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Abstract In this paper, we study the non-self dual extended Harper’s model with a Liouvil-
lean frequency. By establishing quantitative reducibility results together with the averaging
method, we prove that the lengths of the spectral gaps decay exponentially.
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1 Introduction and Main Result

The extended Harper’s model (EHM for short) was originally proposed by Thouless [27] to
describe the influence of a transversal magnetic field on a single tight-binding electron in a
2-dimensional crystal layer (see [4,27]). More exactly, the EHM is given by

(Hyp g xW)n = c(x +na)upy1 +c(x + (n — Da)uy,—1 + 2c0s 2w (x + na)uy, (1.1)
where u = {u,}pez € €2(Z) and
C(X) — C}L(.X) — }\'le—2ﬂi()€+%) +)\'2 +)\3€2m'(x+%)’
T(x) = Cu(x) = 1™ 05 4y 4 aze” 2T0HS),

Usually, one calls A = (A1, A2, A3) € ]RfL the coupling, @ € R\Q the frequency and x € R
the phase respectively. When A1 = A3 = 0, the EHM reduces to the famous almost Mathieu
operator (AMO for short).
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Fig. 1 The coupling region

It is well-known that the spectrum of H, , . does not depend on x and we denote it by
> «- Especially, we denote by X, o the spectrum of the AMO. Since X , is a compact
subset of R, we let Epyipn = min{E : E € ¥, 4}, Emax = max{E : E € %, o} and Gy =
(=00, Emin) |J(Emax, +00). Actually, each connected component of [ Emin, Emax]\ ). « 18
called a (nontrivial) spectral gap. From the gap labelling theorem [10,19], for every spectral
gap G there exists a unique nonzero integer m such that 2p, | = ma mod Z, where
P« (+) 1s the fibered rotation number of the EHM (see Sects. 2.3 and 2.4 for the details) and

[E,,, E:n_] = {Emin < E < Emax : 20p3,o(E) = ma  mod Z}. (1.2)

If E,, = E}, then G,, = {E,,} is called a collapsed spectral gap. If E,, # E,, then

Gm = (E,,, E;}) is called an open spectral gap.
In fact, the properties of X o depend heavily on A, . In general, we split the coupling

region into three parts (see Fig. 1):

I={(A1. 22, 23) € R} 1 0 < max{A; + 23, A2} < 1},
II= {(}\.],)\.2, A3) € Ri 10 < max{A; + A3, 1} < )\.2} ,
I = {(A1, 22, 23) € R} 1 0 < max{ha, 1} < A + A3} .
According to the duality map o : (A1, A2, A3) (i—;, )\]—2, %), T and II are dual to each other
and III is the self-dual region. Note also that I is the region of positive Lyapunov exponent
(see Sect. 2.1 for the definition). Regarding the frequency «, we define

—In [|ka||r/z

B(a) = lim sup , (1.3)

k00 |k|
where ||x||r/z = Ikni£ |x —k|. Then we call @ a Liouvillean frequency if (o) > 0. Moreover,
€

« is called respectively a weak Diophantine frequency if B(o) = 0 and a Diophantine
frequency if there exist y > 1, 1 > 0 such that [|ka||r/z > ﬁ forV k € Z\{0}.

@ Springer



J Dyn Diff Equat (2019) 31:1921-1953 1923

Our main theorem of this paper is:

Theorem 1.1 Lera € R\Q with 0 < B(a) < 0o and E,,;, E;} be given by (1.2). Then there
exists an absolute constant C > 1 such that, if . € lland L3 > CB(a), one has for |m| > m.

Ef — E; < e € ' faiml, (14)

m
A+ /A3 — 43

max{i; + A3, 1} + \/max{)q + A3, 1}2 — 4)\1)»3’

where

Ly=In (15)

and m, is a positive constant depending only on A, a.

Remark 1.2 If > ¢“P@ then L5 > CA(a).

A2
max{A;+Ar3z,1}
Remark 1.3 Based on this theorem, Jian—Shi [16] proved the %—Hélder continuity of the
integrated density of states for the EHM. They also obtained the Carleson homogeneity of
the spectrum.

The investigations of the spectral gaps for the AMO (i.e., A; = A3 = 0) are closely related
to the Cantor set structure of the spectrum X, . In fact, the famous Ten Martini problem says
that X, o is a Cantor set for all A, # 0, « € R\Q. Much effort [6,7,14,25] was expended
to solve the Ten Martini problem and finally it was proved by Avila and Jitomirskaya [2]. A
stronger assertion which is called the dry Ten Martini problem suggests that X, , contains
no collapsed spectral gap for all A, # 0, @ € R\Q. To the best of our knowledge, the dry Ten
Martini problem still remains open and only partial results were obtained [2,3,5,7,23,25].
Actually, Avila—You—Zhou [5] proved the dry Ten Martini problem for the non-critical AMO.

The first result concerning upper bounds of the lengths of the spectral gaps for the lattice
quasi-periodic Schrodinger operators was proved by Amor [12] in which she showed that the
lengths of the spectral gaps decay sub-exponentially. She used the KAM techniques devel-
oped by Eliasson [11]. Thus the frequency must satisfy the Diophantine condition. Recently,
Leguil-You—Zhao—Zhou [21] proved that the lengths of the spectral gaps for the general
Schrodinger operators with a weak Diophantine frequency decay exponentially. Moreover,
they obtained the lower bounds of the lengths of the spectral gaps for the AMO with a Dio-
phantine frequency. Based on some results of [23], Liu and Shi [22] generalized a result of
[21] to the Liouvillean frequency case.

For the continuous quasi-periodic Schrodinger operators, Damanik—Goldstein [8] and
Damanik—Goldstein—Lukic [9] obtained the upper bounds of the lengths of the spectral gaps.
In a recent work by Parnovski and Shterenberg [24], they got the asymptotic expansions for
the lengths of the spectral gaps.

All the results mentioned above are attached to the Schrodinger type operators and little is
known about the Jacobi type operators (such as the EHM). In [13], Han proved the spectrum
of the non-self dual EHM with a weak Diophantine frequency contains no collapsed spectral
gap.

For a more detailed exposition of the history of the spectral gaps studying, we refer the
reader to [20-22].

The methods of the present paper follow that of [3,21], but more subtle estimates and
technical differences. More precisely, using ideas of [3,21], we first establish (at the boundary
of some spectral gap) quantitative reducibility results for the extended Harper’s cocycles.
Then using the averaging method, we can show that the fibered rotation number (of the
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EHM) under some perturbation will change, which allows us to get an upper bound of the
length of the spectral gap.

The present paper is organized as follows. In Sect. 2, we give some basic concepts and
notations. In Sect. 3, we prove the almost localization results for the EHM. In Sect. 4, we
obtain the almost reducibility results for the EHM if the phases are resonant. In Sect. 5, we
get the reducibility results for the EHM with non-resonant phases. In Sect. 6, we complete
the proof of the main theorem by combining the quantitative reducibility results with the
averaging method.

2 Some Basic Concepts and Notations
2.1 Cocycle, Transfer Matrix and the Lyapunov Exponent

Let « € R\Q and C”(R/Z, B) be the set of all analytic maps from R/Z to some Banach
space (B, || - |]). By a cocycle, we mean a pair (o, A) € (R\Q) x C*(R/Z, SL(2, R)). We
can regard (o, A) as a dynamical system on (R/Z) x R? with

(a0, A) : (x, V) —> (x + o, A(x)v), (x,v) € R/Z) x R2.

For any k > 0, k € Z, we define the k-step transfer matrix of A(x) as

1
A =TAG+ = Da)

I=k

and the Lyapunov exponent for (o, A) as

1 1
A= 1 - Inl|lA dx = inf — Inl|lA dx.
Lia, A) kJTook/R/Z 0[] A ()]l i‘lokfm n ] Ay ()] dx

2.2 Reducibility and Almost Reducibility

We say that two cocycles («, A;) (i = 1,2) are (analytically) conjugate if there is some
B € C®(R/Z,PSL(2, R)) such that

B~ (x + @)A1 (x) B(x) = Ax(x).

We say that a cocycle (o, A) is (analytically) reducible if it is conjugate to (o, A,), where
A, is a constant matrix. Moreover, a cocycle («, A) is almost reducible if the closure of its
analytic conjugacy class contains a constant (see [3]).

