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Abstract This paper is concerned with combustion transition fronts inRN (N ≥ 1). Firstly,
we prove the existence and the uniqueness of the global mean speed which is independent
of the shape of the level sets of the fronts. Secondly, we show that the planar fronts can
be characterized in the more general class of almost-planar fronts. Thirdly, we show the
existence of new types of transitions fronts in R

N which are not standard traveling fronts.
Finally, we prove that all transition fronts are monotone increasing in time, whatever shape
their level sets may have.
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1 Introduction

This paper investigates reaction diffusion equations of the type

ut = Δu + f (u), (t, x) ∈ R × R
N , (1)
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where N ∈ N, ut = ∂u
∂t and Δ denotes the Laplace operator with respect to the space

variables x ∈ R
N . The nonlinear reaction term f (u) is of the “ignition temperature” type,

that is, f : [0, 1] → R is a C1 function such that

∃ θ ∈ (0, 1), f ≡ 0 on [0, θ ] ∪ {1}, f > 0 on (θ, 1) and f ′(1) < 0. (2)

Such a profile can be derived from the Arrhenius kinetis with a cut-off for low temperatures
and from the law of mass action. The real number θ is the ignition temperature, below which
no reaction happens.

In any dimension N ≥ 1, standard planar traveling fronts are solutions of the type

u(t, x) = φ f
(
x · e − c f t

)
,

where e is any given unit vector ofRN , c f ∈ R is the propagation speed and φ f : R → [0, 1]
is the propagation profile, such that

φ′′
f + c f φ

′
f + f

(
φ f
) = 0 in R,

φ f (−∞) = 1 and φ f (+∞) = 0.
(3)

The profile φ f is then a heteroclinic connection between the state 0 and the stable state 1.
The level sets of such traveling fronts are parallel hyperplanes which are orthogonal to the
direction of the propagation e. These fronts are invariant in the moving frame with speed c f

in the direction e. It is well known [1] that such front exists and is unique up to translation.
Besides, the speed c f is positive which has the sign of

∫ 1
0 f (s)ds [5] and the function φ f is

decreasing.
In R

N with N ≥ 2, propagating wave fronts contains more types of traveling fronts
except planar traveling fronts, such as V-shaped traveling fronts in two-dimensional spaces,
pyramidal traveling fronts with non-axisymmetric shape in three-dimensional spaces and
conical-shaped axisymmetric traveling fronts in high-dimensional spaces. The profiles of
these fronts are still invariant in a moving frame with constant speed. But they have non-
planar level sets. For instance, (1) admits the conical-shaped fronts of the type

u(t, x) = φ(|x ′|, xN − ct),

where x ′ = (x1, . . . , xN−1) and |x ′| = (x21 +· · ·+ x2n−1)
1/2 whose profiles are invariant and

which have non-planar level sets. For the existence, uniqueness, stability and other qualitative
properties of these non-planar traveling fronts, we refer to [7,8,12–14,24,25,33–36] and the
references therein.

Aswe introduced above, Eq. (1) admitsmany types of traveling fronts. However, they have
some common properties. For instance, the solutions u converge to the equilibrium states 0
or 1 far away from their moving or stationary level sets, uniformly in time. Their common
properties led us to ask whether it is possible to introduce a more general notion of traveling
fronts to include all types of waves. Berestycki and Hamel [3,4] give an affirmative answer.
They introduce the general notion of transition fronts. Before we describe the definition of
transition fronts, we firstly introduce some notions. For any two subsets A and B of RN and
for x ∈ R

N , we set
d(A, B) = inf{|x − y|, (x, y) ∈ A × B} (4)
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and d(x, A) = d({x}, A), where | · | is the Euclidean norm inRN . Let (Ω−
t )t∈R and (Ω+

t )t∈R
be two families of open nonempty subsets of RN , which satisfy

∀ t ∈ R,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω−
t
⋂

Ω+
t = ∅,

∂Ω−
t = ∂Ω+

t =: Γt ,

Ω−
t
⋃

Γt
⋃

Ω+
t = R

N ,

sup{d(x, Γt )
∣
∣x ∈ Ω+

t } = sup{d(x, Γt )
∣
∣x ∈ Ω−

t } = +∞
(5)

and

inf{sup{d(y, Γt ); y ∈ Ω+
t , |y − x | ≤ r}∣∣t ∈ R, x ∈ Γt } = +∞,

inf{sup{d(y, Γt ); y ∈ Ω−
t , |y − x | ≤ r}∣∣t ∈ R, x ∈ Γt } = +∞,

r → +∞. (6)

Notice that the condition (5) implies that the interface Γt is not empty for every t ∈ R.

Definition 1 (See [3,4]) For problem (1), a transition front connecting 0 and 1 is a classical
solution u : R×R

N → (0, 1) for which there exist some sets (Ω±
t )t∈R and (Γt )t∈R satisfying

(5) and (6), and, for every ε > 0, there exists M ≥ 0 such that

∀ t ∈ R, ∀ x ∈ Ω+
t , d(x, Γt ) ≥ M ⇒ u(t, x) ≥ 1 − ε,

∀ t ∈ R, ∀ x ∈ Ω−
t , d(x, Γt ) ≥ M ⇒ u(t, x) ≤ ε.

(7)

Furthermore, u is said to have a global mean speed Λ (≥ 0) if

d(Γt , Γs)

|t − s| → Λ as |t − s| → +∞. (8)

Remark 1 Notice that, for a given transition front u connecting 0 and 1, the sets (Ω±
t )t∈R

and (Γt )t∈R are not uniquely determined. In fact, for any sets (Γ̃t )t∈R, if

sup
t∈R

max

(

sup
x∈Γt

d(x, Γ̃t ), sup
x∈Γ̃t

d(x, Γt )

)

< +∞,

then the family (Γ̃t )t∈R with corresponding sets (Ω̃±
t )t∈R also satisfies (5), (6) and (7). That

is, the solution u is also a transition front connecting 0 and 1 with the families (Ω̃±
t )t∈R and

(Γ̃t )t∈R.
Notice furthermore that for any transition front u connecting 0 and 1, the interfaces (Γt )t∈R

have uniformly bounded local oscillations, that is

∀ σ > 0, sup {d(Γt , Γs), t, s ∈ R, |t − s| ≤ σ } < +∞. (9)

In fact, it is shown in Lemma 3 and Remark 3 of [10], in the case of reaction–diffusion
equations (1) with nonlinearity f satisfying f (u) > 0 for u ∈ (1 − δ, 1), where 0 < δ < 1.
Obviously, the assumptions of nonlinear reaction term f in this paper (see (2)) satisfy the
above condition with δ = 1 − θ .

In [3,4,11], the authors have showed that all the known standard traveling fronts (planar
and non-planar traveling fronts) are transition fronts in the sense of Definition 1. In particular,
Hamel [11] proved that for Eq. (1)with bistable nonlinearity there exist new types of transition
fronts inRN which are not invariant in any frame as time runs. This property is different from
standard traveling fronts which are invariant in a moving frame with constant speed. It also
shows the broadness of Definition 1. In recent years, many papers have been devoted to the
investigation of the existence and stability of transition fronts. For bistable transition fronts,
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we refer to [3,4,10,11]. For Fisher-KPP transition fronts, the readers can see [15,16,21–
23,28,31,38]. Transition fronts for equationswith combustion nonlinearity, the investigations
mainly focus on the case of the heterogeneous equations inR, see [19,20,29,30,32,37,39,40].
In this paper, we prove that even the homogeneous combustion equation (1) in RN (N ≥ 1)
also has many deep properties, such as the existence of new transition fronts and general
estimates shared by all transition fronts.

The first main result of this paper proves the existence and uniqueness of the global mean
speed for any transition fronts connecting the state 0 and the stable state 1, regardless of the
shape of the level sets of the transition fronts.

Theorem 1 For problem (1), any transition front u connecting 0 and 1 has a global mean
speed Λ. Furthermore, this global mean speed Λ is equal to c f .

The second result of this paper gives a characterization of the planar fronts φ f (x ·e−c f t)
among themore general class of almost-planar transition fronts introduced in [4], and defined
as follows.

Definition 2 (See [4,11]) A transition front u in the sense of Definition 1 is called almost-
planar if, for every t ∈ R, the set Γt can be chosen as the hyperplane

Γt =
{
x ∈ R

N
∣∣x · et = ξt

}

for some vector et of the unit sphere SN−1 and some real number ξt .

From the definition, we can easily see that the level sets of almost-planar fronts are in
some sense close to hyperplanes, even if they are not a priori assumed to be planar. The
following theorem shows that planar fronts φ f (x · e − c f t) for problem (1) fall within the
more general class of almost-planar fronts.

Theorem 2 For problem (1), any almost-planar transition front u connecting 0 and 1 is
planar, that is, there exist a unit vector e of RN and a real number ξ such that

u(t, x) = φ f (x · e − c f t + ξ) f or all (t, x) ∈ R × R
N .

Thirdly, we show the broadness of transition fronts. In other words, we prove the existence
of new types transition fronts of the Eq. (1), which are not invariant as time runs in anymoving
frame. Recall that the profiles of standard traveling fronts are invariant in a moving frame
with constant speed.

