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Abstract We study the global-in-time behavior of solutions to a reaction–diffusion system
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1 Introduction

The purpose of the present paper is to study the mass conserved reaction–diffusion system

ut = DΔu + f (u, v), τvt = Δv − f (u, v), in Ω × (0, T ),

∂

∂ν
(u, v)

∣
∣
∣
∣
∂Ω

= 0, (u, v)|t=0 = (u0(x), v0(x)), (1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω , ν is the outer unit normal
vector, D, τ > 0 are constants, and (u0, v0) = (u0(x), v0(x)) are smooth nonnegative
functions. Given sufficiently smooth nonlinearity f = f (u, v), standard theory allows the
existence of a unique local-in-time classical solution (u, v) = (u(·, t), v(·, t)) to (1). Then
mass conservation property for this system writes

d

dt

∫

Ω

(u + τv) dx = 0. (2)

Several equations in this form are used in the study of cell polarity, e.g. [8,17] and [14].
It is expected that different species inside the cell shall separate according to their diffusion
coefficients, i.e. slow and fast diffusions will localize the species near the membrane and
in the cytosol, respectively. Although three kinds of molecules are interacting inside the
cell in [17], each one of them has two phases, that is, active and inactive phases which are
characterized by slow and fast diffusions, respectively. Problem (1), thus focuses on these
two phases of a single species, ignoring interactions between the other species.

The system (1) is a closed system in the sense that the active and inactive phases are
reversible. Thus, it might be natural to suppose negatively that the system allows the Turing
pattern (see [26]), that is, the appearance of spatially inhomogeneous stable stationary states
induced by diffusion. In fact, the emergence of Turing patterns is widely observed in open
systems including activator-inhibitor systems, where an energy flow in the system is assumed
to induce the pattern. In [17], however, the authors presented the following three models in
which the Turing type instability certainly takes places:

f (u, v) = − au

u2 + b
+ v,

f (u, v) = −α1

⎡

⎢
⎢
⎢
⎣

u + v
(

α2(u + v) + 1

)2 − v

⎤

⎥
⎥
⎥
⎦

,

f (u, v) = α1(u + v)[(αu + v)(u + v) − α2], (3)

where a, b, α, α1, and α2 are positive constants. So far, mathematical analysis is done for
the first model, noticing the similarity between the Fix–Caginalp model [22] (see [11,13,15]
and [16]).

The present paper deals with the second form of the reaction term f (u, v) of (3) and
investigates the stability property of stationary solutions We are primarily interested in how
mathematically different the second form of f (u, v) is from the first one, though both allow
the Turing type instability. In fact, as mentioned above, the first one is transformed into a
phase-field type system and this fact helps in those studies, but apparently the second one
does not allow such a nice form. We also found a biological model of reaction–diffusion
equations with f (u, v) = μ[h(u + v) + v] in [19], though the diffusion of u is absent by a
biological reason. We explain briefly this model in the end of this section.
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Here we confirm several classical results. First, this nonlinearity f = f (u, v) satisfies

f (0, v), − f (u, 0) ≥ 0, u, v ≥ 0

and hence the standard maximum principle applied to the individual equations to u and v

guarantees their non-negativity. Next, the solution is global-in-time because of the weak
nonlinearity, that is, at most linear growth as u, v → ∞. (see [12]) Thus we obtain the
following statement.

Theorem 1 The classical solution (u, v) = (u(·, t), v(·, t)) to (1) for the second case of
f (u, v) in (3) is global-in-time and satisfies

u(·, t), v(·, t) ≥ 0 on Ω, t ≥ 0. (4)

We remark that the classical solution to (1) with t > 0 is ensured by 0 ≤ u0, v0 ∈ L∞(Ω),
therefore we assume the initial values to be smooth.

Now we let
h(z) = − α1z

(α2z + 1)2
, k = α1, (5)

to rewrite the model as

ut = DΔu + h(u + v) + kv,

τvt = Δv − h(u + v) − kv, in Ω × (0, T ),

∂

∂ν
(u, v)

∣
∣
∣
∣
∂Ω

= 0, (u, v)|t=0 = (u0(x), v0(x)). (6)

Here we assume τ �= 1 and furthermore,

ξ = 1 − τD

τ − 1
> 0, α = 1 − D

τ − 1
> 0, (7)

that is, either τ > 1 > τD or τD > 1 > τ . Using

w = Du + v, z = u + v,

g(z) = (1 − D)h(z) − kDz, (8)

system (6) transforms into

zt = DΔz + (wt − DΔw + kw) + g(z),

wt + ξ zt = αΔw, in Ω × (0, T ),

∂

∂ν
(z, w)

∣
∣
∣
∣
∂Ω

= 0, (z, w)|t=0 = (z0(x), w0(x)). (9)

If the second term on the right-hand side of the first equation of system (9) is reduced to
kw, we obtain

zt = DΔz + kw + g(z), wt + ξ zt = αΔw in Ω × (0, T )

∂

∂ν
(z, w)

∣
∣
∣
∣
∂Ω

= 0, (z, w)|t=0 = (z0(x), w0(x)), (10)

where z0 = u0 + v0 and w0 = Du0 + v0. It is a generalization of the Fix–Caginalp model
[2,5] for g(z) = z − z3. We noticed that the first model of (3) is reduced to (10) (see [16]).
Then, as in the Fix–Caginalp model [22], we used a variational structure arising between
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the Lyapunov function and the stationary state, to clarify the global-in-time dynamics [13]
in accordance with a spectral property of the stationary state [15]. Namely, first, the sta-
tionary state is described by an elliptic boundary value problem with a nonlocal term where
the conservative quantity of (10) is involved as a parameter. Second, this elliptic problem
has a variational functional associated with the Lyapunov function to (10). Finally, any
non-degenerate minimum of this variational functional is dynamically stable as a stationary
solution to (10).

