
J Dyn Diff Equat (2020) 32:163–179
https://doi.org/10.1007/s10884-018-9681-z

An Explicit Periodic Solution of a Delay Differential
Equation

Yukihiko Nakata1

Received: 6 February 2018 / Revised: 28 May 2018 / Published online: 11 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper we prove that the following delay differential equation

d

dt
x(t) = r x(t)

(
1 −

∫ 1

0
x(t − s)ds

)
,

has a periodic solution of period two for r > π2

2 (when the steady state, x = 1, is unstable).
In order to find the periodic solution, we study an integrable system of ordinary differential
equations, following the idea by Kaplan and Yorke (J Math Anal Appl 48:317–324, 1974).
The periodic solution is expressed in terms of the Jacobi elliptic functions.

Keywords Delay differential equations · Periodic solution · Hopf bifurcation · Integrable
ordinary differential equations · Jacobi elliptic functions

1 Introduction

The delay differential equation

d

dt
z(t) = f (z(t − 1)) , (1.1)

where f : R → R is a continuous function, has been extensively studied in the literature. For
a special case, f (z) = r (1 − ez) , r > 0, the Eq. (1.1) is referred to as Wright’s equation,
named after the paper [35]. Jones investigated the existence of a periodic solution ofWright’s
equation in [13,14] by the fixed-point theorem. Nussbaum then established a general fixed-
point theoremand study the existence of periodic solutions for a class of functional differential
equations in [21,22]. See also [12,19,31] and references therein for the recent progress by a
computer assisted approach.
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Assuming that f is an odd function, in the paper [15], Kaplan and Yorke constructed
a periodic solution of the equation (1.1) via a Hamiltonian system of ordinary differential
equations. The idea is used to investigate a periodic solution of the equation (1.1) with a
particular nonlinear function f in [6] and for a systemof differential equationswith distributed
delay in [1]. We refer the readers to the survey paper [34] and the references therein. See also
Chapter XV of [5]. In this paper we follow the approach by Kaplan and Yorke [15]: we find
a periodic solution of a differential equation with distributed delay, considering a system of
ordinary differential equations.

The followingmathematicalmodel for a single species population is knownas theHutchin-
son equation and as a delayed logistic equation

d

dt
x(t) = r x(t) (1 − x (t − 1)) . (1.2)

The Eq. (1.2) can be derived from Wright’s equation by the transformation z(t) = ln x(t).
Many extensions of the Hutchinson equation (1.2) have been investigated, see [7,9,28] and
references therein. Nevertheless, the Hutchinson–Wright equation still poses mathematical
challenges [12,31].

In this paperwe study the existence of a periodic solution of the following delay differential
equation

d

dt
x(t) = r x(t)

(
1 −

∫ 1

0
x(t − s)ds

)
, (1.3)

where r is a positive parameter, r > 0. The delay differential equation (1.3) can be seen as
a variant of the Hutchinson–Wright equation (1.2). The author’s motivation to study (1.3) is
that the equation appears as a limiting case of an infectious disease model with temporary
immunity (see “Appendix B”). For the equation (1.3), the existence of periodic solutions does
not seem to be well understood. The periodicity, which may explain the recurrent disease
dynamics, is a trigger of this study. Differently from the discrete delay case, the distributed
delay is an obstacle, when one tries to construct a suitable Poincare map to find a periodic
solution, but see [16,32,33]. We also refer the readers to [7,27,28] and references therein for
studies of logistic equations with distributed delay.

In this paper we prove the following theorem.

Theorem 1 Let r > π2

2 . Then the delay differential equation (1.3) has a nontrivial periodic
solution of period 2, i.e., x(t) = x(t − 2), t ∈ R, satisfying

x(t)x(t − 1) = Const,
∫ 2

0
x(t − s)ds = 2

for any t ∈ R.

The existence of the periodic solution is proven, solving a corresponding ordinary dif-
ferential equation, which turns out to be equivalent to the Duffing equation. The periodic

solution, explicitly expressed in terms of the Jacobi elliptic functions, appears at r = π2

2 , as
the positive equilibrium (x = 1) loses stability via Hopf bifurcation.