Theorem 3 Let N ≥ 2. The problem (1) admits transition fronts u connecting 0 and 1which
satisfy the following property: there is no function Φ : RN → (0, 1) (independent of t) for
which there would be some families (Rt )t∈R and (xt )t∈R of rotations and points in RN such
that u(t, x) = Φ(Rt (x − xt )) for all (t, x) ∈ R × R

N .

Finally, we establish the time monotonicity of the transition front u.

Theorem 4 Forproblem (1), any transition front u connecting0and1 ismonotone increasing
in time t. That is, ut > 0 for all (t, x) ∈ R × R

N .

In fact, in order to prove Theorem 4, it is sufficient to prove that the transition front u is
an invasion of the state 0 by the state 1, in the sense that the sets (Ω±

t )t∈R can be chosen so
that

Ω+
t ⊂ Ω+

s for all t < s and d(Γt , Γs) → +∞ as |t − s| → +∞,
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since it is easy to check that the problem (1) and the nonlinearity f satisfy all assumptions
of [4, Theorem 1.11]. Similar to [10], it follows from Theorem 1 and Lemma 1 (see Sect. 2)
that u is an invasion in the above sense with the families

(
Ω̂±

t
)
t∈R and

(
Γ̂t
)
t∈R, where for

some constant τ0 > 0,

Ω̂±
kτ0+t = Ω±

kτ0
for any k ∈ Z and 0 ≤ t < τ0,

Γ̂t := ∂Ω̂+
t = Ω̂−

t for any t ∈ R.

Now we give a brief stated on the methods of our proofs. Firstly, in order to prove the
existence and the uniqueness of the global mean speed of the transition fronts connecting
0 and 1, we need introduce two radially symmetric functions and show their dynamical
properties, see Lemmas 1 and 2 below. Secondly, using the one-dimensional stability of the
planar front and parabolic Liouville type result of Berestycki andHamel [3, Theorem 3.1], we
show that the planar fronts can be characterized by the more general class of almost-planar
transition fronts. Thirdly, by mixing three planar fronts moving in three different directions,
we show that the new transition fronts exist in dimension N = 2. And by trivially extending
the two-dimensional solutions in the variables x3, . . . , xN , we obtain that the new transition
fronts exist in all dimensions N ≥ 3.

Here we would like to point out that the main results of this paper (Theorems 1, 2, 3 and
4) are similar to those established for Eq. (1) with bistable nonlinearity by Hamel [11] and
Guo and Hamel [10], where the reaction term f : [0, 1] → R is a C1 function such that

f (0) = f (1) = 0, f ′(0) < 0 and f ′(1) < 0.

But in this paper we treat the combustion case, in particular, the reaction term f satisfies
f (u) = 0 for any u ∈ [0, θ ] with some θ ∈ (0, 1), which is essentially different from the
assumption f ′(0) < 0 in the bistable case. Since the signs of f ′(0) and f ′(1) play important
roles in the estimates of speeds and constructing the super-sub solutions, some newdifficulties
occur in the combustion reaction diffusion equations. To overcome these difficulties, we need
some new techniques and establish some new estimates. See Lemmas 1, 2, 4 and Proposition
1 below for more details.

The rest of this paper is organized as follows. Section 2 proves the existence and the
uniqueness of the global mean speed among all transition fronts. That is, we give the proof
of Theorem 1. In Sect. 3, we prove Theorem 2. That is, we give a characterization of the
planar fronts among the more general class of almost-planar transition fronts. In Sect. 4, we
construct new types transition fronts. That is, we are devoted to the proof of Theorem 3.

2 The Global Mean Speed

In this section, we prove that any transition front of the Eq. (1) has a global mean speed
and this speed is unique. We first introduce auxiliary notations for some radially symmetric
functions and we show some of their dynamical properties. The following two key properties,
Lemmas 1 and 2 below, will provide a sharp lower bound and a upper bound for the speed of
the interfaces Γt of any transition front connecting 0 and 1 for the problem (1), respectively.

In the following, let θ < β < 1. For any R > 0, let v f
R denote the solution of the Cauchy

problem (
v
f
R

)
t = Δv

f
R + f

(
v
f
R

)
, t > 0, x ∈ R

N , (10)
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with initial value

v
f
R(0, x) =

{
β, |x | < R,

0, |x | ≥ R.
(11)

Lemma 1 There is R > 0 such that the following holds: for any ε ∈ (0, c f ], there is Tε > 0
such that

v
f
R(t, x) ≥ β f or all t ≥ Tε and |x | ≤ (c f − ε)t. (12)

In fact,

v
f
R(t, ·) → 1 uni f ormly in

{
x ∈ R

N
∣
∣|x | ≤ (c f − ε)t

}
as t → +∞. (13)

Proof Let g be any given C1([0, 1]) function which satisfies

g(0) = g(θ) = g(1) = 0, g′(0) < 0, g′(1) < 0, g′(θ) > 0,

g < 0 on (0, θ), 0 < g ≤ f on (θ, 1),
∫ 1

0
g(s)ds > 0

and
0 < c f − cg ≤ ε

2
, (14)

where cg is the wave speed of the planar front φg which satisfies (3) with the nonlinearity g.
In fact, g is of the bistable type. Such fronts exist, see [2,9,17]. It is easy to see that f ≥ g
on [0, 1]. Then the comparison principle implies that

1 ≥ v
f
R(t, x) ≥ v

g
R(t, x), ∀ (t, x) ∈ [0,+∞) × R

N . (15)

For the solution v
g
R of the equation (10)-(11) with replacing f by g, it follows from Lemma

4.1 of [11] that we have

v
g
R(t, ·) → 1 uniformly in

{
x ∈ R

N
∣∣|x | ≤

(
cg − ε

2

)
t
}
as t → +∞.

Inequalities (14) and (15), together with the above formula, yield that (13) holds. This com-
pletes the proof. ��
Lemma 2 For any ε > 0, there exist some positive real numbers αε , Tε and Rε such that for
all R ≥ Rε , the solution wR of the following Cauchy problem

(wR)t = ΔwR + f (wR), t > 0, x ∈ R
N ,

with initial value

wR(0, x) =
{

αε, |x | < R,

1, |x | ≥ R

satisfies

wR(t, x) ≤ 3αε f or all Tε ≤ t ≤ R

c f + ε
and |x | ≤ R − (c f + ε)t. (16)

Proof Let δ be chosen so that

0 < δ <
θ

2
and f ′ ≤ f ′(1)

2
on [1 − δ, 1]. (17)
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Since φ′′
f (s) ∼ νe−c f s as s → +∞ with ν > 0, one can choose C > 0 such that

φ f ≥ 1 − δ on (−∞,−C], φ f ≤ δ on [C,+∞) and φ′′
f ≥ 0 on [C,+∞). (18)

Since φ′
f is negative and continuous on R, there is κ > 0 such that

− φ′
f ≥ κ > 0 on [−C,C]. (19)

Set L = max
u∈[0,1] | f

′(u)|. For every ε > 0, let

0 < αε < min

(
θ

4
,

κε

8L

)
.

Choose Dε > 0 such that

φ f ≥ 1 − 2αε on (−∞,−Dε] and φ f ≤ αε on [Dε,+∞). (20)

Let ραε be the solution of the following ordinary differential equation

ρ′
αε

(t) = f (ραε ),

ραε (0) = αε.

Since αε ∈ (0, θ), f is Lipschitz-continuous and f ≡ 0 on [0, θ ], then ραε (t) ≡ αε by the
existence and uniqueness of solution of the ordinary differential equation. It follows from
the maximum principle and (2) that for any R > 0,

0 ≤ ραε (t) ≤ wR(t, x) ≤ 1 for all t ≥ 0, x ∈ R
N .

Then the following inequality holds

(wR − ραε )t ≤ Δ(wR − ραε ) + L(wR − ραε ).

Thus for the above equation, the assumptions of the initial value yield

0 ≤ wR(t, x) − ραε (t) ≤ eLt

(4π t)
N
2

∫

|y|≥R

e− |x−y|2
4t dy for all t > 0 and x ∈ R

N .

Therefore, if 0 < B ≤ R and |x | ≤ R − B, one infers that

0 ≤ wR(t, x) − ραε (t) ≤ eLt

(4π)
N
2

∫

|z|≥ B√
t

e−|z|2dz.

Thus, take a real number T > 0 and there exists B > 0 such that for all R ≥ B and
|x | ≤ R − B,

wR(T, x) − ραε (T ) ≤ αε,

whence
wR(T, x) ≤ ραε (T ) + αε = 2αε for all R ≥ B and |x | ≤ R − B. (21)
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It is elementary to check that for every ε > 0, there is a C2 function hε : [0,+∞) → R

satisfying the following properties:

0 ≤ h′
ε ≤ 1 on [0,+∞),

h′
ε = 0 on a neighborhood of 0,

hε(r) = r on [Hε,+∞) for some Hε > 0,

(N − 1)h′
ε(r)

r
+ h′′

ε (r) ≤ ε

4
on [0,+∞).

