
J Dyn Diff Equat (2019) 31:419–433
https://doi.org/10.1007/s10884-018-9669-8

Low Regularity for the Higher Order Nonlinear
Dispersive Equation in Sobolev Spaces of Negative Index

Zaiyun Zhang1 · Zhenhai Liu2,3 · Mingbao Sun1 ·
Songhua Li1

Received: 20 July 2017 / Revised: 6 April 2018 / Published online: 3 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper, we investigate the initial value problem(IVP henceforth) associated
with the higher order nonlinear dispersive equation given in Jones et al. (Int J Math Math Sci
24:371–377, 2000):

{
∂t u + α∂7x u + β∂5x u + γ ∂3x u + μ∂xu + λu∂xu = 0, x ∈ R, t ∈ R,

u(x, 0) = u0(x), x ∈ R

with the initial data in the Sobolev space Hs(R). Benefited from the ideas of Huo and Jia
(Z Angew Math Phys 59:634–646, 2008), Zhang et al. (Acta Math Sci 37B(2):385–394,
2017) and Zhang and Huang (Math Methods Appl Sci 39(10):2488–2513, 2016) that is,
using Fourier restriction norm method, Tao’s [k, Z ]-multiplier method and the contraction
mapping principle, we prove that IVP is locally well-posed for the initial data u0 ∈ Hs(R)

with s ≥ − 5
8 .Moreover, based on the localwell-posedness and conservation law,we establish

the global well-posedness for the initial data u0 ∈ Hs(R) with s = 0.
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1 Introduction

In this paper, we investigate the IVP associated with the higher order nonlinear dispersive
equation as follows:

∂t u + α∂7x u + β∂5x u + γ ∂3x u + μ∂xu + λu∂xu = 0, x ∈ R, t ∈ R, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where α �= 0, β, γ , μ, λ are real numbers.
Equation (1.1) is called the higher order nonlinear dispersive equation which arises in the

study of water waves with surface tension and arises as mathematical models for the weakly
nonlinear propagation of longwaves, see Ref. [1]. Indeed, Eq. (1.1)models the situationwhen
nonlinearity (i.e λu∂xu), dispersion (including higher dispersion α∂7x u and lower dispersion
β∂5x u, α∂3x u, γ ∂xu) are taken into account at the same time.

Setting α = 0 in (1.1), Eq. (1.1) becomes the Kawahara equation (for short KE)

∂t u + β∂5x u + γ ∂3x u + μ∂xu + λu∂xu = 0, x ∈ R, t ∈ R. (1.3)

Hence, Eq. (1.1) can be regarded as a perturbation of KE(1.3)by a higher dispersion term
α∂7x u. (1.3) is one of important dispersive equation which was proposed firstly by Kawahara
in 1972, see Ref. [2].

When β = 0, γ �= 0 and μ �= 0, Eq. (1.3) reduces to KdV equation. There is a large
literature concerning well-posedness of KdV equation in Sobolev spaces with low regularity.
We refer the reader to Ref. [3–8]. In [3], by using the I-method, the authors proved the KdV
equation is globally well-posed for the initial data u0 ∈ Hs(R)with s > − 3

4 . In [7], by using
Cauchy-Schwartz inequality, the authors proved that the KdV equation is globally well-posed
for the initial data u0 ∈ Hs(R) with s > − 3

4 . In [8], Molinet and Ribaud investigated the
local and global Cauchy problem for the generalized KdV equation

∂t u + ∂3x u + uk∂xu = 0, k ≥ 4, k ∈ N+

with the initial data in homogeneous and non-homogeneous Besov spaces and proved exis-
tence and uniqueness of self-similar solutions. In [9], by constructing some special resolution
spaces and using dyadic bilinear estimates together with I-method, Guo proved that the KdV
equation is globally well-posedness for the initial data u0 ∈ Hs(R) with s = − 3

4 . When
α = 0, β �= 0, μ �= 0, Eq. (1.1) reduces to an usual Kawahara Eq. (1.3) which has been
studied by many authors, see [10–15]. In [10], the authors proved that (1.2–1.3) have a local
solution for the initial data u0 ∈ Hs(R) with s > −1 and a global solution for u0 ∈ L2(R).

In [12], the authors showed that the Cauchy problem (1.2–1.3) is locally well-posed for
the initial data u0 ∈ Hs(R) with s ≥ − 7

5 and globally well-posed for u0 ∈ Hs(R) with
s ≥ − 1

2 . In [13], by using [K ; Z ]-multiplier norm method, the authors studied the local
well-posedness for the initial data u0 ∈ Hs(R)with s > − 7

4 . In [14], the authors established
the local well-posedness result of (1.3) (1.2) for the initial data u0 ∈ Hs(R) with s > − 7

4 .