Here we show similar properties for problem (9). In this model, we still have a Lyapunov
function which induces a variational function to formulate a stationary state. Accordingly
the orbit of a non-stationary solution is compact (Theorem 2), while any local minimum is
dynamically stable (Theorem 3). Furthermore, the Morse index of the stationary solution,
defined by the variational function, is equal to the dynamical instability if ξη2 > k, where
η2 denotes the second eigenvalue of −Δ under the Neumann boundary condition (Theorem
4). As a consequence of Theorem 4 we can see that any stable stationary solution has a
monotone profile in one-dimensional space, similar to the first form of (3) even though the
Turing instability takes place (see [11]).

Although (9) is derived from (6) for the case of τ �= 1, system (6) itself has a Lyapunov
function even for τ = 1. This fact was noticed by [11] to confirm the existence of global-in-
time solutions and the spectral comparison property of stationary solutions. Before the end
of this section we shall confirm that the Lyapunov function of τ = 1 used by [11] is regarded
as a limit case under suitable scaling.

To begin with, we note that mass conservation (2) takes the form

d

dt

∫

Ω

(ξ z + w) dx = 0,

in (z, w)-variable of (8). Noticing this property, we set
∫

Ω

(ξ z + w) dx =
∫

Ω

(ξ z0 + w0) dx = λ. (11)

To derive the Lyapunov function of (9), we multiply the first equation of (9) with zt to
obtain

‖zt‖22 + d

dt

∫

Ω

(
D

2
|∇z|2 − G(z)

)

dx = (wt − DΔw + kw, zt ), (12)

where

G(z) =
∫ z

0
g(s) ds,

and (·, ·) denotes the L2−inner product. Multiplying the second equation of (9) with wt −
DΔw + kw, next, we obtain

ξ(zt , wt − DΔw + kw) = (−wt + αΔw, wt − DΔw + kw) = −‖wt‖22
−αD‖Δw‖22 − αk‖∇w‖22 − d

dt

∫

Ω

(
α + D

2
|∇w|2 + k

2
w2

)

dx .

(13)

From (12) and (13) it follows that

ξ‖zt‖22 + ‖wt‖22 + αD‖Δw‖22 + αk‖∇w‖22
= − d

dt

∫

Ω

(
α + D

2
|∇w|2 + k

2
w2 + ξD

2
|∇z|2 − ξG(z)

)

dx .
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Therefore,

L = L(z, w) =
∫

Ω

(
α + D

2
|∇w|2 + k

2
w2 + ξD

2
|∇z|2 − ξG(z)

)

dx, (14)

is a Lyapunov function with:

dL

dt
= − {

ξ‖zt‖22 + ‖wt‖22 + αD‖Δw‖22 + αk‖∇w‖22
} ≤ 0. (15)

Now we formulate the stationary state of (9). First,

αΔw = 0,
∂w

∂ν

∣
∣
∣
∣
∂Ω

= 0,

holds in the stationary state of (9) and hence w = w(x) is a spatially homogeneous function
denoted by w = w ∈ R. Then the total mass conservation (11) implies

λ =
∫

Ω

(ξ z + w) dx, (16)

hence

w = 1

|Ω|
(

λ − ξ

∫

Ω

z dx

)

. (17)

Plugging (17) into the first equation, we see that the stationary state of (9) is reduced to a
single equation concerning z = z(x), that is,

− DΔz = g(z) + k

|Ω|
(

λ − ξ

∫

Ω

z dx

)

,
∂z

∂ν

∣
∣
∣
∣
∂Ω

= 0. (18)

This problem is the Euler–Lagrange equation corresponding to the functional

Jλ(z) =
∫

Ω

(
D

2
|∇z|2 − G(z) − kλ

|Ω| z) dx + kξ

2|Ω|
(∫

Ω

z dx

)2

(19)

defined for z ∈ H1(Ω).
Our point is to clarify the dynamical stability of the solution to (18), regarded as a stationary

solution to (9). First, the Lyapunov function guarantees the global-in-time solution. Let
(u0, v0) ∈ X = C2(Ω)2 and Eλ be the set of solutions z = z(x) to (18) for λ ∈ R defined
by

λ =
∫

Ω

(ξ z0 + w0)dx =
∫

Ω

(u0 + τv0)dx . (20)

Theorem 2 If (7) holds, the orbit O = {(u(·, t), v(·, t))}t≥0 ⊂ X of the solution (u, v) =
(u(·, t), v(·, t)) to (6) with (5) is compact and hence the ω-limit set defined by

ω(u0, v0) = {(u∗, v∗) | ∃tk ↑ +∞ such that

‖(u(·, tk), v(·, tk)) − (u∗, v∗)‖X = 0},
is nonempty, compact, and connected. Furthermore, any (u∗, v∗) ∈ ω(u0, v0)admits z∗ ∈ Eλ

such that

u∗ = w∗ − z∗
D − 1

, v∗ = Dz∗ − w∗
D − 1

, (21)

for w∗ ∈ R defined by

w∗ = 1

|Ω|
(

λ − ξ

∫

Ω

z∗dx
)

. (22)
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Finally, it holds that
lim
t↑+∞ ‖w(·, t) − 〈w(t)〉‖C2 = 0, (23)

where

〈w(t)〉 = 1

|Ω|
∫

Ω

w(x, t)dx .

As we have seen, any stationary solution (u∗, v∗) to (9) corresponds to a critical point
z∗ ∈ H1(Ω) of Jλ(z) in (19) through (21)–(22). Now we examine its dynamical stability.
The first result follows from the semi-unfolding-minimality between the Lyapunov function
L(z, w) and variational functional Jλ(z) (see [21]). Namely, first, it holds that L(z, w) =
Jλ(z) for w ∈ R defined by (17). This property is called the semi-unfolding. Second, Jλ(z)
arises as the global minimum of L(z, w) among all w satisfying (11). This property is called
the semi-minimality. These structures of the second model are similar to the ones of the first
model of (3) studied in [13]. In this paper when a stationary solution of (6) is Lyapunov
stable, we call that a stationary solution of (6) is dynamically stable.

Theorem 3 Given 0 ≤ (u0, v0) ∈ X, let z∗ ∈ H1(Ω) be a local minimum of Jλ(z) in (19)
for λ defined by (20). Then (u∗, v∗) derived from (21)–(22) is a dynamically stable stationary
state of (6).