(22)

Notice in particular that

r ≤ hε(r) ≤ r + hε(0) for all r ≥ 0. (23)

We choose Tε > T > 0 such that

εt

2
≥ hε(0) + B + 2Dε for all t ≥ Tε, (24)

and Rε > 0 such that

Rε ≥ max(B, (c f + ε)Tε) and
εRε

2(c f + ε)
≥ B + Dε + C + Hε. (25)

In the sequel, R is arbitrary real number such that

R ≥ Rε. (26)

For all (t, x) ∈ R × R
N , we set

W (t, x) = min
(
φ f (ξ̄ (t, x)) + 2αε, 1

)
,

where

ξ̄ (t, x) = −hε(|x |) −
(
c f + ε

2

)
(t − T ) + R − B − Dε.

In the set Σ =
[
T, R

c f +ε

]
×R

N , let us then check that W is a supersolution for the problem

satisfied by wR .
Since f (1) = 0, it is sufficient to check that

L (t, x)=Wt (t, x) − ΔW (t, x) − f (W (t, x))≥0 for all (t, x)∈Σ such that W (t, x)<1.

Sinceφ f is of classC2 and h vanishes in the neighborhood of 0, thenW (t, x) = φ f (ξ̄ (t, x))+
2αε is of class C2 in the set where W (t, x) < 1.

In this paragraph, let (t, x) be any point in Σ such that W (t, x) < 1. Since φ′′
f + c f φ

′
f +

f (φ f ) = 0 in R, then by (22) and φ′
f ≤ 0, there holds

L (t, x) = f (φ f (ξ̄ (t, x))) − f (W (t, x)) + (1 − (h′
ε(|x |))2)φ′′

f (ξ̄ (t, x))

−
(

ε

2
− (N − 1)h′

ε(|x |)
|x | − h′′

ε (|x |)
)

φ′
f (ξ̄ (t, x))

≥ f (φ f (ξ̄ (t, x))) − f (W (t, x)) − ε

4
φ′
f (ξ̄ (t, x)) + (1 − (h′

ε(|x |))2)φ′′
f (ξ̄ (t, x)).

Firstly, if ξ̄ (t, x) ≤ −C , then (18) and the definition of W yield 1 − δ ≤ φ f (ξ̄ (t, x)) ≤
W (t, x) < 1. Whence by (17), one gets

f (φ f (ξ̄ (t, x))) − f (W (t, x)) ≥ − f ′(1)αε.
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In addition, it follows from (25) and (26) that the inequalitues ξ̄ (t, x) ≤ −C and T ≤ t ≤
R

c f +ε
yield

hε(|x |) ≥ −
(
c f + ε

2

)
(t − T ) + R − B − Dε + C ≥ εR

2(c f + ε)
− B − Dε + C ≥ Hε.

From the properties (22), the inequality hε(|x |) ≥ Hε implies that h′
ε(|x |) = 1. Therefore, if

ξ̄ (t, x) ≤ −C , then φ′
f ≤ 0 implies

L (t, x) ≥ − f ′(1)αε − ε

4
φ′
f (ξ̄ (t, x)) ≥ 0.

Secondly, if ξ̄ (t, x) ≥ C , then by (18), φ f (ξ̄ (t, x)) ≤ δ. Thus,

0 < φ f (ξ̄ (t, x)) ≤ W (t, x) ≤ δ + 2αε < θ.

Since f = 0 on [0, θ ], φ′′
f ≥ 0 on [C,+∞) from (18), 0 ≤ h′

ε(|x |) ≤ 1 on [0,+∞) and

φ′
f ≤ 0 on R, one gets that, if ξ̄ (t, x) ≥ C , then

L (t, x) ≥ − ε

4
φ′
f (ξ̄ (t, x)) + (1 − (h′

ε(|x |))2)φ′′
f (ξ̄ (t, x)) ≥ 0.

Lastly, if −C ≤ ξ̄ (t, x) ≤ C , then

f (φ f (ξ̄ (t, x))) − f (W (t, x)) ≥ −2Lαε,

recall that L = max
u∈[0,1] | f

′(u)|. It follows from (24) and (26) that ξ̄ (t, x) ≤ C and T ≤ t ≤
R

c f +ε
imply

hε(|x |) ≥ −
(
c f + ε

2

)
(t − T ) + R − B − Dε − C ≥ εR

2(c f + ε)
− B − Dε − C ≥ Hε.

Thus by (22), h′
ε(|x |) = 1. Consequently, it follows from the definition of αε and (19) that

L (t, x) ≥ −2Lαε + κε

4
≥ 0.

On the other hand, at the time T , it follows from (21), (24), (26) and the definition of W
that

wR(T, x) ≤ 2αε ≤ W (T, x) for all |x | ≤ R − B.

If |x | ≥ R − B, then hε(|x |) ≥ |x | ≥ R − B from (23), whence ξ̄ (T, x) ≤ −Dε and

W (T, x) = min
(
φ f (ξ̄ (T, x)) + 2αε, 1

) ≥ min ((1 − 2αε) + 2αε, 1) = 1 ≥ wR(T, x)

from (20) and the fact that wR ≤ 1 on (0,+∞) × R
N . Thus

wR(T, x) ≤ W (T, x) for all x ∈ R
N .

As a conclusion, the maximum principle implies that, for all T ≤ t ≤ R
c f +ε

and x ∈ R
N ,

wR(t, x) ≤ W (t, x) ≤ φ f (ξ̄ (t, x)) + 2αε.

For all Tε ≤ t ≤ R
c f +ε

and |x | ≤ R − (c f + ε)t , there hold

hε(|x |) ≤ |x | + hε(0) ≤ R − (c f + ε)t + hε(0)
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and

ξ̄ (t, x) ≥ − R + (c f + ε)t − hε(0) −
(
c f + ε

2

)
(t − T ) + R − B − Dε

≥εt

2
− hε(0) − B − Dε

≥Dε

from (24). Thus, (20) yields φ f (ξ̄ (t, x)) ≤ αε . Whence, if Tε ≤ t ≤ R
c f +ε

and |x | ≤
R − (c f + ε)t , then

wR(t, x) ≤ φ f (ξ̄ (t, x)) + 2αε ≤ αε + 2αε = 3αε.

This completes the proof. ��
Proof of Theorem 1 Let u be any transition front of problem (1) which connects the equilib-
rium points 0 and 1. For any ε ∈ (0, c f ], let αε be defined as in Lemma 2 and θ < β < 1. It
follows from Definition 1 that there is M ≥ 0 such that

∀ t ∈ R, ∀ x ∈ Ω+
t , d(x, Γt ) ≥ M ⇒ β ≤ u(t, x) < 1,

∀ t ∈ R, ∀ x ∈ Ω−
t , d(x, Γt ) ≥ M ⇒ 0 < u(t, x) ≤ αε.

(27)

Let R > 0 be as in Lemma 1. Without loss of generality, one can assume that R ≥ M (since
the functions v

f
R are nondecreasing with respect to the parameter R > 0). By (6), there exists

a real number r > 0 such that

∀ t ∈ R, ∀ x ∈ Γt , ∃ y± ∈ Ω±
t , |x − y±| ≤ r and d(y±, Γt ) ≥ 2R. (28)

Our goal is to prove

d(Γt , Γs)

|t − s| → c f as |t − s| → +∞.

For this purpose, we divide our proof into two steps. In the first step, we prove inequality for
the lim inf. At the second step, we show inequality for the lim sup.

Step 1. the lower estimateWe show that

lim inf|t−s|→+∞
d(Γt , Γs)

|t − s| ≥ c f . (29)

We assume that (29) does not hold, then one has

lim inf|t−s|→+∞
d(Γt , Γs)

|t − s| < c f − 2ε (30)

for some ε > 0 small enough. Thus, there exist two sequences (tk)k∈N and (sk)k∈N such that
|tk − sk | → +∞ as k → +∞ and

d(Γtk , Γsk ) < (c f − 2ε)|tk − sk | for k large enough.

Without loss of generality, we assume that tk < sk for all k ∈ N. The definition of the distance
d(Γtk , Γsk ) implies that there exist two sequences (xk)k∈N and (zk)k∈N in R

N such that

xk ∈ Γtk , zk ∈ Γsk and |xk − zk | < (c f − 2ε)(sk − tk) for k large enough.

First of all, by (28), there exists a sequence (y+
k )k∈N of points in RN such that

y+
k ∈ Ω+

tk , |xk − y+
k | ≤ r and d(y+

k , Γtk ) ≥ 2R for all k ∈ N.
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Thus, for every k ∈ N and y ∈ B(y+
k , R), one has y ∈ Ω+

tk and d(y, Γtk ) ≥ R ≥ M , whence
u(tk, y) ≥ β from (27). By (11), one has

u(tk, x) ≥ v
f
R(0, x − y+

k ), x ∈ R
N .

Thus the maximum principle yields

u(t, x) ≥ v
f
R(t − tk, x − y+

k ) for all t > tk and x ∈ R
N .

Let Tε be defined as in Lemma 1, thus Lemma 1 yields that for every k ∈ N,

u(t, x) ≥ β for all t ≥ tk + Tε and |x − y+
k | ≤ (c f − ε)(t − tk). (31)

Next, it follows from (28) that there exists a sequence (y−
k )k∈N of points in RN such that

y−
k ∈ Ω−

sk , |zk − y−
k | ≤ r and d(y−

k , Γsk ) ≥ 2R ≥ M for all k ∈ N.