Given B € C“(R/Z, PSL(2, R)), we say the degree of B is k and denote by deg(B) = k,
if B is homotopic to R ky for some k € Z, where

| cos2mx —sin2mx
* 7| sin27x  cos2mx

2.3 Fibered Rotation Number
Suppose A € C®(R/Z, SL(2,R)) is homotopic to the identity. Then the fibered rotation

number py (A) of the cocycle (o, A) is well defined. More precisely, there exist ¢ : (R/Z) x
(R/Z) — Rand u : (R/Z) x (R/Z) — R* such that
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cos2my ) cos 2 (y + ¢ (x, y))
Ax) - (sinZny) = ulx.) (sin2rr(y +o(x, ) ) '

The function ¢ is called a lift of A. Let u be any probability measure on (R/Z) x R which
is invariant under the continuous map 7" : (x, y) — (x + o, y + ¢ (x, y)). Assume further
projects over the Lebesgue measure on the first coordinate. Then the number

pa(A) = / 60 y)de mod Z
(R/Z)xR

does not depend on the choices of ¢, u, and is called the fibered rotation number of («, A)
(see [3,15,19)).

Let Aj, Ay € C®(R/Z,SL(2,R)) and B € C®(R/Z, PSL(2, R)). If A; is homotopic to
the identity and Bl (x + @)A1 (x)B(x) = As(x), then A; is homotopic to the identity and

2p4 (A1) —2p4(A2) = deg(B)x mod Z. 2.1)
Given a cocycle («, A), there is some absolute constant C > 0 such that

lpg(A) — 0] < C sup ||A(x) — Ryl (2.2)
x€R/Z

2.4 Extended Harper’s Cocycle

Let A € II. Then c¢(x) # 0 and the equation

H)L,a,xu =FEu

U1 Uk
=A k ,
( s ) wE(X + Ol)<uk_l>

1 | E—2cos2nx —c(x —a)
c(x) c(x) 0
Then we consider the “renormalized” cocycle («, X,\, ) with

is equivalent to

where A, g(x) = ] In general, A, g(x) ¢ SL(2,R).

_ _% E —2cos2nx —lc|(x —a)
AE = G = [ e](x) 0 ]
= Oi(x + W) A £ (x) 05 (%),
where [c|(x) = V/e(r)e(x) | and ©;., 0;" are analytic on {x € C/Z : |3x| < 3£} (see [16]

for more details). We call («, Z;\, £) the extended Harper’s cocycle and denote by £, (E) =
L(a, ZA, E) its Lyapunov exponent. Actually, there is a direct definition of the Lyapunov
exponent L(«, A g) for (o, Ay ) (see [18]) and £, (E) = L(«, A; g). For amatrix-valued
function M (x) with x € R/Z, we let M€ (x) = M (x + i€) be the phase-complexification of
M(x). For E € %, 4, it was proved in [18] that £, (E) is independent of the choices of E
(there is an explicit expression of £, (E) in A).

Lemma 2.1 (Theorem 1.1 of [18]). We have the following statements.

() Ifr €11, then x = (%, = %) €land L5 > 0.
l:)\

(i) Ifx € 11, then L(a, A;E) = L(a, Z;’E) =0 forle| < 27;.

UIf x € R, 2(x) is the complex conjugate of c(x) . If x € C\R, ¢(x) is the analytic extension of ¢(x).
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Let Hj 4. be the Jacobi operator corresponding to A, £, i.e.,
(ﬁ;\,a,xu) = |c|(x + no)up4+1 + |c|(x + (n — Da)uy—1 + 2cos2m(x + na)uy,.

Then ﬁ;ﬂ, x 18 equivalent to H) o x (in the sense of unitary).
Since A; g is homotopic to the identity (see [13] for an explicit homotopy), we denote by
Pi.«(E) the fibered rotation number of (c, A; g).

2.5 Aubry Duality

Themap o : A = (A1, A2, A3) > A = (%, ;—2, %) induces the duality between region I and

region II. We call HX, ax the Aubry duality of H) o . Then we have ) o = A2 ZX, o
Letu : R/Z — C be some L>-function with its Fourier coefficients 7 = {u, } satisfying

2mwif
Hy , glf = %if Then U (x) = (eu(x fg;) satisfies
A p(x)-Ux) =0 (x + ). 2.3)

2.6 Continued Fraction Expansion

For any « € (0, 1), we have the continued fraction expansion
1

a:[alvaz,...,an,,.,]:_{—i]’

a -

L — —
a .

where a; € N* (i € N) are inductively defined by the Gauss’s map acting on . We define

Pn 1
— :[al7a27'-'aal’l]:—la
qn ay + ————

where (pp, gn) = 1.
For « € (0, 1)\Q, one has

llkael|R/z = llgnatllRyz, for O < |k| < gni1, k € Z,

< llgnallr/z <
2Gn+1 " / qn+1
It is easy to show
In
B(a) = limsup ﬂ,

n—00 qn

where B(w) is given by (1.3).
2.7 Some Notations

We briefly comment on the constants and norms in this paper. We let C(«) > 0 be a large
constant depending on @ and C,, > 0 (resp. ¢, > 0) be alarge (resp. small) constant depending

on A and «. Define Ay = {z € C/Z : |3z| < s} and ||v]|s = sup [|v(z)]|, where v is a map
Z€Ag
from Ay to some Banach space (B, || - ||). For any continuous map v from R/Z to (B, || - |]),

we let [v] = fR/Z v(x)dx. In this paper, B may be C, C? or SL(2, C), equiped with the
Euclidean norm (for a vector), or the standard operator norm (for a matrix) respectively.
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3 Almost Localization for EHM with Liouvillean Frequency

In this part, we will prove the almost localization for Hj , , with A € II. We need some
useful definitions first.

Definition 3.1 Fix 0 € R, ¢g > 0. We call n € Z an ¢j-resonance of 0 if

min 1120 — ka2 = 1120 — narllzyz < e,

Given 0 € R, we order all the €p-resonances of 0 as 0 < |n1| < |nz| < ---. We say 6 is
€p-resonant if the set of all €yg-resonances of 6 is infinite. The 6 is called €y-non-resonant if
the set of all ep-resonances of 6 is finite. If {0, ny, ..., n;} is the set of all €-resonances of
6, then weletn; ; = oo

Definition 3.2 Given E € X5 , we say Hy , , satisfies the (Co, €, €1)-almost localization
if there exist some Cop > 0, €9 > 0, €; > 0 such that for any solution u of Hy , ,u = Eu
with ug = 1 and |ug| < 1 + |k|, one has

—e1lkl|

—1
lug| < Cye , for Colnj| < k| < Cy  Injy1l,

where ng, ni,...,nj, ... are the ordered €o-resonances of 6 and C, > 0 depends only on
Ao, U,

Throughout this section we fix

€ = > 100XB(x) > 0,

105 -
where X > 100 is any absolute constant.
‘We can now state the main result of this section.

Theorem 3.3 Supposing 0 < B(a) < 00, A € L and L5 > 10%¢ , then H; , g satisfies the

L+ . .
(3, €0, W%)—almost localization.

Remark 3.4 If 0 is €p-non-resonant, then H,\ .8 satisfies the Anderson localization (i.e.,
H;, , ¢ has pure point spectrum with exponentlally localized states).

We need some lemmata.

Lemma 3.5 Let 0 < B(a) < 0o and {n;} be the set of all ey-resonances of 6 € R. Then

(i) for any k € Z, one has

118(@)
omin lljell/z = C@e™ K, 3.

and for |k| > ko(a) > 0

10B(e) k|

ljallr/z > e~ (3.2)

OI\Ik\

where C(a) and ko(o) are the positive constants which depend only on a;
(i) if |k| = ko(a) > 0, k is an eg-resonance of 0 if and only if

11260 — kar|lr/z < e ;
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(iii) for |n;| > n(a) > 0, one has
||29 — l’lj(X”R/Z Z e_z's‘anrl‘ﬂ(a) (33)

and
40X |n;| < njy1l. (3.4)

Proof (i) Equations (3.1) and (3.2) follow from (1.3) directly.
The proofs of (ii) and (iii) are similar to that in [23] and we omit the details here. ]

We recall some basic facts about the Green’s function. For any interval [x1, x2] C Z,

we define H; L. ;2] as the restriction of Hy , 4 on [x1, x2]. We can regard H;"! L. XZJ as a finite

order matrix w1th entries H Lx, xz}(x y) when we choose the standard ba51s {8 Vil xp] 1D

22(zI¥1-x21y If E is not an elgenvalue of H"! L. “] ,we let GE ,) be the inverse of H;’ Lr. ;2]

E : H[x1 xz — E - I, where [ is the 1dent1ty matrix. For k > 0,k € Z, we set Pk ®) =

det(H [0, k l — E). By a straightforward computation using Cramer’s rule, for any x1 < y <
X2 Wlth x2 — x1 + 1 = k, one has

-1
Poy@+(+ Da)| 7 ,
E _ | xa—y
‘G[XI,XZ](xl’y)’ = ‘ PO+ x10) 'jl_X[ le(@ + ja)l, (3.5)
=X1
‘GE (y, x )'_ Py (O + x10) . ﬁ lc(® + ja)l (3.6)
e P (0 + x12) =y 7o '

where ¢(0) = ¢;(0).
IfH VRS Eu, then we have for x € [x1, x2]

uy =60 + (x1 = DG, (1, ity -1 +¢(0 + 020G ) xug41, (3.7

where ¢(0) = ¢5(0). We call (3.7) the Poisson’s identity.
Letting M5(0) = c5:(0) A5, £(6) and denoting by M3, ; (6) its k-step transfer matrix, then
we have