As for the Cauchy problem (1.2–1.3), Huo [15] obtained the local well-posedness for
the initial data u0 ∈ Hs(R) with s > − 11

8 . Later on, Tao and Cui [16] considered the IVP
(1.2–1.3) and proved the local solution for u0 ∈ Hs(R) with s ≥ 1

4 , and the global solution
for u0 ∈ Hs(R) with s ≥ 2 by using strichartz estimates. Recently, Yan and Li [17] showed
that the Cauchy problem (1.2–1.3) is globally well-posed for the initial data u0 ∈ Hs(R)

with s > − 63
58 by using I-method as well as L2 conservation law. Later on, Yan et al. [18]

improved the above results. More precisely, the authors proved that the Cauchy problem
(1.2–1.3) is globally well-posed for the initial data u0 ∈ Hs(R) with s > − 3

22 by using the
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Fourier restriction norm method, I-method and L2 conservation law. Quite recently, Chen
and Guo [19] improved the results of [17]. More precisely, the authors proved that (1.3) is

locally well-posed in H− 7
4 by using the ideas of F

s
-type space [8]. Next they established that

it is globally well-posed in Hs(R) for s ≥ − 7
4 by using the ideas of I-method. Compared

to the KdV Eq. (1.3) has less symmetries, such as no invariant scaling transform and not
completely integrable. They treated with some new difficulties that are caused by the lack
symmetries of this equation.

It is worth mentioning that Zhang et al. [20] studied the initial value problem associated
with the generalized Kawahara equation as follows:{

∂t u + α∂5x u + β∂3x u + γ ∂xu + μ∂x (uk) = 0, x ∈ R, t ≥ 0,
u(x, 0) = u0(x)

with initial data in the Sobolev space Hs(R). Benefited from ideas of Ref. [21,22], first,
we proved that the local well-posedness is established for the initial data u0 ∈ Hs(R) with
s ≥ − 7

4 (k = 2) and s ≥ − 1
4 (k = 3) respectively. Then,using these results and conservation

laws, we also proved that the IVP is globally well-posed for the initial data u0 ∈ Hs(R) with
s = 0(k = 2, 3). Finally, benefited from ideas of Ref. [21–23], i.e, using complex variables
technique and Paley–Wiener theorem, we prove the unique continuation property.

As for theCauchy problem (1.1)–(1.2), Tao andCui [24] have established the first results of
the well-posedness. More precisely, the authors showed that the Cauchy problem (1.1)–(1.2)
is locally well-posed for the initial data u0 ∈ Hs(R) with s ≥ 2

13 by using some dispersive
estimates and Banach fixed point technique. Related works are present in Ref. [25,26].
Kenig et al. [27] studied the following high-order dispersive equation

∂t u + ∂
2 j+1
x u + P

(
u, ∂xu, . . . , ∂

2 j
x u

)
= 0

and obtained local well-posedness for initial data u0 ∈ Hs(R) ∩ L2(|x |mdx), s,m ∈ Z+,
where P is a polynomial without constant or linear terms. Pilod [28] investigated the higher-
order nonlinear dispersive equation

∂t u + ∂
2 j+1
x u +

∑
0≤ j1+ j2≤2 j

a j1, j2∂
j1
x u∂

j2
x .

The author showed that the associated initial value problem is well-posed in weighted
Besov and Sobolev spaces for small initial data and he also proved ill-posedness results
when a0,k �= 0 for some k > j .

In our contribution, in order to obtain the local well-posedness of (1.1) and (1.2), our
novelty is to establish the new bilinear estimates by using Fourier restriction norm method,
and is to improve the contribution by Tao and Cui [24]. It is important to point out that the
phase function φ(ξ)(see Definition 2.1 in section 2) or their derivatives has one pole and
some non-zero singular points. This is different from the phase function of the semigroup
of the linear KdV equation and the Kawahara equation, and also makes the problem much
more difficulty. Therefore, we need to use Fourier restriction operators

PN f =
∫

|ξ |≥N
eixξ f̂ (ξ)dξ, PN f =

∫
|ξ |≤N

eixξ f̂ (ξ)dξ, ∀N > 0,

to eliminate the singularity of the phase function φ(ξ). Moreover, the operators will be used
to decompose nonlinear term ∂x (u2). To deal with the term, we first decompose it as the
high-frequency part and the corresponding low-frequency one as follows:

∂x (u
2) = PN {∂x (u2)} + PN {∂x (u2)}. (1.4)

123



422 J Dyn Diff Equat (2019) 31:419–433

Next, we are going to decompose each term on the right hand side of (1.4) as the sumation
of those products which consist of each factor acted on by the Fourier restriction operators
PN or PN . We shall estimate each resulting term with different methods to overcome the
obstacles. To the best of our knowledge, this is the first well-posedness result the IVP (1.1)–
(1.2).

The rest of the paper is organized as follows. In Sect. 2, we show some notations and state
our main result. In Sect. 3, we show some preliminary results that will play fundamental
role in our further analysis. In Sect. 4, using Fourier restriction norm method, we establish
the linear estimates. Finally, in Sect. 5, we prove of the main results, including the local
well-posedness(LWP) and global well-posedness(GWP) for the IVP (1.1) and (1.2). More
precisely, firstly, using the bilinear estimate and the linear estimate, together with contraction
mapping principle, we prove the LWP. Secondly, we obtain the GWP, which follows from
LWP and the L2 conservation law by standard method.

