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Abstract In this paper, we study the non-self dual extended Harper’s model with a Liouvil-
lean frequency. By establishing quantitative reducibility results together with the averaging
method, we prove that the lengths of the spectral gaps decay exponentially.
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1 Introduction and Main Result

The extended Harper’s model (EHM for short) was originally proposed by Thouless [27] to
describe the influence of a transversal magnetic field on a single tight-binding electron in a
2-dimensional crystal layer (see [4,27]). More exactly, the EHM is given by

(Hλ,α,xu)n = c(x + nα)un+1 + c(x + (n − 1)α)un−1 + 2 cos 2π(x + nα)un, (1.1)

where u = {un}n∈Z ∈ �2(Z) and

c(x) = cλ(x) = λ1e
− 2π i(x+ α

2 ) + λ2 + λ3e
2π i(x+ α

2 ),

c(x) = cλ(x) = λ1e
2π i(x+ α

2 ) + λ2 + λ3e
− 2π i(x+ α

2 ).

Usually, one calls λ = (λ1, λ2, λ3) ∈ R
3+ the coupling, α ∈ R\Q the frequency and x ∈ R

the phase respectively. When λ1 = λ3 = 0, the EHM reduces to the famous almost Mathieu
operator (AMO for short).
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Fig. 1 The coupling region

It is well-known that the spectrum of Hλ,α,x does not depend on x and we denote it by
�λ,α . Especially, we denote by �λ2,α the spectrum of the AMO. Since �λ,α is a compact
subset of R, we let Emin = min{E : E ∈ �λ,α}, Emax = max{E : E ∈ �λ,α} and G0 =
(−∞, Emin)

⋃
(Emax,+∞). Actually, each connected component of [Emin, Emax]\�λ,α is

called a (nontrivial) spectral gap. From the gap labelling theorem [10,19], for every spectral
gap G there exists a unique nonzero integer m such that 2ρλ,α|G = mα mod Z, where
ρλ,α(·) is the fibered rotation number of the EHM (see Sects. 2.3 and 2.4 for the details) and

[E−
m , E+

m ] = {Emin ≤ E ≤ Emax : 2ρλ,α(E) = mα mod Z}. (1.2)

If E−
m = E+

m , then Gm = {E−
m } is called a collapsed spectral gap. If E−

m �= E+
m , then

Gm = (E−
m , E+

m ) is called an open spectral gap.
In fact, the properties of �λ,α depend heavily on λ, α. In general, we split the coupling

region into three parts (see Fig. 1):

I = {
(λ1, λ2, λ3) ∈ R

3+ : 0 < max{λ1 + λ3, λ2} < 1
}
,

II = {
(λ1, λ2, λ3) ∈ R

3+ : 0 < max{λ1 + λ3, 1} < λ2
}
,

III = {
(λ1, λ2, λ3) ∈ R

3+ : 0 < max{λ2, 1} < λ1 + λ3
}
.

According to the duality map σ : (λ1, λ2, λ3) �→ ( λ3
λ2

, 1
λ2

, λ1
λ2

), I and II are dual to each other
and III is the self-dual region. Note also that I is the region of positive Lyapunov exponent
(see Sect. 2.1 for the definition). Regarding the frequency α, we define

β(α) = lim sup
k→∞

− ln ||kα||R/Z

|k| , (1.3)

where ||x ||R/Z = min
k∈Z |x−k|. Thenwe call α a Liouvillean frequency if β(α) > 0.Moreover,

α is called respectively a weak Diophantine frequency if β(α) = 0 and a Diophantine
frequency if there exist γ > 1, μ > 0 such that ‖kα‖R/Z ≥ μ

|k|γ for ∀ k ∈ Z\{0}.
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Our main theorem of this paper is:

Theorem 1.1 Let α ∈ R\Q with 0 ≤ β(α) < ∞ and E−
m , E+

m be given by (1.2). Then there
exists an absolute constant C > 1 such that, if λ ∈ II andLλ > Cβ(α), one has for |m| ≥ m�

E+
m − E−

m ≤ e−C−1Lλ|m|, (1.4)

where

Lλ = ln
λ2 +

√
λ22 − 4λ1λ3

max{λ1 + λ3, 1} +√
max{λ1 + λ3, 1}2 − 4λ1λ3

, (1.5)

and m� is a positive constant depending only on λ, α.

Remark 1.2 If λ2
max{λ1+λ3,1} > eCβ(α), then Lλ > Cβ(α).

Remark 1.3 Based on this theorem, Jian–Shi [16] proved the 1
2 -Hölder continuity of the

integrated density of states for the EHM. They also obtained the Carleson homogeneity of
the spectrum.

The investigations of the spectral gaps for the AMO (i.e., λ1 = λ3 = 0) are closely related
to the Cantor set structure of the spectrum�λ2,α . In fact, the famous TenMartini problem says
that �λ2,α is a Cantor set for all λ2 �= 0, α ∈ R\Q. Much effort [6,7,14,25] was expended
to solve the Ten Martini problem and finally it was proved by Avila and Jitomirskaya [2]. A
stronger assertion which is called the dry Ten Martini problem suggests that �λ2,α contains
no collapsed spectral gap for all λ2 �= 0, α ∈ R\Q. To the best of our knowledge, the dry Ten
Martini problem still remains open and only partial results were obtained [2,3,5,7,23,25].
Actually, Avila–You–Zhou [5] proved the dry TenMartini problem for the non-critical AMO.

The first result concerning upper bounds of the lengths of the spectral gaps for the lattice
quasi-periodic Schrödinger operators was proved by Amor [12] in which she showed that the
lengths of the spectral gaps decay sub-exponentially. She used the KAM techniques devel-
oped by Eliasson [11]. Thus the frequency must satisfy the Diophantine condition. Recently,
Leguil–You–Zhao–Zhou [21] proved that the lengths of the spectral gaps for the general
Schrödinger operators with a weak Diophantine frequency decay exponentially. Moreover,
they obtained the lower bounds of the lengths of the spectral gaps for the AMO with a Dio-
phantine frequency. Based on some results of [23], Liu and Shi [22] generalized a result of
[21] to the Liouvillean frequency case.

For the continuous quasi-periodic Schrödinger operators, Damanik–Goldstein [8] and
Damanik–Goldstein–Lukic [9] obtained the upper bounds of the lengths of the spectral gaps.
In a recent work by Parnovski and Shterenberg [24], they got the asymptotic expansions for
the lengths of the spectral gaps.

All the results mentioned above are attached to the Schrödinger type operators and little is
known about the Jacobi type operators (such as the EHM). In [13], Han proved the spectrum
of the non-self dual EHMwith a weak Diophantine frequency contains no collapsed spectral
gap.

For a more detailed exposition of the history of the spectral gaps studying, we refer the
reader to [20–22].

The methods of the present paper follow that of [3,21], but more subtle estimates and
technical differences.More precisely, using ideas of [3,21], we first establish (at the boundary
of some spectral gap) quantitative reducibility results for the extended Harper’s cocycles.
Then using the averaging method, we can show that the fibered rotation number (of the
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EHM) under some perturbation will change, which allows us to get an upper bound of the
length of the spectral gap.

The present paper is organized as follows. In Sect. 2, we give some basic concepts and
notations. In Sect. 3, we prove the almost localization results for the EHM. In Sect. 4, we
obtain the almost reducibility results for the EHM if the phases are resonant. In Sect. 5, we
get the reducibility results for the EHM with non-resonant phases. In Sect. 6, we complete
the proof of the main theorem by combining the quantitative reducibility results with the
averaging method.

2 Some Basic Concepts and Notations

2.1 Cocycle, Transfer Matrix and the Lyapunov Exponent

Let α ∈ R\Q and Cω(R/Z,B) be the set of all analytic maps from R/Z to some Banach
space (B, || · ||). By a cocycle, we mean a pair (α, A) ∈ (R\Q) × Cω(R/Z,SL(2, R)). We
can regard (α, A) as a dynamical system on (R/Z) × R

2 with

(α, A) : (x, v) �−→ (x + α, A(x)v), (x, v) ∈ (R/Z) × R
2.

For any k > 0, k ∈ Z, we define the k-step transfer matrix of A(x) as

Ak(x) =
1∏

l=k

A(x + (l − 1)α)

and the Lyapunov exponent for (α, A) as

L(α, A) = lim
k→+∞

1

k

∫

R/Z

ln ||Ak(x)||dx = inf
k>0

1

k

∫

R/Z

ln ||Ak(x)||dx .

2.2 Reducibility and Almost Reducibility

We say that two cocycles (α, Ai ) (i = 1, 2) are (analytically) conjugate if there is some
B ∈ Cω(R/Z,PSL(2, R)) such that

B−1(x + α)A1(x)B(x) = A2(x).

We say that a cocycle (α, A) is (analytically) reducible if it is conjugate to (α, A∗), where
A∗ is a constant matrix. Moreover, a cocycle (α, A) is almost reducible if the closure of its
analytic conjugacy class contains a constant (see [3]).

Given B ∈ Cω(R/Z,PSL(2, R)), we say the degree of B is k and denote by deg(B) = k,
if B is homotopic to R k

2 x
for some k ∈ Z, where

Rx =
[
cos 2πx − sin 2πx
sin 2πx cos 2πx

]

.

2.3 Fibered Rotation Number

Suppose A ∈ Cω(R/Z,SL(2, R)) is homotopic to the identity. Then the fibered rotation
number ρα(A) of the cocycle (α, A) is well defined. More precisely, there exist φ : (R/Z)×
(R/Z) → R and u : (R/Z) × (R/Z) → R

+ such that
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A(x) ·
(
cos 2πy
sin 2πy

)

= u(x, y)

(
cos 2π(y + φ(x, y))
sin 2π(y + φ(x, y))

)

.

The function φ is called a lift of A. Let μ be any probability measure on (R/Z) × R which
is invariant under the continuous map T : (x, y) �→ (x + α, y + φ(x, y)). Assume further μ

projects over the Lebesgue measure on the first coordinate. Then the number

ρα(A) =
∫

(R/Z)×R

φ(x, y)dμ mod Z

does not depend on the choices of φ,μ, and is called the fibered rotation number of (α, A)

(see [3,15,19]).
Let A1, A2 ∈ Cω(R/Z,SL(2, R)) and B ∈ Cω(R/Z,PSL(2, R)). If A1 is homotopic to

the identity and B−1(x + α)A1(x)B(x) = A2(x), then A2 is homotopic to the identity and

2ρα(A1) − 2ρα(A2) = deg (B)α mod Z. (2.1)

Given a cocycle (α, A), there is some absolute constant C > 0 such that

|ρα(A) − θ | ≤ C sup
x∈R/Z

||A(x) − Rθ ||. (2.2)

2.4 Extended Harper’s Cocycle

Let λ ∈ II. Then c(x) �= 0 and the equation

Hλ,α,xu = Eu

is equivalent to (
uk+1

uk

)

= Aλ,E (x + kα)

(
uk
uk−1

)

,

where Aλ,E (x) = 1
c(x)

[
E − 2 cos 2πx −c(x − α)

c(x) 0

]

. In general, Aλ,E (x) /∈ SL(2, R).