M, (0) = P (0) —c(0 —a)Pr—1(0 + @)
MEEZT L e 4 (k= Da) Pe—1(8)  —¢(0 — a)e(@ 4 (k — D) P2 (6 + )

Assume ZI is the Lyapunov exponent for the cocycle («, M5). From [17], for any € > 0
there is some C,(€) > 0 (depending only on A, &, €) such that

1P (0)] < Ca(e)eErtok k> 0. (3.8)

Note also that _ B
Ly = L;—C),

where

max{A; + Az, 1} + \/max{}q + A3, 1} —4A 123

cy) =1
(A) =In e

In the following of this section, we write £ = L7, L= ZX for simplicity.
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Lemma 3.6 (Lemma 5 of [17]) Let a < b with a,b € Z. Then for all ¢ > 0, there exists
some C(€) > 0 (depending only on €) such that

b
[1c® + jo)l < Ce)e® €+, (3.9)

j=a

Since Py () is a polynomial in cos 271(0 + & a) of degree k (see [17] for the details),
we can write P (0) = Qy(cos 2w (6 + k a)) Where Qi € C[x] is a polynomial of degree
k. Moreover, we define Ay , = {0 e R: |Qk(cos 270)| < e**Vry where k € Nand r € R.

Definition 3.7 We say the sequence 61, . .., 6xy; is y-uniform if
k—+1
X —cos2mh;
max max 1_[ J eVk.
xe[— 11]i=1,...k+1 cos 2w — cos2mo);

j=1j#i

Lemma 3.8 (Lemma 9.7 of [2]) Let @ € R\Q. Then there exists an absolute constant C>0
such that

qn_l
—~Clng, < ) In[sinz(x + je)| + (g2 — )In2 < Clngy. (3.10)
J=0,j#jo(x)
where jo(x) € {0, ..., g, — 1} satisfies | sinw(x + jo(x))| = 0 }nin . |sinm(x + la)].
<l=gn—

From (3.4), we have 3|n;| < M

"1]+l‘

. Without loss of generality, we can assume 3|n;| <

. We select q,,+1 > % > gy, and let s be the largest positive integer such that
sqn < Then s+ g > We define intervals 11, I» C Z as

I = [—2sq, + 1,01, I =[y —2sqn + 1, y + 25q]), forn; >0,
I =10,25q, + 11, I = [y —25qu + 1,y + 25qs], forn; <0.
Lemma 3.9 Ler 0 < B(a) < 0o. Then
(1) forany x € R,0 < |j| < gn+1, one has for n > n(«)
max{In |sin x|, In | sin(x + wja)|} > —28(x)qn; (3.11)
(it) foranyi+ j #njandli + j| < njy1 withi, j € Iy U I, one has for n > n(a)
1120 + (i + jlal|r/z = e 00%n. 3.12)
Proof (i) Firstly, we have for n > n(x)

118(a)gn

>e 0, (3.13)

min ||jallr/z = llgnallr/z >
0<[jl<gn+1 / / 2%1+]

We may assume | sin x| < e 2A(@an < % Then for all j satisfying 0 < |j| < gn+1, We
get

| sin(x + wja)| = |sinx cosmjo + cos x sin wjo|

> 7| sin 7 jar| — e~ 2P(@n

> V3| jallrz — e P @an,
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Thus recalling (3.13), we have
|sin(x + mjo)| > e 2P @n,

We complete the proof of (3.11).
(i1) From the definitions of s, ¢, and I, I, one has forany j € Iy U I

[l <y +25q, < 185gy. (3.14)

Let ko satisfy [|20 + koo ||r/z = ming|<ji+j| ||20 + ka||r/z. Then we have the following
cases.

Case 1 kg # i + j. In this case, we may assume |[20 + koa||r/z < e~ 100B(@)sqn Then for
n > n(a), we have

[120 + (@ + Deallryz = 116G + j — ko)allr/z — 1120 + koallr/z
o 5 liti—kol _ p=1008@san by (3.2))

%

6780ﬁ(a)sqn _ efl()()ﬁ(a)sqn > eflOO,B(ot)sq” (by (314))

v

Case 2 ko =i + j. If —kq is not an €p-resonance of 6, then
11260 + (i + jellryz = e~ 0ol > g=30c0sn,

If —ko is an €(-resonance of 6, then |n j| > |ko| (otherwise we must have —ko = 741 which
is impossible by the assumptions). Thus we can assume

1126 — nja|lgsz < e300,

Then for n > n(a)

\

[120 + (@ + Dallryz = (nj +ko)ellr/z — 1120 — njallr/z

_10B@),, . —
em 9 Imithol _o=36€08an (for kg +n; # 0 and (3.2))
6736605%

v

v

By putting the two cases together, we prove (3.12). O

Lemma 3.10 Let the conditions of Theorem 3.3 be satisfied. Then the sequence 6 + jo with
j € 11 U I is 100€g-uniform if y > y(«) (or equivalently n > n(w)).

Proof We note that forany x e [—1,1]andi € Iy U I,

[T

JeNUDL, j#i

> In|x—cos 276 |— > In | cos 2 6; —cos 27|

X —cos2mb; — iU jel,Uly, j#i

cos 2 6; — cos 2w

For x € [— 1, 1], we can find a such that x = cos 2ma. Firstly, we give the upper bound of

the sum > In|cos2ma — cos 2 6;|. By the straightforward computations, one has
jehUb, j#i

> Infcos2ma — cos2n0;| = T4 + X + (65, — 1) In2, (3.15)
JjehUh, j#i
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where
Ty= Y In|sinm(@+0))l
jENUL, j#i
.= ) In|sinm(@—06;)|
JehUly, j#i

We observe that the sum X consists of 6s terms of the form

qn_l
> Infsinm(x + ja)l,
J=0,j#jo(x)
plus 6s terms of the form
In min |sinw(x + ja)| <0,
J=0,....qn—1

minus In | sin 77 (a + 6;)|. Thus from Lemma 3.8, one has
Yy < 6Cs In qn-

Similarly, _
Y_<6Cslng,.

Thus _
(3.15) < 12CsIngy + 65¢g, In 2.

We then give the lower bound of the sum > In|cos2m6; — cos 27 6;|. Similarly,

JENUD, j#i
we have
Z ln|cos2n9i—0052n9j|:E}F+El+(6sqn—l)ln2,
JehUl, j#i
where
2i= ) In|sinwQ0+ G + e,
JjehUly, j#i
2l = ) In|sinz( - jal
JENUDL, j#i

1 : gn—1 . .
We note that the sum X} consists of 6s terms of the form Zj:()y#jo(x) In|sinw(x + ja)|

plus 6s terms of the form Inminj;—q,.. 4,—1|sin7w(x + ja)|. From (i) of Lemma 3.9 and
Sqn < qn+1, among the 65 minimal terms there are at most 6 terms can be smaller than
— 2B(a)g,. Moreover, these 6 minimal terms have the lower bound — 36€ps¢g, because of
(ii) of Lemma 3.9 (the conditions in (ii) of Lemma 3.9 are satisfied by the definitions of
11, I7). Hence applying Lemma 3.8, one has
El_ > —6s(5 Ing, + (g, — 1)In2) — (6s — 6)28(xt)gn — 216€05qy.

Similarly, the sum 1 consists of 6s terms of the form Z?”: _01 i jox) In|sinm(x + jo)| plus
6s terms of the form Inminj—o,... 4,1 | sin 7w (x + jo)|. Among these 65 minimal terms there
are at most 6 many of them can be smaller than —28(«)g,. In addition, these 6 minimal
terms have the lower bound — 728 («)sq, for

min  In[sinz(j — Da| > Inl||(j — Dallr/z = —728(2)sqp.
jehiUly, j#i
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Then _
> —6s(Clngy + (gn — D In2) — (6s — 6)28(a)qn — 432B(x)sqy.

By putting all previous estimates together, we have for n > n(«)

X —cos2m0;

< e(6sq,,—1)10050
cos 2m0; — cos2m; |

max max 1_[
e[—1,1]1ie1UI
xel lieh ? jehUly, j#i

m}

Lemma 3.11 (Lemma4.2 of [13]) Let y; < y. If61,...,0k41 € 'Ak,Z—y’ then the sequence
01, ..., 0ky1 is not yr-uniform for k > k(y, y1, 1) > 0.

Lemma 3.12 Suppose £ > 10*cy and y > y (A, o) (or equivalently n > n(,, «)). Then we
have 0; =0 + ja € A6sqn_1,5_10150f0rallj e .