2 Some Notations and Main Results

In this section, before proceeding to our analysis, we present some notations which will be
used throughout in our paper and state the main result.

Definition 2.1 For s, b ∈ R, the space Xs,b is the complete of the Schwartz function on R2

with respect to the norm

‖u‖Xs,b = ‖S(t)u‖Hs
x H

b
t

= ‖〈ξ 〉s〈τ − φ(ξ)〉bF(u)(ξ, τ )‖L2
ξ L

2
τ
,

where 〈·〉 = 1 + | · |, the phase function φ(ξ) = αξ7 − βξ5 + γ ξ3 − μξ .

In our arguments, we shall use the trivial embedding

‖u‖Xs1,b1
≤ ‖u‖Xs2,b2

, for s1 ≤ s2, b1 ≤ b2.

We denote û(ξ, τ ) = F(u) by the Fourier transform of u both variable x and t, and by
F(·)(u) the Fourier transform in the (·) variable.

We use A ∼ B using the statement that A ≤ C1B and B ≤ C1A for some constant
C1 > 0, use A � B to denote the statement that A ≤ 1

C2
B for some large enough constant

C2 > 0. We write X � Y or Y � X to indicate X ≤ CY for some constant C > 0.
We introduce some variables for convenience

σ = τ − φ(ξ), σ j = τ j − φ(ξ j ), j = 1, 2.

Throughout this paper, we shall denote the following notation
∫
�
dδ as the convolution

integral ∫
ξ=ξ1+ξ2,τ=τ1+τ2

·dτ1dτ2dξ1dξ2.

In what follows, we shall give some useful notations for multilinear expressions in
Ref. [29]. Let Z be any Abelian additive group with an invariant measure dδ. For any integer
k ≥ 2, we define k(Z) to be the hyperplane

k(Z) =
⎧⎨
⎩(ξ1, ξ2, . . . , ξk) ∈ Zk :

k∑
j=1

ξ j = 0

⎫⎬
⎭ ,
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and define a [k; Z ]-multiplier to be any function m : k(Z) → C. If m is a [k; Z ]-multiplier,
then we define ‖m‖[k;Z ] to be the best constant, such that the following inequality

∣∣∣∣∣∣
∫

k (Z)

m(ξ)

k∏
j=1

f j (ξ j )

∣∣∣∣∣∣ ≤ ‖m‖[k;Z ]
k∏
j=1

‖ f j‖L2(Z)

holds for all the test functions f j defined on Z . It is obvious that ‖m‖[k;Z ] determines a norm
on m for test functions at least. We are concerned with the good boundedness on the norm.
In this paper, we let Z = R × R.

We now are position to state the main results.

Theorem 2.1 (Local well-posedness) Assume that αβ < 0 and γ > 0. Let s ≥ − 5
8 and

u0 ∈ Hs(R). Then there exist a real number b > 1
2 , which is close enough to 1

2 and a
constant T > 0 such that the Cauchy problem (1.1) and (1.2) admits a unique local solution
u(x, t) ∈ C([0, T ]; Hs) ∩ Xs,b. Moreover, given t ∈ [0, T ], the map u0 → u(t) is Lipschitz
continuous from Hs to C([0, T ]; Hs).

Theorem 2.2 (Global well-posedness) For s = 0, the solution obtained in Theorem 2.1 can
be extended to a global one.

3 Preliminary Estimates

In this section, we shall deduce several estimates. To facilitate further on our analysis, we
introduce some notations as follows:

a = max

{
1,

(∣∣∣∣5β7α
∣∣∣∣
) 1

2
}

,

FFρ(ξ, τ ) = F(ξ, τ )

(1 + |τ − φ(ξ)|)ρ ,

D−s
x = F−1

x |ξ |−sFx ,

‖ f ‖L p
x L

q
t

=
(∫ ∞

−∞

(∫ ∞

−∞
| f (x, t)|qdt

) p
q

dx

) 1
p

,

‖ f ‖Lq
t L

p
x

=
(∫ ∞

−∞

(∫ ∞

−∞
| f (x, t)|pdx

) q
p

dt

) 1
q

,

‖ f ‖L∞
t Hs

x
= ‖‖ f ‖Hs

x
‖L∞

t
.

Next, we shall show preliminary estimates.

Lemma 3.1 [24,30] Assume that α ∈ R and 0 ≤ α ≤ 5
2 . Then for ∀δ > 0, there exists a

constant C > 0, such that sup|DαG(x, t)| ≤ C |t |− 1
7 (α+1), where x ∈ R, 0 < |t | ≤ δ.

Lemma 3.2 The group {S(t)}∞−∞ satisfies

‖S(t)ϕ‖L12
x L12

t
� ‖ϕ‖L2 . (3.1)
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Proof More generally, we are going to prove

‖S(t)ϕ‖L p
x L

q
t

� ‖ϕ‖L2 , (3.2)

where p ≥ 2, q ≥ 2, 2
p = 1

5

(
1 − 2

q

)
. When p = q = 12, (3.2) is corresponding to (3.1).

