valid in the nonautonomous situation when f depends on k and
our assumptions hold for every k ∈ I.

The next proof is valid for any d ∈ N (using notations y(d + 1) := δ∗y(0) and
y(−1) := δ∗y(d) where necessary in the d = 1 case). However it is worth mentioning that
Theorem 3.3 almost trivially holds for d = 1, and some parts of the following proof can be
omitted even in the case d = 2.

Proof of Theorem 3.3 For better readability, we give the proof for negative feedback δ∗ = −1,
the positive feedback case can be found in the Appendix.

(a) Since the last d components of yk ∈ R
d+1∗ are the same as the first d coordinates of yk+1,

clearly sc yk+1 ≤ sc yk + 1 holds. Assuming now to the contrary that V −(yk+1) > V −(yk)

holds for some k implies that sc yk+1 = sc yk +1 and sc yk is odd. The former combined with
ak > 0 yields that yk(0) 
= 0 and the oddness of sc yk implies that the last nonzero coordinate
of yk (say yk( j), 1 ≤ j ≤ d) has the opposite sign as yk(0). We may assume w.l.o.g. that
yk( j) < 0 < yk(0) (the other case is analogous). In particular this implies yk(d) ≤ 0. Using
ak > 0 and bk < 0 one obtains readily from (3.3) that yk+1(d) = ak yk(d) + bk yk(0) is
negative. All these together give

sc yk+1 = sc
(
yk+1(0), yk+1(1), . . . , yk+1(d − 1), yk+1(d)

)

= sc
(
yk(1), yk(2), . . . , yk(d), yk+1(d)

) ≤ sc yk,

where the last inequality is due to sgn yk( j) = sgn yk+1(d). This is a contradiction, which
proves statement (a).

(b) Before we prove the statement, we need to introduce some auxiliary notions. Let us
say that a component y( j) (0 ≤ j ≤ d) of a vector y ∈ R

d+1 is irregular if y( j) = 0, and
y( j −1)y( j +1) ≥ 0, where y(−1) := −y(d) and y(d+1) := −y(0). Using this terminology,
y ∈ R− (i.e. y is regular) holds if and only if y has no irregular component. Furthermore, we
call a vector (y(i), . . . , y( j))with 0 ≤ i ≤ j ≤ d an irregular block (of zeros) in y ∈ R

d+1 if
y(i) = · · · = y( j) = 0, and moreover it has maximal length in the sense that either i = 0 or
i ≥ 1 and y(i −1) 
= 0 hold, and similarly either j = d or j < d and y( j +1) 
= 0 hold. The
dimension of the block will be regarded as the length of it. Note also that consecutive zero
components are irregular by definition. The proof of (b) consists of several, yet elementary,
steps. From now on we always assume that V −(yk) = V −(yk+4d+2), which implies, in the
light of statement (a), that V −(yk) = V −(yk+
) holds for all 0 ≤ 
 ≤ 4d + 2.
(I) If for some index k, yk+1( j) = 0 is irregular (0 ≤ j < d), then so is yk( j + 1) = 0
irregular.

This is trivial in case 1 ≤ j ≤ d − 2.
If yk+1(d − 1) = 0 is an irregular component of yk+1 (i.e. yk+1(d −1) = 0 and yk+1(d −

2)yk+1(d) ≥ 0 hold), then on the one hand yk(d) = 0 holds and on the other hand, bk < 0
implies sgn yk+1(d) = − sgn yk(0). Combining this with yk(d − 1) = yk+1(d − 2) yields
sgn(yk(d − 1)yk(d + 1)) = − sgn(yk(d − 1)yk(0)) = sgn(yk+1(d − 2)yk+1(d)), meaning
yk(d) is also irregular in yk .

For the case when yk+1(0) = 0 is irregular, assume to the contrary that yk(1) = 0 is
regular, i.e. yk(0)yk(2) < 0. W.l.o.g. we may assume yk(0) < 0 < yk(2). Irregularity of
yk+1(0) combined with yk+1(1) = yk(2) > 0 yields yk+1(d) ≤ 0. Now, from ak > 0 and
bk < 0 it follows that yk(d) < 0. These all together imply that sc yk is an even number,
moreover sc yk = sc yk+1 + 1, which gives V −(yk) = V −(yk+1) + 2, a contradiction.
(II) If yk+1(d) = 0, then there are two possibilities. Either yk(0) = yk(d) = 0, or
yk(0)yk(d) > 0. Assume now that the latter holds and let 0 ≤ j < d be the smallest integer
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such that yk( j + 1) 
= 0. As yk(0)yk(d) > 0, hence sc yk is even, so V −(yk) = V −(yk+1)

holds only if sgn yk( j + 1) = sgn yk(0), which in turn yields also

sgn yk( j + 1) = sgn yk(d) = sgn yk+1(d − 1) 
= 0. (3.6)

If in addition yk+1(d) = 0 is irregular, then 0 ≥ yk+1(0)yk+1(d − 1) = yk(1)yk(d) holds,
which in the light of (3.6) yields that j 
= 0, or what is equivalent, yk(1) = 0.

To sum up, if yk+1(d) = 0 is irregular, then either yk(0) = yk(d) = 0 or there exists some
1 ≤ j ≤ d − 1, such that

yk(0) 
= 0,

yk(1) = · · · = yk( j) = 0,

yk( j + 1) 
= 0,

yk(d) 
= 0,

sgn yk(0) = sgn yk( j + 1) = sgn yk(d)

(3.7)

hold, which in particular means that yk(0) is followed by an irregular block of zeros of length
j ≥ 1.
(III) As a consequence of the first two steps, if yk ∈ R− and V −(yk) = V −(yk+1), then
yk+1 ∈ R−. Therefore, in order to prove the statement, it is sufficient to show that there
exists 0 ≤ 
 ≤ 4d + 2 such that yk+
 ∈ R−.
(IV) Note that if yk(d) = 0 and yk 
= 0 ∈ R

d+1, then since a j > 0 for all j ≥ k, there exists
k + 1 ≤ k1 ≤ k + d such that yk1(d) 
= 0. Thus we may assume that k1, k ≤ k1 ≤ k + d is
such that yk1(d) 
= 0.
(V) This in particular implies that yk1(d) is regular. The rest of the vector yk1 may contain
several irregular blocks, which are separated by at least one regular coordinate from each
other. The coordinate yk1(0) may also be zero, or even irregular.

Next we will study how the irregular blocks of yk1+d+1 can be described by the irregular
blocks of yk1 . Let us use notation k2 = k1 + d + 1.
(V.1) If there exists 1 ≤ j ≤ d so that yk1(0) = · · · = yk1( j − 1) = 0 and yk1( j) 
= 0, then,
as a j > 0 for all j ≥ k, sgn yk1+ j (d) = · · · = sgn yk1+ j (d − j) = sgn yk1(d) holds, and
consequently one has sgn yk2(0) = · · · = sgn yk2( j − 1) = sgn yk1(d) 
= 0.
(V.2) If yk1(i) = · · · = yk1( j) = 0 is an irregular block with 1 ≤ i < j < d such that
yk1(i−1)yk1( j+1) < 0, then for k′ = k1+i−1 one has that yk′(1) = · · · = yk′( j−i+1) = 0
and yk′(0)yk′( j − i + 2) < 0 hold. Due to the argument seen in (II), and that neither
yk′(d) = yk′(0) = 0, nor (3.7) holds (with k = k′), we obtain that yk′+1(d) is regular, which
implies in this case that it is also nonzero.Going a bit further, to k′′ = k′+ j−i+2 = k1+ j+1,
one infers that sgn yk′′(d) = · · · = sgn yk′′(d − j + i − 1) 
= 0. Then it is straightforward
that sgn yk2(i) = · · · = sgn yk2( j) 
= 0 holds. Observe that in case i = j , yk1(i) = 0 would
not be irregular due to assumption yk1(i − 1)yk1(i + 1) < 0.
(V.3) Thus it remains to consider the case when yk1(i) = · · · = yk1( j) = 0 is an irregular
blockwith 1 ≤ i ≤ j < d such that yk1(i −1)yk1( j +1) > 0. Choosing k′ = k1+i −1 just as
in the previous step one obtains yk′(1) = · · · = yk′( j−i+1) = 0 and yk′(0)yk′( j−i+2) > 0.

Now there are two possibilities. Either yk′+1(d) 
= 0 and then we have the same situation
as in (V.2), i.e. sgn yk2(i) = · · · = sgn yk2( j) 
= 0, or yk′+1(d) = 0. In the latter case
one can easily see that sgn yk2(i − 1) = · · · = sgn yk2( j) = 0, moreover, if i ≥ 2, then
yk2(i−2)yk2( j+1) < 0 holds.Note that the index of the last components of the corresponding
irregular blocks in yk1 and yk2 coincide (it is j).

123



Journal of Dynamics and Differential Equations (2019) 31:903–932 913

(VI) Conversely, Steps (I), (II) and (V) combined show that if yk2 has an irregular block,
whose last component is at index j (with 0 ≤ j < d), i.e. yk2( j) = 0 is irregular and
yk2( j + 1) 
= 0, then yk1( j) = 0 is irregular and yk1( j + 1) 
= 0.

Our aim is to apply the arguments presented in (V) now for yk3 , where k3 is to be defined
soon. For this reason we need to distinguish two cases with respect to the regularity of yk2(d).

