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Abstract This paper is concerned with combustion transition fronts in RN (N > 1). Firstly,
we prove the existence and the uniqueness of the global mean speed which is independent
of the shape of the level sets of the fronts. Secondly, we show that the planar fronts can
be characterized in the more general class of almost-planar fronts. Thirdly, we show the
existence of new types of transitions fronts in RY which are not standard traveling fronts.
Finally, we prove that all transition fronts are monotone increasing in time, whatever shape
their level sets may have.
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1 Introduction

This paper investigates reaction diffusion equations of the type

ur = Au+ fQu), (t,x)eRxRY, )
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where N € N, u, = g—‘t‘ and A denotes the Laplace operator with respect to the space
variables x € RV. The nonlinear reaction term f(u) is of the “ignition temperature” type,

thatis, f : [0,1] > Risa C! function such that

30 €(0,1), f=00n[0,0]U{l}, f>0o0n(H,1)and (1) <O. 2)
Such a profile can be derived from the Arrhenius kinetis with a cut-off for low temperatures
and from the law of mass action. The real number 6 is the ignition temperature, below which

no reaction happens.
In any dimension N > 1, standard planar traveling fronts are solutions of the type

u(t,x)=a¢r (x~e—Cft),

where ¢ is any given unit vector of RV, ¢ r € Ris the propagation speedand ¢ : R — [0, 1]
is the propagation profile, such that

¢} +crd+ f(ps) =0 inR,
$r(—00) =1 and ¢s(+00) = 0.

3

The profile ¢ is then a heteroclinic connection between the state 0 and the stable state 1.
The level sets of such traveling fronts are parallel hyperplanes which are orthogonal to the
direction of the propagation e. These fronts are invariant in the moving frame with speed c s
in the direction e. It is well known [1] that such front exists and is unique up to translation.
Besides, the speed ¢ is positive which has the sign of fol f(s)ds [5] and the function ¢ is
decreasing.

In RV with N > 2, propagating wave fronts contains more types of traveling fronts
except planar traveling fronts, such as V-shaped traveling fronts in two-dimensional spaces,
pyramidal traveling fronts with non-axisymmetric shape in three-dimensional spaces and
conical-shaped axisymmetric traveling fronts in high-dimensional spaces. The profiles of
these fronts are still invariant in a moving frame with constant speed. But they have non-
planar level sets. For instance, (1) admits the conical-shaped fronts of the type

u(t, x) = (Ix'|, xy —ct),

where x’ = (x1,...,xy_1) and x| = ()cl2 + . +x5_1)1/2 whose profiles are invariant and
which have non-planar level sets. For the existence, uniqueness, stability and other qualitative
properties of these non-planar traveling fronts, we refer to [7,8,12-14,24,25,33-36] and the
references therein.

As we introduced above, Eq. (1) admits many types of traveling fronts. However, they have
some common properties. For instance, the solutions u converge to the equilibrium states 0
or | far away from their moving or stationary level sets, uniformly in time. Their common
properties led us to ask whether it is possible to introduce a more general notion of traveling
fronts to include all types of waves. Berestycki and Hamel [3,4] give an affirmative answer.
They introduce the general notion of transition fronts. Before we describe the definition of
transition fronts, we firstly introduce some notions. For any two subsets A and B of RY and
for x € RV, we set

d(A, B) = inf{|x — y|, (x, y) € A x B} “)
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andd(x, A) = d({x}, A), where |- | is the Euclidean norm in RV . Let (£2; );cr and (£2;");cr
be two families of open nonempty subsets of R, which satisfy

QrNet=0,

02, =392, =13,

-Unyue =RrY,

sup{d(x, I)|x € 2} = sup{d(x, I})|x € 2,7} = +o0

VteR, )

and
inf{sup{d(y, I}); y € 2", |y — x| <r}|t € R, x € I} = +o0,
] r— +o00. (6)
inf{sup{d(y, I7): y € 2, .|y — x| < r}|t € R, x € I}} = +o0,
Notice that the condition (5) implies that the interface I is not empty for every ¢ € R.
Definition 1 (See[3,4]) For problem (1), a transition front connecting 0 and 1 is a classical

solution u : RxRY — (0, 1) for which there exist some sets (.Q,i),eR and (I});cR satistying
(5) and (6), and, for every & > 0, there exists M > 0 such that

VieR Vxe R, dx,I})>M=u(t,x)>1—¢,

(7
VieR, Vxe 2, dx,I;})>M = u(t,x) <e.
Furthermore, u is said to have a global mean speed A (> 0) if
d(ly, Iy)
ﬁ_)A as |t —s| — +oo. (8)
-5

Remark 1 Notice that, for a given transition front # connecting 0 and 1, the sets (QQ—L),ER
and (I7);cr are not uniquely determined. In fact, for any sets (I7);cR, if

sup max (sup d(x, f‘,), sup d(x, 1",)) < 400,

teR xely xely

then the family (f}),eR with corresponding sets (ﬁ;t),e]g also satisfies (5), (6) and (7). That
is,~the solution u is also a transition front connecting 0 and 1 with the families (§,i) rer and
(I't)rer.

Notice furthermore that for any transition front # connecting 0 and 1, the interfaces (I);er
have uniformly bounded local oscillations, that is

Yo >0, sup{d(I}, Is), t,s €R, |t —s| <o} < +o0. )

In fact, it is shown in Lemma 3 and Remark 3 of [10], in the case of reaction—diffusion
equations (1) with nonlinearity f satisfying f(#) > Oforu € (1 — 4§, 1), where 0 < < 1.
Obviously, the assumptions of nonlinear reaction term f in this paper (see (2)) satisfy the
above condition with § =1 — 6.

In [3,4,11], the authors have showed that all the known standard traveling fronts (planar
and non-planar traveling fronts) are transition fronts in the sense of Definition 1. In particular,
Hamel [11] proved that for Eq. (1) with bistable nonlinearity there exist new types of transition
fronts in RY which are not invariant in any frame as time runs. This property is different from
standard traveling fronts which are invariant in a moving frame with constant speed. It also
shows the broadness of Definition 1. In recent years, many papers have been devoted to the
investigation of the existence and stability of transition fronts. For bistable transition fronts,
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we refer to [3,4,10,11]. For Fisher-KPP transition fronts, the readers can see [15,16,21—
23,28,31,38]. Transition fronts for equations with combustion nonlinearity, the investigations
mainly focus on the case of the heterogeneous equationsin R, see [19,20,29,30,32,37,39,40].
In this paper, we prove that even the homogeneous combustion equation (1) in RN (N > 1)
also has many deep properties, such as the existence of new transition fronts and general
estimates shared by all transition fronts.

The first main result of this paper proves the existence and uniqueness of the global mean
speed for any transition fronts connecting the state 0 and the stable state 1, regardless of the
shape of the level sets of the transition fronts.

Theorem 1 For problem (1), any transition front u connecting 0 and 1 has a global mean
speed A. Furthermore, this global mean speed A is equal to cy.

The second result of this paper gives a characterization of the planar fronts ¢ s (x -e —cst)
among the more general class of almost-planar transition fronts introduced in [4], and defined
as follows.

Definition 2 (See[4,11]) A transition front u in the sense of Definition 1 is called almost-
planar if, for every ¢ € R, the set I'; can be chosen as the hyperplane

F[:{xeRN|x~e[:SI}

for some vector e; of the unit sphere S¥-1 and some real number &.

From the definition, we can easily see that the level sets of almost-planar fronts are in
some sense close to hyperplanes, even if they are not a priori assumed to be planar. The
following theorem shows that planar fronts ¢ s (x - e — c¢st) for problem (1) fall within the
more general class of almost-planar fronts.