Property (27) implies that
u(sk, y

−
k ) ≤ αε for all k ∈ N. (32)

Finally, notice that for all k ∈ N,

|y−
k − y+

k | ≤ |y−
k − zk | + |zk − xk | + |xk − y+

k | ≤ r + (c f − 2ε)(sk − tk) + r

Thus, it follows from sk − tk → +∞ as k → +∞ that sk ≥ tk + Tε for k large enough and

|y−
k − y+

k | ≤ (c f − ε)(sk − tk) for k large enough.

Choose t = sk and x = y−
k in (31) for k large enough. Thus,

u(sk, y
−
k ) ≥ β for k large enough.

But αε < β contradicting (32). Therefore, the assumption (30) cannot hold. That is,

lim inf|t−s|→+∞
d(Γt , Γs)

|t − s| ≥ c f .

Step 2: the upper estimate We show that

lim sup
|t−s|→+∞

d(Γt , Γs)

|t − s| ≤ c f . (33)

Let us assume by contradiction that

lim sup
|t−s|→+∞

d(Γt , Γs)

|t − s| > c f + 3ε (34)

for some ε > 0 small enough. Then there exist two sequences (tk)k∈N and (sk)k∈N of real
numbers such that |tk − sk | → +∞ as k → +∞ and

d(Γtk , Γsk ) > (c f + 3ε)|tk − sk | for k large enough.

Without loss of generality, one can assume that tk < sk for all k ∈ N. For each k ∈ N, pick a
point zk on Γsk . It follows from (28) that there are two sequences (y±

k )k∈N of points in R
N

such that

y±
k ∈ Ω±

sk , |zk − y±
k | ≤ r and d(y±

k , Γsk ) ≥ M for all k ∈ N.

Thus, by (27), one has

0 < u(sk, y
−
k ) ≤ αε < 3αε < θ < β ≤ u(sk, y

+
k ) < 1 for all k ∈ N. (35)
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It follows from d(zk, Γtk ) > (c f + 3ε)(sk − tk) > 0 for k large enough that there holds

either B(zk, (c f + 3ε)(sk − tk)) ⊂ Ω+
tk or B(zk, (c f + 3ε)(sk − tk)) ⊂ Ω−

tk .

We claim that B(zk, (c f + 3ε)(sk − tk)) ⊂ Ω−
tk for k large enough. If not, up to extraction

of a subsequence,

B(zk, (c f + 3ε)(sk − tk)) ⊂ Ω+
tk for all k large enough. (36)

Since sk − tk → +∞ as k → +∞, then for k large enough,

B(zk, R) ⊂ Ω+
tk and d(y, Γtk ) ≥ M for all y ∈ B(zk, R),

recall that R > 0 is defined as in Lemma 1. Thus for k large enough,

u(tk, y) ≥ β for all y ∈ B(zk, R),

from (27). It follows from (11) that one has

u(tk, x) ≥ v
f
R(0, x − zk), for all x ∈ R

N .

By the maximum principle, one gets

u(t, x) ≥ v
f
R(t − tk, x − zk) for all t > tk and x ∈ R

N . (37)

Let Tε′ > 0 be defined as in Lemma 1 with ε′ = c f
2 . The inequality (37) and Lemma 1 yield

that, for k large enough,

u(t, x) ≥ β for all t ≥ tk + Tε′ and |x − zk | ≤ (c f − ε′)(t − tk) = c f

2
(t − tk).

Since c f > 0 and sk − tk → +∞ as k → +∞, then for k large enough,

sk ≥ tk + Tε′ and |y−
k − zk | ≤ r ≤ c f

2
(sk − tk).

Thus, the previous inequality implesu(sk, y
−
k ) ≥ β for k large enough.This is in contradiction

with (35). Whence for k large enough,

B(zk, (c f + 3ε)(sk − tk)) ⊂ Ω−
tk .

Since sk − tk → +∞ as k → +∞, then for k large enough,

B(zk, (c f + 2ε)(sk − tk)) ⊂ Ω−
tk and d(y, Γtk ) ≥ M for all y ∈ B(zk, (c f + 2ε)(sk − tk)).

Thus by (27), one has

u(tk, y) ≤ αε for all y ∈ B(zk, (c f + 2ε)(sk − tk)).

It follows from the definition of w(c f +2ε)(sk−tk ) (as in Lemma 1) that for k large enough,

u(tk, x) ≤ w(c f +2ε)(sk−tk )(0, x − zk) for all x ∈ R
N .

Thus the maximum principle implies

u(t, x) ≤ w(c f +2ε)(sk−tk )(t − tk, x − zk) for all t > tk and x ∈ R
N .
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Since sk − tk → +∞ as k → +∞, then for k large enough, one has (c f +2ε)(sk − tk) ≥ Rε

and

Tε ≤ sk − tk ≤ (c f + 2ε)(sk − tk)

c f + ε
,

|y+
k − zk | ≤ r ≤ ε(sk − tk) = (c f + 2ε)(sk − tk) − (c f + ε)(sk − tk),

where Tε > 0 and Rε ≥ (c f + ε)Tε > 0 are given by Lemma 2 so that (16) is valid for all
R ≥ Rε . Choose R = (c f + 2ε)(sk − tk), t = sk − tk and x = y+

k − zk in (16) for k large
enough, one can obtain

u(sk, y
+
k ) ≤ w(c f +2ε)(sk−tk )(sk − tk, y

+
k − zk) ≤ 3αε.

This is in contradiction with (35). Whence the conclusion (33) follows.
Combining with the Step 1 and Step 2, the proof of Theorem 1 is thereby complete.

3 Almost-Planar Fronts

In this section, we characterize the planar fronts φ f (x · e − c f t) for Eq. (1) among the
more general class of almost-planar fronts. The proof of Theorem 2 mainly uses the one-
dimensional stability of the planar front φ f [18] and the parabolic Liouville type result
of Berestycki and Hamel [3, Theorem 3.1]. Before the proof, we first give some auxiliary
lemmas.

Lemma 3 Let u : R × R
N → [0, 1] be a solution of (1) for which there are a real number

t0 ∈ R and a unit vector e ∈ S
N−1 such that

sup
x∈RN ,x ·e≥A

u(t0, x) → 0

(
resp. inf

x∈RN ,x ·e≤−A
u(t0, x) → 1

)
as A → +∞. (38)

Then property (38) holds at every time t1 > t0 with the same vector e.

Proof Since for the case inf
x∈RN ,x ·e≤−A

u(t0, x) → 1 as A → +∞, the proof of Lemma 3 is

similar to [11, Lemma 3.1], we only give the proof for the case sup
x∈RN ,x ·e≥A

u(t0, x) → 0 as

A → +∞.
For any δ ∈ (0, 1), let vδ be the solution of the following one-dimensional Cauchy problem

vδ
t = vδ

yy + f (vδ), t > 0, y ∈ R,

vδ(0, y) =
{
1, y ≤ 0,

δ, y > 0.

Let ρδ : R → (0, 1) be the solution of the following ordinary differential equation
(
ρδ
)′

(t) = f (ρδ(t)), t > 0,

ρδ(0) = δ.

Then by the maximum principle, one has

0 ≤ ρδ(t) ≤ vδ(t, y) ≤ 1, t ≥ 0, y ∈ R.
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Thus

0 ≤ vδ(t, x) − ρδ(t) ≤ eLt

(4π t)
N
2

∫

y≤0
e− |x−y|2

4t dy,

where L = max
u∈[0,1] | f

′(u)|. Then the maximum principle and standard parabolic estimates

imply that for each t > 0, vδ(t, ·) is decreasing inR, vδ(t,−∞) = 1 and vδ(t,+∞) = ρδ(t).
Assume that sup

x∈RN ,x ·e≥A
u(t0, x) → 0 as A → +∞. Let ε ∈ (0, θ) be arbitrary. Then

there exists a constant M such that

u(t0, x) ≤ vε(0, x · e − M), x ∈ R
N .

Thus it follows from the maximum principle that

u(t1, x) ≤ vε(t1 − t0, x · e − M), t1 > t0, x ∈ R
N ,

and whence

lim sup
A→+∞

(

sup
x∈RN ,x ·e≥A

u(t1, x)

)

≤ vε(t1 − t0,+∞) = ρε(t1 − t0), t1 > t0.

Since ε ∈ (0, θ), f is C1 on [0, 1] and f = 0 on [0, θ ], then the existence and uniqueness
of solution of the ordinary differential equation yield that ρε(t) ≡ ε for all t ≥ 0. Therefore,
one has

0 ≤ lim sup
A→+∞

(

sup
x∈RN ,x ·e≥A

u(t1, x)

)

≤ ρε(t1 − t0) = ε → 0 as ε → 0.

This completes the proof. ��
The following corollary can be obtained immediately from Lemma 3.

Corollary 1 Let u : R × R
N → [0, 1] be a solution of (1) such that, for every time t ∈ R,

there is a unit vector et ∈ S
N−1 such that

inf
x∈RN ,x ·et≤−A

u(t, x) → 1 and sup
x∈RN ,x ·et≥A

u(t, x) → 0 as A → +∞. (39)

Then et = e is independent of time t.