If it is regular, then it may be zero or nonzero. If it is nonzero, then (V) shows that all
irregular blocks of yk2 are of the type considered in (V.1) and (V.2) (now with k2 instead of
k1). If yk2(d) = 0, then from its regularity it follows that yk2(0) 
= 0, so all irregular blocks
of zeros are of the type studied in (V.2). Note that in that step we did not use that yk1(d) 
= 0.
For regular yk2(d) let us define k3 = k2.

If yk2(d) = 0 is irregular, then yk2−1(0) = yk1(d) 
= 0 implies that (3.7) holds with
k = k2 − 1 and some 1 ≤ j ≤ d − 1. Then for k3 = k2 + j + 1 ≤ k2 + d one infers that
yk3(d) 
= 0, and all irregular blocks are of the types handled in (V.1) and (V.2).

Applying now the arguments of (V.1) and (V.2) for yk3 instead of yk1 we obtain that, for
k4 = k3 + d + 1, yk4(i) is regular for all 0 ≤ i < d . We claim that the last coordinate yk4(d)

is also regular. Arguing by way of contradiction, if yk4(d) is irregular, then according to (II)
there are two possibilities: either yk4−1(0) = yk4−1(d) = 0 or (3.7) holds for k = k4 − 1. In
the former case yk4(d − 1) = yk4(d) = 0 are both irregular, which is a contradiction. If the
latter holds, then yk4−1(1) = 0 is irregular and yk4−1(0) 
= 0, thus from (I) we obtain that
yk3+1(d) = yk4−1−(d−1)(d) = 0 is also irregular and yk3+1(d − 1) = yk4−1(0) 
= 0. Thus,
(3.7) must hold for k = k3, as well, which contradicts the fact that every irregular block of
yk3 is of the types seen in (V.1) and (V.2). This proves that yk4(d) is regular.

Thus, we proved that yk4 ∈ R− for some 0 ≤ k4 ≤ k + 4d + 2. From (III) we obtain that
yk+4d+2 ∈ R−. ��

Assertion (a) of Theorem 3.3 is also true, if we extend V ± into the origin as V +(0) = 0
resp. V −(0) = 1. In this case we may also allow ak ≥ 0 and δ∗bk ≥ 0 instead of strict
inequalities. The proof of this slightly modified statement is essentially identical to the one
presented above.

Remark 3.4 With the modified assumptions, Theorem 3.3 (a) is a special case of a general
result by Mallet-Paret and Sell [17, Theorem 2.1]. Yet, there are two reasons for presenting
an independent proof: First, our simpler situation allows a much shorter argument. Second,
in the more general setting of [17] extra (smallness) conditions on the sequences ak and bk

are necessary. As their motivation was to give the Lyapunov property for time-discretization
of delay-differential equations and tridiagonal ODEs, those extra conditions were always
met for sufficiently small step-sizes. However, our motivation comes not only from time-
discretization of continuous-time equations, therefore it is important that we can omit such
extra conditions.

4 TheMorse Decomposition

From now on, we suppose that the conditions (H1)–(H3) are fulfilled. Furthermore, (1.2) is
assumed to possess a global attractor A.

If a := D1 f (0, 0) and b := D2 f (0, 0), then (H1)–(H3) imply a, δ∗b > 0.
Throughout this section we will treat the positive and negative feedback cases in a parallel

way. Both statements and their proofs are formulated in this manner. The only exception in
this regard is the proof of Proposition 4.2, whose positive feedback case is postponed to the
Appendix.
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Before stating ourmain theoremwe introduce some notations concerning the linearization
of equation (1.2), which becomes

yk+1 = Ayk, A :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
b 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎠

, (4.1)

or what is equivalent,
⎛
⎜⎜⎜⎜⎜⎝

yk+1(0)
yk+1(1)

...

yk+1(d − 1)
yk+1(d)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

yk(1)
yk(2)

...

yk(d)

ayk(d) + byk(0)

⎞
⎟⎟⎟⎟⎟⎠

. (4.2)

Denote by M∗ the number of eigenvalues (counting multiplicities) of A with absolute values
strictly greater than 1. Moreover, let

N∗+ :=
{

M∗, if 0 is hyperbolic or M∗ = 0,

M∗ + 1, otherwise,

and

N∗− :=
{

M∗, if 0 is hyperbolic or M∗ = 1,

M∗ + 1, otherwise.

Our main result is the next theorem:

Theorem 4.1 (Morse decomposition) If (1.2) has a global attractor A and the assumptions
(H1)–(H3) hold, then the following collection of sets is a Morse decomposition of A:

Mn =
{
ξ ∈ A \ {0} : (1.2) has a bounded entire solution (yk)k∈Z

through ξ with V ±(yk) ≡ n on Z and 0 /∈ α(y) ∪ ω(ξ)
}
,

MN∗± =
{
ξ ∈ A \ {0} : (1.2) has a bounded entire solution (yk)k∈Z

through ξ with V ±(yk) ≡ N∗± on Z

}
∪ {0}

for 0 ≤ n ≤ d + 1, n ∈ 2N0 \ {N∗+} (resp. n ∈ (2N0 + 1) \ {N∗−}).
Note that due to definitions of V ± and N∗±, MN∗± 
= {0} can only occur if the origin is

non-hyperbolic or N∗± = d + 1, and d is odd (resp. even) in the positive (resp. negative)
feedback case.

The proof of Theorem 4.1 is based on several tools, whose logical structure is bor-
rowed from [19]. However, there are certain differences: For instance, the finite dimensional
state space of (1.2) allows to simplify various arguments based on the Arzelà–Ascoli
theorem. Another simplification in our finite dimensional setting is the nonexistence of
super-exponentially decaying solutions established in Lemma 4.5. On the flip side, the non-
connectedness of orbits gives rise to technical difficulties in some arguments.
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The next two results play a significant role in the sequel and show how bounded solutions
(on either of the half-axes) can be characterized with the aid of N∗± and functional V ±.
Although they correspond to continuous time results in [15,19], we give a detailed proof.

Proposition 4.2 (a) If (yk)k≤0 is a nontrivial, bounded solution of (4.1) in R
d+1, then

V ±(yk) ≤ N∗± for all k ≤ 0.
(b) If (yk)k≥0 is a nontrivial, bounded solution of (4.1) in R

d+1, then V ±(yk) ≥ N∗± for all
k ≥ 0.

Proof We present only the proof (a) in the negative feedback case, i.e. when (H1)–(H3) with
δ∗ = −1 hold. The proof of (b) is analogous. The proof for the positive feedback case is
also rather similar, but simpler (see Appendix), as there are less cases for the distribution of
eigenvalues of (4.1) (cf. Lemma 2.1).

The eigenvalues of (4.1) are precisely the solutions of the characteristic equation (2.2). If
M∗ is equal to 0, 1 or d + 1, then the statement is trivial. Otherwise, according to Lemma
2.1, M∗ is an even number, say M∗ = 2n′ + 2, where 0 ≤ n′ ≤ d−2

2 .
We use the notations and ordering for eigenvalues introduced in Lemma 2.1. For a non-real

eigenvalue λ j = r j eiϕ j ∈ S−
j (with ϕ j ∈ (0, π), j ∈ Z+, j < d

2 ) any linear combination of
the real eigensolutions corresponding to λ j can be written in the form c j z j , where c j ∈ R

and

z j,k =

⎛
⎜⎜⎜⎜⎜⎝

z j,k(0)
z j,k(1)

...

z j,k(d − 1)
z j,k(d)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

rk
j sin(kϕ j + ω j )

rk+1
j sin((k + 1)ϕ j + ω j )

...

rk+d−1
j sin((k + d − 1)ϕ j + ω j )

rk+d
j sin((k + d)ϕ j + ω j )

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.3)

with some ω j ∈ [0, 2π). From ϕ j ∈ (0, π) it is clear that sc z j,k equals the num-
ber of sign changes the sine function has on interval (kϕ j + ω j , (k + d)ϕ j + ω j ).
According to the definition of the sector S−

j , the length of this interval is dϕ j ∈
(2 jπ, d

d+1 (2 j + 1)π). Now, from the definition of V − we obtain that V −(z j,k) = 2 j + 1
for all k ∈ Z−.

As for the eigensolutions corresponding to real eigenvalues, let us first recall that
determined by the value of b, either there are exactly two positive eigenvalues of (4.1)
(λ+,2 ≤ λ+,1), and in that case there is no eigenvalue in the sector S−

0 , or there are no
positive eigenvalues and there exists a pair of complex eigenvalues λ0, λ0, where λ0 ∈ S−

0 .

In the former case let z10, z20 and z30 be defined by z10,k( j) = λ
k+ j
+,1 , z20,k( j) = λ

k+ j
+,2 and

z30,k( j) = (k + j)λk+ j
+,2 for all k ∈ Z− and j ∈ N0, j ≤ d , respectively. Clearly, for any

i = 1, 2, 3 and for all k ∈ Z−, k < −d , every component of zi
0,k has the same sign,

and in particular V −(zi
0,k) = 1 for all k < −d . Concerning negative eigenvalues, if d is

even, say d = 2
 for some 
 ∈ N, then any eigensolution corresponding to the unique
negative eigenvalue −r
 := λ− < 0 can be written in the form c
z
, where c
 ∈ R and
z
,k( j) = (−r
)

k+ j for all k ∈ Z− and j ∈ N0, j ≤ d . Obviously sc z
,k = d and therefore
also V −(z
,k) = d + 1 = 2
 + 1 hold for all k ∈ Z−. According to Lemma 2.1 there are no
other real eigenvalues.