Theorem 2 For problem (1), any almost-planar transition front u connecting 0 and 1 is
planar, that is, there exist a unit vector e of RN and a real number & such that

u(t,x) =¢sr(x-e—cpt+&) forall (t,x) e R x RV,

Thirdly, we show the broadness of transition fronts. In other words, we prove the existence
of new types transition fronts of the Eq. (1), which are not invariant as time runs in any moving
frame. Recall that the profiles of standard traveling fronts are invariant in a moving frame
with constant speed.

Theorem 3 Let N > 2. The problem (1) admits transition fronts u connecting 0 and 1 which
satisfy the following property: there is no function ® : RN — (0, 1) (independent of t) for
which there would be some families (R;);cr and (x;)icr of rotations and points in RN such
that u(t, x) = @ (R;(x — x;)) forall (t, x) € R x RN,

Finally, we establish the time monotonicity of the transition front u.

Theorem 4 Forproblem (1), any transition front u connecting 0 and 1 is monotone increasing
in time t. That is, u; > 0 for all (¢, x) € R x RN,

In fact, in order to prove Theorem 4, it is sufficient to prove that the transition front u is
an invasion of the state 0 by the state 1, in the sense that the sets (.Qti),e]R can be chosen so
that

QFt c @f forallt < sand d(I}, I'y) — +ooas |t —s| — ~+o0,
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since it is easy to check that the problem (1) and the nonlinearity f satisfy all assumptions
of [4, Theorem 1.11]. Similar to [10], it follows from Theorem 1 and Lemma 1 (see Sect. 2)
that u is an invasion in the above sense with the families (.@i) and (f,) where for
some constant 7y > 0,

teR teR’

5+ +
ka+r =AQ/<T0A forany k € Zand 0 <t < 19,

I :=092" =9, foranyteR.

Now we give a brief stated on the methods of our proofs. Firstly, in order to prove the
existence and the uniqueness of the global mean speed of the transition fronts connecting
0 and 1, we need introduce two radially symmetric functions and show their dynamical
properties, see Lemmas 1 and 2 below. Secondly, using the one-dimensional stability of the
planar front and parabolic Liouville type result of Berestycki and Hamel [3, Theorem 3.1], we
show that the planar fronts can be characterized by the more general class of almost-planar
transition fronts. Thirdly, by mixing three planar fronts moving in three different directions,
we show that the new transition fronts exist in dimension N = 2. And by trivially extending
the two-dimensional solutions in the variables x3, . .., x, we obtain that the new transition
fronts exist in all dimensions N > 3.

Here we would like to point out that the main results of this paper (Theorems 1, 2, 3 and
4) are similar to those established for Eq. (1) with bistable nonlinearity by Hamel [11] and
Guo and Hamel [10], where the reaction term f : [0, 1] - Risa C! function such that

F(0)= f(1)=0, f/(0) <0and /(1) <O.

But in this paper we treat the combustion case, in particular, the reaction term f satisfies
f(u) = 0 for any u € [0, 6] with some 6 € (0, 1), which is essentially different from the
assumption f'(0) < 0 in the bistable case. Since the signs of f/(0) and f’(1) play important
roles in the estimates of speeds and constructing the super-sub solutions, some new difficulties
occur in the combustion reaction diffusion equations. To overcome these difficulties, we need
some new techniques and establish some new estimates. See Lemmas 1, 2, 4 and Proposition
1 below for more details.

The rest of this paper is organized as follows. Section 2 proves the existence and the
uniqueness of the global mean speed among all transition fronts. That is, we give the proof
of Theorem 1. In Sect. 3, we prove Theorem 2. That is, we give a characterization of the
planar fronts among the more general class of almost-planar transition fronts. In Sect. 4, we
construct new types transition fronts. That is, we are devoted to the proof of Theorem 3.

2 The Global Mean Speed

In this section, we prove that any transition front of the Eq. (1) has a global mean speed
and this speed is unique. We first introduce auxiliary notations for some radially symmetric
functions and we show some of their dynamical properties. The following two key properties,
Lemmas 1 and 2 below, will provide a sharp lower bound and a upper bound for the speed of
the interfaces I'; of any transition front connecting 0 and 1 for the problem (1), respectively.
In the following, let0 < 8 < 1. Forany R > 0, let v'}; denote the solution of the Cauchy

problem
(v'{;) —Av'{;—i—f(v']’;), t >0, xGRN, (10)

;=
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with initial value

/ B Ixl <R,
0,x) = 11
(00 {o, x| = R. v

Lemma 1 Thereis R > 0 such that the following holds: for any € € (0, cr], thereis T, > 0
such that )
v{e(t,x) >pB forallt>T;and |x| < (cf—e)t. (12)

In fact,

vljg(t, ) — 1 uniformlyin {x € ]RN||x| < (cy —s)t} ast — +oo. (13)

Proof Let g be any given CL([0, 17) function which satisfies

g(0) =g(0) =g(1)=0, ¢'(0) <0, g'(1) <0, g'®) >0,
1
g<0on(0,0), 0<g< fon(, 1),/ g(s)ds >0
0

and
&

0<Cf—Cg§§, (14)

where c, is the wave speed of the planar front ¢, which satisfies (3) with the nonlinearity g.
In fact, g is of the bistable type. Such fronts exist, see [2,9,17]. It is easy to see that f > g
on [0, 1]. Then the comparison principle implies that

1> vh(t,x) = vd @, %), V(1% €0, +00) x RV, (15)

For the solution v of the equation (10)-(11) with replacing f by g, it follows from Lemma
4.1 of [11] that we have

&
vi(r, ) = 1 uniformly in {x € RN||x| < (cg — 5) t} ast — +oo.

Inequalities (14) and (15), together with the above formula, yield that (13) holds. This com-
pletes the proof. m}

Lemma 2 Forany ¢ > 0, there exist some positive real numbers o, T, and R, such that for
all R > R, the solution wg of the following Cauchy problem

(wg); = Awg + f(wg), >0, xeRY,
with initial value

ag, |x| <R,

wMQ”={1|ﬂ>R

satisfies

R
wr(t,x) <3a, forall T, <t < and |x| < R — (cy +e)t. (16)
c &

Proof Let § be chosen so that

% on [l —4,1]. (17)

9 /
0<5<§ and ' <
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Since qb’; (s) ~ve “/% as s — +o0 with v > 0, one can choose C > 0 such that
¢y >1—38on(—00,—=C], ¢y < §on[C, +00) and ¢;§ >0on[C, +00). (18)
Since ¢} is negative and continuous on R, there is ¥ > 0 such that
—¢}-2K>0 on[—C,C]. (19)
Set L = max |f’(u)|. For every ¢ > 0, let
uel0,1]
. (0 ke
O<ac <min|—, — ).
4" 8L
Choose D, > 0 such that
¢ >1—2a; on (—o0, —D;] and ¢ < ae on [D;, +00). (20)

Let pq, be the solution of the following ordinary differential equation

P, (1) = f(pa,),
Pa, (0) = a.

Since a € (0, 6), f is Lipschitz-continuous and f = 0 on [0, 8], then pg, (1) = «, by the
existence and uniqueness of solution of the ordinary differential equation. It follows from

the maximum principle and (2) that for any R > 0,
0 < po,(t) <wg(t,x) <1 forallz >0, xeR".
Then the following inequality holds
(Wr = pa )t < AWR = Po,) + LWR — Pa)-

Thus for the above equation, the assumptions of the initial value yield

Lt 2
[x=y|
0 < wr(t,x) — po, (1) < — / e~ "F dy forall +>0andxeRY.

