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Abstract We show the existence of a family of stacked central configurations in the planar
five-body problem with a special property. Three bodies m1, m2 and m3, ordered from left
to right, are collinear and form an Euler central configuration, and the other two bodies m4

and m5, together with m2 are at the vertices of an equilateral triangle and form a Lagrange
central configuration.

Keywords Collinear central configurations · Equilateral central configuration · Laura-
Andoyer equations

1 Introduction and Main Result

Central configurations play an interesting role in celestial mechanics [18]. For instance,
they allow to obtain explicit solutions of the n-body problem where the initial shape of the
configuration is preserved along the orbit up to rescaling and rotations.
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Recently, there has been a growing interest in stacked central configuration, that is, central
configurations such that a proper subset of the n bodies also form a central configuration.
This concept was first introduced by Hampton in a seminal paper [9] by providing a family of
central configurations in the planar five-body problem where if two masses are removed, the
remaining three are at the vertices of an equilateral triangle. After that, several papers have
shown the existence of other stacked central configurations in the planar five-body problem,
see [3,5,7,11,12]. Besides planar configurations, stacked central configuration have also been
found in the spatial case, see [10,14,15,19] or in the general n-body problem, see [6,20,21].
Even in limit problems, as the coorbital satellite problem, see [1,17].

At this point, a natural question rise: Given a central configuration of the n-body problem,
howmany different subsets of bodies, A, do exist with cardinality |A| = k, k = 1, . . . , n−3,
such that the n − k bodies form a central configuration of the (n − k)-body problem?

Using the notation, (n, k)-stacked central configuration, introduced by Fernandes and
Mello in [6], where n is the number of bodies of the original central configuration and k =
1, . . . , n−3 is the number of the removedbodies, previous question can be stated as following:
What is the number of (n, k)-stacked central configurations, for all k = 1, . . . , n − 3?

In the non-collinear n-body problem the answer to the case of (n, 1)-stacked central
configuration was given by Fernandes and Mello [6]. They proved that there exists only one.
That is, the configuration where n − 1 bodies form a co-spherical central configuration with
one body, of arbitrary mass, that can be removed located at the center of the sphere.

Central configurations consisting in two nested or twisted regular polygons are exemples
of two (2n, n)-stacked planar central configurations, that is, examples where two differ-
ent subsets of n bodies can be removed, see [2,13,16]. Although, in these stacked central
configurations, we have two different subsets of n bodies two choose, the central configura-
tions obtained once the bodies are removed are similar. Because of this we are interested in
counting the number of stacked central configurations that are not similar after the k bodies
are removed. So, we will count the number of (n, k)-stacked central configurations, for all
k = 1, . . . , n − 3 up to similarity.

In the non-collinear planar five-body problem a configuration that, after removing two
masses in three different ways, such that in each one the remaining three masses are in a
collinear configuration is not geometrically realizable, unless the planar five-body config-
uration has four collinear masses. It that case the perpendicular bisector theorem says that
such a configuration cannot be a central configuration of the five-body problem. So, it is
impossible to obtain, in the non-collinear planar five-body problem, three (5, 2)-stacked cen-
tral configurations where the remaining three masses form an Euler central configuration of
the three-body problem. On the other hand, a planar five-body configuration that includes
an equilateral triangle also can include, in three different ways, two collinear configurations
after removing two masses. That is, when the two non-triangular masses are on the sides of
the triangle, see Fig. 1a, when only one non-triangular mass is on one side, see Fig. 1b, and
finally when the two non-triangular masses are not on any side of the triangle, see Fig. 1c. As
before, the perpendicular bisector theorem says that any of these configurations cannot be a
central configuration of the five-body problem. Then, in the non-collinear planar five-body
problem, the number of (5, 2)-stacked central configurations up to similarity is at most two.
Moreover, only the five-body central configuration given by a square, with four equal masses
at its vertices, and one body located at its center, with arbitrary mass, admits a (5, 1)-stacked
central configurations. The one given by the square itself, that is, a 4-gon central config-
uration, obtained when the central body is removed. That five-body central configuration
also admits one (5, 2)-stacked central configurations, an Euler central configuration of the
three-body problem, obtained when two bodies located at opposite vertices of the square are
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Fig. 1 Three different configurations in the five-body problem where after removing two bodies, one equi-
lateral triangular configuration and two collinear configurations are obtained. All three are discarded by the
perpendicular bisector theorem to be central configurations in the five-body problem

removed. In that case is impossible remove any other two masses and obtain an equilateral
triangle, that is, a Lagrange central configuration of the three-body problem. Thus, we have
the following result.