First, let us consider the hyperbolic case. Assume that M∗ = 2n′ + 2 for some integer
0 ≤ n′ ≤ d−2

2 . Then N∗− = M∗ = 2n′ + 2. Let y be an arbitrary solution of (4.2) which is
bounded in backward time. This means that there exist an integer 0 ≤ n ≤ n′ and appropriate
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constants ω j ∈ [0, 2π), c0,1, c0,2, c0,3, c j ∈ R with j = 0, . . . , n, such that

y =
3∑

j=1

c0, j z
j
0 +

n∑
j=0

c j z j , (4.4)

where those coefficients are understood to be automatically set to zero, that correspond to
eigensolutions which do not exist in the given case (e.g. there exists no positive eigenvalue).

We claim that V −(yk) ≤ V −(zn,k) = 2n + 1 < 2n′ + 2 = N∗− holds for all k ≤ k1,
where k1 is to be defined soon. Then by monotonicity of V − (proved in Theorem 3.3) we get
statement (a). If c0, . . . , cn are all zeros, then the claim trivially holds. Otherwise we may
assume w.l.o.g. that cn 
= 0.

If c0 
= 0, then there are no positive eigenvalues of (4.1), so the first sum in (4.4) is zero,
and we readily obtain that for n = 0, V −(yk) = V −(zn,k) = 1 < 2n′ + 2 = N∗− holds.

Thus we may assume n ≥ 1. From Lemma 2.1 one can easily obtain that there exists
ϑn > 0, sufficiently small, such that the inequalities

ϑn < min
{π − ϕn

2
,
ϕn

2

}
(4.5)

dϕn + 2ϑn < (2n + 1)π and (4.6)

2nπ < dϕn − 2ϑn (4.7)

hold. Moreover, by the Lemma 2.1 (c) we can choose k0 < 0 so small that

n−1∑
j=0

|c j |rk
j + |c0,1|λk+,1 + |c0,2|λk+,2 + |kc0,3|λk+,2 < |cn |rk

n sin ϑn (4.8)

holds for all k ≤ k0. Let k1 = k0 − d .
For brevity, let us say that the 
-th component of zn,k , i.e. zn,k(
) = rk

n sin((k +
)ϕn +ωn)

is small if | sin((k + 
)ϕn + ωn)| ≤ sin ϑn , otherwise the component will be said to be big.
Inequality (4.8) yields that if zn,k(
) is big for some 
 = 0, 1, . . . , d and k ≤ k1, then
sgn yk(
) = sgn zn,k(
) 
= 0 holds. Note that inequality (4.5) guarantees that there is no
k ≤ k1 and component 0 ≤ 
 < d such that zn,k(
) and zn,k(
+1) are both small. Similarly,
(4.6)–(4.7) imply that zn,k(0) and zn,k(d) cannot be small at the same time. Moreover, by
(4.5) one obtains that if zn,k(
) is small for some k ≤ k1 and 
 ∈ {1, . . . , d − 1}, then
sgn zn,k(
 − 1) = − sgn zn,k(
 + 1).

Combining themmeans that, if k ≤ k1 and zn,k(0) and zn,k(d) are both big, sc yk = sc zn,k

holds, and V −(yk) = V −(zn,k) = 2n + 1 < N∗− follows.
There remains the case, when exactly one of zn,k(0) and zn,k(d) is small. W.l.o.g. we may

assume that zn,k(d) is small, zn,k(0) is big and positive. Then, as zn,k(d − 1) is also big,

sc(yk(0), . . . , yk(d − 1)) = sc(zn,k(0), . . . , zn,k(d − 1))

follows. Thus either V −(yk) ≤ V −(zn,k) holds or sc yk = sc zn,k + 1 is even. We show that
the latter case leads to contradiction. Should it hold, then yk(0) and zn,k(0) would be both
positive, yk(d −1) and zn,k(d −1)would be both negative, while yk(d) > 0 and zn,k(d) ≤ 0.
Now, since zn,k(d) ≤ 0 is small, ((k + d)ϕn + ωn) ∈ (−ϑn, 0] ∪ [π, π + ϑn) mod 2π holds.
On the other hand, from zn,k(d −1) < 0 and (4.5) it follows that ((k+d)ϕn +ωn) ∈ (−ϑn, 0]
mod2π , which implies by inequalities (4.6) and (4.7) that zn,k(0) < 0. This is a contradiction,
so our proof is complete for the hyperbolic case.

If the origin is non-hyperbolic, and M∗ ≥ 2, then N∗− = M∗ + 1. Keeping our notations
from above, there is a pair of eigenvalues λn′+1, λn′+1 on the unit circle, or −1 is a simple
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eigenvalue (if d is even and M∗ = d). In the latter case, statement (a) of the lemma is trivial.
In the former case all backward bounded solutions of (4.2) can be written as (4.4), this time
with n ≤ n′ + 1, and an argument similar to the one applied in the hyperbolic case shows
that V −(yk) = 2n + 1 ≤ 2n′ + 3 = N∗− for all k ∈ Z−. ��
Proposition 4.3 There exists an open neighborhood U ⊆ J d+1 of 0, such that for all non-
trivial solutions (yk)k∈Z in R

d+1 of the nonlinear equation (1.2) the following statements
hold:

(a) If yk ∈ U ∩ A for all k ≤ 0, then V ±(yk) ≤ N∗± for all k ∈ Z.
(b) If yk ∈ U ∩ A for all k ≥ 0, then V ±(yk) ≥ N∗± for all k ∈ Z.

Proof The proof relies mainly on Proposition 4.2. We only prove statement (a), since the
proof of part (b) is analogous.

We argue by way of contradiction. If the statement is not true, then there exists a
sequence of nontrivial, bounded entire solutions yn : Z → J d+1 of equation (1.2) such
that supk≤0 ‖yn

k ‖ → 0, as n → ∞ and V ±(yn
kn

) > N∗± holds for some kn ∈ Z.
Since yn is bounded, there exists an integer jn ≤ kn , such that ‖yn

k ‖ < 2‖yn
jn
‖ holds for

all integers n ∈ Z+ and k ≤ kn .
As equation (1.2) is autonomous and V ± is monotone non-increasing, we may assume

w.l.o.g. that jn = 0 for all n ∈ Z+. Recall that equation (1.2) can be written in the form (3.2),
(3.4) and set

zn
k := 1

‖yn
0‖ yn

k .

Keeping the notations of Remark 3.1, yn is a bounded entire solution of (3.2),(3.4) for
all n ∈ Z+, where y, A, a and b should be replaced throughout by yn, An, an and bn ,
respectively. From the linearity of equation (3.2) one obtains that zn is an entire solution of

zn
k+1 = An

k zn
k for all n ∈ Z+.

By definition, ‖zn
k ‖ ≤ 2 holds for all n ∈ Z+, so by the Cantor diagonalization argument,

there exists a subsequence (n
)
∞

=0 and a bounded sequence (zk)

0
k=−∞ such that zn


k → zk ,
as 
 → ∞, for all integers k ≤ 0.

On the other hand, by our assumptions, for any fixed integer k ≤ 0, yn


k → 0, as 
 → ∞.
Thus an


k → a = D1 f (0, 0) and bn


k → b = D2 f (0, 0) hold as 
 → ∞.
It follows then that (zk)k≤0 is a bounded solution of the linear equation

zk+1 = Azk,

where A is defined by (4.1), moreover it is nontrivial, since ‖z0‖ = ‖zn
0‖ = 1 for all n ∈ Z+.

Thus Proposition 4.2 can be applied to obtain that V ±(zk) ≤ N∗± holds for all k ≤ 0.
Furthermore, Theorem 3.3 (b) yields that there exists k1 ≤ 0 such that zk ∈ R± for all
k ≤ k1. Finally, since zn


k1
→ zk1 , as 
 → ∞, it follows from Proposition 3.2 (b) that

lim

→∞ V ±(zn


k1
) = V ±(zk1) ≤ N∗±,

contradicting our assumption N∗± < V ±(yn


k ) = V ±(zn


k ) for all k ≤ 0. ��
From the Proposition 4.3 we immediately infer the next result.

Corollary 4.4 The following holds for solutions of (1.2):
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(a) If N∗± > 1, then there exists no heteroclinic solution towards the trivial solution.
(b) If there exists a homoclinic solution (ỹk)k∈Z to the trivial equilibrium, then V ±(ỹk) ≡ N∗±

on Z.
(c) In particular, if the trivial solution is hyperbolic, then there exists no homoclinic solution

to it in the positive feedback case, while in case of negative feedback it may only exist if
M∗ = N∗− = 1.

Proof (a) Fixed-points y∗ 
= 0 of (1.2) have equal, nonzero components, so V ±(y∗) ≤ 1
and y∗ ∈ R±. Assume now to the contrary that (ỹk)k∈Z is an entire solution with
limk→∞ ỹk = 0 and limk→−∞ ỹk = y∗. Then from Proposition 3.2 (b) we get
limk→−∞ V ±(ỹk) ≤ 1, while Proposition 4.3 (b) yields limk→∞ V ±(ỹk) ≥ N∗± > 1, a
contradiction to Proposition 3.3 (a).

(b) This follows immediately from Propositions 4.3 and 3.3 (a).
(c) Let the trivial solution be hyperbolic. If M∗ equals 0 or d + 1, then the statement holds

trivially since either the local unstable or the local stable manifold is trivial. Otherwise,
except the case of negative feedback with M∗ = N∗− = 1, N∗± = M∗ is an odd (resp.
even) number in the positive (resp. negative) feedback case. Now, recall that V ± takes
on only even (resp. odd) values, then apply (b) to conclude the proof. ��
The next technical lemma shows that solutions of (1.2) can neither grow nor decrease

faster than exponentially in some neighborhood of the origin.