Then we consider the “renormalized” cocycle (α, Aλ,E ) with

Aλ,E (x) = 1√|c|(x)|c|(x − α)

[
E − 2 cos 2πx −|c|(x − α)

|c|(x) 0

]

= Qλ(x + α)Aλ,E (x)Q−1
λ (x),

where |c|(x) = √
c(x)c(x) 1 and Qλ, Q

−1
λ are analytic on {x ∈ C/Z : |x | ≤ Lλ

4π } (see [16]
for more details). We call (α, Aλ,E ) the extended Harper’s cocycle and denote by Lλ(E) =
L(α, Aλ,E ) its Lyapunov exponent. Actually, there is a direct definition of the Lyapunov
exponent L(α, Aλ,E ) for (α, Aλ,E ) (see [18]) and Lλ(E) = L(α, Aλ,E ). For a matrix-valued
function M(x) with x ∈ R/Z, we let Mε(x) = M(x + iε) be the phase-complexification of
M(x). For E ∈ �λ,α , it was proved in [18] that Lλ(E) is independent of the choices of E
(there is an explicit expression of Lλ(E) in λ).

Lemma 2.1 (Theorem 1.1 of [18]). We have the following statements.

(i) If λ ∈ II, then λ = ( λ3
λ2

, 1
λ2

, λ1
λ2

) ∈ I and Lλ > 0.

(ii) If λ ∈ II, then L(α, Aε
λ,E ) = L(α, A

ε

λ,E ) = 0 for |ε| ≤ Lλ

2π .

1 If x ∈ R, c(x) is the complex conjugate of c(x) . If x ∈ C\R, c(x) is the analytic extension of c(x).
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Let Hλ,α,x be the Jacobi operator corresponding to Aλ,E , i.e.,

(Hλ,α,xu) = |c|(x + nα)un+1 + |c|(x + (n − 1)α)un−1 + 2 cos 2π(x + nα)un .

Then Hλ,α,x is equivalent to Hλ,α,x (in the sense of unitary).
Since Aλ,E is homotopic to the identity (see [13] for an explicit homotopy), we denote by

ρλ,α(E) the fibered rotation number of (α, Aλ,E ).

2.5 Aubry Duality

The map σ : λ = (λ1, λ2, λ3) �→ λ = ( λ3
λ2

, 1
λ2

, λ1
λ2

) induces the duality between region I and
region II. We call Hλ,α,x the Aubry duality of Hλ,α,x . Then we have �λ,α = λ2�λ,α .

Let u : R/Z → C be some L2-function with its Fourier coefficients û = {̂un} satisfying
Hλ,α,θ û = E

λ2
û. Then U (x) =

(
e2π iθu(x)
u(x − α)

)

satisfies

Aλ,E (x) ·U (x) = e2π iθU (x + α). (2.3)

2.6 Continued Fraction Expansion

For any α ∈ (0, 1), we have the continued fraction expansion

α = [a1, a2, . . . , an, . . .] = 1

a1 + 1
a2+ 1

a3+ 1···

,

where ai ∈ N
+ (i ∈ N) are inductively defined by the Gauss’s map acting on α. We define

pn
qn

= [a1, a2, . . . , an] = 1

a1 + 1
a2+ 1

a3+ 1
···+ 1

an

,

where (pn, qn) = 1.
For α ∈ (0, 1)\Q, one has

||kα||R/Z ≥ ||qnα||R/Z, for 0 < |k| < qn+1, k ∈ Z,

1

2qn+1
≤ ||qnα||R/Z ≤ 1

qn+1
.

It is easy to show

β(α) = lim sup
n→∞

ln qn+1

qn
,

where β(α) is given by (1.3).

2.7 Some Notations

We briefly comment on the constants and norms in this paper. We let C(α) > 0 be a large
constant depending onα andC� > 0 (resp. c� > 0) be a large (resp. small) constant depending
on λ and α. Define �s = {z ∈ C/Z : |z| ≤ s} and ||v||s = sup

z∈�s

||v(z)||, where v is a map

from �s to some Banach space (B, || · ||). For any continuous map v from R/Z to (B, || · ||),
we let [v] = ∫

R/Z
v(x)dx . In this paper, B may be C, C

2 or SL(2, C), equiped with the
Euclidean norm (for a vector), or the standard operator norm (for a matrix) respectively.
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3 Almost Localization for EHM with Liouvillean Frequency

In this part, we will prove the almost localization for Hλ,α,θ with λ ∈ II. We need some
useful definitions first.

Definition 3.1 Fix θ ∈ R, ε0 > 0. We call n ∈ Z an ε0-resonance of θ if

min|k|≤|n| ||2θ − kα||R/Z = ||2θ − nα||R/Z ≤ e−ε0|n|.

Given θ ∈ R, we order all the ε0-resonances of θ as 0 < |n1| ≤ |n2| < · · · . We say θ is
ε0-resonant if the set of all ε0-resonances of θ is infinite. The θ is called ε0-non-resonant if
the set of all ε0-resonances of θ is finite. If {0, n1, . . . , n j } is the set of all ε0-resonances of
θ , then we let n j+1 = ∞.

Definition 3.2 Given E ∈ �λ,α , we say Hλ,α,θ satisfies the (C0, ε0, ε1)-almost localization
if there exist some C0 > 0, ε0 > 0, ε1 > 0 such that for any solution u of Hλ,α,θu = Eu
with u0 = 1 and |uk | ≤ 1 + |k|, one has

|uk | ≤ C�e
−ε1|k|, for C0|n j | < |k| < C−1

0 |n j+1|,
where n0, n1, . . . , n j , . . . are the ordered ε0-resonances of θ and C� > 0 depends only on
λ, α, u.

Throughout this section we fix

ε0 = Lλ

105
≥ 100Xβ(α) > 0,

where X ≥ 100 is any absolute constant.
We can now state the main result of this section.

Theorem 3.3 Supposing 0 < β(α) < ∞, λ ∈ II and Lλ ≥ 104ε0 , then Hλ,α,θ satisfies the
(
3, ε0,

Lλ

100

)
-almost localization.

Remark 3.4 If θ is ε0-non-resonant, then Hλ,α,θ satisfies the Anderson localization (i.e.,
Hλ,α,θ has pure point spectrum with exponentially localized states).

We need some lemmata.

Lemma 3.5 Let 0 < β(α) < ∞ and {n j } be the set of all ε0-resonances of θ ∈ R. Then

(i) for any k ∈ Z, one has

min
0<| j |≤|k| || jα||R/Z ≥ C(α)e− 11β(α)

10 |k|, (3.1)

and for |k| ≥ k0(α) > 0

min
0<| j |≤|k| || jα||R/Z ≥ e− 10β(α)

9 |k|, (3.2)

where C(α) and k0(α) are the positive constants which depend only on α;
(ii) if |k| ≥ k0(α) > 0, k is an ε0-resonance of θ if and only if

||2θ − kα||R/Z ≤ e−ε0|k|;
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(iii) for |n j | > n(α) > 0, one has

||2θ − n jα||R/Z ≥ e−2.5|n j+1|β(α) (3.3)

and
40X |n j | < |n j+1|. (3.4)

Proof (i) Equations (3.1) and (3.2) follow from (1.3) directly.
The proofs of (ii) and (iii) are similar to that in [23] and we omit the details here. ��

We recall some basic facts about the Green’s function. For any interval [x1, x2] ⊂ Z,
we define H [x1,x2]

λ,α,θ
as the restriction of Hλ,α,θ on [x1, x2]. We can regard H [x1,x2]

λ,α,θ
as a finite

order matrix with entries H [x1,x2]
λ,α,θ

(x, y) when we choose the standard basis {δi }i∈[x1,x2] in
�2(Z[x1,x2]). If E is not an eigenvalue of H [x1,x2]

λ,α,θ
, we let GE[x1,x2] be the inverse of H

[x1,x2]
λ,α,θ

−
E := H [x1,x2]

λ,α,θ
− E · I , where I is the identity matrix. For k > 0, k ∈ Z, we set Pk(θ) =

det(H [0,k−1]
λ,α,θ

− E). By a straightforward computation using Cramer’s rule, for any x1 < y <

x2 with x2 − x1 + 1 = k, one has

∣
∣
∣GE[x1,x2](x1, y)

∣
∣
∣ =

∣
∣
∣
∣
Px2−y(θ + (y + 1)α)

Pk(θ + x1α)

∣
∣
∣
∣ ·

y−1∏

j=x1

|c(θ + jα)|, (3.5)

∣
∣
∣GE[x1,x2](y, x2)

∣
∣
∣ =

∣
∣
∣
∣
Py−x1(θ + x1α)

Pk(θ + x1α)

∣
∣
∣
∣ ·

x2∏

j=y+1

|c(θ + jα)|, (3.6)

where c(θ) = cλ(θ).
If Hλ,α,θu = Eu, then we have for x ∈ [x1, x2]

ux = c(θ + (x1 − 1)α)GE[x1,x2](x1, x)ux1−1 + c(θ + x2α)GE[x1,x2](x, x2)ux2+1, (3.7)

where c(θ) = cλ(θ). We call (3.7) the Poisson’s identity.
Letting Mλ(θ) = cλ(θ)Aλ,E (θ) and denoting by Mλ,k(θ) its k-step transfer matrix, then

we have

Mλ,k(θ) =
[

Pk(θ) −c(θ − α)Pk−1(θ + α)

c(θ + (k − 1)α)Pk−1(θ) −c(θ − α)c(θ + (k − 1)α)Pk−2(θ + α)

]

.

Assume L̃λ is the Lyapunov exponent for the cocycle (α, Mλ). From [17], for any ε > 0
there is some C�(ε) > 0 (depending only on λ, α, ε) such that

|Pk(θ)| ≤ C�(ε)e
(L̃λ+ε)k, k > 0. (3.8)

Note also that
Lλ = L̃λ − C(λ),

where

C(λ) = ln
max{λ1 + λ3, 1} + √

max{λ1 + λ3, 1} − 4λ1λ3
2λ2

.