In fact, by duality, we need to bound
∥∥∥∥
∫

S(t) f (t, ·)dt
∥∥∥∥
L2
x

(3.3)

for f ∈ L p′
t Lq ′

x , ‖ f ‖
L p′
t Lq′

x
= 1, where 1

p′ + 1
p = 1 and 1

q ′ + 1
q = 1.

Squaring (3.3) and utilizing ‖ f ‖
L p′
t Lq′

x
= 1, it follows from the unitary property of the

linear group that

∫ ∫
〈S(s − t) f (t, ·), f (s, ·)〉dsdt �

∥∥∥∥
∫

S(t) f (t, ·)dt
∥∥∥∥
L p
s L2

x

, (3.4)

where 〈·, ·〉 is defined as the inner product in L2
x .

On the other hand, applying interpolation technique (see Ref. [20–22,31]) and Strichartz
esimate (see Ref. [24,30]), we obtain

‖S(t)ϕ‖L p
x

� |t |− 1
7

(
1− 2

p

)
‖ϕ‖|

L p′
x

, where
1

p′ + 1

p
= 1. (3.5)

Substituting (3.5) in (3.4), we get the bound

‖
∫

|s − t |− 1
7 (1− 2

p )‖ f (t)‖
Lq′
x
dt‖L p

s
� ‖ f ‖

L p′
t Lq′

x
� 1,

by using the Hardy–Littlewood–Sobolev inequality [32]. This proves (3.2). ��

Remark 3.1 Indeed, note that S(t) f (x) = (G(·, t) ∗ f )(x), S(0) f = f, and phase function
φ(ξ) = αξ7 − βξ5 + γ ξ3 − μξ, then we have u(x, t) = S(t)u0(x) and

Dα
x G(x, t) = c

∫
R

|ξ |αei(x,t)·(ξ,φ(ξ))dξ

= c
∫
R

|ξ |αei(xξ+tφ(ξ))dξ.

Using Young inequality and Strichartz estimate in Ref. [30],as well as taking α = 0 in
Lemma 3.1, we have

‖S(t)ϕ‖L∞
x

≤ C |t |− 1
7 ‖ϕ‖|L1

x
.

On the other hand, it is easy to see that

‖S(t)ϕ‖L2
x

≤ C‖ϕ‖|L2
x
.

Therefore, (3.5) follows by interpolation the above inequality.
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Lemma 3.3 The group {S(t)}∞−∞ satisfies

∥∥D3
x P

2a S(t)ϕ
∥∥
L∞
x L2

t
� ‖ϕ‖L2

x
, (3.6)∥∥∥∥D− 1

4
x P2a S(t)ϕ

∥∥∥∥
L4
x L

∞
t

� ‖ϕ‖L2
x
, (3.7)

∥∥∥∥D
5
6
x P

2a S(t)ϕ

∥∥∥∥
L6
x L

6
t

� ‖ϕ‖L2
x
. (3.8)

Proof First, we prove (3.6). It is easy to see that

φ(ξ) = αξ7 − βξ5 + γ ξ3 − μξ,

φ′(ξ) = 7αξ6 − 5βξ4 + 3γ ξ2 − μ,

φ′′(ξ) = 42αξ5 − 20βξ3 + 6γ ξ,

where αβ < 0, γ > 0.
If |ξ | ≥ 2a, then the phase function φ(ξ) is invertible, and we have

P2a S(t)ϕ =
∫

|ξ |≥2a
eixξ e−i tφ(ξ)ϕ(ξ)dξ

=
∫

|φ−1|≥a
eixφ

−1
e−i tφ(ξ)ϕ(φ−1)

1

φ′ dφ

= Ft

(
eixφ

−1
χ|φ−1|≥2aϕ(φ−1)

1

φ′

)
.

In what follows, we shall use the change of variable ξ = φ−1. By Plancherel equality,we
have

‖P2a S(t)ϕ‖2
L2
t

=
∥∥∥∥Ft

(
eixφ

−1
χ|φ−1|≥2aϕ(φ−1)

1

φ′

)∥∥∥∥
2

L2
φ

=
∫

|φ−1|≥2a
|ϕ̂(φ−1)|2 1

|φ′(ξ)|2 φ′(ξ)dξ =
∫

|ξ |≥2a
|ϕ(ξ)|2 1

|φ′(ξ)|2 |φ′(ξ)|dξ

≤
∫

|ξ |≥2a
|ϕ(ξ)|2 1

|φ′(ξ)|dξ =
∫

|ξ |≥2a
|ϕ(ξ)|2 1

|7αξ6||1 − 5β
7αξ2

+ 3γ
7αξ4

− μ

7αξ6
|dξ

�
∫

|ξ |≥2a
|ϕ(ξ)|2 1

|ξ |6 dξ

� ‖ϕ‖2
Ḣ−3 .