Lemma 4.5 Let (yk)k∈I be a solution of (3.2). If ã1, b̃0 and b̃1 are positive reals with 0 <

ak < ã1 and b̃0 < |bk | < b̃1 for all k ∈ I, then there exist positive constants c and C (that
may depend on ã1, b̃0 and b̃1) such that

c‖yk‖ ≤ ‖yk+1‖ ≤ C‖yk‖ if k ∈ I
′.

Proof Without loss of generality we may use the ‖ · ‖1-norm. Since Ak is invertible for all
ak 
= 0 
= bk , and

‖yk+1‖1 ≤ ‖Ak‖1‖yk‖1 = max{1 + |ak |, |bk |}‖yk‖1,
and

‖yk+1‖1 ≥ ‖yk‖1
‖A−1

k ‖1
= min

{
|bk |, |bk |

|bk | + ak

}
‖yk‖1

hold, thus

c := min

{
b̃0,

b̃0

b̃0 + ã1

}
and C := max{1 + ã1, b̃1}

are appropriate choices. ��
Remark 4.6 From the above proof and theC1-smoothness of f it is clear that for any solution
(yk)k∈I of (3.2), (3.4) on some discrete interval I and any compact set K ⊂ R

d+1, there exists
C > 0, such that yk ∈ K for some k ∈ I implies ‖yk+1‖ ≤ C‖yk‖. Moreover, if K is a
sufficiently small neighborhood of 0, then there exists also c > 0 such that c‖yk‖ ≤ ‖yk+1‖.

We combine the next three lemmas with Proposition 4.3 in order to prove that the family
of sets Mn fulfills the “Morse properties” (m1) and (m2).
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Lemma 4.7 Suppose that (yk)k∈Z is a bounded entire solution of (1.2) through ξ ∈ A.

(a) If limk→∞ V ±(yk) = N, then V ±(η) = N for any η ∈ ω(ξ) \ {0}.
(b) If limk→−∞ V ±(yk) = K , then V ±(η) = K for any η ∈ α(y) \ {0}.
Proof We only prove statement (a), since (b) can be shown analogously.

For an arbitrary η ∈ ω(ξ) \ {0}, there exist a monotone sequence kn → ∞, as n → ∞,
such that ykn → η, and – by the invariance of ω(ξ) \ {0} – there exists a bounded entire
solution (zk) of (1.2) such that z0 = η and zk ∈ ω(ξ) \ {0} holds for all k ∈ Z. By
Theorem 3.3 (b), there exist integers 
1 < 0 < 
2 such that z
1 and z
2 both belong to R±.
Since z
1 ∈ ω(ξ) \ {0}, there exists a monotone sequence k′

n → ∞, as n → ∞, such that
yk′

n
→ z
1 , and from the continuity of the right-hand side of equation (1.2) one infers that

ykn+
2 → z
2 , as n → ∞.
Combining these with Proposition 3.2 (b) and with the assumption

limk→∞ V ±(yk) = N we get that

V ±(z
1) = lim
n→∞ V ±(yk′

n
) = N = lim

n→∞ V ±(ykn+
2) = V ±(z
2).

Using that V ± is non-increasing and that 
1 < 0 < 
2, and z0 = η hold, V ±(η) = N is
established. ��
Lemma 4.8 Suppose that (yk)k∈Z is a bounded entire solution of (1.2) through ξ ∈ A.

(a) If limk→∞ V ±(yk) 
= N∗±, then either ω(ξ) = {0} or 0 /∈ ω(ξ).
(b) If limk→−∞ V ±(yk) 
= N∗±, then either α(y) = {0} or 0 /∈ α(y).

Proof Again, we only prove part (a). Let us assume that 0 ∈ ω(ξ), but ω(ξ) 
= {0}, further-
more, let U be defined as in Proposition 4.3. Then there exists U1, an open neighborhood of
0 in A such that U1 ⊂ U and ω(ξ) � U1. This, together with 0 ∈ ω(ξ) imply that yk enters
and leaves U1 infinitely many times as k → ∞. Thus there exist positive integer sequences
kn, σn, τn (n ≥ 0), such that

ykn → 0 and kn → ∞, as n → ∞,

kn + τn < kn+1 − σn+1 − 1,

yk ∈ U1, if kn − σn ≤ k ≤ kn + τn,

and

ykn−σn−1, ykn+τn+1 /∈ U1

hold for all n ≥ 0. By Remark 4.6 we get τn → ∞ and σn → ∞, as n → ∞.
Now, let

zn
k = ykn−σn+k and wn

k = ykn+τn+k for k ∈ Z.

Using the compactness of A and applying a Cantor diagonalization argument one obtains
that there exist a subsequence (n
)
∈N0 and bounded entire solutions (zk) and (wk) of (1.2),
such that zn


k → zk and w
n


k → wk hold for all k ∈ Z, as 
 → ∞. Solutions z and w are
nontrivial, since both z−1 and w1 are from A \ U1. On the other hand, zk ∈ U1 ⊂ U and
w−k ∈ U1 ⊂ U hold for k ∈ Z+. Thus by Proposition 4.3 it follows that

V ±(wk) ≤ N∗± ≤ V ±(zk) for all k ∈ Z. (4.9)
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Observe that z0 = lim
→∞ ykn

−σn


, hence z0 ∈ ω(ξ)\{0}, and similarlyw0 ∈ ω(ξ)\{0}.
Then, from Lemma 4.7 it follows that

V ±(z0) = V ±(w0) = lim
k→∞ V ±(yk).

This combined with (4.9) (for k = 0) leads to limk→∞ V ±(yk) = N∗±. ��
Lemma 4.9 Suppose that (yk)k∈Z is a bounded entire solution of (1.2) through ξ ∈ A \ {0}.
(a) If N := limk→∞ V ±(yk) 
= N∗±, then either ω(ξ) = {0} or ω(ξ) ⊆ MN .
(b) If K := limk→−∞ V ±(yk) 
= N∗±, then either α(y) = {0} or α(y) ⊆ MK .

Proof In order to prove assertion (a), let us assume that ω(ξ) 
= {0} and that N := limk→∞
V ±(yk) 
= N∗±. According to Lemma 4.8, 0 /∈ ω(ξ). Let η ∈ ω(ξ) be arbitrarily chosen, then
using the invariance of ω(ξ), there exists a bounded entire solution (zk), such that z0 = η

and zk ∈ ω(ξ) holds for all k ∈ Z. From compactness of ω(ξ), α(z)∪ω(η) ⊆ ω(ξ) follows.
This implies that 0 /∈ α(z) ∪ ω(η). On the other hand, zk ∈ ω(ξ) and Lemma 4.7 together
ensure that V ±(zk) = N for all k ∈ Z, meaning that η ∈ MN holds.

The proof of statement (b) is analogous. ��
The next lemma is a step towards the compactness proof of Morse sets.

Lemma 4.10 For every N ∈ 2N0 \ N∗+ (resp. N ∈ (2N0 + 1) \ N∗−) there exists an open
neighborhood Ũ in A of the origin, such that MN ∩ Ũ = ∅.

Proof Assume to the contrary that there is a non-negative even (resp. odd) N 
= N∗± and a
sequence (ξn)n≥0 inMN such that ξn → 0 as n → ∞. For each n ≥ 0 let yn be a bounded
entire solution such that yn

0 = ξn , 0 /∈ α(yn) ∪ ω(ξn) and V ±(yn
k ) = N hold for all k ∈ Z.

We claim thatω(ξn) cannot be a subset ofU , whereU is from Proposition 4.3. To see this,
suppose thatω(ξn) ⊆ U . Let η ∈ ω(ξn). By invariance ofω(ξn) there exist a bounded entire
solution (zk) through ξn , such that zk ∈ ω(ξn) ⊆ U holds for all k ∈ Z. Thus Proposition 4.3
implies that V ±(zk) = N∗± holds for all k ∈ Z. However, V ±(η) = N should also hold by
Lemma 4.8, which is a contradiction, so ω(ξn) � U for all n ≥ 0.

Assume for definiteness that N > N∗±. Since limn→∞ ξn = 0, there exists a series of
non-negative integers (σn)n∈N0 , such that

yn
k ∈ U for 0 ≤ k ≤ σn and yn

σn+1 /∈ U

holds for all n ≥ 0. By Remark 4.6, it follows that σn → ∞, as n → ∞. Letting zn
k := yn

k+σn
for all k ∈ Z and applying a Cantor diagonalization argument one obtains that there is
subsequence (zn
 )
∈N0 and an entire solution (zk) of (1.2) such that zn


k → zk holds for all
k ∈ Z, as 
 → ∞. Solution (zk) is nontrivial because z1 /∈ U . On the other hand, zk ∈ U
holds for all k ≤ 0, so Proposition 4.3 yields that V ±(zk) ≤ N∗± holds for all k ∈ Z.

Finally, Theorem 3.3 (b) ensures that there exists some k′ > 0, so that zk′ ∈ R±. As
yn


σn

+k′ = zn


k′ → zk′ (
 → ∞), we obtain

N = lim

→∞ V ±(yn


σn

+k′) = V ±(zk′) ≤ N∗±

from Proposition 3.2 (b), which is a contradiction that proves our statement.
The proof for the case N < N∗± is analogous. ��

Lemma 4.11 The setMN is closed for all N ∈ 2N0∪{N∗+} (resp. all N ∈ (2N0+1)∪{N∗−}).
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Proof Let (ξn)n≥0 be a sequence inMN for some N ∈ 2N0 ∪ {N∗+} (resp. N ∈ (2N0 + 1) ∪
{N∗−}), such that limn→∞ ξn = ξ for some ξ ∈ A. We claim that ξ ∈ MN .