N
Amt) 2
(@) [yI=R

Therefore, if 0 < B < R and |x| < R — B, one infers that

elt 2
0 < wr(t. x) — o (1) < —— / ez,
(4r)>

B
-~ B
‘Z‘_ﬁ

Thus, take a real number 7 > 0 and there exists B > 0 such that for all R > B and

|x] < R— B,
WR(T, x) — po, (T) < g,

whence
wr(T, x) < pa, (T) + g =20, forall R > B and |[x| < R — B.

@2y
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It is elementary to check that for every ¢ > 0, there is a C? function &, : [0, +o0) — R
satisfying the following properties:
0<h, <1 onl0,+00),
h,, =0 on aneighborhood of 0,
he(r) =r on[Hg, +0o0) for some H, > 0, (22)
N — Dh,
WV = Dhe ) + 1 (r) < % on [0, +00).
P

Notice in particular that

r <hg(r) <r+hs0) forallr>0. (23)
We choose T, > T > 0 such that
%t > he(0)+ B+2D, forallr > T, 24)
and R, > 0 such that
R, > max(B, (c; +£)T,) and % > B+ D, +C+ H,. (25)

In the sequel, R is arbitrary real number such that
R > R,. (26)
Forall (¢, x) € R x RN, we set
W(t,x) = min (¢7(E (1, x) + 20, 1),
where

= £
E(t,x) = —he(Ix]) — (cf + E) (t—=T)+R—B — D,.

Intheset ¥ = [T, Cf’ig] x R¥ let us then check that W is a supersolution for the problem

satisfied by wg.
Since f(1) = 0, it is sufficient to check that

L, x)=W,(t,x) — AW(t,x) — f(W(t,x))>0 for all (¢, x) € X such that W(z, x) <1.

Since ¢ 7 is of class C? and A vanishes in the neighborhood of 0, then W (¢, x) = o (@, X))+
20, is of class C2 in the set where W (z, x) < 1.

In this paragraph, let (¢, x) be any point in X such that W (¢, x) < 1. Since qﬁ;ﬁ + qub} +
f(¢s) =0inR, then by (22) and ¢>/f < 0, there holds

L) =f @pEE, ) — fFW(t.0) + (A — BL(xD)DPFE(r, x))

& (N — l)h/s(|x|) 1" /(&
) (5 - DD h8(|x|)> 8, E(t, 1))

= £ @20 = FWE.x)) = 204E @ 0) + (1= BLxD))F E . 0).

Firstly, if &(t,x) < —C, then (18) and the definition of W yield 1 — § < ¢f(§(t, x)) <
W(t, x) < 1. Whence by (17), one gets

F@rE@x))) = fFW(,x) = = (Dee.
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In addition, it follows from (25) and (26) that the inequalitues E(t,x) < —CandT <t <

R .
e yield

& &R
h >—< 7)t—T R—B—-D,+C>—"  _B_D,+C=> H,.
e(lx)) > Cf+2 ( ) + e+ C = 2(Cf+8) e +C > H;

From the properties (22), the inequality i, (|x|) > H, implies that 4} (|x|) = 1. Therefore, if
&(t,x) < —C, then ¢’f < 0 implies

Z.x) = —f (Dae = 79}E@,2) = 0.

Secondly, if £(t, x) > C, then by (18), ¢ (£(t, x)) < 8. Thus,

0<prE(t,x) <W(t,x) <8+ 20 <0.
Since f = 0 on [0, 0], qb"; > 0 on [C, +00) from (18), 0 < h,(|x]) < 1 on [0, +00) and
d)} < 0 on R, one gets that, if £(z, x) > C, then

L, x) = —Zqﬁ}(é(t,x)) + (1= (h(Ix )¢ EE, x)) = 0.
Lastly, if —C < &(¢, x) < C, then
[@pEE,x))) — fF(W(t,x) = —2La,
recall that L = uren[gﬁ] | f/(u)]. It follows from (24) and (26) that £(f,x) < Cand T <1t <
s imply

eR

e . SR _
2(cy +e)

h8(|x|)Z—(Cf—i-z)(t—T)—i-R—B—Ds—C B—D,—C>H,.

Thus by (22), h,(]x]) = 1. Consequently, it follows from the definition of «, and (19) that
L(t,x) > —2La, + % > 0.

On the other hand, at the time T, it follows from (21), (24), (26) and the definition of W
that
wr(T,x) <20, < W(T,x) forall |x] <R — B.
If |x| > R — B, then h(|x|) > |x| = R — B from (23), whence (T, x) < —D, and
W(T, x) = min (¢ (E(T, x)) + 2ae, 1) = min ((1 — 2a¢) + 20, 1) = 1 > wg(T, x)
from (20) and the fact that wg < 1 on (0, +00) x RV, Thus
wr(T,x) < W(T,x) forallx e RV,

As a conclusion, the maximum principle implies that, forall 7 < ¢ < Cf% and x € RY,

wg(t,x) < W(t,x) < ¢p(E(1, %) + 20

R
crte

he(Ix]) < |x[+he(0) < R — (cr + &)t + he(0)

Forall T, <t <

and |x| < R — (cy + &)t, there hold
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and
_ £
g(x,x)z—R+(cf+e)r—hg(0)—(cf+§)(r—T)+R—B—D£
=5~ - B-D,

=Dy

from (24). Thus, (20) yields ¢f(§(z,x)) < ag. Whence, if T, <t < Cf’is and |x| <
R — (cy + &)t then

wg(t, x) < ¢f(§(t7 X)) + 20 < e + 20 = 30,
This completes the proof. O

Proof of Theorem 1 Let u be any transition front of problem (1) which connects the equilib-
rium points 0 and 1. For any € € (0, c¢], let ¢ be defined asin Lemma2and 60 < B < 1.1t
follows from Definition 1 that there is M > 0 such that
VieR Vxe R, dx,I})>M= B <u(t,x) <1, on
VieR Vxe®2 , dx,I})>M=0<u(t x) <a.
Let R > 0 be as in Lemma 1. Without loss of generality, one can assume that R > M (since
the functions v Ij; are nondecreasing with respect to the parameter R > 0). By (6), there exists
areal number r > 0 such that

VieR, Vxel;, 3yfet |x—y*<r and diy% 1) = 2R. (28)

Our goal is to prove
d(Iy, I,
%eq as |t —s| — +o0.

For this purpose, we divide our proof into two steps. In the first step, we prove inequality for
the lim inf. At the second step, we show inequality for the lim sup.
Step 1. the lower estimate We show that

A1)

lim inf > ¢y (29)

|t—s|—+00 |t —S|
We assume that (29) does not hold, then one has
d(ly, I
liminf 20018 F—2e (30)
lt—s|—>+oo |t — 5|

for some & > 0 small enough. Thus, there exist two sequences (#x)xen and (sx)xen such that
|ty — s| = 400 as k — +o0 and

d(Iy, I's,) < (cy — 2¢)|ty — s¢| for k large enough.

Without loss of generality, we assume that #;, < sy for all X € N. The definition of the distance
d(Iy,, I'y,) implies that there exist two sequences (xx)ken and (Zx)keN in R¥ such that

Xk € Iy, zx € Ty, and |x; — z| < (cp — 2¢)(sg — 1) for k large enough.
First of all, by (28), there exists a sequence (y,;Ir )ken of points in R¥ such that

i €2, lxk—yil<r and d(y;, I},) > 2R forallk € N.