Proof Letk = 6sg, — 1 and assume there is some jjo € /; such that 0, ¢ A; 70, Then
we have ~
PO + (o = 3sgn + Da)| = eCFDEI0I), (3.16)

We define [x1, x2] = [jo — 3sgn + 1, jo + 3sg, — 1]. It follows from the definition of /;
that O € [x1, xp] and |x;| > %, i = 1,2. Thus from (3.5), (3.8), (3.9) and (3.16), one has for
n > n(a)

-1
Gﬁl,xz](mo)‘ < 1—[ 1c(0 + jo)le®rn=DE+B@)=(k+D(Z~101e)

J=X1

C, e COIHB@)Ix+k+x1=D(L+B (@)~ k+1D(£-101€0)

A

A

< € e (L=10000)]x1].

Similarly,
Gﬁl,xz] (0, X2) S C*e—(£—1000€0)|xz\.

Together with the Poisson’s identity (3.7), we have for n > n(A, @)

[uo| < C*ke*é(ﬁfloooeo)k
<1 (for £ —1000ey > 0),

which is contradicted to ug = 1. We prove this Lemma. O

We then give the proof of Theorem 3.3.
Proof of Theorem 3.3

Proof Letk = 6sg,, — 1. From Lemmas 3.10, 3.11 and 3.12, we obtain that for n > n(A, o)
there is some jo € I such that 6, ¢ A, 71, As aresult,

|P(@ + (o — 35qn + Dar)| = ekHDE-101e0), (3.17)
We define [x1, x2] = [jo — 3sgn + 1, jo + 3sg, — 1]. It follows from the definition of I that

ly = xil = [jo—xil = |y — jol = squ — 1.
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It is obvious that y € [x1, x2]. Since (3.5), (3.8), (3.9) and (3.17), we have

y—1 ~ ~
G[Ex]yle(xl,y)‘ < l_[ lc(® _|_ja)|e(k—\x1—.VI—1)(£+ﬂ(ﬂf))—(k+1)(ﬁ—101€o)
J=x1
< C*e(C(X)Jrﬁ(a))m*,VI+(k*IX1*y\*l)(EJrﬁ(a))*(kJrl)(Z*10160)
< Cpe (E71000 =, (3.18)
Similarly,
Gy i) (7 12)| < Cae”E7 10000, (3.19)
Combining (3.18) with (3.19) and using the Poisson’s identity (3.7), we obtain for n >
n(i, )

—$(£~1000€0)5n

IA

|uy| Cusgne

< 673173(,67100060» (for sq > %)

e 107 (for £ > 10%€).

IA

4 Almost Reducibility for Resonant Phases

In this section, we will prove the almost reducibility of the cocycle («, A; ) for the resonant
phases, where A e Il and E € 3 4.

Lemma 4.1 (Theorem 3.3 of [3]) Let E € X, . Then there exist some 8 = 6(E) € R and
some solution u Ofoyaﬁu = )TEz”‘ withug = 1, lug| < 1.

Remark 4.2 In Schrodinger operators case, this lemma was proved in [3] by applying
Berezanskii’s theorem. An alternative proof is based on the periodic approximations. The
argument can be easily extended to Jacobi operators case.

Throughout this section we fix E,0 = 6(E) and u, which are all given by Lemma 4.1.

Definition 4.3 Suppose f(x) =) o7 fre¥ k% We say f has essential degree at most [ if
fr = 0 for k being outside an interval [a, b] C Z of length I (i.e.,b —a + 1 =1).

Lemma 4.4 (Theorem 6.1 of [3] and (4.5) of [23]) Suppose 1 < r < L‘I:I—‘:‘J. If f has
essential degree at mostl = rqs; — 1 and xo € R/Z, then l
1f1lo < C1g;y sup |f(xo+ je)l

0=j=l

and

1 fllo < C1e“P@ sup | f(xo + ja)l, (4.1)
0<j<l

where C1 > 0 is some absolute constant and | x | denotes the integer part of x € R.

In the following, we let A € I and
L5

[/,
€ = —~ > 100C,B(), h = 00
T

105 —
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Moreover, we let {n;} be the set of all ep-resonances of 6 and assume 6 is €p-resonant.

Recalling Theorem 3.3, we have for any k satisfying 3|n ;| < |k| < I"g—“l

lug| < Coe™ FhIK (4.2)
Our main result of this section is:

Theorem 4.5 Suppose 0 < B(a) < oo, A € Il with Ly > 10%¢g and E € Y« Let
[nj| > n(k, a). Then there is some W € C®(R/Z,PSL(2,R)) having degree m; with
|m | < 9ln ;| such that

sup ||W(x + ) Ay £ ()W (x) — Rygl] < e~ o1l (4.3)
xeR/Z

where § = 0 — %a. Moreover,
12000 (E) — mjo £ 26 — nja)|lgsz < e~ il (4.4)

Lemma 4.6 We have

(1) for |nj| > n(a), there exists | =rqs — 1 < qgy1 suchthat9\n ;| <1 < ln"g—“l;

(ii) for any m € 7 satisfying |m| > m(X, ), there is some |l = rqs — 1 < qg441 such that
Injs1l
1 € Oln;l, =5—) and
In |m|

I <1700 . 4.5
h — = h 43

Remark 4.7 Recalling (3.4), then 9|n ;| < @ makes sense.
Proof See the “Appendix A” for a detailed proof. O

In the following, we assume the conditions in Theorem 4.5 are satisfied.
Due to Lemma 4.6, we define I} = [—l_éj,l - L%J] with /| = rgs — 1 < gy41 and

[ € Olnjl, lnfg—“l). In addition, we let
20 S gy 2k

1 kel
Ut = 5 =i (4.6)

kel
and U,{‘ (x) = O, (x) - Ul (x). Then one has for A(x) = A E(x)
AU (x) = U (x + a) + G(x),
and for A(x) = Qs (x + &) A(x)Q; ' (x)
AU (x) =200l (x + ) + G (x). 4.7
Since (4.2), ||Oxlln, ||Q;1 |ln < C, and by the direct computations, we have

1G.lly < Coe™™. (“8)

Lemma 4.8 (Lemma A.3 and Lemma 2.1 of [13]) For any § > 0, there is some C,(8) > 0
(depending only on A, a, §) such that for k € 7

1ALl Lz < Cu@)el. (4.9)
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Lemma 4.9 We have forl > l(\, @)

Jinf (U} ()] 2 e, (4.10)
h
3

Proof Suppose there is some xo € Ay with Sxg = 7 such that ||U/ (xo)|| < e 2C1B@!
Then by iterating (4.7), one has for k € N
U (xo + k) = =Y M ITVIAL(xo + je)Gulxo + (j — Da)
j=1
+ Ay (x0) U, (x0).
Thus from (4.8) and (4.9), we get sup ||U (xo + jo)|| < Cy e 3CIB@L, Consequently,
()<J<
sup NUT (xo + jo)|| < Cue™ ?C‘ﬁ("‘)l. By (4.1) of Lemma 4.4, we have for [ > [(x, o)

0=j=l

1
sup ||UN (x +it)|| < e 3C1P@L
xeR/Z

which is contradicted to || [g 7, Ul(x +it)dx|| > 1 (forug = 1). o

Lemma 4.10 For any m € 7Z satisfying m > m(A, o), we have

[[Amllp) <m0, (4.11)
Proof Let us recall a useful lemma first. O

Lemma 4.11 ([1,28,29]) Given n > 0, let U : R/Z — C? be analytic on Ay and satisfy
81 < IlUW)|| < 871 for Vx € A,. Then there exists some B(x) : C/Z — SL(2, C) which

is analytic on A, and has first column U (x) such that ||B||, < C28y 282 (1 —1In(8162)),
where Cy > 0 is some absolute constant.

Since |ux| < 1 and (4.10), we have e 2C1F@! < |U[1[|54) < PO for [ > (1, ).
Supposing now B(x) is as in Lemma 4.11 with U(x) = U*I1 (x) and n = B(a), then
11Bllg), 1B~ g < €>C1P@! From (4.7), we have

2mif
- = _[e 0 Bi(x) b()
B (x +a)A(x)B(x) = |: 0 e_2”’9i| + [,Bg(x) ﬁs(x)] . (4.12)

From (4.8) and (4.12), we have ||B11|g(0). ||B2]|g@) < e and ||b]|p() < '€ Thus

by taking determinant in (4.12) and noting A, B € SL(2, C), one has ||B3]lg@) < e —hl Let
hl

Bi(x) = [e oT % } B~'(x). Then by (4.12), we have
e

. . eZﬂiG 0
Bi(x +)AWB ') = | o [+ HG), 4.13)

where | Hllp@) < e~ 7. [1Billge. 1B llpw) < " Thus by iterating (4.13) at most e ¥
steps, one has for/ > [(A, )
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Sup | IZS‘ | Iﬁ(a) E e3hl'

ngge%

Recalling (4.5), we have |[A|[p) < m>'%. -
In the following, we fix n = |n;|. N = [njy1|. We let I = [~15]. L5 ]] and define

Uk, Ufz with I being replaced by I, as previous.