In the following of this section, we write L = Lλ, L̃ = L̃λ for simplicity.
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Lemma 3.6 (Lemma 5 of [17]) Let a < b with a, b ∈ Z. Then for all ε > 0, there exists
some C(ε) > 0 (depending only on ε) such that

b∏

j=a

|c(θ + jα)| ≤ C(ε)e(b−a)(C(λ)+ε). (3.9)

Since Pk(θ) is a polynomial in cos 2π(θ + k−1
2 α) of degree k (see [17] for the details),

we can write Pk(θ) = Qk(cos 2π(θ + k−1
2 α)), where Qk ∈ C[x] is a polynomial of degree

k. Moreover, we defineAk,r = {θ ∈ R : |Qk(cos 2πθ)| ≤ e(k+1)r }, where k ∈ N and r ∈ R.

Definition 3.7 We say the sequence θ1, . . . , θk+1 is γ -uniform if

max
x∈[− 1,1] max

i=1,...,k+1

k+1∏

j=1, j �=i

∣
∣
∣
∣

x − cos 2πθ j

cos 2πθi − cos 2πθ j

∣
∣
∣
∣ ≤ eγ k .

Lemma 3.8 (Lemma 9.7 of [2]) Let α ∈ R\Q. Then there exists an absolute constant C̃ > 0
such that

− C̃ ln qn ≤
qn−1∑

j=0, j �= j0(x)

ln | sin π(x + jα)| + (qn − 1) ln 2 ≤ C̃ ln qn, (3.10)

where j0(x) ∈ {0, . . . , qn − 1} satisfies | sin π(x + j0(x)α)| = min
0≤l≤qn−1

| sin π(x + lα)|.

From (3.4), we have 3|n j | <
|n j+1|

3 . Without loss of generality, we can assume 3|n j | <

y <
|n j+1|

3 . We select qn+1 >
y
8 ≥ qn and let s be the largest positive integer such that

sqn ≤ y
8 . Then (s + 1)qn >

y
8 . We define intervals I1, I2 ⊂ Z as

I1 = [− 2sqn + 1, 0], I2 = [y − 2sqn + 1, y + 2sqn], for n j > 0,

I1 = [0, 2sqn + 1], I2 = [y − 2sqn + 1, y + 2sqn], for n j ≤ 0.

Lemma 3.9 Let 0 < β(α) < ∞. Then

(i) for any x ∈ R, 0 < | j | < qn+1, one has for n > n(α)

max{ln | sin x |, ln | sin(x + π jα)|} ≥ −2β(α)qn; (3.11)

(ii) for any i + j �= n j and |i + j | < n j+1 with i, j ∈ I1 ∪ I2, one has for n > n(α)

||2θ + (i + j)α||R/Z ≥ e−36ε0sqn . (3.12)

Proof (i) Firstly, we have for n > n(α)

min
0<| j |<qn+1

|| jα||R/Z = ||qnα||R/Z ≥ 1

2qn+1
≥ e− 11β(α)qn

10 . (3.13)

We may assume | sin x | < e−2β(α)qn < 1
2 . Then for all j satisfying 0 < | j | < qn+1, we

get

| sin(x + π jα)| = | sin x cosπ jα + cos x sin π jα|
≥

√
3

2
| sin π jα| − e−2β(α)qn

≥ √
3|| jα||R/Z − e−2β(α)qn .
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Thus recalling (3.13), we have

| sin(x + π jα)| ≥ e−2β(α)qn .

We complete the proof of (3.11).
(ii) From the definitions of s, qn and I1, I2, one has for any j ∈ I1 ∪ I2

| j | ≤ y + 2sqn ≤ 18sqn . (3.14)

Let k0 satisfy ||2θ + k0α||R/Z = min|k|≤|i+ j | ||2θ + kα||R/Z. Then we have the following
cases.

Case 1 k0 �= i + j . In this case, we may assume ||2θ + k0α||R/Z < e−100β(α)sqn . Then for
n > n(α), we have

||2θ + (i + j)α||R/Z ≥ ||(i + j − k0)α||R/Z − ||2θ + k0α||R/Z

≥ e− 10β(α)
9 |i+ j−k0| − e−100β(α)sqn (by (3.2))

≥ e−80β(α)sqn − e−100β(α)sqn ≥ e−100β(α)sqn (by (3.14)).

Case 2 k0 = i + j . If −k0 is not an ε0-resonance of θ , then

||2θ + (i + j)α||R/Z ≥ e−ε0|k0| ≥ e−36ε0sqn .

If −k0 is an ε0-resonance of θ , then |n j | ≥ |k0| (otherwise we must have −k0 = n j+1 which
is impossible by the assumptions). Thus we can assume

||2θ − n jα||R/Z < e−36ε0sqn .

Then for n > n(α)

||2θ + (i + j)α||R/Z ≥ ||(n j + k0)α||R/Z − ||2θ − n jα||R/Z

≥ e− 10β(α)
9 |n j+k0| − e−36ε0sqn (for k0 + n j �= 0 and (3.2))

≥ e−36ε0sqn .

By putting the two cases together, we prove (3.12). ��

Lemma 3.10 Let the conditions of Theorem 3.3 be satisfied. Then the sequence θ + jα with
j ∈ I1 ∪ I2 is 100ε0-uniform if y > y(α) (or equivalently n > n(α)).

Proof We note that for any x ∈ [− 1, 1] and i ∈ I1 ∪ I2

∏

j∈I1∪I2, j �=i

∣
∣
∣
∣

x − cos 2πθ j

cos 2πθi − cos 2πθ j

∣
∣
∣
∣ = e

∑

j∈I1∪I2, j �=i
ln |x−cos 2πθ j |− ∑

j∈I1∪I2, j �=i
ln | cos 2πθi−cos 2πθ j |

.

For x ∈ [− 1, 1], we can find a such that x = cos 2πa. Firstly, we give the upper bound of
the sum

∑

j∈I1∪I2, j �=i
ln | cos 2πa − cos 2πθ j |. By the straightforward computations, one has

∑

j∈I1∪I2, j �=i

ln | cos 2πa − cos 2πθ j | = �+ + �− + (6sqn − 1) ln 2, (3.15)
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where

�+ =
∑

j∈I1∪I2, j �=i

ln | sin π(a + θ j )|,

�− =
∑

j∈I1∪I2, j �=i

ln | sin π(a − θ j )|.

We observe that the sum �+ consists of 6s terms of the form

qn−1∑

j=0, j �= j0(x)

ln | sin π(x + jα)|,

plus 6s terms of the form

ln min
j=0,...,qn−1

| sin π(x + jα)| ≤ 0,

minus ln | sin π(a + θi )|. Thus from Lemma 3.8, one has

�+ ≤ 6C̃s ln qn .

Similarly,
�− ≤ 6C̃s ln qn .

Thus
(3.15) ≤ 12C̃s ln qn + 6sqn ln 2.

We then give the lower bound of the sum
∑

j∈I1∪I2, j �=i
ln | cos 2πθi − cos 2πθ j |. Similarly,

we have
∑

j∈I1∪I2, j �=i

ln | cos 2πθi − cos 2πθ j | = �1+ + �1− + (6sqn − 1) ln 2,

where

�1+ =
∑

j∈I1∪I2, j �=i

ln | sin π(2θ + (i + j)α)|,

�1− =
∑

j∈I1∪I2, j �=i

ln | sin π(i − j)α|.

We note that the sum �1+ consists of 6s terms of the form
∑qn−1

j=0, j �= j0(x)
ln | sin π(x + jα)|

plus 6s terms of the form lnmin j=0,...,qn−1 | sin π(x + jα)|. From (i) of Lemma 3.9 and
sqn < qn+1, among the 6s minimal terms there are at most 6 terms can be smaller than
− 2β(α)qn . Moreover, these 6 minimal terms have the lower bound − 36ε0sqn because of
(ii) of Lemma 3.9 (the conditions in (ii) of Lemma 3.9 are satisfied by the definitions of
I1, I2). Hence applying Lemma 3.8, one has

�1+ ≥ −6s(C̃ ln qn + (qn − 1) ln 2) − (6s − 6)2β(α)qn − 216ε0sqn .

Similarly, the sum �1− consists of 6s terms of the form
∑qn−1

j=0, j �= j0(x)
ln | sin π(x + jα)| plus

6s terms of the form lnmin j=0,...,qn−1 | sin π(x + jα)|. Among these 6s minimal terms there
are at most 6 many of them can be smaller than − 2β(α)qn . In addition, these 6 minimal
terms have the lower bound − 72β(α)sqn for

min
j∈I1∪I2, j �=i

ln | sin π( j − i)α| ≥ ln ||( j − i)α||R/Z ≥ −72β(α)sqn .
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Then
�1− ≥ −6s(C̃ ln qn + (qn − 1) ln 2) − (6s − 6)2β(α)qn − 432β(α)sqn .

By putting all previous estimates together, we have for n > n(α)

max
x∈[− 1,1] max

i∈I1∪I2

∏

j∈I1∪I2, j �=i

∣
∣
∣
∣

x − cos 2πθ j

cos 2πθi − cos 2πθ j

∣
∣
∣
∣ ≤ e(6sqn−1)100ε0 .

��

Lemma 3.11 (Lemma 4.2 of [13]) Let γ1 < γ . If θ1, . . . , θk+1 ∈ Ak,L̃−γ , then the sequence
θ1, . . . , θk+1 is not γ1-uniform for k > k(γ, γ1, λ) > 0.

Lemma 3.12 Suppose L > 104ε0 and y > y(λ, α) (or equivalently n > n(λ, α)). Then we
have θ j = θ + jα ∈ A6sqn−1,L̃−101ε0 for all j ∈ I1.

Proof Let k = 6sqn − 1 and assume there is some j0 ∈ I1 such that θ j0 /∈ Ak,L̃−101ε0 . Then
we have

|Pk(θ + ( j0 − 3sqn + 1)α)| ≥ e(k+1)(L̃−101ε0). (3.16)

We define [x1, x2] = [ j0 − 3sqn + 1, j0 + 3sqn − 1]. It follows from the definition of I1
that 0 ∈ [x1, x2] and |xi | ≥ k

6 , i = 1, 2. Thus from (3.5), (3.8), (3.9) and (3.16), one has for
n > n(α)

∣
∣
∣GE[x1,x2](x1, 0)

∣
∣
∣ ≤

−1∏

j=x1

|c(θ + jα)|e(k+x1−1)(L̃+β(α))−(k+1)(L̃−101ε0)

≤ C�e
(C(λ)+β(α))|x1|+(k+x1−1)(L̃+β(α))−(k+1)(L̃−101ε0)

≤ C�e
−(L−1000ε0)|x1|.