Theorem 1 In the non-collinear planar five-body problem, the number of (5, k)-stacked
central configuration, for all k = 1, 2 up to similarity is at most two.

In this paper we prove the existence of a family in the planar five-body problem with
two (5, 2)-stacked central configurations. In our family bodiesm1, m2 and m3, ordered from
the left to the right, are collinear and form an Euler central configuration, and bodies m2,
m4 and m5 are located at the vertices of an equilateral triangle and form a Lagrange central
configuration. Due to the shape obtained after removing the two different subsets of two
bodies, we have called the five-body stacked central configuration Lagrange plus Euler in
one. As far as we know, this is the first time that this kind of enbeded central configurations
are shown in the plane. For a similar phenomena in the spatial case see [4].

Our main result is the following theorem.

Theorem 2 Consider the following configuration of the five-body problem: Three collinear
masses m1, m2, m3, ordered from left to right, and the two remaining masses, m4, m5 placed
symmetrically with respect to the collinear configuration. Assume that m2 and m4 = m5 = 1
lie at the vertices of an equilateral triangle whose sides have length equal to one, and so, form
a Lagrange central configuration of the three-body problem. Then there exist positive masses
m1, m2, m3 such that the five bodies form a central configuration of five-body problem and
the three collinear masses also form an Euler central configuration of three-body problem.

2 Statement of the Problem

The planar n-body problem consists in the study of a system of n bodies in the plane with
mass and position given by mi and qi ∈ R

2, respectively, subject to their mutual Newtonian
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gravitational interaction. Then the equations of motion in a suitable units are

q̈i =
n∑

j=1
j �=i

m j
q j − qi

r3i j
= ∂U

∂qi
, 1 ≤ i ≤ n (1)

where

U =
∑

1≤i< j≤n

mim j

ri j

is the potential function and ri j = ∣∣qi − q j

∣∣ is the Euclidean distance between the i th and
the j th bodies. Without loss of generality we may assume that the center of mass is fixed at
the origin,

∑n
i=1 miqi = 0.

A planar central configuration of the n-body problem q = (q1, . . . ,qn) ∈ R
2n is a

configuration such that the acceleration vector of every body is proportional (common scalar)
to its position vector with respect to the center of mass. Then, by (1) a central configuration
have to satisfies the equations

∂U

∂qi
= λmiqi , i = 1, . . . , n,

for some constant λ, equal for all bodies.
In terms of the mutual distances ri j , the equations for central configurations, named

Laura/Andoyer/Dziobek Equations [8], are given by

fi j =
5∑

k=1
k �=i, j

mk(Rik − R jk)Δi jk = 0, (2)

for 1 ≤ i < j ≤ n. Here, Ri j = 1/r3i j and Δi jk = (qi − q j ) ∧ (qi − qk). Thus, Δi jk gives
twice the signed area of the triangle with vertices qi , q j and qk . We emphasize that in the
planar five-body problem this system consists of ten equations.

Consider the following particular configuration of the planar five-body problem. Three
bodies m1, m2, m3, ordered from left to right, are in collinear configuration, and two bodies,
m4 = m5 = 1 placed symmetrically, with respect to the line containing the first three bodies.
We also assume that m2, m4 and m5 are at the vertices of an equilateral triangle and so, form
a Lagrange central configuration of the three-body problem, see Fig 2. Due to the impossed
simmetry we have that r14 = r15, r24 = r25 = r45 and r34 = r35, then system of ten equations
(2) reduces to the following three equations, since f12 = f13 = f23 = f45 = 0, f14 = − f15,
f24 = − f25, f34 = − f35.

f14 = m2(R12 − R24)Δ142 + m3(R13 − R34)Δ143 + (R14 − R45)Δ145 = 0,

f24 = m1(R12 − R14)Δ241 + m3(R23 − R34)Δ243 = 0,

f34 = m1(R13 − R14)Δ341 + m2(R23 − R24)Δ342 + (R34 − R45)Δ345 = 0. (3)