Lemma 4.12 We have forn > n(:, )

inf (U2 @)]] 2 emtaren, (4.14)
h
3

Proof We select g; < 22n < ¢s+1. Following the proof of Lemma 4.6, we can find [ =
rqs — 1 < gy41 such that 9n <! < 31n. Define J = [—| 5], 1 — [4]]and U7, U] with I
being replaced by J as previous. From almost localization result and || Q; ||, < C,, we have
||U),I2 - U,,J||% < e M forn > n(i, «). Then by (4.10), one has

il'lf ||U{2(.X)|| Z e—2C1ﬂ(a)l _ €_hl > e—63C1ﬂ(D{)n.
xeAy

3

Let
UT(X) — ermjix Ufz (x)
and B(x) = (UT (x), Uy (x)), where a denotes the complex conjugate of U;. Similarly to

(4.7), we have forn > n(A, @)

hN

AU (1) = XU (x + &) + G (x), 1Gllg < e 0. 4.15)
Define Z~! = |26 — njal|lr/z. Then by (3.3), we have
e < 7 < PN, (4.16)
Lemma 4.13 We have forn > n(:, )
xgllgf/z |det(B(x))| = 27110, (4.17)

Proof Note first that | det(B(x))| = ||Us(x)|| min ec ||Us(x) — uUs(x)||, where the min-
imizing p satisfies ||uUs(x)|| < ||Us(x)|| (.e. |u] < 1). Assume (4.17) is not true and
n > n(i, ). Then by (4.14) and (4.16), there are some pg € C with |ug| < 1 and some
xo € R/Z such that

|Us (x0) — poUs (xo)|| < 27109, (4.18)
By (4.15), we have form € N
177 U (xo + ma) — poe™ " T (xo + ma)||

m—1 m—1

< |- An—jo + ja)Gi(xo + ja) = o Y Am—j(xo + je) G (xo + jo)
j=0 j=0

+{[Am (x0) (Us (x0) — poUs (xo))1l.

@ Springer



J Dyn Diff Equat (2019) 31:1921-1953 1937

Then from (4.11) and (4.18), we have

sup 179U (xo + ja) — poe 7 Us(xo + ja)|| < Z278. (4.19)
0<j<z

Recalling the definition of 5, wegetforO0<j<Z §
164757 — 1lyz < 10j1128]1/z < 10Z7¢.

Then from (4.19), one has ||U;||o < C.n. By using the trigonometrical inequality, we obtain
forn > n(A, a)

sup  ||Us (xo + jo) — uoUs(xo + je)|| < 2708, (4.20)
0<j<zt

Let j = [%] and note ||)67)CLJXJ llr/z < llx"'lr/z (x > 1). Then from (4.19) and the

trigonometrical inequality, we have for n > n(A, )

Z Z _u
U; <x0 + \\ZJO[) + wnoUs+ <x0 + \\ZJO[) <Z 1, 4.21)
For any large K > 0 and any analytic function f(x) = ) .5 fre¥kix we define
TCxH@E) = Y fre? * In addition, if U(x) = (f ! (x)>, we let
lk|<K Hx)
(FKfl)(x))
kU = .
Tk ((rKfz)m
In the following, we take
InZ n

~— — — (4.22)
24C1B() 4

and write © = o (e 7™ - UK), where UK (x) = 04(x)e™ ™ ("kU™)(x). From
(4.16) and (4.22), we have K € (3n, %N) and forn > n(A, )

WUs — UKl < e < 270 (4.23)
Since Q) (x) is analytic on Afﬁx’ we get forn > n(:, @)

10 —e ™ Ufllg < Y0 110G = HURG)I
[k|>2K.|jl=K

<C, Z e LrUkI=1iD)
|k|>2K.|jl=K

< e MK « 771, (4.24)
Thus combining (4.23) with (4.24), one has

€7@ — Usllo < 2¢3MK « 7271 (4.25)
Recalling (4.20), we have for n > n(A, o)
sup ([ COTINO (xg + jor) — @ (xo + je)|| < 27O, (4.26)
0<j<z%
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Note that each coordinate of the left hand side of (4.26) is some polynomial having essential
degree at most 4K + n. Then by Lemma 4.4, we obatin

Sup ||82nin_ix®(x) _ H’O@(x)” S C*6C|(4K+n)ﬁ(ol)z—0.82. (427)
xeR/Z

Recalling (4.22) and (4.25), one has for n > n(A, «)

sup ||Us(x) — poUr(0)|| <2271 4 27065,
xeR/Z

Hence from (4.21), we have forn > n(A, o)
Ul xo+ z alll = ||Us | xo0+ z o
* 0 4 = T 0 4

< 77064 _ ,~64C1B(eIn.
which is contradicted to (4.14). ]

We can prove our main theorem of this section.
Proof of Theorem 4.5

Proof By taking § = XU, T = JU; on R/Z, then B =[S, £T] |::|1l :;i :| We let W be

the matrix with columns S, £7 such that det(W;) > 0. Then by (4.15), we have

AW (x) = Wi(x +@) - Ryj+ O (e_l%N) . (4.28)

Noting det(W;) > 0, we let W = d::/(‘W]) = \/‘Kl(w . Then W € C*(R/Z,PSL(2, R)).
Let)|
We first show that (4.3) and (4.4) are true. Actually, from (4.15), one has
—27if

B(x +a) = [e 0

0 — _hN
ezm‘§:| A B + 0 (V).
Then by taking determinant, we get
det(B(x +a)) = det(B(x)) + 0 (¢ T0V). (4.29)

Recalling (4.17), C; > 1 and (4.29), we have forn > n(X, o)

‘1 _ VIdet(Bx + o)) < \/e—%N L7510 <, %N (4.30)
| det(B(x))]

It is easy to see ||[W||o, [|W |0 < Z39 forn > n(i, «). Then from (4.28) and (4.30), one
has

sup [|[W ™ (x + @) A(x)W(x) — Rzl

xeR/Z
ie |det(B(x+a))|’ N
[ det(B(x))]
_hN
<e BN, (4.31)

Let m j = deg(W). Then by (2.2) and (4.31), we prove (4.3) and (4.4).
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In the following, we will prove |m ;| < 9|n;|. Note that the degree of W is equal to that
of its every column.> Then we only consider one of its columns. From uo = 1, one has

= V2.

/ e QN ) S(x) +ie T O (1) T (x)dx
R/Z

Without loss of generality, we assume

. 2
/ e O (x) S (x)dx|| > £. (4.32)
R/Z 2
Recalling (4.15), we have
A(0)S(x) = S(x + @) cos 278 + T (x + ) sin 270 + O (e*%) .
Thus from ||2§||R/Z = 7!, we have for x € R/Z
A0)Sx) = S +a)+ 0 (Z—%) . (4.33)
We claim that forn > n(A, a)
inf |[S(x)|| > e~ *". 4.34
xéﬁ{/zll @ =e (4.34)
Assuming (4.34) is not true, then there is some xo € R/Z such that ||S(xg)|| < e~*" Thus
2eqn
by iterating (4.33) and using (4.11), we have  sup  [|S(xp + jo)|| < e 5. Recalling

0<j <TI0
(4.25) and by taking K = 4n, one has for ®, = Iy, (e_”"fix . U.?")
||enj7rix®n _ UT”O E e*lohl’l.

Then o
sup [N, (x0 + ja)|lo < e 0.
OSjSeTEI%gO

Note that each coordinate of :®, is a polynomial having essential degree at most 16n.

Similarly to the proof of (4.27), we have ||S||p < e’%, which is contradicted to (4.32).
Moreover, we have

sup [|S(x) — RO, (x)]] < o~ 10mn
xeR/Z

Combining

det(Wi(x)) = det(W1(0)) + ) det(Wi)ee ™™ 4+ 3 det(Wr)ee™™™
O<[k|<N k>N

with (4.29) and noting det(W;(x)) € C*(Aj, R), we have

det(W) (x)) = det(W;(0)) + O (e*%) .