Similarly, ∣
∣
∣GE[x1,x2](0, x2)

∣
∣
∣ ≤ C�e

−(L−1000ε0)|x2|.

Together with the Poisson’s identity (3.7), we have for n > n(λ, α)

|u0| ≤ C�ke
− 1

6 (L−1000ε0)k

< 1 (for L − 1000ε0 > 0),

which is contradicted to u0 = 1. We prove this Lemma. ��

We then give the proof of Theorem 3.3.
Proof of Theorem 3.3

Proof Let k = 6sqn − 1. From Lemmas 3.10, 3.11 and 3.12, we obtain that for n > n(λ, α)

there is some j0 ∈ I2 such that θ j0 /∈ Ak,L̃−101ε0 . As a result,

|Pk(θ + ( j0 − 3sqn + 1)α)| ≥ e(k+1)(L̃−101ε0). (3.17)

We define [x1, x2] = [ j0 − 3sqn + 1, j0 + 3sqn − 1]. It follows from the definition of I2 that

|y − xi | ≥ | j0 − xi | − |y − j0| ≥ sqn − 1.
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It is obvious that y ∈ [x1, x2]. Since (3.5), (3.8), (3.9) and (3.17), we have

∣
∣
∣GE[x1,x2](x1, y)

∣
∣
∣ ≤

y−1∏

j=x1

|c(θ + jα)|e(k−|x1−y|−1)(L̃+β(α))−(k+1)(L̃−101ε0)

≤ C�e
(C(λ)+β(α))|x1−y|+(k−|x1−y|−1)(L̃+β(α))−(k+1)(L̃−101ε0)

≤ C�e
−(L−1000ε0)|x1−y|. (3.18)

Similarly, ∣
∣
∣GE[x1,x2](y, x2)

∣
∣
∣ ≤ C�e

−(L−1000ε0)|x2−y|. (3.19)

Combining (3.18) with (3.19) and using the Poisson’s identity (3.7), we obtain for n >

n(λ, α)

|uy | ≤ C�sqne
− 1

2 (L−1000ε0)sqn

≤ e− 1
33 (L−1000ε0)y (for sqn ≥ y

16
)

≤ e− L
100 y (for L ≥ 104ε0).

��

4 Almost Reducibility for Resonant Phases

In this section, we will prove the almost reducibility of the cocycle (α, Aλ,E ) for the resonant
phases, where λ ∈ II and E ∈ �λ,α .

Lemma 4.1 (Theorem 3.3 of [3]) Let E ∈ �λ,α . Then there exist some θ = θ(E) ∈ R and
some solution u of Hλ,α,θu = E

λ2
u with u0 = 1, |uk | ≤ 1.

Remark 4.2 In Schrödinger operators case, this lemma was proved in [3] by applying
Berezanskiı̆’s theorem. An alternative proof is based on the periodic approximations. The
argument can be easily extended to Jacobi operators case.

Throughout this section we fix E, θ = θ(E) and u, which are all given by Lemma 4.1.

Definition 4.3 Suppose f (x) = ∑
k∈Z fke2π ikx . We say f has essential degree at most l if

fk = 0 for k being outside an interval [a, b] ⊂ Z of length l (i.e., b − a + 1 = l).

Lemma 4.4 (Theorem 6.1 of [3] and (4.5) of [23]) Suppose 1 ≤ r ≤ � qs+1
qs

�. If f has
essential degree at most l = rqs − 1 and x0 ∈ R/Z, then

|| f ||0 ≤ C1q
C1r
s+1 sup

0≤ j≤l
| f (x0 + jα)|

and
|| f ||0 ≤ C1e

C1β(α)l sup
0≤ j≤l

| f (x0 + jα)|, (4.1)

where C1 > 0 is some absolute constant and �x� denotes the integer part of x ∈ R.

In the following, we let λ ∈ II and

ε0 = Lλ

105
≥ 100C1β(α), h = Lλ

200π
.
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Moreover, we let {n j } be the set of all ε0-resonances of θ and assume θ is ε0-resonant.

Recalling Theorem 3.3, we have for any k satisfying 3|n j | < |k| <
|n j+1|

3

|uk | ≤ C�e
−2πh|k|. (4.2)

Our main result of this section is:

Theorem 4.5 Suppose 0 < β(α) < ∞, λ ∈ II wi th Lλ ≥ 104ε0 and E ∈ �λ,α . Let
|n j | > n(λ, α). Then there is some W ∈ Cω(R/Z,PSL(2, R)) having degree m j with
|m j | ≤ 9|n j | such that

sup
x∈R/Z

||W−1(x + α)Aλ,E (x)W (x) − R±θ̃ || ≤ e− h
30 |n j+1|, (4.3)

where θ̃ = θ − n j
2 α. Moreover,

||2ρλ,α(E) − m jα ± (2θ − n jα)||R/Z ≤ e− h
30 |n j+1|. (4.4)

Lemma 4.6 We have

(i) for |n j | > n(α), there exists l = rqs − 1 < qs+1 such that 9|n j | < l <
|n j+1|

9 ;
(ii) for any m ∈ Z satisfying |m| > m(λ, α), there is some l = rqs − 1 < qs+1 such that

l ∈ (9|n j |, |n j+1|
9 ) and

ln |m|
h

≤ l ≤ 1700
ln |m|
h

. (4.5)

Remark 4.7 Recalling (3.4), then 9|n j | <
|n j+1|

9 makes sense.

Proof See the “Appendix A” for a detailed proof. ��
In the following, we assume the conditions in Theorem 4.5 are satisfied.
Due to Lemma 4.6, we define I1 = [−� l

2�, l − � l
2�
]
with l = rqs − 1 < qs+1 and

l ∈ (9|n j |, |n j+1|
9 ). In addition, we let

U I1(x) =
⎛

⎜
⎝

e2π iθ
∑

k∈I1
uke2πki x

∑

k∈I1
uke2πki(x−α)

⎞

⎟
⎠ (4.6)

and U I1
� (x) = Qλ(x) ·U I1(x). Then one has for A(x) = Aλ,E (x)

A(x)U I1(x) = e2π iθU I1(x + α) + G(x),

and for A(x) = Qλ(x + α)A(x)Q−1
λ (x)

A(x)U I1
� (x) = e2π iθU I1

� (x + α) + G�(x). (4.7)

Since (4.2), ||Qλ||h, ||Q−1
λ ||h ≤ C� and by the direct computations, we have

||G�|| h
3

≤ C�e
−3hl . (4.8)

Lemma 4.8 (Lemma A.3 and Lemma 2.1 of [13]) For any δ > 0, there is some C�(δ) > 0
(depending only on λ, α, δ) such that for k ∈ Z

||Ak || 1
2π Lλ

≤ C�(δ)e
δ|k|. (4.9)

123



J Dyn Diff Equat (2019) 31:1921–1953 1935

Lemma 4.9 We have for l > l(λ, α)

inf
x∈� h

3

||U I1
� (x)|| ≥ e−2C1β(α)l . (4.10)

Proof Suppose there is some x0 ∈ � h
3
with x0 = t such that ||U I1

� (x0)|| < e−2C1β(α)l .

Then by iterating (4.7), one has for k ∈ N

e2π ikθU I1
� (x0 + kα) = −

k∑

j=1

e2π i( j−1)θ Ak− j (x0 + jα)G�(x0 + ( j − 1)α)

+ Ak(x0)U
I1
� (x0).

Thus from (4.8) and (4.9), we get sup
0≤ j≤l

||U I1
� (x0 + jα)|| ≤ C�e− 3

2C1β(α)l . Consequently,

sup
0≤ j≤l

||U I1(x0 + jα)|| ≤ C�e− 3
2C1β(α)l . By (4.1) of Lemma 4.4, we have for l > l(λ, α)

sup
x∈R/Z

||U I1(x + i t)|| ≤ e− 1
3C1β(α)l ,

which is contradicted to || ∫
R/Z

U I1(x + i t)dx || ≥ 1 (for u0 = 1). ��
Lemma 4.10 For any m ∈ Z satisfying m > m(λ, α), we have

||Am ||β(α) ≤ m5100. (4.11)

Proof Let us recall a useful lemma first. ��
Lemma 4.11 ([1,28,29]) Given η > 0, let U : R/Z → C

2 be analytic on �η and satisfy
δ1 ≤ ||U (x)|| ≤ δ−1

2 for ∀x ∈ �η. Then there exists some B(x) : C/Z → SL(2, C) which
is analytic on �η and has first column U (x) such that ||B||η ≤ C2δ

−2
1 δ−1

2 (1 − ln(δ1δ2)),
where C2 > 0 is some absolute constant.

Since |uk | ≤ 1 and (4.10), we have e−2C1β(α)l ≤ ||U I1
� ||β(α) ≤ e3πβ(α)l for l > l(λ, α).

Supposing now B(x) is as in Lemma 4.11 with U (x) = U I1
� (x) and η = β(α), then

||B||β(α), ||B−1||β(α) ≤ e5C1β(α)l . From (4.7), we have

B−1(x + α)A(x)B(x) =
[
e2π iθ 0
0 e−2π iθ

]

+
[

β1(x) b(x)
β2(x) β3(x)

]

. (4.12)

From (4.8) and (4.12), we have ||β1||β(α), ||β2||β(α) ≤ e−2hl and ||b||β(α) ≤ e11C1β(α)l . Thus
by taking determinant in (4.12) and noting A, B ∈ SL(2, C), one has ||β3||β(α) ≤ e−hl . Let

B1(x) =
[
e− hl

4 0

0 e
hl
4

]

B−1(x). Then by (4.12), we have

B1(x + α)A(x)B−1
1 (x) =

[
e2π iθ 0
0 e−2π iθ

]

+ H(x), (4.13)

where ||H ||β(α) ≤ e− hl
4 , ||B1||β(α), ||B−1

1 ||β(α) ≤ ehl . Thus by iterating (4.13) at most e
hl
4

steps, one has for l > l(λ, α)
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sup

0≤s≤e
hl
4

||As ||β(α)
≤ e3hl .

Recalling (4.5), we have ||Am ||β(α) ≤ m5100. ��
In the following, we fix n = |n j |, N = |n j+1|. We let I2 = [−� N

9 �, � N
9 �] and define

U I2 ,U I2
� with I1 being replaced by I2 as previous.

Lemma 4.12 We have for n > n(λ, α)

inf
x∈� h

3

||U I2
� (x)|| ≥ e−63C1β(α)n . (4.14)

Proof We select qs < 22n ≤ qs+1. Following the proof of Lemma 4.6, we can find l =
rqs − 1 < qs+1 such that 9n < l < 31n. Define J = [−� l

2�, l − � l
2�
]
and U J ,U J

� with I1
being replaced by J as previous. From almost localization result and ||Qλ||h ≤ C�, we have
||U I2

� −U J
� || h

3
≤ e−hl for n > n(λ, α). Then by (4.10), one has

inf
x∈� h

3

||U I2
� (x)|| ≥ e−2C1β(α)l − e−hl ≥ e−63C1β(α)n .