I
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Thus, forevery k € Nand y € B(y,:r, R),onehas y € .Q,;L andd(y, I';,) > R > M, whence
u(ty, y) > B from (27). By (11), one has

u(ty, x) > vIJ;(O,x — y,:r), x € RN,
Thus the maximum principle yields
u(t,x) > v,j;(t — t, X —y,j) forallt >ty and x € RV,
Let T, be defined as in Lemma 1, thus Lemma 1 yields that for every k € N,
u(t,x) > p forallt >t + T, and |x — yk+| <(cy—8o)t—1). 31
Next, it follows from (28) that there exists a sequence (¥, )ken of points in R¥ such that
Ve € .QS;, lzk =y, | <r and d(y, ,Is,) = 2R > M forall k € N.

Property (27) implies that
u(se, y, ) < a forallk € N. (32)

Finally, notice that for all k € N,

e ==y = 2kl +lzk =2l + e =y T < 7+ (ep = 2e) (s — 1) +r
Thus, it follows from s — ty — 400 as k — +oo that s; > #; + T, for k large enough and
v, — y,jl < (cy —&)(sy — ) for k large enough.

Choose t = s and x =y, in (31) for k large enough. Thus,
u(sg, y, ) = B for k large enough.

But o, < S contradicting (32). Therefore, the assumption (30) cannot hold. That is,
A, 1) _

lim inf >cy.
[t—s|—>+oco |t — 5| :
Step 2: the upper estimate We show that
d(Iy, I
lim sup anry) _ (33)
li—s|>4o00 |t — 5]
Let us assume by contradiction that
5 dIy, Iy)
imsup ——— >cy + 3¢ (34)

for some ¢ > 0 small enough. Then there exist two sequences (#x)xeN and (sg)xen of real
numbers such that |tz — s;| — 400 as k — +o00 and

d(Iy, I'y,) > (cy + 3¢)|ty — s¢| for k large enough.

Without loss of generality, one can assume that #; < si for all k € N. For each k € N, pick a
point z; on I, . It follows from (28) that there are two sequences (y,it) xeN of points in RN
such that

Vi € 25, lu -yl <randd(yf. Iy) > M forallk € N.

Thus, by (27), one has
O <ulsp,y) <ae <3ae <0 <p Su(sk,y]j) <1 forallk € N. (35)
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It follows from d(zx, I,) > (¢ + 3&)(sx — tx) > 0 for k large enough that there holds
either B(zx, (cy + 3¢&)(sk — ) C .Ql:r or B(zk, (cr +3e)(sk — 1)) C 2, .

We claim that B(z, (¢ + 3¢)(sk — #&)) C £2,, for k large enough. If not, up to extraction
of a subsequence,

B(zg, (cp 4 3e)(sk — 1)) C .Q,'[ for all k large enough. (36)

Since sy — tx — +00 as k — 400, then for k large enough,
B(zx, R) C 2, andd(y, I},) = M forally € Bz, R),
recall that R > 0 is defined as in Lemma 1. Thus for k large enough,
u(ty,y) = p forally € B(zx, R),
from (27). It follows from (11) that one has
u(ty, x) > vh(0,x — z5), forall x € RV,

By the maximum principle, one gets

u(t, x) > vh(t —t,x —zz) foralls > f; and x € RY. (37)

Let T,y > 0 be defined as in Lemma 1 with &’ = %f The inequality (37) and Lemma 1 yield
that, for k large enough,

w(t,x) > B forallt >t + T and |x — 24| < (cf — &)t — ) = %(r — 1.
Since ¢y > 0 and sx — fx — +00 as k — +00, then for k large enough,
- cr
sk =tk + T and |y, —zkl <7 < 7(5k — k).

Thus, the previous inequality imples u (s, y, ) > B fork large enough. Thisis in contradiction
with (35). Whence for k large enough,

B(zk, (cy +3&)(sk — 1)) C 82, .
Since sy — tx — +00 as k — 400, then for k large enough,
B(zk, (cr +2e)(sk — 1)) C 82, and d(y, I,) > M for all y € B(zx, (¢ + 2&) (s — t))-
Thus by (27), one has
u(ty, y) < ag forally € B(zk, (cy + 2&)(sk — t)).
It follows from the definition of w(c,12¢)(s,—4) (as in Lemma 1) that for k large enough,
U(te, X) < Wie 420y —10) (0, x — 70) forall x € RV,
Thus the maximum principle implies

u(t, x) < Weep12e)sp—10) (¢ — e, x —zx) forallz > and x € RV,
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Since sx — ty — 400 as k — o0, then for k large enough, one has (¢ +2¢)(sy — ) > R,
and

(cr+2e)(sx — 1)
cr + ¢
i =zl <7 <elsk— 1) = (cp +28)(sk — 1) — (cp + &) (s — ),

Te <sp—t <

where T; > 0 and R; > (cy + ¢)T, > 0 are given by Lemma 2 so that (16) is valid for all
R > R;. Choose R = (cy +2¢e)(sp —tx),t = sp —ty and x = y,j — zx in (16) for k large
enough, one can obtain

sk, Yi) < Wiept2e)(sp—10) Sk — s i — 26) < 3.

This is in contradiction with (35). Whence the conclusion (33) follows.
Combining with the Step I and Step 2, the proof of Theorem 1 is thereby complete.

3 Almost-Planar Fronts

In this section, we characterize the planar fronts ¢ ¢(x - e — cyt) for Eq. (1) among the
more general class of almost-planar fronts. The proof of Theorem 2 mainly uses the one-
dimensional stability of the planar front ¢ [18] and the parabolic Liouville type result
of Berestycki and Hamel [3, Theorem 3.1]. Before the proof, we first give some auxiliary
lemmas.

Lemma3 Leru : R x RY — [0, 1] be a solution of (1) for which there are a real number
to € R and a unit vector e € SN~ such that

sup  u(to,x) -0 <resp. inf u(ty, x) — 1> as A — +oo. (38)

xRN x.e>A xeRN x.e<—A
Then property (38) holds at every time t| > to with the same vector e.

Proof Since for the case inf u(tp, x) — 1 as A — +oo, the proof of Lemma 3 is
xeRN x.e<—A

similar to [11, Lemma 3.1], we only give the proof for the case ~ sup  u(f,x) — O as
xeRN x.e>A
A — +oo.
Forany § € (0, 1), let v® be the solution of the following one-dimensional Cauchy problem

vf:vgy—i—f(v‘s), t>0, yeR,

1, y=<0,

8
0,y) =
(0,5 {8, y > 0.

Let p® : R — (0, 1) be the solution of the following ordinary differential equation

(o)) ) =’ @), >0,
p°(0) =36
Then by the maximum principle, one has

0<p’t) <t y) <1, t>0, yeR.
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Thus

s 5 el _Lol?
0 <Vt x)—p°@) < 5 e A dy,
(4rt)? Jy=0

where L = rn[%x1 ] | f/(u)|. Then the maximum principle and standard parabolic estimates
uelo,

imply that foreacht > 0, V(, ) is decreasing in R, V3 (¢, —00) = Land v (¢, +00) = p%(¢).
Assume that sup u(tp, x) > 0as A — +oo. Let ¢ € (0, 0) be arbitrary. Then
xeRN x-e>A
there exists a constant M such that

u(to, x) <v°(0,x-e— M), xeRV.
Thus it follows from the maximum principle that
u(ty, x) <v(n —to,x-e—M), 1 >1y, x € RV,
and whence
lim sup ( sup  u(ty, x)) <v(f — 1y, +00) = p°(t1 — 19), 1 > fo.
A—+00 \xeRN x-e>A

Since ¢ € (0,0), f is C! on [0, 1] and f = 0 on [0, €], then the existence and uniqueness
of solution of the ordinary differential equation yield that p®(¢) = ¢ for all t > 0. Therefore,
one has

0 < lim sup sup u(ty,x) | <pt—t9) =¢—>0 ase — 0.
A—+00 \xeRN x.e>A
This completes the proof. O
The following corollary can be obtained immediately from Lemma 3.