Let u be an almost-planar transition front connecting 0 and 1, in the sense of Definition
2, for problem (1). That is, there exist some families (et )t∈R in S

N−1 and (ξt )t∈R in R such
that

Γt =
{
x ∈ R

N
∣∣x · et = ξt

}

for every t ∈ R. Up to changing et into −et , (5) and Definition 1 yields that (39) holds for
every t ∈ R. It follows from Corollary 1 that et = e is a constant vector, whence

Ω+
t =

{
x ∈ R

N
∣∣x · e < ξt

}
and Ω−

t =
{
x ∈ R

N
∣∣x · e > ξt

}
(40)

for all t ∈ R.
In Sect. 2, we have already proved that any transition front connecting equilibrium points

0 and 1 has a global mean speed c f . Here, for almost planar fronts, one has that

|ξt − ξs |
|t − s| → c f as |t − s| → +∞.
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Then for any γ ∈ (0, 1), there exists a constant K > 0 large enough such that

γ c f |t − s| ≤ |ξt − ξs | ≤ 2c f |t − s| for |t − s| ≥ K . (41)

For n ∈ Z, we define ξ̃t such that

ξ̃t =
{

ξt , t = nK ,

ξnK + ξ(n+1)K−ξnK
K (t − nK ), nK ≤ t ≤ (n + 1)K .

It follows from (9) that one has

∀ σ > 0, sup
(t,s)∈R2,|t−s|≤σ

|ξt − ξs | < +∞.

Thus, one gets
sup
t∈R

|̃ξt − ξt | < +∞. (42)

Moreover, one has

γ c f ≤ ξ(n+1)K − ξnK

K
≤ 2c f .

Now we mollify the function ξ̃t to make it smooth. Define η ∈ C∞(R) by

η(z) =
{
C exp

(
1

|z|2−1

)
if |z| < 1,

0 if |z| ≥ 1,

where the constantC > 0 is selected so that
∫
R

ηdz = 1. For each ε > 0, set ηε(z) = 1
ε η
( z

ε

)
.

Let

ξε
t = ξ̃t ∗ ηε =

∫ ε

−ε

ηε(z)̃ξt−zdz, t ∈ R

such that

sup
t∈R

|ξε
t − ξ̃t | ≤ 1 and γ c f ≤ dξε

t

dt
≤ 2c f for t ∈ R. (43)

Whence, (42) and (43) yield

sup
t∈R

|ξε
t − ξt | ≤ +∞,

and hence, u(t, x) is still an almost-planar front with sets

Γ̃t =
{
x ∈ R

N
∣∣x · e = ξε

t

}

and

Ω̃+
t =

{
x ∈ R

N
∣∣x · e < ξε

t

}
, Ω̃−

t =
{
x ∈ R

N
∣∣x · e > ξε

t

}
.

from Remark 1. Let α and β be two given real numbers such that

0 < α < θ < β < 1, (44)

where we recall that θ is defined in (2). By the Definition 1, there is M > 0 such that

∀ (t, x) ∈ R × R
N ,

{
x · e − ξε

t ≤ −M ⇒ β ≤ u(t, x) < 1,

x · e − ξε
t ≥ M ⇒ 0 < u(t, x) ≤ α.

(45)
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Lemma 4 For any γ ∈ (0, 1),

u(t, x) ≤ θe−γ c f (x ·e−ξε
t −M) (46)

in Σ = {
(t, x) ∈ R × R

N
∣
∣x · e − ξε

t ≥ M
}
.

Proof Let ū(t, x) = θe−γ c f (x ·e−ξε
t −M). On ∂Σ = {

(t, x) ∈ R × R
N
∣
∣x · e − ξε

t = M
}
, it

follows from (44) and (45) that

ū(t, x) = θ > α ≥ u(t, x).

Define

ε∗ = inf
{
ε > 0

∣
∣u − ε ≤ ū in Σ

}
.

Since u is bounded, ε∗ is a well-defined real number and ε∗ ≥ 0. Furthermore, one has

w := ū − (u − ε∗) ≥ 0 in Σ.

In particular,
w > ε∗ on ∂Σ. (47)

One only has to prove that ε∗ = 0.
Assume by contradiction that ε∗ > 0. Then there exists a sequence (εn)n∈N of positive

real numbers and a sequence of points (tn, xn)n∈N in Σ such that

εn → ε∗ as n → +∞ and ū(tn, xn) < u(tn, xn) − εn for all n ∈ N.

We claim that the sequence (xn · e − ξε
tn )n∈N is bounded. Assume not, up to extraction of

some sequence, one has

xn · e − ξε
tn → +∞, and then u(tn, xn) → 0 as n → +∞.

But

u(tn, xn) > ū(tn, xn) + εn ≥ εn → ε∗ > 0 as n → +∞.

This gives a contradiction. Thus, the sequence (xn · e − ξε
tn )n∈N is bounded.

It follows from (9) that for any σ > 0, there holds

sup{d(Γ̃t , Γ̃s), t, s ∈ R, |t − s| ≤ σ } < +∞.

Since (Γ̃t )t∈R are all parallel hyperplanes, it then follows that for any fix τ > 0, there exists
a sequence (x̃n)n∈N such that

x̃n ∈ Γ̃tn−τ for all n ∈ N and sup{d(xn, x̃n)} < +∞.

By (6), there exist r > 0 and a sequence (yn)n∈N such that

d(x̃n, yn) ≤ r and yn · e − ξε
tn−τ ≥ M for all n ∈ N.

Then there exists a sequence (zn)n∈N such that

zn ∈ Ω̃−
tn−τ and M = zn · e − ξε

tn−τ = yn · e − ξε
tn−τ − d(yn, zn) for all n ∈ N. (48)

Since d(yn, zn) ≤ yn · e − ξε
tn−τ ≤ d(x̃n, yn) ≤ r and since the sequence (d(x̃n, xn))n∈N is

bounded, then the sequence (d(xn, zn))n∈N is bounded.
Choose ρ > 0 so that

ρ‖(ū − u)t‖L∞(R×Σ) + 2ρ‖∇x (ū − u)‖L∞(R×Σ) < ε∗, (49)
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which is possible since ū and u have bounded derivatives. Choose K ∈ N \ {0} so that

Kρ ≥ max
(
τ, sup{d(xn, zn)

∣∣n ∈ N}) . (50)

For each n ∈ N, then there exists a sequence of points (Xn,0, Xn,1, . . . , Xn,K ) in Σ such
that

Xn,0 = xn, Xn,K = zn and d(Xn,i , Xn,i+1) ≤ ρ for each 0 ≤ i ≤ K − 1.

For each n ∈ N and 0 ≤ i ≤ K − 1, set

En,i =
[
tn − i + 1

K
τ, tn − i

K
τ

]
× B(Xn,i , 2ρ).

Since w(tn, xn) → 0 as n → +∞, (49) and (50) yield that w < ε∗ in En,0 for large n. It
follows from (47) and the connectivity of En,0 that En,0 ⊂ Σ for large n.

By the definition of Σ and ū, one has 0 ≤ ū ≤ θ in Σ . Then from (2) and (43), one has

ūt − Δū − f (ū) = γ c f ū
dξε

t

dt
− (γ c f )

2ū

= ūγ c f

[
dξε

t

dt
− γ c f

]

≥ 0

in Σ . On the other hand, u − ε∗ < u ≤ α < θ in Σ . Assumption (2) implies that u − ε∗ is
a subsolution of (1) in Σ . Since f is of class C1, the function w satisfies inequations of the
type

wt ≥ Δw + b(t, x)w in En,0

for n large enough, where the sequence (‖b‖L∞(En,0))n∈N is bounded. Since w(tn, Xn,0) =
w(tn, xn) → 0 as n → +∞, it follows from the linear parabolic estimates that

w
(
tn − τ

K
, Xn,1

)
→ 0 as n → +∞.

An immediate induction yields w
(
tn − iτ

K , Xn,i
) → 0 as n → +∞ for each i =

1, . . . , K . In particular, for i = K ,

w (tn − τ, zn) → 0 as n → +∞.

But zn ∈ Ω̃−
tn−τ and zn · e − ξε

tn−τ = M for all n ∈ N. As a consequence, for all n ∈ N,
w (tn − τ, zn) > ε∗ from (47).

One has reached a contradiction, which means that ε∗ = 0. Thus,

u(t, x) ≤ θe−γ c f (x ·e−ξε
t −M)

for all (t, x) ∈ Σ . This completes the proof. ��
Proof of Theorem 2 For any fixed γ ∈ (0, 1), let vβ and v̄α be the solution of the one-
dimensional Cauchy problem

vt = vyy + f (v), t > 0, y ∈ R (51)

with initial condition

vβ(0, y) ∈ C(R, [0, β]) and vβ(0, y) =
{

β if y ≤ −1,

0 if y ≥ 0,
(52)
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and v̄α(0, y) ∈ C(R, [0, 1]),

v̄α(0, y) ≥ α on [−1, 1] and v̄α(0, y) =
{
1 if y ≤ 0,

θe−γ c f y if y ≥ 1,
(53)

respectively. It follows from (45) and Lemma 4 that for every t0 ∈ R and x ∈ R
N ,

vβ(0, x · e − ξε
t0 + M) ≤ u(t0, x) ≤ v̄α(0, x · e − ξε

t0 − M).