��
Let

U†(x) = eπn j i xU I2
� (x)

and B(x) =
(
U†(x),U†(x)

)
, where U† denotes the complex conjugate of U†. Similarly to

(4.7), we have for n > n(λ, α)

A(x)U†(x) = e2π i θ̃U†(x + α) + G†(x), ||G†|| h
3

≤ e− hN
10 . (4.15)

Define Z−1 = ||2θ − n jα||R/Z. Then by (3.3), we have

eε0n ≤ Z ≤ e3β(α)N . (4.16)

Lemma 4.13 We have for n > n(λ, α)

inf
x∈R/Z

| det(B(x))| ≥ Z−5110. (4.17)

Proof Note first that | det(B(x))| = ||U†(x)||minμ∈C ||U†(x) − μU†(x)||, where the min-
imizing μ satisfies ||μU†(x)|| ≤ ||U†(x)|| (i.e. |μ| ≤ 1). Assume (4.17) is not true and
n > n(λ, α). Then by (4.14) and (4.16), there are some μ0 ∈ C with |μ0| ≤ 1 and some
x0 ∈ R/Z such that

||U†(x0) − μ0U†(x0)|| ≤ Z−5109. (4.18)

By (4.15), we have for m ∈ N

||e2π imθ̃U†(x0 + mα) − μ0e
−2π imθ̃U†(x0 + mα)||

≤
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m−1∑

j=0

Am− j (x0 + jα)G†(x0 + jα) − μ0

m−1∑

j=0

Am− j (x0 + jα)G†(x0 + jα)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

+||Am(x0)(U†(x0) − μ0U†(x0))||.
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Then from (4.11) and (4.18), we have

sup
0≤ j≤Z

||e2π i j θ̃U†(x0 + jα) − μ0e
−2π i j θ̃U†(x0 + jα)|| ≤ Z−8. (4.19)

Recalling the definition of θ̃ , we get for 0 ≤ j ≤ Z
1
6

||e4π i j θ̃ − 1||R/Z ≤ 10 j ||2θ̃ ||R/Z ≤ 10Z− 5
6 .

Then from (4.19), one has ||U†||0 ≤ C�n. By using the trigonometrical inequality, we obtain
for n > n(λ, α)

sup

0≤ j≤Z
1
6

||U†(x0 + jα) − μ0U†(x0 + jα)|| ≤ Z−0.83. (4.20)

Let j = � Z
4 � and note || x−�x�

�x� ||R/Z < ||x−1||R/Z (x � 1). Then from (4.19) and the
trigonometrical inequality, we have for n > n(λ, α)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
U†

(

x0 +
⌊
Z

4

⌋

α

)

+ μ0U†

(

x0 +
⌊
Z

4

⌋

α

)∣∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ Z− 11

12 . (4.21)

For any large K > 0 and any analytic function f (x) = ∑
k∈Z fke2πki x , we define

(�K f )(x) = ∑

|k|≤K
fke2πki x . In addition, if U (x) =

(
f1(x)
f2(x)

)

, we let

(�KU )(x) =
(

(�K f1)(x)
(�K f2)(x)

)

.

In the following, we take

K ∼ ln Z

24C1β(α)
− n

4
(4.22)

and write � = �2K

(
e−πn j i x ·UK

†

)
, where UK

† (x) = Qλ(x)eπn j i x (�KU I2)(x). From

(4.16) and (4.22), we have K ∈ (3n, 1
3N ) and for n > n(λ, α)

||U† −UK
† ||0 ≤ e−3hK � Z−1. (4.23)

Since Qλ(x) is analytic on � 1
4π Lλ

, we get for n > n(λ, α)

||� − e−πn j i xU K
† ||0 ≤

∑

|k|>2K ,| j |≤K

||Q̂(k − j)Û I2( j)||

≤ C�

∑

|k|>2K ,| j |≤K

e−Lλ(|k|−| j |)

≤ e−3hK � Z−1. (4.24)

Thus combining (4.23) with (4.24), one has

||eπn j i x� −U†||0 ≤ 2e−3hK � Z−1. (4.25)

Recalling (4.20), we have for n > n(λ, α)

sup

0≤ j≤Z
1
6

||e2π in j (x0+ jα)�(x0 + jα) − μ0�(x0 + jα)|| ≤ Z−0.82. (4.26)
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Note that each coordinate of the left hand side of (4.26) is some polynomial having essential
degree at most 4K + n. Then by Lemma 4.4, we obatin

sup
x∈R/Z

||e2π in j x�(x) − μ0�(x)|| ≤ C�e
C1(4K+n)β(α)Z−0.82. (4.27)

Recalling (4.22) and (4.25), one has for n > n(λ, α)

sup
x∈R/Z

||U†(x) − μ0U†(x)|| ≤ 2Z−1 + Z−0.65.

Hence from (4.21), we have for n > n(λ, α)
∣
∣
∣
∣

∣
∣
∣
∣U

I2
�

(

x0 +
⌊
Z

4

⌋

α

)∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣U†

(

x0 +
⌊
Z

4

⌋

α

)∣
∣
∣
∣

∣
∣
∣
∣

≤ Z−0.64 ≤ e−64C1β(α)n,

which is contradicted to (4.14). ��
We can prove our main theorem of this section.

Proof of Theorem 4.5

Proof By taking S = �U†, T = U† on R/Z, then B = [S,±T ]
[

1 1
±i ∓i

]

. We let W1 be

the matrix with columns S,±T such that det(W1) > 0. Then by (4.15), we have

AW1(x) = W1(x + α) · R±θ̃ + O
(
e− h

10 N
)

. (4.28)

Noting det(W1) > 0, we let W = W1√
det(W1)

= W1√
| det(B)|

2

. Then W ∈ Cω(R/Z,PSL(2, R)).

We first show that (4.3) and (4.4) are true. Actually, from (4.15), one has

B(x + α) =
[
e−2π i θ̃ 0

0 e2π i θ̃

]

A(x)B(x) + O
(
e− h

10 N
)

.

Then by taking determinant, we get

det(B(x + α)) = det(B(x)) + O
(
e− h

10 N
)

. (4.29)

Recalling (4.17), C1 � 1 and (4.29), we have for n > n(λ, α)

∣
∣
∣
∣1 −

√| det(B(x + α))|√| det(B(x))|
∣
∣
∣
∣ ≤

√

e− h
10 N · Z5110 ≤ e− h

25 N . (4.30)

It is easy to see ||W ||0, ||W−1||0 ≤ Z3000 for n > n(λ, α). Then from (4.28) and (4.30), one
has

sup
x∈R/Z

||W−1(x + α)A(x)W (x) − R±θ̃ ||

≤
∣
∣
∣
∣1 −

√| det(B(x + α))|√| det(B(x))|
∣
∣
∣
∣+ e− h

20 N

≤ e− h
29 N . (4.31)

Let m j = deg(W ). Then by (2.2) and (4.31), we prove (4.3) and (4.4).
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In the following, we will prove |m j | ≤ 9|n j |. Note that the degree of W is equal to that
of its every column.2 Then we only consider one of its columns. From u0 = 1, one has

∣
∣
∣
∣

∣
∣
∣
∣

∫

R/Z

e−n jπ i x Q−1
λ (x)S(x) + ie−n jπ i x Q−1

λ (x)T (x)dx

∣
∣
∣
∣

∣
∣
∣
∣ = √

2.

Without loss of generality, we assume
∣
∣
∣
∣

∣
∣
∣
∣

∫

R/Z

e−n jπ i x Q−1
λ (x)S(x)dx

∣
∣
∣
∣

∣
∣
∣
∣ ≥

√
2

2
. (4.32)

Recalling (4.15), we have

A(x)S(x) = S(x + α) cos 2πθ̃ ± T (x + α) sin 2πθ̃ + O
(
e− hN

10

)
.

Thus from ||2θ̃ ||R/Z = Z−1, we have for x ∈ R/Z

A(x)S(x) = S(x + α) + O
(
Z− 9

10

)
. (4.33)

We claim that for n > n(λ, α)

inf
x∈R/Z

||S(x)|| ≥ e−4hn . (4.34)

Assuming (4.34) is not true, then there is some x0 ∈ R/Z such that ||S(x0)|| < e−4hn . Thus

by iterating (4.33) and using (4.11), we have sup

0≤ j≤e
ε0n
11000

||S(x0 + jα)|| ≤ e− 2ε0n
5 . Recalling

(4.25) and by taking K = 4n, one has for �n = �8n

(
e−πn j i x ·U 4n

†

)

||en jπ i x�n −U†||0 ≤ e−10hn .

Then
sup

0≤ j≤e
ε0n
11000

||��n(x0 + jα)||0 ≤ e− ε0n
10 .

Note that each coordinate of ��n is a polynomial having essential degree at most 16n.

Similarly to the proof of (4.27), we have ||S||0 ≤ e− ε0n
100 , which is contradicted to (4.32).

Moreover, we have

sup
x∈R/Z

||S(x) − �(en jπ i x�n(x))|| ≤ e−10hn .

Combining

det(W1(x)) = det(W1(0)) +
∑

0<|k|≤N

̂det(W1)ke
2kπ i x +

∑

|k|>N

̂det(W1)ke
2kπ i x

with (4.29) and noting det(W1(x)) ∈ Cω(�h, R), we have

det(W1(x)) = det(W1(0)) + O
(
e− hN

20

)
.

2 We say V : R/2Z → R
2 has degree k and denote by deg(V ) = k if V is homotopic to

(
cos kπx
sin kπx

)

.
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Thus by the trigonometrical inequality, we obtain

sup
x∈R/Z

∣
∣
∣
∣

∣
∣
∣
∣

S(x)√
det(W1(x))

− �(en jπ i x�n(x))√
det(W1(0))

∣
∣
∣
∣

∣
∣
∣
∣ ≤ e−5hn ≤ inf

x∈R/Z

∣
∣
∣
∣

∣
∣
∣
∣

S(x)√
det(W1(x))

∣
∣
∣
∣

∣
∣
∣
∣ .