This paper is organized as follows. In Sect. 2, we first study stability of the positive equi-
librium, applying the principle of linearized stability. We then derive a system of ordinary
differential equations (2.5) that generates the solution of period 2 of the original delay differ-
ential equation (1.3). In Sect. 3, the system of ordinary differential equations (2.5) is reduced
to a scalar differential equation (3.4) that turns out to be the Duffing equation. The equation
is explicitly solved using the Jacobi elliptic functions. In Sect. 4, we consider an Eq. (4.7) to
find a parameter such that the period of the solution becomes two.
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2 Preliminary

For the delay differential equation (1.3) the natural phase space is C ([−1, 0] ,R) equipped
with the supremum norm [5,10]. For (1.3) we consider the following initial condition

x(θ) = φ (θ) , θ ∈ [−1, 0] ,

where φ ∈ C ([−1, 0] ,R) with φ(0) > 0. We are interested in the positive solution.
For the Eq. (1.3) it is easy to see that x = 1 is the unique positive equilibrium. We have

the following result for stability of the positive equilibrium (see also Theorem 4.1 of [24]).

Proposition 2 The positive equilibrium x = 1 for the Eq. (1.3) is asymptotically stable for

0 < r < π2

2 and it is unstable for r > π2

2 . Hopf bifurcation occurs at r = π2

2 and a periodic
solution appears.

Proof We deduce the following characteristic equation [5,10]

λ = −r
∫ 1

0
e−λsds, λ ∈ C. (2.1)

Let λ = μ + iω, (μ, ω ∈ R) to obtain the following two equations

μ = −r
∫ 1

0
e−μs cos (ωs) ds, (2.2a)

ω = r
∫ 1

0
e−μs sin (ωs) ds. (2.2b)

First one sees that if Reλ > 0 then

|λ| =
√

μ2 + ω2 ≤ r (2.3)

Assume that there is a root in the right half complex plane (i.e., μ > 0) for sufficiently
small r > 0. One sees

∫ 1
0 e−μs cos (ωs) ds > 0 from the estimation (2.3), thus, if r > 0 is

sufficiently small, from (2.2a) all roots of the characteristic equation (2.1) are in the left half
complex plane.

Suppose now that for some r > 0 purely imaginary roots exist. Substituting μ = 0 into
the Eq. (2.2a), one sees that for r = 1

2 ((2n + 1) π)2 the characteristic equation (2.1) has
purely imaginary roots λ = ±iω = ±i (2n + 1) π for n = 0, 1, 2, . . . .. We show that, for
n = 0, 1, 2, . . . , the purely imaginary roots λ = ±i (2n + 1) π cross the imaginary axis
transversally from left to right as r increases in the neighborhood of r = 1

2 ((2n + 1) π)2.
Applying the implicit function theorem to the equation (2.1), one has

λ′(r)
(
1 − r

∫ 1

0
se−λsds

)
+

∫ 1

0
e−λsds = 0.

One sees that ∫ 1

0
se−λsds = −e−λ

λ
+ 1

λ

∫ 1

0
e−λsds = −e−λ

λ
− 1

r
,

∫ 1

0
e−λsds = −λ

r
.
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Therefore, at r = 1
2 ((2n + 1) π)2 and λ = iω = i (2n + 1) π , it follows that

λ′ (r)
∣∣∣r= 1

2 ((2n+1)π)2
= i ω

r

1 + 1 + i r
ω

�⇒ Reλ′(r)
∣∣∣r= 1

2 ((2n+1)π)2
= 1

4 + ( r
ω

)2 > 0.

From theHopf bifurcation theorem (see Theorem 6.1 in [29]; see also Theorem 2.7 of Chapter
X of [5]), we obtain the conclusion. �	

Thus a periodic solution of period 2 emerges at r = π2

2 and the positive equilibrium is

unstable for r > π2

2 .
Observe that, defining

y(t) =
∫ 1

0
x(t − s)ds − 1, t ≥ 0,

the delay differential equation (1.3) is equivalent to the following system of delay differential
equations

d

dt
x(t) = −r x(t)y(t), (2.4a)

d

dt
y(t) = x(t) − x(t − 1) (2.4b)

with the following initial condition

x(θ) = φ (θ) , θ ∈ [−1, 0] ,

y(0) =
∫ 1

0
φ(−s)ds − 1.

Assume that for (1.3) there exists a periodic solution of period 2. Denote by x∗(t) the
periodic solution, i.e., x∗(t) = x∗(t − 2). Then we let

x1(t) = x∗(t), y1(t) =
∫ 1

0
x∗(t − s)ds − 1,

x2(t) = x∗ (t − 1) , y2(t) =
∫ 2

1
x∗(t − s)ds − 1.