2 We say V : R/2Z — R? has degree k and denote by deg(V) = k if V is homotopic to (Z?SIIEZ;C )
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Thus by the trigonometrical inequality, we obtain

sup S(x) B R(e"™* O, (x)) ‘< o Shn ~ S(x) H
xeRyz || v/det(Wy(x)) det(Wi(0)) || — T xeR/Z || /det(Wi(x))

Noting deg(W) = deg (ﬁ), we have |m ;| < 9|n;| by using Rouché’s theorem. O

S Reducibility for Non-resonant Phases
In this section, we will prove that the cocycle («, Z;L, £) is reducible for non-resonant phases.
Our main result of this section is:

Theorem 5.1 Let 0 < (o) < 00, A € Land E € %, . Suppose there exists non-zero
solution u ofHX’a’gu = )TEZM with |uy| < Coe 2Kl gnd 0 < n < % Then we have
() if20 ¢ aZ + Z, then there is some B : R/Z — SL(2, R) being analytic on A, such that
B~ (x + 0)A; £(x)B(x) = Ry (5.1)
and

pral(E) = +0 + %0{ mod Z; (5.2)

(i) if20 € aZ + Z and n > 8B (), then there is some B : R/Z — PSL(2,R) being
analytic on A 2 such that

B~ (x + o)A, p(1) B(x) = [ﬂ;‘ L] (53)
and
2p1.0(E) =ma mod Z, 5.4)

where m = deg(B).

ki eZniGM(x)
Proof Define u(x) = Y uge ™, U(x) = < ) and U,(x) = Q;, (x)U (x). Then
K7 ux — o)

we have

A rOU(x) = U (x + a). (5.5)

Obviously, U, is analytic on A,, and we denote by U, (x) the complex conjugate of U, (x)
for x € R/Z. We also let U,(x) be the analytic extension of U,(x) to x € A;. Let By (x) =

(U,,(x), U*(x)). Then det(B;(x)) must be constant because of (5.5) and the minimality of
X > x + «. Thus we have the following two cases.

Case 1 det(Bj(x)) # 0. In this case, we have det(B;(x)) = +it for some ¢ > 0. We define
1 =i
_ 1 )
B(x) = ﬁB] (x) [1 i } Then by (5.5), one has

B™'(x + a)A; p(x)B(x) = Rug (5.6)

and m
Ona(E) = X6 + 50[ mod Z, 5.7

where m = deg(B).
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Lemma 5.2 (Lemma 5.4 of [23]) If det(B(x)) = 0, then U, (x) = ¥ (x)V (x), where {r(x)

is real analytic on Ay with |y (x)| = 1 for all x € R and V (x) is analytic on A, with

Vix+1)=+£V(x).

Lemma 5.3 (Lemma 5.1 of [23]) If0 < ' <17 omd| irllf Y (x)|| = & > O, then there is
Sx|<n’

T (x) : R/2Z — SL(2, R) being analytic on A,y such that it has the first column Y (x).

Lemma 5.4 (Theoremj.l of [23]) Let 0 < ' < n. If T (x) : R/2Z — SL(2, R) is analytic
on A, and T (x +a)Aj g (x)T (x) is a constant matrix, then there is some T1(x) : R/Z —
PSL(2, R) being analytic on A, such that Tl_1 (x + oz)X;hE(x)Tl (x) is a constant matrix.

Case 2 det(Bj(x)) = 0. Since (5.5) and the minimality of x — x + «, we have U, (x) # 0
forall x € A;. Then by applying Lemma 5.2, we have U, (x) = ¥ (x)V (x) with ¢ (x), V (x)
being as in Lemma 5.2. Obviously, V(x) # O for all x € A,. Then there is some § > 0
such that inf ||V (x)|| > §.Let By(x) be given by Lemma 5.3 with ' = 2, Y(x) =V(x).

I\sx\<

Then by (5.5), we have

By (x + a)A; p(x)Ba(x) = [di)x) dzg)zi)]
where S+ a)
X o .
d — 2mwi6 58
O="yw ©8)
Note that |d(x)] = 1 and d(x) is real for x € R. Then d(x) = +1 and
By (x + @) Ay £ (x)Ba(x) = [f)l ‘ﬁ)} . (5.9

Then we will reduce the right hand side of (5.9) to a constant matrix by solving some
homologlcal equatlon ThlS needs to overcome the difficulty of the small divisors. Let n >

8B () and ¢)k Fi o emku (k #0), where a(x) = Y Gre™ X Then on An one has
keZ

+op(x+a)FPplx) =alx) —/ a(x)dx, (5.10)
R/2Z

where ¢ (x) = > ake”k"". By defining B3(x) = B(x) [ ¢(x)] it follows from (5.9) and
keZ
(5.10) that

-1 — +1 aj
By (v + @) A, £ () B3 (x) =[ 0 11]
where a; = fR/ZZa(x)dx. Then by using Lemma 5.4, there is some Bs(x) : R/Z —
PSL(2, R) being analytic on A% such that B;l(x + a)A(x)Bs(x) = D, where D is a

constant matrix. We can reduce D to |::l(:)1 ja:zl i|, or to |:8 v(_)l ] with v # £1 (v € R), or

to Ryg with 6/ € R, by some invertible matrix J. From E € ¥, 4, then ZA £(x) can not
v O}HJIDJ—Rﬁ/mm%-—ma
mod Z. Thus by defining J(x) = JR ., we have

be uniformly hyperbolic. Thus J~'DJ #

_ +1 0
‘u+mDnm=[0 iJ
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We have proved that there is some B(x) : R/Z — PSL(2, R) being analytic on A 1 such
— +1 a
-1 _

that B~ (x + a)A) g (x)B(x) = [ 0 41
If 260 ¢ aZ + 7Z, then we can not be in Case 2. In fact, from (5.8) and using the Fourier
series, we have ¥/ (x) = e kY for some k € Z and €270 = te~ Tk which is impossible

since 20 ¢ aZ + 7. Thus we must be in Case 1. Then (5.1) and (5.2) follow.
Suppose 260 = ko mod Z. If we are in Case 1, we take B,(x) = B(x)Ri%x with B(x)

+1 0

0 £1]|
Thus (5.4) follows. If we are in Case 2, the result follows immediately. O

i|, where a € R is a constant.

being given by Case 1. Then from (5.6), we have B;1 (x + ot)ZA,E(x)B*(x) = |:

6 Proof of the Main Theorem

In this section, we will prove that the lengths of the spectral gaps decay exponentially. The
proofs are similar to that of [22]. For reader’s convenience, we include the details below.
From now on, we focus on a specific gap G,, = (E,,, E;}) or G,, = {E, } with m € Z\{0}.

6.1 Quantitative Reducibility at the Boundary of a Spectral Gap

We let
Ly h

T= 20007 T 20

and assume C’ > 0 is a large absolute constant which is larger than any absolute constant
C > 0 appearing in the following.

Lemma 6.1 Suppose 0 < B(a) < oo, A € I with L3 > 40007 C’'B(«) and E € % o. If
200,a(E) € aZ + Z and 6 = O(E) is given by Lemma 4.1, then 20 € aZ + Z. Moreover,

ur| < e for |k| = 37, (6.1)
where u = {uy} is given by Lemma 4.1 and 20 = na  mod Z.

Proof We first claim that 6 is €p-non-resonant with g = 100C; B(c). Denote by {n} the set
of all p-resonances of 6. In fact, if 0 is €p-resonant, then the set {n;} is infinite. Recalling
Theorem 4.5, there exists some m; € Z such that [m ;| < 9|n | and ||2p; ¢ (E) — mjo £

(20 —nja)|lr/z < ¢~ %17+11 Thus from (3.4), one has

12000 (E) — mjallzyz = 1120 — njallz/z — e~ "+ > 0 6.2)

and
11202, (E) = mjallryz < 1120 — njallr/z + e~ 0"+ 6.3)
< e~ Toeolm;l, (6.4)

Combining (ii) of Lemma 3.5 with (6.4), we know m is an f—%—resonance of py.«(E). If

the set of all %-resonances of p)..o(E) is finite, then ian 120,06 (E) — mja||lg/z > 0 by
Jje

(6.2). This is contradicted to (6.3). Hence py o (E) is %-resonant, which is impossible for
201« (E) € aZ 4+ Z. We finish the proof of the claim.
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From the claim above, the equation Hy , ju = %u admits a non-zero solution u with

lug| < Cre 2"k From Theorem 5.1, we have 20 € aZ + Z. In addition, (6.1) follows
from Theorem 3.3 (since for some j > 0, |n;| = [ii] and |n;41] = 00). ]

In the following, we always assume the conditions in Lemma 6.1 are satisfied so that
n=|n| < oo.
Our main theorem in this subsection is:

Theorem 6.2 Suppose 0 < B(a) < 0o, A € Il with L5 > 40007 C’'B(e0). Let E € T) 4
be a boundary of the spectral gap G, with m € Z\{0}. Then there exists some B(x) €
C®(R/Z,PSL(2, R)) being analytic on Ayp () such that

_ — +1 a
B~ (x + @) A5 (1) B(x) = [ 0 i";], (6.5)
where ,
lam| < Cpe™ 2" (6.6)
and
|1Bll20pe) < CaeP". 6.7)
Moreover,
|m| < Cn, (6.8)

where C > 0 is some absolute constant.
62711'0 Z ukeanix

keZ
Z uklerkt(xfot)
keZ

We define U, (x) = Qx(x)U(x) with U (x) = , where 6 = 0(E)

and {uy} are given by Lemma 6.1. Let

Us(x) = U, (x). (6.9)

Lemma 6.3 Let U;(x) be given by (6.9). Then U+ (x) is well defined on R /27 and is ana-
Iytical on A4o(a). Moreover,

1U+1140(@) < CeP@", (6.10)
Proof This follows from (6.1) and the fact that |ug| < 1. O
Remark 6.4 Actually, Ut (x) is analytic on A,. However, 408 («) is enough for our goal.