Noting deg(W ) = deg
(

S√
det(W1)

)
, we have |m j | ≤ 9|n j | by using Rouché’s theorem. ��

5 Reducibility for Non-resonant Phases

In this section, we will prove that the cocycle (α, Aλ,E ) is reducible for non-resonant phases.
Our main result of this section is:

Theorem 5.1 Let 0 < β(α) < ∞, λ ∈ II and E ∈ �λ,α . Suppose there exists non-zero

solution u of Hλ,α,θu = E
λ2
u with |uk | ≤ C�e−2πη|k| and 0 < η ≤ Lλ

2π . Then we have

(i) if 2θ /∈ αZ+Z, then there is some B : R/Z → SL(2, R) being analytic on �η such that

B−1(x + α)Aλ,E (x)B(x) = R±θ (5.1)

and
ρλ,α(E) = ±θ + m

2
α mod Z; (5.2)

(ii) if 2θ ∈ αZ + Z and η > 8β(α), then there is some B : R/Z → PSL(2, R) being
analytic on �η

4
such that

B−1(x + α)Aλ,E (x)B(x) =
[±1 a

0 ±1

]

(5.3)

and
2ρλ,α(E) = mα mod Z, (5.4)

where m = deg(B).

Proof Define u(x) = ∑

k∈Z
uke2πki x , U (x) =

(
e2π iθu(x)
u(x − α)

)

and U�(x) = Qλ(x)U (x). Then

we have

Aλ,E (x)U�(x) = e2π iθU�(x + α). (5.5)

Obviously, U� is analytic on �η, and we denote by U�(x) the complex conjugate of U�(x)
for x ∈ R/Z. We also let U�(x) be the analytic extension of U�(x) to x ∈ �η. Let B1(x) =(
U�(x),U�(x)

)
. Then det(B1(x)) must be constant because of (5.5) and the minimality of

x �→ x + α. Thus we have the following two cases.

Case 1 det(B1(x)) �= 0. In this case, we have det(B1(x)) = ±i t for some t > 0. We define

B(x) = 1√
2t
B1(x) ·

[
1 ±i
1 ∓i

]

. Then by (5.5), one has

B−1(x + α)Aλ,E (x)B(x) = R±θ (5.6)

and
ρλ,α(E) = ±θ + m

2
α mod Z, (5.7)

where m = deg(B).
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Lemma 5.2 (Lemma 5.4 of [23]) If det(B1(x)) ≡ 0, then U�(x) = ψ(x)V (x), where ψ(x)
is real analytic on �η with |ψ(x)| = 1 for all x ∈ R and V (x) is analytic on �η with
V (x + 1) = ±V (x).

Lemma 5.3 (Lemma 5.1 of [23]) If 0 < η′ ≤ η and inf
|x |<η′ ||Y (x)|| ≥ δ > 0, then there is

T (x) : R/2Z → SL(2, R) being analytic on �η′ such that it has the first column Y (x).

Lemma 5.4 (Theorem 5.1 of [23]) Let 0 < η′ ≤ η. If T (x) : R/2Z → SL(2, R) is analytic
on�η′ and T−1(x+α)Aλ,E (x)T (x) is a constant matrix, then there is some T1(x) : R/Z →
PSL(2, R) being analytic on �η′ such that T−1

1 (x + α)Aλ,E (x)T1(x) is a constant matrix.

Case 2 det(B1(x)) ≡ 0. Since (5.5) and the minimality of x �→ x + α, we have U�(x) �= 0
for all x ∈ �η. Then by applying Lemma 5.2, we haveU�(x) = ψ(x)V (x) with ψ(x), V (x)
being as in Lemma 5.2. Obviously, V (x) �= 0 for all x ∈ �η. Then there is some δ > 0
such that inf

|x |< η
2

||V (x)|| ≥ δ. Let B2(x) be given by Lemma 5.3 with η′ = η
2 , Y (x) = V (x).

Then by (5.5), we have

B−1
2 (x + α)Aλ,E (x)B2(x) =

[
d(x) a(x)
0 d−1(x)

]

,

where

d(x) = ψ(x + α)

ψ(x)
e2π iθ . (5.8)

Note that |d(x)| = 1 and d(x) is real for x ∈ R. Then d(x) = ±1 and

B−1
2 (x + α)Aλ,E (x)B2(x) =

[±1 a(x)
0 ±1

]

. (5.9)

Then we will reduce the right hand side of (5.9) to a constant matrix by solving some
homological equation. This needs to overcome the difficulty of the small divisors. Let η >

8β(α) and φ̂k = ∓ âk
1−eπ ikα (k �= 0), where a(x) = ∑

k∈Z
âkeπki x . Then on �η

4
, one has

± φ(x + α) ∓ φ(x) = a(x) −
∫

R/2Z
a(x)dx, (5.10)

where φ(x) = ∑

k∈Z
φ̂keπki x . By defining B3(x) = B2(x)

[
1 φ(x)
0 1

]

, it follows from (5.9) and

(5.10) that

B−1
3 (x + α)Aλ,E (x)B3(x) =

[±1 a1
0 ±1

]

,

where a1 = ∫
R/2Z a(x)dx . Then by using Lemma 5.4, there is some B4(x) : R/Z →

PSL(2, R) being analytic on �η
4
such that B−1

4 (x + α)A(x)B4(x) = D, where D is a

constant matrix. We can reduce D to

[±1 a2
0 ±1

]

, or to

[
v 0
0 v−1

]

with v �= ±1 (v ∈ R), or

to R±θ ′ with θ ′ ∈ R, by some invertible matrix J . From E ∈ �λ,α , then Aλ,E (x) can not

be uniformly hyperbolic. Thus J−1DJ �=
[

v 0
0 v−1

]

. If J−1DJ = R±θ ′ , then 2θ ′ = m′α

mod Z. Thus by defining J (x) = J R±m′x
2
, we have

J−1(x + α)DJ (x) =
[±1 0

0 ±1

]

.
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We have proved that there is some B(x) : R/Z → PSL(2, R) being analytic on �η
4
such

that B−1(x + α)Aλ,E (x)B(x) =
[±1 a

0 ±1

]

, where a ∈ R is a constant.

If 2θ /∈ αZ + Z, then we can not be in Case 2. In fact, from (5.8) and using the Fourier
series, we have ψ(x) = e−π ikx for some k ∈ Z and e2π iθ = ±e−π ikα , which is impossible
since 2θ /∈ αZ + Z. Thus we must be in Case 1. Then (5.1) and (5.2) follow.

Suppose 2θ = kα mod Z. If we are in Case 1, we take B�(x) = B(x)R± kx
2
with B(x)

being given by Case 1. Then from (5.6), we have B−1
� (x + α)Aλ,E (x)B�(x) =

[±1 0
0 ±1

]

.

Thus (5.4) follows. If we are in Case 2, the result follows immediately. ��

6 Proof of the Main Theorem

In this section, we will prove that the lengths of the spectral gaps decay exponentially. The
proofs are similar to that of [22]. For reader’s convenience, we include the details below.
From now on, we focus on a specific gap Gm = (E−

m , E+
m ) or Gm = {E−

m } with m ∈ Z\{0}.
6.1 Quantitative Reducibility at the Boundary of a Spectral Gap

We let

η = Lλ

4000π
= h

20

and assume C ′ > 0 is a large absolute constant which is larger than any absolute constant
C > 0 appearing in the following.

Lemma 6.1 Suppose 0 < β(α) < ∞, λ ∈ II wi th Lλ > 4000πC ′β(α) and E ∈ �λ,α . If
2ρλ,α(E) ∈ αZ + Z and θ = θ(E) is given by Lemma 4.1, then 2θ ∈ αZ + Z. Moreover,

|uk | ≤ e−2πη|k|, f or |k| ≥ 3|̃n|, (6.1)

where u = {uk} is given by Lemma 4.1 and 2θ = ñα mod Z.

Proof We first claim that θ is ε0-non-resonant with ε0 = 100C1β(α). Denote by {n j } the set
of all ε0-resonances of θ . In fact, if θ is ε0-resonant, then the set {n j } is infinite. Recalling
Theorem 4.5, there exists some m j ∈ Z such that |m j | ≤ 9|n j | and ||2ρλ,α(E) − m jα ±
(2θ − n jα)||R/Z < e− h

30 |n j+1|. Thus from (3.4), one has

||2ρλ,α(E) − m jα||R/Z ≥ ||2θ − n jα||R/Z − e− h
30 |n j+1| > 0 (6.2)

and

||2ρλ,α(E) − m jα||R/Z ≤ ||2θ − n jα||R/Z + e− h
30 |n j+1| (6.3)

≤ e− 1
10 ε0|m j |. (6.4)

Combining (ii) of Lemma 3.5 with (6.4), we know m j is an
ε0
10 -resonance of ρλ,α(E). If

the set of all ε0
10 -resonances of ρλ,α(E) is finite, then inf

j∈N ||2ρλ,α(E) − m jα||R/Z > 0 by

(6.2). This is contradicted to (6.3). Hence ρλ,α(E) is ε0
10 -resonant, which is impossible for

2ρλ,α(E) ∈ αZ + Z. We finish the proof of the claim.
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From the claim above, the equation Hλ,α,θu = E
λ2
u admits a non-zero solution u with

|uk | ≤ C�e−2πη|k|. From Theorem 5.1, we have 2θ ∈ αZ + Z. In addition, (6.1) follows
from Theorem 3.3 (since for some j > 0, |n j | = |̃n| and |n j+1| = ∞ ). ��

In the following, we always assume the conditions in Lemma 6.1 are satisfied so that

n = |̃n| < ∞.

Our main theorem in this subsection is:

Theorem 6.2 Suppose 0 < β(α) < ∞, λ ∈ II wi th Lλ > 4000πC ′β(α). Let E ∈ �λ,α

be a boundary of the spectral gap Gm with m ∈ Z\{0}. Then there exists some B(x) ∈
Cω(R/Z,PSL(2, R)) being analytic on �20β(α) such that

B−1(x + α)Aλ,E (x)B(x) =
[±1 am

0 ±1

]

, (6.5)

where
|am | ≤ C�e

− η
2 n (6.6)

and
||B||20β(α) ≤ C�e

Cβ(α)n . (6.7)

Moreover,
|m| ≤ Cn, (6.8)

where C > 0 is some absolute constant.

We define U�(x) = Qλ(x)U (x) with U (x) =
⎛

⎝
e2π iθ

∑

k∈Z
uke2πki x

∑

k∈Z
uke2πki(x−α)

⎞

⎠, where θ = θ(E)

and {uk} are given by Lemma 6.1. Let

U†(x) = eiπ ñxU�(x). (6.9)

Lemma 6.3 Let U†(x) be given by (6.9). Then U†(x) is well defined on R/2Z and is ana-
lytical on �40β(α). Moreover,

||U†||40β(α) ≤ C�e
Cβ(α)n . (6.10)

Proof This follows from (6.1) and the fact that |uk | ≤ 1. ��
Remark 6.4 Actually, U†(x) is analytic on �η. However, 40β(α) is enough for our goal.