Corollary 1 Letu : R x RN — [0, 1] be a solution of (1) such that, for every time t € R,
there is a unit vector ¢; € SN~ such that

inf u(t,x) —> 1 and sup u(t,x) >0 as A — +oo. 39)
x€RN x-e,<—A x€RN x.¢,>A

Then e; = e is independent of time t.

Let u be an almost-planar transition front connecting 0 and 1, in the sense of Definition
2, for problem (1). That is, there exist some families (e;);cRr in SN-1 and (&)ter in R such
that

F,:[XERN}X'Q:EI}

for every ¢ € R. Up to changing ¢; into —e;, (5) and Definition 1 yields that (39) holds for
every ¢t € R. It follows from Corollary 1 that e; = e is a constant vector, whence

Qf:{xe]RN|x-e<g,} and Q;Z{xeRN|x-e>g,} (40)

forallr € R.
In Sect. 2, we have already proved that any transition front connecting equilibrium points
0 and 1 has a global mean speed c s. Here, for almost planar fronts, one has that

%eq as |t —s| - 4o0.
—s
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Then for any y € (0, 1), there exists a constant K > 0 large enough such that
yeplt —s| < 1§ — &l < 2cyrlt —s| for|r —s| = K. (4D

For n € 7Z, we define E, such that

g _ & t =nk,
T |G+ R G —nK), nK <1< (4 DK,

It follows from (9) that one has

Yo >0, sup & — &| < +o0.

(t,5)eR2,|t—s|<0

Thus, one gets

sup |& — & < +oc. (42)
teR
Moreover, one has
ye, < S(n+1)1;<— Enk <2c;.

Now we mollify the function E, to make it smooth. Define n € C*°(R) by

1 .
n() = Coxp (i) if lel <1,
0 if |z > 1,

where the constant C > 0 is selected so that fR ndz = 1.Foreache > 0, setn.(z) = %rz (f)
Let

€
£ —Fen = / ne@F_odz, 1R
—e

such that

€
3

~ d
sup|§f —&| <1 and ycy < 5
teR dt

Whence, (42) and (43) yield

<2cy forteR. (43)

sup |&f — & < 400,
teR

and hence, u(t, x) is still an almost-planar front with sets
ﬁ:lxeRN’x-ezéf}
and
ﬁlexeRN|x-e<$f], ﬁt_zlxeRN‘x-e>§f].
from Remark 1. Let « and 8 be two given real numbers such that
O<a<f<pB<l, (44)
where we recall that 6 is defined in (2). By the Definition 1, there is M > 0 such that

x-e—& <—-M= B <u(tx)<l,

45)
x-e—§&>M=0<u(x)<a.

Y (t,x) e Rx RV, {
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Lemma4 Foranyy € (0, 1),

u(t, x) < e vere—&—M) (46)
in X = {(t,x) ERXRN|X'€—§7 ZM}.
Proof Let ii(t, x) = Q™71 e=5=M 0n 95 = {(t,x) e Rx RV |x - e — & = M}, it
follows from (44) and (45) that

u(t,x) =0 >a > u(t, x).

Define
e*zinf{s>0}u—8§ﬁin2}.
Since u is bounded, ¢, is a well-defined real number and &, > 0. Furthermore, one has
wi:i=u—(u—6) >0 in X,

In particular,
w> & Onox. 47)

One only has to prove that &, = 0.
Assume by contradiction that &, > 0. Then there exists a sequence (&;,),en of positive
real numbers and a sequence of points (#,, X, ),eN in X such that

&y — & asn — +oo and u(t,, x,) < u(ty, x,) — &, foralln € N.

We claim that the sequence (x, - ¢ — S,i )neN is bounded. Assume not, up to extraction of
some sequence, one has

Xp -e—& — +oo, and then u(ty, x,) — 0 asn — +o00.
But
u(ty, xp) > u(ty, x,) + &, > €, > €4 >0 asn — 4o00.

This gives a contradiction. Thus, the sequence (x, - ¢ — fzi )nen is bounded.
It follows from (9) that for any o > 0, there holds

sup{d(I7, I%),1,5 € R, |t — 5| < 0} < +00.

Since (I);er are all parallel hyperplanes, it then follows that for any fix T > 0, there exists
a sequence (X,),eN such that

%, €T, foralln € Nand sup{d(x,.%,)} < +oc.
By (6), there exist » > 0 and a sequence (y,),eN such that
d(%n,yn) <r and y,-e—& _ > MforallneN.

Then there exists a sequence (z,),eN such that

€@, . and M=z, ¢e—& _ =yy-e—& . —d(.z) foralln e N. (48)

T

Since d(yp,zn) < yp e — Sfrr < d(X,, yn) < r and since the sequence (d (X, X;))neN iS
bounded, then the sequence (d(x,, Zn))neN is bounded.
Choose p > 0 so that

Pl —u)llLe@®xx) + 201 Ve (@ — w)||Lo®x ) < &x, (49)
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which is possible since i# and u have bounded derivatives. Choose K € N\ {0} so that
Kp > max (t, sup{d (x,, z4)|n € N}). (50)

For each n € N, then there exists a sequence of points (X,,0, Xu.1, ..., Xy, k) in X such
that

Xno=xn, Xnk =2pandd(X,;, Xn,i+1) <pforeach0<i <K — 1.

Foreachn e Nand0 <i < K — 1, set
i+1 i -
En,i = |:tn - K*T, Iy — ;l’:| X B(Xn,l', 20).

Since w(t,, x,) — 0asn — +00, (49) and (50) yield that w < &, in Ej, o for large n. It
follows from (47) and the connectivity of E, o that E,, ¢ C X for large n.
By the definition of X' and &, one has 0 < u# < @ in ¥. Then from (2) and (43), one has

_ _ _ _d&f _
u; — Au — f(u) :ycAfu—dit — ()/Cf)zu
_ def
=uycy i yey

>0

in X. On the other hand, u — &, < u < a < 6 in X. Assumption (2) implies that u — &, is
a subsolution of (1) in X'. Since f is of class C!, the function w satisfies inequations of the
type

w; > Aw+b(t, x)w in E, o

for n large enough, where the sequence (||b||z (g, o)) nen is bounded. Since w(t,, X, 0) =
w(ty, x,) — 0asn — +o0, it follows from the linear parabolic estimates that

T
w<ln - ?,XM) — 0 asn — +oo.

An immediate induction yields w (tn - Xn,i) — 0 asn — oo for eachi =

K!
1,..., K. In particular, fori = K,

w(ty, —1,2,) > 0 asn — 4o0.