Weare interested in the positive periodic solution. The periodic solution satisfies the following
system of ordinary differential equations

d

dt
x1(t) = −r x1(t)y1(t), (2.5a)

d

dt
y1(t) = x1(t) − x2(t), (2.5b)

d

dt
x2(t) = −r x2(t)y2(t), (2.5c)

d

dt
y2(t) = x2(t) − x1(t). (2.5d)

The initial condition is

x1(0) = a > 0, x2(0) = b > 0, (2.6a)

y1 (0) = y2 (0) = 0, (2.6b)
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where a and b will be determined later (a = x∗(0) = x∗(2), b = x∗(−1) = x∗(1)) in
Sect. 4, so that x1(t) = x1(t + 2) holds.

From (2.5) one sees that

y1(t) + y2(t) = 0, (2.7a)

x1(t)x2(t) = ab (2.7b)

hold for any t ≥ 0 . Thus one sees that the periodic solution satisfies the following properties
∫ 2

0
x∗(t − s)ds = 2, x∗(t)x∗(t − 1) = Const, t ∈ R. (2.8)

3 Integrable Ordinary Differential Equations

The system (2.5) with (2.7) is reduced to the following system of ordinary differential equa-
tions

d

dt
x(t) = −r x(t)y(t), (3.1a)

d

dt
y(t) = x(t) − ab

1

x(t)
, (3.1b)

dropping the indices from x1 and y1 (cf. (2.4)). The initial condition of (3.1) is

x(0) = a, (3.2a)

y (0) = 0 (3.2b)

(see (2.6)). We see that the system (3.1) has a conservative quantity.

Proposition 3 It holds that

x(t) + ab
1

x(t)
+ r

2
y2(t) = a + b, t ∈ R (3.3)

for the solution of the equation (3.1) with the initial condition (3.2).

Proof Differentiating the left hand side of (3.3), we obtain

d

dt

(
x(t) + ab

1

x(t)
+ r

2
y2(t)

)

=
(
1 − ab

1

x2(t)

)
x ′(t) + ry(t)y′(t)

=
(
1 − ab

1

x2(t)

)
(−r x(t)y(t)) + ry(t)

(
x(t) − ab

1

x(t)

)

= 0.

From (3.2), it then follows that

x(t) + ab
1

x(t)
+ r

2
y2(t) = x(0) + ab

1

x(0)
+ r

2
y2(0) = a + b

for t ∈ R. �	
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Differentiating the both sides of the Eq. (3.1b), we obtain

d2

dt2
y(t) = −

(
1 + ab

1

x2(t)

)
r x(t)y(t)

= −ry(t)

(
x(t) + ab

1

x(t)

)
.

Using the identity (3.3) in Proposition 3, we derive the Duffing equation:

d2

dt2
y(t) = −ry(t)

(
a + b − r

2
y2(t)

)
(3.4)

with the following initial condition

y(0) = 0, (3.5a)

d

dt
y(0) = x(0) − ab

1

x(0)
= a − b. (3.5b)

Denote by sn the Jacobi elliptic sine function [3,20]. It is known that the solution of the
Duffing equation (3.4) is given by

y(t) = αsn(βt, k), (3.6)

where α, β and k are functions of a and b defined by

α(a, b) =
√
2

r

(√
a − √

b
)

, β(a, b) =
√
r

2

(√
a + √

b
)

, (3.7)

k(a, b) =
√
a − √

b√
a + √

b
, (3.8)

In “Appendix A”, we give a brief introduction of the Jacobi elliptic functions and derivation
of the solution (3.6). See also e.g. Chapter 4 in [18] and Chapter 2 in [26]. To simplify the
notation, we occasionally drop (a, b) from α, β and k.

We then obtain the explicit solution of the system (3.1) with the initial condition (3.2).

Proposition 4 The solution of the equations (3.1) with the initial condition (3.2) is expressed
as

x(t) = a

(
1 − k

dn(βt, k) − kcn(βt, k)

)2

= a

(
dn(βt, k) + kcn(βt, k)

1 + k

)2

, (3.9)

y(t) = αsn(βt, k), (3.10)

where α, β and k are defined in (3.7) and (3.8).