For simplicity, we write A(x) = Aλ,E (x) in the following.
By the Aubry duality and (6.9), we have

A(x)U†(x) = ±U†(x + α). (6.11)

For x ∈ R/Z, we split U†(x) into

U†(x) = �U†(x) + iU†(x) ∈ R
2 + iR2.

It follows from (6.11) that for x ∈ R/Z

A(x)�U†(x) = ±�U†(x + α); (6.12)

A(x)U†(x) = ±U†(x + α). (6.13)

123



1944 J Dyn Diff Equat (2019) 31:1921–1953

Note that �U†(x), U†(x) are well defined on R/2Z and can be analytically extended to
�40β(α).

Lemma 6.5 We can choose V† = �U† or V† = U† such that V† is real analytic on�40β(α)

and
inf|x |≤40β(α)

||V†(x)|| ≥ c�e
−Cβ(α)n . (6.14)

Proof Since u0 = 1, we have
∣
∣
∣
∣

∣
∣
∣
∣

∫

R/2Z

(
e−ñπ i x Q−1

λ �U†(x) + ie−ñπ i x Q−1
λ (x)U†(x)

)
dx

∣
∣
∣
∣

∣
∣
∣
∣ = 2

√
2.

Thus we can choose V† = �U† or V† = U† such that
∣
∣
∣
∣

∣
∣
∣
∣

∫

R/2Z
e−ñπ i x Q−1

λ (x)V†(x)dx

∣
∣
∣
∣

∣
∣
∣
∣ ≥ √

2. (6.15)

Suppose (6.14) is not true. Then there must be some x0 ∈ �40β(α) with x0 = t such that

||V†(x0)|| ≤ c�e
−Cβ(α)n . (6.16)

Following the arguments used in the proof of Lemma 4.13, one has

sup
x∈R

||V†(x + i t)|| ≤ C�e
−Cβ(α)n .

Thus we obtain
∣
∣
∣
∣

∣
∣
∣
∣

∫

R/2Z
e−ñπ i(x+i t)Q−1

λ (x + i t)V†(x + i t)dx

∣
∣
∣
∣

∣
∣
∣
∣ ≤ C�e

−Cβ(α)n,

which is contradicted to (6.15). ��
One more lemma is necessary before the proof of Theorem 6.2.

Lemma 6.6 Suppose Lλ > 4000πC ′β(α). Then we have

sup
0≤k≤eηn

||Ak ||η ≤ C�e
Cβ(α)n . (6.17)

Proof Recalling Lemma 4.12 (with N being replaced by n), we have c�e−Cβ(α)n ≤
||U I2

� (x)|| ≤ C�eCβ(α)n for all x ∈ � h
3
. Then by Lemma 4.11, there is some T (x) : R/Z →

SL(2, R) being analytic on � h
3
with ||T || h

3
, ||T−1|| h

3
≤ C�eCβ(α)n such that

T−1(x + α)A(x)T (x) =
[
e2π iθ 0
0 e−2π iθ

]

+
[

β1(x) b(x)
β2(x) β3(x)

]

,

where ||β1|| h
3
, ||β2|| h

3
, ||β3|| h

3
≤ C�e− h

10 n and ||b|| h
3

≤ C�eCβ(α)n .

Consider now W (x) =
[
1 φ(x)
0 1

]

with φ(x) = ∑

|k|<n
φ̂ke2πki x , where

φ̂k = −b̂k
e−2π iθ

1 − e−2π i(2θ−kα)
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and b̂k is the Fourier coefficient of b(x). Since ||2θ − kα|| ≥ c(α)e−Cβ(α)n when |k| < n,
one has ||W || h

3
, ||W−1|| h

3
≤ C�eCβ(α)n . By taking T1(x) = T (x)W (x), we have

T−1
1 (x + α)A(x)T1(x) =

[
e2π iθ 0
0 e−2π iθ

]

+ H(x), (6.18)

where ||H(x)|| h
3

≤ e− h
20 for n > n(λ, α) (since ||b′|| h

3
≤ C�e− h

5 n for b′(x) =
∑

|k|≥n
b̂ke2πki x ). Thus by iterating (6.18) at most e

h
20 n steps, we have

sup

0≤k≤e
h
20 n

||Ak || h
3

≤ C�e
Cβ(α)n .

Then (6.17) follows. ��
Proof of Theorem 6.2

Proof Let

B1(x) =
[
V†(x) T V†(x)

||V†(x)||2
]
, (6.19)

where T

(
x
y

)

=
(−y

x

)

and V† is given by Lemma 6.5. It is easy to check that B1 ∈
Cω(R/Z,PSL(2, R)). From (6.10), (6.14) and (6.19), we have

||B−1
1 ||40β(α), ||B1||40β(α) ≤ C�e

Cβ(α)n . (6.20)

By (6.12), (6.13), (6.19) and (6.20), one has

B−1
1 (x + α)A(x)B1(x) =

[±1 ν(x)
0 ±1

]

, (6.21)

where
||ν||40β(α) ≤ C�e

Cβ(α)n . (6.22)

Now we will reduce the right hand side of (6.21) to a constant cocycle by solving a
homological equation. More concretely, let φ(x) be a function defined on R/Z such that
[φ] = 0 and

[
1 φ(x + α)

0 1

]−1 [±1 ν(x)
0 ±1

] [
1 φ(x)
0 1

]

=
[±1 [ν]

0 ±1

]

.

This can be done if we let

± φ(x + α) ∓ φ(x) = ν(x) − [ν]. (6.23)

By comparing the Fourier series of (6.23), one has

φ̂k = ± ν̂k

e2π ikα − 1
(k �= 0), (6.24)

where φ̂k and ν̂k are the Fourier coefficients of φ(x) and ν(x) respectively.
By the definition of β(α), we have the following

||kα||R/Z ≥ C(α)e−2β(α)|k|, k �= 0. (6.25)
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Combining (6.24) with (6.22), one has

||φ||20β(α) ≤ C�e
Cβ(α)n . (6.26)

Let

B(x) = B1(x)

[
1 φ(x)
0 1

]

. (6.27)

By (6.20) and (6.26), one has

||B||20β(α), ||B−1||20β(α) ≤ C�e
Cβ(α)n . (6.28)

This implies (6.7). Now we are in the position to give an estimate on am . From (6.21) and
(6.27), we obtain

B−1(x + α)A(x)B(x) =
[±1 am

0 ±1

]

.

Thus for any l ∈ N, one gets

B−1(x + lα)Al(x)B(x) =
[±1 lam

0 ±1

]

. (6.29)

Letting l = l0 = �e 3
4 ηn� in (6.29), one has

l0|am | ≤ ||B−1||20β(α)||Al0 ||20β(α)||B||20β(α)

≤ C�e
Cβ(α)n, (6.30)

where the second inequality follows from (6.17) and (6.28).
It is easy to see (6.6) follows from (6.30) directly.
Obviously, (6.8) follows from the similar arguments used in the proof of Theorem 4.5. ��
Without loss of generality, we assume the reduced cocycle given by Theorem 6.2 is

P =
[
1 am
0 1

]

. (6.31)

We will give a detailed description of

R(x) =
[
R11(x) R12(x)
R21(x) R22(x)

]

, (6.32)

where R(x) = B(x)√|c|(x−α)
and B(x) is given by Theorem 6.2. Since λ ∈ II, we have

inf
x∈R/Z

|cλ|(x) > 0.

Lemma 6.7 Let [Ri j (x)]i, j∈{1,2} be given by (6.32). Then we have

(i)

R21(x + α) = R11(x),

R22(x + α) = R12(x) − am R11(x),

R11(x + α)R12(x) − R12(x + α)R11(x) = 1

|c|(x) + am R11(x + α)R11(x);
(6.33)

(ii)
[R2

11] = [R2
21] ≥ c�||R||−2

0 > 0; (6.34)
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(iii) For |m| ≥ m(λ, α) � 1

[R2
11][R2

12] − [R11R12]2 > 0; (6.35)

(iv) For |m| ≥ m(λ, α) � 1

[R2
11]

[R2
11][R2

12] − [R11R12]2
≤ C�||R||20, (6.36)

[R2
11][R2

12] − [R11R12]2 ≥ c�||R||−4
0 . (6.37)

Proof (i). Recall (6.31) and
[

E−2 cos 2πx
|c|(x)

−|c|(x−α)
|c|(x)

1 0

]

R(x) = R(x + α)

[
1 am
0 1

]

. (6.38)

Then this is done by the direct computations.
(ii). Noting det(R(x)) = 1

|c|(x−α)
≥ c� > 0 and using the Cauchy–Schwartz inequality, we

obtain

c� ≤
[

1

|c|2(x − α)

]

≤ [
(R2

11 + R2
21)(R

2
22 + R2

12)
]

≤ 2||R||20[R2
11 + R2

21]
= 4||R||20[R2

11] (from (i)).

Then (6.34) follows.
(iii). By using the Cauchy–Schwartz inequality, one has [R2

11][R2
12] − [R11R12]2 ≥ 0. If the

equality holds, then there exists some μ ∈ R such that R12(x) = μR11(x). Thus by
det(R(x)) = 1

|c|(x−α)
, one has

−am R11(x − α)R11(x) = 1

|c|(x − α)
.

Recalling (6.6) and (6.7) in Theorem 6.2, we have for |m| ≥ m(λ, α) � 1

0 < c� ≤ 1

|c|(x − α)
≤ e− η

3 n .

This is a contradiction.
(iv). The proof is similar to that in [21]. Note

[R2
11][R2

12] − [R11R12]2
[R2

11]
=
⎡

⎣

(

R12 − [R11R12]
[R2

11]
R11

)2
⎤

⎦

and define

R̂(x) = R12(x) − [R11R12]
[R2

11]
R11(x). (6.39)

By (6.33) and (6.39), we have

R11(x + α)R̂(x) − R11(x)R̂(x + α) = 1

|c|(x) + am R11(x + α)R11(x). (6.40)

By the Cauchy–Schwartz inequality, we have
[∣
∣R11(· + α)R̂(·) − R11(·)R̂(· + α)

∣
∣2
]

≤ 4||R||20[R̂2]. (6.41)
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Recalling (6.6) and (6.7) in Theorem 6.2, we get for n ≥ n(λ, α)
[∣
∣
∣
∣

1

|c|(x) + am R11(x + α)R11(x)

∣
∣
∣
∣

]

≥ c�. (6.42)

By (6.40), (6.41), (6.42) and (iii) , one has

[R̂2] ≥ c�||R||−2
0 .