But z, € ﬁz;—r and z, - e — E;_r = M for all n € N. As a consequence, for all n € N,
w (ty — T, 2,) > &4 from (47).
One has reached a contradiction, which means that &, = 0. Thus,

u(t,x) < Geverwe—§—M)
for all (¢, x) € X. This completes the proof. O

Proof of Theorem 2 For any fixed y € (0, 1), let v 8 and v, be the solution of the one-
dimensional Cauchy problem

v =vyy + f(v), t>0,yeR (&8
with initial condition
g ify < -1,
0,y) € C(R, O, and 0,y) = 52
400, y) € C(R, [0, B)) 500, ) {0 N (52)
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and v, (0, y) € C(R, [0, 1]),

50(0.y) > aon[~1,1] and 5,0,y =1 TY=0 53)
Ue(0,y) > on[—1,1] and 04(0,y) =
o y o y ee—nyy lfy Z 1’
respectively. It follows from (45) and Lemma 4 that for every 7o € R and x € RN,
vg(0,x e — &0 + M) <u(to,x) < (0, x - e — ¢ — M).
Thus,
vg(t —to,x - e — & + M) < u(t,x) < vt —t0,x - e — & — M). (54)

forall t > fo and x € RY, from the maximum principle. By [18], there exist two constants
> 0 and ® > 0 such that

ve(s, y) —@r(y —cps +§)

7 <Ae™®, 50, yeR,
o7 —cps +8)

and

PGS ek TS TR ) [ P
YORrrEe N

for some A > 0, A > 0, §eR and £ € R. In particular, since ¢fr(—00) = 1 and
¢ r(+00) =0, there exist 7 > 0 and B > 0 such that, forall s > T,

yﬂ(s,y)>oc if y<cys—B,
Ve(s,y) < B if y>crs+ B.
It follows from (54) that forall g <19+ T <'t,

u(t,x) >a ifx-e—& +M <cpt—19) — B,

. (55)
u(t,x) <p ifx-e—& —M=>cpt —19) + B.
By (45) and (55), for all 19 < ty + T < t, we have
EE—M+crt—t))—B <& +M,
t0 f t (56)

£ +M+cp(t—10)+B>§ —M.
By fixing # = 0, one gets that lim sup |§¢ — c 70| < |§5]+2M + B. For any arbitrary t € R,
letting tp — —oo in (56) thent(i;asoio
&7 — cstl < 6ol +4M +2B.
Thus, by Definition 1 and (40), our solution u : R x RN — (0, 1) of (1) satisfies

inf u(,x) — 1and sup u(t,x) >0 as A — +oo.
(t,x)e]RxRN,xefcftSfA (I,x)ERxRN,X-e—CleA

It follows from Theorem 3.1 of [3] and the uniqueness of the planar fronts that there exists
& e Rsuchthatu(t,x) = ¢s(x-e—cypt+§&)forall (r,x) € R x RN . This completes the
proof of Theorem 2.
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4 Existence of Non-standard Transition Fronts

In this section, we prove Theorem 3. That is, we prove the existence of new kinds of transition
fronts, which are not invariant in any moving frame. We first consider the case N = 2 and
construct two-dimensional transition fronts satisfying the conclusion of Theorem 3. The
conclusion in RN with N > 2 will be then obtained immediately by trivially extending
the constructed two-dimensional fronts in variables x3, ..., xy. Now we first give some
preliminaries.

For the standard planar traveling fronts ¢ ¢, it is well known that there exist some positive
constants Ay, Co, C; and C» such that

¢r(s) < Coe™ . 5 >0, (57)
1 —¢p(s) < Cre", 5 <0, (58)
64 (5)] < Cre™™F s eR. (59)

Fix an angle o such that § < o < 5. Consider the quasilinear parabolic equation

Wxx 2
Wt:1+WXZ+Cf,/1+Wx, xeR, r>0. (60)

It follows from Propositions 1.1 and 2.5 of [27] that for any ¢ > c, there exists a unique
solution ¢ (x; ¢) of (60) with asymptotic lines y = |x| cot « satisfying

Pxx 5
= +cry 1+ @2, e R.
1 gol% Cf QDX X

Lemma 5 (Brazhnik [6], Ninomiya and Taniguchi [24,26,27]) There exist positive constants
vy, ki (i = 1,2,3) and ws such that

max {|¢”(x)|, l¢""(x)|} < kisech(y;x),

Cc
V14 ¢ (x)?

|x|cota < @(x),

kasech(y1x) < — ¢y < kzsech(yx),

w- <okx) <wt
for any x € R, where
c(p(x) — |x|cotar)
c—cy/1+ o)
By Lemma 5, it is easy to obtain that
1 cf
1> —— > — forallx e R
l+¢'(x)? ¢

and that there exists a constant @ > 0 such that

o(x) =

|x|cota < p(x) < |x|cota +a forall x € R.

It follows from [12,36] that there exists a unique V-shaped traveling front ¢ (x1, xo — ct)
(Fig. 1) of the problem (1) in R? satisfying the following properties: 0 < ¢ < 1 in R?, ¢ is
of class C2(R?), ¢ = I and

sin o
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Fig. 1 The profiles (left figure) and the contour lines (right figure) of the V-shaped traveling front

lim inf( inf ¢(x1,x2)) =1,
A—+00 \x2<|xi|cota—A

(61)
hminf( inf ¢(x1,xz)):0.

A——+00 \x2>|x1|cota+A

Furthermore, for any 1 € (0, 1), there exist two positive constants sar (B1) and ozg B1, )
so that, for0 < ¢ < 8:{(/31) and 0 < ¥ < ozar(ﬂ], g),

¢r (xasina — |xq| cos @)
< ¢(x1,x2)
o ( X2 — p(9x1)/0
VIl @xp?

Fix 81 € (0,1),0 < ¢ < sar(,Bl) and 0 < ¥ < otar(ﬂl, g). Now we show that ¢ is
asymptotically planar along the directions (= sin «, cos «). This property plays an important
role in the proof of Theorem 3.

) + esech(ndx¢} (Lon—@x)/).  ©2)

Proposition 1 There exist two positive constants py and w1 such that

-~ 2, .2
0 < ¢(x1,x2) — ¢r(xasina — [x1|cosa) < pje OV for all (x1,x2) € R (63)

Proof Let

k3
— -+ max
C seR

°f
1 =max {Cl, 2 (Cz max ‘seAITJ
c

s€(—00,0]
k
2 (M s c—fae> Cet1 42 }
C C

Choose p € (0, 1) such that

¥ L +s),

2
Alcrcota 1 Bic; cota 1
ML < 57/119 and Mfi < 57/119.

Fix a real number w; such that

2
Acrcota 1 v crhy MBic
0 < w1 < min 17 , =Y17, N ,'ufl, f .
2 2cota c c
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Now we divide our proof into three cases.
Case 1 when x, < 0, by (58), one has

0 < ¢(x1,x2) — ds(xasina — |x1| cos o)
<1 —¢slx2sina — |xi|cosa)

< Clexl(xz sina—|xq|cosa)

_ [2,.2
< pre w] x1+x2.

Case 2 when xp > 0 and xp sina — |x1| cosa < 0, one has

2
- D
2 ] nd X2 —9Ox1)/ - C—f(xz — |x1]cota) < O

> 5 a y——
cofa Il @aP e

from \/ﬁ > % and |xj|cota < ¢(x;) for any x; € R. Thus it follows from (59),

_ <
Lemma 5 and ¢ = & that

0 <¢p(x1,x2) —¢r(x2sina — |xq| cosa)

( X2 — @(¥x1)/9
V119 @xp)?

— 67 (Lo~ xilcot))

1 . _
</0 d)} (ch(xz — |x1]cota) + ()Q(p(l?)é])/z? — C—f(xz — lelcotoz)> U) dv

) + esech(ylﬁxl)qﬁ?l (C%(Xz — (,0(17351)/79))

VIitlg@xp? ¢

- C—f(xz — |x1|cotoz)> + esech(y19x1)
c

V1@ (0x1))?
1 J—
=/0 ¢}- <Ccf(x2 — x| cota) + <xz<p(z9xl)/z9 - C%(xz — |x1|cota)> U) dv

( X2 — @(¥x1)/9
o [ 2o e@x)/Y

V1t @xp?