Proof Since (3.10) is given in (3.6), we show the equality in (3.9), integrating the equation
(3.1a). We get

x(t) = ae−r
∫ t
0 y(s)ds .
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Using (3.10) we compute

r
∫ t

0
y(s)ds = rα

∫ t

0
sn(βu, k)du

= rα

βk
[ln (dn(s, k) − kcn(s, k))]βt0

= rα

βk
ln

(
dn(βt, k) − kcn(βt, k)

1 − k

)
.

Note that rα
βk = 2 holds from the Definitions in (3.7) and (3.8). We then get

r
∫ t

0
y(s)ds = 2 ln

(
dn(βt, k) − kcn(βt, k)

1 − k

)
,

from which the first equality in (3.9) follows.
Using the properties of the elliptic functions, it holds that

(dn − kcn) (dn + kcn) = dn2 − k2cn2 = 1 − k2.

Therefore, we obtain the following equality

(
1 − k

dn(βt, k) − kcn(βt, k)

)2

=
(
dn(βt, k) + kcn(βt, k)

1 + k

)2

.

�	

4 Periodic Solution of Period 2

In this section we will determine a, the initial value for the x component of the system
(3.1), so that, for the solution given in Proposition 4, the period is 2 and the integral constant
becomes −1. The periodic solution finally solves the delay differential equation (1.3).

Let us introduce the complete elliptic integrals of the first kind and of the second kind
[3,20]. Those are respectively given as

K (k) =
∫ π

2

0

1√
1 − k2 sin2 θ

dθ,

E(k) =
∫ π

2

0

√
1 − k2 sin2 θdθ

for 0 ≤ k < 1. The Jacobi elliptic functions sn and cn are periodic functions with period
4K (k), i.e.,

sn (t, k) = sn (t + 4K (k) , k) , cn (t, k) = cn (t + 4K (k) , k) , t ∈ R

and dn is periodic with period 2K (k). See also “Appendix A”.
In the following theorem we derive two conditions so that the period of the solution given

in Proposition 4 is two.
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Theorem 5 Assume that the following two conditions hold√
r

2

(√
a + √

b
)

= 2K (k), (4.1)

(√
a + √

b
) √

2

r
E(k) − √

ab = 1. (4.2)

Then, for the solution of the equation (3.1) with the initial condition (3.2), it holds that

(x(t), y (t)) = (x(t + 2), y(t + 2)) (4.3)

and that

y(t) =
∫ t

t−1
x(s)ds − 1 (4.4)

for any t ∈ R.

Proof From (4.1), we have 2β = 4K (k). Since the Jacobi elliptic functions, sn, cn and dn
are periodic with period 4K (k), one has

sn (βt, k) = sn(β (t + 2) , k),

cn (βt, k) = cn(β (t + 2) , k),

dn (βt, k) = dn(β (t + 2) , k).

Then it is easy to see that (4.3) follows from (3.9) and (3.10). Next we show that (4.4) holds.
From the symmetry of the Jacobi elliptic functions, we have

cn (β (t − 1) , k) = −cn(βt, k),

dn (β (t − 1) , k) = dn(βt, k).

Thus from (3.9) we obtain

x(t − 1) = a

(
dn(β (t − 1) , k) + kcn(β (t − 1) , k)

1 + k

)2

= a

(
dn (βt, k) − kcn (βt, k)

1 + k

)2

and x(t)x(t − 1) = a2
(
1−k
1+k

)2 = ab follows. Then from (3.1b), for the solution of the

equation (3.1), we have the following equality

d

dt
y(t) = x(t) − x(t − 1),

implying that

y(t) =
∫ 1

0
x(t − s)ds + const. (4.5)

From (4.1) (i.e., 2β = 4K (k)) and (3.10) we have

y(0) = y(1) = 0.