Then (6.36) is true. Finally, (6.37) follows from (6.34), (6.36) and (iii).
��

6.2 Perturbation at Boundary of a Spectral Gap

In this subsection, we will perturb the cocycle (α, AE ) (the dependence on λ is left implicit)
at the boundary of a spectral gap Gm with m ∈ Z\{0}.
Lemma 6.8 Let R(x) be as in Lemma 6.7 and P be as in (6.31). Then for any ε ∈ R, x ∈
R/Z, we have

B−1(x + α)AE+ε(x)B(x) = P + ε P̃(x), (6.43)

where

P̃(x) =
[
R11(x)R12(x) − am R2

11(x) R2
12(x) − am R11(x)R12(x)

−R2
11(x) −R11(x)R12(x)

]

. (6.44)

Proof This follows from (i) of Theorem 6.7. ��
Next, we will tackle the perturbed cocycle (α, P + ε P̃) given by (6.43). We use the

averaging method here. We want to reduce (α, P + ε P̃) to a new constant cocycle plus a
more smaller perturbation. In the following, we assume |m| > m(λ, α).

Lemma 6.9 (Theorem 4.2 of [22]) Let δ = 5β(α). Then the following statements hold.

(i) For any |ε| ≤ 1
C(α)||R||22δ

, there exist some B1,ε , P̃1,ε ∈ Cω(R/Z,SL(2, R)) and P1,ε ∈
SL(2, R) such that

B−1
1,ε (x + α)(P + ε P̃(x))B1,ε(x) = P1,ε + ε2 P̃1,ε(x)

and

||B1,ε − I ||δ ≤ C�||R||22δ|ε|, (6.45)

||P1,ε − P|| ≤ C�||R||22δ|ε|, (6.46)

||P̃1,ε ||δ ≤ C�||R||42δ, (6.47)

P1,ε = P + ε[P̃]. (6.48)

(ii) For any |ε| ≤ 1
C(α)||R||42δ

, there exist some B2,ε , P̃2,ε ∈ Cω(R/Z,SL(2, R)) and P2,ε ∈
SL(2, R) such that

B−1
2,ε (x + α)(P1,ε + ε2 P̃1,ε(x))B2,ε(x) = P2,ε + ε3 P̃2,ε(x) (6.49)

and

||B2,ε − I ||0 ≤ C�||R||42δε2,
||P2,ε − P1,ε || ≤ C�||R||42δε2,
||P̃2,ε ||0 ≤ C�||R||82δ,
P2,ε = P1,ε + ε2[P̃1,ε]. (6.50)
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Proof The proof can be found in [22]. ��
Theorem 6.10 If am �= 0, then the gap Gm is open. Moreover, am ≥ 0 if E = E+

m .

Proof Let B�(x) = B(x)B1,ε(x) with B(x), B1,ε(x) being given by Theorem 6.2, Lemma
6.9 respectively. Then we have B−1

� (x + α)AE+ε(x)B�(x) = P1,ε + O(ε2) and

Trace(P1,ε) = 2 − εam
[
R2
11

]
.

Since am �= 0 and (6.34), one has either Trace(P1,ε) > 2 or Trace(P1,ε) < 2 for 0 < |ε| � 1.
This implies that the spectral gap must be open (see [25,26]).

Suppose now E = E+
m and am < 0. Then for ε < 0, |ε| � 1, we have Trace(P1,ε) < 2

and Trace(P1,−ε) > 2. This is contradicted to the fact that the gap Gm is open and E = E+
m .
��

Now we can state our main result of the perturbation at the boundary of a spectral gap.

Theorem 6.11 Suppose δ = 5β(α) and |ε| ≤ 1
C(α)||R||42δ

. Let Bε(x) = B(x)B1,ε(x)B2,ε(x)

∈ Cω(R/Z,PSL(2, R)), where B1,ε(x) and B2,ε(x) are given by Lemma 6.9. Then we have

B−1
ε (x + α)AE+ε(x)Bε(x) = e�+ε�1+ε2�2+ε3�(x), (6.51)

where

� =
[
0 am
0 0

]

,

�1 =
[

− am
2

[
R2
11

]+ [R11R12] −am [R11R12] + [
R2
12

]

− [
R2
11

] am
2

[
R2
11] − [R11R12

]

]

,

�2 ∈ sl(2, R),

||�2|| ≤ C�||R||42δ,
||�||0 ≤ C�||R||82δ.

Moreover,
deg (Bε) = deg (B). (6.52)

Proof Equation (6.51) follows from (6.49) and some simple computations.
It suffices to prove (6.52). From (6.45) and (6.50), we obtain for |ε| ≤ 1

C(α)||R||42δ

||B1,ε − I ||0 ≤ 1

4
, ||B2,ε − I ||0 ≤ 1

4
.

Then both B1,ε and B2,ε are homotopic to the identity. This implies (6.52). ��
6.3 Exponential Decay of the Lengths of the Spectral Gaps

We now prove our main theorem.

Proof of Theorem 1.1

Proof Let |m| ≥ m(λ, α) � 1 and E = E+
m . Then by Theorem 6.10, we have am ≥ 0.

We first assume am > 0. We let δ = 5β(α) > 0. From (6.7), one has

||R||2δ ≤ eCβ(α)n .
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Then
1

C(α)||R||42δ
≥ e−Cβ(α)n . (6.53)

We define

εm = −2am[R2
11]

[R2
11][R2

12] − [R11R12]2
< 0.

It follows from (6.6) and (6.36) that

|εm | ≤ C�e
− 1

2 ηn+Cβ(α)n

≤ 1

C(α)||R||42δ
(by (6.53)).

Thus we can apply Theorem 6.11 with ε = εm < 0. Let

� = � + εm�1 + ε2m�2

:=
[
d1 d2
d3 −d1

]

∈ sl(2, R),

where

d1 = εm

(
[R11R12] − am

2
[R2

11]
)

+ O(ε2m ||�2||),
d2 = am + εm

([R2
12] − am[R11R12]

)+ O(ε2m ||�2||),
d3 = −εm[R2

11] + O(ε2m ||�2||)
and

� = det (�) = εm
2

2
([R2

11][R2
12] − [R11R12]2)

+O(|εm |3||R||20||�2||2 + amε2m ||R||40||�2||).
Recalling (6.37) and by the direct computations, one has

|d1| ≤ eCβ(α)nam,

|d2| ≥ e−Cβ(α)nam, d2 < 0,

� ≥ e−Cβ(α)na2m > 0.

Thus we can reduce � to an elliptic matrix by

J =
⎡

⎢
⎣

0
√−d2

�
1
4

−�
1
4√−d2

d1

�
1
4
√−d2

⎤

⎥
⎦ , J−1 =

⎡

⎢
⎣

d1

�
1
4
√−d2

−
√−d2

�
1
4

�
1
4√−d2

0

⎤

⎥
⎦ ,

J−1� J =
[

0 −√
�√

� 0

]

.

Obviously, we have J ∈ SL(2, R) and for |m| � 1

||J ||, ||J−1|| ≤ 1

�
1
4
√−d2

.
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Consequently, we obtain

(Bεm (x + α)J )−1AE+
m+εm

(x)Bεm (x)J = e

√
�

([
0 −1
1 0

]

+ε3mS(x)

)

, (6.54)

where

S(x) = J−1(�(x))J√
�

and

||ε3mS||0 ≤ C�e
Cβ(α)n |εm |3||R||82δ

a2m

≤ e− 1
4 ηn � 1. (6.55)

Let ρ′ be the fibered rotation number of the right hand side of (6.54). Then |ρ′| ∼ √
� by

(2.2) and (6.55). We note that 2ρλ,α(E+
m ) = mα mod Z. Then recalling (2.1), (6.52) and

(6.54), we obtain

2ρλ,α(E+
m + εm) = 2ρ′ + mα mod Z.

Thus for |m| � 1, one has

||2ρλ,α(E+
m + εm) − mα||R/Z �

√
� > 0.

This means 2ρλ,α(E+
m + εm) �= mα mod Z. Then E+

m + εm /∈ Gm and

E+
m − E−

m ≤ |εm | ≤ e− η
3 n ≤ e−C−1η|m|.

If am = 0, then det(�) = ε2([R2
11][R2

12]− [R11R12]2)+ O(ε3). Similarly to the analysis
above, one has E+

m − E−
m = O(ε) for |ε| � 1. Thus the gap Gm is collapsed and its length

is equal to zero. ��
Remark 6.12 If β(α) = 0, then the (almost) reducibility results for the EHM have been
proved in [13]. In this case, all proofs above are still valid. Essentially, the small divisors in
case β(α) = 0 are “better” than that in the Liouvillean frequency case.

Appendix A

Proof of Lemma 4.6 (i) For |n j | > n(α), we select qs < 1
20 |n j+1| ≤ qs+1. Thus � qs+1

qs
� ·

qs − 1 ≥ qs+1
2.5 ≥ |n j+1|

50 > 9|n j | by (3.4). Let r be minimal such that 1 ≤ r ≤ � qs+1
qs

� and
rqs − 1 > 9|n j |. Then rqs − 1 ≤ qs + 9|n j | ≤ 1

20 |n j+1| + 9|n j | < 1
9 |n j+1|. Obviously,

l = rqs − 1 < qs+1.
(ii) Since |n j | → ∞ as j → ∞, we can select

|n j |
50 <

ln |m|
h ≤ |n j+1|

50 . Then we have the
following cases.

Case 1 |n j |
50 <

ln |m|
h ≤ 9|n j |. In this case,we selectqs < 25|n j | ≤ qs+1. Thus � qs+1

qs
�·qs−1 ≥

qs+1
2.5 ≥ 10|n j |. Let r be minimal such that 1 ≤ r ≤ � qs+1

qs
� and rqs − 1 > 9|n j |. Then

rqs − 1 ≤ qs + 9|n j | ≤ 34|n j | <
|n j+1|

9 . By taking l = rqs − 1, one has ln |m|
h ≤ 9|n j | <

l < 34|n j | ≤ 1700 ln |m|
h .
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Case 2 9|n j | <
ln |m|
h ≤ |n j+1|

50 . In this case, we select qs < 3 ln |m|
h ≤ qs+1. Thus � qs+1

qs
� ·qs −

1 ≥ qs+1
2.5 >

ln |m|
h . Let r be minimal such that 1 ≤ r ≤ � qs+1

qs
� and rqs − 1 >

ln |m|
h . Then

rqs − 1 ≤ qs + ln |m|
h < 4 ln |m|

h <
|n j+1|

9 . By taking l = rqs − 1, one has ln |m|
h < l < 4 ln |m|

h .
By putting all cases together, we finish the proof of (ii). ��
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