1 crf
X | —=— %) (x2 — |x1| cotx)
Vit @xn)? ¢

1 _
_/ & [ Lo — nleota) + 228Dy jeota) | v ) do
o 7\ [+ lgOmE  ©

+ esech(y19x1)

p(@x1)/P — |x1| cota
X

V1t @xp?

°f 1 cr
< — Cpelt e mhnlcota) ( f) (x2 — |x1| cota)

VIitlg@xp? ¢

@(Wx1)/9 — |x1| cotr

V1t @x)?

+ esech(y19x1)

20l

+ max
seR
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ok wik
< <C2 max |se* % 2 4+ max 'qﬁ}(s) AR s) sech(y9x1)
s€(—00,0] [ seR c
ok k
<2 <C2 max ‘seMT‘Y = + max ¢>/f(s)‘ RS + 8) ekl
s€(—00,0] c seR |- c

_ [ 2, .2
<pre w] x1+x2.

Case 3 when xp > 0 and xp sinlo_z — |x1] cosa > 0, one has x, > |x1|cot«. It follows from
(57), (59), Lemma 5 and ¢ = < that

sino

0 <p(x1,x2) —dr(x2sina — [x1| cosa)

< X2 — @(x1) /9
\VT+19@x))?

97 (L — Il cota))

) + ssech(ylﬁxl)qb?l (ci(xz — §0(19X1)/l‘i‘)>
I \e

<t ( X2 — p(9x1)/9 ) —¢f< x2 — |xy] cotar )
I\ 19 @x)P I+ 1¢@xDP
+esech(y19x)@]! (L0 = p@x1)/9)

=/01 " (xz — |xi] cota — (p(¥x1)/9 — |x1|cota)u) 5

V1t le'@xp?

o(¥x1)/9 — |x1| cot
X

V1+le' @x)?

B (S
— esech(yy 19x1)¢f (x2 — |x1|cota)
: c

+ esech(y; 0x1)¢¢1 (Ci(xz - <P(19x1)/l9)>
I \e¢

c
+ ssech(ylﬁxl)q’)?l (%(xz — |x1] cota))

—/l—df- X2 — |x1|cotar — (p(9x1)/® — |x1| cota)v o
o 7 NPT

P@x1)/9 — |x1|coter
X

V1+le' @x)?

1 .
+esech(non) [ =pio (L =l cote = (02 ~ Ll cotey)

x ghi™! (c—f (x2 — |x1] cota — (@(@x1)/D — |x1] cotoz)v)) dv
E C
C Cc
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+2Cy e

a)+k3 C
§2< + B fas) Cze‘)‘lae M Lii(xa— lxilcota) ,—y10|xil
c c

B1e?
+2Cf e Camlnlcota) =2l

Bic
- <a)+k3 8, —ae) Creiaet Laxa—dyioinl +2Cﬂle7‘ /xzfgmml
- |:2 <w+k3 s —aa) Cyetie +2Cﬂlj| —o1(Jx1 |[+|x2])

< ple—(ul‘/xlz-ﬁ—x%.
Combining the above three cases, the proof of Proposition 1 is thereby complete. O

It follows from Proposition 1 and the Schauder interior estimates that there exist two
positive constants py and w; such that

_ 2,.2
[V (x1,x2) — V(ds(xasina — xj cosa))| < pae” V12 forall x; >0,x €R.
Whence

P )
¢y, (X1, X2) +¢}(x2 sina — xj cosa) cosa’ < ppe” VNI

(64)
P
Px, (X1, X2) — ¢’f(x2 sina — x| cos ) sina‘ < pre ? ¥t

for all x; > 0, x2 € R. Since the standard planar traveling fronts ¢ (s) converges expo-
nentially fast to 0 and 1 as s — =00, Proposition 1 yields that the V-shaped traveling front
¢ also converges exponentially fast to 0 and 1 as x, — |xj|cota — Zo0o. By the Schauder
interior estimates, there exist two positive constants p3 and w3 such that

IV (x1, x2)| < pye” P2 haleotel forall (x1, x3) € R?. (65)
It follows from Corollary 3.3 and Lemma 3.4 of [36] that
VA>O0, sup Ox, (x1,x2) <0 (66)

—A<xpy—|xy|cota<A

and that ¢ is decreasing in any direction (cos &, sin@) suchthat 7 /2 —a < & < 7/2+«, see
also [12]. In particular, the function ¢ is nonincreasing along the directions (% sin ¢, cos ).
Define

Y(x1,x2) = ¢p(x1sin — xp cosa, x1 cosa + xpsine) for all (xq, xp) € ]Rz, 67)

which rotates the function ¢ with angle « — 7 clockwise. Then the function v (Fig. 2) is

decreasing in any direction (cos B sin 3 ) with 0 < ,B < 2. In particular, ¥ is nonincreasing
in the horizontal direction (1,0) and it converges to the planar front ¢ r(x2) along this
direction. Set

v(t, x1,x2) =¥ (x] — ctcosa, x3 — ctsina)

=¢(x)sina — xp cosa, X] COSa + xp sinao — ct). (68)
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Fig. 2 The profiles (left figure) and the contour lines (right figure) of function v

Since ¢ (x1, x3 — ct) solves the Eq. (1) in R?, then the C2(R x R?) function v also satisfies
(1) in R2. Moreover, the definition of v yields v, (¢, x1, x2) > 0 and Uy, (t,x1,x2) < 0in
R x R2.
Now we consider the following Neumann boundary value problem in half-space H =
{(x1,x2) € R?, x; < 0}
v = Av+ f(v), (¢, x1,x2) e R x H, 69)
vy, =0,(t,x1,x) =(¢,0,x2) e Rx 0H.

It is easy to see that the function v is a subsolution of (69).
In the following lemma, we construct a supersolution which looks like the function v for
very negative times, up to some exponentially small terms.

Lemma 6 There exist some constants o > 0, § > 0 and T < 0 such that the function
(¢, X1, X2) = min [y (l +oed x, xz) + 8t 1] (70)

is a supersolution of (69) fort < T and (x1, x2) € H.

Proof Let
min(wac g cos o, w3c)
w4 = : > 0,
2
where wy and w3 are given in (64) and (65). Choose § such that
0 <8 <min(l,w4,6/2) and f <0 on [l —8§,1]. (71)

It follows from (61) that there exists a real number A > 0 such that

¢(x1,x3) >1—5 forall xp < |xi|cota — A,

d(x1,x2) <§ for all xo > |xj|cota + A. (72)
Equation (66) implies that there exists a constant k > 0 such that
sup O, (x1,x2) = —k < 0. (73)
—A<xy—|x1|cota<A
Choose o > 0 such that
ock > L = max |f'(u)|. (74)

uel0,1]
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Set
p4 = (sina + cos o) max(p2, p3e“3°?) > 0.
Let T < 0 be such that
T <—20 <0 and 8% > pse®' forallt <T.