Finally we pay attention to the linearized stability. We write (9) as

(1 + Dξ/α)zt − ξαwt = DΔz + g(z) + kw,

wt + ξ zt = αΔw, in Ω × (0, T )

∂

∂ν
(z, w)

∣
∣
∣
∣
∂Ω

= 0, (24)

recalling 1− D/α = ξ/α. Then the linearlized equation of (24) around (z∗, w∗) is given as

∂

∂t
M

(

Z
W

)

+ A1

(

Z
W

)

= 0,
∂

∂ν

(

Z
W

)∣
∣
∣
∣
∂Ω

= 0

where

M =
(

1 + Dξ/α −ξ/α

ξ 1

)

, A1 =
(−DΔ − g′(z∗) −k

0 −αΔ

)

.

Therefore, an index of the instability for (z∗, w∗) to (9), or equivalently, that of (u∗, v∗)
to (6), is indicated by the number of eigenvalues with negative real parts of the operator
A = M−1A1. This operator is actually realized in L2(Ω; C)2, the Hilbert space composed
of square integrable complex-valued functions on Ω , with the domain

D(A) =
{(

Z
W

)

∈ H2(Ω; C)2

∣
∣
∣
∣

∫

Ω

(W + ξ Z) dx = 0,
∂

∂ν

(

Z
W

)∣
∣
∣
∣
∂Ω

= 0

}

.

On the other hand, the element z∗ is also a stationary state of

zt = −δ Jλ(z), (25)
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that is,

zt = DΔz + g(z) + k

|Ω|
(

λ − ξ

∫

Ω

z dx

)

,
∂z

∂ν

∣
∣
∣
∣
∂Ω

= 0. (26)

The index of the instability of the solution for z∗ to (26), on the other hand, is indicated by
the number of negative eigenvalues of L, which is the self-adjoint operator in L2(Ω) defined
by

Lϕ = −
(

DΔϕ + g′(z∗)ϕ − kξ

|Ω|
∫

Ω

ϕ dx

)

, (27)

with the domain

D(L) =
{

ϕ ∈ H2(Ω) | ∂ϕ

∂ν

∣
∣
∣
∣
∂Ω

= 0

}

.

The following theorem assures that these two Morse indices coincide, provided that

ξη2 > k, (28)

where η2 is the second eigenvalue of −Δ with the Neumann boundary condition.

Theorem 4 Any eigenvalue σ ∈ C ofA in Re σ < αk/2ξ is real, and has the same algebraic
and geometric multiplicities under an additional condition σ < αη2. In addition, if the
condition (28) is satisfied, the numbers of negative and zero eigenvalues ofA andL coincide.

We note that the assumption (28) is a technical condition to ensure that the assertion of
the above theorem (see the fifth step of the proof in Sect. 4) holds. Hence, we might relax
the condition by improving the argument in the proof, which would be a future work.

Theorem 4 is regarded as a spectral comparison property first observed by [1]. It has been
examined for the first model of (3) by [15] and for the second model with τ = 1 by [11].
Here we use a similar argument as in [3] for the proof. By virtue of this theorem we can
see that there is a restriction on the profile of stable stationary solutions. For instance, in a
cylindrical domain [23] tells that every stable solution z∗, given by the critical point of Jλ,
must be monotone in the axial direction. Therefore, such a property to the solution (u∗, v∗)
to (9) is inherited from z∗ through (21) (see [11] for a similar application).

We give a remark on the case τ = 1. Some of the above results are similar to those in
([11]) for the case τ = 1, therefore we make clear the connection by taking the limit τ → 1.
We confirm that the Lyapunov function L(u, v) and stationary state valid to τ �= 1, that is,
(14) and (18), respectively, are reduced to those for τ = 1 used in [11], under suitable scaling.
In the following, we assume D �= 1, because τ = D = 1 is the trivial case of (1).

First, given τ �= 1, we define L̂(z, w; τ) by

L(z, w) = ξ L̂(z, w; τ), ξ = ξ(τ ) = 1 − τD

τ − 1
.

Since

lim
τ→1

α + D

ξ
= lim

τ→1

{
1 − D

1 − τD
+ D(τ − 1)

1 − τD

}

= 1,

lim
τ→1

k

ξ
= 0,

it follows that

L̂(z, w) ≡ lim
τ→1

L̂(z, w; τ) =
∫

Ω

(
1

2
|∇w|2 + D

2
|∇z|2 − G(z)

)

dx,

which is the Lyapunov function used in [11].
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Next, to derive the limit problem of (18) we take

λ̂ = λ/ξ =
∫

Ω

(z + w/ξ)dx .

By taking τ → 1, it holds that

λ̂ =
∫

Ω

z. (29)

On the other hand, since λ = ξ λ̂ we write (18) as

− DΔz = g(z) + kξ

|Ω|
(

λ̂ −
∫

Ω

z dx

)

,
∂z

∂ν

∣
∣
∣
∣
∂Ω

= 0.

Because of ξ → ∞ as τ → 1, we need to assume
∫

Ω
z dx → λ̂ so that the limit problem

makes sense. Therefore, we can require the limit problem as τ → 1 to be

− DΔz = g(z) + μ,
∂z

∂ν

∣
∣
∣
∣
∂Ω

= 0 (30)

with some μ ∈ R

μ = − 1

|Ω|
∫

Ω

g,

and
∫

Ω
z dx = λ̂. Hence we end up with

− DΔz = g(z) − 1

|Ω|
∫

Ω

g(z),
∂z

∂ν

∣
∣
∣
∣
∂Ω

= 0. (31)

The stationary state of (6) with τ = 1 is now formulated by (29)–(31), using z = u + v.
This is the Euler–Lagrange equation of the functional

Ĵ
λ̂
(z) =

∫

Ω

(
D

2
|∇z|2 − G(z)

)

dx,

defined for

H =
{

z ∈ H1(Ω) |
∫

Ω

z dx = λ̂

}

.