This implies the estimate (3.6).
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Next, we turn to the proof of (3.7). If |ξ | ≥ 2a, then we can also obtain |φ′′(ξ)| � |ξ |5.
In fact, with the help of Theorem 2.5 in Ref. [33], we conclude that

‖P2a S(t)ϕ‖2L4
x L

∞
t

≤
∫

|ξ |≥2a
|FP2aϕ(ξ)|2| φ′(ξ)

φ′′(ξ)
| 12 dξ

≤ C
∫

|ξ |≥2a
|FP2aϕ(ξ)|2

⎛
⎝ |7αξ6||1 − 5β

7αξ2
+ 3γ

7αξ4
− μ

7αξ6
|

|42αξ5||1 − 20β
42αξ2

+ 6γ
42αξ4

|

⎞
⎠

1
2

dξ

�
∫

|ξ |≥2a
|FP2aϕ(ξ)|2|ξ | 12 dξ

� ‖P2aϕ‖2
H

1
4
.

which implies the estimate (3.7). Finally, (3.8) follows by interpolation between (3.6) and
(3.7). ��

Lemma 3.4 If ρ > 1
2 , for any fixed N > 0, then

‖PN Fρ‖L2
x L

∞
t

≤ C‖ f ‖L2
ξ L

2
τ
.

Proof The proof is similar with that of Lemma 2.2 in Ref. [33], we omit the details here. ��

Lemma 3.5 Suppose ρ > 1
2
6(q−2)

5q . Then, for 2 ≤ q ≤ 12, we have

‖Fρ‖Lq
x L

q
t

≤ C‖ f ‖L2
ξ L

2
τ
. (3.9)

Proof Using the change of the variable τ = λ + φ(ξ), we have

Fρ(x, t) =
∫ +∞

−∞

∫ +∞

−∞
ei(xξ+tτ) f (ξ, τ )

(1 + |τ − φ(ξ)|)ρ dξdτ

=
∫ +∞

−∞
eitλ

(∫ +∞

−∞
ei(xξ+tφ(ξ)) f (ξ, λ + φ(ξ))dξ

)
dλ

(1 + |λ|)ρ .

Using (3.1) and Minkowski’s integral inequality and taking into account ρ > 1
2 , we get

‖Fρ‖L12
x L12

t
�

∫ +∞

−∞
‖ f (ξ, λ + φ(ξ))‖L2

ξ

dλ

(1 + |λ|)ρ
� ‖ f ‖L2

ξ L
2
τ
. (3.10)

It is easy to see that

‖F0‖L2
x L

2
t

� ‖ f ‖L2
ξ L

2
τ
. (3.11)

Then, (3.9) follows by interpolation between (3.10) and (3.11). ��

Lemma 3.6 If ρ > 3
8 , then ∥∥∥∥D

5
8
x P

2a Fρ

∥∥∥∥
L4
x L

4
t

� ‖ f ‖L2
ξ L

2
τ
. (3.12)
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Proof Taking into account ρ > 1
2 , and using (3.8) and Minkowski’s integral inequality, we

have ∥∥∥∥D
5
8
x P

2a Fρ

∥∥∥∥
L6
x L

6
t

�
∫ +∞

−∞
‖ f (ξ, λ + φ(ξ))‖L2

ξ

dλ

(1 + |λ|)ρ
� ‖ f ‖L2

ξ L
2
τ
. (3.13)

Then, (3.12) follows by interpolation between (3.11) and (3.13). ��
Lemma 3.7 (1) Let ρ > 1

2θ, θ ∈ [0, 1], then
∥∥D3θ

x P2a Fρ

∥∥
L

2
1−θ
x L2

t

� ‖ f ‖L2
ξ L

2
τ
. (3.14)

(2) Let ρ > 1
2 , then ∥∥∥∥D− 1

4
x P2a Fρ

∥∥∥∥
L4
x L

∞
t

� ‖ f ‖L2
ξ L

2
τ
. (3.15)

Proof From the arguments in arriving at Lemma 3.5 and (3.6), we obtain∥∥D3
x P

2a Fρ

∥∥
L∞
x L2

t
� ‖ϕ‖L2

x
. (3.16)

It is clear that (3.14) follows by interpolation between (3.16) and (3.11). Meanwhile, (3.15)
follows by interpolation between (3.7) and (3.11). ��
Lemma 3.8 [14,15] Assume that f , f1 and f2 belong to Schwartz space on R

2. Then, we
have ∫

�

f̂ (ξ, τ ) f̂1(ξ1, τ1) f̂2(ξ2, τ2)dδ =
∫
R2

f f1 f2(x, t)dxdt, (3.17)

Lemma 3.9 [34] If m and M are [k; Z ] multipliers and satisfy |m(ξ)| ≤ |M(ξ)| for all
ξ ∈ k(Z), then ‖m‖[k;Z ] ≤ ‖M‖[k;Z ].

Lemma 3.10 If |ξ | ≥ 2a, then we have

max{|σ |, |σ1|, |σ2|} � |ξ1||ξ2||ξ |5,
where ξ = ξ1 + ξ2, τ = τ1 + τ2; σ = τ − φ(ξ), σ1 = τ1 − φ(ξ1), σ2 = τ2 − φ(ξ2);
φ(ξ) = φ(ξ) = αξ7 − βξ5 + γ ξ3 − μξ .