Thus,
vβ(t − t0, x · e − ξε

t0 + M) ≤ u(t, x) ≤ v̄α(t − t0, x · e − ξε
t0 − M). (54)

for all t > t0 and x ∈ R
N , from the maximum principle. By [18], there exist two constants

ω > 0 and ω̄ > 0 such that
∣
∣
∣
∣
∣
vβ(s, y) − φ f (y − c f s + ξ)

φ
γ

f (y − c f s + ξ)

∣
∣
∣
∣
∣
≤ Ae−ωt , s ≥ 0, y ∈ R,

and
∣∣∣∣∣
v̄α(s, y) − φ f (y − c f s + ξ̄ )

φ
γ

f (y − c f s + ξ̄ )

∣∣∣∣∣
≤ Āe−ω̄t , s ≥ 0, y ∈ R,

for some A > 0, Ā > 0, ξ ∈ R and ξ̄ ∈ R. In particular, since φ f (−∞) = 1 and
φ f (+∞) = 0, there exist T > 0 and B > 0 such that, for all s ≥ T ,

vβ(s, y) > α if y ≤ c f s − B,

v̄α(s, y) < β if y ≥ c f s + B.

It follows from (54) that for all t0 < t0 + T ≤ t ,

u(t, x) > α if x · e − ξε
t0 + M ≤ c f (t − t0) − B,

u(t, x) < β if x · e − ξε
t0 − M ≥ c f (t − t0) + B.

(55)

By (45) and (55), for all t0 < t0 + T ≤ t , we have

ξε
t0 − M + c f (t − t0) − B < ξε

t + M,

ξ ε
t0 + M + c f (t − t0) + B > ξε

t − M.
(56)

By fixing t = 0, one gets that lim sup
t0→−∞

|ξε
t0 − c f t0| ≤ |ξε

0 |+ 2M + B. For any arbitrary t ∈ R,

letting t0 → −∞ in (56) then leads to

|ξε
t − c f t | ≤ |ξ0| + 4M + 2B.

Thus, by Definition 1 and (40), our solution u : R × R
N → (0, 1) of (1) satisfies

inf
(t,x)∈R×RN ,x ·e−c f t≤−A

u(t, x) → 1 and sup
(t,x)∈R×RN ,x ·e−c f t≥A

u(t, x) → 0 as A → +∞.

It follows from Theorem 3.1 of [3] and the uniqueness of the planar fronts that there exists
ξ ∈ R such that u(t, x) = φ f (x · e − c f t + ξ) for all (t, x) ∈ R × R

N . This completes the
proof of Theorem 2.

123



J Dyn Diff Equat (2019) 31:1987–2015 2005

4 Existence of Non-standard Transition Fronts

In this section, we prove Theorem 3. That is, we prove the existence of new kinds of transition
fronts, which are not invariant in any moving frame. We first consider the case N = 2 and
construct two-dimensional transition fronts satisfying the conclusion of Theorem 3. The
conclusion in R

N with N > 2 will be then obtained immediately by trivially extending
the constructed two-dimensional fronts in variables x3, . . . , xN . Now we first give some
preliminaries.

For the standard planar traveling fronts φ f , it is well known that there exist some positive
constants λ1, C0, C1 and C2 such that

φ f (s) ≤ C0e
−c f s, s ≥ 0, (57)

1 − φ f (s) ≤ C1e
λ1s, s ≤ 0, (58)

|φ′
f (s)| ≤ C2e

−λ1|s|, s ∈ R. (59)

Fix an angle α such that π
4 < α < π

2 . Consider the quasilinear parabolic equation

Wt = Wxx

1 + W 2
x

+ c f

√
1 + W 2

x , x ∈ R, t > 0. (60)

It follows from Propositions 1.1 and 2.5 of [27] that for any c > c f , there exists a unique
solution ϕ(x; c) of (60) with asymptotic lines y = |x | cot α satisfying

c = ϕxx

1 + ϕ2
x

+ c f

√
1 + ϕ2

x , x ∈ R.

Lemma 5 (Brazhnik [6], Ninomiya and Taniguchi [24,26,27])There exist positive constants
γ1, ki (i = 1, 2, 3) and ω± such that

max
{|ϕ′′(x)|, |ϕ′′′(x)|} ≤ k1sech(γ1x),

k2sech(γ1x) ≤ c
√
1 + ϕ′(x)2

− c f ≤ k3sech(γ1x),

|x | cot α ≤ ϕ(x),

ω− ≤ ω̃(x) ≤ ω+

for any x ∈ R, where

ω̃(x) = c(ϕ(x) − |x | cot α)

c − c f

√
1 + ϕ′(x)2

.

By Lemma 5, it is easy to obtain that

1 >
1

√
1 + ϕ′(x)2

>
c f

c
for all x ∈ R

and that there exists a constant a > 0 such that

|x | cot α ≤ ϕ(x) ≤ |x | cot α + a for all x ∈ R.

It follows from [12,36] that there exists a unique V-shaped traveling front φ(x1, x2 − ct)
(Fig. 1) of the problem (1) in R

2 satisfying the following properties: 0 < φ < 1 in R
2, φ is

of class C2(R2), c = c f
sin α

and
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Fig. 1 The profiles (left figure) and the contour lines (right figure) of the V-shaped traveling front

lim inf
A→+∞

(
inf

x2≤|x1| cot α−A
φ(x1, x2)

)
= 1,

lim inf
A→+∞

(
inf

x2≥|x1| cot α+A
φ(x1, x2)

)
= 0.

(61)

Furthermore, for any β1 ∈ (0, 1), there exist two positive constants ε+
0 (β1) and α+

0 (β1, ε)

so that, for 0 < ε < ε+
0 (β1) and 0 < ϑ < α+

0 (β1, ε),

φ f (x2 sin α − |x1| cosα)

< φ(x1, x2)

< φ f

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

)

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − ϕ(ϑx1)/ϑ)

)
. (62)

Fix β1 ∈ (0, 1), 0 < ε < ε+
0 (β1) and 0 < ϑ < α+

0 (β1, ε). Now we show that φ is
asymptotically planar along the directions (± sin α, cosα). This property plays an important
role in the proof of Theorem 3.

Proposition 1 There exist two positive constants ρ1 and ω1 such that

0 ≤ φ(x1, x2) − φ f (x2 sin α − |x1| cosα) ≤ ρ1e
−ω1

√
x21+x22 for all (x1, x2) ∈ R

2. (63)

Proof Let

ρ1 =max

{
C1, 2

(
C2 max

s∈(−∞,0]

∣∣∣seλ1
c f
c s
∣∣∣
k3
c

+ max
s∈R

∣∣∣φ′
f (s)

∣∣∣
ω+k3
c

+ ε

)
,

2

(
ω+k3
c

+ β1
c f

c
aε

)
C2e

λ1a + 2Cβ1
0

}
.

Choose μ ∈ (0, 1) such that

μ
λ1c f cot α

c
<

1

2
γ1ϑ and μ

β1c2f cot α

c
<

1

2
γ1ϑ.

Fix a real number ω1 such that

0 < ω1 < min

{
λ1c f cot α

c
,
1

2
γ1ϑ,

γ1ϑ

2 cot α
,
μc f λ1

c
,
μβ1c2f

c

}

.
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Now we divide our proof into three cases.
Case 1 when x2 ≤ 0, by (58), one has

0 < φ(x1, x2) − φ f (x2 sin α − |x1| cosα)

< 1 − φ f (x2 sin α − |x1| cosα)

≤ C1e
λ1(x2 sin α−|x1| cosα)

≤ ρ1e
−ω1

√
x21+x22 .

Case 2 when x2 > 0 and x2 sin α − |x1| cosα < 0, one has

x21 >
x22

cot2 α
and

x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

− c f

c
(x2 − |x1| cot α) < 0

from 1√
1+|ϕ′(x1)|2

>
c f
c and |x1| cot α ≤ ϕ(x1) for any x1 ∈ R. Thus it follows from (59),

Lemma 5 and c = c f
sin α

that

0 <φ(x1, x2) − φ f (x2 sin α − |x1| cosα)

<φ f

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

)

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − ϕ(ϑx1)/ϑ)

)

− φ f

(c f

c
(x2 − |x1| cot α)

)

<

∫ 1

0
φ′
f

(
c f

c
(x2 − |x1| cot α) +

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

− c f

c
(x2 − |x1| cot α)

)

υ

)

dυ

×
(

x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

− c f

c
(x2 − |x1| cot α)

)

+ εsech(γ1ϑx1)

=
∫ 1

0
φ′
f

(
c f

c
(x2 − |x1| cot α) +

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

− c f

c
(x2 − |x1| cot α)

)

υ

)

dυ

×
(

1
√
1 + |ϕ′(ϑx1)|2

− c f

c

)

(x2 − |x1| cot α)

−
∫ 1

0
φ′
f

(
c f

c
(x2 − |x1| cot α) +

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

− c f

c
(x2 − |x1| cot α)

)

υ

)

dυ

× ϕ(ϑx1)/ϑ − |x1| cot α√
1 + |ϕ′(ϑx1)|2

+ εsech(γ1ϑx1)

≤ − C2e
λ1

c f
c (x2−|x1| cot α)

(
1

√
1 + |ϕ′(ϑx1)|2

− c f

c

)

(x2 − |x1| cot α)

+ max
s∈R

∣∣∣φ′
f (s)

∣∣∣
ϕ(ϑx1)/ϑ − |x1| cot α√

1 + |ϕ′(ϑx1)|2
+ εsech(γ1ϑx1)
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≤
(
C2 max

s∈(−∞,0]

∣
∣
∣seλ1

c f
c s
∣
∣
∣
k3
c

+ max
s∈R

∣
∣
∣φ′

f (s)
∣
∣
∣
ω+k3
c

+ ε

)
sech(γ1ϑx1)

< 2

(
C2 max

s∈(−∞,0]

∣
∣
∣seλ1

c f
c s
∣
∣
∣
k3
c

+ max
s∈R

∣
∣
∣φ′

f (s)
∣
∣
∣
ω+k3
c

+ ε

)
e−γ1ϑ |x1|

≤ ρ1e
−ω1

√
x21+x22 .