Asmentioned in the explanation of the model equations, there is a biological model which
has a similar form in the kinetics. In [19], the authors propose the next system:

ut = −μ[�(u + v)u − (1 − �(u + v))v],
vt = DvΔv + μ[�(u + v)u − (1 − �(u + v))v],

where u and v stand for the density of a proliferating population and a migrating population
in tumour cells, respectively. �(u + v) is the probability that an immotile cells becomes
motile. They assume that the proliferating population does not migrate, hence no diffusion
in the u equation. For an explicit function

�(z) := 1

2
(1 + tanh(α[z∗ − z])),

they show a Turing type instability and wave patterns by using numerical methods, where α

and z∗ are positive parameters. Since we write

�(u + v)u − (1 − �(u + v))v = �(u + v)(u + v) − v,
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the right hand side of the u equation can be written as g(z) + μv, where g(z) = −μ�(z)z.
Our final remark is that with a slightly little modification our results can be extended to the
case when h(z) is replaced by g(z).

This paper is composed of four sections. Theorems 2, 3, and 4 are proven in Sects. 2, 3,
and 4, respectively. The standard L p norm on Ω is denoted by ‖ ‖p , 1 ≤ p ≤ ∞.

2 Proof of Theorem 2

In this section we will prove several a priori estimates. Henceforth, Ci , i = 1, 2, . . . , 19
denote positive constants independent of t .

The first observation is the inequality

‖u(·, t)‖1 + ‖v(·, t)‖1 ≤ C1, (32)

which follows from (11) and ξ > 0. Now we show the following lemma.

Lemma 2.1 It holds that
‖v(·, t)‖∞ ≤ C2. (33)

Proof Since
0 ≥ h(z) ≥ −C3, z ≥ 0, (34)

we have

τvt ≤ Δv + C3 − kv,
∂v

∂ν

∣
∣
∣
∣
∂Ω

= 0, v|t=0 = v0(x) ≥ 0.

Hence it holds that v(x, t) ≤ v(t), where v = v(t) is the solution to

dv

dt
= τ−1C3 − τ−1kv, v(0) = ‖v0‖∞,

that is,

v(t) = e−τ−1kt‖v0‖∞ + C3

k
(1 − e−τ−1kt ).

Then we obtain

‖v(·, t)‖∞ ≤ C4,

and hence (33). ��
Lemma 2.2 We have

‖z(·, t)‖2H1 + ‖w(·, t)‖2H1 +
∫ t

0
(‖zt (·, t ′)‖22 + ‖∇w(·, t ′)‖22) dt ′ ≤ C5. (35)

Proof First, (15) implies

L(z(·, t), w(·, t)) +
∫ t

0
(ξ‖zt (·, t ′)‖22 + ‖wt (·, t ′)‖22)dt ′

+
∫ t

0
(αD‖Δw(·, t ′)‖22 + kα‖∇w(·, t ′)‖22)dt ′ = L(z0, w0).

123



832 J Dyn Diff Equat (2018) 30:823–844

By (8) and (34), we have
g(z) ≤ (1 + D)C3, z ≥ 0. (36)

In (14):

L = L(z, w) =
∫

Ω

(
α + D

2
|∇w|2 + k

2
w2 + ξD

2
|∇z|2 − ξG(z)

)

dx,

it holds that

G(z) ≤ (1 + D)C3z, z ≥ 0.

Then (35) follows from (32), which is derived from the conservation of the total mass, and
Wirtinger’s inequality:

μ2‖z − 〈z〉‖22 ≤ ‖∇z‖22, z ∈ H1(Ω),

with μ2 > 0 defined to be the second eigenvalue of −Δ under the Neumann boundary

condition where, 〈z〉 = 1

|Ω|
∫

Ω

z dx . ��

Lemma 2.3 It holds that
‖w(·, t)‖∞ ≤ C6. (37)

Proof Taking μ > 0, we write the second equation of (9) as

wt = (αΔ − μ)w + μw − ξ zt ,
∂w

∂ν

∣
∣
∣
∣
∂Ω

= 0, w|t=0 = w0(x).

Then it follows that

w(·, t) = et (αΔ−μ)w0 +
∫ t

0
e(t−t ′)(αΔ−μ)[μw(·, t ′) − ξ zt (·, t ′)] dt ′. (38)

To estimate the second term on the right-hand side of (38), we use the semigroup estimate
(see [20])

‖etΔφ‖r ≤ C7(q, r)max
{

1, t−
N
2 ( 1q − 1

r )
}

‖φ‖q , 1 ≤ q ≤ r ≤ ∞, (39)

recalling that N is the space dimension.
First, we apply this to q = 2 and r = ∞ for N = 1 and 1 ≤ r < 2N

(N−2)+ for N ≥ 2.
Then it follows that

N

2

(
1

2
− 1

r

)

<
1

2
,

and hence

‖w(·, t)‖r ≤ C8‖w0‖r + C8

∫ t

0
(t − t ′)−

N
2

(
1
2− 1

r

)

e−μ(t−t ′)(‖w(·, t ′)‖2
+‖zt (·, t ′)‖2) dt ′ ≤ C9, (40)

from (38). Here we used (35) for the second inequality to derive.
If N ≥ 2, we also have

‖z(·, t)‖r ≤ C10, 1 ≤ r <
2N

(N − 2)+
, (41)
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derived from (35), which implies

‖u(·, t)‖q ≤ C11, 1 ≤ q <
2N

(N − 2)+
, (42)

by (33). Using (34), now we have

ut ≤ DΔu + kv,
∂u

∂ν

∣
∣
∣
∣
∂Ω

= 0.

Then it holds that
0 ≤ u(·, t) ≤ u(·, t), (43)

for

u(·, t) = e(DΔ−μ)t u0 +
∫ t

0
e(DΔ−μ)(t−t ′)[μu(·, t ′) + kv(·, t ′)] dt ′,

where the semigroup estimate (39) is applicable. From (35), (42), and (43) it thus follows
that

‖u(·, t)‖r ≤ C12,

for 1 ≤ r ≤ ∞ satisfying

N

2

(
1

q
− 1

r

)

< 1.

Thus we obtain
‖u(·, t)‖∞ ≤ C13, (44)

for N ≤ 5, while (42) is improved as

‖u(·, t)‖q ≤ C14, 1 ≤ q <
2N

(N − 6)+
,

for N ≥ 6. Continuing this procedure, we reach (44) for any N and then (37) follows from
(35). ��
Proof of Theorem 2 By Lemmas 2.1 and 2.3 we have

‖(u(·, t), v(·, t))‖∞ ≤ C15.