Similar to the Lemma 5.1 of Hamel [11] combining with Proposition 1, we can prove that
Uy, = 0on (=00, T'] x 0H in the region where v < 1.
Since f(1) = 0, it is sufficient to show that

v, > AU+ f(D)

on the region (¢, x1, x3) € (—o00, T] x H such that ¥ < 1. Since v satisfies (1) in R? and
§ < 1, thus

L(t, x1,x2) =0 (1, x1, x2) — AV(t, x1, X2) — f(0(t, X1, x2))
=v,(r+ ae¥ xy,x0) + odv,(t + e, x1, x2)e® 4§21+
— Av(t + 0" x1,x2) — 87’ — £ (1, x1, x2))

> f (vt + o€, x1,x2)) — f (0t x1,%2)) + 78y, (1 + e, x1, x2)
(75)

For simplicity, by (68), we can set
(1 + 0, xi,x0) = ¢(E (1, x), &2t x1, %)),
where
E1(x1,x2) = x1sina — xpcosa and &(t, x1,x2) = X1 cosa + xp sina — ¢t — coedl.
Firstly, if & (¢, x1, x2) < |&1(x1, x2)| cota — A, then (72) implies that
L> 0t x1,x2) > (1 +0e’ xp, x2) = $(E1 (1, x2), 52t x1, x2) = 1 = 8.
It follows from (71), (75) and v, > O that one has

Z(t,x1.x2) = f (vt + 0 x1,x2)) — f (1, x1,x2)) + 08, (t + o€ x1, x2) €”
> 0. (76)

Secondly, if & (z, x1, x2) > |&1(x1, x2)| cota + A, then it follows from (71), (72), x; < 0
andr < T < 0 that

0 < y(l + ae‘”, xl,xz) < v(t,x1,x2) = g(t + oe‘”,xl,xg) + §801tD <25 <6.
Since f = 0on [0, 6] and v, > 0, then

Z(t.x1.x2) = f (0t + o€ x1,x2)) — £ (0, x1,%2)) + 08, (t + 0™ x1, x3)
> 0. (77)

Lastly, if —A < & (¢, x1, x2) — |&1(x1, x2)| cotw < A, then
f (@t +o0e™, x1,x2)) — f (0(t, x1, x2))
@ +oe, x1.x)) — f (y(t +oe x1,x) + 66‘“"‘“’)

_Lae(s()(1+t)

v
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and
v, (1 + 0, X1, x0) = —chyy (§1(x1, 32), £2(8, x1, %2)) = cic.
It follows from (74) and x; < O that
P(t, x1, x3) > —L8SN ) 4 58cke® > §(ock — L)e¥ > 0. (78)

Combining with (76), (77) and (78), one has .Z(t, x1, x2) > O for all (z,x1,x3) €
(=00, T] x H such that v(¢, x1, x) < 1. This completes the proof. O

Proof of Theorem 3 1t follows from the positivity of v, and the definition of v that
v(t, x1,x2) < v(t,x1,x3) in R x H. For any n € N such that n > |T|, let v" be the
solution of the Cauchy problem associated to (69) for times ¢t > —n, with initial condition

V' (—n, x1, x2) = v(—n, x1,x2) forall (x1,x2) € H.

Since (v, v) is a couple of sub-supersolution of the problem (69), the maximum principle
implies that

0 < u(t,x1,x2) <v"(t, x1,x2) < 0(t,x1,x) <1
forall —n <t < T and (x1, x3) € H and that
0 < v(t, x1, x2) < V'(t, x1, x2) < 1 forall (¢, x1, x2) € (—n, +00) x H. (79)

In particular, for every (¢, x1,x2) € R x H, the sequence (V" (t, X1, X2))n>max(|T|,)7]) 1S
nondecreasing. Furthermore, since v, > 0, (79) and the maximum principle yield that v" is
increasing with respect to time  in H.

It follows from monotone convergence and standard parabolic estimates up to the bound-
ary that the functions v" converge to a solution v of (69) as n — 400 in CIIU’LZ,(R x H).
Furthermore, one has

0 < v(t, x1,x2) < v(t, x1,x2) < 0(t,x1,x2) <1 forallt < T and (x1,x2) € H, (80)
and
O<v<v<l, v,>0 inRxH.

In particular, since for each fixed (x1,x2) € H, the function #(z, x1,x2) — 0 < 1 as
t — —oo, then it follows from (80) and the strong maximum principle that 0 < v < 1 in
R x H.

Now we construct a solution u of (1) in R2. Define u in R x R? as

v(t,x1,x2) teR, x;1 <0, xeR,
u(t,xy,x2) =
v(t,—x1,x2) teR, x>0, x ek

Since v satisfies (69) in the half-plane H with Neumann boundary conditions, then u is a
classical time-global solution of (1) in the whole plane R2. Furthermore, 0 < u < 1 in
R x R?,

u(t, —|x1], x2) < u(t, x1,x2) forall (t, x1,x2) € R x R
and

v(t, —|x1], x2) < u(t, x1,x2) < o(t, —|x1], x2) forallz < T and (x1,x2) € R?.
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Therefore, by the definition of v and (62), one has
max(¢ s (—|x1|sin(2a) — x2 cos2a) — crt), pr(x2 —crt)) < u(t, x1, x2)
for all (¢, x1, x2) € R x R2. And it follows from the definition ¥ and Proposition 1 that

u(t, x1, x2)

< max(¢ ¢ (—|x1|sin(2a) — xa cosQa) — ¢t — crae’), pr(x2 — cpt —croe))

—w) \/(|X| | sin a+-x5 cos &) 24(|x1 | cos @—x7 sin a+ct+coed’)? + seSU—1x1D

+ p1e

forall t < T and (x1, xp) € RZ.
Fort <0, let

P,l = (ct cosa, ct sina), Li = P,[ + Ry (cos(2), sin(2e)),
P/ = (—ctcosa,ctsina), L; = P/ +Ri(—cos(2a), sinw))
and
L =Ll V[P, PITUL! forallr <0, (81)

where the superscript [ (resp. r) stands for left (resp. right). Define

t
I} =1(x1,x) € ]R2|x2 = |tanQa)||x1| + _ar forall ¢ > 0. (82)
| cosa)|

Thus, for every ¢ € R, I; can be written as a graph I} = {(x1,x2) € RZ; xp = @r(x1)},
where ¢; : R — R is a Lipschitz-continuous function. For all 7 € R, define

2 = {(x1,x2) € R?*|x2 < ¢ (x1)} and 2,7 = {(x1, x2) € R?[x2 > ¢ (x1)}. (83)

Obviously, the sets (.Q,i),eR and (I7),cr satisfy the general properties (5) and (6).

Similar to the proof of Lemma 5.2 of [11], the function u is a transition front connecting
0 and 1 for problem (1) in R? with the sets (Qti),eR and (17)/er.

Now we prove that the solution u is not invariant as time runs with any moving frame.
That is, it satisfies the conclusion of Theorem 3. Assume by contradiction that there exist
a function @ : R?2 — (0, 1) and some families (R;);cp and (X;);er = (x1,7, x2,1)rer Of
rotations and points in R? such that

u(t, x1,x2) = ®(R; (x1 — x1.1,x2 — x2,1)) forall (£, x1, x2) € R x R?.
Then there is M > 0 such that
Ri(Iy — X;) C {(x1, x2) € R*|d((x1, x2), Ry(I} — X)) < M} forall (1, 5) € R?,

which is contradicted with the definitions of the sets I defined as (81) and (82). Whence,
Theorem 3 holds in R2.
Now, we extend the transition front u trivially in RY (N > 3). Let

Wt x1, ..., xn) = ut, xi,x2) forall (¢, xq,...,xy) € R x RV,

Obviously, the function # is a transition front connecting 0 and 1 for problem (1) in RY with
the sets

QF ={(x1,....xn) € RY|(x1,x0) € 2} forallt e R

and satisfies the desired conclusion. This completes the proof of Theorem 3.
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