Proof It is easy to see that

σ1 + σ2 − σ = 7αξ1ξ2ξ
(
ξ2 − ξ1ξ + ξ21

)2 − 5βξ1ξ2ξ
(
ξ2 − ξ1ξ + ξ21

) + 3γ ξ1ξ2ξ.

Observing that ξ2 − ξ1ξ + ξ21 ≥ 3
4ξ

2 and αβ < 0, γ > 0, we get |σ1 +σ2 −σ | � |ξ1||ξ2||ξ |5
which implies Lemma 3.10. ��

4 Bilinear Estimates

In this section, using Fourier restriction normmethod, we shall state a bilinear estimate which
will be the main tool in the proof of local existence for the IVP(1.1) and (1.2).
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Lemma 4.1 Let b be close enough to 1
2 satisfying b > 1

2 . For
1
2 < b′ and s ≥ − 5

8 , we have

‖∂x (u1u2)‖Xs,b−1 � ‖u1‖Xs,b′ ‖u2‖Xs,b′ . (4.1)

Proof By duality and Plancherel identity, it suffices to show that

 =
∫

�

〈ξ 〉s |ξ | f (ξ, τ )

〈σ 〉1−b
Fu1(ξ1, τ1)Fu2(ξ2, τ2)dδ

=
∫

�

〈ξ 〉s |ξ |
〈σ 〉1−b

∏2
j=1〈ξ j 〉s〈σ j 〉b′ f (ξ, τ ) f1(ξ1, τ1) f2(ξ2, τ2)dδ

≤ ‖ 〈ξ 〉s |ξ |
〈σ 〉1−b

∏2
j=1〈ξ j 〉s〈σ j 〉b′ ‖[3;R×R]‖ f ‖L2

ξ L
2
τ

2∏
j=1

‖ f j‖L2
ξ L

2
τ
,

for f ∈ L2(R2), f ≥ 0, where f j = 〈ξ j 〉s〈σ j 〉b′
û j , j = 1, 2, ξ = ξ1 + ξ2, τ = τ1 + τ2. ��

For convenience to our further analysis, we introduce some notations as follows

FF j
ρ (ξ, τ ) = f j (ξ, τ )

(1 + |τ − φ(ξ)|)ρ , j = 1, 2,

K (ξ, ξ1, ξ2) = 〈ξ 〉s |ξ |∏2
j=1〈ξ j 〉s

.

In order to bound the integral , we shall split the domain of the integral into several
pieces. Here, we consider the most interesting case s ≤ 0. Otherwise, it is easy for us to see
that K (ξ, ξ1, ξ2) � 1. Let r = −s. By symmetry, it suffices to estimate the integral  in the
domain |ξ1| ≤ |ξ2|.

Situation I. Assume that |ξ | ≤ 4a.

Case 1. If |ξ1| ≤ 2a, then we have |ξ2| ≤ |ξ − ξ1| ≤ 6a and K1(ξ, ξ1, ξ2) � 1.
Consequently, the integral  restricted to this domain is bounded by

 =
∫

�

|ξ |χ|ξ |≤4a f (ξ, τ )

〈ξ 〉r 〈σ 〉1−b

〈ξ1〉rχ|ξ1|≤2a f1(ξ1, τ1)

〈σ1〉b′
〈ξ2〉rχ|ξ2|≤6a f2(ξ2, τ2)

〈σ2〉b′ dδ

�
∫

�

f (ξ, τ )

〈σ 〉1−b

f1(ξ1, τ1)

〈σ1〉b′
f2(ξ2, τ2)

〈σ2〉b′ dδ

�
∫

F1−b · F1
b′ · F2

b′(x, t)dxdt

� ‖F1−b‖L2
x L

2
t
‖F1

b′ ‖L4
x L

4
t
‖F2

b′ ‖L4
x L

4
t

� ‖ f ‖L2
ξ L

2
τ
‖ f1‖L2

ξ L
2
τ
‖ f2‖L2

ξ L
2
τ
,

which follows by Lemma 3.5 (with q = 4) and Lemma 3.7.
Case 2. If 2a ≤ |ξ1| ≤ |ξ2|, then, for r = −s < 5

8 we conclude that K(ξ, ξ1, ξ2) ≤
C |ξ1| 58 |ξ2| 58 . Therefore, by Lemmas 3.6 and 3.7, the integral  restricted to this domain is
bounded by
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 =
∫

�

|ξ |χ|ξ |≤4a f (ξ, τ )

〈ξ 〉r 〈σ 〉1−b

〈ξ1〉rχ|ξ1|≥2a f1(ξ1, τ1)

〈σ1〉b′
〈ξ2〉rχ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

≤ C
∫

�

f (ξ, τ )

〈σ 〉1−b

|ξ1| 58 χ|ξ1|≥2a f1(ξ1, τ1)

〈σ1〉b′
|ξ2| 58 χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

= C
∫

F1−b · D
5
8
x P

2a F1
b′ · D

5
8
x P

2a F2
b′(x, t)dxdt

� ‖F1−b‖L2
x L

2
t

∥∥∥∥D
5
8
x P

2a F1
b′

∥∥∥∥
L4
x L

4
t

∥∥∥∥D
5
8
x P

2a F2
b′

∥∥∥∥
L4
x L

4
t

� ‖ f ‖L2
ξ L

2
τ
‖ f1‖L2

ξ L
2
τ
‖ f2‖L2

ξ L
2
τ
.