This implies T = +∞ and the relative compactness of the orbit

O = {(u(·, t), v(·, t))}t≥0 ⊂ C2(Ω)2.

From the general theory (see [6,7]) the ω-limit set ω(u0, v0) is contained in the set of
equilibria, that is, L(z, w) is constant on ω(u0, v0) by LaSalle’s principle.

Given (u∗, v∗) ∈ ω(u0, v0), let (ũ, ṽ) = (ũ(·, t), ṽ(·, t)) be the solution to (6) for
(u0, v0) = (u∗, v∗) and

w̃ = Dũ + ṽ, z̃ = ũ + ṽ.

From the above property we have

d

dt
L(z̃(·, t), w̃(·, t)) = 0, t ≥ 0,
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and then it follows that

z̃t = 0, w̃t = 0, ∇w̃ = 0,

from (15). Hence we have

DΔz∗ + kw∗ + g(z∗) = 0,
∂z∗
∂ν

∣
∣
∣
∣
∂Ω

= 0,

and w∗ ∈ R. This w∗ is determined by the total mass

λ =
∫

Ω

(ξ z∗ + w∗)dx,

for λ in (20). Then (22) follows, and z = z∗ is a solution to (18).
Since each (u∗, v∗) ∈ ω(u0, v0) satisfies w∗ = Du∗ + v∗ ∈ R, it holds that

lim
t↑+∞ ‖∇w(·, t)‖C1 = 0.

Then we obtain (23). ��

3 Proof of Theorem 3

We have derived (25) by reducing the second equation of (9) to the stationary state. This
process is valid even in the variational level, that is, between the functionals L(z, w) and
Jλ(z). In Lemma 3.1 below, we shall show the semi-unfolding-minimality property, observed
in several models in non-equilibrium thermodynamics [9,10,22–25] and [18] (see also [21]).

For the moment we regard L(z, w) and Jλ(z) as smooth functionals of (z, w) ∈ H1(Ω)×
H1(Ω) and z ∈ H1(Ω), defined by (14) and (19), respectively.

Lemma 3.1 Given λ ∈ R, let (z, w) ∈ H1(Ω) × H1(Ω) satisfy
∫

Ω

(ξ z + w)dx = λ,

and define w ∈ R by (17). Then it holds that

L(z, w) ≥ L(z, w) = ξ Jλ(z) + λ2k

2|Ω| . (45)

Proof We have

w = 1

|Ω|
∫

Ω

w dx,

and hence
∫

Ω

w2 dx ≥
∫

Ω

w2 dx,

by Jensen’s inequality. Then L(z, w) ≥ L(z, w) follows.
The second identity of (45) is now derived as

L(z, w) = 1

2

∫

Ω

(kw2 + ξD|∇z|2 − 2ξG(z))dx = ξ Jλ(z) + λ2k

2|Ω| .
��
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The following lemma holds because h = h(z) is real analytic in z ≥ 0. The proof is
similar to Lemma 7 of [13] and is omitted.

Lemma 3.2 Let z∗ = z∗(x) be a local minimizer of functional Jλ(z), z ∈ H1(Ω), defined
by (19). Since h = h(z) is a real-analytic function of z ∈ R, there exists an ε0 > 0 such that
any ε ∈ (0, ε0/4] admits a δ0 > 0 so that

‖z − z∗‖H1 < ε0, Jλ(z) − Jλ(z∗) < δ0 ⇒ ‖z − z∗‖H1 < ε. (46)

We are ready to give the following proof using semi-duality.

Proof of Theorem 3 First, the solution (z, w) = (z(·, t), w(·, t)) lies on the affine space
{(z, w) | ∫

Ω
ξ z + w dx = λ}. Let (z0, w0) be the initial value and let 0 ≤ z∗ ∈ H1(Ω) be a

local minimum of Jλ(z), z ∈ H1(Ω), for λ defined by (16). Given ε > 0, we shall show the
existence of δ > 0 such that

‖z0 − z∗‖H1 + ‖w0 − w‖H1 < δ, (47)

implies
‖z(·, t) − z∗‖H1 + ‖w(·, t) − w‖H1 < C16ε, t ≥ 0, (48)

for w ∈ R defined by (17). This property will imply the stability of (z∗, w) concerning (9)
in X = C2(Ω)2, because the orbit

O = {(u(·, t), v(·, t))}t≥0,

is relatively compact in X .
First, we take ε0 > 0 be as in Lemma 3.2. Then the total mass conservation in the form

of (11) implies

ξ Jλ(z(·, t)) − ξ Jλ(z∗) ≤ L(z0, w0) − L(z∗, w), t ≥ 0,

by (15). Given ε ∈ (0, ε0/4], next, we take δ0 as in Lemma 3.2. Then we determine δ > 0
such that (47) implies

‖z0 − z∗‖H1 < ε0/2, L(z0, w0) − L(z∗, w) < ξδ0. (49)

From the second inequality of (49) we have

Jλ(z(·, t)) − Jλ(z∗) < δ0, t ≥ 0. (50)

Now we show
‖z(·, t) − z∗‖H1 < ε0/2, t ≥ 0. (51)

In fact, if this is not the case we have t0 > 0 such that

‖z(·, t0) − z∗‖H1 = ε0/2 < ε0, (52)

because of the first inequality of (49) and the continuity of t �→ z(·, t) ∈ H1(Ω). Then
Lemma 3.2, based on (50) and (52), implies

‖z(·, t0) − z∗‖H1 < ε ≤ ε0/4,

a contradiction. Having (50) and (51), we obtain

‖z(·, t) − z∗‖H1 < ε, t ≥ 0. (53)
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Since

〈w(t)〉 = 1

|Ω|
∫

Ω

w(·, t) dx = 1

τ |Ω|
(

λ − ξ

∫

Ω

z dx

)

,

it holds that

|〈w(t)〉 − w| ≤ ξ

τ |Ω| ‖z∗ − z(·, t)‖1

≤ ξ

τ |Ω|1/2 ‖z∗ − z(·, t)‖2 <
ξε

τ |Ω|1/2 .