Now we show that ∫ 1

0
x(t)dt =

(√
a + √

b
) √

r

2
E(k) − √

ab. (4.6)

Using the properties of the Jacobi elliptic functions [3], we compute

(dn + kcn)2 = dn2 + 2kdncn + k2cn2 = k2 − 1 + 2dn2 + 2kdncn.
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From the following computations
∫ 1

0
dn2(βt, k)dt = 1

β

∫ 2K (k)

0
dn2(u, k)dt = 2

β
E(k),

∫ 1

0
dn(βt, k)cn(βt, k)dt = 0,

one sees that
∫ 1

0
x(t)dt = a

k2 − 1 + 4
β
E(k)

(1 + k)2

by (3.9). Then we obtain (4.6) from (3.7) and (3.8). from the condition (4.2) the integral
constant in (4.5) becomes −1, for the solution of the equation (3.1). �	

The conditions (4.1) and (4.2) ensure the existence of a periodic solution of period 2 for
the system of ordinary differential equations (3.1), satisfying (4.4). The periodic solution
obtained in Theorem 5 is also a periodic solution of the delay differential equation (1.3). Our
remaining task is to interpret the conditions (4.1) and (4.2) in terms of the parameter r in the
equation (1.3).

Eliminating a and b from the conditions (4.1) and (4.2), we obtain the following equality

r = L(k), 0 ≤ k < 1, (4.7)

where

L(k) := 2K (k)
(
2E(k) − K (k)

(
1 − k2

))
.

For the derivation of (4.7), see the proof of Proposition 7 below. Now we show that the
equation (4.7) has a unique root.

Lemma 6 The function L is a strictly increasing function with

L(0) = π2

2
< lim

k→1−0
L(k) = ∞.

Proof From the definition of L , it is easy to see L(0) = π2

2 . By the straightforward calcula-
tion, we obtain

d

dk

(
2E(k) − K (k)

(
1 − k2

))

= 2

k
(E (k) − K (k)) − 1

k

(
E (k) − (

1 − k2
)
K (k)

) + 2kK (k)

= 1

k

(
E (k) − (

1 − k2
)
K (k)

)
= (

1 − k2
)
K ′ (k)

> 0,

noting that

K ′(k) = 1

k

(
E(k)

1 − k2
− K (k)

)
.

E ′(k) = 1

k
(E(k) − K (k)) ,
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see e.g. P. 282 of [3]. Since it can be shown that

lim
k→1−0

K (k)(1 − k2) = lim
k→1−0

∫ π
2

0

1 − k2√
1 − k2 sin2 θ

dθ = 0,

L is a strictly increasing function with limk→1−0 L(k) = ∞. �	
Then, a and b are determined by the following proposition.

Proposition 7 There exist a > 0 and b > 0 such that the two conditions (4.1) and (4.2) in

Theorem 5 hold if and only if r > π2

2 . In particular, a and b are given as
[
a
b

]
= K (k)

2E(k) − K (k)
(
1 − k2

)
[

(1 + k)2

(1 − k)2

]
= 2K (k)2

r

[
(1 + k)2

(1 − k)2

]
, (4.8)

where k = L−1(r), r > π2

2 .

Proof Consider a > 0 and b > 0 for the two equations (4.1) and (4.2). From the definition
of k in (3.8) we have √

b = 1 − k

1 + k

√
a. (4.9)

thus the two conditions (4.1) and (4.2) are expressed in terms of a and k, namely

√
a = K (k) (1 + k)

√
2

r
. (4.10)

Substituting (4.10) to (4.2), we arrive at the following equation

L(k) = r, 0 ≤ k < 1.

From Lemma 6, for r > π2

2 , we can find k = L−1 (r) > 0. From (4.9) and (4.10), a and b
can be computed as in (4.8). �	

Finally we obtain the following theorem.

Theorem 8 Let r > π2

2 . Then the delay differential equation (1.3) has a periodic solution
of period 2. The periodic solution is expressed as in (3.9), where a and b are determined in
Proposition 7.

Denote by x∗(t) the periodic solution of (1.3) with x∗(0) = a, which satisfies (2.8). It is
easy to see that

max
t∈[−1,1]

x∗(t) = x∗(0) = a, min
t∈[−1,1]

x∗(t) = x∗(−1) = x∗(1) = b.

Thus from (2.8) one sees that x∗(t)x∗(t −1) = ab for t ∈ R. From (4.8) it can be shown that
limr→∞ (a, b) = (∞, 0), thus the amplitude of the periodic solution tends to ∞ as r → ∞.
We also note that

lim
r→∞ ab = 0.

Finally, from the symmetry of the Jacobi elliptic functions, it follows that

x∗(2n + s) = x∗(2n − s), n ∈ Z, s ∈ R.