Case 3 when x2 > 0 and x2 sin α − |x1| cosα ≥ 0, one has x2 > |x1| cot α. It follows from
(57), (59), Lemma 5 and c = c f

sin α
that

0 <φ(x1, x2) − φ f (x2 sin α − |x1| cosα)

<φ f

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

)

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − ϕ(ϑx1)/ϑ)

)

− φ f

(c f

c
(x2 − |x1| cot α)

)

≤φ f

(
x2 − ϕ(ϑx1)/ϑ√
1 + |ϕ′(ϑx1)|2

)

− φ f

(
x2 − |x1| cot α√
1 + |ϕ′(ϑx1)|2

)

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − ϕ(ϑx1)/ϑ)

)

=
∫ 1

0
−φ′

f

(
x2 − |x1| cot α − (ϕ(ϑx1)/ϑ − |x1| cot α)υ

√
1 + |ϕ′(ϑx1)|2

)

dυ

× ϕ(ϑx1)/ϑ − |x1| cot α√
1 + |ϕ′(ϑx1)|2

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − ϕ(ϑx1)/ϑ)

)

− εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − |x1| cot α)

)

+ εsech(γ1ϑx1)φ
β1
f

(c f

c
(x2 − |x1| cot α)

)

=
∫ 1

0
−φ′

f

(
x2 − |x1| cot α − (ϕ(ϑx1)/ϑ − |x1| cot α)υ

√
1 + |ϕ′(ϑx1)|2

)

dυ

× ϕ(ϑx1)/ϑ − |x1| cot α√
1 + |ϕ′(ϑx1)|2

+ εsech(γ1ϑx1)
∫ 1

0
−β1φ

′
f

(c f

c
(x2 − |x1| cot α − (ϕ(ϑx1)/ϑ − |x1| cot α)υ)

)

× φ
β1−1
f

(c f

c
(x2 − |x1| cot α − (ϕ(ϑx1)/ϑ − |x1| cot α)υ)

)
dυ

× c f

c
(ϕ(ϑx1)/ϑ − |x1| cot α) + εsech(γ1ϑx1)φ

β1
f

(c f

c
(x2 − |x1| cot α)

)

≤C2e
−λ1

x2−|x1 | cot α√
1+|ϕ′(ϑx1)|2 eλ1a ω+k3

c
sech(γ1ϑx1)

+ β1C2e
−λ1

c f
c (x2−|x1| cot α)eλ1a

c f

c
aεsech(γ1ϑx1)

+ εsech(γ1ϑx1)C
β1
0 e−β1

c2f
c (x2−|x1| cot α)

≤ 2

(
ω+k3
c

+ β1
c f

c
aε

)
C2e

λ1ae− c f
c λ1(x2−|x1| cot α)e−γ1ϑ |x1|
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+ 2Cβ1
0 e− β1c

2
f

c (x2−|x1| cot α)e−γ1ϑ |x1|

≤ 2

(
ω+k3
c

+ β1
c f

c
aε

)
C2e

λ1ae−μ
c f
c λ1(x2−|x1| cot α)e−γ1ϑ |x1|

+ 2Cβ1
0 e−μ

β1c
2
f

c (x2−|x1| cot α)e−γ1ϑ |x1|

≤ 2

(
ω+k3
c

+ β1
c f

c
aε

)
C2e

λ1ae−μ
c f
c λ1x2− 1

2 γ1ϑ |x1| + 2Cβ1
0 e−μ

β1c
2
f

c x2− 1
2 γ1ϑ |x1|

<

[
2

(
ω+k3
c

+ β1
c f

c
aε

)
C2e

λ1a + 2Cβ1
0

]
e−ω1(|x1|+|x2|)

≤ ρ1e
−ω1

√
x21+x22 .

Combining the above three cases, the proof of Proposition 1 is thereby complete. ��
It follows from Proposition 1 and the Schauder interior estimates that there exist two

positive constants ρ2 and ω2 such that

∣∣∇φ(x1, x2) − ∇(φ f (x2 sin α − x1 cosα))
∣∣ ≤ ρ2e

−ω2

√
x21+x22 for all x1 ≥ 0, x2 ∈ R.

Whence
∣∣∣φx1(x1, x2) + φ′

f (x2 sin α − x1 cosα) cosα

∣∣∣ ≤ ρ2e
−ω2

√
x21+x22 ,

∣∣∣φx2(x1, x2) − φ′
f (x2 sin α − x1 cosα) sin α

∣∣∣ ≤ ρ2e
−ω2

√
x21+x22

(64)

for all x1 ≥ 0, x2 ∈ R. Since the standard planar traveling fronts φ f (s) converges expo-
nentially fast to 0 and 1 as s → ±∞, Proposition 1 yields that the V-shaped traveling front
φ also converges exponentially fast to 0 and 1 as x2 − |x1| cot α → ±∞. By the Schauder
interior estimates, there exist two positive constants ρ3 and ω3 such that

|∇φ(x1, x2)| ≤ ρ3e
−ω3|x2−|x1| cot α| for all (x1, x2) ∈ R

2. (65)

It follows from Corollary 3.3 and Lemma 3.4 of [36] that

∀ A ≥ 0, sup
−A≤x2−|x1| cot α≤A

φx2(x1, x2) < 0 (66)

and that φ is decreasing in any direction (cos α̂, sin α̂) such that π/2−α < α̂ < π/2+α, see
also [12]. In particular, the function φ is nonincreasing along the directions (± sin α, cosα).

Define

ψ(x1, x2) = φ(x1 sin α − x2 cosα, x1 cosα + x2 sin α) for all (x1, x2) ∈ R
2, (67)

which rotates the function φ with angle α − π
2 clockwise. Then the function ψ (Fig. 2) is

decreasing in any direction (cos β̂, sin β̂)with 0 < β̂ < 2α. In particular,ψ is nonincreasing
in the horizontal direction (1, 0) and it converges to the planar front φ f (x2) along this
direction. Set

v(t, x1, x2) = ψ(x1 − ct cosα, x2 − ct sin α)

= φ(x1 sin α − x2 cosα, x1 cosα + x2 sin α − ct). (68)
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Fig. 2 The profiles (left figure) and the contour lines (right figure) of function ψ

Since φ(x1, x2 − ct) solves the Eq. (1) in R2, then the C2(R × R
2) function v also satisfies

(1) in R
2. Moreover, the definition of v yields vt (t, x1, x2) > 0 and vx1(t, x1, x2) ≤ 0 in

R × R
2.

Now we consider the following Neumann boundary value problem in half-space H =
{(x1, x2) ∈ R

2, x1 < 0}
vt = Δv + f (v), (t, x1, x2) ∈ R × H,

vx1 = 0, (t, x1, x2) = (t, 0, x2) ∈ R × ∂H.
(69)

It is easy to see that the function v is a subsolution of (69).
In the following lemma, we construct a supersolution which looks like the function v for

very negative times, up to some exponentially small terms.

Lemma 6 There exist some constants σ > 0, δ > 0 and T < 0 such that the function

v̄(t, x1, x2) = min
{
v
(
t + σeδt , x1, x2

)+ δeδ(x1+t), 1
}

(70)

is a supersolution of (69) for t ≤ T and (x1, x2) ∈ H.

Proof Let

ω4 = min(ω2c f cosα, ω3c)

2
> 0,

where ω2 and ω3 are given in (64) and (65). Choose δ such that

0 < δ < min(1, ω4, θ/2) and f ′ ≤ 0 on [1 − δ, 1]. (71)

It follows from (61) that there exists a real number A > 0 such that

φ(x1, x2) ≥ 1 − δ for all x2 ≤ |x1| cot α − A,

φ(x1, x2) ≤ δ for all x2 ≥ |x1| cot α + A.
(72)

Equation (66) implies that there exists a constant κ > 0 such that

sup
−A≤x2−|x1| cot α≤A

φx2(x1, x2) = −κ < 0. (73)

Choose σ > 0 such that

σcκ ≥ L = max
u∈[0,1] | f

′(u)|. (74)
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Set

ρ4 = (sin α + cosα)max(ρ2, ρ3e
ω3cσ ) > 0.

Let T < 0 be such that

T ≤ −2σ < 0 and δ2eδt ≥ ρ4e
ω4t for all t ≤ T .

Similar to the Lemma 5.1 of Hamel [11] combining with Proposition 1, we can prove that
v̄x1 ≥ 0 on (−∞, T ] × ∂H in the region where v̄ < 1.