Then (48) follows from (23) and

‖w − w∗‖H1 ≤ ξ

|Ω|1/2 ‖z − z∗‖2.
��

4 Proof of Theorem 4

The eigenvalue problem of A in L2(Ω : C)2 takes the form

A
(

φ

ψ

)

= σ

(

φ

ψ

)

,

(

φ

ψ

)

∈ D(A) \ {0}

which means (φ, ψ) �= (0, 0) and by

M =
(

1 + Dξ/α −ξ/α

ξ 1

)

, A1 =
(−DΔ − g′(z∗) −k

0 −αΔ

)

.

it is written as

A1

(

φ

ψ

)

= σM

(

φ

ψ

)

,

(

φ

ψ

)

∈ D(A1) \ {0},

namely,

− (DΔφ + g′(z∗)φ + kψ) = σ {(1 + Dξ/α)φ − (ξ/α)ψ},
−αΔψ = σ(ψ + ξφ), in Ω,

∂

∂ν
(φ,ψ)

∣
∣
∣
∣
∂Ω

= 0,
∫

Ω

(ψ + ξφ)dx = 0. (54)

Henceforth, ( · , · ) and ‖ · ‖ indicate the inner product and norm in L2(Ω; C)2, respectively.
For the proof of Theorem 4, we have to compare nonpositive eigenvalues of A and L,

which is defined in (27) as,

Lϕ = −(DΔϕ + g′(z∗)ϕ − kξ 〈ϕ〉)
To carry out it, we will take the following steps:

1. Prove that every eigenvalue of A in {λ ∈ C | Reλ ≤ 0} is real.
2. Show the coincidence of the algebraic multiplicity and geometric one of each nonpositive

eigenvalue.
3. Write the equations of (54) as Lφ = σM(−σ/α)φ by an appropriate nonlocal operator

M(s), which is bounded for each s ≥ 0 provided (28) holds.
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4. Consider the weighted eigenvalue problem forLφ = μM(s)φ and show that the number
of negative eigenvalues of this problem is equal to that of L, that is, Lφ = μ∗φ.

5. For each negative eigenvalue μ = μ(s) of the weighted problem prove the monotonicity
of μ(s)/s together with the continuity in s ∈ (0,∞) and conclude the existence of s
enjoying s = −μ(s)/α.

We first show the next lemma.

Lemma 4.1 Any eigenvalue σ ∈ C of A satisfying

Re σ < αk/2ξ (55)

is real.

Proof We may assume σ �= 0. Letting

σ1 = Re σ, σ2 = Im σ, J1 = Re (φ, ψ), J2 = Im (φ, ψ),

we have

D‖∇φ‖2 −
∫

Ω

g′(z∗)|φ|2dx − k(J1 − ı J2)

= (σ1 + ıσ2){(1 + Dξ/α)‖φ‖2 − ξ/α(J1 − ı J2)},
α‖∇ψ‖2 = (σ1 + ıσ2)‖ψ‖2 + (σ1 + ıσ2)ξ(J1 + ı J2),

by (54). Then it follows that

k J2 = σ2(1 + Dξ/α)‖φ‖2 − (ξ/α)(σ2 J1 − σ1 J2),

α‖∇ψ‖2 = σ1‖ψ‖2 + ξ(σ1 J1 − σ2 J2),

0 = σ2‖ψ‖2 + ξ(σ2 J1 + σ1 J2). (56)

The last two equalities of (56) imply

ασ2‖∇ψ‖2 = −(σ 2
1 + σ 2

2 )ξ J2, (57)

while from the first and the third equalities we have

(σ2/α)‖ψ‖2 + σ2(1 + Dξ/α)‖φ‖2 = (k − 2ξσ1/α)J2. (58)

Equalities (57)–(58) are reduced to

(σ2/α)‖ψ‖2 + σ2(1 + Dξ/α)‖φ‖2 = −ασ2
k − 2ξσ1/α

(σ 2
1 + σ 2

2 )ξ
‖∇ψ‖2.

Thus σ1 < αk/2ξ implies σ2 = 0. ��
Henceforth, we define −ΔN by −ΔNφ = −Δφ, φ ∈ D(−ΔN ), and

D(−ΔN ) =
{

φ ∈ H2(Ω) ∩ L2
0(Ω)

∣
∣
∣
∣

∂φ

∂ν

∣
∣
∣
∣
∂Ω

= 0

}

,

L2
0(Ω) = {φ ∈ L2(Ω) |

∫

Ω

φ dx = 0}.

Since
∫

Ω

(−Δφ)dx = 0, φ ∈ D(A),
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the operator −ΔN is a self-adjoint operator in L2
0(Ω). We put also

Qφ = φ − 〈φ〉, 〈φ〉 = 1

|Ω|
∫

Ω

φ dx,

for φ ∈ L2(Ω).
The proof of the following lemma is similar to that of Lemma 3.3 of [3], although more

careful computation is needed.

Lemma 4.2 In addition to the condition for the spectrum σ in Lemma 4.1 assume σ < αη2.
Then the algebraic and geometric multiplicities of the eigenvalue σ of A in (55) coincide.

Proof Let

(A − σ I )

(

φ0

ψ0

)

= 0,

(

φ0

ψ0

)

∈ D(A) \ {0}.