In Fig. 1, we plot a and b as functions of r . See Fig. 2 for the periodic solution for r = 5 and
r = 10.
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Fig. 1 Bifurcation of the equilibrium. The equilibrium x = 1 is asymptotically stable for r < π2

2 and is

unstable for r > π2

2 . At r = π2

2 a Hopf bifurcation occurs and the periodic solution appears

Fig. 2 Time profile of the periodic solution for r = 5 and r = 10

5 Discussion

There have been many studies on the existence of periodic solutions of the delay differential
equation (1.1), see [34] and references therein. Kaplan and Yorke show the existence of
periodic solutions of period 4 for (1.1), assuming that f is an odd function, fromaHamiltonian
system [15]. If f is not an odd function (e.g., f (z) = r (1 − ez) in the case of Wright’s
equation), the existence of a solution of period 4 can not be expected, see [4,23].

The equation (1.3), we study in this paper, is a Hutchinson–Wright equation having dis-
tributed delay, instead of discrete delay. The ansatz, x∗ (t) = x∗ (t − 2), derives the second
order nonlinear ordinary differential equation (3.4), where the explicit solution is available
in terms of the Jacobi elliptic functions. Finding a class of delay differential equations that
have solutions with period 2 is our future work. One sees that, from the linear analysis (see
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Proposition 2), a period-2 solution emerges at the first Hopf bifurcation for a class of differ-
ential equations with distributed delay. Which class of nonlinear delay differential equations
does allow the existence of period-2 solutions for a range of parameters?

The delay differential equation (1.3) is a special case of the following delay differential
equation

d

dt
x(t) = r x(t)

(
1 − αx(t) −

∫ 1

0
x(t − s)ds

)
, (5.1)

where 0 ≤ α < 1. The delay differential equation (5.1) arises from a mathematical model
for disease transmission dynamics (see “Appendix B”). We wish to analyze the periodic
solutions of (5.1) to explain disease transmission dynamics ([25]). However, differently from
Wright’s equation, the estimation of the non-delay term, together with the distributed delay
term, seems to be an obstacle, when one tries to construct a Poincare map to find a periodic
solution (cf. [16,32,33]). Multiple periodic solutions seem to be possible for the SIRS model
in “Appendix B” with the demographic turn-over [30]. See also [17] for multiple periodic
solutions of a logistic equation.

Our study leads to open problems.Numerical simulations of the equation (1.3) suggest that
the periodic solution of period 2 attracts many positive solutions. Uniqueness and stability of
the solution of period 2 are open problems. It would be also interesting to discuss the periodic
solution with respect to the kernel of distributed delay. To the author, it is not obvious if the
periodic solution of period 2 of (1.3) is related to the periodic solution of Wright’s equation
(as varying the uniform kernel of the distributed delay to a Dirac mass).
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Appendix A. Elliptic Functions

We briefly introduce the Jacobi elliptic functions. See [3] for detail. See also [20], where
the Jacobi elliptic functions are defined as the solutions of a system of ordinary differential
equations. We then show that the solution of the Duffing equation is expressed in terms of
the Jacobi elliptic function.

The incomplete elliptic integrals of the first kind and second kind are respectively given
as

F (ϕ, k) =
∫ ϕ

0

1√
1 − k2 sin2 θ

dθ,

E (ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 θdθ
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for ϕ ∈ R and 0 ≤ k < 1. Here k is a parameter called the modulus. Then the complete
elliptic integrals of the first kind and second kind introduced in Sect. 4 are

K (k) := F
(π

2
, k

)
, E(k) := E

(π

2
, k

)
.

The amplitude function am is defined as the inverse function of the elliptic integral of the
first kind, fixing the modulus k, i.e.,

am (F (ϕ, k) , k) = ϕ.

Then the Jacobi elliptic functions sn, cn : R → [−1, 1] are respectively defined as

sn (t, k) = sin (am (t, k)) ,

cn (t, k) = cos (am (t, k)) .

One then sees that the period of sn and cn is given as 4K (k). Then the Jacobi elliptic function
dn is defined by

dn (t, k) =
√
1 − k2sn (t, k).