Since f (1) = 0, it is sufficient to show that

v̄t ≥ Δv̄ + f (v̄)

on the region (t, x1, x2) ∈ (−∞, T ] × H such that v̄ < 1. Since v satisfies (1) in R
2 and

δ < 1, thus

L (t, x1, x2) := v̄t (t, x1, x2) − Δv̄(t, x1, x2) − f (v̄(t, x1, x2))

= vt (t + σeδt , x1, x2) + σδvt (t + σeδt , x1, x2)e
δt + δ2eδ(x1+t)

− Δv(t + σeδt , x1, x2) − δ3eδ(x1+t) − f (v̄(t, x1, x2))

≥ f
(
v(t + σeδt , x1, x2)

)− f (v̄(t, x1, x2)) + σδvt
(
t + σeδt , x1, x2

)
eδt

(75)

For simplicity, by (68), we can set

v
(
t + σeδt , x1, x2

) = φ(ξ1(x1, x2), ξ2(t, x1, x2)),

where

ξ1(x1, x2) = x1 sin α − x2 cosα and ξ2(t, x1, x2) = x1 cosα + x2 sin α − ct − cσeδt .

Firstly, if ξ2(t, x1, x2) ≤ |ξ1(x1, x2)| cot α − A, then (72) implies that

1 > v̄(t, x1, x2) > v
(
t + σeδt , x1, x2

) = φ(ξ1(x1, x2), ξ2(t, x1, x2)) ≥ 1 − δ.

It follows from (71), (75) and vt > 0 that one has

L (t, x1, x2) ≥ f
(
v(t + σeδt , x1, x2)

)− f (v̄(t, x1, x2)) + σδvt
(
t + σeδt , x1, x2

)
eδt

≥ 0. (76)

Secondly, if ξ2(t, x1, x2) ≥ |ξ1(x1, x2)| cot α + A, then it follows from (71), (72), x1 ≤ 0
and t ≤ T < 0 that

0 < v
(
t + σeδt , x1, x2

)
< v̄(t, x1, x2) = v

(
t + σeδt , x1, x2

)+ δeδ(x1+t) ≤ 2δ < θ.

Since f = 0 on [0, θ ] and vt > 0, then

L (t, x1, x2) ≥ f
(
v(t + σeδt , x1, x2)

)− f (v̄(t, x1, x2)) + σδvt
(
t + σeδt , x1, x2

)
eδt

≥ 0. (77)

Lastly, if −A ≤ ξ2(t, x1, x2) − |ξ1(x1, x2)| cot α ≤ A, then

f
(
v(t + σeδt , x1, x2)

)− f (v̄(t, x1, x2))

= f
(
v(t + σeδt , x1, x2)

)− f
(
v(t + σeδt , x1, x2) + δeδ(x1+t)

)

≥ −Lδeδ(x1+t)
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and

vt (t + σeδt , x1, x2) = −cφx2(ξ1(x1, x2), ξ2(t, x1, x2)) ≥ cκ.

It follows from (74) and x1 ≤ 0 that

L (t, x1, x2) ≥ −Lδeδ(x1+t) + σδcκeδt ≥ δ(σcκ − L)eδt ≥ 0. (78)

Combining with (76), (77) and (78), one has L (t, x1, x2) ≥ 0 for all (t, x1, x2) ∈
(−∞, T ] × H such that v̄(t, x1, x2) < 1. This completes the proof. ��
Proof of Theorem 3 It follows from the positivity of vt and the definition of v̄ that
v(t, x1, x2) < v̄(t, x1, x2) in R × H . For any n ∈ N such that n > |T |, let vn be the
solution of the Cauchy problem associated to (69) for times t > −n, with initial condition

vn(−n, x1, x2) = v(−n, x1, x2) for all (x1, x2) ∈ H.

Since (v, v̄) is a couple of sub-supersolution of the problem (69), the maximum principle
implies that

0 < v(t, x1, x2) ≤ vn(t, x1, x2) ≤ v̄(t, x1, x2) ≤ 1

for all −n < t ≤ T and (x1, x2) ∈ H and that

0 < v(t, x1, x2) ≤ vn(t, x1, x2) ≤ 1 for all (t, x1, x2) ∈ (−n,+∞) × H . (79)

In particular, for every (t, x1, x2) ∈ R × H , the sequence (vn(t, x1, x2))n>max(|T |,|t |) is
nondecreasing. Furthermore, since vt > 0, (79) and the maximum principle yield that vn is
increasing with respect to time t in H .

It follows from monotone convergence and standard parabolic estimates up to the bound-
ary that the functions vn converge to a solution v of (69) as n → +∞ in C1,2

loc (R × H).
Furthermore, one has

0 < v(t, x1, x2) ≤ v(t, x1, x2) ≤ v̄(t, x1, x2) ≤ 1 for all t ≤ T and (x1, x2) ∈ H , (80)

and

0 < v ≤ v ≤ 1, vt ≥ 0 in R × H .

In particular, since for each fixed (x1, x2) ∈ H , the function v̄(t, x1, x2) → 0 < 1 as
t → −∞, then it follows from (80) and the strong maximum principle that 0 < v < 1 in
R × H .

Now we construct a solution u of (1) in R
2. Define u in R × R

2 as

u(t, x1, x2) =
{

v(t, x1, x2) t ∈ R, x1 ≤ 0, x2 ∈ R,

v(t,−x1, x2) t ∈ R, x1 > 0, x2 ∈ R.

Since v satisfies (69) in the half-plane H with Neumann boundary conditions, then u is a
classical time-global solution of (1) in the whole plane R

2. Furthermore, 0 < u < 1 in
R × R

2,

v(t,−|x1|, x2) ≤ u(t, x1, x2) for all (t, x1, x2) ∈ R × R
2

and

v(t,−|x1|, x2) ≤ u(t, x1, x2) ≤ v̄(t,−|x1|, x2) for all t ≤ T and (x1, x2) ∈ R
2.
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Therefore, by the definition of v and (62), one has

max(φ f (−|x1| sin(2α) − x2 cos(2α) − c f t), φ f (x2 − c f t)) ≤ u(t, x1, x2)

for all (t, x1, x2) ∈ R × R
2. And it follows from the definition v̄ and Proposition 1 that

u(t, x1, x2)

≤ max(φ f (−|x1| sin(2α) − x2 cos(2α) − c f t − c f σe
δt ), φ f (x2 − c f t − c f σe

δt ))

+ ρ1e
−ω1

√
(|x1| sin α+x2 cosα)2+(|x1| cosα−x2 sin α+ct+cσeδt )2 + δeδ(t−|x1|)

for all t ≤ T and (x1, x2) ∈ R
2.

For t ≤ 0, let

Pl
t = (ct cosα, ct sin α), Ll

t = Pl
t + R+(cos(2α), sin(2α)),

Pr
t = (−ct cosα, ct sin α), Lr

t = Pr
t + R+(− cos(2α), sin(2α))

and

Γt = Ll
t ∪ [Pl

t , P
r
t ] ∪ Lr

t for all t ≤ 0, (81)

where the superscript l (resp. r ) stands for left (resp. right). Define

Γt =
{
(x1, x2) ∈ R

2
∣∣x2 = | tan(2α)||x1| + c f t

| cos(2α)|
}

for all t > 0. (82)

Thus, for every t ∈ R, Γt can be written as a graph Γt = {(x1, x2) ∈ R
2; x2 = ϕ̂t (x1)},

where ϕ̂t : R → R is a Lipschitz-continuous function. For all t ∈ R, define

Ω+
t = {(x1, x2) ∈ R

2
∣∣x2 < ϕ̂t (x1)} and Ω−

t = {(x1, x2) ∈ R
2
∣∣x2 > ϕ̂t (x1)}. (83)

Obviously, the sets (Ω±
t )t∈R and (Γt )t∈R satisfy the general properties (5) and (6).

Similar to the proof of Lemma 5.2 of [11], the function u is a transition front connecting
0 and 1 for problem (1) in R

2 with the sets (Ω±
t )t∈R and (Γt )t∈R.

Now we prove that the solution u is not invariant as time runs with any moving frame.
That is, it satisfies the conclusion of Theorem 3. Assume by contradiction that there exist
a function Φ : R2 → (0, 1) and some families (Rt )t∈R and (Xt )t∈R = (x1,t , x2,t )t∈R of
rotations and points in R2 such that

u(t, x1, x2) = Φ(Rt (x1 − x1,t , x2 − x2,t )) for all (t, x1, x2) ∈ R × R
2.

Then there is M ≥ 0 such that

Rt (Γt − Xt ) ⊂ {(x1, x2) ∈ R
2
∣∣d((x1, x2), Rs(Γt − Xs)) ≤ M} for all (t, s) ∈ R

2,

which is contradicted with the definitions of the sets Γt defined as (81) and (82). Whence,
Theorem 3 holds in R

2.
Now, we extend the transition front u trivially in RN (N ≥ 3). Let

ũ(t, x1, . . . , xN ) = u(t, x1, x2) for all (t, x1, . . . , xN ) ∈ R × R
N .

Obviously, the function ũ is a transition front connecting 0 and 1 for problem (1) in RN with
the sets

Ω̃±
t = {(x1, . . . , xN ) ∈ R

N
∣∣(x1, x2) ∈ Ω±

t } for all t ∈ R

and satisfies the desired conclusion. This completes the proof of Theorem 3.
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