If ξ = 0, then Lemma 4.10 yields that N = N∗±. By definition of MN∗± , 0 ∈ MN∗± also
holds, so the statement is proved in this particular case.

Assume now that ξ 
= 0. By definition of MN and using ξn ∈ MN , there exist bounded
entire solutions (yn

k ) of (1.2), such that yn
0 = ξn , yn

k ∈ MN and V ±(yn
k ) = N hold for all

n ≥ 0 and k ∈ Z. The compactness of A and a Cantor diagonalization argument leads to
a subsequence (yn
 )
∈N, and a solution (yk)k∈Z of (1.2), so that yn


k → yk holds for every
k ∈ Z, as 
 → ∞.

Necessarily, y0 = ξ holds. This combined with the compactness of A yields that yk ∈
A \ {0} for all k ∈ Z. Applying Theorem 3.3 (b) we obtain integers 
1 < 0 < 
2 such that
y
1 and y
2 are from R±, and that

V ±(y
1) = lim
k→−∞ V ±(yk), and V ±(y
2) = lim

k→∞ V ±(yk) (4.10)

hold. On the other hand, yn



1
→ y
1 and yn



2
→ y
2 hold as 
 → ∞, so Proposition 3.2 (b)

assures that V ±(y
1) = V ±(y
2) = N . This combined with (4.10) yields that V ±(yk) = N
for all k ∈ Z. In case N = N∗±, ξ ∈ MN is readily established. Otherwise, it remains to
prove that 0 /∈ α(y) ∪ ω(ξ). In this case Lemma 4.10 gives an open neighborhood Ũ of 0 in
A, such that yn

k ∈ A \ Ũ holds for all k ∈ Z and n ∈ N0. Hence,

yk ∈ A \ Ũ = A \ Ũ

holds for all k ∈ Z, which leads to α(y) ∪ ω(ξ) ⊆ A \ Ũ . This shows that 0 /∈ α(y) ∪ ω(ξ)

and completes the proof. ��
Now, we are finally in the position to prove our main theorem.

Proof of Theorem 4.1 By definition, the setsMn are pairwise disjoint and invariant. SinceA
is compact, Lemma 4.11 yields that Mn is compact for all possible n.

It remains to prove that these sets fulfill the “Morse properties” (m1) and (m2), i.e. for all
ξ ∈ A and any bounded entire solution (yk)k∈Z for which y0 = ξ holds, there exist i ≥ j
with α(y) ⊆ Mi and ω(ξ) ⊆ M j , and in case i = j , then ξ ∈ Mi (thus, yk ∈ Mi for every
k ∈ Z).

In order to show this, let ξ ∈ A \ {0} be arbitrary (the statement is trivial for ξ = 0), and
(yk)k∈Z be a bounded entire solution of (1.2) for which y0 = ξ holds. Furthermore, define

N := lim
k→∞ V ±(yk) and K := lim

k→−∞ V ±(yk).

Note that from monotonicity of V ± we get that N ≤ K .
First, observe that if N = N∗±, thenω(ξ) ⊆ MN∗± . In order to prove this, choose η ∈ ω(ξ)

arbitrarily. If η = 0, then η ∈ MN∗± holds by definition, thus we may assume now that η 
= 0.
By Lemma 4.7 we obtain that V ±(η) = N∗±. Moreover, by the invariance of ω(ξ) \ {0} there
exists an entire solution (zk) in ω(ξ) \ {0}, such that z0 = η. Thus Lemma 4.7 yields that
V ±(zk) = N∗± for all k ∈ Z, meaning that η ∈ MN∗± holds.

A similar argument can be applied to prove that K = N∗± implies that α(y) ⊆ MN∗±
holds.

We will distinguish four cases in terms of the values of N and K .
Case 1 If N = K = N∗±, then α(y) ∪ ω(ξ) ⊆ MN∗± holds by our previous observation.
Moreover, from the monotonicity of V ± it follows that V ±(yk) ≡ N∗± on Z. This implies
ξ ∈ MN∗± , thus both (m1) and (m2) hold.
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Case 2 N = N∗± < K . As already shown, ω(ξ) ⊆ MN∗± holds in this case.
Moreover, observe that α(y) 
= {0}. Otherwise Proposition 4.3 would imply V ±(yk) ≤

N∗± for k ∈ Z, and thus K ≤ N∗± = N , which is impossible.
Therefore, Lemma 4.9 can be applied to obtain α(y) ⊆ MK , so property (m1) is fulfilled.

Note that (m2) holds automatically, since the twoMorse sets in question, i.e.MN∗± andMK ,
are different.
Case 3 A similar argument applies in the case when N < N∗± = K .
Case 4 If N 
= N∗± 
= K , then Lemma 4.9 yields that either ω(ξ) = {0} or ω(ξ) ⊆ MN .
Similarly, either α(y) = {0} or α(y) ⊆ MK holds. Note that ω(ξ) and α(y) cannot be both
{0} in this case, because then Proposition 4.3 would imply V ±(yk) ≡ N∗± onZ, contradicting
assumption N 
= N∗± 
= K .

If ω(ξ) 
= {0} 
= α(y), then Lemma 4.9 yields that ω(ξ) ⊆ MN and α(y) ⊆ MK hold,
so (m1) is fulfilled. If K = N , then their definition imply that V ±(yk) = N = K for all
k ∈ Z. Since the limit sets are now also assumed to be nontrivial, thus Lemma 4.8 ensures
that 0 /∈ α(y)∪ω(ξ), thus yk ∈ MN also holds for all k ∈ Z. This establishes property (m2).

If ω(ξ) = {0} 
= α(y), then ω(ξ) ⊆ MN∗± holds by definition. Furthermore, Proposi-
tion 4.3 implies that V ±(yk) ≥ N∗± holds for all k ∈ Z, and consequently N∗± < N ≤ K . On
the other hand Lemma 4.9 yields that α(y) ⊆ MK , so (m1) holds. Property (m2) is fulfilled
automatically.

An analogous argument applies for the case when ω(ξ) 
= {0} = α(y). We have taken all
possible cases into consideration, so our proof is complete. ��

5 Applications

Since the existence of a global attractor is assumed in Theorem 4.1, we begin with a condition
for dissipativity:

Lemma 5.1 Suppose A ∈ R
d×d and H : R

d → R
d satisfy:

(i) There exist reals a ∈ (0, 1), K ≥ 1 with
∥∥Ak

∥∥ ≤ K ak for all k ∈ Z+,
(ii) there exist reals β0, β1 ≥ 0 so that ‖H(y)‖ ≤ β0 + β1 ‖y‖ for all y ∈ R

d .

If β1 ∈ [0, 1−a
K ) and R >

Kβ0
1−a−Kβ1

, then BR(0) is an absorbing set for

yk+1 = Ayk + H(yk). (5.1)

Proof Due to the variation of constants formula (cf. [21, p. 100, Theorem 3.1.16(a)]) the
semigroup induced by (5.1) satisfies

φ(k; ξ) := Akξ +
k−1∑
l=0

Ak−l−1H(φ(l; ξ)) for all k ∈ Z+

and our assumptions yield

‖φ(k; ξ)‖ (i)≤ K ak ‖ξ‖ + K
k−1∑
l=0

ak−l−1 ‖H(φ(l; ξ))‖

(i i)≤ K ak ‖ξ‖ + Kβ0

k−1∑
l=0

ak−l−1 + Kβ1

k−1∑
l=0

ak−l−1 ‖φ(l; ξ)‖
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for k ∈ Z+. With the formula for the geometric series in mind, this implies

‖φ(k; ξ)‖
ak

≤ K ‖ξ‖ + Kβ0

1 − a
(a−k − 1) + Kβ1

a

k−1∑
l=0

‖φ(l; ξ)‖
al

for all k ∈ Z+,

using the Grönwall inequality [21, p. 348, Proposition A.2.1(a)] we obtain

‖φ(k; ξ)‖ ≤ K (a + Kβ1)
k ‖ξ‖ + Kβ0

1 − a − Kβ1

(
1 − (a + Kβ1)

k
)

for all k ∈ Z+, and a + Kβ1 ∈ [0, 1) leads to lim supk→∞ ‖φ(t; ξ)‖ ≤ Kβ0
1−a−Kβ1

. ��

5.1 Life Sciences

Applications from the life sciences typically require solutions with values in R+ := [0,∞).
We thus present some dissipative delay-difference equations

xk+1 = f0(xk, xk−d) (5.2)

with C1-right-hand side f0 : R+ × R+ → R+ fitting into our setting. They commonly have
a unique equilibrium x∗ > 0. Hence, the shifted equation

xk+1 = f (xk, xk−d), f (x, y) := f0(x + x∗, y + x∗) − x∗
with f : J × J → J and the closed interval J := [−x∗,∞) possesses the trivial equilibrium.
Under dissipativity conditions on (5.2) we obtain absorbing sets of the form [0, R]d+1 with
R > R0 for some R0 > 0 and consequently global attractors A ⊆ [−x∗, R − x∗]d+1 for
(1.2). For brevity, let us introduce x∗ := (x∗, . . . , x∗) ∈ R

d+1.
In the literature often sufficient conditions for global asymptotic stability of x∗ are given

(cf., for example [11,12]). In this case, only oneMorse setMN∗± is obtained fromTheorem4.1.
Let us consequently list several dissipative difference equations that fulfill the assumptions
of our main theorem, i.e. (H1)–(H3). Violating the conditions for global asymptotic stability
might indicate bifurcations which lead to more complex dynamics and possibly Morse sets.