To prove
Ker (A − σ I ) = Ker (A − σ I )m, m ≥ 2, (59)

it suffices to show the nonexistence of the solution to

(A − σ I )

(

φ

ψ

)

=
(

φ0

ψ0

)

,

(

φ

ψ

)

∈ D(A). (60)

First, Eq. (60) yields

A1

(

φ0

ψ0

)

= σM

(

φ0

ψ0

)

,

∫

Ω

(ξφ0 + ψ0)dx = 0, (61)

and hence

−αΔψ0 = σ(ξφ0 + ψ0) = σ(ξQφ0 + Qψ0),

from the second component. Applying Q to both sides, we obtain

Qψ0 = σξ/α(−ΔN − σ/α)−1Qφ0, 〈ψ〉 = −ξ 〈φ〉. (62)

Then the first component of (61) implies

− DΔφ0 − g′(z∗)φ0 + {kξ − σ(1 + ξ(D + ξ)/α)}〈φ0〉
= σ {(1 + Dξ/α) + ξ/α(k − σξ/α)(−ΔN − σ/α)−1}Qφ0. (63)

Similarly, (60) implies

(A1 − σM)

(

φ

ψ

)

= M

(

φ0

ψ0

)

,

and hence

− DΔφ − g′(z∗)φ − σ(1 + Dξ/α)φ − (k − σξ/α))ψ

= (1 + Dξ/α)φ0 − (ξ/α)ψ0,

−αΔψ − σψ − σξφ = ξφ0 + ψ0. (64)

From the second equation of (64) it follows that

Qψ = σξ

α
B−1Qφ + 1

α
B−1(ξQφ0 + Qψ0),
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by putting B = −ΔN − σ/α. We note that B has an inverse by the assumption. Plug this
into the first equation of (64). Since ξ 〈φ〉 + 〈ψ〉 = 0 and ξ 〈φ0〉 + 〈ψ0〉 = 0, we obtain

L̃(φ) = W, (65)

where

L̃(φ) = −DΔφ − g′(z∗)φ + {kξ − σ(1 + ξ(D + ξ)/α)}〈φ〉
−σ {(1 + Dξ/α) + (ξ/α)(k − σ(ξ/α))B−1}Qφ, (66)

and

W = (1 + ξ(D + ξ)/α)〈φ0〉 + (1 + Dξ/α)Qφ0 − (ξ/α)Qψ0

+ ξ

α
(k − σξ/α)B−1Qφ0 + 1

α
(k − σξ/α)B−1Qψ0.

The operator L̃ in (66) is realized as a self-adjoint operator in L2(Ω) with the domain

D(L̃) = {φ ∈ H2(Ω) | ∂φ
∂ν

∣
∣
∣
∂Ω

= 0}. It holds that L̃(φ0) = 0 by (63). Hence (65) implies

(W, φ0) = 0. (67)

Here we have

(W, φ0) = (1 + ξ(D + ξ)/α)‖〈φ0〉‖2 + (1 + Dξ/α)‖Qφ0‖2

+ ξ

α
(k − σξ/α)(B−1Qφ0, Qφ0) − ξ

α
(Qψ0, Qφ0)

+ 1

α
(k − σξ/α)(B−1Qψ0, Qφ0).

Due to (62), the sum of the last three terms on the right-hand side of the above equality is
equal to

ξ

α
(k − σξ/α)(B−1Qφ0, Qφ0) − ξ

α
· σξ

α
(B−1Qφ0, Qφ0)

+ 1

α
(k − σξ/α)((σξ/α)B−1Qφ0, B

−1Qφ0)

= ξ

α

{

(k − 2σξ/α)‖B−1/2Qφ0‖2 + σ

α
(k − σξ/α)‖B−1Qφ‖2

}

.

Hence it follows that

(W, φ0) = (1 + ξ(D + ξ)/α)‖〈φ0〉‖2 + (1 + Dξ/α)‖Qφ0‖2

+ ξ

α

{

(k − 2σξ/α)‖B−1/2Qφ0‖2 + σ

α
(k − σξ/α)‖B−1Qφ0‖2

}

. (68)

By the assumption (55) in Lemma 4.1 we have

k − 2σξ/α > 0,

which implies that the right-hand side of the equality (68) is positive. Hence, (W, φ0) > 0,
which is a contradiction. If σ < 0, utilizing

‖B−1Qφ0‖2 ≤ 1

η2 − σ/α
‖B−1/2Qφ0‖2,

k − 2σξ/α + σ

α

(
k − σξ/α

η2 − σ/α

)

> (k − σξ/α)

(

1 + σ/α

η2 − σ/α

)

> 0,
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we can assert (W, φ0) > 0, which is a contradiction. ��
To go to the third step of the proof of Theorem 4, we write the second equation of (54) as

α(−ΔN − (σ/α))Qψ = σ 〈ψ〉 + σξφ = σξQφ,

that is,
Qψ = σ(ξ/α)(−ΔN − (σ/α))−1Qφ. (69)

Next, the first equation of (54) writes

− DΔφ − g′(z∗)φ − k(〈ψ〉 + Qψ)

= σ [(1 + Dξ/α)(〈φ〉 + Qφ) − (ξ/α)(〈ψ〉 + Qψ)]

= σ [(1 + ξ(D + ξ)/α)〈φ〉 + (1 + Dξ/α)Qφ − (ξ/α)Qψ] .

Therefore, it holds that

− DΔφ − g′(z∗)φ + kξ 〈φ〉 = σ [(1 + ξ(D + ξ)/α)〈φ〉 + (1 + Dξ/α)Qφ

− σ(ξ/α)2(−ΔN − σ/α)−1Qφ + (kξ/α)(−ΔN − σ/α)−1Qφ
]

= σ [(1 + ξ(D + ξ)/α)〈φ〉
+{(1 + Dξ/α) + (ξ/α)(k − σ(ξ/α))(−ΔN − σ/α)−1}Qφ]. (70)

By Lemmas 4.1 and 4.2, any eigenvalue σ ofA satisfying (55) is real, with equal algebraic
and geometric multiplicities. Then it holds that

σ

α
<

k

2ξ
<

k

ξ
< η2,

by (28) and the assumptions. Here we put

M(s) = (1 + ξ(D + ξ)/α)(1 − Q)

+{(1 + Dξ/α) + (ξ/α)(k + sξ)(−ΔN + s)−1}Q,

for each s > −k/ξ(> −η2). From (27) and (70), the complex number σ satisfying (55) is
an eigenvalue of A if and only if it is real, σ/α < η2, and

Lφ = σM(−σ/α)φ, φ ∈ D(L) \ {0}. (71)

Associated with this problem we consider the eigenvalue problem

Lφ = μM(s)φ, φ ∈ D(L) \ {0}. (72)

For s > −k/ξ ,M(s) is self-adjoint and bounded positive operator. Thus problem (72) admits
an infinite number of eigenvalues, which are all real, denoted by

μ1(s) ≤ μ2(s) ≤ · · · ≤ μ j (s) ≤ · · · → +∞,

according to their multiplicities. For fixed s > −k/ξ , let Σ(s) = {μ j (s)}∞j=1. We note that
the problem (71) implies σ ∈ Σ(−σ/α).