Situation II. Assume that |ξ | ≤ 4a.

Case 1. If |ξ1| ≤ 2a, then we have |ξ2| ≥ 2a, |ξ | ∼ |ξ2| and K1(ξ, ξ1, ξ2) ≤ C |ξ2|.
Consequently, the integral  restricted to this domain is bounded by

 =
∫

�

|ξ |χ|ξ |≥4a f (ξ, τ )

〈ξ 〉r 〈σ 〉1−b

〈ξ1〉rχ|ξ1|≤2a f1(ξ1, τ1)

〈σ1〉b′
〈ξ2〉rχ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

≤ C
∫

�

χ|ξ |≥4a f (ξ, τ )

〈σ 〉1−b

χ|ξ1|≤2a f1(ξ1, τ1)

〈σ1〉b′
|ξ2|χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

�
∫

P4a F1−b · P2a F1
b′ · Dx P

2a F2
b′(x, t)dxdt

� ‖F1−b‖L2
x L

2
t
‖P2a F1

b′ ‖L2
x L

∞
t

‖Dx P
2a F2

b′ ‖L∞
x L2

t

� ‖ f ‖L2
ξ L

2
τ
‖ f1‖L2

ξ L
2
τ
‖ f2‖L2

ξ L
2
τ
,

which follows by Lemma 3.5 (with q = 2), Lemma 3.7 ((3.14) with θ = 1) and 3.8.
Case 2. If 2a ≤ |ξ1| ≤ |ξ2|, then, it follows from Lemma 3.10 that, if |ξ | ≥ 2a, |ξ1| ≥ 2a

and |ξ2| ≥ 2a, then we have

max{|σ |, |σ1|, |σ2|} � |ξ1||ξ2||ξ |5.

This implies that one of the following cases always occurs:

Case (a) |σ | � |ξ1||ξ2||ξ |5;
Case (b) |σ1| � |ξ1||ξ2||ξ |5;
Case (c) |σ2| � |ξ1||ξ2||ξ |5.

Next, we are going to consider the three Cases (a–c) respectively.
Case 2.1. If Case (a) holds, for b − s − 1 ≤ 5

8 and s ≤ 4 − 5b,
then we have

K (ξ, ξ1, ξ2) ≤ C |ξ1| 58 |ξ2| 58 .
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Therefore, by Lemmas 3.6 and 3.8, the integral  restricted to this domain is bounded by

 =
∫

�

|ξ |χ|ξ |≥4a f (ξ, τ )

〈ξ 〉r 〈|ξ1||ξ2||ξ |5〉1−b

〈ξ1〉rχ|ξ1|≥2a f1(ξ1, τ1)

〈σ1〉b′
〈ξ2〉rχ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

=
∫

�

|ξ |s−4+5bχ|ξ |≥4a f (ξ, τ )
|ξ1|b−s−1χ|ξ1|≥2a f1(ξ1, τ1)

〈σ1〉b′
|ξ2|b−s−1χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

≤ C |ξ |s−4+5bχ|ξ |≥4a f (ξ, τ )
|ξ1| 58 χ|ξ1|≥2a f1(ξ1, τ1)

〈σ1〉b′
|ξ2| 58 χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

= C
∫

F0 · D
5
8
x P

2a F1
b′ · D

5
8
x P

2a F2
b′(x, t)dxdt

� ‖F0‖L2
x L

2
t
‖D

5
8
x P

2a F1
b′ ‖L4

x L
4
t
‖D

5
8
x P

2a F2
b′ ‖L4

x L
4
t

� ‖ f ‖L2
ξ L

2
τ
‖ f1‖L2

ξ L
2
τ
‖ f2‖L2

ξ L
2
τ
.

Case 2.2. If Case (b) holds, for 2r − 2b′ ≤ 5
8 and 1 − r ≤ 5b′, (r = −s)

then we have

K (ξ, ξ1, ξ2) ≤ C |ξ2| 58 .
Therefore, by Lemmas 3.6, 3.7 and 3.8, the integral  restricted to this domain is bounded
by

 =
∫

�

|ξ |χ|ξ |≥4a f (ξ, τ )

〈ξ 〉r 〈σ 〉1−b

〈ξ1〉rχ|ξ1|≥2a f1(ξ1, τ1)

〈ξ1||ξ2||ξ |5〉b′
〈ξ2〉rχ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

=
∫

�

|ξ |1−r−5b′
χ|ξ |≥4a f (ξ, τ )

〈σ 〉1−b
|ξ1|r−b′

χ|ξ1|≥2a f1(ξ1, τ1)
|ξ2|r−b′

χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

≤ C
∫

�

χ|ξ |≥4a f (ξ, τ )