Throughout, suppose that α ∈ (0, 1), β > 0.

5.1.1 Clark-Type Models

Given a C1-function h : R+ → R+ we denote difference equations

xk+1 = αxk + h(xk−d) (5.3)

asClark’s delayed recruitment models. For such problems with h ∈ C3 it was recently shown
in [8] that even if the Schwarzian

Sh(x) := h′′′(x)

h′(x)
− 3

2

(
h′′(x)

h′(x)

)2

is negative, supercritical Neimark–Sacker bifurcations can occur. Thus, an invariant circle
around the nontrivial equilibrium contributes to A.

For bounded functions h one obtains the following result on dissipativity.

Proposition 5.2 (Dissipativity for (5.3), cf. [20]) If there exists a K + ≥ 0 such that h(x) ≤
K + for all x ∈ R+, then (5.3) is dissipative and A = [0, R] is absorbing for every R > K +

1−α
.

123



924 Journal of Dynamics and Differential Equations (2019) 31:903–932

Table 1 Clark-type models (5.3):
Sufficient conditions for global
asymptotic stability (GAS) of the
equilibrium x∗ > 0 due to [7]
(addressing (5.4)) and [3]
(addressing (5.6) and (5.7))

h x∗ R0 GAS

(5.4) - β
1−α

p ≤ 1

(5.6) for p < 1
(

α+β−1
1−α

)1/p
βη

1+ηp −β1η

αd (1−α)−β1
1 − α < β

(5.6) for p = 1 α+β−1
1−α

β
1−α

1 − α < β

(5.7) W (
β

1−α
)

β
1−α

β
1−α

≤ e

Example 5.3 (Mackey–Glass equation I) Let p > 0. For the Mackey–Glass equation (5.3)
one considers

h(x) = β

1 + x p
(5.4)

and the injectivity condition (1.3) holds. Moreover, Sh(x) < 0 is true on the interval (0,∞).
There exists a unique equilibrium x∗ > 0 and Proposition 5.2 guarantees the absorbing set
specified in Table 1. Global asymptotic stability of x∗ for p ≤ 1 is shown in [7]. Shifting x∗
into the origin yields a right-hand side

f (x, y) = α(x + x∗) + β

1 + (y + x∗)p
− x∗ = αx + β

1 + (y + x∗)p
− (1 − α)x∗

1 + x p∗
,

which satisfies (H1)–(H3) (negative feedback) with a = α, b = − β px p−1∗
(1+x p∗ )2

< 0 and a global

attractorA consisting of entire solutions being uniquely defined in backward time. Note that,
according to [7], for p > 1 and β >

( s
s−1

)1+1/s there exists an α0 > 0 such that a positive
equilibrium of (5.3) is unstable for α ∈ (0, α0] and that there exists a nontrivial, hyperbolic
periodic solution.

Our next example requires some dissipativity criterion which applies even though h is
unbounded.

Proposition 5.4 (Dissipativity for (5.3)) Let β0, β1 ≥ 0 be reals satisfying 0 ≤ β1 ≤
αd(1 − α). If h : R+ → R+ fulfills

h(x) ≤ β0 + β1x for all x ∈ R+, (5.5)

then (5.3) is dissipative and A = [0, R] is absorbing for every R >
β0

αd (1−α)−β1
.

Proof We equip R
d+1 with the max-norm and formulate (5.3) as first order system (5.1) in

R
d+1. Then it is not difficult to see the relations

‖Ak‖ ≤ α−dak for all k ∈ Z+, ‖H(y)‖ ≤ β + β1 ‖y‖ for all y ∈ R
d+1+

with a := α and Lemma 5.1 implies the assertion. ��
Example 5.5 (Mackey–Glass equation II) Let p ∈ (0, 1]. A further difference equation
attributed to Mackey and Glass is of the form (5.3) with

h(x) = βx

1 + x p
(5.6)

and the injectivity condition (1.3) holds. On the one hand, due to [12, Theorem 2] the trivial
solution is globally asymptotically stable forα+β < 1.On the other hand, forα+β > 1 there

123



Journal of Dynamics and Differential Equations (2019) 31:903–932 925

bifurcates a unique positive equilibrium x∗ given in Table 1. As shown in [3, Theorem 4.1(i)],
x∗ is globally asymptotically stable for solutions starting in positive initial values.

• For p < 1 choose β1 ∈ (0, αd(1 − α)) and from h′(y) = β(1+(1−p)y p)

(1+y p)2
→ 0 as y → ∞

there is an η > 0 such that h′(η) = β1. Hence, (5.5) holds with β0 = h(η) − β1η > 0
and Proposition 5.4 yields that [0, R] is absorbing for R >

h(η)−β1η

αd (1−α)−β1
.

• For p = 1 the bounded function y �→ β y
1+y is strictly increasing to β, we derive from

Proposition 5.2 that [0, R] is absorbing for R >
β

1−α
.

The resulting right-hand side f (x, y) = αx + β(y+x∗)
1+(y+x∗)p − βx∗

1+x p∗
fulfills (H1)–(H3) (positive

feedback) and a = α, b = β
1+(1−p)x p∗

(1+x p∗ )2
> 0. Whence, a global attractor A containing the

equilibria −x∗, 0 exists and consists of bounded entire solutions being unique in backward
time.

A series of further sufficient conditions guaranteeing global asymptotic stability of x∗ > 0
is given in [3, Theorem 4.1], which for instance address the situation p > 1.

Example 5.6 (Wazewska–Lasota equation) Let W denote the Lambert-W-function. We inves-
tigate (5.3) with

h(x) = βe−x . (5.7)

Note that (1.3) holds, as well as a negative Schwarzian Sh is available. On the one hand, the
equilibrium x∗ > 0 is globally asymptotically stable for β

1−α
≤ e (cf. [3, Theorem 4.5]). On

the other hand, one observes a subcritical flip bifurcation in the equation xk+1 = αxk +h(xk)

for critical parameters α such that 1+α
1−α

= W (
β

1−α
). Using Proposition 5.2 we obtain a

concrete absorbing set from Table 1, which also lists the unique positive equilibrium x∗ > 0.
The right-hand side

f (x, y) := α(x + x∗) + βe−(xk−d+x∗) − x∗ = αx + (1 − α)W
( β
1−α

)
(e−y − 1)

fulfills (H1)–(H3) (negative feedback) with a = α, b = −βe−x∗ < 0 and a global attractor
A containing unique backward solutions.

Additional conditions for global asymptotic stability of x∗ > 0, depending on the delay
d though, can be found in [3, Theorem 4.5].

5.1.2 Models of Hutchinson-Type

Let F : R+ → (0,∞) be of class C1. Delay-difference equations

xk+1 = xk F(xk−d) (5.8)

are said to be of Hutchinson type

Example 5.7 (Pielou equation) The equation (5.8) with

F(x) = 1

α + βx
(5.9)

is dissipative by [10, Theorem 3.1]. Its unique equilibrium x∗ > 0 is asymptotically sta-
ble for cos dπ

2d+1 > 1−α
2 . A sufficient condition for global asymptotic stability is given in

Table 2. Both above sufficient conditions for asymptotic stability fail for large delays, but
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Table 2 Hutchinson-type models
(5.8): Sufficient conditions for
global asymptotic stability of the
equilibrium x∗ > 0 due to [11,
Proposition 4]

F x∗ GAS

(5.9) 1−α
β

1 − α < 3d+4
2(d+1)2

(5.10) β β < 3d+4
2(d+1)2

when dd

(d+1)d+1 < 1 − α, nontrivial solutions oscillate about x∗ (see [9, pp. 68–69, Theo-
rem 3.4.2(c)]). Furthermore, the shifted equation with

f (x, y) := x + (α − 1)y

1 + β y

fulfills (H1)–(H3) (negative feedback) with a = 1, b = α − 1 < 0 and a global attractor A
containing the equilibria −x∗, 0.

Example 5.8 (Ricker equation) For delayed Ricker equation (5.8) with

F(x) = eβ−x (5.10)

dissipativity was shown in [25, Theorem 3.1] for a more general equation. A sufficient
condition for global asymptotic stability of the nontrivial equilibrium is given in Table 2.
Moreover, the shifted equation with

f (x, y) := (x + β)e−y − β (5.11)

fulfills (H1)–(H3) (negative feedback) with a = 1, b = −β < 0 and a global attractor
A ⊆ [−x∗, R − x∗]d+1 containing the fixed points −x∗, 0.

Example 5.9 (Nonempty Morse sets) Let d = mp for some m, p ∈ N, p ≥ 2. We utilize
the simple observation that x̃ p is a p-periodic solution of equation (1.1) if and only if it is a
p-periodic solution of the corresponding undelayed equation xk+1 = f (xk, xk).

It is well known that the undelayed Ricker equation xk+1 = xkeβ−xk admits a 2-periodic
solution if and only if β > 2, and that this solution oscillates about x∗ = β (see [23,
Proposition 3]). Now, let us fix β > 2. Then there exists (x̃2k )k∈Z, a 2-periodic solution
of (5.10) for any even d . Thus the corresponding first order, d + 1 dimensional equation
(1.2) with (5.11) has a 2-periodic solution (ỹ2k )k∈Z, moreover, from the oscillation of (x̃2k )k∈Z
follows immediately that V −(ỹ2k ) ≡ d +1 holds onZ. In particular, the correspondingMorse
setMd+1 contains a 2-periodic orbit. Note that in this case d + 1 = N∗− holds, meaning that
MN∗− is nontrivial.