For simplicity, we write A(x) = XA, g (x) in the following.
By the Aubry duality and (6.9), we have

AU (x) = 2U+(x + o). (6.11)
For x € R/Z, we split U; (x) into
Ui (x) = RU; (x) + iU (x) € R? 4+ iR2.
It follows from (6.11) that for x € R/Z

AX)RU+(x) = ERU+(x + @); (6.12)
AX)IUs (x) = £3Us(x + a). (6.13)
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Note that XU+ (x), U+ (x) are well defined on R/27Z and can be analytically extended to
A40B(e)-

Lemma 6.5 We can choose Vy = U+ or Vi; = JUy such that V; is real analytic on A4op(a)
and

inf V. > e CPln 6.14
‘Mgoﬂ(a)ll O = cqee (6.14)

Proof Since ug = 1, we have

/ (e_z”ixQ)TlEHUT(x) n ie—ﬁmQ;l(x)sUT(x)) dx|| = 2v2.

R/27

Thus we can choose V; = 9iU; or Vi = JU; such that
/ e O () Ve (x)dx|| > V2. (6.15)
R/27

Suppose (6.14) is not true. Then there must be some xo € A4op(y) With Ixg = ¢ such that
Vi (x0)|] < cpe™ P, (6.16)
Following the arguments used in the proof of Lemma 4.13, one has

sup || Vi (x + i1)|] < Coe” P,

xeR

Thus we obtain

which is contradicted to (6.15). ]

< C*efclg(a)n ,

f eTTEHD OV (e 4 in) Vi (x + ir)dx
R/2Z

One more lemma is necessary before the proof of Theorem 6.2.
Lemma 6.6 Suppose L > 40007 C’'B(«). Then we have

sup |[Agll; < CoeCP@n. (6.17)

0<k=<e

Proof Recalling Lemma 4.12 (with N being replaced by n), we have c,e”CP@n <
||U,,12 (X)]] < CreCB@n forall x € A%. Then by Lemma 4.11, there is some T (x) : R/Z —

SL(2. R) being analytic on A, with ||| (|71 s < C,eCP@n guch that

» - et 0 Bi(x) b(x)
T7 (x+a)AX)T (x) = |: 0 e—Z”iG] + |:,32(X) ﬂ3(x)i| '

h
where [[B1l4. 1821l 1Bsll5 < Cue™ 167 and [1b]] < C,eCP@r.

Consider now W (x) = [(l) ¢(1x):| with ¢ (x) = Y Pk where

|k|<n
—27if
o~ ~ e
bk = —by | — ¢—27i(20—ka)
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and Ek is the Fourier coefficient of b(x). Since ||20 — ka|| > c(a)e~CP®" when [k| < n,
one has gire ||W—1||%, < C,e“P@n By taking Ty (x) = T (x) W (x), we have

| . eZnié) 0
7' (x+ AW (x) = [ 0 8_2,”-(,} + H(x), (6.18)
where |||y < e~ for n > n(h,a) (since 50y < Coe= 35" for b'(x) =

» Dbre® *ix) Thus by iterating (6.18) at most e%n steps, we have

[k|=n

sup ||Zk||% < C,efPm,
h 3

0<k<e20
Then (6.17) follows. ]
Proof of Theorem 6.2
Proof Let
B v T Vi) 6.19
l(x) - [ T(-x) HV+(X)H2 :| ) ( . )

where T (;i) = <_xy ) and V; is given by Lemma 6.5. It is easy to check that B; €
C®(R/Z,PSL(2, R)). From (6.10), (6.14) and (6.19), we have

1B 11408(), 11B11140p(@) < Cae“P@" (6.20)

By (6.12), (6.13), (6.19) and (6.20), one has

_ — +1
B (x + ) AG0) B (x) = [ 5 “fl)], 6.21)
where
[[v]l40pa) < CxePM. (6.22)

Now we will reduce the right hand side of (6.21) to a constant cocycle by solving a
homological equation. More concretely, let ¢ (x) be a function defined on R/Z such that

[¢] = 0 and
1 ¢(x+ ) - +1 v(x) I ¢(x)| | £1 [v]
0 1 0 =+£1 0 1 10 £1 |

This can be done if we let
Tdx+a)Fox) =v(x) —[v]. (6.23)

By comparing the Fourier series of (6.23), one has

Uk - (k0. (6.24)

¢k = :l:e271ikot _

where ak and vy, are the Fourier coefficients of ¢ (x) and v(x) respectively.
By the definition of 8(«), we have the following

llkallr/z = C(a)e P@K k£ 0. (6.25)
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Combining (6.24) with (6.22), one has

[|§11208@) < CxeCP@", (6.26)
Let
1
B = Bi(v) [ . ‘“1’“)} . 627)
By (6.20) and (6.26), one has
1Bl120p(@)- 1B~ 11208 < Coe“P@". (6.28)

This implies (6.7). Now we are in the position to give an estimate on a,,. From (6.21) and
(6.27), we obtain

_1 — | £l ap
B ' (x + @)A(x)B(x) = [ 0 :i:l]'
Thus for any / € N, one gets
4 — [+l lay
B (x +1a)A;(x)B(x) = [ — } (6.29)
Letting [ = [y = Le%””J in (6.29), one has
lolam| < ||Bil||20ﬂ(ot)||zlo||20/3(a)||B||20,3(ot)
< C,eCPlm (6.30)

where the second inequality follows from (6.17) and (6.28).
It is easy to see (6.6) follows from (6.30) directly.
Obviously, (6.8) follows from the similar arguments used in the proof of Theorem 4.5. O

Without loss of generality, we assume the reduced cocycle given by Theorem 6.2 is

1 ay,
p:[o 1] 631)

We will give a detailed description of

Ri1(x) Ria(x)
R(x) = , 6.32
) [Rzl(x) Rzz(x)] (632)
where R(x) = % and B(x) is given by Theorem 6.2. Since A € II, we have

inf |cp|(x) > O.
xeR/Z

Lemma 6.7 Let [R;;(x)]; jei1,2) be given by (6.32). Then we have

()
Ry (x + ) = Ri1(x),
Rp(x +a) = Ria(x) — amRi1(x),
Rit(x + @)Ri2(x) — Riz(x + )R (x) = @ +amRi1(x + )R (x);
(6.33)
(ii)
[Ri)] = [R3] = c.lIRIly? > 0; (6.34)
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(iii)

(iv)

For|m| > m(A,a) > 1

[R}1[R},] — [Ri1 Rz > O; (6.35)
For |m|>=m(A,a) > 1
[R?,]
— 1 5 < GIRIIG, (6.36)
[R11][R12] — [R11R12]
[R}IIRD] — [Ri1Ri21* = c.lIRp™. (6.37)

Proof (i). Recall (6.31) and

(ii).

(iii).

@v).

E—‘2c|05271x —IT\‘(EC—)ot) 1 ap
c|(x) cl(x =
1 0 R(x) =R(x + ) [0 | ] . (6.38)
Then this is done by the direct computations.

Noting det(R(x)) = > ¢, > 0 and using the Cauchy—Schwartz inequality, we
obtain

_ 1
[el(x—a)

1
“= [m] < [(R) + R3)(R5, + RY,)]
< 2||R|2[R?, + R},
= 4IRI[GIRT,] (from (i)).

Then (6.34) follows.
By using the Cauchy—Schwartz inequality, one has [R%l][R%Z] —[R11R12)? > 0. If the
equality holds, then there exists some . € R such that Ri2(x) = wRj1(x). Thus by

det(R(x)) = m one has
1
—amRi1(x —a)Ry1(x) = ———.
lel(x — o)
Recalling (6.6) and (6.7) in Theorem 6.2, we have for [m| > m(h, @) > 1
! < e_%”,

O<cns—7—— <
le[(x — )

This is a contradiction.
The proof is similar to that in [21]. Note

[R?,]

[R2,1[R%] — [Ri1 Ria? [RuRil, \
=||Ri2— s Ru
[R2]

and define (Ry1Ria]
R() = Rip(x) = == Ri o). (6.39)
11
By (6.33) and (6.39), we have
~ ~ 1
Riy(x +a)R(x) — Rij1(x)R(x + @) = ) +amR11(x + ) Ry1(x). (6.40)

By the Cauchy—Schwartz inequality, we have

[|Ru(- +a)R() — Ri(R( + a)\z] < 4|[RIB[R?]. (6.41)
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Recalling (6.6) and (6.7) in Theorem 6.2, we get forn > n(X, «)

H# +anRi1(x + )Ry (x) ] > C. (6.42)
] (x)

By (6.40), (6.41), (6.42) and (iii) , one has
[R?] = culIRIly 2

Then (6.36) is true. Finally, (6.37) follows from (6.34), (6.36) and (iii).