The period of dn is 2K (k).
The Duffing equation can be solved by the Jacobi elliptic function (see [3,20]). Let us

consider the following ordinary differential equation

d2

dt2
y(t) = −py(t) + qy(t)3 (A.1)

with initial condition

d

dt
y(0) = d, (A.2a)

y(0) = 0. (A.2b)

Here p, q and d are assumed to be real. One obtains the equation (3.4) with the initial
condition (3.5) from (A.1) with (A.2) by

p = r (a + b) , q = r2

2
, d = a − b. (A.3)

For (A.1) with the initial condition (A.2), we consider the following ansatz

y(t) = αsn (βt, k)

with α > 0 and β > 0, noting that sn is an odd function. Differentiating the Jacobi elliptic
functions, we have

y′(t) = αβcn (βt, k) dn (βt, k) ,

y′′(t) = −αβ2sn (βt, k)
(
dn2 (βt, k) + k2cn2 (βt, k)

)
= −αβ2sn (βt, k)

((
1 + k2

) − 2k2sn2 (βt, k)
)
,
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thus

y′′(t) = −β2y(t)

(
1 + k2 − 2

k2

α2 y
2(t)

)

follows. We then obtain the following three equations

d = αβ, (A.4a)

p = β2 (
1 + k2

)
, (A.4b)

q = 2β2k2

α2 . (A.4c)

Let us now solve the Eq. (A.4) in terms of α, β and k. One obtains

k2 − ck + 1 = 0, (A.5)

where

c := p

d

√
2

q
. (A.6)

Since the equation (A.5) has a root in [0, 1) if and only if 2 < c, assume that 2 < c holds.
We then get

k = 1

2

(
c −

√
c2 − 4

)
∈ [0, 1) .

Now it follows

α = d

√
1 + k2

p
, β =

√
p

1 + k2
.

For the equation (3.4) with the initial condition (3.5), substituting (A.3) to (A.6), we obtain

c = 2

(
a + b

a − b

)
> 2.

Then one can easily obtain α, β and k as in (3.7) and (3.8).

Appendix B. An Epidemic Model with Temporary Immunity

The delay differential equation (1.3) can be related to an epidemic model that accounts for
temporary immunity ([2,8,11,30,36]). Let us derive the delay differential equation (1.3) as
a limiting case of the following SIRS type epidemic model with temporary immunity

d

dt
S(t) = −βS(t)I (t) + γ I (t − τ), (B.1a)

d

dt
I (t) = βS(t)I (t) − γ I (t), (B.1b)

d

dt
R(t) = γ I (t) − γ I (t − τ). (B.1c)

The model (B.1) is equivalent to the model studied in Section 3 of [11] (see (B.4) below)
and is a special case of the model considered in [8]. As in [8,11], ignoring birth and death of
individuals, transitions of susceptible, infective and recovered populations are described.Here
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S(t), I (t) and R(t) respectively denote the fraction of susceptible, infective and recovered
populations at time t . The model (B.1) has three parameters: transmission coefficient β > 0,
the recovery rate γ > 0 and the immune period τ > 0. See also [2,30] for SIRS models with
demographic turn-over.

The initial condition is given as follows

S(0) = S0 > 0,

I (s) = ψ(s), s ∈ [−τ, 0] ,

R(0) = γ

∫ τ

0
ψ(−s)ds,

where ψ is a positive continuous function. We now require that

S0 + ψ(0) + γ

∫ τ

0
ψ(−s)ds = 1,

so that
S(t) + I (t) + R(t) = 1, t ≥ 0 (B.2)

implying the constant total population. It also follows

R(t) = γ

∫ τ

0
I (t − s)ds, t ≥ 0. (B.3)

From (B.2) and (B.3) we get

S(t) = 1 − I (t) − γ

∫ τ

0
I (t − s)ds.

Then from (B.1b) we obtain the following scalar delay differential equation

d

dt
I (t) = I (t)

{
β

(
1 − I (t) − γ

∫ τ

0
I (t − s)ds

)
− γ

}
. (B.4)

We let x(t) = I (t)
Ie

, where Ie is a nontrivial equilibrium of (B.4) given as

Ie = 1 − γ
β

1 + γ τ
.

It is assumed that β > γ to ensure Ie > 0. Considering a nondimensional time so that the
immune period is 1, we obtain

d

dt
x(t) = (β − γ ) x(t)

(
1 − x(t) + γ τ

∫ 1
0 x(t − s)ds

1 + γ τ

)
.

We now fix r = β −γ and let γ τ → ∞ to formally obtain the equation (1.3). Local stability
analysis for (B.4) can be found in [8,11]. See also [25] for the application of themathematical
model to explain the periodic outbreak of a childhood disease.
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