〈σ 〉1−b
χ|ξ1|≥2a f1(ξ1, τ1)

|ξ2|2r−2b′
χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

≤ C
∫

�

χ|ξ |≥4a f (ξ, τ )

〈σ 〉1−b
χ|ξ1|≥2a f1(ξ1, τ1)

|ξ2| 58 χ|ξ2|≥2a f2(ξ2, τ2)

〈σ2〉b′ dδ

= C
∫

P4a F1−b · P2a F1
0 · D

5
8
x P

2a F2
b′(x, t)dxdt

� ‖P4a F1−b‖L4
x L

4
t
‖P2a F1

0 ‖L2
x L

2
t
‖D

5
8
x P

2a F2
b′ ‖L4

x L
4
t

� ‖ f ‖L2
ξ L

2
τ
‖ f1‖L2

ξ L
2
τ
‖ f2‖L2

ξ L
2
τ
.

Case 2.3. If Case (c) holds, the argument is similar to Case 2.2.
This completes the proof of Lemma 4.1.

5 Proof of the Main Result

In this section, in order to prove Theorems 2.1 and 2.2, we first establish the linear estimates
as follows.

Let ψ ∈ C∞
0 (R) with ψ = 1 on

[− 1
2 ,

1
2

]
and suppψ ⊂ [−1, 1]. We denote ψδ(·) =

ψ(δ−1)(·) for some non-zero δ ∈ R.
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Lemma 5.1 (See [6,7]) If s ∈ R and 1
2 < b < 1, then, for ϕ ∈ Hs, we have

‖ψ(t)S(t)ϕ‖Xs,b ≤ C‖ϕ‖Hs .

Lemma 5.2 (See [6,7]) If s ∈ R, 1
2 < b < b′ < 1 and 0 < δ ≤ 1, then we have

‖ψδ(t)S(t)ϕ‖Xs,b ≤ Cδ
1
2−b‖ϕ‖Hs ,∥∥∥∥ψδ(t)

∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
Xs,b

≤ Cδ
1
2−b‖F‖Xs,b−1 ,

‖ψδ(t)F‖Xs,b−1 ≤ Cδb
′−b‖F‖Xs,b′−1

.

Now, we turn to the proof of Theorems 2.1, 2.2.More precisely, using the bilinear estimate
(Lemma 4.1) and the linear estimate (Lemmas 5.1, 5.2) together with contraction mapping
principle, we shall prove the local well-posedness for the IVP (1.1) and (1.2).

Proof of Theorem 2.1 For u0 ∈ Hs(s ≥ − 5
8 ), we define the operator

�(u) = ψ1(t)S(t)u0 + λψ1(t)
∫ t

0
S(t − t ′)ψδ(t

′)[uux ](t ′)dt ′

and the ball

B = {u ∈ Xs,b : ‖u‖Xs,b ≤ 2C‖u0‖Hs }.
Next, we are going to prove � is a contraction mapping on the ball B. For this purpose, we
first prove

�(B) ⊂ B.

��
By Lemmas 4.1 and 5.1, 5.2 for 1

2 < b < b′ < 1, we have

‖�(u)‖Xs,b ≤ ‖ψ1(t)S(t)u0‖Xs,b + ‖λψ1(t)
∫ t

0
S(t − t ′)ψδ(t

′)[uux ](t ′)dt ′‖Xs,b

≤ C‖u0‖Hs + C‖ψδ(t)[uux ]‖Xs,b

≤ C‖u0‖Hs + Cδb−b′ ‖uux‖Xs,b′−1

≤ C‖u0‖Hs + Cδb−b′ ‖u‖2Xs,b
.

Therefore, if we fix δ such that Cδb−b′ ‖u0‖Hs < 1
2 , then we obtain �(B) ⊂ B.

On the other hand, for u, v ∈ B, we have

‖�(u) − �(v)‖Xs,b ≤ Cδb−b′
(‖u‖Xs,b + ‖v‖Xs,b )‖u − v‖Xs,b

≤ 1

2
‖u − v‖Xs,b .

Consequently, � is a contraction mapping on the ball B. There exists a unique fixed point
which solves the IVP (1.1) and (1.2) for T < 1

2 δ.

Proof of Theorem 2.2 First, we establish the L2 conservation law and we obtain the global
well-posedness of the solution which follows from local well-posedness and the L2 conser-
vation law by standard method. In order to prove the global well-posedness for the initial
data u0 ∈ Hs(R) with s = 0, we establish the L2 conservation law as follows. ��
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Lemma 5.3 Let u0 ∈ L2, and u ∈ C([0, T ], L2) be a solution of IVP (1.1) and (1.2). Then
we have ‖u‖L2 = ‖u0‖L2 .

Proof Multiplying (1.1) by u and integrating the resulting equation over R, we get

1

2

d

dt
‖u‖L2 = 0,

that is, ‖u‖L2 = ‖u0‖L2 .

Therefore, for Cauchy problem (1.1)–(1.2) with the initial data u0 ∈ L2, global well-
posedness of the solution follows from local well-posedness and the L2 conservation law by
standard method. ��
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