Now assume that β > 1 + ln 9 and let d = 3m for some m ∈ N. Then according to [23,
Proposition 5] and the comment subsequent to it, there exists a 3-periodic solution (x̃3k )k∈Z
of xk+1 = xkeβ−xk (by Šarkovs′kiı̆’s Theorem [26], also n-periodic solutions exist for any
n ∈ N). It is easy to see that (x̃3k )k∈Z oscillates about x∗ = β. Then one readily obtains that
the corresponding d + 1 dimensional equation (1.2) with (5.11) has a 3-periodic solution
(ỹ3k )k∈Z, for which V −(ỹ3k ) ≡ 2m + 1 holds on Z, and thus the corresponding Morse set
M2m+1 contains a 3-periodic orbit.

As a consequence, if β > 1 + ln 9 and d = 6n for some n ∈ N, then the Morse set
M6n+1 = MN∗− is nontrivial andM4n+1 is nonempty for the d +1 dimensional Ricker map
(1.2) with (5.11).
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Note that although one can similarly find oscillatory n-periodic solutions for nm + 1
dimensional Ricker maps with β > 1+ ln 9, it is nontrivial to determine the number of sign
changes they have on one period, and therefore it is not clear in which Morse set they are
contained.

The above example is closely related to the topic of the first open problem presented in
Sect. 6.

5.2 Discretizations

We consider the scalar delay-differential equation

ẋ(t) = g(x(t), x(t − r)) (5.12)

with a continuously differentiable right-hand side g : R × R → R and delay r > 0. Its
forward Euler discretization of stepsize r

d , d ∈ N, becomes

xk+1 = f (xk, xk−d), f (ξ, η) := ξ + r
d g(ξ, η) (5.13)

and is of the form (1.1) with J = R.
The Krisztin–Walther equation ẋ(t) = −ax(t) + h(x(t − r)) is a special case with a

C1-function h : R → R satisfying

a 
= h′(0),
{

h((0,∞)) ⊆ (0,∞) and h((−∞, 0)) ⊆ (−∞, 0), or

h((0,∞)) ⊆ (−∞, 0) and h((−∞, 0)) ⊆ (0,∞).

In this situation, the discretization is of Clark-type

xk+1 = (1 − a r
d )xk + r

d h(xk−d), (5.14)

whenever a r
d < 1 holds.

Proposition 5.10 (Dissipativity, cf. [20]) If there exist K −, K + ≥ 0 such that −K − ≤
h(x) ≤ K + for x ∈ R, then (5.14) is dissipative and every A = [R−, R+] with R+ > K +
and R− < −K − is an absorbing set.

As a prototype for equation (5.14) we study the following example.

Example 5.11 Let J = R and α ∈ (0, 1), β ∈ R\{0}. Consider the delay-difference equation
xk+1 = αxk + β tanh(xk−d), (5.15)

which according to [12, Theorem 2] has a globally asymptotically stable trivial solution for
α + |β| < 1. The injectivity condition (1.3) holds and using Proposition 5.10 we see that
[−R, R] is an absorbing set when R >

|β|
1−α

and the backward solutions on the global attractor
of (5.15) are unique. One has positive feedback for β > 0, negative feedback for β < 0 and
it is

a = α, b = β.

In case β
1−α

∈ (0, 1] there exists the unique fixed point 0, while for β
1−α

> 1 a symmetric
pair of fixed points x− < 0 < x+ bifurcates. In the positive feedback case, note that shifting
(5.15) into one of the nontrivial equilibria x± might yield another Morse decomposition.

As a closing remark we point out that the existence of the global attractor for (5.3) (and
therefore for Examples 5.4, 5.7 and 5.11), as well as for Examples 5.9 and 5.10 follows also
from [5, Theorem 3.1].
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6 Perspectives

We conclude this paper with raising some open questions and indicating possible future
research directions:

• Which Morse sets are nonempty? First note that the Morse set MN∗± is obviously
nonempty, as the trivial solution is contained in it. In Example 5.9 we showed one pos-
sible method which can provide nonempty Morse sets different from MN∗± . However it
seems a challenging problem whether it can be shown (maybe under further assumptions
on (1.1)) that Mn 
= ∅ holds for all n < N∗±, as it was proved by Mallet-Paret in the
continuous time case with negative feedback [15].

• Using a generalization of Huszár’s Lemma 2.1 by Egerváry [2], there is hope that similar
results can be shown for delay-difference equations

xk+1 = f (xk−m, xk−d),

with coprime m + 1, d + 1.
• It would be interesting to obtain a Morse decomposition in the general setting of [17]

and in particular for tridiagonal equations.
• Finally, what can be said in the nonautonomous case?
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Appendix A: Proofs for Positive Feedback

Proof of Proposition 3.2 First note that there exists n0 ∈ N such that for n > n0, yn( j) has
the same sign as y( j), where j ∈ {0, . . . , d} is an index for which y( j) 
= 0. Moreover, from
y ∈ R+ it follows that for j ∈ {1, . . . , d − 1} with y( j) = 0,

sgn y( j − 1) = sgn yn( j − 1) = − sgn y( j + 1) = − sgn yn( j + 1) 
= 0

and

sc(y( j − 1), y( j), y( j + 1)) = sc(yn( j − 1), yn( j), yn( j + 1)) = 1

holds for all n > n0. This in turn yields that for n > n0 and 0 ≤ i < j ≤ d such that
y(i) 
= 0 
= y( j) one has

sc(y(i), y(i + 1), . . . , y( j)) = sc(yn(i), yn(i + 1), . . . , yn( j)), (A.1)

which in particular means that sc yn = sc y and thus also V +(y) = V +(yn) hold whenever
y(0) 
= 0 
= y(d).

Since y ∈ R+ excludes the possibility of y(0) and y(d) both being 0 at once, there remains
the case when exactly one of them is 0. We may assume y(d) = 0 (the case y(0) = 0 is
analogous). Again, by regularity of y we have that y(0)y(d − 1) < 0, which together with
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(A.1) yields that on the one hand

sc(y(0), y(1), . . . , y(d − 1)) = sc(yn(0), yn(1), . . . , yn(d − 1))

holds for n > n0 and on the other hand this number is odd, say 2m + 1. It is now clear that
sc y = 2m + 1 ≤ sc yn ≤ 2m + 2 and therefore V +(y) = V +(yn) holds for all n > n0,
which completes the proof. ��
Proof of Theorem 3.3 (a) Since the last d components of yk ∈ R

d+1∗ are the same as the first
d coordinates of yk+1, clearly sc yk+1 ≤ sc yk + 1 holds. Assuming now to the contrary
that V +(yk+1) > V +(yk) holds for some k implies that sc yk+1 = sc yk + 1 and sc yk

is even. The former combined with ak > 0 yields yk(0) 
= 0 and the evenness of sc yk

implies that the last nonzero coordinate of yk (say yk( j), 0 ≤ j ≤ d) has the same
sign as yk(0). We may assume w.l.o.g. that they are both positive (the negative case is
analogous). In particular this implies yk(d) ≥ 0. Using now the positivity of both ak and
bk one obtains readily from (3.3) that yk+1(d) = ak yk(d) + bk yk(0) is also positive. All
these together give

sc yk+1 = sc
(
yk+1(0), yk+1(1), . . . , yk+1(d − 1), yk+1(d)

)

= sc
(
yk(1), yk(2), . . . , yk(d), yk+1(d)

) ≤ sc yk,

where the last inequality is due to sgn yk( j) = sgn yk+1(d). This is a contradiction,
which proves statement (a).

(b) Before proving the statement, we need to introduce some auxiliary notions. Let us say
that a component y( j) (0 ≤ j ≤ d) of a vector y ∈ R

d+1 is irregular if y( j) = 0, and
y( j −1)y( j +1) ≥ 0, where y(−1) := y(d) and y(d+1) := y(0). Using this terminology,
y ∈ R+ (i.e. y is regular) holds if and only if y has no irregular component. Furthermore,
we call a vector (y(i), . . . , y( j)) with 0 ≤ i ≤ j ≤ d an irregular block (of zeros) in
y ∈ R

d+1, if y(i) = · · · = y( j) = 0, and moreover it has maximal length in the sense
that either i = 0 or i ≥ 1 and y(i − 1) 
= 0 hold, and similarly either j = d or j < d
and y( j + 1) 
= 0 hold. The dimension of the block will be regarded as the length of it.
Note also that consecutive zero components are irregular by definition.
The proof of statement (b) consists of several, yet elementary, steps.
From now on we shall always assume that V +(yk) = V +(yk+4d+2), which implies, in

the light of statement (a), that V +(yk) = V +(yk+
) holds for all 0 ≤ 
 ≤ 4d + 2.
(I) If for some k, yk+1( j) = 0 is irregular (0 ≤ j < d), then so is yk( j + 1) = 0 irregular.

This is trivial in case 1 ≤ j ≤ d − 2.
If yk+1(d − 1) = 0 is an irregular component (i.e. yk+1(d − 1) = 0 and

yk+1(d − 2)yk+1(d) ≥ 0), then on the one hand yk(d) = 0 holds and on the other hand,
bk > 0 yields that sgn yk+1(d) = sgn yk(0). Combining this with yk(d − 1) = yk+1(d − 2)
yields that sgn(yk(d − 1)yk(0)) = sgn(yk+1(d − 2)yk+1(d)), meaning that yk(d) is also
irregular in yk .