Solving system (3), we obtain the following expressions for m1, m2 and m3 in terms of
the mutual distances.

m1 = − (R23 − R34)Δ243
(R12 − R14)Δ241

m3, (4)

m2 = − (R13 − R34)(R12 − R14)(R34 − R45)Δ143Δ241Δ345 + (R14 − R45)(R23 − R34)(R13 − R14)Δ145Δ243Δ341
(R12 − R45)Δ142(R23 − R34)Δ243(R13 − R14)Δ341 + (R13 − R34)Δ143(R12 − R14)Δ241(R23 − R45)Δ342

,

(5)
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a b
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Fig. 2 Euler plus Lagrange stacked central configuration in the planar five-body problem

m3 = (R12 − R14)Δ241
(
(R12 − R45)Δ142(R34 − R45)Δ345 − (R14 − R45)Δ145(R23 − R45)Δ342

)

(R12 − R45)Δ142(R23 − R34)Δ243(R13 − R14)Δ341 + (R13 − R34)Δ143(R12 − R14)Δ241(R23 − R45)Δ342
.

(6)

By a suitable scaling we may assume that r24 = r25 = r45 = 1. Let r12 = a > 0,
r23 = b > 0, then, according to Fig. 2, our configuration must satisfy the following relations

r13 = a + b, r34 =
√
b2 − √

3b + 1, r14 =
√
a2 + √

3a + 1,

Δ142 = −a

2
, Δ143 = − (a + b)

2
, Δ145 = −

(
a +

√
3

2

)
,

Δ243 = −b

2
, Δ245 = −

√
3

2
, Δ341 = (a + b)

2
,

Δ342 = b

2
, Δ345 = b −

√
3

2
, Δ241 = a

2
. (7)

Let M be the region in the (a, b)-plane such that the masses mi , i = 1, 2, 3, given in
(4)–(6) are positive and let ∂M be its boundary, that is, points in the (a, b)-plane with at least
one mi , i = 1, 2, 3, equal to zero and where the non-zero masses are positives. Figure 3
gives a numerical evidence that the set M is non-empty, as in [12].

Let E(a, b) be the called Euler quintic polynomial

E(a, b) = − (m2 + m3) − (2m2 + 3m3) α − (m2 + 3m3) α2 + (3m1 + m2) α3

+ (2m2 + 3m1) α4 + (m1 + m2) α5,
(8)

where α = b/a.
Then E(a, b) = 0 is the equation that the three collinear masses m1, m2 and m3 have to

satisfy in order to formanEuler central configuration.Our goal is to prove that {E(a, b) = 0}∩
M �= ∅. Again, Fig. 3 give a numerical evidence that the intersection is not empty.
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Fig. 3 Positive mass regionM
with E = 0 in the (a, b)-plane

3 Proof of the Theorem 2

First we will show that E(a, b) = 0 intersects ∂M at m1 = 0, that is, there exists at least
one point (a0, b0) ∈ ∂M such that E(a0, b0) = 0 with m1(a0, b0) = 0 and mi (a0, b0) > 0,
i = 2, 3.

Let L be the line segment given by (a, b) ∈ (0, 1
3 ) × {

√
3
3 }. Claim: L ⊂ ∂M and for all

a ∈ L , m1 is zero and m2,m3 are positive.
From Eq. (4),m1 = 0 eitherm3 = 0 or r23 = r34, or equivalently, b = (b2−√

3b+1)1/2.
Then, in the (a, b)-plane, when m3 �= 0 the boundary m1 = 0 of M is given by the straight

line b =
√
3
3 . On the other hand, m1 > 0 when m3 > 0 and b <

√
3
3 .

From Eq. (5), when r23 = r34 we have that m2 = 1. To conclude the claim we have to
show that m3 > 0 for all a ∈ L . From Eq. (6), when r23 = r34 we obtain the following
expression for m3 in terms of a.

m3(a, b = √
3/3) = −

(
3a + √

3
)2

N (a)

27a3
(√

3a2 + 3a + √
3
) (

a2 + √
3a + 1

) 3
2

,

where

N (a) = −2a3 − √
3a2 +

(
3a5 + 4

√
3a4 + 6a3 − a2 + √

3a2 − √
3a − 1

)√
a2 + a

√
3 + 1. (9)

It is not hard to check that lima→0+ m3(a, b = √
3/3) = +∞, as well as N (1/3) =

− 2
27 −

√
3
9 − 71+14

√
3

81

√
10
9 +

√
3
3 < 0, so, m3(1/3, b = √

3/3) > 0. Finally, we are going

to show that m3(a, b = √
3/3) is never zero in L , or equivalently, N (a) does not vanish.