6.2 Perturbation at Boundary of a Spectral Gap

In this subsection, we will perturb the cocycle (o, A ) (the dependence on A is left implicit)
at the boundary of a spectral gap G, with m € Z\{0}.

Lemma 6.8 Let R(x) be as in Lemma 6.7 and P be as in (6.31). Then for any € € R, x €
R/Z, we have

B'(x + 0)Ap c(x)B(x) = P + €P(x), (6.43)
where
5.« [RIG)R() —anR} (x) RY,(x) — amRii (x)R12(x)
P = [ SR —Ri ()R (x) 644
Proof This follows from (i) of Theorem 6.7. O

Next, we will tackle the perturbed cocycle (o, P + eP) given by (6.43). We use the
averaging method here. We want to reduce (o, P + € P) to a new constant cocycle plus a
more smaller perturbation. In the following, we assume |m| > m(A, «).

Lemma 6.9 (Theorem 4.2 of [22]) Let § = 58(x). Then the following statements hold.
(i) Forany |e| < W, there exist some Bj ¢, ’151’e e C°(R/Z,SL(2,R)) and Py ¢ €
28
SL(2, R) such that

Bil(x +a)(P+€P(x)Bre(x) = P+ € Pl c(x)

and
|B1.e — Il5 < CulIRI|3sel, (6.45)
|P1.c — Pl| < C,l|R|[3sl€l, (6.46)
I1P1.ells < CulIR|I35s (6.47)
Pic =P +¢[P]. (6.48)

(ii) For any |e| < W, there exist some By ¢, FQ’G € C®(R/Z,SL(2,R)) and P> €
25
SL(2, R) such that
Biel (x+a)(Pre+ 62]3’1’6()5))32,6()6) =P+ 5352,6()() (6.49)
and
1Bo.e — I1lo < Cul|RI[35€%,
1Py.c — Prell < CullR]|[%5€%,
1Po.cllo < CullRIs.
Py = P+ € [Pl (6.50)
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Proof The proof can be found in [22]. O
Theorem 6.10 If a,, # 0, then the gap Gy, is open. Moreover, ay, > 0if E = E;}.

Proof Let B,(x) = B(x)Bj,(x) with B(x), Bj,e(x) being given by Theorem 6.2, Lemma
6.9 respectively. Then we have B;l(x + a)Apte(X)Bu(x) = Py + O (€?) and

Trace(P1e) =2 —€ay [R%l] .

Since a,, # 0and (6.34), one has either Trace(P; ¢) > 2 or Trace(P; ¢) < 2for0 < |e] < 1.

This implies that the spectral gap must be open (see [25,26]).
Suppose now E = E;} and a,, < 0. Then for € < 0, |¢| < 1, we have Trace(P; ¢) < 2
and Trace(P; —c) > 2. This is contradicted to the fact that the gap G, is open and E = En“; .
O

Now we can state our main result of the perturbation at the boundary of a spectral gap.

Theorem 6.11 Suppose § = 5B(c) and |€| < W Let Be(x) = B(x)B1.¢(x)Ba.e(x)
28
€ CY(R/Z,PSL(2, R)), where Bj ¢(x) and B3 (x) are given by Lemma 6.9. Then we have

BZ'(x + @) Ape (1) Be(x) = et oMt hateia ), 6.51)
where
10 an
=0 %]
A= —% R} ]+ [RuRi2] —am [Ri1R12] + [R,]
—[R}] % [R}1—[Ri1R2]
Ay € sl(2, R),
A2l < CulIRII3s
12010 < CulIRISs.
Moreover,

deg (B.) = deg (B). (6.52)

Proof Equation (6.51) follows from (6.49) and some simple computations.
It suffices to prove (6.52). From (6.45) and (6.50), we obtain for |e| < W
28

1 1
[1B1.e — Illo < 7 [|1B2,e — Illo = T
Then both Bj ¢ and B;  are homotopic to the identity. This implies (6.52). O
6.3 Exponential Decay of the Lengths of the Spectral Gaps
We now prove our main theorem.
Proof of Theorem 1.1

Proof Let |m| > m(k, @) > 1 and E = E;}. Then by Theorem 6.10, we have a,, > 0.
We first assume a,,, > 0. We let § = 58(«) > 0. From (6.7), one has

IIR||2s < P,
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Then 1
> CBn, (6.53)
C(o)|[R]]55
We define
—2a,[R}|]
= TRZ 1 p2 2 <
[Rll][RIZ] — [R11R12]

6"’[

It follows from (6.6) and (6.36) that
lem| < Coe™2MHCB@N

< — (by (6.53)).
= canrg, ™ O

Thus we can apply Theorem 6.11 with € = ¢, < 0. Let

Y = AtenA+eiAn
= [dl @ } esl2, R),

dy —d
where
dy =€ ([R11R12] - %n[R%]]) + O(eX11A21D),
dr = ay + €m (IRH] — am[R11R12]) + O (211 A2])),
d3 = —en[R7 1+ O(ep||A2])
and

2
€
A =det(T) = %([R%I][R%Z] — [R11R21)
+O0(lemPIRIBIAI + amel RIS A2D.
Recalling (6.37) and by the direct computations, one has

|dy| < P gy,
dy| > e~ P@ng,, dy <0,
—c 2
A>e ﬂ(a)”am > 0.

Thus we can reduce X to an elliptic matrix by

0 =y di =
J = | A% , 171 _ Azl( lidz AZII i
_Ad 4 AL 0
VTN War s &
_ 0 —VA
J7lsg = .
[JZ 0 }
Obviously, we have J € SL(2, R) and for |m| > 1
1 1
NN S ———.
A3/ —d>
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Consequently, we obtain

0 —17, ,
A Ve

(Be (x + ) ) Api e (1)Be, (¥)J = e . (654
where .
JT(QHx)J
6(kx) = ————
©O="/x
and
3 8
R
163 6llo < ¢ echen n1IRIDs a'l =
m
<e M & 1. (6.55)

Let p’ be the fibered rotation number of the right hand side of (6.54). Then |p’| ~ ~/A by
(2.2) and (6.55). We note that 2pl,a(E,ﬁ) = ma mod Z. Then recalling (2.1), (6.52) and
(6.54), we obtain

2050 (E} + €m) = 20" + ma mod Z.
Thus for |m| > 1, one has
12010 (Egy + €m) — matllrsz 2 VA > 0.
This means 20; o (E;} + €n) # ma mod Z. Then E;} + €, ¢ Gy, and

+ - —in o ,~C'nim|
E, —E, <l|en| <e7 3" <e :

Ifa, = 0, thendet(X) = 62([R%1][R%2] — [R11R12]2) +0(e). Similarly to the analysis
above, one has E; — E;; = O(e) for || < 1. Thus the gap G, is collapsed and its length
is equal to zero. O

Remark 6.12 1f B(a) = 0, then the (almost) reducibility results for the EHM have been
proved in [13]. In this case, all proofs above are still valid. Essentially, the small divisors in
case B(a) = 0 are “better” than that in the Liouvillean frequency case.

Appendix A

Proof of Lemma 4.6 (i) For |nj| > n(a), we select gg < %|nj+1| < ¢g+1. Thus L";—JS”J .
gs— 1> %5 > 2l S 91| by (3.4). Let r be minimal such that 1 < r < |42 ] and
rgs — 1> 9lnj|. Then rqs — 1 < gg +9In;| < 55lnj41]+9In;| < §lnj41]. Obviously,
l=rqs —1 < gsy1.

(if) Since |nj| — oo as j — oo, we can select % < 1n}|17m| < % Then we have the
following cases.

Case 1221 < Il < 91y | Inthis case, we selectg; < 25/n | < gy41. Thus |45 ] g1 >

q‘z"fg‘ > 10|nj|. Let r be minimal such that 1 < r < L%J and rg; — 1 > 9|n;|. Then

rgs — 1 < g5 +9Inj| < 34in;| < @.Bytakingl = rqs — 1, one has ln}|l7m| <9nj| <
[ < 34In;| < 1700171,
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1n|m| <

Case29n;| < M. In this case, we select g; < 3M < gs+1- Thus L%—“J -qs —

I In |m| . Let r be minimal such that 1 < r < Lq‘“J and rg; — 1 > M . Then

—-1<gs+ ln |m| 4ln‘m‘ ’“l . By taking [ = rgy — 1, one has lnlml <l< 4—1“}‘1'"‘.
By putting all cases together, we ﬁmsh the proof of (ii). O
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