We next go to the fourth step. We use the weighted L2 norm ‖ · ‖s defined by
‖u‖2s = (u, u)s, (u, v)s = (M(s)u, v).

Then the min-max principle is available to define the spectrum Σ(s) through the Rayleigh
quotient (see, e.g. [4])

R(φ, s) = D‖∇φ‖2 − (g′(z∗)φ, φ) + kξ‖〈φ〉‖2
‖φ‖2s

.
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Thus, it holds that

μ j (s) = inf{ sup
φ∈X j \{0}

R(φ, s) | X j ⊂ H1(Ω), codim X j = j − 1}

= inf{R(φ, s) | φ ∈ H1(Ω), (φ, φ�(s)) = 0, 1 ≤ � ≤ j − 1}, (73)

where φ�(s) denotes an eigenfunction of (72) corresponding toμ�(s) such that ‖φ�(s)‖s = 1.
We note that the eigenvalues are arranged in an increasing order with respect to counting the
multiplicity and a corresponding eigenfunction is uniquely determined up to multiplication
of the nonzero constant.

We compare the spectrum Σ(s) with that of the operator L. Let the eigenvalues of −ΔN

be {ηi }∞i=2,

0 < η2 ≤ η3 ≤ · · · ≤ ηi ≤ · · · → +∞,

and {Φi }∞i=2 be its L
2 ortho-normal eigenfunctions. Then we have

‖φ‖2 = 〈φ〉2 +
∞
∑

i=2

|(φ,Φi )|2, (74)

‖φ‖2s = (1 + ξ(D + ξ)/α)〈φ〉2

+
∞
∑

i=2

{(1 + Dξ/α) + (ξ/α)(k + sξ)(ηi + s)−1}|(φ,Φi )|2. (75)

By (28) we have

0 ≤ k + sξ

ηi + s
≤ C17, s ≥ −k/ξ, i = 2, 3, . . . .

Then it holds that

C−1
18 R(φ) ≤ R(φ, s) ≤ C18R(φ), s ≥ −k/ξ,

where

R(φ) = D‖∇φ‖2 − (g′(z∗)φ, φ) + kξ‖〈φ〉‖2
‖φ‖2 .

Hence the number of non-positive elements of {μ j (s)}∞j=1 is equal to that of the non-positive
eigenvalues of L. More precisely, we have

C−1
18 μ∗

j ≤ μ j (s) ≤ C18μ
∗
j , s ∈ [−k/ξ,+∞), (76)

for each j , where μ∗
j denote the j-th eigenvalue of L.

We now go to the final step. From (71), the real number σ in σ < αk/2ξ is an eigenvalue
of A if and only if

μ j (−σ/α) = σ, (77)

for some j ≥ 1. In particular, the number of zero eigenvalues of A is equal to that of zero
elements of {μ j (0)}∞j=1. Namely, this number is equal tom∗. Rewriting (77) with s = −σ/α,
on the other hand, we see that the number of negative eigenvalues of A is equal to that of
s > 0 such that

μ j (s)

s
= −α, (78)

for some j = 1, . . . ,m.
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We prove the monotonicity of μ j (s)/s in s. Here we have

∂

∂s

R(φ, s)

s
= − R(φ, s)

s2
· 1

‖φ‖2s
· ∂

∂s
(s‖φ‖2s ), (79)

and

∂

∂s
(s‖φ‖2s ) = (1 + ξ(D + ξ)/α)〈φ〉2

+
∞
∑

i=2

{(1 + Dξ/α) + (ξ/α)ci (s)}|(φ,Φi )|2,

with

0 ≤ ci (s) = ηi (k + sξ)

(ηi + s)2
+ ξs

ηi + s
≤ C19, s > 0.

Hence it follows that

C−1
19 ≤ 1

‖φ‖2s
∂

∂s
(s‖φ‖2s ) ≤ C19. (80)

From (79) and (80) we have c0 > 0 independent of s > 0 and φ ∈ H1(Ω) \ {0} such that
R(φ, s′)

s′ ≥ R(φ, s)

s
− c0

R(φ, s)

s2
(s′ − s) + o(s′ − s)

=
(

1 − c0
s

(s′ − s)
) R(φ, s)

s
+ o(s′ − s), (81)

as s′ ↓ s uniformly in s and φ.
By (73) and (81) it holds that

μ j (s′)
s′ ≥

(

1 − c0
s

(s′ − s)
) μ j (s)

s
+ o(s′ − s)

= μ j (s)

s
− c0μ j (s)

s2
(s′ − s) + o(s′ − s),

as s′ ↓ s > 0. In particular, the mapping

s ∈ (0,+∞) �→ μ j (s)

s
< 0,

is strictly increasing if μ j (s) < 0, that is,

μ j (s′)
s′ >

μ j (s)

s
, s′ > s > 0, (82)

for j = 1, . . . ,m.
To confirm the continuity of

s ∈ (0,+∞) �→ μ j (s), (83)

we use its monotonicity (non-increasing) derived from

d

ds
‖φ‖2s ≥ 0, φ ∈ L2(Ω). (84)

Indeed, invoking (75) and noticing that

d

ds

(
k + sξ

η� + s

)

= ξη� − k

(η� + s)2
> 0,
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by the condition (28), we obtain (84). Then (82) and (84) imply

μ j (s1) ≤ μ j (s2) ≤ s2
s1

μ j (s1), 0 < s2 ≤ s1,

and hence the continuity of (83).
Since (76) implies

lim
s↓0

μ j (s)

s
= −∞, lim

s↑+∞
μ j (s)

s
= 0,

each j = 1, . . . ,m admits a unique s = s j > 0 such that (78) holds. Thus, the number of
negative eigenvalues of A is equal to m. The proof of Theorem 4 is complete. ��
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