Expression (9) can be written as a polynomial of degree 12, P(a), such that, the zeros of
N (a) are a subset of the zeros of P(a).
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Table 1 Values of the P(a), P ′(a) and the Sturm’s sequence Tk at a = 0 and a = 1
3

a 0 1
3

P(a) 1 76693
59049 + 37739

59049

√
3

P ′(a) 3
√
3 −

(
14512
6561 + 14927

19683

√
3
)

T1 − 37
48 −

(
4019605
2834352 + 507703

708588

√
3
)

T2
287712+142272

√
3

121
218793536

29403 + 376399856
88209

√
3

T3 − 121(−775+717
√
3)

16(1233+626
√
3)2

− 121(3815527+5783121
√
3)

209952(1233+626
√
3)2

T4 − 32(47985538239+28537522888
√
3)

5929(395+58
√
3)2

− 16(2725693418250549+1576558677574052
√
3)

38900169(395+58
√
3)2

T5 T5(0) > 0 T5
(
1
3

)
> 0

T6 T6(0) > 0 T6
(
1
3

)
> 0

T7 T7(0) > 0 T7
(
1
3

)
> 0

T8 T8(0) > 0 T8
(
1
3

)
> 0

T9 T9(0) < 0 T9
(
1
3

)
> 0

T10 T10(0) < 0 T10
(
1
3

)
< 0

T11 T11 > 0 T11 > 0

P(a) = 9a12 + 33
√
3a11 + 165a10 + (162

√
3 − 6)a9 + (306 − 20

√
3)a8

+ (126
√
3 − 90)a7 + (96 − 78

√
3)a6 + (14

√
3 − 126)a5

+ (12 − 42
√
3)a4 + (9

√
3 − 24)a3 + (12 − 2

√
3)a2 + 3

√
3a + 1.

We apply Sturm’s Theorem to conclude that P(a) has no real roots in the interval (0, 1
3 ).

Let R1(a) be the remainder obtained by dividing P(a) by P ′(a) and T1(a) = −R1(a). Let
R2(a) be the remainder obtained by dividing P ′(a) by T1(a) and T2(a) = −R2(a). In general,
let Rk(a) be the remainder obtained by dividing Tk−2(a) by Tk−1(a)where Tk(a) = −Rk(a).
Next we evaluate the Tk(a), k = 1, . . . , 11 at points a = 0 and a = 1

3 , obtaining Table 1.
From the data in Table 1, we see that for a = 0 and a = 1

3 there are 6 changes of sign.
Thus, the claim is complete. Notice that the omitted values in the Table 1 are due to how long
are the integers involved into.

The Euler quintic equation (8) restricted to L is given by

E(a,
√
3/3) = − (1 + m3) − (2 + 3m3)

(
1√
3a

)

− (1 + 3m3)

(
1√
3a

)2

+
(

1√
3a

)3

+ 2

(
1√
3a

)4

+
(

1√
3a

)5

.

An straightforward computation shows that lima→0+ E(a,
√
3/3) = +∞ and E(1/3,

√
3/3)

< 0. Then using a Bolzano argument there exist a0 ∈ L such that E(a0,
√
3/3) = 0.

To complete the proof we have to show that E(a, b) intersectsM , as well. By continuity,
it is also a consequence of the change of sign of E(a, b) restricted to ∂M when m1 = 0.
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Numerically, we observe that Theorem 2 is valid for any fixed value of a ∈
(0.043964649299756, 0.162031454283589) and that fixes mass m3 inside the triangle.

An example of stacked central configurations in the planar five-body problem, belong-
ing to the Lagrange plus Euler family is given by m1 = 0.117224179225200, m2 =
0.890322344850114, m3 = 38.7407741323209 and m4 = m5 = 1. In that case a = 1

8
and b = 0.569110604510880.
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