For the case when yk+1(0) = 0 is irregular, assume to the contrary that yk(1) = 0 is
regular, i.e. yk(0)yk(2) < 0. W.l.o.g. we may assume yk(0) < 0 < yk(2). Irregularity of
yk+1(0) combined with yk+1(1) = yk(2) > 0 yields yk+1(d) ≥ 0. Now, from ak > 0 and
bk > 0 it follows that yk(d) > 0. These all together imply that sc yk is an odd number,
moreover sc yk = sc yk+1 + 1, which gives V +(yk) = V +(yk+1) + 2, a contradiction.
(II) If yk+1(d) = 0, then there are two possibilities. Either yk(0) = yk(d) = 0, or
yk(0)yk(d) < 0. Assume now that the latter holds and let 0 ≤ j < d be the smallest integer
such that yk( j + 1) 
= 0. As yk(0)yk(d) < 0, hence sc yk is odd, so V +(yk) = V +(yk+1)

holds only if sgn yk( j + 1) = sgn yk(0), which in turn yields also
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sgn yk( j + 1) = − sgn yk(d) = − sgn yk+1(d − 1) 
= 0. (A.2)

If in addition yk+1(d) = 0 is irregular, then 0 ≤ yk+1(0)yk+1(d − 1) = yk(1)yk(d) holds,
which in the light of (A.2) yields that j 
= 0, or what is equivalent, yk(1) = 0.

To sum up, if yk+1(d) = 0 is irregular, then either yk(0) = yk(d) = 0 or there exists some
1 ≤ j ≤ d − 2, such that

yk(0) 
= 0,

yk(1) = · · · = yk( j) = 0,

yk( j + 1) 
= 0,

yk(d) 
= 0,

sgn yk(0) = sgn yk( j + 1) = − sgn yk(d)

(A.3)

hold, which in particular means that yk(0) is followed by an irregular block of zeros of length
j ≥ 1.
(III)As a result of the first two steps, if yk ∈ R+ and V +(yk) = V +(yk+1), then yk+1 ∈ R+.
Therefore, in order to prove the statement, it is sufficient to show that there exists 0 ≤ 
 ≤
4d + 2 such that yk+
 ∈ R+.

Steps (IV)–(VI) are identical to the corresponding ones presented for negative feedback
and the same argument shows that yk+4d+2 ∈ R+. ��

Proof of Theorem 4.2 The eigenvalues of (4.1) are precisely the solutions of the characteristic
equation (2.2). If M∗ is equal to 0 or d +1, then the statement is trivial. Otherwise, according
to Lemma 2.1, M∗ is an odd number, say M∗ = 2n′ + 1, where 0 ≤ n′ ≤ d−1

2 .
We use the notations and ordering for eigenvalues introduced in Lemma 2.1.

For a non-real eigenvalue λ j = r j eiϕ j ∈ S+
j (with ϕ j ∈ (0, π), j ∈ N, j < d+1

2 ) any
linear combination of the real eigensolutions corresponding to λ j can be written in the form
c j z j , where c j ∈ R and

z j,k =

⎛
⎜⎜⎜⎜⎜⎝

z j,k(0)
z j,k(1)

...

z j,k(d − 1)
z j,k(d)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

rk
j sin(kϕ j + ω j )

rk+1
j sin((k + 1)ϕ j + ω j )

...

rk+d−1
j sin((k + d − 1)ϕ j + ω j )

rk+d
j sin((k + d)ϕ j + ω j )

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.4)

with some ω j ∈ [0, 2π). From ϕ j ∈ (0, π) it is clear that sc z j,k equals the num-
ber of sign changes the sine function has on interval (kϕ j + ω j , (k + d)ϕ j + ω j ).
According to the definition of the sector S+

j , the length of this interval is dϕ j ∈ ((2 j −
1)π, d

d+12 jπ). Now, from the definition of V + we obtain that V +(z j,k) = 2 j for all k ∈ Z−.
As for the eigensolutions corresponding to real eigenvalues, any eigensolution correspond-

ing to the leading positive eigenvalue r0 := λ+ > 0 can be written in the form c0z0, where
c0 ∈ R and z0,k( j) = rk+ j

0 for all k ∈ Z− and j ∈ Z+, j ≤ d . Clearly, every component
of z0,k has the same sign for any k ∈ Z− and in particular V +(z0,k) = 0 for all k ∈ Z−.
Similarly, if d is odd, say d = 2
 − 1 for some 
 ∈ N, then any eigensolution corresponding
to the unique negative eigenvalue −r
 := λ− < 0 can be written in the form c
z
, where
c
 ∈ R and z
,k( j) = (−r
)

k+ j for all k ∈ Z− and j ∈ Z+, j ≤ d . Obviously sc z
,k = d
and therefore also V +(z
,k) = d + 1 = 2
 hold for all k ∈ Z−. According to Lemma 2.1
there are no other real eigenvalues.
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First, let us consider the hyperbolic case. Assume that M∗ = 2n′ + 1 for some integer
0 ≤ n′ ≤ d−1

2 . Then N∗+ = M∗ = 2n′ + 1. Let y be an arbitrary solution of (4.2) which is
bounded in backward time. This means that there exist an integer 0 ≤ n ≤ n′ and appropriate
constants c0, c j ∈ R and ω j ∈ [0, 2π) for j = 1, . . . , n with cn 
= 0, such that

y =
n∑

j=0

c j z j .

We will show that V +(yk) ≤ V +(zn,k) = 2n < 2n′ + 1 = N∗+ holds for all k ≤ k1,
where k1 is to be defined soon. Then by monotonicity of V + (proved in Theorem 3.3) we get
statement (a).

Case n = 0 is trivial, thus we may assume n ≥ 1. From Lemma 2.1 one can easily obtain
that there exists ϑn > 0, sufficiently small, such that

ϑn < min
{π − ϕn

2
,
ϕn

2

}
(A.5)

dϕn + 2ϑn < 2nπ and (A.6)

(2n − 1)π < dϕn − 2ϑn (A.7)

hold. Moreover, by the same lemma we have |rn | < |r j | for any 0 ≤ j < n, so we may
choose k0 < 0 so small that

nrk
n−1 max

0≤ j≤n−1
|c j | < |cn |rk

n sin ϑn (A.8)

holds for all k ≤ k0. Let k1 = k0 − d .
For simplicity, let us say that the 
-th component of zn,k , i.e. zn,k(
) = rk

n sin((k +

)ϕn + ωn) is small if | sin((k + 
)ϕn + ωn)| ≤ sin ϑn , otherwise the component will be
said to be big. Inequality (A.8) yields that if zn,k(
) is big for some 
 = 0, 1, . . . , d , then
sgn yk(
) = sgn zn,k(
) 
= 0 holds for all k ≤ k1. Note that inequality (A.5) guarantees that
there is no k ≤ k1 and component 0 ≤ 
 < d such that zn,k(
) and zn,k(
 + 1) are both
small. Similarly, (A.6)–(A.7) imply that zn,k(0) and zn,k(d) cannot be small at the same time.
Moreover, by (A.5) one obtains that if zn,k(
) is small for some k ≤ k1 and 
 ∈ {1, . . . , d−1},
then sgn zn,k(
 − 1) = − sgn zn,k(
 + 1).

All these together mean that, if k ≤ k1 and zn,k(0) and zn,k(d) are both big, sc yk = sc zn,k

holds, and V +(yk) = V +(zn,k) = 2n < N∗+ follows.
There remains the case, when exactly one of zn,k(0) and zn,k(d) is small. W.l.o.g. we

assume that zn,k(d) is small, zn,k(0) is big and positive. Then, as zn,k(d − 1) is also big,
sc(yk(0), . . . , yk(d − 1)) = sc(zn,k(0), . . . , zn,k(d − 1)) follows. Thus either V +(yk) ≤
V +(zn,k)holds or sc yk = sc zn,k+1 is odd.We show that the latter case leads to contradiction.
Should it hold, then yk(0), yk(d − 1), zn,k(0) and zn,k(d − 1) would be all positive, while
yk(d) < 0 and zn,k(d) ≥ 0. Now, since zn,k(d) ≥ 0 is small, ((k + d)ϕn + ωn) ∈ [0, ϑn) ∪
(π − ϑn, π] mod 2π holds. On the other hand, from zn,k(d − 1) > 0 and (A.5) it follows
that ((k + d)ϕn +ωn) ∈ (π −ϑn, π ] mod 2π , which implies by inequalities (A.6) and (A.7)
that zn,k(0) < 0. This is a contradiction, so our proof is complete for the hyperbolic case.

If the origin is non-hyperbolic, and M∗ ≥ 1, then N∗+ = M∗ + 1. Keeping our notations
from above, there is a pair of eigenvalues λn′+1, λn′+1 on the unit circle, or −1 is a simple
eigenvalue (if d is odd and M∗ = d). In the latter case, statement (a) of the lemma is trivial.
In the former case all solutions of (4.2) that are bounded in backward time can be written
in the form y = ∑n

j=0 c j z j , where n ≤ n′ + 1, c j ∈ R, cn 
= 0, and z j are of the form
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(A.4). Now, the same argument presented in the hyperbolic case can be applied to prove that
V +(yk) = 2n ≤ 2n′ + 2 = N∗+ for all k ∈ Z−. ��
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